NUREG/CR-3134
SANDSBZ - 0074
RS

Printed April 1384

A SETS User’s Manual for
Vital Area Analysis

Desmond W. Stack, Mildred S. Hill

8407170560 840630
PDR NUREG

CR-3134 R PDR
Prepared for

U. S. NUCLEAR REGULATORY COMMISSION

* OTICE

This report was prepared as an account of work nsored by an
agen.y of the United States Government. Neither the United
States Government nor any agency thereof, or any of their em-
ployees, makes any warranty, expressed or imp.ied, or assumes
any legal liability or nsibility for any third party’s use, or the
results of such use, of any information, apparatus product or
process disclosed in this report, or represents that its use by such
third party would not infringe privately owned rights.

Available from

GPO Sales Program

Division of Technical Information and Document Control
US Nuciear uhtorg Commission

Washington, D C. 2055

and

National Technical Information Service
Springfield, Virginia 22161

ABSTRACT

This manual describes the use of the Set Equation Transforma-
tion System (SETS) for vital area analysis. Various technigues
are presented for using SETS to solve vital area analysis fault
trees. Depending on the input to SETS, the solution to the vital
area analysis fault tree can be in terms of vital areas or primary
events of the vital area analysis fault tree. The techniques
presented are also suitable and efficient for other kinds of
common cause analysis.

iii/iv

1.0
2.0

3.0

4.0

5.0

contents

InttOduction L L I B O B B B B B B R N I R T I T

The SETS Program L IR O B N I B IR I T R R T T

2.1
2.2

3.3

Introduction L B B N O N I N B U I I O T U R R R ‘B N B
FaUIt TL ee Input L I B I T O R T T R Y
2.2.1 Example Fault Tree Input L I R)
2’2 .2 Event Names L L L I N T Y
2.2.3 Primary Event DeLinitionsccsnceevessenscs
Intermediate (Gate) Event DefinitionNsS ...cceeeeeeeees
Use[progtam L L I T I I I L N I I O O T N R R T Y -

AMlnlmal Cut Set Algotithm L O I

Understanding SETS USEr PrOQraAMS ..eveeveccesoosonses

SOOLBEAN BRUBRLOBE . cuscesisioesivs vbsnesssnses
FEOCOONER COLLAE i covsvonssnnstvonrnesssvnes
N BIOGE.-FEEN i e fvn S e s s s s tnie it s ansiad
THE BRIAEION PIIP csidiisiosnisnbetidenrinses

wwww
NN
- . .

B Wor e

Example SETS User programs L L B L I I I T U N R I U O Y
3.3.1 Example 1. Minimal Cut Sets for the

Top Event of the Figure 1 Fault Tree
3.3.2 Example 2. Minimal Cut Sets for the

Top Event and Intermediate Events of

a Fault Tree L e A L T T T T Y
Inpat for Vital Area ANAlYySiSeeeesccecesssssess
The Sabotage Fault T[ee L I O D B N R B B I O R N O I I I
The Area Equations l"..."....Q..'l‘.......l.l..l..
SETS Input Example L A L O L I I e T N T T)
The Fault Tree Input L I I I I I Y

o |
Sad- THE - INGE DUIRLEONE oossivisisrraslnssdeeosss
3.3 The OMEGA Block .'I.....O....‘......l....l'..

4.
-
-

The SETS User Program for Solving the Sabotage

Fault Ttee S 0200000000 000 000 00000 0t PIBLEOIOIEBDLEBIBBSOIEOEOEOSEOEDRDOOS

5.1

Replicated SuhtreES L L B L I I I I I O S T T

10
10
12
12

14

14

16
20
20
20
21
21
27
29
30
30

5.2
5.3

6.0 The

6.3

Contents

AND Gates Above the Replicated Subtreesceoceees

SOIVing the TopGate L A I I I B R I I N N

SETS Program for Solving the Example Sabotage
Fault Ttee in Terms of Areas L L I O B R W]

5.4.
5.4.2
5.4.3
5.4.4
5.4.5

The BLKSTAT and LDBLK Statementscvoeeees
Solving the Replicated Subtreesceveee
Solving the AND Gates Above tne

RODLICATEU BUDLLEBAS . ssnvossosssscorsansossss
SOIVing the TOP GALE® .covssvossnsssosnncsessess
OUCPUL OFf Che SEBTE PLOYLAE .ccinssenssssenssi

Potential Problems Encountered with the SETS

Program L E R A SR RS R R EEERE R R N N N R N PN N

3.5.1

v n

oron
w o

Comp‘ement Equation L B B L B B I B O O O)

Determining the Complement Equation Using SETS

A Replicated Subtree is too Large to

Solve with a Single SUBINEQN and

REDUCEON PLOCBOULE .scovscsnssssnsssncnnsiessss
An AND Gate with More than TwO INPuUtsS
Using the FRMBLK Procedure in Large

SETS USEr PrOQILaAME ,..cnccvvnsssncsncasssnscns

L)

An Example of Using SETS to Find the Complement

Equation

S0 S22 000000000 PRI ILIBOIEIOEDNOEOILOERIOIOIOBDOLOLODOLIESDS

A Potential Problem in Solving the Complement

Equatlon S 0 00 H 0PI PCTENT LN LLIOLIEOIEINOIEOLOSEOIIOLIEBESRESES

7.0 Minimal Cut Sets Of SADOLAGEe ACES ..vevecesovesoocnsncess

7.1

7.2

The SETS User Program for Identifying Scenarios

An Example of a SETS User Program for Identifying
the Scenarios of Type 1 Vital AC€AS ...vevevoseeenss

The Scenario EQUALIONS ...vesvsnvvnconnsvnenss
Setting the Type 2 Vital Areas to /OMEGA
RO NYUBELON - PEIE covssrst iis o ssiseivs videss
Solving the Sabotage Fault Tree for

scenarios ..'l...0.l.’...“l.ll........ll.‘l.
The Solution EQUALION ..ceveessvvessessosssses

vi

Page
31

31

32

33
33

34

34
34

37

37
37

38
41
41

41

43
44

44

45

46
47
48

48
49

Ccontents

Potential Problems in Determining the Scenarios

. 7.3.1 Determining the Scenarios for a Single
TR L VIERE AEOR ssvauvisnabsenssssssnvasssse 37
7.3.2 Determining a Subset of Scenarios .,......c0.. 61
7.3.3 Using Truncation when the STOP Option

35 DOLRY UBRD ..cvonvnssivsissnnsssonssnnasns 8@

Appendix A. Procedures Available in SETS .ceveevcesnscsnsnsss A=l
Aed ROBd PIOCK cncassvernsnnssssnssnssrsonsssonssessscsy Aml
Aed: R8O PRULE TPOR (ssvoviebsssnevsrsssshsinsssonansssee Al
Asd PEIOL BQUBRLOR .i.esssssncsnasaansssssenssssassssrse N8
A.4 Print Equation In Disjunctive Normal FOrme... A=2
A3 DOLOtE BRUBKAOR ,svenvsssssssassnnsnssssnsnaransssses And
A.6 Substitute IN BQUALLON .ceesvvrssssnsessscsssssnsses And

A'7 Reauce Equatlon L N I O L N I R R I A'.s

NS FOUD BRODR sscaicisssnsonsnbassssannssrsinsssssnmvey AT

B0 SO0 BEOCK - iiisavivuranidisrbrvasssransissers i ssanva Il

Aol PriInt BIOCR . ssccsssssnssnsassosssansrsinvsssnsssses And
Aell DRIet® BlOCR .cvcosessncsnsovsibossnssesnvossnssssny A9
Ael2 Block BLtALUS ..cccsvvscnsesssnsnssssessssnsssssnsses A=10
Appendix B, Execution DiagnoSticCScesescesessosssssesssecs B=1
Bil BETE BIEOIS .vcessoscosscncssssssssssasnsnsssnsesase D=l

B.2 SETS User Program BrrLOLS ...cccvosovssssscsvsscsesss B=2

B.2.1 Special Fault ' ee Error Messages .,......... B=3
B.2.2 Numbered Error MeSSAGeS ...s.coevvevsssssssses B=3

Appendix C. The Output of PRTBLK for the Example Sabotage
F.'llt T[CQ aﬂd ltﬂ AIGC Equ.tions L I C-l

vii

Figure
Figure
Figure
Figure

Figure

1,
2.
3.
4.
5.

Figures

R BIDDIE FOBAE TEEE s asivn s ossts cassnesednsabessess 2
PRREE TR BN 155560k o swe s 05 0a s F 5550450 E05se s 3
Processing Schematic for Procedure Calls ,...0000.. 11
AROEROE BimDIE PaUle TEPO® sescsssvsssnsscessonnsann 47
A G2bOtAgE PAULE Tre® .covvvevveverssvescsenses Inside

Back
Cover

viii

1.0 INTRODUCTION

This manual describes how tc construct SETS user programs to
perform a vital area analysis. SETS is a very general, flexible
tool for manipulating Boolean equations. This manual, however, is
designed specifically to describe the application of SETS to vital
area analysis.

The SETS program is used to achieve three of the major
objectives of a vital area analysis. These are:

- To identify the areas and combinations of areas in a
nuclear power plant in which at least one coilection of
unauthorized acts can be accomplished which will lead to
the release of significant amounts of radioactive material.

- To determine minimal sets of areas, the protection of which
will interrupt all possible sequences of unauthorized acts
which can resuit in radicactive release.

- To identify minimal collections of unauthorized acts which
lead to radioactive release where all of the unauthorized
acts in a given collection can be accomplished in the same
area.

Chapters 2 and 3 contain an introduction to the SETS program.,
This material is condensed from A SETS User's Manual for the Fault
Tree Analyst by R. B. Worrell and D. W. Stack, but does include
all of the features of SETS necessary for vital area analysis.
Chapter 4 describes the SETS input required for vital area analy-
sis. In Chapter 5, the construction of a SETS user program to
achieve the first objective is explained. In Chapter 6, the idea
of a complement equation is introduced to satisfy the second
objective. The third objective is treated in Chapter 7. Appendix
A gives a concise summary of the procedures available in SETS
which are used in a vital area analysis. Appendix B contains a
list and explanation of all of the error messages which can be
encountered in a vital area analysis.

An example vital area analysis fault tree is provided in
Figure 7. This example is used in Chapters 4-7 to describe each
step of the vital area analysis in detail.

2.0 THE SETS PROGRAM

2.1 Introduction

The Set Equation Transformation System (SETS) is a general
tool for manipulating Boolean equations. The occurrence of the
top event or any intermediate event of a fault tree can be
represented by a Boolean equation. When this equation is
transformed in a certain way, the fundamental ways that the top or
intermediate event can occur (i.e., the minimal cut sets) may be
read directly from the equation. Thus, SETS provides basic
capabilities for manipulating Boolean equations to determine the
minimal cut sets for the top event or any intermediate event of a
fault tree.

The input to SETS consists of two parts: the fault tree
description and the SETS user program. The input fault tree
description employed in SETS is free format, and prepared from the
graphical representation of a fault tree.

In addition to the input description of the fault tree, the
analyst must prepare a SETS user program. This program translates
the fault tree into a set of Boolean equations, and transforms
these equations in a way which allows the cut sets to be obtained.

2.2 Fault Tree Input

The generation of the SETS computer input description of a
fault tree usually proceeds from the familiar graphic representa-
tion of the tree such as the one shown in Figure 1.

&

Figure 1. A Simple Fault Tree.

We assume that the reader is familiar with the basic fault tree
terminology and symbols. The fault tree symbols used for sabotage
fault trees are shown for convenient reference in Figure 2.

e

> D

0 0 O

GATE SYMBOLS

AND- Output fault occurs if all of the input faults occur

OR - OQutput fault occurs if at least one of the input
faults occurs

SPECIAL - Output fault occurs according to a logic
function defined by the user

PRIMARY EVENT SYMBOLS

BASIC EVENT - An initiating fault requiring no further
development

UNDEVELOPED EVENT - An event which is not further
developed either because it is of insufficient
consequence, or because information is unavailable

DEVELOPED EVENT - An event which could be further
developed, or is developed elsewhere, but is treated here
as a primary event

MISCELLANEQUS SYMBOLS

DESCRIPTION - Contains the description of an event

TRANSFER IN - Indicates that the tree is developed
further at the occurrence of the corresponding TRANSFER
OUT (e.g., on another page)

TRANSFEK OUT - Indicates that this portion of the tree
must be attached at the corresponding TRANSFER IN

Figure 2. Fault Tree Symbols.

-

2.2.1 Example Fault Tree Input

A listing of the data cards
fault tree shown in Figure 1 is

FAULT TREE$ FIG-1-FT,
COMMENT

0G
AG
AG
oG
AG
AG
oG
0G

COMMENT

The fault tree input is written in a free format language,
The representation of a fault tree which SETS can interpret is
simply the string of characters that has been read from punched

BE
BE
BE
BE
BE

INTERMEDIATE
Gl. INS$ G2,
G2. INS$ G4,
G3. INS$ G5,
G4. INS$ G6,
G5. 1INS$ G7,
G6. "N$ E4,
G7. INS ES,
G8. INS$ E2,

PRIMARY EVENT

El. OUT$ G2,
E2. OUT$ G3,
E3. OUT$ G4,
E4. OUTE G6.,
ES. OUT$ G6,

which would be used to input the

as follows:

EVENT (GATE) DEFINITIONS.$

G3.

El. OuT$ Gl.
E2. OUTS$ Gl.
E3. OUTS$ G2.
G8. O0OUT$ G3.
ES. OUTS$ G4.
E3. OUT$ GS.
El. OUT$ GS5.

DEFINITIONS.$
G8.

G8.

G7.

G7.

cards after all blank (space) characters have been purged from the
string, This means that the SETS user need not be concerned about

entering the input in certain columns or with certain spacing.
long as the delimiters (i.e., dollar signs, periods, and commas)
are correctly placed, the input will be properly interpreted by

SETS.

The first card in the fault tree input is the fault tree

header which has the form:

FAULT TREE$

where

fault-tree-~-name.

As

"fault-tree-name" is an arbitrary name supplied by the analyst
consisting of from 1 to 16 name symbols,

The delimiters "§* anag

The second card is 2 comment card which has the form:

COMMENTS$ descriptive material §

where

"descriptive material® is supplied by the analyst,

Comments cain Jccur throughout the input, but they must follow a
They do not contribute to the definition of the

*." delimiter.

fault tree,

The "$" delimiters are mandatory.

wie

"." are required,

The rest of the cards are the intermediate and primary event
definitions. The event definitions can occur in any order, bhut
there must be exactly one definition for every event in the fault

tree.

2.2.2 Event Names

As part of the event definitions, each primary and
intermediate (gate) event must be assigned a name. Valid names
consist of from 1 to 16 name symbols, where the name symbols are
the capital letters A through 2, the digits 0 through 9 and the
minus sign (used to represent a hyphen in a name). For example,

CH1-SQB, G4, 113, 53-A-GRND4
are all legitimate names, and, in fact, any ordering of from 1 to

16 name symbols is a name. Any name can be used as an event name
in a fault tree with the exception of the name OMEGA which has

special meaning.

2.2.3 Primary Event Definitions

The primery events of a fault tree are those events which, for
one reason or another, have not been further developed. All
primary events are treated identically during processing by SETS.
The primary event definition for a basic event has the form:

BE$ basic-event-name. OUT$ output-event-list,

where
"BE" identifies the primary event as a basic event

"basic-event- ame" is the name of the basic event supplied by
the analyst

"output-event-list" is the list of gates to which the basic
event has an output.

The other types of primary events have similar event definitions
of the form:

UE$ undeveloped-event-name. OUT$ output-event-list,
DE$ developed-event-name. OUT$ output-event-list.

For example, the primary event definitions for the basic events E2
and E4 from the fault tree in Figure 1, are as fcllows:

BE$ E2. OUTS$ G3, G8.

BE$ E4. OUTS$ G6.

2.3 Intermediate (Gate) Event Definitions

The intermediate events of a fault tree are defined as logical
combinations of other intermediate or primary events in the fault
tree. Figure 2 describes some of the types of gates which are
valid for use with SETS. They are:

1. The AND Gate.

2. The OR Gate.

3. The SPECIAL Gate.

The "SPECIAL" gate is different from the other gates because
its logic function is defined by the user in the form of a Boolean
expression. The SPECIAL gate makes it easy for the SETS user to
describe, directly, such logic functions as the m-out-of-n gate
instead of having to express it in terms of several AND and OR
gates.

The intermediate event definition for an AND gate has the form:

AG$ and-gate-name. INS$ input-event-list. OQUT$
output-event-list,.

where
"AG" identifies the intermediate event as an AND gate

"and-gate-name" is the name of the AND gate supplied by the
analyst

"input-event-list" is a list of gates and primary events which
are inputs to the AND gate

"output-event-list® is a list of gates to which the AND gate
has an output.

The top event of the tree has no output event list. The OR gate
has a similar event definition of the form:

OG$ or-gate-name. IN$ input-event-list., OUT$
output-event-list.

For example, the intermediate event definitions for the OR gate Gl
and the AND gate G2 from the fault tree in Figure 1 are as follows:

0OG$ Gl. INS$ G2, G3.

The intermediate event definition for the SPECIAL gate has a
slightly different form:

SG$ special-gate-name = logic-function. IN$ input-event-list.
OUT$ output-event-list.

where

"logic-function"™ is any properly formed Boolean expression.

The Boolean operationt of conjunction (AND), disjunction (OR), and
negation (NOT) that appear in the expression are represented by
the symbols *, +, and /, respectively. The event names that
appear in the Boolean expression must be the event names that
appear 1in the input event list. Conversely, every event name in
the input event list must appear in the Boolean expression. For
example, the intermediate event definition for a SPECIAL gate
which specifies that the output event, T, occurs when at least two
of the three input events occur, can be represented in the
following way:

-

r Y -
A B ¢
SGS T = A*B + B*C + A*C.

INS A, B, C.
OUT$!

3.0 SETS USER PROGRAM

As mentioned earlier, a fault tree may be represented by a
collection of interrelated Boolean equations, one for each
intermediate event. These equations can be processed by SETS to
determine the minimal cut sets for any intermediate event in the
fault tree. The fault tree analyst must direct this processing by
writing a SETS user program, which is then read, interpreted, and
executed by SETS. The SETS user programs will vary depending on
such factors as the size and logical structure of the fault tree
and the intermediate event for which the minimal cut sets are to
be obtained. It is the ability to direct the processing which
gives the SETS system its great generality and flexibility.

The names that occur in SETS user programs are constructed
according to the same rules that were described for fault tree
event names (Section 2.2.2).

3.1 A Minimal Cut Set Algorithm

A fault tree can be represented by a collection of
interrelated Boolean equations, one for each intermediate event.
These equations can be transformed to determine the minimal cut
sets for any intermediate event in the fault tree. Three steps
are necessary to find the minimal cut sets for a particular
intermediate event:

Generate all of the intermediate event equations defined by
the fault tree.

Generate an equation for the selected intermediate event as a
function of only primary events by a repeated substitution
process using the intermediate event equations generated in
Step 1.

Reduce the equation resulting from Step 2 by applying the
Boolean absorpticn identities P*P = P and P + P*Q = P.

The resulting equation, when printed in disjunctive normal (sum of
products) form, is tantamount to a listing of the minimal cut sets
since each Boolean product (AWD) of primary events represents a
minimal cut set.

Suppose that we want to use this minimal cut set algorithm to
determine the minimal cut sets for the top event of the fault tree
in Figure 1.

Step 1 -- Generate the intermediate event equations for the
fault tree. To do this, simply write each intermediate gate event
as a function of its input events:

Gl = G2 + G3

G2 = G4 * El

G3 = G5 * E2

G4 = G6 + E3

G5 = G7 * G8

G6 = E4 * ES

G7 = E5 + E3

G8 = E2 + EIl

Step 2 -- Generate an equation for Gl that is a function of
only primary events. To do this, systematically eliminate each
intermediate event on the right side of the equation for Gl by
repeated substitution (i.e., replace each intermediate event by
the right side of its equation from Step 1) until Gl is expressed
entirely in terms of primary events.

Gl = G2 + G3

Gl = (G4 * E1) + (G5 * E2)

Gl = ((G6 + E3) * E1) + ((G7 * G8) *E2)

Gl = (((E4 *ES5) + E3) * E1) + (((E5 + E3) * (E2 + E1)) * E2).

Step 3 -- Apply the 1dentities P*P = P and P + P*Q = P to the
equation generated in Step 2., The application of the identities
can be easily seen by looking at a disjunctive normal form of the
equation:
Gl = E4*ES*El + E3*El + ES*E2*E2 + ES5*E1*E2 + E3*E2*E2 + E3*ELl*E2.
The identity P*P = P, when applied to the 3rd and 5th terms of the
equation will reduce them to E5%*E2 and E3*E2, respectively. The
4th and 6th terms of the equation eliminated by the identity

P + P*Q = P yielding the minimal cut sets for the top event of the
fault tree:

Gl = E4*ES5*El + E3*El + ES5*E2 + E3*E2.

3.2 Understanding SETS User Programs

The minimal cut set algorithm described in the previous
section is implemented for the fault tree in Figure 1 by the
following very simple SETS user program:

PROGRAMS EX1-MCS.
RDFT (FIG-1-FT).
LDBLK (FIG-1-FT).
SUBINEQN (Gl1, Gl-SUB).
REDUCEQN (G1-SUB, G1-MCS).
PRTEQNDNF (Gl-MCS).

A SETS user program begins with a program header of the form:

PROGRAM$ program-name.

where

"program-name®” is any name comprised of from 1 to 16 name
symbols.

Following the program header are the program statements which are
executed in the order that they occur. The first two statements
in the program above, the RDFT and LDBLK statements, read and
error check the fault tree input description and load its
equivalent set of Boolean equations into the equation file. The
third statement performs the substitution process which generates
an equation for the top event Gl completely in terms of primary
events., The last two statements perform the reduction process and
print the final result in disjunctive normal form which is
tantamount to a listing of the minimal cut sets.

Two kinds of statements can appear in a SETS user program:
Boolean equations and procedure calls.

3.2.1 Boolean Eguations

A Boolean equation defines an equivalence relationship between
a Boolean variable on the left side of the equation and a Boolean
expression on the right side of the equation. The Boolean
variable on the left side of the equation is represented by a
variable name comprised of 1 to 16 name symbols. The Boolean
expression on the right can be a logical combination of variables
involving the operations of conjunction (AND), disjunction (OR),
and negation (NOT). A Boolean equation can be identified and
referred to by its left side variable; "the equation for X" means
the egquation that has X a~ its left side variable.

3.2.2 Procedure Calls

A procedure call statement causes a predefined procedure to be
executed. The following list summarizes the available procedure
calls:

Procedures that {Read Block RDBLK
process input Read Fault Tree RDFT

Print Equation PRTEQN
Print Equation PRTEQNDNF
Procedures that In Disjunctive
reference Normal Form
equations Delete Equation DLTEQN
individually Substitute In SUBINEQN
Procedures that Equation
process Boolean Reduce Equation REDUCEQN
equations Procedures that Print Block PRTBLK
reference Block Status BLKSTAT
blocks of Delete Block DLTBLK
equations Form Block FRMBLK
Load Block LDBLK

From the above list, it can be seen that procedure calls
process input, individual equations, or blocks of equations. To
understand how the procedures are used, it is first necessary to
understand how the block file and the equation file are used. The
involvement of the block file and the equation file in the
execution of the various procedures is depicted schematically in
Figure 3. One or both of these files will be involved in the
execution of every statement of a SETS user program, and the
contents of the equation file and block file will vary as the
execution of the SETS user program progresses.

CARD
INPUT

- SUBINIQN
RDFT LDBLK
BLOCK EQUAT "N
RDINPBLK FILE F FRMBLK FIiE
¢ DLTBLK TEQN »

Figure 3., Processing Schematic for Procedure _alls.

elle

3.2.3 The Block File

The block file is used to store groups of Boolean eguations or
blocks. As discussed earlier, a fault tree can be transformed
into a set of Boolean equations, and is therefore a type of block.
Each block is identified by a block name for easy reference. From
Figure 3 it can be seen that SETS input is always entered in the
block file using either the Read Fault Tree (RDFT) or Read Block
(RDBLK) procedure. Once a block has been entered in the block
file, the Load Block (LDBLK) procedure may be used to load its
equations into the equation file for processing. In the case of a
block that represents a fault tree, loading the block is usually
aimed at determining the minimal cut sets, As shown in Figure 3,
the other procedures which involve the block file are:

Delete Block (DLTBLK)
Print Block (PRTBLK)
Block Status (BLKSTAT)
Form Block (FRMBLK)

Delete Block deletes a block from the blcck file; Print Block
prints the Boolean equations that constitute a block (additional
information is printed for fault tree blocks); and Block Status
lists the names of the blocks currently contained on the block
file, Form Block is used to create a new block made up of
equations from the equatinn file and to add that block to the
block file. Using Porm Block, it is thus po:sible to save in the

block file equations that are created during the execution of one
SETS user program for subsequent use in the same program, or fou
use in some other SETS user program at a later time.

