
A

--
.

_

NUREG/CR-3134
SAND 83-OO74
RS
Printed April 1984

.
.

s i

.

A SETS User's Manual for
Vital Area Analysis

,

.,

Desmond W. Stack, Mildred S. Hill
3

Prepared by
Sandia National Laboratones

i Albuquerque, New Mexco 87185 and Luerrnore, Cakforne 94550
for the United States Department of Energy
under Contract DE-AC04-760P00789

/

.

.,

.

:'

!

~

-
~,

,

.

e- |

"a

8407170560 840630
PDR NUREG
CR-3134 R PDR

Prepared for

U. S.: NUCLEAR REGULATORY COMMISSION |

SF 29000(8-81)

. . - - _ -. . . - . . . - . . - . . _ - - - . .-. -..-. - .-... ,.- .- -

- -

~ ~'
-

'

.

"OTICE
This report was prepared as an account of work spor.sored by an,

'
agency of the United States Government. Neither the United
States Government nor any agency thereof, or any of their em-
ployees, makes any warranty, expressed or imp'ied, or assumes
any legal liability or responsibility for any third party's use, or the
results of such uw, of any information, apparatus product or
process disclosed in this report, or represents that its use by such
third party would not infringe privately owned rights.

4

Available from
GPO Sales Program
Division of Technical Information and Document Control
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555
and

National Technical Information Service
Springfield, Virginia 22161

I

.

'

: e

. ,

(

ABSTRACT

This manual describes the use of the Set Equation Transforma-
*

tion System (SETS) for vital area analysis. Various techniques
are presented for using SETS to solve. vital area analysis fault
trees. Depending on the input to SETS, the solution to the vital.

area analysis fault tree can be in terms of vital areas or primary
events-of the vital area analysis fault tree. The techniques
presented are also suitable and efficient for other kinds of
common cause analysis.

,

I

i
:

i
j

.

i

!

:

i
.

i

|
I

; ..

l

L
*

|

|

iii/iv

- ._ _

- .

Contents

Page
.

1.0 Introduction .. 1

*
2.0 The SETS Program .. 2

2.1 Introduction 2

2.2 Fault Tree Input 2...................................

2.2.1 Example Fault Tree Input 4....................

2.2.2 Event Names 5.................................

2.2.3 Primary Event Definitions 5

2.3 Intermediate (Gate) Event Definitions 6..............

3.0 SETS User Program 8

3.1 A Minimal Cut Set Algorithm 8

3.2 Understanding SETS User Programs 9...................

3.2.1 Boolean Equations 10
3.2.2 Procedure Calls 10.............................
3.2.3 The Block File 12..............................
3.2.4 The Equation File<..................... 12

3.3 Example SETS User Programs 14.........................

3.3.1 Example 1. Minimal Cut Sets for the
Top Event of the Figure 1 Fault Tree 14

3.3.2 Example 2. Minimal Cut Sets for the
Top Event and Intermediate Events of
a Fault Tree 16

4.0 SETS Input for Vital Area Analysis 20......................

4.1 The Sabotage Fault Tree 20............................

4.2 The Area Equations 20

4.3 SETS Input Example 21

4.3.1 The Fault Tree Input 21........................
4.3.2 The Area Equations 27.
4.3.3 The OMEGA Block 29.............................

5.0 The SETS User Program for Solving the Sabotage-

Fault Tree .. 30

5.1 Replicated Subtrees 30

y

u
._ -

Contents

Page
.

5.2 AND Gates Above the Replicated Subtrees 31............

5.3 Solving the Top Gate 31 -...............................

5.4 SETS Program for Solving the Example Sabotage
Fault Tree in Terms of Areas 32.......................

5.4.1 The BLKSTAT and LDBLK Statements 33............

5.4.2 Solving the Replicated Subtrees 33.............

5.4.3 Solving the AND Gates Above the
Replicated Subtrees 34.........................

5.4.4 Solving the Top Gate 34
5.4.5 Output of the SETS Program 34

5.5 Potential Problems Encountered with the SETS
Program .. 37

5.5.1 A Replicated Subtree is too Large to
Solve with a Single SUBINEQN and
REDUCEQN Procedure 37..........................

5.5.2 An AND Gate with More than Two Inputs 37.......

5.5.3 Using the FRMBLK Procedure in Large
SETS User Programs 38..........................

6.0 The Comp!ement Equation 41.........

6.1 Determining the Complement Equation Using SETS 41.....

6.2 An Example of Using SETS to Find the Complement
Eq u a t i o n . 41

.

6.3 A Potential Problem in Solving the Complement
Equation ... 43

7.0 Minimal Cut Sets of Sabotage Acts 44

7.1 The SETS User Program for Identifying Scenarios 44....

7.2 An Example of a SETS User Program for Identifying
the Scenarios of Type 1 Vital Areas 45................

7.2.1 The Scenario Equations 46
7.2.2 setting the Type 2 Vital Areas to / OMEGA 47....

7.2.3 The Equation File 48
,

: 7.2.4 Solving the Sabotage Fault Tree for
i Scenarios 48 .

| 7.2.5 The Solution Equation 49
1

!

vi

i
s . .

Contents

Page
.

7.3 Potential Problems in Determining the Scenarios 50....

7.3.1 Determining the Scenarios for a Single*

Type 1 Vital Area 57 <

7.3.2 Determining a Subset of Scenarios 61 {...........

7.3.3 Using Truncation when the STOP Option 1

is Being Used 62...............................

Appendix A. Procedures Available in SETS A-1

A.1 Read Block ... A-1

A.2 Read Fault Tree A-1

A.3 Print Equation A-2

A.4 Print Equation In Disjunctive Normal Form A-2

A.5 Delete Equation A-3

A.6 Substitute In Equation A-4

A.7 Reduce Equation A-5

A.8 Form Block ... A-7

A.9 Load Block ... A-8

A.10 Print Block .. A-9

A.ll Delete Block A-9 ,

A.12 Block Status A-10

Appendix B. Execution Diagnostics B-1

B.1 SETS Errors .. B-1

B.2 SETS User Program Errors B-2

B.2.1 Special Fault tree Error Messages B-3
B.2.2 Numbered Error Messages B-3

'

Appendix C. The Output of PRTBLK for the Example Sabotage
Fault Tree and its Area Equations C-1

.

'
vii

.. - _ ._ .,

-.

Figures

Figure 1. A Simple Fault Tree 2...............................

.

Figure 2. Fault Tree Symbols 3................................

Figure 3. Processing Schematic for Procedure Calls 11 -
..........

Figure 4. Another Simple Fault Tree 17

Figure 5. A Sabotage Fault Tree Inside.........................

Back
Cover

4

!
|
1

! .
!

.

!

.

viii

_ . _ _ . _ _ - ,_ _ _ _ _ - - . - _ _ . . _ _ _ _ _ _ _ _ _ .-

. . ._. _ _

l.0 INTRODUCTION

This manual describes how to construct SETS user programs to '

perform a vital area analysis. SETS is a very general, flexible-

tool for manipulating Boolean equations. This manual, however, is
designed specifically to describe the application of SETS to vital

-

area analysis.

The SETS program is used to achieve three of the major
objectives of a vital area analysis. These are:

To identify the areas and combinations of areas in a-

nuclear power plant in which at least one collection of
unauthorized acts can be accomplished which will lead to
the release of significant amounts of radioactive material.

- To determine minimal sets of areas, the protection of which
will interrupt all possible sequences of unauthorized acts
which can result in radioactive release.

'
- To identify minimal collections of unauthorized acts which

lead to radioactive release where all of the unauthorized
acts in a given collection can be accomplished in the same
area.

Chapters 2 and 3 contain an introduction to the SETS program.
This material is condensed from A SETS User's Manual for the Fault
Tree Analyst by R. B. Worrell and D. W. Stack, but does include-

,

all of the features of SETS necessary for vital area analysis.
Chapter 4 describes the SETS input required for vital area analy-'

sis. In Chapter 5, the construction of a SETS user program to
achieve the first objective is explained. In Chapter 6, the idea
of a complement equation is introduced to satisfy the second
objective. The third objective is treated in Chapter 7. Appendix
A gives a concise summary of the procedures available in SETS
which are used in a vital area analysis. Appendix B contains a
list and explanation of all of the error messages which can be
en. countered in a vital area analysis.

An example vital area analysis fault tree is provided in
Figure 7. This example is used in Chapters 4-7 to describe each
step of the vital area analysis in detail.

;

e

!
.

-1-

.. -

_ _ _ _ _ _ . _ - _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _

{

2.0 THE SETS PROGRAM

2.1 Introduction

The Set Equation Transformation System (SETS) is a general
.

tool for manipulating Boolean equations. The occurrence of the
top event or any intermediate event of a fault tree can be -

represented by a Boolean equation. When this equation is
transformed in a certain way, the fundamental ways that the top or
intermediate event can occur (i.e., the minimal cut sets) may be
read directly from the equation. Thus, SETS provides basic
capabilities for manipulating Boolean equations to determine the
minimal cut sets for the top event or any intermediate event of a
fault tree.

The input to SETS consists of two parts: the fault tree
description and the SETS user program. The input fault tree
description employed in SETS is free format, and prepared from the
graphical representation of a fault tree.

In addition to the input description of the fault tree, the
analyst must prepare a SETS user program. This program translates
the fault tree into a set of Boolean equations, and transforms
these equations in a way which allows the cut sets to be obtained.

I

2.2 Fault Tree Input

The generation of the SETS computer input description of a
fault tree usually proceeds from the familiar graphic representa-
tion of the tree such as the one shown in Figure 1.

6-

$$ 66
~

e68 e
i 666666

Figure 1. A Simple Fault Tree. *

'

Wa assume that the reader is familiar with the basic fault tree
terminology and symbols. The fault tree symbols used for sabotage
fault trees are shown for convenient reference in Figure 2.

.

|

-2-

L
_ _ _ _ . . _ _ _ _

GATE SYMBOLS

O
AND- Output fault occurs if all of the input faults occur

.

*

OR - Output fault occurs if at least one of the input
faults occurs

SPECIAL - Output fault occurs according to a logic
function defined by the user

PRIMARY EVENT SYMBOLS

BASIC EVENT - An initiating fault requiring no further
development

UNDEVELOPED EVENT - An event which is not further
developed either because it is of insufficient
consequence, or because information is unavailable

DEVELOPED EVENT - An event which could be further
developed, or is developed elsewhere, but is treated here
as a primary event

MISCELLANEOUS SYMBOLS

DESCRIPTION - Contains the description of an event

A TRANSFER IN - Indicates that the tree is developed
further at the occurrence of the corresponding TRANSFER
OUT (e.g., on another page)

.

4

| j[\- TRANSFEk OUT - Indicates that this portion of the tree-

must be attached at the corresponding TRANSFER IN

Figure 2. Fault Tree Symbols.

-3-

t

. . .

2.2.1 Example Fault Tree Input

A listing of the data cards which would be used to input the
fault tree shown in Figure 1 is as follows:

.

FAULT TREE $ FIG-1-FT.
COMMENTli INTERMEDIATE EVENT (GATE) DEFINITIONS.$

'OGli Gl. INS G2, G3.
AGli G2. INji G4, El. OUTli Gl .
AGli G3. INH G5, E2. OUTS Gl.
OGli G4. IN!i G6, E3. OUTli G2.
AGli G5. INli G7, G8. OUTli G3.
AGli G6. T Nii E4, E5. OUTli G4.
OGli G7. IN!i ES, E3. OUTli G5.
OGli G8. IN!i E2, El. OUTji G5.

COMMENTli PRIMARY EVENT DEFINITIONS.$
BEli El. OUT G2, G8.
BEli E2. OUT G3, G8.
BEli E3. OUT G4, G7.
BEli E4. OUT G6.
BEli E5. OUTh G6, G7.

The fault tree input is written in a free format language.
The representation of a fault tree which SETS can interpret is
simply the string of characters that has been read from punched
cards after all blank (space) characters have been purged from the
string. This means that the SETS user need not be concerned about
entering the input in certain columns or with certain spacing. As
long as the delimiters (i.e., dollar signs, periods, and commas)
cre correctly placed, the input will be properly interpreted by
SETS.

The first card in the fault tree input is the fault tree
h3ader which has the form:

FAULT TREE $ fault-tree-name.

where

" fault-tree-name" is an arbitrary name supplied by the analyst
consisting of from 1 to 16 name symbols.

The' delimiters "$" and ".' are required.

The second card is a comment card which has the form:

COMMENT $ descriptive material $
~

where

' descriptive material" is' supplied by the analyst. -

Comments can occur throughout the input, but they must follow a
* * delimiter. They do not contribute to the definition of the.

,

fault tree. The "$" delimiters are mandatory.

-4-

_ _ _

. .- - - ..

The rest of the cards are the intermediate and primary event
definitions. The event definitions can occur in any order, but
there must be exactly one definition for every event in the fault
tree.

.