3.2.4 The Eguation File

In order to process the individual equations of a block, the
blucl must be loaded into the equaticn file using the Load Llock
procedure call., 1In addition, equations may be entered in the
equation file one at a time by using Boolean equation statements
in a SETS user program. Figure) shows the procedures which
reference the equation file. They are:

Print Equation (PRTEQN)

Print Equation In Disjunctive Normal Form (PRTEQNDNF)
Delete Equation (DLTEQN)

Substitute In Equation (SUBINEQN)

Reduce Equation (REDUCEQN)

Print Eguation prints an equation in factored form; Print Equation
In Disjunctive Normal Form prints an equation in sum of products
form; and Delete Equation dcletes an equation from the equation
file, Substitute In Equation and Reduce Equation perform steps 2
and 3, respectively, of the minimal cut set algorithm that was
described in section 3.1. Specifically, Substitute In Equation
performs repeated substitutions on an equation until the right
hand side of that equation consists entirely ol primary events;

“12-

and Reduce Equation applies the Boolean absorption identities to
an equation,

There is a fundamental difference in the way that the equation
file and the block file are maintained. There can never ve more
th n one equation with the same left side variable in the eguation
file, but it is possible to have more than one block with the same
name in the block file. If the equation file already contains an
equation for a particular variable when a new equation for that
variable is defined (i.e,, entered in the equation file), then the
new equation will goslaco the existing equation. When a new block
is defined, it is added to the block regardless of whether or not
the block file already contains any blocks with the same name.

If more than one block with the same name ends up on the block
file, the blocks can still be accessed individually since the
blocks are loaded in the same order in which they appear on the
block file. So if there aie two blocks named X on the block file
and we want tne second one, the following SETS procedure calls
will load the second tlock named X into the equation file:

LDBLK (X).

DLTEQN.

LDBLK (X).
The first LDBLK (X) statement loads the first block named X on the
block file into the equation file. The DLTEQN frocoduro call
deletes all of the equations in the equation file, so the eqguation
file is now empty. The second LDBLK (X) loads the equations from

the second block named X into the equation file. The equation
file now contains all and only the equations from the second block

named X,
It is generally a poor practice to have several blocks with
the same name on the block file. If we have two blocks on the

block file with the same name and we want to eliminate the first
of chese but keep the second one, the following SETS statements

will accomplish this:
LDBLK (X).
DLTEQN.
LDBLK (X).
DLTBLK (X).
FRMBLK (X).
This example is similar to the previous example but the DLTBLK (X)

and FRMBLK (X) statements have been added. The DLTBLK (X)
statement drops all of the blocks named X from the block file.

l3e

The FANPLK (X) etatement forms a block namec¢ X af all of the
equations in the equation fil2, which ar¢ the equations from the
second block named X, andi adis this block #u the block file.
Thus, there is new ong and only one block named X on the block
file.

Finglly, suppuse we have two blocks named X on the block file,
but we want to keen *he firct bl!-=k «~Jd drop the second one, then
tre SEi3 staremernt:s

DLTEQN.
LDBLK (X).
DLTBIK (X).
FRMBLF (X).

will load the ficst block naved X, aelete all bliocks named X from
the block file, and form a block named X of the equations in the
equation file, which are tu¢ sguations from the first Llock named
X. The first statement in the S»TC zegment, the DLTEQN statement,
15 used to make sure that the equation file 1s empty at the start
of this segment.

Further discussion of the ird,vidua)l procedure calls appears
in Appendix A. e will rcaetrict thiz description of solving
favlt trees to technigues and procedures used for vital area
analysis,

3. Exzample 573158 User Program;

In this section we dizeuss two tynical SITS user programs.
These particuisr proarams sre appliceul2 only teo small fault trees.

3,2.1 Example¢ 1. Minimal Cut sets *or the Top Event of the
Figure 1 Fault Tree

Suppose tinac we want to write a SETS user program to determine
the minimal cut sets fur the top event of tue fault tree in Figure
1 sing the algor.thm defined in Secticn 3,1. The SETS user
Program EX1-MCS, which iz repeated here fur convenience,
acenmplishes cvhis task:

PROGRAM§ EX1-MCS.
RDFT (FIG-1-:T).
LDBLK (FIG-1-FT).
SUBINEAN (61, Gl-SUB).
REDUCEQN (Gl-8UB, (1-MCS).
PRTEQWDIF (%,1-MCS).

The first two statements of the GETS user program EX1-MCS

constitute an implementation of Step 1 of the minimal cut set
algerithm. %he first statement,

14~

RDFT (FIG-1-F7T)

1s a call of the Read Fault Tree procedure. This statement is
used to read the input description of the fault tree FIG-1-FT, and
add to the block file a block which contains the intermediate
event equations for the fault tree. The block has the same name
as the fault tree.

The second statement,
LDBLK (FIG-1-FT)

is a call of the Load Block procedure. Execution of this
Statement causes the intermediate event equations contained in the
block FIG-1-FT to be loaded (i.e., entered) in the equation file
where they are available for further processing.

Statement 3 in the SETS user program EX1-MCS represent an
implementation of Step 2 in the minimal cut set algorithm.

SUBINEQN (Gl, Gl-SUB)

1s a call of the Substitute In Equation procedure. It is invoked
to accomplish a repeated substitution process which begins with
the right side of the equation specified by the first parameter in
the call, Gl. The substitutions continue using the equations that
are currently in the equation file until no further substitutions
can be made. Then, a new equation is defined and entered in the
equation file. The left side variable of the new equation is the
second parameter in the call, G1-SUB, and the right side is the
expression that has been formed by the repeated substitution
process.

The last two statements of the SETS user program EX1-MCS
represent an implementation of Step 3 of the minimal cut set
algorithm. The fourth statement,

REDUCEQN (G1-SUB, G1-MCS)

is a call of the Reduce Equation procedure which is used to apply
the identities P*P = P and P + P*Q = P to the right side of the
equation specified by the first parameter in the call, Gl-SUB.
Ther,, a new equation is defined with the second parameter in the
call, G1-MCS, as its left side variable and the reduced expression
as its right side. The last statement,

PRTEQNDNF (G1-MCS)
is a call of the Print Equation In Disjunctive Normal Form
procedure which is used to print the equation for Gl1-MCS in a sum

of products form. The product terms of this equation are the
minimal cut sets for the top event of the fault tree:

] 8=

Term Number of

Number Literals
Gl1-MCS =
1 % E2 * E3 +
2 2 El * E3 +
3 2 E2 * ES5 +
4 3 El * E4 * ES

Thus, the four minimal cut sets for Gl are: (B2, B3), (Bl, B3),
(E2, E5), and (El1l, E4, ES).

The SETS user program EX1-MCS is an implementation of the
algebraic algorithm for determining minimal cut sets. It shows
what a SETS user program is like, and illustrates the use of
several procedures. The general form of a procedure call
statement is apparent from this example; a procedure call consists
of a procedure identifier followed by a parameter list enclosed in
parentheses. There are a few cases where parameters dc not occur
in the procedure call, but usually they are present.

3.3.2 Example 2. Minimal Cut Sets for the Top Event and
Intermediate Events of a Fault Tree

Suppose we want to determine the minimal cut sets for the top
event Gl, and for the intermediate events G4 and G8, of the fault
tree in Figure 4. Since G2 is a function of G4 and G8, and since
the minimal cut sets for G4 and GB8 are to be obtained anyway, the
equations that represent the minimal cut sets for G4 and G8 can be
determined first, and then used in the determination of the mini-
mal cut sets for the top event, Gl. This approach is implemented
in the SET5 user program:

PROGRAM$ EX2-MCS.
RDFT (FIG-4-FT).
LDBLK (FIG-4-FT).
SUBINEQN (G4, G4).
REDUCEQN (G4, G4).
SUBINEQN (G8, GB8).
REDUCEQN (G8, G8).
SUBINEQN (Gl, Gl).
REDUCEQN (Gl, Gl1).
PRTEQN (Gl, G4, G8).
PRTEQNONF (Gl, G4, GB).

L=

Figure 4. Another Simple Fault Tree.

As the SETS user program EX2-MCS is executed, the equations
for G1, G4, and G8 in the equation file are redefined. The first
two statements of the SETS user program,

RDFT (FIG-4-FT)
LDBLK (FIG-4-FT)

accomplish the processing of the fault tree and the loading of the
intermediate event equations into the equation file. This estab-
lishes the original equation for Gl, G4, and G8. The rest of the

processing specified in the SETS user program for each of these
three events is similar, and it will only be described for the

intermediate event G4.

After the execution of the Load Block procedure, the equation
for G4 in the equation file is:

G4 = G6 + G7
The third statement in the SETS user program,

SUBINEQN (G4, G4)

=l 7=

is a call of the Substitute In Equation procedure. Beginning with
a copy of the right side of the equation specified by the first
parameter, G4, the repeated substitution process is applied to
form the right cide of the new equation that will be defined and
entered in the equation file by this procedure. The left side
Variable of the new equation is the second parameter in the
procedure call, G4. Thus, a new equation for G4 is defined, and
it replaces the old equation for G4 in the equation file. The
equation for G4 that is in the equation file after the execution
of this statement is:

G4 = ((E3 * (E4 + E2)) + (E2 + (E5 + (E4 * E6))))
1l 2 3 3 2 2 3 - 4 321

The fourth statement in the SETS user program,
REDUCEQN (G4, G4)

is8 a call of the Reduce Equation procedure which will once more
define a new equation for G4. A copy of the right side expression
of the equation specified by the first parameter, G4, is subjected
to the application of the identities P*P = P and P + P*Q = P which
results in the elimination of one term from the expression. A
factored form of the remaining four terms becomes the right side
of the new equation that will be defined and entered in the
equation file by this procedure. The second parameter, G4, is the
left side variable for the new equation. The new equation for G4,

G4 = E4 * (E6 + E3) + E5 + E2
1 1

is a representation of the minimal cut sets for G4 and it replaces
the old equation for G4 in the eguation file.

The eguations representing the minimal cut sets for G8 and Gl
are developed in the same way that the equation representing the
minimal cut sets for G4 is developed. The development of the
equation for Gl, however, makes use of the minimal cut set
equations for G4 and G8 which were previously computed. The final
two statements of the SETS user program,

PRTEQN (Gl, G4, G8)
PRTEQNDNF (Gl, G4, G8)

are used to print the minimal cut set equations for Gl, G4, and
G8. The equations are printed first in the factored form that
they have in the equation file, and then in a disjunctive normal
form which tantamount to a listing of the minimal cut sets for G1,
G4, and G8:

-18-

Gl = E1 * (E4 * (E6 + E3) + E5 + E2) + E4 * E2 *» E3 * A
G4 = E4 * (E6 + E3) + E5 + E2

G8 = E4 * E3* A+ El1 *B

Term Number of
Number Literals
Gl =
1 2 El * ES +
2 2 El * E2 +
3 3 El * E4 * E6 +
B 3 El * E4 * E3 +
5 o E4 * E2 * E3 * A
Term Number of
Number Literals
G4 =
1 1 E5 +
2 1 E2 *
3 2 E4 * E6 +
B 2 E4 * E3
Term Number of
Number Literals
G8 =
1 2 El * B +
2 3 E4 * E3 * A

There is an undeveloped event, B, which occurs in the equation
for G8, but does not occur in the reduced equation for Gl. This
may signify that it is not necessary to develop the event B,
because it is not involved in the minimal cut sets for the top
event of the fault tree.

=19~

4.0 SETS INPUT FOR VITAL AREA ANALYSIS

Vital area analysis is the analytical procedure used to

systematically identify the areas of a nuclear power plant that

require physical protection. The inputs to the SETS portion of

the analysis are the sabotage fault tree and a set of Boolean

equations which identify the areas, or logical combinations of -
areas, in which each sabotage action depicted on the fault tree

can occur.

4.1 The Sabotage Fault Tree

The top event of the sabotage fault tree is the release of
significant amounts of radioactive material as a result of sabo-
tage. The top event is developed into logical combinations of
events until the development terminates in primary events. The
primary events are sabotage actions, such as disabling a valve or
cutting a pipe, which can lead to the undesired release of radio-
active material. Each primary event can occur in some area oOr
logical combination of areas in the plant.

The fault tree is read by SETS using the RDFT procedure.
This procedure causes a block to be formed, with the name of the
block being the same name as the fault tree, and adds the block to
the block file. Both a linguistic representation and a Boolean
representation of the fault tree are stored on the block. The
Boolean representation is constructed by associating a Boolean
eguation with each gate in the fault tree. The left-hand-side of
the Boolean equation is the name of the gate. The right-hand-side
of the equation is a Boolean expression. The variables in the
expression correspond to the names of the inputs to the gate. The
variables are related Ly the appropriate Boolean operation
depending on the type of gate.

4.2 The Area Equations

Each sabotage action represented by a primary event of the
fault tree can occur in some area or some combination of areas.
This area information is represented by a Boolean equation. For
example, the equation:

Bl = AREAl + AREA2 + (AREA3*AREA4) + AREAS

signifies that the sabotage act represented by Bl can be accom-
plished in any one of the areas 1, 2, or 5. Additionally, the
sabotage act can take place in areas 3 and 4 but both areas must
be accessed to accomplish the sabotage act. The RDBLK procedure
is used tn read the set of area equations, form a block containing
the equations and add it to the block file.

1f the fault tree is loaded into the equation file in SETS

and a SUBINEQN is performed on any gate in the fault tree, the
substitution process continues until it terminatez on the primary

-20-

events in the fault tree. The minimal cut set algorithm will
therefore produce minimal cut sets which are in terms of the
primary events. However, if the fault tree and the Boolean
equations which represent the area information for the primary
events are loaded into the equation file, the substitution process
continues through the primary event: since there are eguations

for the primary events. 1In this ca:.e the substitution process
terminates on the variables which represent the areas in which

the sabotage acts can occur. Therefore, the minimal cut sets
produced will be in terms of the areas in which the sabotage acts
can occur. Thus, the minimal cut sets can be either in terms

of sabotage acts or the areas in which these acts can occur,
depending on what is entered into the equation file. Since vital
area analysis is concerned with the areas of a nuclear power plant
which require protection, we are interested in obtaining mininal
cut sets in terms of areas.

4.3 SETS Input Example

The following SETS user program reads the fault tree and area
equations, forms a block named SABOTAGE-FT for the fault tree and
a block named AREA-EQUATIONS for the area equations and adds these
blocks to the block file. These blocks are now ready to use in
any subsequent SETS user program. There may be certain events in
tne fault tree which the analyst assumes will always occur, or
will never occur. The last input block read in, OMEGA-ASSUMPTION,
will later be used to implement these assumptions.

PROGRAMSE XAMPLE -1,
ROFT(SABOTAGE-FT),
PRTBLK({SABOTAGE-FT).
ROBLK(AREA-EQUATIONS).
PRTBLK(AREA-EQUATIONS).
RDBLK(OMEGA-ASSUMPTION).
PRTBLK(OMEGA-ASSUMPTION).
BLKSTAT.

4.3.1 The Fault Tree Input

The fi: st SETS statement, RDFT (SABOTAGE-FT), reads the fault
tree and forms a block named SABOTAGE-FT. The fault tree name
must be the same as in the RDUFT procedure call. The example fault

tree has the following input:

3L

ROFT (SABOTAGE-FT).

FAULTTREE$SABOTAGE-FT,

0C¢
0G$
AGS
DES
BES

DES
0G$
ACS
0G$%
0G$%
DES
DES
AGS
DES
0G$
0G%
DES
AGS

DES
0C$
0G$

0G$
CG$

BES
BES
DES
0GC$
0G$

0G$
0G$

BES
BES
nES
0c$
UES
AGS
0G$
0G$

0G$
AGS

TOP, INSFM-TI,FM-ILOCA.

FM-ILOCA. INSLI-MSD, QUTS$TOP,

LI-MSD, INSL-MSD,LI. QUTSFM-ILOCA,

LE, QUTS$LI-mMSD,

LOSPW, OUT$AC-4160-B1J-NP,AC-4160-B1]1-AP,
AC-4160-B1H-NP ,AC-4160-B1H-AP,

RPS-D. QuUT$TMS-D.

ADHRS-D, OUT$DHRS-D. IN$SSRS-D,AFWS-LO-IHR,

FM-TI. INSTI-RT,TMS-D., OUTSTOP.

TI-RT, IN$SOI-RC,IHR-NHRS, QUT$FM-TI,

TMS-D. INSRPS-D,0HRS-D, QUT$FM-TI,

OI-RC. QUT$ TI-RT,

IHR-NHRS, OUTS$TI-RT,

DHRS-D. INSADHRS-D, OQUT$TMS-D.

SSRS-D. OUT$ADHRS-D,

AFWS-LO-IHR, OUT$ADHRS-D. INSAFO-IHR.
AFO-IHR. IN$AFO-PMD-HS,AFQ-PM-L,AF0-CS- MS. OUTSAFWS-LO-IHR.
AFO0-PMD-HS, OUT$AFD-IHR.
AFQ-PM-L, IN$ AFO-MD-P1A,AFO-MD-P18B,
OUT$AFO-IHR.
AFO-CS-PMS, OUTSAFO-IHR.
AFO-MD-P1A, IN$AFO-P1A-D,AF0-P1A-EPW, OUT$AFO-PM-L .
AFO-P1A-D. IN$AFO-P1A-B,AF0-P1A-AUX,AFO-P1A-CSG.
OUTSAFO-MD-P1A,
AFO-P1A-EPW, INSAC-4160-B1H,
OUT$AFO-MD-P1A.
AFO-P1A-AUX,INSAFO-P1A-COOL.
QUT$ AFD-P1A-D.
AFU-P1A-B, OUT$AFO-P1AR-D.
AFO-P1A-CSG. OUT$AFO-P1A-D.
AFO-P1A-COOL.OUTSAFO-P1A-AUX.
AFO-MD-P18, IN$AFO-P1B-D,AF0-P1B-EPW. OUTSAFO-PM-L .
AFO-P1B-D. IN$AFD-P1B-B,AF0-P1B-AUX,AF0D-P18-CSG.
OUT$AFO-MD-P18,
AFO-P1B-EPW.INSAC-4160-B17.
OUT$AFO-MD-P18B,
AFO-P1B-AUX.INSAFO-P1B-COOL .
OUT$ AFO-P18-0.
AF0-P1B-B. OUT$AFO-P18-D.
AF0-P1B-CSG. OUT$AFO-P1B-D.
ATG-P18-CO0L .OUTSAFO-P1B-AUX,
L-MSD. INSECRS-D,fCIS-D,PAHRS-D., OUT$LI-M5D.
PAHRS-D. OuUT$L-MmSD.
ECRS-D. OUT$ L-MSD. INSCS1A-IHR,CS18-IHR,
ECIS-D. OUT$L-MSD, INSCHO-IHR.
CSTA-IHR. INSCS1A-PMD-HS,CS1A-HS,C51A=PM-L,C51A-HS-PMS .
OUT$ECRS-D.
CS1A-PMO-HS, INSCS1A-CX-SUMP-B,CS1A-PP-PMD-B.
OUTSCS1A-1IHR,
CS1A-PM-L, INSCS1A-MD-P1A,

33

OUT$ CS1A-1IHR,
0G$ CS1A-HS-PMS, IN$CS1A-PP-PMS-B.
OUT$CS1A-IHR,
DE$ CS1A-HS, OUT$CS1A-IHR,
BE$ CS1A-PP-PMD-B. OUT$CS1A-PMD-HS.
BE$ CS1A-CX-SUmMP-B. OUT$CS1A-PMD-HS,
BE$ CS1A-PP-PMS-B. DUT$CS1A-HS-PMS,
0G$ CS1A-MD-P1A. IN$CS1A-P1A-D,CST1A-P1A-EPW. OUTSCS1A-PM-L .
0G$ CS1A-P1A-D. INSCS1A-P1A-B,CS1A-P1A-CSEG.
OUT$CS1A-MD-P1A,
OGS CS1A-P1A-EPW,.INSAC-48B0V-B4BOH.
OUT$CS1A-MD-P1A,
BE$ CS1A-P1A-B. OUT$CS1A-P1A-D.
B8E$ CS1A-P1A-CSG. OUT$CS1A-P1A-D.
OG$ CS18-IHR, INSCS1B8-PMD-HS5,CS518-HS,CS1B8-PM-L ,C51B-HS-PMS,
OUT$ECRS-D.
OG$ CS1B8-PMD-HS, INS$LCS1B-CX-SUMP-B,CS1B-PP-PMD-B.
OUT$CS1B8-1IHR.
AG$ CS1B-PM-L, IN$CS1B-mD-P18B.
OUT$ CS1B-IHR.
0G$ CS1B-HS-PMS, IN$CS1B-PP-PMS-B.
OUT$CS1B-1IHR.
DE$ CS1B-HS., OUT$CS1B-IHR.
BE$ CS18-PP-PMD-B., OUT$CS1B-PMD-HS.
BE$ CS1B-CX-SUMP-B. OUT$CS1B-PMD-HS.
CE$ CS1B8-PP-PMS-B, OUTSCS1B-HS5-PMS,
0G$ CS1B-MmD-P1B. INSCS1B-P1B-D,CS18-P1B-EPW. OUT$CS1B-PM-L .
0G$ Cs18-P1B-0, IN$CS1B-P1B-B,CS518-P1B-CSG.
ouT$CS1B8-mD-P1B.
0G$ CS18-P1B-EPW.INSAC-4B0V-B4BCY.,
OuUT$CS1B-MD-P1B,
BE$ C518-P1B-B. OUT$CS1B-P1B-D.
BE$ CS18-P1B-CSG. OUT$CS1B-P1B-D.
0G$ SWA-IHR, INSSWA-PMD-HS,SWA-CS-PMS, SWA-PM-L .
OUT$CHO-P1A-COOL,CHO-P1B-COOL .
0G$ SWA-PMD-HS,IN$SWA-HX-0ILCO-B,SWA-PP-PMD-B,SWA-VV-PMD.
OUT$SWA-IHR,
0G$ SwA-PM-L., IN$ SWA-MD-P10A,AC-4160-B1H.
OUT$SWA-IHR,
DE$ SWA-CS-PMS. OUT$SWA-IHR.
BE$ SWA-HX-0ILCO-B., OUT$SWA-PMD-HS.
BE$S SWA-PP-PMD-B. OUT$SWA-PMD-HS.
BE$S SWA-VV-PMD,OUT$SWA-PMD-HS,
DE$ SWA-MD-P10A. OUT$SWA-PM-L .,
0G$ SwB-IHR, IN$SSWB-PMD-HS,SWB-C5-PMS, SWB-PM-L .
OUT$CHO-P1A-COOL ,CHO-P1B-COOL .
0G$ SwB-PMD-HS,IN$SWB-HX-0ILCO-B,5WB-PP-PMD-B,5WB-VV-PMD.
OUT$SWB-IHR,
0G$ SwB-Pm-L, IN$ SwuB-mMD-P10B,AC-4160-B17.
OUT$SWB-IHR,
DE$ SwB-CS-PMS, OUT$SWB-IHR,
BE$ SwWB-HX-0ILCO-B. OQUT$SWB-PMD-HS.
BES SWB-PP-PMD-B, OUT$SWB-PMD-HS.
BE$ SwWB-VV-PMO,.0UT$SWB-PMD-HS.
DE$ SWB-MD-P10B., QUT$SWB-PM-L ,
0G$ CHO-IHR. INSCHO-PMD-HS ,CHO-CS-PMS,CHO-PM-L . OUT$ECIS-D.
0G$ CHO-PMD-HS, INSCHO-HX-RVESS-B,CHO-VV-PMD,CHO-PP-PMD-8,

23

AGS

DES
BES
BES
0G$

BES
BES
BES
OGS
0G$

0G%
0GS$

BES
BES
AGS
0GS
0G%

0G$
0G$

BES
8%
AGS
0C$

QUTSCHO-IHR,
CHO-PM-L . IN$ CHO-MD-P1A,CHO-MD-P1B.
OUT$CHO-IHR,
CHO-CS-PMS, OQOUT$CHO-IHR,
CHO-HX-RVESS-B. OQUT$CHO-PMD-HS.
CHO-PP-PMD-B. OQUT$CHO-PMD-HS,
CHO=-VV-PMD.OUTSCHO-PMD-HS,
IN$CHO-MV1286ABCOC ,CHO-MY1867ABCC ,CHO-MV1867B0DCC.
CHO-MY1286ABCOC.0UTSCHO-YV-PMD,
CHO-MVU1867ABCC, QUTSCHO-VV-PMD.
CHO-MU1B867BDCC. QUTSCHO-VV-PMD,
CHO-MD-P1A, INSCHO-P1A-D,CHO-P1A-EPW, OUTSCHO-PM-L .
CHO-P1A-D, INSCHO-P1A-B,CHO-P1A-AUX,CHO-P1A-CSG.
QUT$CHO-MD-P1A.
CHO-P1A-EPW, INSAC-4160-B1H,
QUT$CHO-MD-P1A,
CHO-P1A-AUX,INSCHO-P1A-COOL .
QUTS$ CHO-P1A-D.
CHO-P1A-B. OUT$CHO-P1A-D,
CHO-P1A-CSG., OUTSCHO-P1A-D,
CHO-P1A-COOL .OUT$CHO-PT1A-AUX, IN$SWA-IHR,SWB-IHR.
CHO-MD-P1B, INS$CHOD-P1B-D,CHD-P1B-EPW. OUTSCHO-PM-L.
CHO-P1B8-D. IN$CHO-P18-B,CHO-P1B-AUX,CHO-P1B-CSG.
QUT$CHO-mD-P1B,
CHO-P1B-EPW, INSAC-4160-B17J.
OUT$CHO-MD-P1B.
CHO-P18-AUX,INSCHO-P1B-COOL.
QuT$ CHO-P1B-D.
CHO-P1B-B. OUT$CHO-P1B-D.
CHO-P1B-CSG, OUT$CHO-P1B-D.
CHO-P1B-CO0OL .,OUT$CHO-P1B~-AUX, IN$SWA-IHR,SWB-IHR,
AC-4160-B1], IN$EP-BS-1)-D,AC-4160-R1J-PS,

OUT$AC-480V-B480J-PS,CHO-P1B-EPW,AFO-P1B-EPW,SUB-PM-L .,

BES
AGS
0G$
BES
AGS
0G$
UES
0C$

EP.BS-1J-D, OUT$AC-4160-B1],

AC-4180-B13-PS, IN$AC-4160-B1J-5B,AC-4160-B1J-NP, OUT$AC-4160-B17.
AC-4160-B1J-58. IN$CB-C1J-0,0G-N03-L. OUT$AC-4160-81J-PS.

CB-C1J-0. OUT$AC-4160-B1]-58.

AC-4160-B1J-NP., INSAC-4160-B1J-AP,LOSPW, OUT$AC-4160-B1J-PS.
AC-4160-B1J-AP, INSCOMP-MPWT-D,LO0SPW, OUT$AC-4160-B1I-NP,
COMP-MPWT-D, OUTSAC-4160-B1J-AP,AC-4160-B1H-AP,

AC-4160-B1H, INSEP-BS-1H-D,AC-4160-B1H-PS,

OUT$AC-4B0V-B4BOH-PS ,CHO-P1A-EPW,AFO-P1A-EPW,SWA-PM-L .,

BES
AGS
0Gs
BES
AGS
L . 0G$
0G$

OE$
| BES
DES
06$
DES
BES
DES

EP-B5-1H-D., OUT$AC-4160-B1H,
AC-4160-B1H-PS, INSAC-4160-B1H-S8,AC-4160-B1H-NP, OUT$AC-4160-B1H,
AC-4160-B1H-SB8, INSCB-C1H-0,0G-NO1-L. OUT$AC-4160-B1H-PS,
CB-C1H-0. OUT$AC-41E0-B1H-5B.
AC-4160-B1H-NP, INSAC-4160-B1H-AP,LOSPW. OUT$AC-4160-B1H-PS,
AC-4160-B1H-AP, INSCOMP-MPWT-U,LO0SPW. OUTSAC-4160-B1H-NP,
DG-NO3-L., IN$DG-ND3-CS56,DG-NO3-8B,DG-NO3-AUX,
OUT$AC-4160-B11-58,
DG-NO3-AUX., OUT$0G-NO3-L .
DG-NC3-8. OUT$DG-NO3-L, .
DG-NO3-CS6G., OUT$O0G-ND3-L . '
OG-NO1-L., IN$DG-NO1-CSG,DC-NO1-8B,0G-ND1-AUX. OUT$AC-4160-B1H-58,
0G-NO1-AUX., OUT$DG-NOT -L .
DG-NO1-B, OUT$DG-NODT-L .,
DG-ND1-CSG. OUT$DG-NOT =L,

-2‘-

0G$ AC-480V-B4BOH, IN$ID-BS-4B0OH-D,AC-4B0V-B4BOH-PS,
OUT$CST1A-P1A-EPW,

OG$ AC-4B0V-B4BOH-PS, INSID-TR-SSXFMIH-D,AC-4160-81H.

BE$S 10-BS-480H-D. OQUT$AC-480V-B4BOH,

BES ID-TR-SSXFM1H-D. OQUT$AC-480V-B4BOH-PS,

0C$ AC-48B0V-B4B0J. IN$ID-BS-4B0J-D,AC-480V-B4BOI-PS.
OUT$CS1B8-P1B-EPY,

O0C$ AC-430V-B4BOT-PS., INSID-TR-SSXFM1J-D,AC-4160-817.

BE$ ID-BS-4B0J-D., OQUT$AC-4B0V-B4BOT.
BEE IN-TR-SSXFM1Jj-D. OUT$AC-480V-B4BOI-PS,

THE NEw EQUATION BLOCK SABLTAGE-FT
HAS BEEN ADDED TO THE BLOCK FILE

«38-

OUTSAC-48B0V-B4BOH,

OUT$AC-480V-B4B0OY,

The block SABOTAGE-FT contains both a linguistic representa-
tion of the fault tree, similar tc the input form, and a set of
Boolean equations for the fault tree, Both of these representa-
tions are printed by the PRTBLK procedure. The output of the
PRTBLK (SABOTAGE-FT) statement 1is given in Appendix C.

-26~

4.3.2 The Area Equations

The RDBLK (AREA-EQUATIONS) statement reads the input block
containing the area equations, forms a block named AREA-EQUATIONS,
and adds the block to the block file. The name of the input block
must be the same as in the RDBLK statement. The input block for
the example is:

ROBLK (AREA-EQUATIONS).
BLOCKSAREA-EQUATIONS,

THR-NHRS =5FGRDB .

RPS-D =SFGRDA,

0I-RC =SFGCRDB.

55R5-0 =MCC1IJCV + MCCIHCV.

AFO-PMD-HS =CR + mCC1JCV,
AFO0-CS-PMS =SFCRDA,
AFO-P1A-B =MCCT1HCV,
AFO-P1A-CSC =MCCI1HCV.
AFO-P1A-CO0L =DGRM2,
AFO-P1B-B =MCC1JICV,
AF0-P1B-CSC =MmCC1ICV,
AFO-P18-CO0L =DGRM1 + ESGRM,

EP-B5-1J.D =ESGRM,

CB-C11-0 =ESGAM,

EP-BS-1H-D =ESGRM,

CB-C1H-0 =ESGRM,

DG-NO3-8 =0GRM2,

DG-NO1 -8 =0OGRAM1 ,

ID-B5-480MH-D =WSGRM,

I0-TR-SSXFMIH-D =2A8,

10-B5-4807-D =ESGRM,

ID-TR-SSXFM1J-D =3EQUIPAM,

AFWS-L0~IHR =CR+MCCIHCURMCC JCV+SFGROA ,
C51A-PP-PMD-B «3EQUIPRM,
CS1A-CX-SUMP-B =CH,

CS1A-PP-PMS -8 =CR + 2A8.

CS1A<P1A-B =PMPHSE ,

CS51A-P1A-CSG =CR,

C518-PP-PMD-B =CR,

CS18-CX-SUMP.B =PMPHSE ,

CS18-PP-PMS.0 =CR + 2AB"2R8,
C518-P18-8 =CR,

£S518-P18-CSG =CR,

SWA-HX-0ILCO-8 =TASMTUUPT,

SWA-PP.PMD.B =3EQUIPRM+ESGRM*WSGRAMS 248 ,
SWA-VV-PMD *3EQUIPRM+2AB,
SWB-HX-0ILCO-B <CHPMCUB ,

5B -PP-PMD-B =3EQUIPRM+ESGRM¥YSCRM+ 2A8 ,
SW8-yy-PMD =3EQUIPRMs 248 ,
CHO-HX-RVES5-B =CH,

CHO-PP-PMD.-B =CHPMCUB+2AB ,

CHO-My1286ABCOC =CR+MCCTHCU*MCCYIICVSCHPMCUSB ,
CHO-MV1B67ABCC =CR+MCCIHCY*MCCIICU+2A8,
CHO-My186780CC =CR+MCCYTICV*MCCIHCV+2AB.

3%e

CHO-P1A-B
CHOD=-P1A-CSC
CHO-P18-B
CHO-P1B-CSC
LI = CHPMC
CS1A-HS = §

=CHPMCUB .

=CHPMCUB.

=ESGRM,

=CHPMCUB.
UB + 2AB + ESGRM + CR + RIC,
FGRDA + MCC1HCV.,

CS1B-HS = SFGRDA + MCC1JCV + WSGRM,

SWA-CS-PMS
SwB-CS-PMS
SWA-MD-P10A
SwuB8-mo-P108
CHO-CS5-PMS
DG-NO3-AUX
DG-NDT -AUX
DG-NO3-CSG
DG-~ND1-CSG6

This block
desired. The o
in Appendix C.

= TBSMTVVPT,

= TBSMTUVRT,

= CR + 3EQUIPRM,

= CR + 3JEQUIPRM,

= RWST + 2RWST+CR + 2AB + CHPMCUB.
= DGRM2,

= DGRM1,
CR + RLYRM + DGRM1*DGRM2,

CR + RLYRM + DGRM1*DGRM2.

can also be printed by the PRTBLK procedure, if
utput of PRTBLK (AREA-EQUATIONS) statement is given

4.3.3 The OMEGA Block

Any events that the analyst assumes will always occur are set
to OMEGA. In the subsequent Boolean manipulation of equations,
this event will be treated as 1. Similarly, events that are
assumed to never occur are set to /OMEGA, and will be treated as a
0. The RDBLK (OMEGA-ASSUMPTION) reads this set of equations,
forms a block named OMEGA-ASSUMPTION and adds it to the block
file. The input block name must be the same as in the RDBLK
procedure call. The OMEGA-ASSUMPTION block for the example is:

BLOCK$OMEGA-ASSUMPTION.

LOSPY =0OMEGA.
PAHRS-D =/OMEGA,
COMP-MPWT-D =/0MEGA,

Like the other blocks, this block can be print:ed by a PRTBLK
statement, giving:

% ® % BLOCK SET EQUATIONS * # #
(OMEGA-ASSUMPTION)

LOSPW = OMECA

FPAHRS-D = /OMEGA

COMP-MPWT-D = /OMEGA

Finally, a BLKSTAT procedure call will print the names of the
blocks on the block file. For the example, the output of the

BLKSTAT statement is:

THE BLOCK FILE CONTAINS THE FOLLOWING BLOCKS 1. SABOTAGE-FT
2, AREA-EQUATIONS

3 OMEGA-ASSUMPTION

5.0 THE SETS USER PROGRAM FOR SOLVING THE SABOTAGE FAULT TREE

Chapter 3 describes writing a simple SETS user program to
solve a fault tree. If the sabotage fault tree is small, a single
SUBINEQN and REDUCEQN procedure call for the top gate will
determine the miniral cut sets of the fault tree. However, most
sabotage fault trees are much too large to be solved using this
approach. Instead, various subtrees of the fault tree are solved
until a solution for the top gate can be determined. Two kinds of
subtrees are singled out for solution prior to solving the top
gate; the replicated subtrees and the subtrees whose top gates are
AND gates which are above the replicated subtrees in the fault
tree. A replicated subtree is one whose top gate is a multiple
output gate., These subtrees are readily identified on the fault
tree plot since their top gates are plotted with transfer-out
symbols as their outputs. The general steps involved in the SETS
user program are:

- Load the fault tree, the area equations and the OMEGA
assumptions into the equation file using the LDBLK
procedure.,

- Solve the replicated subtrees of the fault tree using the
SUBINEQN and REDUCEQN procedures.

- Solve the AND gates of the fault tree which are located
above the replicated subtrees using the SUBINEQN and
REDUCEQN procedures.

- Solve the top gate of the fault tree using the SUBINEQN and
REDUCEQN procedures.

- Form a block of the solution equation using the FRMBLK
procedure.

= Print the solution using the PRTEQNDNF procedure.
We now discuss these steps in more detail. It helps to keep in
mind what is in the equation file at all times since this is the
key to understanding what is happening during the execution of a
SETS user program,

5.1 Replicated Subtrees

The fault tree equations and the area equations are loaded
into the equation file. Every gate in the fault tree has an
equation in terms of its immediate inputs., The objectivas is to
teplace certain gate equations with their minimal cut set
equations in the equation file. Then when these gates are
encountered during the substitution process, their minimal cut set
expressions will be encountered in the equation file rather than
the much larger expressions that would be encountered if the
substitution process continued with their immediate irputs, The

first group of gates chosen for solution is the collection of
gates which are the top gates of the replicated subtrees. Since
the top gate of such a subtree has multiple outputs, the subtree,
in affect, appears in several places in the fault tree (in as many
places as there are outputs for its top gate). If this subtree is
ceplaced by a simpler representation, in this case its minimal cut
set representation, there will be a savings every time it is
encountered when substituting for the top gate of the fault tree.
The order in which the replicated subtrees are solved is extremely
important to the efficiency of the program. When solving a
replicated subtree, if the substitution process encounters any top
gates of replicated subtrees, their simpler representation will
replace them in the equation being formed. These considerations
give the following rule to be followed when determining the order
in which the replicated subtrees are to be solved: A replicated
subtree is solved only if all of the replicated subtrees which it
contains have already been solved.

There is always some group of replicated subtrees which do not
contain any replicated subtrees since a fault tree cannot have any
cycles. These subtrees are solved first, in any order. They can
be identified on the fault tree plot since they are plotted from
their tops down to only primary events without any intervening
transfer-in symbols. The remaining replicated subtrees are solved
in the order given by following the above rule. The fault tree
plot can be helpful when following the rule. The top gate of a
replicated subtree is plotted down to primary events and transfer-
in symbols, which represent inputs from replicated subtrees. If
every replicated subtree represented by a transfer-in has already
been solved, the replicated subtree can be solved.

5.2 AND Gates Above the Replicated Subtrees

Once all of the replicated subtrees have been solved, the
second group of subtrees chosen for solution is the collection
of subtrees which have AND gates located above the replicated
subtrees as their top gates. The reason that AND gates are
selected is that the maximum number of minimal cut sets for an AND
gate is the product of the number of minimal cut sets for each of
its inputs while the maximum number of minimal cut sets for an OR
gate is the sum of the number of minimal cut sets for each of its
inputs. Since some of the top events of replicated subtrees may
have a large number of minimal cut sets, the distinction is an
important one. The rule for determining the order in which to
solve the AND gates above the replicated subtrees is similar to
the rule for replicated subtrees: An AND gate is solved only if
all of the AND gates below it (but above the replicated subtrees)
have been solved. There may be single input AND gates in the
fault tree which are merely for descriptive purposes. These gates
are ignored when solving the fault tree.

5.3 Solving the Top Gate

Once all of the replicated subtrees and the AND gates above
the replicated subtrees have been solved, we are ready to solve

«3l=

the top gate of the fault tree. The SETS user program to solve
the top gate:

SUBINEQN (TOP, TOP).
REDUCEQN (TOP, TOP).

is identical to the user program to solve the fault tree in a
single step. However, the difference is that the eguation file
contains reduced, minimal cut set equations for the top gates of
the replicated subtrees and the selected AND gates, so the sub-
stitution for the top gate brings in their minimal cut sets. This
greatly increases the efficiency of the SETS execution of the user
program.

The resulting minimal cut set equation is saved by the FRMBLK
procedure and printed out using the PRTEQNDNF procedure. Since
the area eguations are in the equation file, the minimal cuts sets
are in terms of areas. Each minimal cut set represents a set of
areas in which at least one collection of sabotage acts, each of
which can be accomplished in at least one area in the minimal cut
set, is sufficient to cause the top event of the sabotage fault
tree, i.e., the release of significant amounts »f radioactive
material. A minimal cut set of order one identifies a single
vital area, called a Type 1 vital area. The areas represented in
minimal cut sets of order greater than one are called Type 2 vital
areas.

5.4 SETS Pro g ram for Solving the Example Sabotage Fault Tree in
Terms of Areas

The following SETS user program Getermines the minimal cut
sets of the sabotage fault tree, SABOTAGE-FT, in terms of areas.
Each step in the program is discussed in detail following the
program listing.

PROGRAMSEXAMPLE-Z2.

BLKSTAT,

LDBLK(SABOTAGE-FT ,AREA-EQUATIONS ,OMECA-ASSUMPTION).
SUGINEQN(AC-4160-B1],AC-4160-B17).
REDUCEQN(AC-4160-B1J,AC-4160-B11).,
GQBINEONéﬂC-a160-B1H,AC-Q160-B1H).
REDUCEQN(AC-4160-B1H,AC-4160-B1H) .
SUBINEQN(SWA-IHR,SWA-IHR),
REQUCEQN(SWA-IHR,SWA-IHR).
SUBINEQN(SWB-IHR,SWB-IHR).
REDUCEQN(SwWB-TIHR,SWB=-1IHR),
SUBINEQN(CHD-P1A-COOL,CHO-PT1A-COOL).
REDULEGN(CHO-P1A-COOL ,CHO-P1A-COOL).
SUBINEQN(CHD-P1B-CO0OL ,CHO-P1B-COO0L).
REDUCEQN(CHD-P1B8-COO0L ,CHO-P1B-COOL).
SUBINEQN(ECRS-D,ECRS-D).,
REDUCEQN(ECRS-D,ECRS-D),
SUBINEQN(AFQ-PM=L ,AFQ-PM-L),
REDUCEQN/ AFQ0-PM-L ,AF0-PM-L).

32

SUBINEQN(CHO-PM-L ,CHO-PM-L).
REQUCEQN(CHO-PM-L ,CHO-PM-L, .
SUBINEQN(FM-TI,FM-TI).
REDUCEQN(FM-TI,FM-TI).
SUBINEQN(LI-MSD,LI-MSD).
REDUCEQN(LI-MSD,LI-M50).
SUBINCQN(TOP,TOPR).
REDUCEQN(TOP,VITAL-AREA-MCS).
FRAMBLK(VITAL-AREA-MCS®*ONLYSVITAL-AREA-MCS).
BLKSTAT,

PRTEQNDONF (VITAL-AREA-MCS).

5.4.1 The BLKSTAT and LDBLK Statements

The BLKSTAT statement is used to check the contents of the
block file. For the example, the output of the BLKSTAT statement

is:

SABOTAGE -F 1 ‘
AREA-EQUATIONS
OmE

THE BLOCK FILE CONTAINS THE FOLLOWING BLOCKS 1
2
GA-ASSUMPTION

1.

The LDBLK (SABOTAGE-FT, AREA-EQUATIONS, OMEGA-ASSUMPTION) load
the fault tree equations, area equations and OMEGA equations into
the equation file. The order in which the equations are loaded
into the equation file is important, since there can never be more
than one equation in the equation file with the same left-hand-
side. So if event LOSPW had both an area equation and an OMEGA
equation, the equation loaded last, in this case the OMEGA
equation, is the one in the equation file,

5.4.2 Solving the Replicated Subtrees

By looking at the plot in Figure 5, we see the following gates
are plotted with transfer-out symbols: AC-4160-BlJ, AC-41€0-BlH,
SWA-IHR and SWB-IHR. These gates are top events of replicated
subtrees, There are no transfer in symbols plotted in the sub-
trees for AC-4160-BlJ and AC-4160-BlH, so these subtrees are
solved first using the SUBINEQN and REDUCEQN riocedures. There
are no other replicated subtrees which 4z not have any transfer-in
symbols plotted in their developm:zuc, i.e., do not contain any
replicated subtrees.

The replicated subtrees with top gates SWA-IHR and SWB-I[HR
both contain replicated subtrees. The subtree with SWA-IHR as its
top event has a transfer-in from AC-4160-BlH, which is the top of
a replicated subtree, but this subtree has already been solved so
we can solve SWA-IHR with SUBINEQN and REDUCEQN procedure zalls.
Similarly, the subtree with top event SWB-IHR contains the
replicated subtree with top event AC-4160-Bl1J, but this gate has
also been solved so we can solve the subtree with top event
SWB-IHR by a call of the SUBINEQN and REDUCEQN procedures.

At this point all of the replicated subtrees have been solved,
so we can proceed to solving the AND gates located above the
replicated subtrees.

5.4.3 Solving the AND Gates Above the Replicated Subtrees

The next step is to solve all of the AND gates (except single
input AND gates) which are above the replicated subtrees. By
looking at the plot, we can identify these gates as: CHO-PlA-
COOL, CHO-P1B-COOL, CHO-PM-L, ECRS-D, LI-MSD, AFO-PM-L and FM-TI.
The first AND gates to solve are those which do not have any
other AND gates below them but above the replicated subtrees
(since the replicated subtrees have been solved, we are not
interested in solving any gates which they contain). The gates
CHO-PlA-COOL, CHO-P13-COOL, ECRS-D and AFO-PM-L all meet this
criteria so they are solved using the SUBTNEQN and REDUCEQN
procedures. Next, we examine the fault tree for AND gates which
do have AND gates below them, but all of the AND gates below them
have been solved. The AND gate LI-MSD, for example, cannot yet be
solved since AND gate CHO-PM-L below it and has not yet been
solved, Gate CHO-PM-L, however, does meet this criteria since the
only AND gates below it are CHO-PlA-COOL and CHO-P1B-COOL and
these gates have been solved. Gates ECRS-D and FM-TI also meet
this criteria since the AND gates below it are solved so gates
CHO-PM-L, ECRS-D and FM-TI are solved using the SUBINEQN and
REDUCEQN procedures. The last AND gate, LI-MSD, now meets the
criteria for being solved so it is solved using the SUBINEQN and
REDUCEQN procedures.

5.4.4 Solving the Top Gate

All of the replicated subtrees and the AND gates above the
replicated subtrees have been solved, so we are now ready to solve
the top gate. The top gate is also solved using the SUBINEQN and
REDUCEQN procedures. The second parameter of the REDUCEQN call,
VITAL-AREA-MCS, is used to name the final minimal cut set equation
VITAL-AREA-MCS, or any other appropriate name may be used. This
equation is stored on a block of the same name by the FRMBLK
(VITAL-AREA-MCS *ONLY$ VITAL-AREA-MCS) statement. The ONLY option
is used so that only the equation VITAL-AREA-MCS is stored on the
block. Otherwise a FRMBLK procedure call forms a block of all the
equations in the equation file.