2.2.2 Event Names
'

As part of the event definitions, each primary and
intermediate (gate) event must be assigned a name. Valid names

,

I

consist of from 1 to 16 name symbols, where the name symbols are
the capital letters A through Z, the digits 0 through 9 and the
minus sign (used to represent a hyphen in a name). For example,

CHl-SQB, G4, 113, 53-A-GRND4r

are all legitimate names, and, in fact, any ordering of from 1 to
16 name symbols is a name. Any name can be used as an event name
in a fault tree with the exception of the name OMEGA which has

j special meaning.
,

2.2.3 Primary Event Definitions

] The primary events of a fault tree are those events which, for
one reason or another, have not been further developed. All
primary events are treated identically during processing by SETS.
The primary event definition for a basic event has the form:

BE$ basic-event-name. OUT$ output-event-list,

where
i

"BE" identifies the primary event as a basic event

" basic-event- ame" is the name of the basic event supplied by
the analyst

i

" output-event-list" is the list of gates to which the basic
event has an output.

The other types of primary events have similar event definitions
! of the form:

UE$ undeveloped-event-name. OUT$ output-event-list.

DE$ developed-event-name. OUT$ output-event-list.

For example, the primary event definitions for the basic events E2
and E4 from the fault tree in Figure 1, are as follows:.

BE$ E2. OUT$ G3, G8.
.

BE$ E4. OUT$ G6.

-5-

|

__.

I.

,

_

2.3 Intermediate (Gate) Event Definitions

| The intermediate events of a fault tree are defined as logical
combinations of other intermediate or primary events in the fault

; tree. Figure 2 describes some of the types of gates which are .
'

valid for use with SETS. They are:

1. The AND Gate. -

>

2. The OR Gate.

3. The SPECIAL Gate.

The "SPECIAL" gate is different from the other gates because
its logic function is defined by the user in the form of a Boolean
expression. The SPECIAL gate makes it easy for the SETS user to

. describe, directly, such logic functions as the m-out-of-n gate
) instead of having to express it in terms of several AND and OR

gates.

The intermediate event definition for an AND gate has the form:

AG$ and-gate-name. IN$ input-event-list. OUT$
output-event-list.

where

"AG" identifies the intermediate event as an AND gate

"and-gate-name" is the name of the AND gate supplied by the
analyst

" input-event-list" is a list of gates and primary events which
are inputs to the AND gate

" output-event-list" is a list of gates to which the AND gate
has an output.

The top event of the tree has no output event list. The OR gate
has a similar event definition of the form:

OG$ or-gate-name. IN$ input-event-list. OUT$
output-event-list.

,

| For example, the intermediate event definitions for the OR gate G1
and the AND gate G2 from the fault tree in Figure 1 are as follows:

OG$ Gl. IN$ G2, G3.
AG$ G2. IN$ G4, El. OUTS Gl. ~

'

| The intermediate event definition for the SPECIAL gate has a .
i slightly different form:

.

-6-

-. - -. - . -

SG$ special-gate-name = logic-function. IN$ input-event-list.

OUT$ output-event-list.

where-

" logic-function" is any properly formed Boolean expression.,

The Boolean operations of conjunction (AND), disjunction (OR) , and
negation (NOT) that appear in the expression are represented by
the symbols *, +, and /, respectively. The event names that
appear in the Boolean expression must be the event names that
appear in the input event list. Conversely, every event name in
the input event list must appear in the Boolean expression. For
example, the intermediate event definition for a SPECIAL gate
which specifies that the output event, T, occurs when at least two
of the three input events occur, can be represented in the
following way:

T
I

I

I I 5

A B C

SGS T = A*B + B*C + A*C.
IN$ A, B, C.
OUTS ,

.

O

-7-

A

3.0 SETS USER PROGRAM

As mentioned earlier, a fault tree may be represented by a
collection of interrelated Boolean equations, one for each -

intermediate event. These equations can be processed by SETS to
datermine the minimal cut sets for any intermediate event in the
fcult tree. The fault tree analyst must direct this processing by -

writing a SETS user program, which is then read, interpreted, and
executed by SETS. The SETS user programs will vary depending on
euch factors as the size and logical structure of the fault tree
cnd the intermediate event for which the minimal cut sets are to
ba obtained. It is the ability to direct the processing which
gives the SETS system its great generality and flexibility.

The names that occur in SETS user programs are constructed
according to the same rules that were described for fault tree
event names (Section 2.2.2).

3.1 A Minimal Cut Set Algorithm

A fault tree can be represented by a collection of
interrelated Boolean equations, one for each intermediate event.
These equations can be transformed to determine the minimal cut
sets for any intermediate event in the fault tree. Three steps
are necessary to find the minimal cut sets for a particular
intermediate event:

Generate all of the intermediate event equations defined by
the fault tree.

Generate an equation for the selected intermediate event as a
function of only primary events by a repeated substitution
process using the intermediate event equations generated in
Step 1.

Reduce the equation resulting from Step 2 by applying the
Boolean absorption identities P*P = P and P + P*Q = P.

The resulting equation, when printed in disjunctive normal (sum of
products) form, is tantamount to a listing of the minimal cut sets
since each Boolean product (AND) of primary events represents a
minimal cut set.

Suppose that we want to use this minimal cut set algorithm to
datermine the minimal cut sets for the top event of the fault tree
in Figure 1.

.

Step 1 -- Generate the intermediate event equations for the
fcult tree. To do this, simply write each intermediate gate event
en a function of its input events: .

.

-8-

.

Gl'= G2 + G3

G2 = G4 * El

G3 = G5 * E2-

G4 = G6 + E3
,

G5 = G7 * G8

G6 = E4 * E5

'
G7 = E5 + E3

!

G8 = E2 + El

Step 2 -- Generate an equation.for G1 that is a function of
only primary events. To do this, systematically eliminate each
intermediate event on the right side of the equation for G1 by
repeated substitution (i.e., replace each intermediate event by
-the right side of its equation from Step 1) until G1 is expressed
entirely in terms.of primary events.

G1 = G2 + G3

G1 = (G4 * El) + (G5 * E2)

G1 = ((G6 + E3) * El) + ((G7 * G8) *E2)

G1 = (((E4 *E5) + E3) * El) + (((E5 + E3) * (E2 + El)) * E2).
i

Step 3 -- Apply.the identities P*P = P and P + P*Q = P to the
equation generated in Step 2. The application of the identities
can be easily seen by looking at a disjunctive normal form of the
equation:

G1 = E4*E5*El +-E3*El + E5*E2*E2 + E5*El*E2 + E3*E2*E2 + E3*El*E2.

The identity P*P = P, when applied to the 3rd and 5th terms of the
equation will reduce them to E5*E2 and E3*E2, respectively. The-
4th and 6th terms of the equation eliminated by the identity
P + P*Q = P yielding the minimal cut sets for the top event of the
fault tree:

G1 = E4*E5*El + E3*El + E5*E2 + E3*E2.1

3.2 Understanding SETS User Programs
.

i -The minimal cut set. algorithm described in the previous
| section is implemented for the fault tree in Figure 1 by the
(- following very simple SETS user program:
!

-9-,

:-
I

l'
._ _ _ . . _ _ _. _ . . __

. - -

PROGRAM $ EX1-MCS,

RDFT (FIG-1-FT).
jLDBLK (FIG-1-FT) .

SUBINEQN (G1, Gl-SUB) .
REDUCEQN (Gl-SUB, Gl-MCS). -

PRTEQNDNF (Gl-MCS) .

A SETS user program begins with a program header of the form: '

PROGRAM $ program-name.

where

" program-name" is any name comprised of from 1 to 16 name
symbols.

Following the program header are the program statements which are
executed in the order that they occur. The first two statements
in the program above, the RDFT and LDBLK statements, read and
error check the fault tree input description and load its
equivalent set of Boolean equations into the equation file. The
third statement performs the substitution process which generates
an equation for the top event G1 completely in terms of primary
events. The last two statements perform the reduction process and
print the final result in disjunctive normal form which is
tantamount to a listing of the minimal cut sets.'

Two kinds of statements can appear in a SETS user program:
Boolean equations and procedure calls.

3.2.1 Boolean Equations

A Boolean equation defines an equivalence relationship between
a Boolean variable on the left side of the equation and a Boolean
expression on the right side of the equation. The Boolean
variable on the left side of the equation is represented by a
variable name comprised of 1 to 16 name symbols. The Boolean
expression on the right can be a logical combination of variables
involving the operations of conjunction (AND), disjunction (OR),
and negation (NOT). A Boolean equation can be identified and
referred to by its left side variable; "the equation for X" means
the equation that has X an its left side variable.

3.2.2 Procedure Calls
!

| A procedure call statement causes a predefined procedure to be
'

executed. The following list summarizes the available procedure
enlls:

.

.

9

-10-

.

_ _ _ - _ - _ _ _ _ _ _

Procedures that JRead Block RDBLK
process input } Read Fault Tree RDFT

rPrint Equation PRTEON
Print Equation PRTEQNDNF

Procedures that-

|
In Disjunctiveg

reference
< Nornal Form

equations Delete Equation DLTEQN'

individually Substitute In SUBINEQN
Procedures that i Equation
process Boolean $ (Reduce Equation REDUCEQN
equations Procedures that ' Print Block PRTBLK

reference Block Status BLKSTAT|

blocks of Delete Block DLTBLK
\ equations Form Block FRMBLK :

k Load Block LDBLK
|
t

From the above list, it can be seen that procedure calls
i

process input, individual equations, or blocks of equations. To '

understand how the procedures are used, it is first necessary to
understand how the block file and the equation file are used. Theinvolvement of the bloch file and the equation file in the
execution of the various procedures is depicted schematically in
Figure 3. One or both of these files will be involved in the i

execution of every statement of a SETS user program, and the
contents of the equation file and block file will vary as the
execution of the SETS user program progresses.

'
,

CARD
INPUT

SUDINrQN
RDPP LDBLK |m s ,r , ,

BLOCK EQUATYCN
RDINPBLK FILE

-
'

,- FR' ELK , FII.E REnterCN |,

-
I

' -

,
,

,
,

P RTB LK
_ P krEcar #

.
_

DLTBLK "c._ JTJNu ,,

BLFSTAT. / f PPPEONDNP
,

,

&% ,[~ '' ', s

PRI!ffER -

OLTTPUr.

' *- f '

. -
.

/. ,'

Figure 3. Processing Schematic for Procedute dalls.

-
- -11- >

't ..-_

3.2.3 The Block File

The block file is used to store groups of Boolean equations or
blocks. As discussed earlier, a fault tree can be transformed
into a set of Boolean equations, and is therefore a type of block. -

Ecch block is identified by a block name for easy reference. From
Figure 3 it can be seen that SETS input is always entered in the '

block file using either the Road Fault Tree (RDFT) or Road Block
(RDBLK) procedure. Once a block has been entered in the block
file, the Load Block (LDBLK) procedure may be used to load its
cquations into the equation file for processing. In the case of a
block that represents a fault tree, loading the block is usually
cimed at determining the minimal cut sets. As shown in Figure 3,
the other procedures which involve the block file are:

Delete Block (DLTBLK)
Print Block (PRTBLK)
Block Status (BLKSTAT)
Form Block (FRMBLK)

D21ete Block deletes a block from the bicck file; Print Block
prints the Boolean equations that constitute a block (additional
information is printed for fault tree blocks); and Block Status
lists the names of the blocks currently contained on the block
file. Form Block is used to create a new block made up of
equations from the equation file and to add that block to the
block file. Using Form Block, it is thus poisible to save in the
block file equations that are created during the execution of one
SETS user program for subsequent use in the same program, or for
uee in some other SETS user program at a later time.

3.2.4 The Equation File

In order to process the individual equations of a block, the
block must be loaded into the equation file using the Load block
procedure call. In addition, equations may be entered in the
cquation file one at a time by using Boolean equation statements
in a SETS user program. Figure 3 shows the procedures which
reference the equation file. They are:

Print Equation (PRTEQN)
Print Equation In Disjunctive Normal Form (PRTEQNDNF)
Delete Equation (DLTEQN)
Substitute In Equation (SUBINEQN)
Reduce Equation (REDUCEQN)

Print Equation prints an equation in factored form; Print Equation
In Disjunctive Normal Form prints an equation in sum of products .

form; and Delete Equation deletes an equation from the equation
file. Substitute In Equation and Reduce Equation perform steps 2
cnd 3, respectively, of the minimal cut set algorithm that was -

d; scribed in section 3.1. Specifically, Substitute In Equation
p:rforms repeated substitutions on an equation until the right
hcnd side of that equation consists entirely of primary events; ,

-12-

_

|

!

and Reduce Equation applies the Boolean absorption identities to
an equation. |

(
There is a fundamental difference in the way that the equation !file and the block file are maintained. There can never be more.

th n one equation with the same left side variable in the equation
file, but it is possible to have more than one block with the same

*

name in the block file. If the equation file already contains an
equation for a particular variable when a new equation for that i
variable is defined (i.e., entered in the equation file), then the :

new equation will replace the existing equation. When a new block [is defined, it is added to the block regardless of whether or not I

the block file already contains any blocks with the same name.

If more than one block with the same name ends up on the block
file, the blocks can still be accessed individually since the
blocks are loaded in the same order in which they appear on the
block file. So if there ate two blocks named X on the block file
and we want the second one, the following SETS procedure calls
will load the second block named X into the equation file:

LDBLK (X).

DLTEQN.