5.4.5 Output of the SETS Program

The BLKSTAT statement is used to check the status of the block
file at the end of the run. For the example, the BLKSTAT
procedure call has the following output:

THE BLOCK FILE CONTAINS THE FOLLOWING BLOCKS SABOTAGE-FT

B AN -
- . =

AREA-EQUATIONS
OMECA-ASSUMPTION
VITAL-AREA-MCS

The final statement in the program prints the vital area
minimal cut sets. For the example, the printout is:

% ® % LITERAL OCCURRENCE TABLE #* = =

NUMBER OF
LITERAL OCCURRENCES

SFGROB
SFGRDA
MCC13ICV
MCCIHCY
CR

DGRM2
DGRM1
ESGRM
WSGRM

Z2AB
JEQUIPRM
PMPHSE
TBSMTUVUPT
CHPMCUB
RC 1
RWST
2RWST
RLYRM

-’—‘-‘N-‘-‘-‘-‘—‘—‘—'NN—‘LJJMNU

THERE ARE 18 DIFFERENT LITERALS I[N THE
EQUATION FOR VITAL-AREA-MCS

oF

VITAL-AREA-MCS =
CHPMCUB +

ZAB +

ESGRM +

CR +

RC * RLYRM +

RC * 2RWST +

RC * RWST +

TESMTUUPT *» RC »
PMPHSE * RC +

JEQUIPRM * RC +

WSGRM * RC +

SFGRDA * RC +

SFGRDB * MCCIHCV +
SFCRDB * MCC1ICV +
SFGROB * SFGRDA +
DGRM2 * DGR™M1 * RC +
MCCT1HCY * OGRM2 * RC +
MCC1JCV * OGRM1 * RC +

i TERM NUMBER
1 NUMBER LITERALS

1 1

2 1

3 1

: 4 1

5 2

6 2

7 2

8 2

9 2

10 2

1 2

12 2

13 2

14 2

15 2

, 18 3

: 17 3

18 3

19 3

MCC1JCV * MCTIHCY ¥ RC

Thus, there are 18 vital areas for the example. The first
four, CHPMCUB, 2AB, ESGRM and CR are Type 1 vital areas. The
remaining 14 vital areas are Type 2 vital areas. In order for a
sabotage attempt to be successful, one must gain access to any one
of “he Type 1 vital areas or all of the Type 2 vital areas in one
of the remaining 15 minimal cut sets.

5.5 Potential Problems Encountered with the SETS Program

If the sabotage fault tree is very large or complex, there are
some problems that may be encountered when running the SETS user
program. The most common of these, and possible solutions, are

discussed below.

5.5.1 A Replicated Subtree is too Large to Snlve with a Single
SUBINEQN and REDUCEQN Procedure

There may be a replicated subtree that is too large to solve
in a reasonable amount of computer time and/or computer storage.
First, check to make sure that the rule is being correctly
followed so that all replicated subtrees contained in the problem
replicated subtree have been solved. 1If this is the case, then
the cause is that some gate in the problem replicated subtree
which is above the solved replicated subtrees is generating a very
large number of cut sets during substitution. For reasons
previously described, this gate is usually an AND gate. By first
solving this gate and replacing its cut sets by minimal cut sets,
the replicated subtree can usually then be solved. If not, it may
be necessary to solve all of the AND gates in the problem
replicated subtree which are above the replicated subtrees
contained in the problem replicated subtree. The order in which
the AND gates are solved is the same as described earlier: an AND
gate is solved only if all of the AND gates below it but above the
replicated subtrees contained in the problea replicated subtree
have been solved. These AND gates are solved using the SUBINEQN
and REDUCEQN procedures. Once all of these AND gates are solved
the problem replicated subtree is solved using the SUBINEQN and

REDUCEQN procedures.

5.5.2 An AND Gate with More Than Two Inputs

There may be an AND gate in the sabotage fault tree which has
more than two inputs and cannot readily be solved using the
SUBINEQN and REDUCEQN procedures. Suppose an AND gate has five
inputs, and each of these inputs has 100 minimal cut sets. Then
the SUBINEQN and azguczqu procedure calls for this gate will
generate 1005 = 1010 or 10 billion cut sets. Since it is
often not possible in terms of computer storage and/or computer
time to reduce such an expression to minimal cut sets, we need a
more efficient way of dealing with such gates. The general idea
is to let some but not all of the minimal cut set expressions for
the inputs to the AND gate be brought into the equation for the
AND gate. All of the inputs to the AND gate should be solved

«}Ve

using the SUBINEQN and REDUCEQN procedures before attempting to
solve the AND gate.

For example, suppose we wish to solve the following AND gate:

X
) T i T 1
A B o4 D E

First, solve gates A, B, C, D, and E using the SUBINEQN and
REDUCEQN procedures. Next, choose two of the five inputs to be
brought in for the equation for X. If there is no good reason to
choose a particular two inputs, then any two will do. However,
often we know that some of the inputs do have something in common;
for example, some of the inputs may share some of the same support
systems. Inputs that have events in common will generally provide
a greater reduction in the size of the equation being formed 1if
they are brought in together. To bring in just A and B in the
equation for X we use the STOP option for SUBINEQN. The SETS
statement SUBINEQN (X, X *STOP$ C, D, E) lets the equations for A
and B be brought in for X but stops the substitution process on
inputs C, D, and E. The REDUCEQN procedure call REDUCEQN (X, X)
will then determine the minimal cut sets of X with C, D, and E
left in the equation for X so there will be a C*D*E expression in
every minimal cut set for X. Continuing in this manner, we let
the equations for C, D, and E be brought into the equation for X
one at a time, unless there is some reason, such as shared support
systems or events, we should bring in more than one &t a time.

For the example AND gate X the SETS user program to solve X is
given by:

SUBINEQN (X, X *STOPS C, D, E).
REDUCEQN (X, X).

SUBINEQN (X, X *STOPS D, E).
REDUCEQN (X, X).

SUBINEQN (X, X *STOPS E).
REDUCEQN (X, X).

SUBINEQN (%X, X).

REDUCEQN (X, X).

5.5.3 Using the FRMBLK Procedure in Large SETS User Programs

Due to the ptoblems discussed in the previous sections and
other unanticipated errors in the SETS user program (see Appendix
B), the SETS user program may not execute to completion. If this
occurs, then all of the gates of the fault tree which have been

.,.-

solved up to the point of the abnormal termination of the SETS
program will have to be solved again unless steps have been taken
in the SETS user program to save the minimal cut sets of the
solved gates,

Each time a minimal cut set equation is determined, it can be
saved using a FRMBLK procedure call. The most convenient way of
doing this is to use a FRMBLK(A) or FRMBLK (STEPA) statement
without using the ONLY option to form the first such block. Then
subsequent blocks are formed after each REDUCEQN (or whenever the
analyst chooses). These blocks are usually named something
similar like B, C, D, ... or STEPB, STEPC, STEPD, If the
SETS program has an abnormal termination, then the last block
formed contains all of the reduced equations determined up to the
point the block was formed. To restart the run, after the problem
has been corrected, the last block formed is loaded into the
equation file., Since the equation file now contains everything
that was in it when the program aborted, it is important that no
other blocks be loaded, such as the fault tree equations, since
:T:so equations will replace the solved equations in the equation

e.

Since these blocks serve no other useful propose than allowing
us to restart the program without having lost any information,
they are deleted, using the DLTBLK procedure, after the vital area
minimal cut sets have been determined.

As an example of this approach, we can modify the SETS user
program for the example (Section 5.4) as follows:

PROGRAMSE XAMPLE - 3,

BLKSTAT,

LOBLK(SABOTAGE-FT ,AREA-EQUATIONS ,OMEGA-ASSUMPTION) .
SUBINEQN(AC-4160-B17,AC-4180-81]).
REVDUCEQN(AC-4160-B1),AC-4160-811),

FRMBLK(STEPA),
SUBINEON(AE-a160-B1H.AC-a160-B1H;.
REDUCEQN(AC-4160-BI1H,AC-4160-B1H
FRMBLK(STEPB),
SUBINEQN(SWA«IHR,SWA-IHR),
REDUCEQN(SWA-IHR,S5WA<1HR),
FRMBLK(STEPC).
SUBINEQN(SWB-IHR,S5WB-1HR),
REQUCEQN(SWE-IHR,S5WB«THR),
FRMBLK(STEPD),
SUBINEQN(CHO=P1ACOOL ,CHO-P1A-COOL),
REOQUCEQN(CHO-P1A-COOL ,CHO=PT1A-COOL),
FRMBLK(STEPE),

SUBINEQN(CHO-P18-CO0L ,CHO=P1B-COOL).
REOUCEQN(CHO-P1B-COOL ,CHO-P18-CO0L).
FRMBLK(STEPF),
sualnconstcns-o.ccns-O).
REDUCEQN(ECRS<D,ECRS<D),
FRMBLK(STEPG) .

-39~

T ol bl
gl

it . !
IIllinln1afn-al-L.nru-nq.g i

mmw!ltgmin-i..no-#nn]

: K M),
,'lﬂ.lllﬂNICHu-ﬂm.t.cno.pn.;;,

© REOUCLAN(END PRl (CHDPMeL),

£ FAMBLK(STERD), _

L SUBINEQNIFM-TI,FMaTL),

i UCEQN(FM-TT, INaTT) ., .

- FRMBLK{STERY), , .

b luqxutnngna-ﬂspth-nao .

FRMABLK STEOK),

:g! nutgw ur,Toe),
|- RETUCE N(TUp.VIT!L-Al(l.nCQ).t. B
FREM EAYTTAL < ARTANCSYONLYSVITAL <ARE A= Yo
ﬂLfﬂillgflﬂﬁ.Sf&Pﬂ.STEﬂC.SfcﬂD,51IF£.sttﬂf.l?(’ﬁ.l!l.ﬁjl!l’l.lftﬂJ.l!!ﬂll.
1 A 'LK-‘.'!“ 0
‘ RTEQNONF (VITAL OV AWMLY),

!
8
=
e
E
:

|
¥

-

16 the prajeam sborted cfter block STEPD was formed, say
solving gate CUN=PIASCOCL, then *he next SETS user prograa would
bet .

PROGRAMSE x8F8 LE o
OLIALE(STEDPA,STEPB, STEPC) .
BUYSYAT, n”
LOBLE(STF D) .
SUBIREOGNT CHDT A ACOOL NP 1A 0TM. ¢
REDSCEONS CH0 =51 A= CO0L ,CHO-B1 8 -COOL § «
FRMBLR(STERL), -
SUBINCQNLCHO=PIB-CUOL ,FHOPIB{00L) .
ﬂ(DULE?NtLHu~Pll-PODL,Cﬂﬂ-ﬁlI~LDPL N
FRmaLK(gTreTy,
 SUBINEGW(ECRE D, CABD),

REDUCEASE W iaD CENG0),
FRMALE(LIEPG),
sua:mrum(nra-bu-h.awn.nn.;;,
ﬂ&DUCl NIAFG-PMsi AFQueMel
FROBLK(STEIN) ,
3“.!“0"([-”0-“':\. oL D=PMal),
REDUCTQNLCHO BNl ;T MO P®al),
Femm (TP,

3 suu:nrauiwm.rj.rn.vxp.

. REDUCEGNLIS®.T [, FM.TE),
FRABLR(STERD).,
BUBINLANTL [R50 0 1-M8D),

C NEOUCEIN(LT -®M580,1 1-M50),

FRMBLE(ETEDK), ,
SUB INEON(TOR, TOR) ,
REOUEEQNETOR VITAL -AREANCY), :

L "“'Lﬂ‘Ulllhnlﬂll-lC"ﬂﬁLVlWl!lLmlRl&-ﬂCIia

L O DLTOLRCSTERE (STERY (STERG STUPN STERTSTEPT STEPK)

b BT anon
. BRTEQNONT (VI TAL AR - ACS) '

h I";;;':..” - -40-

.

6.0 THE COMPLEMENT EQUATION

If one gains access to all of the vital Areas in any minimal
cut set, then one can cause the top event of the sabotage fault
tree to occur by some collection of sabotage acts. Conversely, if
we can deny access to at least one vital area in every minimal cut
set, then the top event cannot occur. One way to determine such a
group of vital areas to deny access to is to form the complement
of the minimal cut set equation and then determine the minimal cut
sets of the complement equation.

6.1 Determining the Complement Equation Using SETS

If the minimal cut set equation has TOP as the Boolean
variable on its left-hand-side, then the following SETS user
program identifies a complement expression for TOP by a SUBINEQN
and determines the minimal cut sets of by a REDUCEQN:

COMP-TOP = /TOP,
SUBINEQN (COMP-TOP, COMP-TOP),
REDUCEQN (COMP=TOP, COMP=TOP) ,

We can interpret the complement of an area as an area for which
access is denied. Thus a minimal cut set of the complement
c,uutlon can be interpreted as follows: If we deny access to all
of the areas in the minimal cut Set, then the top event of the
vabotage fault tree cannot occur, L., /TOP will occur. Note
that only one such minimal cut set of complements of acreas is
required, 8o we can choose the minimal Cut set which represents
the smallest number of areas to protect., Other criteria, such as
the minimal cut set with a collection of vital areas which can be
protected with the least impact on operability of the plant can
also be applied. Of course, every Type 1 vital area will appear
in every minimal cut set of the complement equation, so there are
frill certain vital areas that must be protected no matter what
criterion is applied,

6.7 An sxample of Using SETS to Pind the Complement Equation

The ftollowing LETS program determines the courlcnont of the
vital area minimal cut set equation for the example in Section 5.4,

PROCRAMSE XAMPLE o 8,

BLKSTAT,

LOBLK(VITAL<AREAMCY),

VITAL<AREACOMP « VITAL<ARCA-MCS,
quaxu(o~(v1raL.nnrA.conp.vxrnL-ANEJ-COMP¢.
REOUCEQNIVITAL <AREACOMP VI TAL <AREACOMP) |
t'ﬁﬂllsthlL-lﬂlh-LDMp'ONLV‘V!fll-Al[l-tomp).
BLESTAT,

Dﬂt(QNDNf(V!TRL-Aﬁ(l-conﬂ).

“dle

The BLKXSTAT statement is nzed to verify *hat the block which
concains tne arma minjmal cut set equation is on the block file.
The outpyt of the BLR3TAT stat:ment is:

THC - 3LOCK FILE COMTAINS ThE FOLLOWING wLNCKS 1. SABOTAGE-FT
?, AREA-EQUATIONS
3, OMEGA-ASSUMPTION
4, VYITAL-AREA-MCS

The LDBLK (VITAL-AKEA-MCS) srat:ment loads the vital area
minimal cut set egmatiun intc tae egnation file. The Boolean
equation VITAL-AR:A-COMP = /VITA[L-AREA-1¥CS estahlishes this
additiona] equation i.n the egratinn file. The SUBINEQN statement
substitutes for VITAVL-AREA-COMP unrtil the substitution process
tecminates on the wvariables which represent vital areas in the
vital area minimal cut set equation. The REDUCEQN statement
determines the minimal cut sets for VITAL-AREA-COMP and the FRMBLK
statement forms a tiock of this complement equation. The
PRTEQNDNF statement prints the minimal cut set eguation for
VITAL-AREA-COMP. The output is:

TERM
NUMBER
VITAL-AREA-ZOMP =
1 /SFCEDB * /LR * JESGR™M * /28g » /CHPMCUB * /RC +
2 /SFGRDA ® /MCC 3Ly ® /MCCIWCY * JCR & JESGRM & /2RB * /CWPMCUS * /RL +
3 /SFGRDA ® /mMCCAJCVU ® /MCCTIHCY * /CR ¢ /DGAMY & JESGRM * [WSGRM /2r8
JTRE®TVUBRT * /THOMCUB * /RUST » /2RWST ® /RLYRM * /3EQUIDRM » /B¥IWS +
& /3FGROB ® /SPC4DAR ® /MCCIWCV * /CR * /DGRM1 * /ESGRNM * /WSGRM » /zag
/TBS®IUVPT & /THPXLUB * /RUST ™ /2RuWST * /RLYRM & /IEQUIPRM * /PN¥DWSE 4
S /SFGRDA ® /MCCAJEV ~ /MLCIMCY ® /CR ® /DGRM2 » JESGRM ® , ySUH~ % /2.8 ¢
/1BSMTUYPT & JCHEMCUB * /RWST ® /2RYST * /RLYRAM 2 /37QulPAM © /PMPHS =
B /SFGRDB * /SFGRDA * (MCCIJIV ¢ /CP ¢ /DGRM2 = /ESGRM * JYSGR™ * /285 »
TBSMTUVPT ™ [CHPMIUS ® /RWST ® /2awST % /RLYRM = /IEQUIPRM ¥ /PMPHSE

6.3 A Potential Problem in Solving the Complement Equation

For some vital area minimal cut set equations, the complement
equation is of a manageable size and can be determined as in the
preceding example. However, sometimes the complement expression
is so large that it cannot be simplified to minimal cut sets in a
reasonable amount of computer time and/or computer storage. Since
we are usually not interested in all of the minimal cut sets if
there are thousands of them, but only in the minimal cut sets
which represent feasible alternatives as sets of areas to protect,
the approach to take is to determine only minimal cut sets up to
some order. This can be done by using a truncation parameter, n,
in the REDUCEQN statement which drops all cut sets with more than
n variables (which represent areas in this case).

To determine the truncation value n for a particular problem,
we first use REDUCEQN on the complement equation without a
truncation parameter. A reasonable time limit on the computer run
(about 50 seconds) should be used to prevent the REDUCEQN
algorithm from executing for a great deal of time on an equation
it cannot solve completely. When the time limit is reached, the
output of the REDUCEQN procedure call will look something like
this:

THE MAXIMUM NUMBER OF TERMS THAT CAN BE
GENERATED BY EXPANSION IS 14485500.
THE WORK MEASURE FOR EXPANSION IS 36792594.

TExMS GENERATED BY EXPANSION
8 TERMS CONTAIN 20 LITERALS.
115 TERMS CONTAIN 21 LITERALS.
651 TERMS CONTAIN 22 LITERALS.
1991 TERMS CONTAIN 23 LITERALS.
3078 TERMS CONTAIN 24 LITERALS.
2669 TERMS CONTAIN 25 LITERALS.
668 TERMS CONTAIN 26 LITERALS.
8 TERMS CONTAIN 27 LITERALS.
153 TERMS CONTAIN 28 LITERALS.
15321 TERMS CONTAIN 29 LITERALS.
81703 TERMS CONTAIN 30 LITERALS.
211711 TERMS CONTAIN 31 LITERALS.

The terms generated by expansion correspond to cut sets that must
still be simplified to minimal cut sets. If we truncate this
expression at n = 23, there will be 8 + 115 + 651 + 1991 = 2,765
cut sets which are then simplified to minimal cut sets. If the
number of resulting minimal cut sets is sufficient to provide a
reasonable number of alternative sets of vital areas to protect,
we are finished. If not, we can truncate at a higher n, say n =
24, until a reasonable number of minimal cut sets is produced.

~43-

7.0 MINIMAL CUT SETS OF SABOTAGE ACTS

A minimal cut set of the sabotage fault tree in terms of vital
areas is a combination of vital areas for which at least one
collection of sabotage acts, each of which can be accomplished in
at least one of the vital areas in the minimal cut set, will cause
the top event of the fault tree to occur. Up until now, we have
been concerned with areas only and have not identified any
collections of sabotage acts which can cause the top event to
occur. Such a collection of sabotage acts is called a scenario.
The final analysis of a vital area analysis attempts to find all
of the scenarios for the Type 1 vital areas.

The scenarios are minimal cut sets of the sabotage fault tree
in terms of the fault tree primary events, i.e., sabotage acts.
Thus, if we would solve the fault tree by the same SETS user
program as described in Chapter 5, but without loading the area
equations, we would obtain all possible scenarios which are in a
minimal form, meaning that every sabotage act in the scenario is
necessary for the top event to occur. However, the number of
scenarios is often very large so that all of the scenarios cannot
e obtained. FPurthermore, there would be no indication of which
sital areas are involved in each scenario. Fortunately, we are
interested in only scenarios for the Type 1 vital areas which
makes the problem much more manageable. Also, by employing a
slightly different set of equations then the area equations, we
can retain the information as to which vital area is involved in a
scenario.

7.1 The SETS User Program for Identifying Scenarios

The SETS user program which determines the scenarios for a
Type 1 vital area is similar to the program described in Chapter 5
for determining the vital areas. The differences are:

- Instead of loading the area equations, a different set of
equations is loaded into the equation file.

All of the arecas which are not Type 1 vital areas are set
to /OMEGA.

- The REDUCEQN(X, X) procedure calls are changed to
REDUCEQN (X/1, X*EXCEPTCMPS) .

[1 Chapter 4.0, the example given for an area equation was:
Bl = AREAl + AREA2 + AREA3 * AREA4 + AREAS.
The corresponding equation for the identification of scenaiios is:
Bl = (AREAl + AREA2 + AREA3 * AREA4 + AREAS) */B1Z.

This equation not only identifies the areas in which sabotage act
21 can occur, but it also maintains an explicit representation of

-44-

Bl. The representation for Bl is /BlZ instead of Bl. SETS does
not allow the same variable to appear on both sides of an equation
since a loop will occur during a SUBINEQN procedure call, so the
letter 2, or any other symbol, is appended to Bl. The '/' symbol
is included in the new representation for Bl to take advantage

of the EXCEPTCMP option of the REDUCEQN procedure. The

REDUCEQN (B1/1, Bl * EXCEPTCMP$) statement will truncate any
minimal cut set which involves more than one area (we are only
interested in scenarios which can be completed in a single TYPE 1
vital area) but will allow any number of sabotage acts to be
represented since it does not count any complemented events and

all of the sabotage events are complemented.

The output of this SETS user program consists of minimal cut
sets each of which are comprised of one Type 1 vital area and a
collection of sabotage acts which represent one scenario for the

vital area.

7.2 An Example of a SETS Program for Identifying the Scenarios
of Type 1 Vital Areas

The following SETS user program determines the scenarios for
the Type 1 vital areas of the example sabotage fault tree
SABOTAGE-FT. The program is very similar to the program which
solved SABOTAGE-FT for the vital area minimal cut sets in Section
5.4. Each step of the program is discussed in detail following
the program listing.

PROGRAMSE XAMPLE -6,
RDBLK&SCENARIO-QDNS).

ROBLK(TYPE2-PHI).

BLKSTAT,
LOBLK(SABOTAGE-FT,SCENARIOC-EQNS,TYPE2-PHI ,OMEGA-ASSUMPTION).
SUBINEQN(AC-4160-B1J,AC-4160-B1J).
REQDUCEQN(AC-4160-B1J/1,AC-4160-B1J*EXCEPTCMPS).
SUBINEQN(AC-4160-B1H,AC-4160-B1H).
REDUCEQN(AC-4160-B1H/1,AC-4160-B1H*EXCERTCMPS).
SUBINEQN(SWA-IHR,SWA-IHR).
REDUCEQN(SWA-IHR/1,SWA-IHR*EXCEPTCMPS).
SUBIMEQN(SWH- IHR,SWB-IHR),
REDUCEQN{SwWB-IHR/1,SWB-IHR*EXCEPTCMPS).
SUBINEQW(LCAC-P1A-CROL,CHO-P1A-COOL).
REDUCEQN(CHO-P1A-LOOL/1,CHO-P1A-COOL).
SUBINEQN(CHO-P1B-COOL ,CHO-P1B-COOL).
REDUCEQN(CHO-P1B-CCOL/1,CHD-P1B-COOL).
SUBINEQN(ECLRS-D,ECRS-D).
RECUCEQN(ECRS-D/1,ECRS-D*EXCEPTCMPS).
SUBINEQN(AFO-PM-L ,AFO-PM-L).
REDUCEQN(AFO-PM-L/1,AFD-PM-L*EXCEPTCMPS).
SUBINEQN(CHO-PM-L ,CHO-PM-L).
REDUCEQN(CHO-PM-L/1,CHO-PM-L*EXCEPTCMPS).
SUBINEQN(FM-TI,FM-TI).
REDUCEGN(FM-TI/1,FM-TI*EXCEPTCMPS).
SUBINEQN(LI-MSD,LI-MSD).
REDUCEQN(LI-MSD/1,LI-MSD*EXCEPTCMPS).
SUBINEQN(TOP,TOP).
REDUCEQN(TOP/1,SCENARIOS-TYPE1*EXCEPTCMPS).
FRMBLK(SCENARIOS-TYPE1*ONLYSSCENARIOS-TYPE).
BLKSTAT,

PRTEQNDNF ' SCENARIOS-TYPE1), -45

B S T T N T T Y g e

7.2.1 The Scenario Equations

The first statement in the program, RDBLK(SCENARIO-EQNS),
reads the scenario equations. These equations are the same as the
area equations in Section 4.3.2 except that an explicit
representation of the sabotage act on the left-hand-side of the
equation is included on the right-hand-side of the equation. The
input block SCENARIO-EQNS is: .

BLOCK$SCENARIO-EQNS.

IHR-NHRS =(SFGRDB)*/IHR-NHRSZ.
RPS-D =(SFGRDA)*/RPS-DZ.

0I-RC =(SFGRDB)*/0I-RCZ.

S5RS-D =(MCC1JCV + MCC1HCV)*/SSRS-DZ.

AFO-PMD-HS =(CR + MCC1JCV)*/AFO-PMD-HSZ.
AFO0-CS-PMS =(SFGRDA)*/AF0-CS-PMSZ.

AFO0-P1A-B =(MCC1HCV)*/AFD-P1A-BZ.

AF0-P1A-CSG =(MCC1HCV)*/AFD-P1A-CSG2Z.
AFO-P1A-COOL =(DGRM2)%/AF0-P1A-COOLZ.
AFO-P1B-B =(MCC1JCV)*/AFQ-P1B-BZ.

AFD-P1B-CSG =(MCC1JCV)*/AFD-P1B-CSGZ.
AF0-P1B-CO0OL =(DGRM1 + ESGRM)*/AF0-P1B-CO0LZ.
EP-BS-13-D =(ESGRM)* /JEP-BS-1]-DZ.

C8-C1J-0 ESGRm)*/CB-C1J-02.
EP-BS-1H-D ESGRM)* /EP-B8S-1H-DZ.
CB-C1H-0 ESGRM)*/CB-C1H-0Z.
DC-NO3-B DGRM2)* /DG-NO3-BZ,
DG-nD1-B DGRM1)*/DG-NO1-BZ.

10-B5-680H-0
ID-TR-_3XFM1H=-D
10-85-4803-D
ID-TR-SSXFM1J-D
AFWS-LO-THR =(C
C51A-PP-PMD-B
C51A-CX-SUMP-B
CS1A-PP-PMS-B8
CS1A-P1A-B
CS1A-P1R-CSG
£S18-PP-PMD-B
CS1B-CX-SUMP-B
CS1B-PP-PMS-B
CS18-P1B-8
CS18-P1B-CSG
SWA-HX-0ILCO-B
SWA-PP-PMD-B
SWA-VYV-PMD
SWB-HX-0ILCO-B
SWB-PP-PMD-B
SWB-VV-PMD
CHO-HX -RVESS-B
CHO-PP-PMD-B

(

(

(

E
(USGRM)*/ID-BS-48B0H-DZ.
(2AB)*/ID-TR-SSXFM1H-DZ.
(ESGRM)*/I1D-BS-480J-DZ.
(3EQUIPRM)*/ID-TR-SSXFM1J-DZ.
+MCCT1HCV*MCC1ICV+SFGRDA) * /AFWS-L0-1HRZ.
(3EQUIPRM)*/CS1A-PP-PMD-BZ.
(CR)*/CS1A-CX-SUMP-BZ.

(CR + 2AB)*/CS1A-PP-PM5-B2Z.
(PMPHSE)# /CS1A-P1A-B2Z.
(CR)*/CS1A-P1A-CSGZ.

(CR)*/C51B-PP-PMD-BZ.

(PMPHSE)*/CS1B-CX-SUMP-BZ.

(CR + 2AB®2RB)*/CS18-PP-PMS-B2Z.
(CR)*/CS1B-P1R-BZ.

(CR)*/CS1B-P1B-CSGZ.

(TBSMTYVUPT)*/SWA-HX-0ILCO-BZ.
(3EQUIPRM+ESGRM*WSGRM+2AB) * /SWA-PP-PMD-BZ.
§3EQUIPRM+2AB)’/SNA-VV-PMDZ.
CHPMCUB)*/SWB-HX-DILCO-BZ.
(3EQUIPRM+ESGRM*WSGRM+2AB) * /SWB-PP-PMD-BZ.
(3EQUIPRM+2AB)*/SWB-VV-PMDZ.
2CR)’/CHD-HX-RUESS-BZ. -
CHPMCUB+2AB)* /CHO-PP-PMD-BZ.

(] NN | B L | N [N | N | | A | | U | S { AN [[N | | S | N | A= N | N N ¥ SN T T S T S S T B 1

-46-

CHO-MV12B6ABCOC =(CR+MCCIHCVU*MCC1ICV+CHPMCUB) */CHO-MY12B6ABCOCZ.
CHO-MV1B867ABCC =(CR+MCCT1HCV*MCC1JICV+2AB)* /CHO-MV1BR7ABCCZ.
CHO-MV1867BDCC =(CR+MCC1ICV*MCCIHCV+2AB) */CHDO-MV18678BDCCZ.
CHD-P1A-B =(CHPMCUB)*/CHO-P1A-B2.

CHO-P1A-CSG =(CHPMCUB)*/CHO-P1A-CSG2Z.

CHO-P1B-B =(ESGRM)*/CHD-P1B-B2Z.

CHO-P1B-CSG =(CHPMCUB)*/CHO-P1B-CSG2Z.

LI =(CHPMCUB + 2AB + ESGRM + CR + RC)®/L1IZ.
CS1A-HS =(SFGRDA + MCCIHCV)*/CS1A-HSZ.

CS1B-HS =(SFGRDA + MCC1JCV + WSGRM)*/CS1B-HSZ.
SWA-CS-PMS =(TBSMTUYPT)*/SWA-C5-PMSZ.
SWB-CS-PMS =(TBSMTYYPT)*/SwWB-CS-PMSZ.
SWA-MD-P10A =(CR + 3EQUIPRM)*/SWA-MD-P10AZ.

SWB-MD-P10B =(CR + 3EQUIPRM)*/SwB-MD-P10BZ.
CHO-CS-PMS =(RWST + 2RWST+CR + 2AB + CHPMCUB)*/CHO-CS-PMSZ.
DG-NO3-AUX = DGRng"/OG-NOJ-Auxz.

DG-NO1-AUX =(DGRM1)*/DG-NDO1-AUXZ.

DG-NO3-CSG =(CR + RLYRM + DGRM1®*DGRM2)*/DG-N0O3-CSGZ.
OG-ND1-CSG =(CR + RLYRM + DGRM1*DGRM2)*/DG-NO1-CSGZ.,

T:2:2 Setting the Type 2 Vital Areas to /OMEGA

The second statement in the SETS user program, RDBLK
(TYPE2-PHI), reads the set of equations which sets all of the Type
2 areas to /OMEGA. In Boolean algebra, /OMEGA = PHI, however,
SETS will only recognize the /OMEGA representation in a Boolean
equation. The input block TYPE2-PHI for the example is given by:

BLOCKSTYPE2-PHI.
SFGRDB = /OMEGA.
SFGRDA = /OMEGA.
mMCC1JICV /OMEGA .

MCC1HCV = /OMEGA.
DGRM2 = /OMEGA,
UGRM1 = /OMEGA,
WSGRM = /OMEGA,

JEQUIPRM = /OMEGA.
PMPHSE = /OMEGA.
2RB = /OMEGA,
TBSMTUVPT = /OMEGA.
RC = /OMEGA,

RWST = /OMEGA.
2RWUST = /OMEGA,
RLYRM = /OMEGA.

The fcllowing BLKSTAT statement is used to verify the contents of
the block file at this point in the analysis. For the example,
the output of the BLKSTAT statement is:

SABOTAGE-FT

y AREA-EQUATIONS
OMEGA-ASSUMPTION
4., VITAL-AREA-MCS
5. VITAL-AREA-COMP
6. SCENARIO-EQNS

‘ TYREZ2-PHI

—

THE BLOCK FILE CONTAINS THE FOLLOWING BLOCKS

7.2.3 The Equation Pile

The LDBLK (SABOTAGE-FT, SCENARIO-EQNS, TYPE2-PHI, OMEGA-
ASSUMPTION, statement loads the equations contained in these
blocks into the equation file, in the order in which the blocks
are listed in the LDBLK statement. The following equations are
row in the equation file:

- The equations which represent the sabotage fault tree, as
listed in Section 4.3.1.

- The scenario equations from Section 7.2.1.

- The equations which set the Type 2 vital areas to /OMEGA,
aiven in Section 7.2.2.

- The events wnich are assumed to always occur or never
occur, set to OMEGA or /OMEGA, respectively, as given in
Section 4.3.3.

Note that the difference between this LDBLK and the LDBLK
statement in the program which determined the vital area minimal
cut sets 1s that the blocks which contain the scenario eguations
and the equations which set the Type 2 vital areas to /OMEGA are
loaded instead of the area equations.

7.2.4 Solving the Sabotage Fault Tree for Scenarios

We now proceed with the SUBINEQN and REDUCEQN statements which
solve the same gates, in the same order, as the SETS program in
Section 5.4 which solved the fault tree for vital area minimal cut
sets. The SUBINEQN statements are identical in the two programs.
The REDUCEQN statements are modified to include the truncation
parameter of 1 and the EXCEPTCMP option. The truncation parameter
of 1 is used so we do not get scenarios for combinations of Type 1
vital areas. The EXCEPTCMP option is used since we do not want
the sabotage acts to be counted when truncating; there may be any
number of sabotage acts in a particular scenario. The last
REDUCEQN statement is the one which reduces the cut sets of the
top gate to minimal cut sets. The final name of the solution is
the second parameter of this REDUCEQN, so it is called SCENARIOS-
TYPE1l rather than VITAL-AREA-MCS as in the earlier program.

-48~

To summarize, the SUBINEQN and REDUCEQN statements are exactly
the same, and in the same order, as the ones in the program used
to solve the sabotage fault tree for vital areas except:

- A truncation parameter of 1 is added to each REDUCEQN.
- The EXCEPTCMP option is added to each REDUCEQN.

- The second parameter of the final REDUCEQN is given a
suitable name for this solution.

Thus we are really solving the same fault tree, in the same
order, over again. The equations in the equation file have been
changed, however, so that the substitution process is terminating
on combinations of Type 1 vital areas and sabotage acts, instead
of on just vital areas as in the previous program in Section 5.4.

7.2.5 The Solution Equation

The FRMBLK (SCENARIOS-TYPEl1l *ONLY$ SCENARIOS-TYPEl) statement
forms a block containing only the final equation which identifies
the scenarios for the Type 1 vital areas. The BLKSTAT is used to
check the status of the block file which is:

THE BLOCK FILE CONTAINS THE FOLLOWING B'.0OCKS SABOTAGE-FT
AREA-EQUATIONS
OMECA-ASSUMPTION
VITAL-AREA-MCS
VITAL-AREA-COMP
. SCENARIO-EQNS

" TYPEZ2-PHI

. SCENARIDS-TYPE1

NN E W) -

@

Finally, the solution equation is printed by the PRTEQNDNF
statement. The output is:

-49-

LITERAL

CR
ESGRM

2AB

CHPMCuUB

% % ® LITERAL OCCURRENCE TABLE * » » =

NUMBER OF OPPOSITION
DCCURRENCES LITERAL

25
2
JEP-BS-1J-D2
/CB-C1J-02
/EP-BS-1H-DZ
/CB-C1H-02Z

/1D-BS-480J-D2
/CS1A-CX-SUMP-BZ
/CS1A-PP-PMS-B2
/CS1A-P1A-CS5G2
/CS1B-PP-PMD-B2
/CS18-PP-PMS-B2
/C578- "1B-B2
/C%.b-P1B-C56G2

/CHO-HX-. ..-S55-B2
/CHO-PP-PMD-BZ
/CHO-M'i* 2B8_ABCOC2Z
/CHG-MY1867ABCC2Z
/CHO-M,18678DCCZ
/CHO-P1A-BZ
/CHO-P1A-CSGZ
/CHO-P18-82
/CHO-P1B-C5G2
JLIZ
/CHO-CS-PMSZ
/DG-ND3-CSEG2
/0G-NO1-CSC2

THERE ARE 29 DIFFERENT LITERALS IN THE
EQUATION FOR SCENARIOS-TYPE1

TERM
NUMBER

NUMBER OF
LITERALS
SCENARIOS-TYPE1 =
3 CR ®* /LIZ * /CHO-CS-PMSZ +
3 CR * /CHO-My1867BDCCZ * /LIZ +
3 CR * /CHO-MV1BB67ABCCZ * /LIZ +
3 CR * /CHO-MV1286AP.OCZ * /LIZ +

NUMBER OF
OCCURRENCES

& NN

s IN

y -
NEWNMNN= 2NN -

TERM NUMBER OF
! NUMBER LITERALS

’ 5 3
6 3
| 7 3
E 8 3
| 9 3
10 3
11 3
12 3
13 4
14 4
| 15 4
16 4
’ 17 4
18 4
19 4
20 4
| 21 4
22 4
23 4
24 4
25 4

CR * /CHO-HX-RVESS-BZ * /LIZ +

CHPMCUB * /LIZ * /CHO-CS-PMSZ +

CHPMCUB * /CHO-MV12B8BABCOCZ * /LIZ +

CHPMCUB * /CHO-PP-PMD-BZ * /LIZ +

2AB * /LIZ * /CHD-CS5-PMSZ +

2AB * /CHO-MV1BB7BDCCZ * /LIZ +

2AB * /CHO-MV1BB7ABCCZ * /LIZ +

2AB * /CHO-PP-PMD-BZ * /LIZ +

CR #* /LIZ * /DG-NO3-CSGZ * /DG-NO1-CSGZ +

CR
CR

CR
CR
CR
CR
CR
Lk
CR
CR
CR
CR

#

#*

#

/CS1B-P1B-CSGZ * /LIZ * /DG-ND1-CSGZ +
/CS1B-P1B-BZ * /LIZ * /DGC-ND1-CSGZ +
/CS518-PP-PMS-BZ * /LIZ * /DG-NO1-CSGZ +
/CS1B-PP-PMD-BZ * /LIZ * /DG-NO1-CSGZ +
/CSTA-PIA-CSGZ * /1.1¢ * JDG-ND3-C5G7 +
/CS1A-P1A-CSGZ * /CS1B-P1B-CSGZ * /LIZ +
/CS1A-P1A-CSGZ * /CS1B-P1B-BZ " /LIZ +
/CS1A-P1A-CSGZ * /CS1B-PP-PMS-BZ * /LIZ +
/CST1A-P1A-CSGZ * /CS1B-PP-PMD-BZ * /L1Z +
/CS1A-PP-PMES-BZ * /LIZ * /DG-ND3-CSGZ +
/CS1A-PP-PMS-BZ * /CS1B-P1B-CSGZ * /LIZ +
/CSTA-PP-PMS-BZ * /CS1B-P1B-BZ * /LIZ +

TERM
NUMBER

26
27
28
29
30
3

32
33
34
35
36
37
38
39
40
41

42

NUMBER OF
LITERALS

&

CR »
CR #
CR *
CR »
CR #
CR »

CR *

/CS1A-PP-PMS-BZ * /CS1B-PP-PMS-BZ * /LIZ +
JCS1A-PP-PMS-BZ * /CS18-PP-PMD-BZ * /LIZ +
/CS1A-CX-5UmMP-B2 * /LIZ * /DG-NO3-CSGZ +
/CS1A-CX-SUMP-BZ * /CS1B-P1B-CSGZ * /LIZ +
/CSTA-CX-SUMP-BZ * /CS1B-P1B-BZ * /LIZ +
/CS1A-CX-SUMP-BZ * /CS1B-PP-PMS-BZ * /LIZ +

/CS1ACX-SUMP-BZ * /CS16-PP-PMD-BZ * /LIZ +

ESGRM * /CB-C1H-0Z * /CHO-P1B-BZ * /LIZ +

ESGRM
ESGRM
ESGRM
ESGRM
ESGRM®
ESCRM
ESGRM
CHPMC

CHPMC

* /CB-C1H-0Z * /1D-BS-480)-DZ * /LIZ +
® /CB-C1J-0Z * /CB-C1H-0Z " /LIZ +

* JEP-BS-1J-DZ * /CB-C1H-0Z * /LIZ +
" JEP-BS-1H-DZ * /CHD-P18-BZ * fLIZ +
* JEP-BS-1H-DZ * /1D-BS-480J-D2 % /L1Z +
% /CB-C1J-0Z * JEP-BS-1H-0Z * /LiZ +
* /EP-BS-1J-0Z ® JEP-BS-1H-DZ * /L1Z +
Us * /CHO-P1A-CSGZ * /CHO-P1B-CSGZ * /LIZ +

UB * /CHO-P1A-BZ * /CHO-P1B-CSGZ * /LIZ

8§33«

The first minimal cut set, 2AB*/LIZ*/CHO-CS-PMSZ tells us that
one successful scenario which can be accomplished in Type 1 vital
area 2AB is to commit sabotage acts LI and CHO-CS-PMS (in their
original notation). The remaining 48 minimal cut sets are
interpreted similarly.

7.3 Potential Problems in Determining the Scenarios

If the fault tree has any troublesome replicated subtrees or
AND gates, these will already have been dealt with in the program
which solved the fault tree for vital area minimal cut sets. All
of tne additional SUBINEQN and REDUCEQN procedure calls to deal
witn these problems should be left in for the program that
d-termines scenarios, with the REDUCEQN statements modified by
adding the truncation value of 1 and the EXCEPTCMP option. In
other words, this program should already deal with all of the
problem areas of the fault tree by virtue of being essentially the
same program as the one which solved the fault tree for vital area
minimal cut sets. So the only problem likely to be encountered is
that the number of all scenarios for the Type 1 vital areas is so
large that we would rather get the scenarios for just one vital
area at a time, particularly if the vital area is something like
the control room which typically has a large number of scenarios.

When identifying the Type 1 vital areas we would like to
process individually, it is helpful to have a list of all of the
sabotage acts which can be accomplished in each Type 1 vital
area. This information may have other uses for the analyst as
well. Recall that the area equations tell us areas in which a
sabotage act can be accomplished. We now wish to know which
sabotage acts can be accomplished in an area. If the area
equations are thought of as a mapping (or transformation) from
sabotage acts to areas, we now seek the reverce mapping (or
transformacion) from areas to sabotage acts. For the example
problem, the reve:rse mapping from areas to sabotage acts is given

by:

B3

LOCATIONS FOR VITAL AREA EQUATIONS

NO.OF LOCATIONS = 189
NO.OF EVENTS LOCATIONS EVENTS
2 SFGRDB
IHR-NHRS
0I-RC
5 SFGRDA
RPS-D
AFD-CS-PMS
AFWS-LO-IHR
CS1A-HS
C51B-HS
g MCC1JCV
SSRS-D
AFO-PMD-HS
AFO-P1B-B
AF0-P1B-CSG
AFWS-L0O-IHR
CHO-MY1286ABCOC
CHO-MU1867ABCC
CHO-MY186780CC
£S18-HS
8 MCCT1HCVY
SSRS-D
AFD-P1A-B
AF0-P1A-CSG
AFWS-LO-IHR
CHO-MV1286ABCOC
CHO-MY1867ARCC
CHO-MY18678DCC
£S1A-HS
19 CR
AFO-PMD-HS
AFWS-LO-IHR
CS1A-CX-SUMP-B
CS1A-PP-PMS-B
CS1A-P1A-CSG
C518-PP-PMD-B
£518-PP-PMS-B
£518-P18-B
CS18-P18-CSG
CHO-HX-RVESS-8
CHO-MY1286ABCOC
CHO-MY1867ABCC
L.40-MV1867BDCC
| LI
| SWA-MD-P10A
SWB-MD-P108
CHO-CS-PMS
| DG-NO3-C56
| 0G-NO1-CSG
5 CGRM2
AFO-P1A-COOL
0G-NO3-B
DG-NO3-AUX
0G-NO3-CSG

NO.OF EVENTS

S

10

12

LOCATIONS FOR VITAL AREA EQUATIONS

NO.OF LOCATIONS
LOCATIONS

DGRM1

ESGRM

WSGRM

2AB

JEQUIPRM

PMPHSE

2RB

19
EVENTS
DG-NO1-CS6

AFO-P1B8-COO0L
0G-NO1-B
DG-NOT-AUX
DG-NO3-CSG
DG-NO?-CSG

AF0-P1B-COOL
EP-B5-11-D
CB-C13-0
EP-BS-1H-D
CB-C1H-0
10-85-480J-D
SWA-PP-PMD-B
SWB-PP-PMD-B
CHO-P1B-8

LI

ID-BS-480H-D
SWA-PP-PMD-B
SWB-PR-PMD-B
C51B-HS

[D-TR-SSXFMI1H-D
CS1A-PP.PMS5-B
C518-PP-PMS-B
SWA-PP-PMD-B
SWA-vV-PMD
SWB-PP-PMD-H
SWB-vv-PmMp
CHO-PP-PMD-B
CHO-MY1867ABCC
CHO-mu1B86780DCE
L1

CHD-LS5-PM5

ID-TR-SSXFM1]-D
C51A-PP-PMD-B
SWA-PP-PMD-[
SWA-VV-PMD
SWB-PO.PMD-B
SwB-vv-PMD
SWA-MD-P10A
SwB-mp-P108

CS1A-P1A-B
CS1B8-CX-5UmMP-B

CS18-PP-PMS-A

TBSMTVUPT

e e AT R S —

SWA-HX-0ILCU-B
SWA-CS-PMS

-55-

LOCATIONS FOR VITAL AREA EQUATIONS

NO.OF LOCATIONS = 18

NO.OF EVTNTS LOCATIONS EVENTS

SWB-CS-PMS
8 CHPMCUB

SWB-HX-0ILCO-B
CHO-PP-PMD-B
CHO-MU1286ABCOC
CHO-P1A-B
CHO-P1A-CSG
CHO-P1B-CSG
LI
CHO-CS-PMS

i e e,

LI
RWST

-

CHO-CS-PMS
1 2RUST

CHO-CS-PMS
2 RLYRM

DG-NO3-CS50

DG-NO1-CSE

|
)
?'
|
|

7.3.1 Determining the Scenarios of a Single Type 1 Vital Area

If a Type 1 vital area has a relatively large number of
sabotage acts like the control room CR here in our example, we may
want to determine its scenarios without including the other Type 1
vital area scenarios. To accomplish this, a slight modification
to the SETS program that finds all scenarios for all the Type 1
vital areas is required. After the LDBLK procedure call which
loads all of the equations into the equation file, we establish
equations which set all of the Type 1 vital areas to /OMEGA except
the one we wish to find the scenarios for, in this case CR. The
remaining Type 1 vital areas; 2AB, CHPMCUB and ESGRM are set to
/OMEGA by Boclean equations. The SETS statements:

2AB = /OMEGA.
CHPMCUB = /OMEGA.
ESGRM = /OMEGA.

establish these equations in the equation file. The only other
change in the program is to change the name of the solution from
SCENARIOS-TYPEl to SCENARIOS-CR in the final REDUCEQN statement
and in the FRMBLK and PRTEQNDNF statements. Thus the SETS program
to find the scenarios for just CR is as follows:

PROGCRAMS$E XAMPLE -7,
BLKSTAT,

LNBLK(SABOTAGE-FT,SCENARIC-EQNS, TYPE2-PHI,OMEGA-ASSUMPTION).
ESGR™ = /OMEGA,

2AB = /OMEGA.

CHPMZUB = /OMEGA.
SUBINEQN(AC-4160-B1J,AC-4760-B1Y).
RFDUCEQN(AC-4160-813/1,AC-4160-B1I*EXCERTCMPS).
SUBINEQN(AC-S1EJ-BI1H,AC-4160-B1H).
REDUCEQN(AC-4180-3"H/1,AC-4160-B1H*EXCEPTCMPE).
SUBINEQN(SWA-IHR,SWA-TIHR).
REQUCEQN(SWA-IHR/1,SWA-IHR*EXCERTCNPS).
SUBINEQN(SWB-IMR,SW3-1IHR),
REDUCEAN(SWEB-IHR/1,5WB- IHR*EXCEPTCMPS) .
SUBINEQN(CHO P12-C0OL,CHN-P1A-LOGL).
REDUCEQN({CHO-P1A-CO0OL/1,CHO-FTA-COUL).
SUBINEQN{CHD-P1B-CCOL,CHO-P1B-COOL).
REDUCEQN!CHO-P16-.CO0L/1,CHO-P1B-CO0OL).
SUBINEQN(ECRS-D,ECRS5-0).
REDUCEQN(ECRS<D/1,ECRS-D*EXCERTCMPS).
SUBINEQN(AFO-PM-L ,AF0-PM.L),
REDUCEQN(AFO-PM-L /1 ,AFO-PM-L*EXCEPTCMPS).
SUBINEQN(CHO-PM-L ,CHO-PM-L),
REDUCEQN(CHO-PM-L /1 ,CHC~-PM-L®*EXCEPTCMPS).
SUBINEQN(FM-TI,FM-TI).