LDBLK (X). I

The first LDBLK (X) statement loads the first block named X on the
block file into the equation file. The DLTEQN procedure call !deletes all of the equations in the equation file, so the equation |
file is now empty. The second LDBLK (X) loads the equations from |
the second block named X into the equation file. The equation '

file now contains all and only the equations from the second block *

named X.

It is generally a poor practice to have several blocks with
the same name on the block file. If we have two blocks on the ,

t

block file with the same name and we want to eliminate the first ;

of these but keep the second one, the following SETS statements !
will accomplish this (

LDBLK (X).
!

DLTEQN.
-

LDBLK (X).

DLTBLK (X)..

FRMBLR (X).
,

.

This example is similar to the previous example but the DLTBLK (X)
and FRMBLK (X) statements have been added. The DLTBLK (X)statement drops all of the blocks named X from the block file.

.

-13-

'

'

, - . - - - _ _ _ - , - - . . - - . - - - . - - _ . - _. ..- - - -..- -

3, ; 4" ..

.
.- % '

v. *$ $
,.

'.s . y.
-~ ,

."- s ,- .,, s
-

s

3 s .,

s The PRFmLK (X) statement forms a block named X of all of the"

equations in the equation fife, which ari the equations from thes ;.

b \second block namedsX,'e anL only'one block' nam 4d Xa'nd ad17ttiis ' block N \the block file.l
. Thus, thkre 3.s nib'~o'n on the block

?>' tile. N 1,' >
''

, .
-

, ,

y- w_ ,
,

Finally, suppose v'e.fh' ave twbs.bl,ocks named X on the block file,
b'ut we want to keep;the firct bidek and drop the second one, then -

the SEf5 stNtem$ tc,y '

.

;w.
, s

,_,%, - s Og' -
, ,

.DLTEQN. p ^ f, _ x _

-
,

- -

, , , .
'

LDBLK ' (X bz' . , 's ^

,

,. .. .,
-

..
s

DLTBLK - (X) . W K
~

.,

3,--s ,
,

- FRMBLPs (X) . N s . ,

-z.

vill lot.d the, fitst bl.ock naided X',- delete all blocks named X f rom
'

the blocktfile, and form a, block nam 6d X of the equations in the
- equa tioli ' file , which are the' equhtions f' om the first block namedr
X. The first. Statement in,the*SMTS cegment, the DLTEQN statement,
is us~ed to make sure that tne. equation filo l's empty at the start
o f th i s . se'g'm e n t . 's -s

,

Further dEscussion of the $div12ual ptocedure calls appears
in Appendix ,A,x' tie will rehttict dhis description of solving
fault ' trees to tschniques and procedures uss i for vital areas
analys'is.' s - - '

s,,

, . .

3.3' E-xample SNTS dseE Programs ~ ''

s~ s s
%

In th'is.section we disedO two typical S' CTS user programs.
.

These pdrticulir programs ir,s 'applicabl~e.monly._,to small fault trees.c
s

s m . %,

3.hl Examplt[.h ' Minimal Cut sets for ti(e Top Event of the
'

Figure'l Fault Tree:
.- ' . >-

, 7,,

* -

.s~
,

Supposethatwewonttowrit'faSETSussr~hrogramtodetermine'

the minimalscut sdts 'fcnthr top, event of tiie fault tree in Figures
1 using the ' algorithm!"defi.ned in Sect 1cn. 3.-l. The-SETS user
program EX1-MCS, wh,ich is repeate:d_ here . for convenience,
. accomplishes'Ehis task:'

3*
-

> i\
,

, .

.$ROGRAM$ EX1 MCSk h
'

%%
,T RDFT (FIG-1-i+T) i 'si s |.T

'

' '

LDBLK (FId-1- FT) . C '''" '~ ;-
N SUBINEQti ($1, Gl-SUB). * ~ '' i '

..
-

O REDUCEOM (Gl-SUB, Gl-MCSi'.?% ,- '

_

'

q'PRTEQWDdF -(G1-MCS).; % 4.xx s s
, . ,

,
* *g<% 'g -

tw8 statements of th'?'GSTS usersprogram EX1-MCSThe : ~ firs t t

constitute an dmplementation of StepJ of the. minimal-cut set
alge'r ithm . . Yhe'fi'rst statement, ' S.

,, ,

'
<

.s .s - - .
.& s t '') '%g _s<

('6 N = .1} _,s- N
4.j .i

' ' , - ;'% ^
3 g , .,

!,=..,.~
<t A

\s

iN' . % ,'[~ .[. C ''<
,

.# . . --_. ~ ~

RDFT (FIG-1-FT)

is a call of the Read Fault Tree procedure. This statement is
used to read _the input description of the fault tree FIG-1-FT, and

'

add to the block file a block which contains the intermediate
event equations for the fault tree. The block has the same name
as the fault tree._,.

The second statement,

LDBLK (FIG-1-FT)

is a call of the Load Block procedure. Execution of this
statement causes the intermediate event equations contained in'the
block FIG-1-FT to be loaded (i.e., entered) in the equation file
where they are available for further processing.

Statement 3 in the SETS user program EX1-MCS represent an
implementation of Step 2 in the minimal cut set algorithm.

SUBINEQN (G1, Gl-SUB)

is a call of the Substitute In Equation procedure. It is invoked
to accomplish a repeated substitution process which begins with
the right side of the. equation specified by the first parameter in
the call, Gl. The substitutions continue using the equations that
.are currently in the equation file until no further substitutions
can be made. Then, a new equation is defined and entered in the-
equation file. The left side variable of the new equation is the
second parameter in the call, Gl-SUB, and the right side is the
expression that has been formed by the repeated substitution
process.

1

The last two statements of the SETS user program EX1-MCS
represent an implementation of Step 3 of the minimal cut set
algorithm. The fourth statement,

REDUCEQN (Gl-SUB, Gl-MCS)

is a call of the Reduce Equation procedure which is-used to apply _
,

the identities-P*P = P and P + P*Q = P to the right side of the
equation.specified by the'first parameter in the call, G1-SUB.-
Then, a new equation is defined with the second parameter in the
call, Gl-MCS, as its left' side variable and the: reduced expression
as its right side.. The last' statement,

PRTEQNDNF (Gl-MCS)
.

[is a_ call of the Print Equation In Disjunctive Normal Form
i procedure which is used'to print the equation for Gl-MCS in a sum
!- of products form. The product terms of this equation are~the
j minimal cut-sets for the top event of the fault tree:
i

(

'
-15-

'

_ _ _ _ _ _ . . _ _ = . _ _ _ . _ _ - _ _ _ ._ . _- - . _ . - - ____ ...-

Term Number of
' Number Literals

Gl-MCS =
.

1 3 E2 * E3 +

~

2 2 El * E3 +

3 2 E2 * E5 +

4 3 El * E4 * E5

Thus, the four minimal cut sets for G1 are: (E2, E3), (El, E3),
(E2, ES), and (El, E4, ES).

The SETS user program EX1-MCS is an implementation of the
algebraic algorithm for determining minimal cut sets. It shows
what a SETS user program is like, and illustrates the use of
several procedures. The general form of a procedure call
statement is apparent from this example; a procedure call consists
of a procedure identifier followed by a parameter list enclosed in
parentheses. There are a few cases where parameters do not occur
in the procedure call, but usually they are present.

3.3.2 Example 2. Minimal Cut Sets for the Top Event and
Intermediate Events of a-Fault Tree

Suppose we want to determine the minimal cut sets for the top
event G1, and for the intermediate events G4 and G8, of the fault
tree in Figure 4. Since G2 is a function of G4 and G8, and since
the minimal cut sets for G4 and G8 are to be obtained anyway, the
equations that represent the minimal cut sets for G4 and G8 can be
determined first, and then used in the determination of the mini-
mal cut sets for the top event, Gl. This approach is implemented
in the SETS user program:

,

PROGRAM $ EX2-MCS.
RDFT (FIG-4-FT).
LDBLK (FIG-4-FT).
SUBINEQN (G4, G4).
REDUCEQN (G4, G4).
SUBINEQN (G8, G8).
REDUCEQN (G8, G8) .
SUBINEQN (G1, Gl) .
REDUCEQN (G1, Gl).
PRTEQN (G1, G4, G8). .

PRTEQNONF (G1, G4, G8) .

.

4

J

-16-

_ _ _ - _ _

: 6 6
666 e

c $6 a
606e e e
6666666e

6 e5 6 es

Figure 4. Another Simple Fault Tree.

As the SETS user program EX2-MCS is executed, the equations
for G1, G4, and G8 in the equation file are redefined. The first
two statements of the SETS user program,

RDFT (FIG-4-FT)
LDBLK (FIG-4-FT)

accomplish the processing of the fault tree and the loading of the
intermediate event equations into the equation file. This estab-
lishes the original equation for G1, G4, and G8. The rest of the
processing specified in the SETS user program for each of these
three events is similar, and it will only be described for the
intermediate event G4.

After the execution of the Load Block procedure, the equation
for G4 in the equation file is:

G4 =_G6 + G7.

The third statement in the SETS user program,

SUBINEQN (G4, G4)

-17-

. -

5 -n

is a call of the Substitute In Equation procedure. Beginning with
a copy of-the right side of the equation specified by the first
parameter, G4, the repeated substitution process is applied to
form the right cide of the new equation that will be defined and
entered in the equation file by this procedure. The left side .

Variable of the new equation is the second parameter in the
procedure call, G4. Thus, a new equation for G4 is defined, and
it replaces the old equation for G4 in the equation file. The -

equation for G4 that is in the equation file after the execution
of this statement is:

'
G4 = ((E3 * (E4 + E2)) + (E2 + (E5 + (E4 * E6))))

12 3 32 2 3 4 4 321

The fourth statement in the SETS user program,

REDUCEQN (G4, G4)

is a call of the Reduce Equation procedure which will once more
define a new equation for G4. A copy of the right side expression
of the equation specified by the first parameter, G4, is subjected
to the application of the identities P*P = P and P + P*Q = P which
results in the elimination of one term from the expression. A
factored form of the remaining four terms becomes the right side
of the new equation that will be defined and entered in the
equation file by this procedure. The second parameter, G4, is the
left side variable for the new equation. The new equation for G4,

G4 = E4 * (E6 + E3) + E5 + E2
1 1

is a representation of the minimal cut sets for G4 and it replaces
the old equation for G4 in the equation file.

The equations representing the minimal cut sets for G8 and G1
are developed in the same way that the equation representing the
minimal cut sets for G4 is developed. The development of the
equation for G1, however, makes use of the minimal cut set
equations for G4 and G8 which were previously computed. The final
two statements of the SETS user. program,

PRTEQN (G1, G4, G8)
PRTEQNDNF (G1, G4, G8)

are used to print the minimal cut set equations for G1, G4, and
G8. The equations are printed first in the factored form that
they have in the equation file, and then in a disjunctive normal

! form which tantamount to a listing of the minimal cut sets for G1,
,

G4, and G8:

|

| .

|
!

.

-18-

G1 = El * (E4 * (E6 + E3) + E5 + E2) + E4 * E2 * E3 * A
G4 = E4 * (E6 + E3) + E5 + E2

G8 = E4 * E3 * A + El * B-

Term Number of~

Number Literals

G1 =
'

1 2 El * ES +

{ 2 2 El * E2 +

3 3 El * E4 * E6 +

4 3 El * E4 * E3 +

5 4 E4 * E2 * E3 * A

Term Number of
-Number Literals

G4 =
f

1 1 E5 +,

2 1 E2 +

3 2 E4 * E6 +

4 2 E4 * E3

Term Number of
Number Literals

G8 =

1 2 El * B +

3 2 3 E4 * E3 * A
'

There is an undeveloped event, B, which occurs in the equation
for G8, but does not occur in the reduced equation for Gl. This
may signify that it is not necessary to develop the event B,
because it is not involved in the minimal cut sets for the top
event of the fault tree..

'. .

-19-

. - - ,- - -,

,

4.0 SETS INPUT FOR VITAL AREA ANALYSIS

- Vital area analysis is the analytical procedure used to
systematically identify the areas of a nuclear power plant that .

require physical protection. The inputs to the SETS portion of
the analysis are the sabotage fault tree and a set of Boolean
equations which identify the areas, or logical combinations of -

areas, in which each sabotage action depicted on the fault tree
can occur.

4.1 The Sabotage Fault Tree

The tap event of the sabotage fault tree is the release of
significant amounts of radioactive material as a result of sabo-
tage. The top event is developed into logical combinations of
events until the development terminates in primary events. The
primary events are sabotage actions, such as disabling a valve or
cutting a pipe, which can lead to the undesired release of radio-
active material. Each primary event can occur in some area or
logical combination of areas in the plant.

The fault tree is read by SETS using the RDFT procedure.
This procedure causes a block to be formed, with the name of the
block being the same name as the fault tree, and adds the block to
the block file. Both a linguistic representation and a Boolean
representation of the fault tree are stored on the block. The
Boolean representation is constructed by associating a Boolean
equation with each gate in the fault tree. The left-hand-side of
the Boolean equation is the name of the gate. The right-hand-side
of the equation is a Boolean expression. The variables in the
expression correspond to the names of the inputs to the gate. The
variables are related by the appropriate Boolean operation
depending on the type of gate.

4.2 The Area Equations

Each sabotage action represented by a primary event of the
fault tree can occur in some area or some combination of areas.
This area information is represented by a Boolean equation. For
example, the equa tion:

B1 = AREAL + AREA 2 + (A REA3 * A REA4) + AREA 5

signifies that the sabotage act represented by B1 can be accom-
plished in any one of the areas 1, 2, or 5. Additionally, the
sabotage act can take place in areas 3 and 4 but both areas must
be accessed to accomplish the sabotage act. The RDBLK procedure

*

is used to read the set of area equations, form a block containing
the equations and add it to the block file.

.

If the fault tree is loaded into the equation file in SETS
and a SUBINEQN is performed on any gate in the fault tree, the
substitution process continues until it terminates on the primary

.

-20-

L

events in the fault tree. The minimal cut set algorithm will
therefore produce minimal cut sets which are in terms of the
primary events. However, if the fault tree and the Boolean
equations which represent the area information for the primary
events are loaded into the equation file, the substitution process*

continues through the primary eventr. since there are equations
for the primary events. In this caue the substitution process

.

terminates on the variables which represent the areas in which
the sabotage acts can occur. Therefore, the minimal cut sets
produced will be in terms of the areas in which the sabotage acts
can occur. Thus, the minimal cut sets can be either in terms
of sabotage acts or the areas in which these acts can occur,

, depending on what is entered into the equation file. Since vital
area analysis is concerned with the areas of a nuclear power plant
which require protection, we are interested in obtaining minin'al
cut sets in terms of areas.

4.3 SETS Input Example

The following SETS user program reads the fault tree and area
equations, forms a block named SABOTAGE-FT for the fault tree and
a block named AREA-EQUATIONS for the area equations and adds these
blocks to the block file. These blocks are now ready to use in
any subsequent SETS user program. There may be certain events in
the fault tree which the analyst assumes will always occur, or
will never occur. The last input block read in, OMEGA-ASSUMPTION,
will later be used to implement these assumptions.

PROGRAM $ EXAMPLE-1.
RDFT(SABOTAGE-FT).
PRTBLK(SABOTAGE-FT).
RDBLK(AREA-EQUATIONS).
PRTBLK(AREA-EQUATIONS).
RDBLK(OMEGA-ASSUMPTION).
PRTBLK(OMEGA-ASSUMPTION).
BLKSTAT.

4.3.1 The Fault Tree Input

The first SETS statement, RDFT (SABOTAGE-FT), reads the fault
tree and forms a block named SABOTAGE-FT. The fault tree name
must be the same as in the RDFT procedure call. The example fault
tree has the following input:

.

e

-21-

.

-_

1

.

'RDFT (SABOTAGE-FT). ~

FAULTTREE$ SABOTAGE-FT.
~

0G$ TOP. IN$FM-TI,FM-ILOCA.
OG$ FM-ILOCA. IN$LI-MSD. DUT$ TOP.
'AG$ 'LI-MSD. IN$L-MSD LI. DUT$FM-ILOCA.
DE$ LI. OUT$LI-MSD.
BE$ LOSPW. DUT$ AC-4160-81 J-NP , AC-4160-813- AP ,

AC-4160-B1 H-NP , AC -4160-81 H- AP . i

DE$ RPS-D. DUT$TMS-D.
OG$ ADHRS-D. OUT$DHRS-D. IN$SSRS-D,AFWS-LO-IHR.
AG$ FM-TI. IN$TI-RT TMS-D. DUT$ TOP.
OG$, TI-RT. IN$0I-RC,IHR-NHRS. DUT$FM-TI.
OG$ TMS-D.- IN$RPS-D,DHRS-D. DUT$FM-TI.
DE$ OI-RC. DUT$ TI-RT.
DE$ IHR-NHRS. DUT$TI-RT.
AG$ DHRS-D. IN$ADHRS-D. DUT$TMS-D.
DE$ SSRS-D. DUT$ADHRS-D. -

OG$ AFWS-LO-IHR. DUT$ADHRS-D. IN$AFO-IHR.
OG$ AFO-IHR. IN$AFO-PMD-HS AFO-PM-L,AFO-CS-:MS. OUT$AFWS-LO-IHR.
DE$ AFO-PMD-HS. DUT$AFO-IHR.
AG$ AFO-PM-L. IN$ AFO-MD-P1A,AFO-MD-P18.

OUT$AFO-IHR._
DE$ AFO-CS-PMS. DUT$AFO-IHR.
OG$ AFO-MD-P1A. IN$ AFO-P1 A-D, AFO-P1 A-EPW. 00T $ AF O-PM-L .
OG$ AFO-P1A-D. IN$ AFO-P1 A-8, AFO-P1 A- AUX, AFO-P1 A-CSG.

DUT$AFO-MD-P1A.
OG$ AFO-P1 A-EPU. IN$ AC-4160-81 H.

OUT$AFO-MD-P1A.
OG$ AFO-P1 A- AUX.IN$ AFO-P1 A-C00L.

OUT$ AFO-P1A-D.
BE$ AFO-P1 A -8. DUT$AFO-P1A-D.
BE$ AFO-P1A-CSG. DUT$AFO-P1A-D.
DE$ AFO-P1 A-C00L.00T$ AFO-P1 A- AUX.
OG$ AFO-MD-P18. IN$ AFO-P18-D, AFO-P18-EPW. DUT$AFO-PM-L.
OG$ AFO-P18-D. IN$ AFO-P18-8, AFO-P18- AUX , AFO-P18-CSG.

DUT$AFO-MD-P18.
OG$ AFO-P18-EPW. IN$ AC-4160-B13.

DUT$AFO-MD-P18.
OG$ AFO-P18- AUX . IN$ AFO-P18-C00L .

DUT$ AFO-P18-D.
BE$ AFO-P18-8. DUT$AFO-P18-D.
BE$ AFO-P18-CSG. OUT$AFO-P18-D.
DE$- AFO-Pi B-C00L .0UT$ AFO-P18- AUX .
OG$ L-MSD. IN$ECRS-0,ECIS-D,PAHRS-D. DUT$LI-MSD. . .
UE$ PAHRS-D. DUT$L-MSD.
AG$ ECRS-D. OUT$_L-MSD. IN$CS1A-IHR.CS18-IHR._
OG$ ECIS-D. OUT$L-MSD. IN$CHO-IHR.
OG$ CS1A-IHR.- IN$CS1 A-PMD-HS.CS1 A-HS ,CS1 A-PM-L ,CS1 A-HS-PMS.

.

DUT$ECRS-D.
OG$ CS1 A-PMD-HS . IN$CS1 A-CX-SUMP-8,CS1 A-PP-PMD-8. .

DUTSCS1 A-IHR.
AG$ - CS1 A-PM-L . IN$CS1 A-MD-P1 A.

-22-

..

OUT$ CS1 A-IHR.
OG$ CS1A-HS-PMS. IN$CS1 A-PP-PMS-B.
OUT$CS1A-IHR.

-

DE$ - CS1 A-HS . OUT$CS1 A-IHR.
BE$ CS1A-PP-PMD-8. OUT$CS1A-PMD-HS.

: BE$ CS1 A-CX-SUMP-8. OUT$CS1 A-PMD-HS .,

BE$ CS1 A-PP-PMS-B. DUT$CS1A-HS-PMS.
OG$ CS1 A-MD-P1 A . IN$CS1 A-P1 A-D,CS1 A-P1 A-EPW. DUT$CS1A-PM-L.
OG$ CS1 A-P1 A-D. IN$CS1 A-P1 A-8,CS1 A-P1 A-CSG..

DUT$CS1A-MD-P1A.
OG$ CS1 A-P1 A-EPU. IN$ AC-480V-8480H.

DUT$CS1 A-MD-P1 A.
BE$ CS1 A-P1 A-B. - OUT$CS1A-P1A-D.
BE$ CS1 A-P1 A-CSG. DUT$CS1 A-P1 A-D.
OG$ CS18-IHR. IN$CS18-PMD-HS , CS18-HS , CS18-PM-L . CS18-HS-PMS .

DUT$ECRS-D.
OG$ CS18-PMD-HS.-IN$CS18-CX-SUMP-8,CS18-PP-PMD-8'.

DUT$CS18-IHR.
AG$ CS18-PM-L. IN$CS18-MD-P18.

00T$ CS18-IHR.
OG$ CS18-HS-PMS. IN$CS18-PP-PMS-8.
OUT$CS18-IHR.
DE$ CS18-HS. DUT$CS18-IHR.
BE$ CS18-PP-PMD-B. OUT$CS18-PMD-HS.
BE$ CS18-CX-SUMP-8. OUT$CS18-PMD-HS.
BE$ CS18-PP-PMS-8. DUT$CS18-HS-PMS.
OG$ CS18-MD-P18. IN$CS18-P18-D,CS18-P18-EPW. DUT$CS18-PM-L.
OG$ CS18-P18-0. IN$CS18-P18-8,CS18-P18-CSG.

OUT$CS18-MD-P18.
OG$ CS18-P18-EPW. IN$ AC-480V-8480J . '

OUT$CS18-MD-P18.
BE$ CS18-P18-B. DUT$CS18-P18-D.
BE$ CS18-P18-CSG. DUT$CS18-P18-D.
OG$'SWA-IHR. IN$SWA-PMD-HS,SWA-CS-PMS,SWA-PM-L.

DUT$CHO-P1 A-C00L ,CHO-P18-C00L.
OG$ SWA-PMD-HS.IN$5WA-HX-0ILCO-8,SWA-PP-PMD-8,SWA-VV-PMD.

DUT$5WA-IHR.
OG$ SWA-PM-L. IN$ SWA-MD-P10A,AC-4160-81H.

OUT$SWA-IHR.
OE$ SWA-CS-PMS. OUT$SWA-IHR.
BE$ SWA-HX-0ILCO-8. OUT$SWA-PMD-HS.
BE$ SWA-PP-PMD-B. DUT$SWA-PMD-HS.
BE$ SWA-VV-PMD.0UT$SWA-PMD-HS.
OE$ SWA-MD-P10A. 00T$5WA-PM-L.
OG$ SWB-IHR. IN$SWB-PMD-HS,SWB-CS-PMS,SWB-PM-L.

0UT$CHO-P1A-COOL,CHO-P18-C00L.
OG$ SWB-PMD-HS.IN$SWB-HX-0ILCO-8,SWB-PP-PMD-8,SWB-VV-PMD.

DUT$5W8-IHR.
OG$ SWB-PM-L. IN$ SW8-MD-P108, AC-4160-81 J .

OUT$SWB-IHR.'

DE$ SW8-CS-PMS.- OUT$5W8-IHR.
BE$ SWB-HX-0ILCO-B. OUT$SWB-PMD-HS.
BE$ SWB-PP-PMD-B. OUT$SWB-PMD-HS..

BE$ SWB-VV-PMO.0UT$SWB-PMD-HS.
DE$ SWB-MD-P108. OUT$SWB-PM-L.
OG$ CHO-IHR. IN$CHO-PMD-HS,CHO-CS-PMS,CHO-PM-L. DUT$ECIS-D.
OG$ CHO-PMD-HS.IN$CHO-HX-RVESS-8,CHO-VV-PMD,CHO-PP-PMD-8.

-23-

i

OUT$CHO-IHR.
AG$ CHO-PM-L. IN$ CHO-MD-P1A,CHO-MD-P18.

DUT$CHO-IHR.
DES CHO-CS-PMS. DUT$CHO-IHR.

~

BE$ CHO-HX-RVESS-8. DUT$CHO-PMD-HS.
BE$ CHO-PP-PMD-B. DUT$CHO-PMD-HS. ,

OG$ CHO-VV-PMD.00T$CHO-PMD-HS.
IN$CHO-MV1286ABC0C,CHO-MV1867ABCC,CHO-MV1867BDCC.

BE$ CHO-MV1286ABCOC.0UT$CHO-VV-PMD.
BE$ CHO-MV1867ABCC. DUT$CHO-VV-PMD.
BE$ CHO-MV1867BDCC. DUT$CHO-VV-PMD.
DG$ CHO-MD-P1A. IN$CHO-P1A-D,CHO-P1A-EPW. DUT$CHO-PM-L.
OG$ CHO-P1A-D. IN$CHO-P1A-B,CHO-P1A-AUX,CHO-P1A-CSG.

DUT$CHO-MD-P1 A.
OG$ CHO-P1 A-EPW. IN$ AC-4160-81 H.

OUT$CHO-MD-P1A.
OG$ CHO-P1A-AUX IN$CHO-P1A-C00L.

DUT$ CHO-P1A-D.
BE$ CHO-P1A-8. DUT$CHO-P1A-D.
BE5 CHO-P1A-CSG. DUT$CHO-P1A-D.
AG$ CHO-P1A-C00L.0UT$CHO-P1A-AUX. IN$SWA-IHR,SWB-IHR.
OG3 CHO-MD-P18. IN$CHO-P18-D,CHO-P18-EPW. DUT$CHD-PM-L.
OG$ CHO-P18-D. IN$CHO-P18-8,CHO-P18- AUX ,CHO-P18-CSG .

DUT$CHO-MD-P18.
OG$ CHO-P1 B-EPU. IN$ AC-4160-B13.