REDUCEQN(FM-TI/1 ,FM-TI®EXCEPTCMPS).
SUBINEQN{LI-MSD,LI-MSD).
REDUCEQN(LI-MSD/1,LI-MSD*EXCEPTCMPS).
SUBINEQN(TOP,TOR),
REDUCEQN(TOP/1,SCENARIOS-CR*EXCEPTCMPS) .
FRMBLK(SCENARIOS-CR*ONLY$SCENARIOS-CR).,
BLKSTAT,

PRTEQNDNF (SCENARINS-CR).

The output of the PRTEQNDNF statement iJentifies the scenarios for

CR:

1M1
12
13
14
15
16
17
18
19
20
21
22
23
24
25

SCENARIOS-CR =

CR * /LIZ * /CHO-CS-PMSZ +

CR
CR
CR
CR
CR

CR
CR

CR
CR
CR
CR
CR
CR
CR
CR
CR
CR
CR
CR
CR
CR
CR
CR

CR

#

/CHO-My1B867BDCCZ * /iL1Z +

/CHO-MV1867ABCCZ * /LIZ +

/CHO-MV12B6ABCOCZ * /LIZ +

/CHO-HX-RVESS-BZ * /LIZ +

/LIZ * /DC-NDO3-CSGZ * /DG-NO1-CSGZ +

/CS1B-P1B-CSGZ * /L1Z * /DG-NO1-CSGZ +
/CS18-P1B-BZ * /LIZ * /DG-ND1-CSGZ +

/CS18-PP-PMS-BZ * /LIZ ®* /DG-NO1-CSGZ +

/CS18-PP-PMD-BZ * /LIZ * /DG-ND1-CSGZ +

/CER-P1A-CSGZ
/C31R-P1AR-CSG2Z
/CS1A-P1A-CSG2
/C51R-P1A-CS562

/C31A-P1R-CSC2Z

* /LIZ % /DG-NO3-CSGZ +

*

it

/CS1B-P1B-CSGZ * /LIZ +

/CS18-P1B-BZ * /LIZ +

% JC51B-PP-PMS-BZ * JLIZ +

* /CS1B-PP-PMD-8Z * /LIZ +

/CS1A-PP-PMS-BZ # /JLIZ * /DG-NO3-CSGZ +

JLS'A-PP-PMS-BZ
/CS1A-PP-PMS-B2Z
/CS51A-PP-PMS5-BZ

/CS1A-PP-PMS-B2Z

® /CS1B-P1B-CSGZ * /LIZ +

* /CS1B-P1B-BZ * /LIZ +

* /CS1B-PP-PMS-BZ % /JLL1Z +

/CS1B-PP-PMD-BZ * /LIZ +

/CS1A-CX-SUMP-BZ * /LI. * /DG-NO3-CSGZ +

/CS1A-CX-SUMP-B2
/CS1A-CX-SUMP-BZ
/CS1A-CX-SUMP-BZ
/CS1A-CX-SUMP-BZ

"

#*

/CS1B-P1B-CSGZ * /LIZ +
/C51B8-P1B-BZ * /LIZ +
/CS1B-PP-PMS-BZ * /LIZ +
/CS1B-PP-PMD-BZ * /LIZ

Once the scenarios for the control room have been determined,
we can find the scenarios for the remaining Type 1 vital areas as
a group or one at a time, If we want to solve the remaining Type
1 vital areas as a group, we replace the equations:

2AB = /OMEGA.
CHPMCUB = /OMEGA.
ESGRM = /OMEGA.

by the equation:
CR = /OMEGA.

We also change the name of the solution equation in the final
REDUCEQN procedure call and the FRMBLK and PRTEQNDNF statements,
and rerun the program. For the example, the SETS program to
identify the scenarios for the Type 1 vital areas except CR 1is
given by:

PROGRAMSE XAMPLE - 8,
BLKSTAT,
LDBLK(SABDTAGE-FT,SCENARIO-EQNS,TYPEZ-PHI.DMEGA-ASSUMPTIDN).
CR = JOMEGA.
SUBINEQN(AC-4160-B1J,AC-4160-811).
REDUCEQN(AC-4160-B1J/1,AC-4160-B1J*EXCEPTCMPS).
SUBINEQN(AC-4160-B1H,AC-4160-B1H).
REDutEQNéAc-a1sn-e1H/1.Ac-a150-81H*£xCEprcmps).
SUBINEQN(SWA-IHR,SWA-IHR).
REDUCEQN(SWA-IHR/1,5WA-IHR*EXCEPTLMPS).
SUBINEQN(SWB-IHR,SWB-IHR).
REDUCEQN(SWB-IHR/1,5W8-IHR*EXCEPTCMODS),
SUBINEQ/I(CHO-P1A-COOL ,CHO-P1A-COGL).
REDUCEQN(CHO-PTA-COGL /1,CHO-P18-C0O0L).
SUBINEQN(CHO-P1B-r00L,CHO-P1B-COOL).
REQUCEQN(CHO-Pi1B-COOL/1,CHO-PIB-CO0L).
SUBINEQN(ECR5-D,ECRS-D),

REDUCE IN(ECRS-D/1 ,ECRS-D*EACEPTLMPS).
SUBINEON(AFQ-PM-L ,AFO-PM-L).
REDUCEUN(AFU-PM=L /1 ,AFD-PR-L*EXCERTCMPS).
SUBINEQN(CHO-PM-L ,CHO-PM-L).
REDUCEQN(CHO-PM-L /1 ,CHO-PM-L* EXCERTCMPS) .
SUBINEQN(FM-TI,FM-11).
RECUCEQN(FM-TI/1,FM-TI®EXCEPTCMPS).
SUBINEQN(LI-MSD,LI-MSD),
REDUCEQN(LI-MSD/1,LI-MSD*EXCEPTCMPS).
SUBINEQN(TOP,TOP),
REDUCEQN(TDP/1,SCENARIUS-REST“EXEEPTcmps).
FRMBLK(SCENARIOS-REST*ONLY$SCENARIOS-REST).,
BLKSTAT,

PRTEQNDNF (SCENARIOS-REST) .

59«

The output of the PRTEQNDNF prints the scenarios for the
Type 1 vital areas except CR:

TERM NUMBER OF
NUMBER LITERALS

SCENARIOS-REST =

1 3 CHPMCUB * /LIZ * /CHO-CS-PMSZ +
2 3 CHPMCUB * /CHO-MV12BBABCOCZ * /LIZ +

3 3 CHPMCUB * /CHO-PP-PMD-BZ # /LIZ +

4 3 2AB * /LIZ * /CHO-CS-PMSZ +

5 3 2AB * /LHO-MV1B867BDCCZ * /LIZ +

6 3 2RB * /CHOD-MV1BB7ABCCZ * /LIZ +

7 3 2AB * /CHO-PP-PMD-BZ * /LIZ +

8 4 ESGRM * /CB-C1H-0Z * /CHO-P1B-BZ * /LIZ +

B 4 ESGRM * /CB-C1H-DZ * /ID-BS-4B0J-02 * /LIZ +

10 4 ESGRM * /C8-C1J-02 * /CB-C1H-0Z * /L1Z +

11 4 ESGRM * /EP-BS-1J-DZ * /CB-C1H-0Z * /LIZ +

12 4 ESGRM * /EP-BS-14-DZ * /CHG-P1B-8Z * /LIZ +

i3 4 ESCRM * /ZP.BS-1H-DZ * /ID-BS-480J-DZ * /177 +
14 4 ESGRM * /CB-C1J-0Z * JEP-BS-1H-DZ * /LTZ +
15 4 ESGRM * /EP-BS-1J-DZ * /EP-BS-1H-DZ * /LIZ +
16 4 CHPMCUB * /CHO-P1A-CSGZ * /CHO-P1B-CSGZ * /LIZ +
17 4 CHPMCUB * /CHO-P1A-BZ * /CHO-P1B-CSGZ * /LIZ

We may choose to solve all of the Type 1 vital areas
individually. This is done in the same way that the scenarios for
CR were determined. An individual run is made for each Type 1
vital area with all of the other Type 1 vital areas set to /OMEGA,
as was done in the example for CR.

7.3.2 Determining a Subset of Scenarios

Occasionally, a single vital area such as the control room may
have a large number of scenarios, say 10,000. To determine all of
these scenarios is a rather costly computer run and it is unlikely
that anyone is interested in examining all 10,000 scenarios. We
can obtain a subset of the scenarios, at much less cost, by only
determining scenarios with n or fewer sabotage acts (a typical
value for n is 6). If we change the truncation value from 1 to
n+ 1 (n + 1 because the vital area is counted as one literal) and
remove the EXCEPTCMP option from each REDUCEQN statement in the
program, then we will obtain all scenarios for the vital area with
no more than n sabotage acts since the truncation criteria no
longer excludes the sabotage acts from the counting process. For
example, the follow.ng SETS program identifies the scenarios for
the control room, CR, with less than three sabotage acts.

PROGRAMS$E XAMPLE -9.
BLKSTAT,
LOBLK(SABOTAGE-FT,SCENARIO-EQNS,TYPE2-PHI,OMEGA-ASSUMPTION).
ESGRM = /OMEGA.

2AB = JOMEGA.,

CHPMCUB = /OMEGA.
SUBINEQN(AC-4160-B1J,AC-4160-8B17).
REDUCEQN}AC-&160-B!J/3.AC-&160-B1J).
SUBINEQN(AC-4160-B1H,AC-4160-B1H) .
REDUCEQN(AC-4160-B1H/3,AC-4160-B1H).
SUBINZQN(SWA-IHR,SWA-THR).
REDUCEQN(SWA-IHR/3,SWA-IHR).
SUBINEQN(SWB-IHR,SW8-IHR).
RENDUCEQN(SWB-IMR/3,5WB=-1IHR).
SUBINEQN{CHO-P1A-CO0L,CHD-P1A-COOL) .
REDUCEQN(CHO-P1A-COOL/3,CHO-P1A-COOL).
SUBINEQN(CHO-P18--00L,CHO-P*B-COOL) .
REDUCEQN(CHO-P1B-COOL/3,CHO-P1B-CO0L).
SUBINEQN(ECRS-D,ECRS-D).
REDUCEQN(ECRS-D/3,ECRS-D).
SUBINEQN(AFO-PM-L ,AFQ-PM-L).
REDUCEQN(AFO-PM-L/3,AF0-PM-L).
SUBINEQN(CHO-PM-L ,CHO-PM-L).
REDUCEQN(CHO-PM-L/3,CHOD-PM-L).
SUBINEQN(FM-TI,FM-TI).
REDUCEQN(FM-TI/3,FM-T1).
SUBTINEQN(LI-MSD,LI-MSD).
REDUCEQN(LI-MSD/3,LI-MSD).
SUBINEQN(TOP,TOR),
REDUCEQN(TOP/3,SCENARIOS-CR-3).
FRMBLK(SCENARIOS-CR-3*0ONLY$SCENARIDS-CR-3).
BLKSTAT,

PRTEQNDNF (SCENARIOS-CR-3), 6l

The output of this program identifies all scenarios for the
control room which require fewer than three sabotage acts:

TERM NUMBER OF
NUMBER LITERALS

SCENARIOS-CR-3 =

1 3 CR ® /LIZ * /CHO-CS-PMSZ +

2 3 CR * /CHO-MV1BB7BDCCZ * /LIZ +
3 3 CR * /CHO-MU1BB7ABCCZ * /LIZ +
4 3 CR * /CHD-Mv12B6ABCOCZ * /LIZ +
5 3 CR * /CHO-HX-RVESS-BZ * /JLIZ

7.3.3 Using Truncation when the STOP Option is Being Used

If there are any gates in the sabotage fault tree which are
being solved using stop points, as described in Section 5.5.2, the
stop points should not be counted toward the truncation value
since we want to count only the vital area toward the truncation
value. To avoid counting the stop points toward the truncation
value, the EXCEPTNONCMP (except non-complemented variables) is
used. The names of the gates which are stop points follow the
EXCEPTNONCMP statement. For example, the SETS user program to
solve gate X in Section 5.5.2 for scenarios of Type 1 vital areas
would be altered as follows:

\

SUBINEQN (X ,X*STOP$C,D,E) .
REDUCEQN(X/l,X'EXCEPTCHPS/EXCEPTNONCHP‘C,D.E).
SUBINEQN (X ,X*STOPS$D,E) .

REDUCEQN (X/1,X*EXCEPTCMP$/EXCEPTNONCMPSD ,E) .
SUBINEQN (X ,X*STOPSE) .

KEDUCEQN (X/1 ,X*EXCEPTCMPS/EXCEPTNONCMPSE) .
SUBINEQN (X ,X).

REDUCEQN (X/1 ,X*EXCEPTCMPS) .

62

APPENDIX A

Procedures Available in SETS

Each of the procedures available in SETS is invoked by a
procedure call statement in a SETS user program. A procedure call
begins with a procedure identifier and is usually followed by a
parameter part that is enclosed in parentheses. There are options
that can be specified in the calls for some of the procedures which
affect the processing that is achieved with those procedures,

Some of the options involve the concepts of phi and omega. 1In the
context of set theory, phi represents the empty set («¢), and omega
represents the universal set (n); while in the context of Boolean
algebra, phi = 0 and omega = 1. The processing that is accom-
plished by the execution of a procedure and any options that can
be used to affect that processing will be described for each pro-
cedure discussed.

A.1 Read Block

A call of the Read Block procedure has the form:

RDBLK (bl' b2' .« ey bk)o
This procedure is used to read blocks. The parameters by, by,
«++s bk are the names of the blocks that are to be read. The
blocks must be supplied as input in the same left to right order
that the block names occur as parémeters .n the procedure call.

A olock is a set of Boolean eguatiuns that can be read oy Lne
Read Block prucedure. A block is comprised of a block heuder apd

a group of one or more Boolean equations. The block header
precedes the equations and has the form:

BLOCK$ block-name.
where

"block-name” is the name of the block.

Each equation in the block must be terminated with a period.

The equations in a block are checked as they are read to
ensure that they are correctly formed equations. After each block
has been read and the equations have been checked, the block is
adGded to the block file,

A.2 Read Fault Tree

A call of the Read Fault Tree procedure has the form:

RDFT (ftl' ftz, “e e ftk)o

This procedure is used to read fault trees. The parameters ft;,

ftz, ..., ftx are the names of the fault trees that are to be

read. The fault trees must be supplied as input in the same left

to right order that the fault tree names occur as parameters in

the procedure call. .

The fault tree input that was defined in Chapter 2 is a data
structure that can be read by the Read Fault Tree procedure. The .
redundancy inherent in the input representation of a fault tree is
used to check the structure of each fault tree as it is read and
processed. After each fault tree is read and checked, a block is
created for that fault tree and added to the block file. The block
contains the intermediate event equations for the fault tree, and
the block name is the same as the fault tree name.

Each block that is generated by the Read Fault Tree procedure
contains a representation of the fault tree in addition to the
equations that are contained in the block. This internal repre-
sentation of the fault tree is used to produce the Fault Tree
Event Table when the fault tree is printed using the Print Block
procedure.

A.3 Print Egquation

A call of the Print Equation procedure has the form:
PRTEQN (V1, V24 sees VK)o

This procedure is used to print equations that are in the equation
tile. The parameters vj, V2, ..., Vg are processed from

left to right and the equation for each variable is printed as it

1s encountered, If the egjuation file does not contain an equation
for a particular vj, the wnessage

THERE IS NO SET EQUATION FOR vj
is printed.

The equatioas in the eguation file are in a factored form, and
they are printed in this form by the Print Equation procedure. If
there are any parentheses in an equation, an integer will be
printed immediately below each parenthesis when the equation is
printed. The numbers are provided to aid in the interpretation of
complex equations. Paired parentheses have the same number and
the numbering begins with the number 1 for an outermost set of
parentheses. In a printed equation, the operations of AND, OR,
and JOT are represented by *, +, and /, respectively.

A.4 Print Equation In Disjunctive Normal Form

A call of the Print Equation in Disjunctive Ncrmal Form
procedure has the form:

PRTEQNDNF (P1, P2+ -++s Pk) -

A-2

This procedure is used to print equations that are in the eguation
file. Each of the parameters pj, P2, +.., Pk is either a

variable name vj, or it is a variable name and a truncation value
of the form vj/n, where n is a positive integer. The parameters
are processed from left to right and the equation for each vari-
able is printed as it is encountered. If the equation file does
not contain an equation for a particular vj, the message

THERE IS NO SET EQUATION FOR vj
is printed.

When a truncation value is specified, only those terms of the
equation with n or fewer variables are printed. 1If every term of
an eguation contains more than n variables, the message

THE SET EQUATION IS PHI
1s printed.

A Literal Occurrence Table is printed preceding each equation
that is printed, The ctable indicates the number of times that a
variable (literal) occurs in the printed equation. Since the
equation is printed in a disjunctive normal form, the number of
occurrences of a variable is also the number of terms which con-
tain the variable. If any terms of an equation are discarded
because of a truncation value, some variables that occur in the
full equation may not occur in the truncated equation that is
printed. The Literal Occurrence Table contains a count of only
those variables which occur in the printed equation.

Following the Literal Cccurrence Table for an eguaticn, the
equation is printed in a disjunctive normal form. The terms are
numbered and they are printed in the order of an increasing number
of variables per term,

A.5 Delete Equation

A call of the Delete EBguation procedure has one of the forms:
a. DLTEQN.
b. DLTEQN (VI' Vz, “e ey Vk)o

This procedure is used to delete equations from the eqguation
file. If there is no parameter list in the procedure call (form
a.), every equation is deleted from the equation file. When a
parameter list occurs in the call (form b.), only the equations
for the variables v), v3, ..., vk are deleted from the equa-
tion file. If there is no equation in the equation file for a
particular variable vj, then no action is taken for that
parameter.

A.6 Substitute In Equation

A call of the Substitute In Equation procedure has one of the
forms:

a. SUBINEQN (v;, v2).
b. SUBINEQN (v), v2 * 01/02/03).

This procedure is used to create a new equation and enter it into
the equation file. The right side of the new equation is gener-
ated from the equation for v) by a repeated process of substi-
tuting equals for equals. The left side variable for the new
equation is vj3.

For both forms of the procedure call, a copy of the equation
for the first parameter, v), is used to start the substitution
process. If there is no equation for v] in the equation file,
then v] is taken as the right side expression for the new equa-
tion. 1If there is an equation for v] in the equation file, then
each variable in the right side expression of the equation for
v] which has an equation in the equation file, is replaced by
the right side of the equation for that variable. By repeating
this substitution process for every variable in the right side
expression, including variables that have been introduced by a
prior substitution, the expression will ultimately contain only
variables for which there is no equation in the equation file and
no further substitutions can be made.

If there are no substitution control options in the procedure
call (form a.), the substitution process will terminate when none
of the variables remaining in *he expression have an equation in
the equation file. PFowevecr, if substicuticn control options occur
in the call (form b.;, these options are used to arrest the sub-
stitution process prioL to its normal completion. The parameters
01, 02, and o3 represent the three options that can occur in
this form of the procedure call.

An omega opticn has the form:

OMEGAS vy, V2, «o o Vg
The omega option causes every occurrence of each vi to be
replaced by the variable OMEGA rather than the right side of the
equation for vj. The equation for vj in the eqguation file is
not affected.

A phi option has the form:

PBI’ Vl' Vz. DR Vk
The phi option causes every occurrence of each vi to be replaced

by the variable =7 OMEGA rather than the right side of the equation
for vij. The equation for vj in the equation file is not affected.

A-4

A stop option has the form:

STOPS Vl' V2‘ .-y Vk

The stop option causes every occurrence of each vj to be treated
as if there is no equation for vj in the equation file (ie, no
substitution for vj will take place), and vj will remain in

the expression. The equation for vj in the equation file is not

affected. One or more of the options o}, 02, or 03 can occur
in the procedure call separated by "/" delimiters. Moreover, the

options can occur in any order.

A.7 Reduce Eguation

A call of the Reduce Fquation procedure has one of the forms:
REDUCEQN (v, v32).
REDUCEQN (v), v2 * 01/02).

REDUCEQN (v1/n, v3).

d. REDUCEQN (v1/n, v2 * 01/02/03/04).

This procedure is used to create a new equation and enter it into
the equation file. The right side of the new equation is gener-
ated by applying certain Boolean identities to the right side of
the equation for v). The left side variable for the new

equation is vy,

The processing by the Reduce Equation procedure is concerned
primarily with the reduction of a Boolean expression. During the
processing, the form of the expression changes from a factored
forr, to a disjunctive normal form, and then back again to a
factored form. The processing begins with a copy of the right
si1de expression from the equation for v] and is achieved in
three steps:

1. Expansion

a. Apply DeMorgan's Rules to the factored foirm of the
expression to eliminate NOT operators.

b. Repeatedly apply the distributive law to the factored
form of the expression to generate a disjunctive normal
form of the expression.

€. Apply the identities P*P = P and P* 7P = ¢ to the
expression to eliminate repeated variables in a term
and terms with zero products,

2. Simplification

Apply the identity P + P*Q = P to the wisjunctive normal
form of the expression to eliminate terms that are
logically contained in other terms (absorption rule).

3. Pactorization

Factor (group) the disjunctive normal form of the
expression to create a factored form of the reduced
expression, (The factoring scheme is based on choosing as
a factor the most often occurring variable whenever a
factor is selected.)

For all forms of the procedure call, a copy of the right side
expression from the eguation for v) is expanded, simplified, and
factored to form the right side of the new equation, If there is
no equation for v; in the equation file, then v] is taken as
the right side expyression of the new equation, If there is no
truncation value and there are no reduction control options in the
procedure call (form a.), the :ocessing will consist of the equa-
tion reduction already described. If there is no truncation value
but there are reduction contrel options (form b.), the parameters
0] and oy are the reduction contrcl eptions that can occur in
this form of the procedure call.

An omega option has the form:
OMEGA‘ VIQ vzo “eey Vk

The omega option causes every occurrence of each vi %o be
reploced by the variable OMEGA. Then, the identities Q + P = 0
and {’*p = P w'll be applied to the expression pricr to expansion.

A phi optjon has the from:
PHIS V], V2 sees Vg

The phi coption causes every occurrence of each vi{ to be repleced
by the variable 7 OMEGA. "hen, the identities + P =P and

P*p = ¢ will be applied to the expression prior to expansion. Any
number of the 0} or o) options can occur in the procedure call
separated by " delimiters, and they can occur in any order.

If there is a truncation value but there are no reduction
control options (form c¢.), the expression will be truncated during
expansion. The parameter n is a counted literals maximum (ie, the
truncation value). YUvery term which contains more than n
variables will be discarded.

If there is a truncation value and there are reduction control .
options (form d.,), the paraneters o), 02, 03, and o4 are
the options for this form of the procedure call. These options
may be included in any order. The first option, 0}, is the omega

A-6

option and the second option, 02, is the phi option. These are
the same options that were described for form b,

The options o3 and o4 are related to n, the counted
literals maximum parameter. The option, 03, is the except
complement option and it has one of the following furms:

1. EXCEPTCMPS$
2. EXCBPTC“P' le Vzp “es Vk

If the except complement option does not have a variable list
(form 1.), all complement variables are excluded from counting
toward the truncation value. If the except complement option has
a variable list (form 2.), only the complement variables corre-
sponding to each vi in the list are not counted toward the
truncation value.

The option, 04, is the except noncomplement option and it
has one of the following forms:

1. EXCEPTNONCMPS$

s EXCEPTNO"CRP‘ le Vz. RN Vk
These options function exactly like the except complement options
(03), but it is the noncomplement variables that are exciuded

from counting toward the truncation value rather than the
complement variables.

Any number of the o1, 02, 03, or 04 options can occur
in the procedure call separated by "/" delimiters, and they can

occur in any order.,

A.f Form Block

A :all of the Form Bleock procedure has cne of the forms:

a. FRMBLK (b).
b. FRMBLK (b * 0]).

This procedure is used to form a block and add it to the block
file. In all forms of the »rocedure call, the parameter b is the
block name for the block to be formed. If there is no selection
control option in the procedure call (form a.), a block is formed
which contains all of the eguations that are in the equation file
when the procedure is executed.

If there is a selection control option in the procedure call
(form b.), a block will be formed which contains a subset of the
equations in the equation file. The selection control option,
01, will have one of the following forms:

1. ONLYS$ V], V24 eses Vg
2. EXCEPTS Vi, V2, vaes Vi

Only cne selection control option can occur in a call of the Form
Block procedure. If the ouly aption is used (form 1.), the block
that is formed will contain oniy those equatious from the equation
file thet have a left side variable which orccurs in the variable
list of the opticon. It the except option 1s used (form 2.), the
block that is formed will contain every eguation from the equation
file except tnose that have a left side variablie which occurs in
the variable list of the option, If there ’s nc eguation in the
eguation file for a variable that occurg in the selection control
cption, the effect is as if the veriable had not occurred in the
option.