OUT$CHO-MD-P18.
OG$ CHO-P18-AUX.IN$CHO-P18-C00L.

DUT$ CHO-P18-D.
BE$ CHO-P1B-B. DUT$CHO-P18-D.
BC$ CHO-P18-CSG. DUT$CHO-P18-D.
AG$ CHO-P18-C00L .0UT$CHO-P18- AUX. IN$SWA-IHR,SUB-IHR.
OG$ AC-4160-B1 J . IN$EP-BS-1J-0,AC-4160-81J-PS.

DUT$ AC-4 80V-8480J-PS ,CHO-P18-EPU, AFO-P18-EPU, SUB-PM-L .
BE$ EP-BS-1J-D. OUT$AC-4160-B1J.
AG$ AC-4160-B1 J-PS . IN $ AC-4160-81 J-SB , AC-4160-813-NP . DUT $ AC-4160-81 J .
OG$ AC-4160-81 J-SB. IN$CB-C1J-0,0G-NO3-L. DU T $ AC -4160-813 -PS .
BE$ CB-C1J-0. OU T $ AC-4160 -813 -S8.
AG$ AC-4160-813-NP. IN$AC-4160-81 J-AP,LOSPW. DUT $ AC-4160-813-PS .
OG$ AC-4160-81J-AP. IN$ COMP-MPWT-D,LOSPU. DUT$AC-4160-81J-NP.
UES COMP-MPWT-0. OUT $ AC-4160-813- AP , AC-4160-B1 H- AP .
OG $ AC-4160-B1 H. IN$EP-BS-1 H-D , AC-4160-81 H-PS .

DUT$ AC-480V-8480H-PS ,CHO-P1 A-EPW, AFO-P1 A-EPW,SW A-PM-L .
BE$ EP-BS-1H-D. DUT$AC-4160-81H.
AG $ AC-4160-81 H-P S . IN$ AC-4160-81 H-SB AC-4160-81 H-NP . DU T $ AC-4160 -81 H .
OG$ AC-4160-81 H-SB . IN $ C8 -C1 H -0,0G -N 01 -L . OU T $ A C-4160-81 H-PS .
BE$ CB-C1H-0. OUT $ AC-4160-81 H-S B .
AGS AC-4160-81 H-NP . IN$ AC-4160-81 H- AP ,LOSPW. DUT$ AC-4160-81 H-PS .
OG$ AC-4160-81 H- AP . IN$ COMP-MPUT-0,LOSPW. DUT $ AC-4160-81 H-NP .
OG$ DG-NO3-L. IN$DG-NO3-CSG,DG-NO3-8,DG-NO3-AUX. .

DUT$AC-4160-813-SB.
DE$ OG-NO3-AUX. DUT$DG-NO3-L.
BE$ DG-NO3-B. DUT$DG-NO3-L. -

DES DG-NO3-CSG. DUT$0G-NO3-L. l
*

OG$ DG-N01-L. IN $DG-N01 -CSG ,0G-N01 -B , DG-N01 - AUX . DUT $ AC-4160-01 H-SB . '

DE$ DG-N01-AUX. DU T $ D G-N 01 -L .
BE$ DG-N01-8. DU T $ DG -N01 -L .
DE $ DG-N01 -CSG . D U T $ 0 G - N01 -L .

1

-24- |,

'

OG$ AC-480V-8480H. IN$ID-BS-480H-D,AC-480V-8480H-PS.
DUT$CS1A-P1A-EPW.

OG$ AC-480V-8480H-PS. IN$ID-TR-SSXFM1H-0,AC-4160-81H. DUT$AC-480V-8480H..

BE$ ID-8S-480H-D. DUT$AC-480V-8480H.
BE$ ID-TR-SSXFM1H-D. DUT$AC-480V-8480H-PS.
OG$ AC-480V-8480J. IN$IO-BS-480J-D,AC-480V-8480J-PS.

DUT$CS18-P18-EPW.
OG$ AC-430V-84803-PS. IN$ID-TR-SSXFM1 J-D AC-4160-813. DUT$AC-480V-8480J.
BE$ 10-8S-480J-0. DUT$AC-480V-84803.
BET.IO-TR-SSXFM13-D. OUT$AC-480V-B480J-PS. i

THE NEW EQUATION BLOCK SABOTAGE-FT
HAS.BEEN ADDED TO THE BLOCK FILE

f

-

.

.

'

-25-

.~ .. -_.

The block SABOTAGE-FT contains both a linguistic representa-
tion of the fault tree, similar to the input form, and a set of
Boolean equations for the fault tree. Both of these representa-
tions are printed by the PRTBLK procedure. The output of the
PRTBLK (SABOTAGE-FT) statement is given in Appendix C. .

.

I

f

l

!
.

.
;

i

.

. -26-
i

'
. . . . - . _ . - _ _ . _ _ _ . _ _ . _ - _ _ _ .- ,, , _ _ , _ _ _ , _ . _ . . _ _ . , _

!

4.3.2 The Area Equations

The RDBLK (AREA-EQUATIONS) statement reads the input block
containing the area equations, forms a block named AREA-EQUATIONS, ,

and adds the block to the' block file. The name of the input block-

must be the same as in the RDBLK statement. The input block for !
the example is:

,

ROBLK (AREA-EQUATIONS).

BLOCK $ AREA-EQUATIONS.
IHR-NHRS =SFGRDB.
RPS-D =SFGROA.
01-RC =SFGR08.
SSRS-D =MCC1JCV + MCC1HCV.
AFO-PMD-HS =CR + MCC1JCV.
AFO-CS-PMS =SFGRDA.
AFO-P1A-8 =MCC1HCV.
AFO-P1A-CSG =MCC1HCV.
AFO-P1A-COOL =0GRM2.
AFO-P18-8 =MCC1JCV.
AFO-P18-CSG =MCC13CV.
AFO-P18-C00L =DGRM1 + ESGRM.
EP-85-1J-D =ESGRM.
C8-C1J-0 =ESGRM.
EP-85-1H-D =ESGRM.
CB-C1H-0 =ESGRM.
DG-NO3-8 =DGRM2.
DG-N01-8 =0GRM1,

j ID-85-480H-D =WSGRM. !
} ID-TR-SSXFM1H-D =2AB.

[j I0-85-480J-D =ESGRM. i

| ID-TR-SSXFM1J-D =3EQUIPRM. *

AFUS-LO-IHR =CR+MCC1HCV"MCC13CV+SFGRDA.,

: CS1A-PP-PMD-8 =3EQUIPRM.
| CS1A-CX-SUMP-8 =CR.
! CS1A-PP-PMS-8 =CR + 2AB.

CS1A-P1A-8 =PMPHSE.,

CS1A-PIA-CSG =CR.'

CS18-PP-PMD-8 =CR.
CS18-CX-SUMP-8 =PMPHSE.
CS18-PP-PMS-8 =CR + 2A882RB. -

; CS18-P18-8 =CR.
i CS18-P18-CSG =CR.

SWA-HX-0ILCO-8 =TBSMTVVPT,
SWA-PP-PMD-8 =3EQUIPRM+ESGRMuWSGRM+2AB.
SWA-VV-PMD 33EQUIPRM+2A8.
SW8-HX-0ILCO-8 =CHPMCUB.
SWB-PP-PMD-8 =3EQUIPRM+ESGRM*WSGRM+2AB..

SW8-VV-PMD =3EQUIPRM+2A8.
[CHO-HX-RVESS-8 =CR.

CHO-PP-PMD-8 =CHPMCU8+2AB.| .

CHO-MV1286ABC0C =CR+MCC1HCV"MCC1JCV+CHPMCUB..

! CHO-MV1867ABCC =CR+MCC1HCV"MCC1JCV+2AB.
,

j CHO-MV1867BDCC =CR+MCC1JCVaMCC1HCV+2AB.
I

;

4

-27- i

'

_ _ _ _ _ - _ - _ _ _ _ _ _ _

_ - _ _ _ _

CHD-P1 A-B =CHPMCUB.
CHO-P1 A-CSG =CHPMCUB.
CHO-P18-B =ESGRM.
CHO-P18-CSG =CHPMCUB.

CHPMCUB + 2AB + ESGRM + CR & Rr,LI =

CS1A-HS = SFGRDA + MCC1HCV.
-

CS18-HS = SFGRDA + MCC13CV + USGRM.
SWA-CS-PMS = TBSMTVVPT. '

SWB-CS-PMS = TBSMTVVPT.
SWA-MD-P10A = CR + 3EQUIPRM.
SUB-MD-P108 = CR + 3EQUIPRM,
CHO-CS-PMS = RWST + 2 RUST +CR + 2AB + CHPMCUB.
DG-NO3-AUX = DGRM2.
DG-N01-AUX = DGRM1,
DG-NO3-CSG = CR + RLYRM + DGRM1 *DGRM2.
DG-N01 -CSG = CR + RLYRM + DGRM1 n DGRM2.

This block can also be printed by the PRTBLK procedure, if
dosired. The output of PRTBLK (AREA-EQUATIONS) statement is given
in Appendix C.

.

|

.

|
.

s

-28-

,

4.3.3 The OMEGA Block

Any events that the analyst assumes will always occur are set ,

to OMEGA. In the subsequent Boolean manipulation of equations, '

this event will be treated as 1. Similarly, events that are-

assumed to never occur are set to / OMEGA, and will be treated as a
O. The RDBLK (OMEGA-ASSUMPTION) reads this set of equations,,

forms a block named OMEGA-ASSUMPTION and adds it to the block,

file. The input block name must be the same as in the RDBLK
procedure call. The OMEGA-ASSUMPTION block for the example is:

BLOCK $0MEGA-ASSUMPTION.
LOSPU =0MEGA.
PAHRS-D =/0MEGA.
COMP-MPWT-D =/0MEGA.

Like the other blocks, this block can be printed by a PRTBLK
statement, giving:

" " " " BLOCK SET EQUATIONS " """
(OMEGA-ASSUMPTION)<

LOSPW = OMEGA

i
PAHRS-D = /0MEGA;

.

1

COMP-MPUT-D = /0MEGA

1

Finally, a BLKSTAT procedure call will print the names of the
blocks on the block file. For the example, the output of the
BLKSTAT statement is:

THE BLOCK FILE CONTAINS THE FOLLOWING BLOCKS 1. SABOTAGE-FT
2. AREA-EQUATIONS
3. OMEGA-ASSUMPTION

.

I

*
+

h
!

|
,

-29-
.

. _ _ _ _ _ . _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ . _ _ _ _ _ _ _ . _ _ _ _ _ _ _ . _ _ _ _ . - _ _ _ . _ _ _ _ _ _ _ _ _ _ . . _ _ _ _ . _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _

I

5.0 THE SETS USER PROGRAM FOR SOLVING THE SABOTAGE FAULT TREE

#

Chapter 3 describes writing a simple SETS user program to
colve a fault tree. If the sabotage fault tree is small, a single

,

SUBINEQN and REDUCEQN procedure call for the top gate will
datermine the minical cut sets of the fault tree. However, most
erbotage fault trees are much too large to be solved using this -

cpproach. Instead, various subtrees of the fault tree are solved
until a solution for the top gate can be determined. Two kinds of
cubtrees are singled out for solution prior to solving the top
gete; the replicated subtrees and the subtreen whose top gates are
AND gates which are above the replicated subtrees in the fault
tree. A replicated subtree is one whose top gate is a multiple
output gate. These subtrees are readily identified on the fault
tree plot since their top gates are plotted with transfer-out
symbols as their outputs. The general steps involved in the SETS
ucer program are:

Load the fault tree, the area equations and the OMEGA-

assumptions into the equation file using the LDBLK
procedure.

Solve the replicated subtrees of the fault tree using the-

SUBINEON and REDUCEQN procedures.

Solve the AND gates of the fault tree which are located-

above the replicated subtrees using the SUBINEQN and
REDUCEQN procedures.

Solve the top gate of the fault tree using the SUBINEQN and-

REDUCEQN procedures.

Form a block of the solution equation using the FRMBLK-

procedure.

Print the solution using the PRTEQNDNF procedure.-

Wa now discuss these steps in more detail. It helps to keep in
mind what is in the equation file at all times since this is the
key to understanding what is happening during the execution of a
SETS user program.

5.1 Replicated Subtrees

The fault tree equations and the area equations are loaded
into the equation file. Every gate in the fault tree has an
equation in terms of its immediate inputs. The objective is to
replace certain gate equations with their minimal cut set *

cquations in the equation file. Then when these gates are
cncountered during the substitution process, their minimal cut set
expressions will be encountered in the equation file rather than

,

tha much larger expressions that would be encountered if the
cubstitution process continued with their immediate inputs. The

.

-30-

,

!

first group of gates chosen for solution is the collection of
gates which are the top gates of the replicated subtrees. Since
the top gate of such a subtree has multiple outputs, the subtree,
in affect, appears in several places in the fault tree (in as many
places as there are outputs for its top gate). If this subtree is

-

replaced by a simpler representation, in this case its minimal cut
set representation, there will be a savings every time it is,

encountered when substituting for the top gate of the fault tree.
The order in which the replicated subtrees are solved is extremely
important to the efficiency of the program. When solving a
replicated subtree, if the substitution process encounters any top
gates of replicated subtrees, their simpler representation will
replace them in the equation being formed. These considerations
give the following rule to be followed when determining the order
in which the replicated subtrees are to be solved: A replicated
subtree is solved only if all of the replicated subtrees which it
contains have already been solved.

There is always some group of replicated subtrees which do not|

contain any replicated subtrees since a fault tree cannot have any|
'

cycles. These subtrees are solved first, in any order. They can
be identified on the fault tree plot since they are plotted from

! their tops down to only primary events without any intervening
transfer-in symbols. The remaining replicated subtrees are solved
in the order given by following the above rule. The fault treeplot can be helpful when following the rule. The top gate of a
replicated subtree is plotted down to primary events and transfer-
in symbols, which represent inputs from replicated subtrees. If
every replicated subtree represented by a transfer-in has alreadybeen solved, the replicated subtree can be solved.
5.2 AND Gates Above the Replicated Subtrees

Once all of the replicated subtrees have been solved, the
I second group of subtrees chosen for solution is the collection
i

|
of subtrees which have AND gates located above the replicated
subtrees as their top gates. The reason that AND gates are'

selected is that the maximum number of minimal cut sets for an ANDgate is the product of the number of minimal cut sets for each of
its inputs while the maximum number of minimal cut sets for an OR
gate is the sum of the number of minimal cut sets for each of its

! inputs. Since some of the top events of replicated subtrees may
have a large number of minimal cut sets, the distinction is an
important one. The rule for determining the order in which to
solve the AND gates above the replicated subtrees is similar to
the rule for replicated subtrees: An AND gate is solved only if
all of the AND gates below it (but above the replicated subtrees)
have been solved. There may be single input AND gates in the.

fault tree which are merely for descriptive purposes. These gates
are ignored when solving the fault tree.

.

5.3 Solving the Top Gate

Once all of the replicated subtrees and the AND gates above
the replicated subtrees have been solved, we are ready to solve

-31-

!

l

. .- . .- . - - - . , _ _-- --. ._. -

1

-the top gateoof the fault tree. The SETS user program to solve
the top gate:

SUBINEQN(TOP, TOP).
'

.

I REDUCEQN(TOP, TOP).

is identical to the user program to solve the fault tree in a *

. single step. However, the difference is that the equation file,

contains reduced, minimal cut set equations for the top gates of,

the replicated subtrees and the selected AND gates, so the sub-
,

stitution for the top gate brings in their minimal cut sets. This
greatly increases the efficiency of the SETS execution of the user
program.

:

The resulting minimal cut set equation is saved by the FRMBLK,

procedure and printed out using the PRTEQNDNF procedure. Since
the area equations are in the equation file, the minimal cuts sets
are in terms of areas. Each minimal cut set represents a set of

3

f areas in which at least one collection of sabotage acts, each of
which can be accomplished in at least one area in the minimal cut,

i set, is sufficient to cause the top event of the sabotage fault
] tree, i.e., the release of significant amounts of radioactive
j material. A minimal cut set of order one identifies a single

vital area, called a Type 1 vital area. The areas represented in
minimal cut sets of order greater than one are called Type 2 vital

: areas.

I S.4 SETS Program for Solving the Example Sabotage Fault Tree in.
Terms of Areas

4

{ The following SETS user program determines the minimal cut
,

sets of the sabotage fault tree, SABOTAGE-FT, in terms of areas.
3 Each step in the program is discussed in detail following the

j program listing.

| PROGRAM $ EXAMPLE-2.
: BLKSTAT.-
j LDBLK(SABOTAGE-FT, AREA-EQUATIONS,0MEGA-ASSUMPTION).
; SUDINEQN(AC-4160-81J AC-4160-B1J).

RE00CEQN(AC-4160-81 J , AC-4160-81 J) .*

I SUBINEON(AC-4160-81 H, AC-4160-81 H) .
i REOUCEQN(AC-4160-81H,AC-4160-81H).

SUBINEON(SWA-IHR,SWA-IHR).
; REOUCEQN(SWA-IHR,SWA-IHR).
I SUBINEON(SWB-IHR,SWB-IHR).
4 REOUCEQN(SWB-IHR,SWB-IHR).

SUBINEON(CHO-P1 A-C00L ,CHO-P1 A-C00L) . .

REDUCEON(CHO-P1A-C00L,CHO-P1A-C00L).
,

SUBINEON(CHO-P18-C00L,CHO-P18-C00L).'

REOUCEON(CHO-P18-C00L ,CHO-P18-C00L) . -

SUBINEQN(ECRS-0,ECRS-0).
REDUCEQN(ECRS-0,ECRS-0).
SUBINEQN(AFO-PM-L,AFO-PM-L).

,

REDUCEQN(AFO-PM-L,AFO-PM-L).

-32-

$. __ _ _.__ __. . - _ _ _ _ _ . _ _ _ ., _, _

-

SUBINEQN(CHO-PM-L,CHO-PM-L). !
REDUCEQN(CHO-PM-L,CHO-PM-L,.
SUBINEQN(FM-TI,FM-TI).
REDUCEQN(FM-TI,FM-TI).
SUBINEQN(LI-MSD.LI-MSD).
REDUCEQN(LI-MSD,LI-MSD).-

SUBINEON(TOP, TOP).
REDUCEQN(TOP, VITAL-AREA-MC3).

~

FRMBLK(VITAL-AREA-MCS*0NLY$ VITAL-AREA-MCS).
BLKSTAT.
PRTEQNDNF(VITAL-AREA-MCS).

S.4.1 The BLKSTAT and LDBLK Statements

The BLKSTAT statement is used to check the contents of the
block file. For the example, the output of the BLKSTAT statement
is:

THE BLOCK FILE CONTAINS THE FOLLOUING BLOCKS 1. SABOTAGE-FT
2. AREA-EQUATIONS
3. OMEGA-ASSUMPTION

The LDBLK (SABOTAGE-FT, AREA-EQUATIONS , OMEGA-ASSUMPTION) load
the fault tree equations, area equations and OMEGA equations into
the equation file. The order in which the equations are loaded
into the equation file is important, since there can never be more
than one equation in the equation file with the same left-hand-
side. So if event LOSPW had both an area equation and an OMEGA
equation, the equation loaded last, in this case the OMEGA
equation, is the one in the equation file.

S.4.2 Solving the Replicated Subtrees

By looking at the plot in Figure S, we see the following gates
are plotted with transfer-out symbols: AC-4160-BlJ, AC-4160-BlH,
SWA-IHR and SWB-IHR. These gates are top events of replicated
subtrees. There are no transfer in symbols plotted in the sub-
trees for AC-4160-BlJ and AC-4160-BlH, so these subtrees are
solved first using the SUBINEQN and REDUCEQN procedures. There
are no other replicated subtrees which do not have any transfer-in
symbols plotted in their_developm nc, i.e., do not contain any
replicated subtrees.

The replicated subtrees with top gates SWA-IHR and SWB-IHR
both contain replicated subtrees. The subtree with SWA-IHR as its
top event has a transfer-in from AC-4160-BlH, which is the top of
a replicated subtree, but this subtree has already been solved so
we can solve SWA-IHR with SUBINEQN and REDUCEQN procedure calls.

*

Similarly, the subtree with top event SWB-IHR contains the
replicated subtree with top event AC-4160-BlJ, but this gate has
also been solved so we can solve the subtree with top event.

SWB-IHR by a call of the SUBINEQN and REDUCEQN procedures.

-33-

At this point all of the replicated subtrees have been solved,
so we can proceed to solving the AND gates located above the
replicated subtrees.

5.4.3 Solving the AND Gates Above the Replicated Subtrees
,

The next step is to solve all of the AND gates (except single
input AND gates) which are above the replicated subtrees. By -

looking at the plot, we can identify these gates as: CHO-PlA-
COOL, CHO-PlB-COOL, CHO-PM-L, ECRS-D, LI-MSD, AFO-PM-L and FM-TI.
The first AND gates to solve are those which do not have any
other AND gates below them but above the replicated subtrees
(since the replicated subtrees have been solved, we are not
interested in solving any gates which they contain). The gates
CHO-PlA-COOL , CHO-PlB-COOL, ECRS-D and AFO-PM-L all meet this
criteria so they are solved using the SUBINEQN and REDUCEQN
procedures. Next, we examine the fault tree for AND gates which
do have AND gates below them, but all of the AND gates below them
have been solved. The AND gate LI-MSD, for example, cannot yet be
colved since AND gate CHO-PM-L below it and has not yet been
solved. Gate CHO-PM-L, however, does meet this criteria since the
only AND gates below it are CHO-PlA-COOL and CHO-PlB-COOL and
these gates have been solved. Ga tes ECRS-D and FM-TI also meet
this criteria since the AND gates below it are solved so gates
CHO-PM-L, ECRS-D and FM-TI are solved using the SUBINEQN and
REDUCEQN procedures. The last AND gate, LI-MSD, now meets the
criteria for being solved so it is solved using the SUBINEQN and
REDUCEQN procedures.

5.4.4 Solving the Top Gate

All of the replicated subtrees and the AND gates above the
replicated subtrees have been solved, so we are now ready to solve
the top gate. The top gate is also solved using the SUBINEQN and
REDUCEQN procedures. The second parameter of the REDUCEQN call,
VITAL- A RE A-MC S , is used to name the final minimal cut set equation
VITAL-AREA-MCS, or any other appropriate name may be used. This
equation is stored on a block of the same name by the FRMBLK
(VITAL-AREA-MCS *ONLY$ VITAL-AREA-MCS) statement. The ONLY option
is used so that only the equation VITAL-AREA-MCS is stored on the
block. Otherwise a FRMBLK procedure call forms a block of all the
equations in the equation file.

5.4.5 Output of the SETS Program

The BLKSTAT statement is used to check the status of the block
file at the end of the run. For the example, the BLKSTAT
procedure call has the following output:

.

THE BLOCK FILE CONTAINS THE FOLLOWING BLOCKS 1. SABOTAGE-FT
2. AREA-EQUATIONS ,

3. OMEGA-ASSUMPTION
4. VITAL-AREA-MCS

.

-34-

t

The final statement in the program prints the vital area
minimal cut sets. For the example, the printout is:

.

* * * * LITERAL OCCURRENCE TABLE * * * *
.

NUMBER OF
LI,TERAL OCCURRENCES

SFGRDB 3
SFGRDA 2
MCC1JCV 3
MCC1HCV 3
CR 1

DGRM2 2
OGRM1 2
ESGRM 1

WSGRM 1

2AB 1

3EQUIPRM 1

PMPHSE 1

TBSMTVVPT 1

CHPMCUB 1

RC 12
RUST 1

2 RUST 1

RLYRM 1

THERE ARE 18 DIFFERENT LITERALS IN THE
EQUATION FOR VITAL-AREA-MCS

.

e e

-35-

.

_ . _ _ -

.

.

'

TERM NUMBER OF
NUMBER LITERALS

VITAL-AREA-MCS =

1 1 CHPMCUB +

2 1 2AB +

3 1 ESCRM +

4 1 CR +

5 2 RC * RLYRM +

t 6 2 RC * 2 RUST +

7 2 RC * RUST +

8 2 TBSMTVVPT * RC +

9 2 PMPHSE * RC +

10 2 3EQUIPRM a RC +

11 2 USGRM * RC +

12 2 SFGRDA * RC +

13 2 SFGRDB * MCC1HCV +

14 2 SFGRDB * MCC1JCV +

15 2 SFGRDB * SFCRDA +

16 3 DGRM2 * DGR91 n RC +

17 3 MCC1HCV * DGRM2 * RC +

10 3 MCC1JCV # DGRM1 * RC + ,

19 3 MCC1JCV * MCC1HCV * RC
.

-36-

1

Thus, there are 18 vital areas for the example. The first
four, CHPMCUB, 2AB, ESGRM and CR are Type 1 vital areas. The
remaining 14 vital areas are Type 2 vital areas. In order for a
sabotage attempt to be successful, one must gain access to any one
of the Type 1 vital areas or all of the Type 2 vital areas in one-

of the remaining 15 minimal cut sets.

~

5.5 Potential Problems Encountered with the SETS Program

If the sabotage fault tree is very large or complex, there are
some problems that may be encountered when running the SETS user
program. The most common of these, and possible solutions, are
discussed below.

5.5.1 A Replicated Subtree is too Large to Solve with a Single
SUBINEQN and REDUCEQN Procedure

There may be a replicated subtree that is too large to solve
in a reasonable amount of computer time and/or computer storage.
First, check to make sure that the rule is being correctly
followed so that all replicated subtrees contained in the problem
replicated subtree have been solved. If this is the case, then
the cause is that some gate in the problem replicated subtree
which is above the solved replicated subtrees is generating a very
large number of cut sets during substitution. For reasons
previously described, this gate is usuall.y an AND gate. By first
solving this gate and replacing its cut sets by minimal cut sets,
the replicated subtree can usually then be solved. If not, it may
be necessary to solve all of the AND gates in the problem
replicated subtree which are above the replicated subtrees
contained in the problem replicated subtree. The order in which
the AND gates are solved is the same as described earlier: an AND
gate is solved only if all of the AND gates below it but above the
replicated subtrees contained in the proble.n replicated subtree
have been solved. These AND gates are solved using the SUBINEQN
and REDUCEQN procedures. Once all of these AND gates are solved
the problem replicated subtree is solved using the SUBINEQN and
REDUCEQN procedures.