It is possible to form a hlock which dues not ccntain any
eguations, although such a block serves no useful purpose. How-
ever, if a selection control option results in excluding all of
the equations that are in the equation file, or if there are no
equations in the eguation file, ther a block without any equations
will be generated.

A.9 Load Block

A call of the Load Block procedure has the focm:
LDBLK (bl, bz, .oy bk) -

This procedure is used to 1lnad the equations conrtained in a block
inte the equation file. The parameters by, vy, ..., by are the
names of the blocks to be lnaded. The pacame.ers are processed from
left to right and as each olock nawme is encountered, the equations
contained in that block are loaded into the equation file. The
blocks in the block file are not affected by this loading process.

if the equation file already contains an equation for some
variable vj, and an eguaticn for v; 1s containred in a block to
be loaded, the eguation for vj from the biock will replace the
equation for vj /n the equation file. Otherwlse, equations in the
equation file will not be changed when a block is loaded. Thus,
after each block is loaded, %he equation file will consist of all of
the equations from the block, together with those equations which
were in the equation file when the block was loaded and were not
replaced by an equation Irom the block. Loading a block does not
change the block file in any way. Also, if a block is specified for
loading whicn is not in the blcck file, an 2rror condition will be
detected and an error message will be printed.

A block cannot contain more than one equation with the same left
side variable because such a block cannot be formed. However, if
several blocks are to be loaded, un equation with the same leit side
variable can occur in more than one of the blocks. Since each block
is loaded as its block name is encocuntered while processing the

£-8

parameters by, b, ..., by from left to right, the last
equation loaded for a particular variable will be the equation in
the equation file when execution of the procedure is completed.

A.10 Print Block

A call of the Print Block procedure has the form:
PRTBLK (bj, b2, «.., bg).

This procedure is used to print the information contained in a
block. The parameters b), by, ..., by are the names of the

blocks to be printed. As the block names by, by, ..., bk are
processed from left to right and as each biock name is encoun-
tered, the information from that block will be printed. If the
block was generated by the Read Fault Tree procedure, it contains an
internal representation of the fault tree, and the first thing to be
printed will be the Fault Tree Event Table. Each event of the fault
tree is listed in the Fault Tree Event Table together with the
information specifying its relationship to the other events of the
fault tree. The numbering of the events begins with 2 because OMEGA
is always treated as the first variable in SETS and given the number
l. Since OMEGA cannot occur in a fault tree, it is simply not
printed in the Fault Tree Event Table, and the number of events in a
fault tree is one less than the number of the last event in the
Fault Tree Event Table.

The remainder of the information printed by the Print Block
procedure is printed in the same form for all blocks regardless of
how they were formed. The equations contained in the block are
printed one after the other in the same format used by the Print
Equation procedure to print factored eguations.

A.ll Delete Rlock

A call of the Delete Block procedure has one of the forms:
a. DLTBLK.
b. DLTBLK (bjy, b2, ..., bg).

This procedure is used to delete blocks from the block file., If
there is no parameter list in the procedure call (form a.,), all
blocks are deleted from the block file. Careful consideration of
the consequences should precede the use of this form of the proce-
dure call. However, such a call should occur at the beginning of
any SETS user program intended to create a new block file.

If the parameter list is used with the procedure call (form b.),
the parameters bj, by, ..., by .re the names of the blocks to
be deleted. Only those blocks with a block name that occurs in the
procedure call will be deleted. If more than one block on the block
file has the same block name, and if that block name occurs as a
parameter in the procedure call, every block with that block name
will be deleted from the block file.

A-9

A.12 Block Status

A call of the Block Status procedure has the form:

BLKSTAT.

This procedrre is used to ascertain what blocks are on the block
file. If there are no blocks on the block file, the message

THE BLOCK FILE IS EMPTY

will be printed. If the block file is not empty, the block names of
the blocks on the block file will be printed in the same order that
they occur on the block file.

A-10

APPENDIX B
Execution Diagnostics

During the execution of the SETS program (i.e., during the
interpretive execution of a SETS user program), there are several
errors that will be detected if they should occur. The errors
will be described in two groups. The first group is concerned
with the logic and implementation of the SETS program, and the
second group concerns errors in a SETS user program.

B.l1 SETS Errors

In general, errors detected in the execution of the SETS
program indicate a sericus breakdown. Although these errors
rarely occur, tests are included in SETS to detect them in order
to preclude further execution that would produce erroneous
results. All of these errors will cause the execution of SETS to
be terminated after an appropriate message has been printed.

There are three illegal branch errors that can occur. The
messages corresponding to these errors are as follows:

AN ILLEGAL TRANSFER HAS OCCURRED FROM A COMPUTED
GOTO STATEMENT.

AN ITERATION PROCESS HAS BEEN COMPLETED WHICH SHOULD
HAVE BEEN EXITED PRIOR TO COMPLETION.

THERE HAS BEEN A COMPUTER MALFUNCTION OR AN ERROR
EXISTS IN THE SETS PROGRAM.

An illegal branch error will occur if a character is used which is
not a valid character in a SETS user program. An illegal branch
error may also be caused by a computer malfunction and the job
should be run again to make certain that the error was not the
result of such a malfunction. An illegal branch error can also
occur if a situation occurs that was not anticipated when the SETS
program was coded. In this case, the cause of the error must be
determined and changes made in the SETS program to correct the
error.

There are three file processing errors that can occur. The
messages corresponding to these errors are as follows:

AN END OF FILE ERROR HAS OCCURRED,
A PARITY ERROR HAS OCCURRED.

A READY ERROR HAS OCCURRED.

All of the file processing errors can result from a bad file, or
from the fact that the file used was not the correct one. The
user should first ascertain that the files specified are indeed
the ones he intended to use and then run the job again. If the
error persists, then the file in guestion may siwply be a bad file
and need to be regenerated--particularly i° a parity error is oc-
curring. Like the illegal branch errors, file processing errors
can be the result of a situation that was not anticipated when the
SETS program was coded. A change in the SETS program would then
he required to correct the error.

There is one further error that can occur during the executicn
of the SETS program. This error concerns the printed output
generated by SETS, and the message for this error is as follows:

THE MAXIMUM NUMBER OF LINES PER PAGE IS TOO
SMALL TO ALLOW PROPER PAGING OF THE OUTPUT.

This error cannot occur when the standard version of SETS is

used. However, the error can occur if a version of SETS is creat-
ed that reduces the maximum number of printed lines per page to a
value that is too small to allow the printing of the headings that
can occur in the printed output. This error can be eliminated by
using a version of SETS with a larger value for the maximum number
of lines per page.

B.2 Sets User Program Errors

The SETS user program errors are syntax errors, and errors
that occur during the execution of the statements of the SETS user
program. In general, these errors will not cause execution of the
SETS program to be terminated. However, the processing of the
SETS user program following the detection of one of these errors
will be significantly different than normal processing. The pro-
cessing that occurs after the detection of an error is intended
to determine whether or not any remaining input is syntactically
correct. It 1s not possible to accomplish this task completely
because recovery after a detected error is based on some syntactic
characteristic (eg, the period at the end of each statement).
Nevertheless, many of the syntax errors can be detected during a
single execution of a SETS user program.

The execution of a SETS user program occurs in two phases.
First, the SETS user program itself is read and testad to deter-
mine that it is syntactically correct. If an error is detected
while reading the SETS user program, an attempt is made to read
and test the remainder of the SETS user program unless the error
occurred in the program header in which case execution will be
terminated. The SETS user program will not be executed if any
errors occur while it is being read.

Once the SETS user program can be read without error, its
execution will proceed normally unless an error is detected during

B-2

execution. If an error is detected during execution, an attempt
will be made to execute all remaining procedure calls that process
input (RDFT and RDBLK), but execution of all other statements in
the SETS user program will be bypassed. However, no blocks will
be formea from fault trees or blocks after an error has been

detected,

B.2.1 Special Fault Tree Error Messages -- In addition to the
numbeéred error conditions that are aescrigea in the next section,
there are certain fault tree errors which will cause special
messages to be printed, These special messages are as follows:

ERRORS OCCURRED IN THE DEFINITION OF THE EVENT event-name.
THERE WAS NO DEFINITION FOR THE EVENT event-name,

THE DEFINITION FOR THE EVENT event-name DOES NOT INCLUDE
ITS RELATIONSHIP TO THE EVENT event-name,

THE RELATIONSHIP BETWEEN THE EVENTS event-name AND
event-name IS INCONSISTENT.

where
"event-name" is the name of a fault tree event ,

These special messages are the result of tests performed after the
entire fault tree has been read. As a result, they provide infor-
mation which is sometimes already known. For example, when
processing the event definition for an event X, if a name is
encountered that contains more than the maximum number of name
Characters allowed, a numbered error message (Error 33) will be
printed., Later in the processing the message

ERRORL OCCURRED IN THE DEFINITION OF THE EVENT X

will also be printed even though both messages are the result of
the same error. The special messages are helpful in tracking down
errors in the fault tree, Correction of the input will then
eliminate the errors.

B.2.2 Numbered Error Messages -- Except for the special
messages concerning certain fault tree errors, the detection of an
error during the execution of a SETS user program will result in a
numbered error message of the form:

#*#****ERROR NUMBER: n, name
where
"n" is the error number
"name" is either empty or it is the name of some entity

in the SETS user program or its associated input,

B-3

The descriptions of the errors that cause numbered error messages
are listed below along with the error number that will appear in

the message.

Furthermore, steps for correcting the error will be

indicated if they can be carried out by the user.

Error Number

Error Description

1

A special character 1s incorrect in the
context in which it occurs. The characters
that occur in the input between the previous
special character and the special character
that 1s i1ncorrect will be printed, Correct
the input.

A program header, a block header, or a favlt
tree header is incorrect. The characters
that begin the header will be printed.
Correct the input.

The SETS user program exceeds the size of the
vector used to store the program. The name
of the SETS user program will be printed,
Break up the SETS user program into two or
more programs that achieve the same result as
the original program,

The procedure identifier of a procedure call
18 incorrect, The incorrect procedure iden-
tifier will be printed. Correct the input,.

The parameter part of a procedure call is
incorrect, The procedure identifier of the
procedure call will be printed. Correct the
input,

The block name in a block header, or the
fault tree name in a fault tree header is not
the same as the next parameter in a RDBLK
call or a RDFT call, respectively. The block
name or the fault tree name trom the header
will be printed. Correct the input,

The number of variables exceeds the size of
the tahle used to hold them. 1Initialize the
number of variables in the table by inserting
a call of DLTEQN with no parameters in the
SETS user program after taking steps to save
all meaningful equations in blocks. Also,
whenever possible, minimize the number of
variables in the table before calls of RDFT,
RDBLK, and PRTBLK since execution of these
procedures temporarily adds additional
variables to the table,

10

11

12

13

14

15

16

17

One of the records of a block exceeds the
size of the vector used as a temporary trans-
fer area for a DLTBLK call with a nonempty
parameter part. Use a version of SETS with a
larger copy vector (equivalenced to the
expression vector).

The substitution control part of a SUBINEQN
call or the reduction control part of a
REDUCEQN call is incorrect. Specifically, a
variable has occurred more than once in the
same kind of control element, or a variable
has occurred ir both an omega and a phi con-
trol element. The variable that caused the
error will be printed. Correct the inpct,.

The left side variable of an equation is
OMEGA. Correct the input.

A fault tree does not have any event
definitions (i.e., the fault tree body is
empty). The fault tree will be printed.
Correct the input.

A fault tree has an incorrect alphabetic
delimiter. The incorrect alphabetic
delimiter will be printed. Correct the input,

An event definition does not contain any
relationship declarations. The name of the
event being defined will be printed. Correct
the input.

A fault tree contains OMEGA as an event
name. Correct the input.

An event has more than one event definition.
The name of the event with multiple defini-
tions will be printed. Correct the input,

A fault tree body begins with a relationship
declaration instead of an event declaration.
The name of the fault tree will be printed.
Correct the input.

The number of prefixes used in a fault tree
exceeds the size of the table used to store
them. The prefix that causes the error will
be printed. Alter the fault tree so that
fewer prefixes are required.

Error Number

Error Description

18

The number of relaticnships in a fault tree
exceeds the size of the vector used to hold
them. The fault tree name will be printed.
If possible, break up the fault tree into two
or more smaller fault trees that represent
the same logic as the original fault tree.

An event exceeds the maximum rank (i.e., the
number of events related to it). The name of
the event with the excessive rank will be
printed. 1Insert one or more additional
intermediate events into the fault tree so
that the logic is preserved, but none of the
events in the fault tree exceed the max ' mum
rank.

An event in a relationship declaration is the
same as the event being defined, or it occurs
in more than one relationship declaration in
the same event definition. (The same evert
can occur in a similar input or a similar
output declaration if the prefixes are not
identical.) The name of the event being
defined will be printed. Correct the input.

An intermediate event definition with a
similar output declaration also has an output
declaration or a similar input declaration.
The name of the event being defined will be
printed. Correct the input,

A primary event definition has relationship
declarations other than output declarations.
The name of the event being defined will be
printed. Correct the input.

A special intermediate event definition
contains a similar input declaration. The
name of the event being defined will be
printed. Correct the input.

An intermediate event definition does not
contain any input declarations. The name of
the event being defined will be printed.
Correct the inpuc.

The logic expression in a special
intermediate event definition does not con-
tain all of the events that occur in the in-
put declarations. The name of the event
being defined will be printed. Correct the
input.

Error Number Error Description

26 The logic expression in a special
intermediate event definition contains at
least one event that does not occur in an
input declaration. The name of the event
being defined will be printed. Correct the
input.

27 A Boolean expression exceeds the size of the
vector used to hold it. Use a version of
SETS with a larger expression vector.

28 A conditioning event is related to an event
that is not the output event of a PRIORITY
AND gate or an INHIBIT gate. The name of the
conditioning event will be printed. Coriect
the 1input.

29 The output event of a PRIORITY AND gate or an
INHIBIT gate does not have exactly one condi-
tioning event related to it. The name of the
output event of the PRIORITY AND gate or the
INHIBIT gate will be printed. Correct the
input.

30 The output event of a PRIORITY AND gate does
not have at least two input events related to
it. The name of the output event of the
PRIORITY AND gate will be printed. Correct
the input.

31 The output event of an INHIBIT gate does not
have exactly two input events related to it.
The name of the output event of the INHIBIT
gate will be printed. Correct the input.

32 A fault tree contains at least two similar
trees that overlap (i.e., generated event
names have more than one prefix). The
generated name of the event that causes the
error will be printed. Correct the input,

33 The number of characters in a name or
alphabetic delimiter exceeds the size of the
vector used to build these entities. The
first sixteen characters of the name or
alphabetic delimiter will be printed.
Correct the input.

34 Two special characters (excluding the minus)
occur in juxtaposition in a context where
such an occurrence is incorrect. Correct the
input.

Error Number

35

36

37

38

39

40

4l

42

43

Error Description

Two special characters (excluding the minus)
do not occur in juxtaposition in a context
where such an occurrence is required. The
characters that occur between the two special
characters will be printed. Correct the
input.

A generated event name 1s OMEGA, or it is
identical to a nongenerated event name, or it
is identical to a generated event name but
the prefixes are not the same. The generated
event name will be printed. Correct the
input.

The block file does not contain a block with
the block name that occurs as a parameter in
a LDBLK or a PRTBLK call. The block name
will be printed. Correct the input.

An equation cannot be printed without
exceeding the maximum length allowed for each
line of print. Use a version of SETS with a
larger maximum printed line length.

The right side of an equation is incorrect.
Specifically, a variable follows a right
parenthesis. The left side variable of the
equation will be printed. Correct the input.

The right side of an equation is incorrect.
Specifically, there is at least one unpaired
left parenthesis. The left side variable of
the equation will be printed. Correct the
input.

The right side of an equation 1s incorrect.
Specifically, the period terminating the
right side follows the equivalence operator,
a left parenthesis, or an operator. The left
side variable of the equation will be
printed. Correct the input.

The right side of an equation is incorrect.
Specifically, an AND or OR operator follows a
left parenthesis or another operator. The
left side variable of the equation will be
printed. Correct the input.

The right side of an equation is incorrect.
Specifically, a NOT operator follows another
NOT operator, a right parenthesis, or a
variable. The left side variable of the
equation will be printed. Correct the input.

Error Number

14

45

46

47

48

49

50

Error Description

The right side of an equation is incorrect.
Specifically, a left parenthesis follows a
right parenthesis or a variable. The left
side variable of the eguation will be
printed. Correct the input.

The right side of an equation is incorrect.
Specifically, a right parenthesis follows a
left parenthesis or an operator. The left
side variable of the equation will be
printed. Correct the input,.

The right side of an equation is incorrect.
Specifically, there is at least one unpaired
rignt parenthesis. The left side variable of
the equation will be printed. Correct the
input.

The level of an AND or OR operator exceeds
the maximum that can be accommodated during
expansion of an expression. The left side
variable of the equation which contains the
operator will be printed. 1If possible, break
up the equation and reduce it in stages
instead of all at once.

The left side variable of an equation occurs
in the right side of the equation, or the
process of substituting equals for equals
into the right side of an equation generates
a sequence of substitutions that is repeti-
tive ard nonending. For the first case the
left side variable of the equation will be
printed, and for the second case the left
side variable from one of the equations ir
the repetitive seguence will be printed.
Correct the input.

An integer contains a character other than a
digit, or an integer has occurred that is
99999999. Correct the iaput.

The number of vaciables in a term exceeds the
maximum that can be accommodated during the
expansion of an expression. Use a counted
literals maximum in the REDUCEQN or PRTEQNDNF
call to truncate the equation.

B-9

Error Nunber

51

52

53

54

Error Description

The number of equations that either are or
have been in the equation file since this
numbering was last initialized exceeds the
maximum number that can be accommodated. The
name of the SETS user program will be printed.
Initialize the numbering of equations by
inserting a call of DLTEQN with no parameters
in the SETS user program after taking steps

to save all meaningful equations in blocks.

The number of terms in an expression exceeds
the size of the vector used to hold them. If
this occurs during simplification or factor-
ization of an equation, break up the eguation
and reduce it in stages instead of all at
once, or use a counted literals maximum in
the REDUCEQN call to truncate the equation.

If it occurs when an equation is being printed
in disjunctive normal form, use a counted
literals maximum in the PRTEQNDNF call to
truncate the equation.

The region of Extended Core Storage (ECS)
used to store the right sides of equations
has been exceeded. The name of the SETS user
program will be printed. 1Initialize the use
of ECS by inserting a call of DLTEQN with no
parameters in the SETS user program after
taking steps to save all meaningful equations
in blocks.

The number of variables in an expression
exceeds the size of the vector used to count
the number of occurrences of each literal.

If this occurs during factorization, break up
the equation and reduce it in stages rather
than all at once, or use a counted literals
maximum in the REDUCEQN call to truncate the
equation. If it occurs wher an equation is
being printed in disjunctive normal form, use
a counted literals maximum in the PRTEQNDNF
call to truncate the equation.

B~10

Appendix C

The Output of PRTBLK for the Example Sabotage Fault Tree and
its Area Equations

R R W FAULT TREE EVENT TABLE * % #» &
(SABOTAGE -F T)

SET NAME RELATIONSHIPS

rop ' IN , FM-T]
IN , FM-ILODCA

FMm-T1 IN , TMS5-0
IN , TI-RT
our, ToP

FM«ILOCA IN , LI-MSD
out, TOP

LI-mS50 ' IN , L-MSD
IN o LI
OuT, FM-ILOCA

IN , ECRS-D
IN , ECIS-D
IN , PAHRS -0
outT, LI-mMSD

our, LI-MSD

OUT, AC«4160-811-NP
OUT, AC-4160-B11-AP
OUT, AC-4160-B1MH-NP
OUT, AC<4160-BIH-AP

AC<4160-8B11-NP IN , LOSPW
IN AC«4160-81).ap
AC-4160-H1)-P5

AC-4160-B1]-Ap ‘ IN , LOSPW

IN COMP-mPyT.D
AC-4160-811-NP

AC-4160-BTH-NP IN , LOSPW
IN y AC«41B0-B1H-AP
AC-41BD«BTH-PS

AC-4160«B1H-AP IN , LOSPY
IN , COMPMPWT.D
AC-4160-B1H-NP

M5 -0
RPS <D

OHRS D
Fm.T1]

l
i 186
j 3
| 18
}
i
? 19
' 20

21

; 22

23

25
26

27

29

30
n

SET NAME

ADHRS-D

DHRS-D

55RS5-0
AFWS-L0-IHR

TI=-RT

OI-RC

IHR-NHRS

AFO-IHR

AFO-PMD-HS

AFQ-PM-L

AFD-CS-PMS
AFQ-MD-P1A

AF0-mD-P1B

AFD-P1A-D

AFO=PIA-EPW

AFD-P1A-B
AFO«PTAAUX

L._=._..___-......_.-_ F— SN

TYPE

0G

ARG

DE
G

0G

DE

DE
0G

DE
AG

0E
0G

0c

0G

06

BE
06

RANK

RELATIONSHIPS

IN
IN ,
our,

IN ,
our,

ourt,

IN
our,
IN
IN ,
our,
ouT,

our,

our,

out,

IN
IN ,

ouT,

IN
our,

our,
IN

S5S5RS-D
AFWS-LO-IHR
DHRS-D .