5.5.2 An AND Gate with More Than Two Inputs

There may be an AND gate in the sabotage fault tree which has
more than two inputs and cannot readily be solved using the
SUBINEQN and REDUCEQN procedures. Suppose an AND gate has five
inputs, and each of these inputs has 100 minimal cut sets. Then
the SUBINEQN and REDUCEQN procedure calls for this gate will

i generate 1005 1010 or 10 billion cut sets. Since it is

| often not possible in terms of computer storage and/or computer.

; time to reduce such an expression to minimal cut sets, we need a
'

more efficient way of dealing with such gates. The general idea
is to let some but not all of the minimal cut set expressions for.

the inputs to the AND gate be brought into the equation for the
AND gate._ All of the inputs to the AND gate should be solved

I

-37-

ucing the SUBINEQN and REDUCEQN procedures before attempting to
solve the AND gate.

For example, suppose we wish to solve the following AND gate:
.

X

I
| 5 1 4 3

A B C D E

First, solve gates A, B,C, D, and E using the SUBINEQN and
REDUCEQN procedures. Next, choose two of the five inputs to be
brought in for the equation for X. If there is no good reason to
choose a particular two inputs, then any two will do. However,
often we know that some of the inputs do have something in common;
for example, some of the inputs may share some of the same support
systems. Inputs that have events in common will generally provide
a greater reduction in the size of the equation being formed if
they are brought in together. To bring in just A and B in the
equation for X we use the STOP option for SUBINEQN. The SETS
statement SUBINEQN (X, X *STOP$ C, D, E) lets the equations for A
cnd B be brought in for X but stops the substitution process on
inputs C, D, and E. The REDUCEQN procedure call REDUCEQN (X, X)
will then determine the minimal cut sets of X with C, D, and E
left in the equation for X so there will be a C*D*E expression in
every minimal cut set for X. Continuing in this manner, we let
the equations for C, D, and E be brought into the equation for X
one at a time, unless there is some reason, such as shared support
systems or events, we should bring in more than one at a time.
For the example AND gate X the SETS user program to solve X is
given by:

SUBINEQN (X, X *STOP$ C, D, E).
REDUCEQN (X, X).
SUBINEON (X , X * STOPS D, E).
REDUCEQN (X, X).
SUBINEON (X, X *STOP$ E).
REDUCEQN (X, X).
SUBINEON (X, X).
REDUCEQN (X, X).

| *'

5.5.3 Ucing the PRMBLK Procedure in Large SETS User Programs

Due to the problems discussed in the previous sections and ,

other unanticipated errors in the SETS user program (see Appendix
B), the SETS user program may not execute to completion. If this
occurs, then all of the gates of the fault tree which have been

. ,

-38-

____ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

solved up to the point of the abnormal termination of the SETS
program will have to be solved again unless steps have been taken
in the SETS user program to save the minimal cut sets of the
solved gates.

.

Each time a minimal cut set equation is determined, it can be
saved using a FRMBLK procedure call. The most convenient way of

~

doing this is to use a FRMBLK(A) or FRMBLK(STEPA) statement
without using the ONLY option to form the first such block. Then |
subsequent blocks are formed after each REDUCEQN (or whenever the i

analyst chooses). These blocks are usually named something
similar like B, C, D, ... or STEPB, STEPC, STEPD, If the....

SETS program has an abnormal termination, then the last block
formed contains all of the reduced equations determined up to the
point the block was formed. To restart the run, after the problem
has been corrected, the last block formed is loaded into the
equation file. Since the equation file now contains everything
that was in it when the program aborted, it is important that no
other blocks be loaded, such as the fault tree equations, since
these equations will replace the solved equations in the equation
file.

I Since these blocks serve no other useful propose than allowing
us to restart the program without having lost any information,
they are deleted, using the DLTBLK procedure, after the vital area
minimal cut sets have been determined.

As an example of this approach, we can modify the SETS user
program for the example (Section 5.4) as follows:

PROGRAM $ EXAMPLE-3.
BLKSTAT.

LDBLK(SA00TAGE-FT, AREA-EQUATIONS} OMEGA-ASSUMPTION).SUD INEQN(AC-4160-01 J , AC-4160-01 J .

REUUCEQN(AC-4160-013, AC-4160-013) .
FRMOLK(STEPA).
SUBINEQN(AC-4160-01H,AC-4160-01H).
REOUCEON(AC-4160-01H,AC-4160-01H).
FRMBLK(STEPO).
SUDINEQN(SWA-IHR,SWA IHR).
REOUCEQN(SWA-IHR,5UA-IHR).
FRMOLK(STEPC).
SUDINEON(SWD-IHR, SUS-IHR),
REOUCEQN(SWD-IHR,SUB-IHR).
FRMOLK(STEPO).
SUBINEQN(CHO-P1A-C00L,CHO-P1A-C00L).
REDUCEQN(CHO-P1A-C00L,CHO-P1A-C00L).
FRMBLK(STEPE)..

SUDINEQN(CHO-P10-C00L,CHO-P10-C00L).
REOUCEQN(CHO-P10 C00L.CHO-P10-000L).
FRMBLK(STEPF)..

SUDINEQN(ECRS-0,ECRS-0).
REDUCEQN(ECRS-0,ECRS-0).
FRMOLK(STEPG).

-39-

_ . _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _

SulllNEQU(Af 0 DM-L , Ar0-PM-L) .
fiEDUL LON(Af 0-PM-L , Af D-PM-L) .
fRMblK(STEPH). i

Sud ItiE Q fj (C HO-PM-L ,CHO-DM-L) .
HL DljCf QN(CHO PM-L ,CHO-PM-L) .
FliMut K (SI E P I) . ,

| Su h l N L: QN(fM-1I.fM TI).
! HEDUfLQN(FM-!!,iM tI),
I f fiMOL K (S i f_P J . -

S U B I N E lj N (L i - 9 Si,' , L I - M SU) .

HL OUC E f)f. (L I - MSO.L I - MSD) .
'

f 4MOLK f Sif UK) . ,

Sul!!NLQtu 10P .10P) .
HE P tH:L Q f. (10P , V I T AL - A HE A -MC S) .

t H MJ L P t.y I T AL ARE A ' C S'80NL Y $V I T AL - AHL A FCS) .
D'. [av(5ffDA.STLPD.STEPC.S!EPD.STEPE.STEPf.STEPC.STEPH.STEPI.STEPJ,STEPK),
B T, K ". ' 4 .
Ph it QNat;f (V I I At -O'll A-MCS) ,

,

P

If the progr6m aborted af ter block STEPD was formed, say
solving gate CUD-P u-COCL, then the next SETS user progra:a would
be

,

?

P

Pitfu;H A M i r / V.p t L -4
UL i d t .K (S i f.D A . 9 I L P H , S I L P C) .
UlyttAT.
I DiH. P (', || .m) .

5jun NL QN(f h%i # A-LOOL ,CHO PJ t -C1/iti

HL(FjtlQN(LHD-Pla-C00L,CHO-P1AC00Lh..
f H' a K! S il D!),

'llF! J N L U N (! UG-Plu-EUOLo f HO-D 10 -(* 00L) .
,

H L uilL L fj N (L 4U - P 1 H '.001.C8!0 -010 - L fl0 L) .
| f H?:HL K ('j i f Pi' / .

| SuniNFQa(('H'J-0.,ffi$-0).

| HtmninNt,r J 3-h,tcHS-0).
I H Flat M (a 1 L ? t;) .
9'lu l N t Q N(Al 0-PM-L , Al 0 DM-L) ,

j H i D u l l 'J N (A 6 U P P1 - t . A f' 0 F M - 1) .
| f fiMiiL K f 5 f L tit) ,
| SO H I NI (J N (C H 3 DM. L , t. ''0 -DM -L) .

| R L O l H. i f j 'i (l' H il - P M - L 'f td (1 P M - L) .
! l %H K(: TfDI),

' Lh ! 'i % ! Q N (l X . T j o f M - f 1) .,

|
HiDULfQN(LM.Ij,FM-11).

| I H M H l K ('a T [P .I) .
StniiN; QN t i [.MSU,6 [-MSD),

;

(H f O U C E ') h (L i - M D 'o [- M S U) .
*IHMULn(;11ph).

SUU [N! UN(T OP ,IIJP) .
Hf liULL UN(IUP,V j I AL AHf A MCta) .

*IH9ULK(V[141 AHi|A MCS"QfHY$ VITAL-AHfA.MCS), I

Ul l ut K (S il_ Pi , S T f DF , S i t pi; . S T(PH . Sil.P ! , S T E P J . ST E PK) .
HlKSIAI.
P H i l Q N U N I (V ! (A l - A H I '6 - M, b) , *

-40-

_ _ - _ - - - _ _ _ _ _ ______ _ - - ___ _ _ -__ - _ _ - _ __ _ _ ___- _ _ _ _ _ _ _ _

6.0 T!!E COMPLEMENT EQUATION

If one gains accons to all of the vital areas in any minimal
cut not, then one can cauno the top event of the nabotage fault.

tree to occur by some collection of nabotage acts. Conversely, if
we can deny accons to at leant one vital area in overy minimal cutnet, then the top event cannot occur. One way to determino auch a

-

group of vital areas to deny accoan to is to form the complement
of the minimal cut not equation and then datormine the minimal cut
sets of the complomont equation.
6.1 Dotormining the complemont Equation Uning SETS

If the minimal cut not equation han TOP an the Doolean
variable on its left-hand-side, then the following SETS unor
program identifies a complement exprons_ ton for TOP by a SUBINCON
and dotorminos the minimal cut nota of TOP by a REDUCEQN:

COMP-TOP = / TOP.

SUBINEQN (COMP-TOP, COMP-TOP) .

REDUCEQN(COMP-TOP, COMP-TOP).

We can interpret the complomont of an area an an area for which
accoon in denied. Thun a minimal cut not of the complomontequation can bo interpreted ao followns if wo deny accoon to all
of the aroan in tho minimal cut not, then the top event of the
unbotage fault troo cannot occur, i.e., / TOP will occur. Notethat only one auch minimal cut not of complomonto of accan in
required, no we can choono the minimal cut not which represents
the smallent number of arcan to protect. Other critoria, such an
the minimal cut not with a collection of vital arcan which can beprotected with the loant impact on operability of the plant can
also be applied. Of courno, overy Typo 1 vital area will appear
in overy minimal cut not of the complomont equation, no there are
still cortain vital arcan that must be protected no matter what
critorion in applied.

6.2 An 8xampin of Uning SETS to Find the Corpinment I:qua t ion

The following ar.TS program datorminen the complomont of the
vital area minimal cut not equation for the example in Doction 5.4.
PHPCHAM$lXAMPLC 5.
ULKSTAT.
LOOLK(VITAL AHEA-MCM).*

VITAL AREA-COMP / VITAL AHCA-MCS.e

Suu!400N(VITAL-ANCA COMP. VITAL-ARCA-COMP).
HEDUCCQ4(VI T AL - ARE A COMP.V!I AL- AHC A-COMP) .'

fHMBLK(V!TAL-AHLA-COMPa0NLY$V!TAL-AREA-COMP).OLKSTAT.
PHif0NONr(VITAL-ANCA-COMP).

-41-

_ _ _ _ _ _ _ _ - _ _ . . _ - _ _ _ _ __ - _ _ - _. - _ - _ _ _ _ _ _ _ _ _ _ . _ _ _

. ~ , . _. - _ ._ __

.

-
. f , pp ,, ,. . .

-
, '

,

. N.
. h. ' ?)

--

1
. 'si

' 3 s ;,
,

,- 3
,."

. . _ .

.\ 'O ' 'T. ' -

, , .. , , , ,

^ Q .4 ;J| q

| (? The BLKSTAT(statement is jit. sed to Neri'hN' that the block which
t cohPains the arda minimal, c'ut set eqdation is on the block file.

The sutput of the ' BLK3ThT ~ statisment 'isi'' '-
s
t s s. ,

. s "~
s',s

_ y s

JHb 3LOCFhILE' CONT AINS 'E5 FOLLOWING Si.0L'KS 1. . SABOTAGE-FT -,

~V ~s - '
'2. AREA-EQUATIONS

- ' s
,

v 3. OMEGA-ASSUMPTION
4. VITAL-AREA-MCS

-'
A, u;s,

6 .