ADHRS-D
T®S-D ;

ADHRS-D

AFD-IHR
ADHRS-D

0I-RC
IHR-NHRS
FM-TI

TI-RT

TI-RT

AFO-PMO-HS
AFD-PM-L
AFO-CS-PMS5
AFWS-LO-IHR

AFO-IHR

AFO-MD-P1A
AFO-MD-P18
AFD-IHR

AFO-THR

AFD-P1A-D
AFO-P1A-EPW
AFQ-PM.L

AFO-P1B-0D
AFO-P1B-EPW
AFO-PM-L

AFD-P1A-B
AFD-P1A-AUX
AFO-P1A-CSE
AFO-MD-P1A

AC-4160-81H
AFO-MD-P1A

AFO-P1A-D
AFO-P1A-COOL

32
33

34
35

36

37
38

39
40

41

42

43

44

45

SET NAME

AFO-P1A-CSG

AC-4160-B1H

AFO-P1A-COOL
AFO-P1B-0D

AFD-P1B8-EPW

AFO-P1B-B

AFO-P1B-AUX

AFC-P1B-CSE
AC-4160-B811]

AFO-P1B-CO00L

ECRS-D

ECIS-D

PAHRS =D

CSTA-IHR

TYPE

BE

06

DE
oG

0G

BE

06

BE
0cC

DE

AG

0G

UE

06

RANK

Cc-3

RELATIONSHIPS

ouT,
ourT,

IN ,
IN .
ourt,
DUT.
ouT,
cuT,

ouT,

ouT,

IN
our,

gurt,

IN ,
ourt,

our,

IN)
IN .
our,
ouT,
ourt,
out,

our,

IN
IN ,
out,

IN
ourt,

ouTt,

IN
IN
IN
IN
out

- . e e o=

AFO-P1A-D
AFO-P1A-D

EP-BS-1H-D
AC-4160-B1H-PS
AFO-P1A-EPW
SWA-PM-L
CHO-P1A-EPW
AC-480V-B4BOH-PS

AFO-PTA-AUX

AFO-P1B-B
AFD-P1B-AUX
AF0-P1B-CSEC
AFO-mD-P18B

AC-4160-B1]
AFO-MD-P18B

AF0-P1B-D

ARFO-P1B-COOL
AFO-P18-0D

AFO-P1B-D

EP-BS5-1J-D
AC-4160-B1J-PS
AFO0-P1B-EPW
SWB-PM-L
CHO-P1B-EPW
AC-4B0V-B4B0I-PS

AFO-P1B-ALX

CS51A-1HR
C518-1IHR
L-MSD

CHO-IHR
L-MSD

L-MSD

CST1A-PMD-HS
CSTA-HS
CSTA-PM-L
CSTA-HS-PMS
ECRS-D

46

47

48

49

50

51

52
53

54

55
SE

57

58
59

60

61

SET NAME

CS18-1IHR

CHO-IHR

CS1A-PMD-HS

CS1A-HS

CST1A-PM-L

CS1A-H5-PM5

CS1A-CX-SUMP-B
CS1A-PP-PMD-B

CS1A-MD-P1A

CS1A-PP-PMS-B
CS1A-P1A-D

CS1A-P1A-EPW

C51A-P1A-B
CS1A-P1A-CSG

AC-480V-B4BOH

CS1B8-PMD-HS

TYPE

03a

0G

oc

DE

oG

BE
BE
0G

0G

0G

BE
BE
0C

0G

RANK

RELATIONSHIPS

IN .
IN ,
IN
IN ,
out,

IN ,
IN
IN »
out,

IN ,
IN ,
ourt,
UUT »

IN ’
nuT,

IN ,
ouT,

OUT ’
ourt,
IN ,
IN ,
ouT,
ourt,
IN ,
IN ,
ourt,

IN ,
our,

ourt,
our,
IN ,
IN ’
our,
IN ,

IN ,
out,

B-PM-L
CS51B8-HS-PMS
ECRS-D

CHO-PMD-HS
CHO-CS-PMS
CHO-PM-L
ECIS-D

CST1A-Cx-SumpP-8
CS1A-PR-PMD-B
CS51A-1IHR
CS1A-IHR

CS1A-MD-P1A
CS1A-IHR

CS1A-PP-PMS-B
CS1A-IHR

CS1A-PMD-HS
CS1A-PMD-HS
CS1A-P1A-D
CS1A-P1A-EPW
CST1A-PM-L
CS1A-HS5-PMS
CS1A-P1A-B
CS1A-P1A-CSE
CS1A-MD-P1A

AC-480V-B4BOH
CS1A-MD-P1A

CS1A-P1A-D
CS1A-P1A-D
AC-480V-B4BOH-PS
ID-BS-480H-D
CS1A-P1A-EPW
CS1B-CX-SUmP -8B

CS18-PP-PMD-R
CS1B-IHR

[._“._.‘ﬁ._i_-,.—._—_ R R RRRRRRERRERRITNIR=

e e

62

63

64

65
66

67

68
69

70

7
72

73

74

75

76
77

78

SET NAME

C51B-HS

C518-PM-L

CS1B8-HS-PMS

CS1B-CX-SUMP-B
C518-PP-PMD-8

£S18-mMD-P18

CS18-PP-PMS-B
C518-P1B-D

CS18-P1B-EPW

£S18-P16-8
£S18-P1B-C56

AC-4B0OV-B4B80J

SWA-IHR

SWA-PMD-HS

SWA-CS5-PMS
SWA-PM-L

CHO-P1A-COOL

TYPE

DE

AG

06

BE
BE
0G

BE
GG

0G

BE
BE
06

0G

0G

DE
0G

AG

RANK

C-5

RELATIONSHTPS

ourt,

IN ,
our,

IN ,
our,

ourt,
our,
IN ,
IN ,
our,
IN

IN ,
ourt,

IN ,
UUT .

ouTt,

ourt,

CS1B-1IHR

C518-MmD-P1B
CS1B-IHR

CS1B-PP-PMS-B
CS1B-IHR

CS1B-PMD-HS

CS18-PMD-HS

Cs18-P18-D
CS1B-P1B-EPW
CS1B-PM-L

CS1B-H5-PMS

C518-P1B-8B
C518-P1B-CS0C
C518-MD-P18B

AC-4B0V-B4BOJ
C518-mD-P18B

C518-P1B-D
C518-P1B-D

AC-480V-B4B0J-PS
ID-BS-480J-D
C518-P1B-EPUW

SWA-PMD-HS
SWA-CS-PMS
SWA-PM-L
CHO-P1A-COOL
CHO-P1B-COOL

SWA-HX-0ILCO-B
SWA-PP-PMD-B
SWA-VV-PMD
SWA-THR

SWA-IHR
AC-4160-B1H
SWA-MD-P10A
SWA-IHR

SWA-IHR
SWB-IHR

79

80
81
82
83

84

85

86
87

88
89
80
91

82

93
94

95

SET NAME

CHO-P1B-COO0OL

SWA-HX-0ILCO-B
SWA-PP-PMD-B
SWA-VV-PMD
SWA-MD-P10A

SwB-IHR

SWB-PMD-HS

SwB-CS-PMS

SwB-PM-L

SWB-HX-0ILCO-B
SWB-PP-PMD-B
SwB-vv-PMD
SwB-mD-P108B

CHO-PMD-HS

CHO-CS-PMS

CHO-PM-L

CHO-HX-RVESS-B

TYPE

RG

BE

BE
BE
DE
0G

0G

Ot
0G

BE
BE
BE
DE
06

DE
AG

BE

RANK

C-6

RELATIONSHIPS

ourt,
IN ,
IN ,
OUT.
ouT,
ourt,
OUT »
ouT,

IN ,
IN .
IN ,
ourt,
ourt,

IN ,
IN ,
IN ,
ourt,
out,
IN ,
IN ,
our,
ouT,
ouT,
our,
ourt,
IN ,
IN ’
IN ,
our,
ourt,
IN ,
IN ,
our,

ouTt,

CHO-P1A-AUX
SWA-IHR
SwB-IHR
CHO-P1B-AUX

SWA-PMD-HS

SWA-PMD-HS
SWA-PMD-HS

SWA-PM-L

SWB-PMD-HS
SwB-CS-PMS
SWb-PM-L
CHO-P1A-COOL
CHO-P1B-COOL

SwB-HX-0DILCO-B
SWB-PP-PMD-B
SwB-Vv-PMD
SwWB-IHR

SWB-IHR
AC-4160-8B1)
SwB-mD-P108
SWB-THR
SWB-PMD-HS
SWB-PMD-HS
SWB-PMD-HS
SWB-PM-L
CHO-HX-<RVESS-B
CHO=VV-PMD
CHO-PP-PMD-B
CHO-IHR

CHO=-IHR
CHO-MD-P1A
CHO-MD-P18B
CHO-IHR

CHO-PMD-HS

T T i . T I T T e T —

SET NAME TYPE RANK RELATIONSHIPS

96 CHO-vV-PMD 0c 4 IN , CHO-MVU1286ABCOC
. IN , CHO-MmV1B67ABCC
IN , CHO-MV1867B0CC

ouT, CHO-PMD-HS

97 CHO-PP-PMD-B BE 1 OuT, CHO-PMD-HS

98 CHO-MD-P1A oG 3 IN y CHO=P1A-D
IN , CHO-P1A-EPW
ouTt, CHO-PM-L

89 CHO-MD-P1B oG 3 IN , CHO-P1B-D
IN , CHO-P1B-EPUW

0uT, CHO-PM-L

100 CHO-Mv12B86ABCOC BE 1 ouT, CHO-VV=-PMD
101 CHO-MV1867ABCC BE 1 OuT, CHO-VV-PMD
102 CH0-Mmyv186780CC BE 1 ouT, CHO-VV-PMD
103 CHO-P1A-D 06 4 IN , CHO-P1A-B

IN , CHO-P1A-AUX
IN , CHD-P1A-CSG
OuT, CHO-MD-P1A

104 CHO-P1A-EPW 0G 2 IN , AC-4160-B1H
OuT, CHO-MD-P1A
105 CHO-P1A-B BE 1 ouT, CHO-P1A-D
106 CHO-P1A-AUX 0G 2 IN , CHO-P1A-COOL
OuT, CHO-P1A-D
107 CHO-P1A-CSG 8E 1 out, CHO-P1A-D
108 CHO-P1B-D 06 4 IN , CHD-P1B-B

IN , CHO-P1B-AUX
IN , CHO-P1B-CSG
OuT, CHO-MD-P18B

109 CHO-P1B-EPW 06 2 IN , AC-4160-81]
ouT, CHO-MD-P1B
: 10 CHO-P1B-B BE 1 out, CHO-P18-D
m CHO-P1B-AUX 06 2 IN , CHD-P18-COOL
. ouT, CHO-P1B-D
112 CHO-P1B-CS6 BE 1 OuT, CHO-P1B-D
113 EP-B5-1J-0 8t 1 ouT, AC-4160-811

115

116

™7

118

122

123

124

125

126
127
128
129
130

SET NAME

AC-4160-B1J-PS

AC-480V-B4B0OJ-PS

AC-4160-B1J-S8B

c8-C1J-0
DG-ND3-L

COMP-MPWT-D

EP-B5-1H-D
AC-4160-B1H-PS

AC-480V-B4BOK-PS

AC-4160-B1H-58B

CB-C1H-0
DG-NOT-L

DG-ND3-CSC
DG-NO3-B
DG-NO3-AUX
DG-NO1-CSC
DG«NO1-B

TYPE

AG

oG

0c

BE
06

UE

BE

0G

0G

8E
0c

DE
BE
DE
DE
BE

RANK

c-8

RELATIONSHIPS

IN , AC-4160-B1]-NP
IN , AC-4160-81J-58
OUT, AC-4160-B1]

IN , AC-4160-B17J
IN , ID-TR-SS5XFM1J-D
0uT, AC-480V-B4BO)

IN , CB-C1J-0

IN , DG-ND3-L

QuT, AC-4160-81J-PS
ouT, AC-4160-813-58
IN , DG-ND3-CSG

IN , DG-NO3-B

IN , DG-NO3-AUX
ouT, AC-4160-B1J-58

OUT, AC-4160-B1J-AP
QUT, AC-4160-B1H-AP

ouT, AC-4160-B1H

IN , AC«4160-B1H-NP
IN , AC-4160-B1H-58
OuT, AC-4160-B1H

IN , AC-4160-B1H

IN , ID-TR-SSXFM1H-D
OUT, AC-4B0V-B4BOH
IN , CB-CT1H-0

IN , DG-NOT-L

OuT, AC-4160-B1H-PS
OuT, AC-4160-B1H-58
IN , DG-ND1-CSEC

IN , DG-NOT1-B

IN ’ DG‘~01 OAUX
OuUT, AC-4160-B1H-58
ouT, OG-ND3-L

OuT, DG-NO3-L

ouT, DG-NO3-L

QUT, DG-NOT-L

OuT, DG-ND1-L

13
132
133

134

135

SET NAME

DC-~NOT<AUX
I10-B5-480KH-D
ID-TR-SSXFM1H-D
[D-B5-480J-0

[D-TR-S55XFM11-D

TYPE

)3

BE

BE

BE

BE

RANK

c-9

RELATIONSHIPS

OuT, DG-ND1-L

OuUT, AC-4B0OV-B4bOH
OUT, AC-4B0OV-B4BOH-PS
OuT, AC-4B0V-B48B0OJ

ouT, AC-480V-B4B0J-PS

® % % % BLOCK SET EQUATIONS » * »
(SABOTAGE -F T)

TOP = FM-TI + FM-ILOCA

FM-TI = TMS-D * TI-RT

FM-ILOCA = LI-MSD

LI-MSD = L-MSD * LI

L-M50 = ECRS-<D + ECIS-D + PAHRS-D

AC-4160-B1J-NP LOSPwW * AC-4160-B1J-AP

AC-4160-B1J-AP LOSPW + COMP-MPWT-D

AC-4160-B1H-NP LOSPW ®* AC-4160-B1H-AP

AC-4160-B1H-AP LOSPW + COMP-MPWT-D

TM5<D = RPS-D + DHRS-D

ADHRS5-D = SSRS5-D + AFWS-LO-IHR

ODHRS-D = ADHRS-D

AFWS-LO-IHR = AFO-IHR

TI-RT = 0I-RC + IHR-NHRS

AFD-IHR = AFO-PMD<HS + AFQ-PM-L + AFO-CS-PMS

AFO<PM<L = AFD-MD-P1A * AFQ-MD-P18

AFO«MD-P1A = AFD-P1A-D + AFO-PT1A-EPW

AFO-MD-P18 = AFQ-P18-D + AFD-P1B-EPW

AF0-P1A-D = AFO-P1A-B + AFO-PY1A-AUX + AFO-P1A-CSC

AFOD-P1A-EPUY AC-4160-B1H

"

AFO-PTA-AUX AFO-P1A-COOL

"

AC-4160-8B1H

"

EP-B5-1H-D + AC-4160-B1H-PS

AFD-P1B-D = AFD-P1B-B + AFO-P1B-AUX + AF0-P1B-CSE

AF0-P1B-EPW = AC-4160-B11

AFO0-P1B-AUX = AFO-P1B-COO0L

AC-4160-B1] = EP-BS-1J-D + AC-4160-B1J-P5

ECRS-D = CSTA-IHR ®* CS518-1IHR

ECIS-D = CHO-THR

CSTA-THR = CS1A-PMD-HS + CST1A-HS + CS1A-PM-L +

CST1A-HS-PMS

C518-IHR = CS1B-PMD-HS + CS1B=-HS + CS18-PM-L +

CS1B-HS-PMS

CHO-IHR = CHO-PMD-HS + CHO=CS<PMS + CHO-PM-L

CS1A-PMD-HS = CST1A-LX-SUMP-B + CS1A-PP-PMD-B

CS1A<PM-L = CS1A-MD-P1A

CS1A-HS-PMS = CS1A-PP-PMS5-B

CS1A<MD-P1A = CS1A-P1A-D + CSI1A-PIA-EPW

c-11

C51A<P1A-D = CS1A-P1A-B + CS1A-P1A-CSC

CS1A-P1A-EPW = AC-480V-B4BOH

AC-48B0V-B4BOH = AC-4B0V-B4BOW-PS + 1D-85-4B0H-D

C518-PMD-HS = CS1B-CX-SUMP-B + CS1B-PP-PMD-B

CS1B8-PM-L = CS18-MD-P18B

C518-HS-PMS = CS518-PP-PMS-B

C516-MD-P1B = CS518-P18-0 + C518-P18-EPUW

C518-P1B-D = CS1B-P1B-B + CS18-P18-CSG

CS518-P1B-EPW = AC-480V-B4B80J

AC-4B0V-B4B0] = AC-4BOV-B4B0J-PS + ID-BS-4807-0

SWA-THR = SWA<PMD-HS + SWA-CS-PMS + SWA-PM-L

SWA-PMD-HS = SWA-HX-OILCO-B + SWA-PP-PMD-B + SWA-vV-PMD

SWA-PM-L = AC-4160-B1H + SWA-MD-P10A

CHO-P1A-CO0L = SWA-IHR * SWB-IHR

CHO-P1B-CO0L = SWA-IHR * SWB-IHR

SWB-IHR = SWB-PMD-HS + SWB-CS-PMS + Swe-PM-L

SWB-PMD-HS = SWB-HX-0ILCO-B + SWB-PP-PMD-B + SWB-VV-PMD

SWB-PM-L = AC-4160-B1J + SWB-MD-P108

CHO-PMD-HS = CHO-HX-RVESS-B + CHO-VV-PMD + CHO-PP.PMD-B

C-12

CHO-FM-L = CHO-MD-P1A * CHD-MD-P18B

CHO-VV-PMD = CHO-MV12B6ABCOC + CHO-MU1B867RBCC +
CHO-Mv186780CC

CHO-MD-P1A = CHO<P1A-D + CHO-P1A-EPY

CHO-MD-P18 = CHO-P1B-D + CHO-P1B-EPW

CHO-P1AR<D = CHO-P1A-B + CHO-P1A-AUX + CHO-PYA-CSE
CHO-P1A-EPW = AC-4160-B1H

CHO-P1A-AUX = CHO-P1A-COOL

CHO-P18B-D = CHO-P1B-B + CHO-P1B-AUX + CHO-P1B-CSG
CHO-P1B-EPW = AC-4160-B1)

CHO-P1B-AUX = CHO-P1B-COOL

AC<4160-B1J-P5 = AC-4160-B1J-NF » AC-4160-817-58
AC-4B0V-B4BOT-PS = AC-4160-B1J + [D-TR-SSXFM1J-D
AC~4160<817-58 = CB<C1J-0 + DG-NO3-L

DG-NOJ«L = DG<NO3-CSG + DG-NO3-B + DG-ND3-AUX
AC-4160-B1H-PS = AC-4160-B1H-NP » AC-4160-B1H-58B
AC-480V-B4BOH-PS = AC-0160-51H ¢ [D-TR-SSXFMIH-D
AC«4160-B1H-5B = CB-CI1H-0 + DG-NO1T-L

0G-NO1-L = DG<«NO1-CS5C + DG-NO1-B + DG<NO1-AUX

W% on o BLOCK SET EQUATIONS » » = »
(AREA-EQUATIONS

IHR. NHRS = SFGRDB

RPS-D = SFSROA

0I-RC = SFGRCB

SSAS<D = MCCIICV « MCCIMCY

AFQ«PMD<HS = CR + MCCTJCV

AFO-CS-PMS = SFGRDA

AFO-P1A-B = MCCIHCVY

AFO-P1A-CSC = MCCTIMCVY

AFO-P1A-COOL = DGRM2

AFO-P18-8 = MCCY1JICVY

AFD-P1B8-CSC = MCCYICV

AFO-P18-CO0L = DGRMY + ESGRM

EP-BS<1]«D = ESGRM

C8-C1J-0 = ESGRM

EP-B5<1H-D « ESGRM

CB-CYH-0 » ESCRM

0G-NO3-8 = OGRM2

DC«NO1<B = DGRAMI

)

10-85-480H-D = WSGRM

ID-TR-SSXFMIM-D = 2AB

10-85-4803-0 = ESCGRM

ID-TR-SSXFM1J-D = 3EQUIPRM

AFWS-LO-IHR = CR + MCCIHCYV * MCC1ICV + SFGRDA
CSTA-PP-PMD-B = 3EQUIPRM

CSTA-Cx-5uUmP-B = CR

CS1A-PP.PM5.B = CR + 2AB

CS1A-P1A-B = PMPHSE

CS1APIA-CSE = CR

CS18<PP-PMD-B = CR

CS18-CX-5UMP-B = PMPHSE

C518-PP-PM5.8 = CR + 2AB * 2R8

C518-P18-8 = CR

CS18-P18-CSC = CR

SWA-HX-0ILCO-8 = TESMTYYPT

SUAPP<PMD-B = JEQUIPRM + ESGRM * WSGRAM + 248
SUAVV-PMD » 3SEQUIPAM + 248

SWB-MX-0ILCO=B » CHPMCUB

C=15%

S

SWB-PP-PMD-B - 3EQUIPRM - ESGRM # WYSGRM + 2AB

SWB-YV-PMD = 3EQUIPSM 4+ 2AB

CHO-HX-RVES5-B = CR

CHO-PP-PMD-B = CHPM-UB + 2AE

CHO-MV1286RBCOC = CR + MCCYHCV ® MCCT1JICV + CHPMCUB

CHO-mv1867ABCC CR + MCC1HCV * MCC1JCV + 2AB

CHO-MVi86780CC CR + MCC1JCY * MCLCIHCV + 2AB

i

CHO-P1A-B = CHPMCUB

CHO-P1A-C5GC = CHPMCUB

CHC-P1B-B = ESGRM

CHCO-P1B-CSC = CHPMCUB

LI = CHOMCUB + 2A8 + ESGRM + CR + R

CS1A-HS SFGRDA « MLC1HCVY

CS18-HS

SFGRDA + MCC1ICV + WSGRM

SWA-CS-PMS = TBSMTUVRT

SWB-CS-PMS = TBSMTYVPT

SWA-MD-P10A = CR + 3EQUIPRM

SWB-MD-P105 = CR + 3EQUIPRM

CHO-CS-PMS = RWST + 2RWST + CR + ZAR + CHPMCUB

c-16

OG-NO3-AUX

DG-NO1-AUX

DG-ND3-CSG

DG-NO1-CSG

i

"

DGRM2

DGRM

CR + RLYRM + DGRM1

CR + RLYRM + DGREM

* DGRM2

* DGRM2

C=17

Distribution:

US NRC Distiibution Contractor (CDSI)
7300 Pearl Street

Bethesda, MD 20014

230 copies for RS

US Nuclear Regqgulatory Commission
Office of Nuclear Regulatory Research
Washington, DC 20555
Attn: W. C. Floyd/DFQ (5)

J. A. Murphy/DRA

D. M. Rasmuson/DRA

US Nuclear Regulatory Commission
Office of Nuclear Material Safety and Safegquards
Washington, DC 20555
Attn: R. F. Burnett/SG (2)
G. W. McCorkle/SG

US Nuclear Regulatory Commission
Office of Nuclear Reactor Regulation
Washington, DC 20555

Attn: R. J. Matteon/DS1i

Science Applications, Inc.
P. O. Box 2351

La Jolla, CA 92038

Attn: P. Lobner (10)

International Energy Associates, Ltd.
1126 Santa Ana SE

Albuquerque, NM 87123

Attn: G. B. Varnado

Science and Engineering Associates
2500 Louisiana Boulevard NE

Suite 610

Albuquerque, NM 87110

Attn: J. L. Darby

University of California

School of Engineering and Applied Sciences
5532 Boelter Hall

Los Angeles, CA 90024

Attn: David Okrent

Energy Incorporated

1851 South Central Place
Suite 201

Kent, WA 98031

Attn: Jon Young

Dist-1

Distribution (Cont.)

GA Technologies

P. O. Box 81608

San Diego, CA 92138
Attn: M. G. Stamatelatos

Los Alamos National Laboratory
Mail Stop: G777

Los Alamos, NM 87545

Attn: R. Haarman

3141-1 C. M. Ostrander (5)
3151 W. L. Garner
6400 A. W. Snyder
6410 J. W. Hickman
6411 D. M. Kunsman
6412 F. T. Harper
6412 S. W. Hatch
6412 G. J. Kolb

6412 A. C. Payne, Jr.
6412 D. W. Stack (16)
6412 T. A. Wheeler
6412 D. W. Whitehead
6414 D. M. Ericson
6414 W. R. Cramond
6414 S. L. Daniel
6414 D. R. Gallup
6414 G. A. Sanders
6415 D. C. Aldrich
6417 D. D. Carlson
6430 N R. Ortiz

6432 L. D. Chapman
6432 R. B. Worrell
6447 W. T. Wheelis
8424 M. A. Pound

Dist-2

s

NRC rorm 335

e

US NUCLEAR REGULATORY COMMISSION
BIBLIOGRAPHIC DATA SHEET

1 REPORT NUMLER fAssigneo by DOC)
NUREG/CR#F3134
SAND83~-§074

TITLE AND SUB LE (Ao0 Voiume No. f apprapriate)

A SETS USE

MANUAL FOR VITAL AREA ANALYSIS

2 lLeave Diank I’

¥ 4

3 necm-ys ACCESSION NO

7. AUTHORIS)
Desmond W. Sta

5 DATE/REPORT COMPLE TED

MO - YEaAR
rch

9 PERFORMING ORGANIZATION

Sandia National La

Albuquerque, New Me o 87185

1984

ME AND MAILING ADDRESS linciude 2:p Code) JATE REPORT 1SSUED
ONTH YEAR
atories March 1984

6 (Leave piank)

B iLeave Diank)

12 SPONSORING ORGANIZATION NAMS AND

Division of Facility Ope
Office of Nuclear Requlat
U.S. Nuclear Regulatory Co
Washington, DC 20555

ission

ILING ADDRESS iInciude Z:p Coage)

Research

10 PROJECT TASK WORK LNITNO

11 FINNO

NRC FIN No. Al338

13 TYPE OF REPORT

Technical Report

T RIOD COVERED fInclusive gates

15 SUPPLEMENTARY NOTES

14 (Leave Digna

16. ABSTRACLT (20u woros or less/

This manual describes the
System (SETS) for vital area anglys
sented for using SETS to sclvejfvi
Depending on the input to SET
analysis fault tree can be i
events of the vital area an
presented are also suitabl
common cause analysis.

and efficie

f the Set Equation Transformation
Various techniques are pre-

rea analysis fault trees.

ution to the vital area

vital areas or primary

tree. The techniques

for other kinds of

17 KEY WORDS AND DOCUMENT ANALYS!

Fault Trees

Minimal Cut Set Equ
Common Cause Analysjis
Variable Transformations

/

i7a DESCRIPTORS

170 IDENTIFIERS OPEN-ENDED TERMS

18 AVAILABILITY STATEMENT 19 SECURITY CLA'SS "Th-q report) 21 NO OF PAGES
Unclassified
2 3 20 SECURITY CLASS (This page 22 PRICE
Unlimited Unclasuified s

NRC FORM 335 1181

120555078877 1 LANLIRS

US NRC

ADM-01V OF TIDC

POLICY & PUB MG AR-PDR NUREG
DC 20555

w-501
WA SHINGTON