The LDBLK (VITAL-AkEA-MCS)..st.atstent loads the vital area
uati6n irithtme equation file. .The Boolean

minimal cut set eq$-COMP = / VITAL-AREA-SCS establishes thisequ'ation VITAL-ARE
~ The SUBINEQN statementadditi'onal equation,in the equation ifile.

substitutes for VITAL-AREA-COMP until~the substitution process
teiminates 'on the-variables which 'r' epresent vital areas in the
vital' area minimal?dut set equation. The REDUCEQN statement
. determines,theeminimal cut sets for. VITAL 2 AREA-COMP and the FRMBLK
statementL forme a bl~ock of this complement equation. The
PRTEQNDNF stateme'nt= prints the minimal cut set eq'uatio~n for
VITAL-AREA-COMP. Tho' output is: s-

-

c'\s

~

TERM -

NUMBER - .
'

,

VITAL-AREA "JDMD
'

=

/CHPMCUB * /RC +1 /SFGRDB * /CR * /ESGRM * /2Ab *

2 /SFGRDA /MCC13CV * /MCC1bCV /CR * /ESCRM /2AB * /CHPMCUB a /RC +-* * *

/ESGRM *-/USGRM /2AB n/CR /DGRM13 /SFGRDA /MCC1HCV/MCC1]CV a* ** * *

/TBSalTWPT * /CHDMCUb a / RUST /2RWST * /RLYRM /3tgg; ppg a /pygg5* a ,

4 /SFGRDB * /5FC4DA'a /MCC1HCV * /CR * / DORM 1 /ESGAN K /W5 GAM /2AE** a

/TS5*T;|VPT * /CHPMCUB * / RUST /2RwST /RLYRM a /3ECUIPRM * /PFPHSE* a
+

/MCC1JCV ' /M'C1HCV /.dSiRn/DGRM2 * /ESGRM/CR * /2aB *5 /SFGRDA eC * **

/185MTVVPT . * JCHDMCUB * /%5T /2RWST_ * /RLYRM.a /3cggIpaM* /pMpHSa +

B S. /SFCRDB * /SFG30A /2A9 ** /MCC1]CV C/CP * /DGRM2 u /ESGRM * /WSGRy a

, /TB5MTt'VPT * /CHPMCut3 * / RUST * /2N57 /RLYRM /3EDu!PR5 a /pMpHSE* *

w

I
d A

. p.. -

~-- , .

v - n - . r

?, n

\. . -
~ ' , , ' x s f,

''
,

,'

s.
*p k s

,

* \ e
' ~

,~~y- b= g .

-%

0 % n ny
.

'
,,

'

k 4g. , g
\

'd' ' . Nh
1 -' %se,

|1 . g . ; -m

-

1
-

..

'' '

f. w ,?
~

. s - -Qi
_

,_,,,,>e.. .%.)
.

m.

~

d gs,

Us% ,s' %.g\, 4 .! t' . .

- j. . < ,, ., a.

p "b- m
-

.

, t .
_ _ __

6.3 A Potential Problem in Solving the Complement Equation

For some vital area minimal cut set equations, the complement
equation is of a manageable size and can be determined as in the
preceding example. However, sometimes the complement expression-

is so large that it cannot be simplified to minimal cut sets in a
reasonable amount of computer time and/or computer storage. Since

~

we are usually not interested in all of the minimal cut sets if
there are thousands of them, but only in the minimal cut sets
which represent feasible alternatives as sets of areas to protect,
the approach to take is to determine only minimal cut sets up to
some order. This can be done by using a truncation parameter, n,

in the REDUCEQN statement which drops all cut sets with more than
n variables (which represent areas in this case).

To determine the truncation value n for a particular problem,
we first use REDUCEQN on the complement equation without a
truncation parameter. A reasonable time limit on the computer run
(about 50 seconds) should be used to prevent the REDUCEQN
algorithm from executing for a great deal of time on an equation
it cannot solve completely. When the time limit is reached, the
output of the REDUCEQN procedure call will look something like
this:

THE MAXIMUM NUMBER OF TERMS THAT CAN BE
GENERATED BY EXPANSION IS 14485500.
THE WORK MEASURE FOR EXPANSION IS 36792594.

TERMS GENERATED BY EXPANSION<

8 TERMS CONTAIN 20 LITERALG.
115 TERMS CONTAIN 21 LITERALS.
651 TERMS CONTAIN 22 LITERALS.

1991 TERMS CONTAIN 23 LITERALS.
3078 TERMS CONTAIN 24 LITERALS.
2669 TERMS CONTAIN 25 LITERALS.
668 TERMS CONTAIN 26 LITERALS.

8 TERMS CONTAIN 27 LITERALS.
153 TERMS CONTAIN 28 LITERALS.

15321 TERMS CONTAIN 29 LITERALS.
81703 TERMS CONTAIN 30 LITERALS.

211711 TERMS CONTAIN 31 LITERALS.

The terms generated by expansion correspond to cut sets that must
still be simplified to minimal cut sets. If we truncate this
expression at n = 23, there will be 8 + 115 + 651 + 1991 = 2,765
cut sets which are'then simplified to minimal cut sets. If the
number of resulting minimal cut sets is sufficient to provide a

! reasonable number of alternative sets of vital areas to protect,.

we are finished. If not, we can truncate at a higher n, say n =
24, until a reasonable number of minimal cut sets is produced.

.

|

-43-

,

r]

7.0 MINIMAL CUT SETS OF SABOTAGE ACTS

A minimal cut set of the sabotage fault tree in terms of vital
areas is a combination of vital areas for which at least one -

collection of sabotage acts, each of which can be accomplished in
at least one of the vital areas in the minimal cut set, will cause
the top event of the fault tree to occur. Up until now, we have .

been concerned with areas only and have not identified any
collections of sabotage acts which can cause the top event to

Such a collection of sabotage acts is called a scenario.occur.'

The final analysis of a vital area analysis attempts to find all
of the scenarios for the Type 1 vital areas.

The scenarios are minimal cut sets of the sabotage fault tree
in terms of the fault tree primary events, i.e., sabotage acts.

Thus, if we would solve the fault tree by the same SETS user
program as described in Chapter 5, but without loading the area
equations, we would obtain all possible scenarios which are in a
minimal form, meaning that every sabotage act in the scenario is
necessary for the top event to occur. However, the number of
scenarios is often very large so that all of the scenarios cannot
be obtained. Furthermore, there would be no indication of which
vital areas are involved in each scenario. Fortunately, we are
interested in only scenarios for the Type 1 vital areas which;

makes the problem much more manageable. Also, by employing a'

j slightly different set of equations then the area equations, we
can retain the information as to which vital area is involved in a
scenario.

7.1 The SETS User Program for Identifying Scenarios

The SETS user program which determines the scenarios for a
Type 1 vital area is sinilar to the program described in Chapter 5
for determining the vital areas. The differences are:

Instead of loading the area equations, a different set of-

equations is loaded into the equation file.
- All of the areas which are not Type 1 vital areas are set

to / OMEGA.

- The REDUCEQN (X, X) procedure calls are changed to
REDUCEQN (X/1, X*EXCEPTCMP$) .

In Chapter 4.0, the example given for an area equation was:

B1 = AREAL + AREA 2 + AREA 3 * AREA 4 +- AREAS .
,

-The corresponding equation for the identification of scenarios is:
'

B1 = (AREAL + AREA 2 + AREA 3 * AREA 4 + AREAS) */BlZ.
1

This equation not only identifies the areas in which sabotage act
B1 can occur, but it also maintains an explicit representation of -

-44-

Bl. The representation for B1 is /BlZ instead of Bl. SETS does
not allow the same variable to appear on both sides of an equation I
since a loop will occur during a SUBINEQN procedure call, so the l
letter Z, or any other symbol, is appended to Bl. The '/' symbol |

is included in the new representation for B1 to take advantage
of the EXCEPTCMP option of the REDUCEQN procedure. The
REDUCEQN(Bl/1, B1 * EXCEPTCMP$) statement will truncate any*

minimal cut set which involves more than one area (we are only
interested in scenarios which can be completed in a single TYPE 1.

vital area) but will allow any number of sabotage acts to be
represented since it does not count any complemented events and
all of the sabotage events are complemented.

The output of this SETS user program consists of minimal cut
sets each of which are comprised of one Type 1 vital area and a
collection of sabotage acts which represent one scenario for the
vital area.

7.2 An Example of a SETS Program for Identifying the Scenarios
of Type 1 Vital Areas

The following SETS user program determines the scenarios for
the Type 1 vital areas of the example sabotage fault tree
SABOTAGE-FT. The program is very similar to the program which
solved SABOTAGE-FT for the vital area minimal cut sets in Section
5.4. Each step of the program is discussed in detail following
the program listing.

PROGRAM $ EXAMPLE-6.
RDBLK(SCENARIO-EQNS).
RDBLK(TYPE 2-PHI).
BLKSTAT.
LDBLK(SABOTAGE-FT, SCENARIO-EQNS, TYPE 2-PHI,0MEGA-ASSUMPTION).
SUBINEQN(AC-4160-813, AC-4160-81 J) .
REDUCEQN(AC-4160-81 J/1, AC-4160-B1 J"EXCEPTCMP$) .
SUBINEQN(AC-4160-81 H, AC-4160-81 H) .
REDUCEQN(AC-4160-81 H/1, AC-4160-81 H*EXCEPTCMP$) .
SUBINEQN(SWA-IHR,SWA-IHR).
REDUCEQN(SWA-IHR/1,SWA-IHR*EXCEPTCMP$).
SUBINEQN(SWB-IHR,SUB-IHR),
REDUCE Q N (SUB-IHR/1, SWB-IHR * E XCE PTCMP $) .
SUBINEQN(CHO-P1 A-CCOL ,CHO-P1 A-C00L),
REDUCEQN(CHO-P1A-C00L/1,CHO-P1A-COOL).
SUB INEQN(CHO-P18-C00L ,CHO-P1 B-C00L) .
REDUCEQN(CHO-P18-COOL /1, CHO-P18-C OOL) .
SUBINEQN(ECRS-0,ECRS-D).
R E DUCE QN (EC RS-D/1, ECR S-D * E X CE P T CMP $) .
SUBINEQN(AFO-PM-L,AFO-PM-L).
REDUCEQN(AFO-PM-L/1, AFO-PM-L *EXCEPTCMP$) .
SUBINEQN(CHO-PM-L,CHO-PM-L).
REDUCEQN(CHO-PM-L /1, CHO-PM-L * E XCE PTCMP$) .,

SUBINEQN(FM-TI,FM-TI).
REDUCEQN(FM-TI/1,FM-TI*EXCEPTCMP$).
SUBINEQN(LI-MSD,LI-MSD).-

REDUCE Q N (L I-MSD/1, L I-MSD *E XCE PTCMP $) .
SUBINEQN(TOP, TOP).
REDUCEQ N (T OP/1, SC E N A R IO S- TY PE 1 * E X CE PT CMP $) .

FRMBLK(SCEN ARIOS-TYPE 1 *0NLYSSCEN ARIOS-TYPE 1) .
BLKSTAT.
PRTEQNDNF/ SCENARIO 9-TYPE 1). -45-

7.2.1 The Scenario Equations

The first statement in the program, RDBLK(SCENARIO-EQNS),
reads the scenario equations. These equations are the same as the
crea equations in Section 4.3.2 except that an explicit
representation of the. sabotage act on the left-hand-side of the

'

squation is included on the right-hand-side of the equation. The
input block SCENARIO-EQNS is: -

BLOCK $ SCENARIO-EQNS.
IHR-NHRS =(SFGRDB)*/IHR-NHRSZ.
RPS-D =(SFGRDA)*/RPS-DZ.
OI-RC =(SFGRDB)*/0I-RCZ.
SSRS-D =(MCC1JCV + MCC1HCV)*/SSRS-DZ.
AFO-PMD-HS =(CR'+ MCC1JCV)*/AFO-PMD-HSZ.
AFO-CS-PMS =(SFGRDA)*/AFO-CS-PMSZ.
AFO-P1 A-B =(MCC1HCV)*/AFO-P1A-BZ.
AFO-P1 A-CSG =(MCC1 HCV)*/ AFO-P1 A-CSGZ.
AFO-P1A-C00L =(DGRM2)*/AFO-P1A-COOLZ.
AFO-P18-8 =(MCC1 JCV)*/ AFO-P18-BZ.
AFO-P18-CSG =(MCC1JCV)*/AFO-P18-CSGZ.
AFO-P18-C00L =(DGRM1 + ESGRM)*/ AFO-P18-C00LZ .
EP-BS-1 J-D =(ESGRM)*/EP-BS-13-DZ..
CB-C1J-0 =(ESGRM)*/CB-C1J-0Z.
EP-BS-1H-D =(ESGRM)*/EP-BS-1H-DZ.
CB-C1 H-O = (ESGRM) */CB-C1 H-0Z .
DG-NO3-8 =(DGRM2)*/DG-NO3-BZ.
DG-N01 -B = (DGRM1) * / DG-N01 -BZ .
ID-BS 680H-D =(WSGRM)*/ID-BS-480H-DZ.
ID-TR _3XFM1H-D =(2AB)*/ID-TR-SSXFM1H-DZ.
ID-BS-480J-D =(ESGRM)*/ID-BS-480J-DZ.
ID-TR-SSXFM1J-D = (3 E Q U IPRM) * / ID-T R-SSXFM13 -DZ .
AFUS-LO-IHR =(CR+MCC1HCV*MCC1JCV+SFGRDA)*/AFUS-LO-IHRZ.
CS1 A-PP-PMD-B =(3EQUIPRM)*/CS1 A-PP-PMD-BZ .
CS1A-CX-SUMP-B =(CR) * /CS1 A-C X-SUMP-B Z .
CS1 A-PP-PMS-B =(CR + 2 AB)*/CS1 A-PP-PMS-BZ .
CS1A-P1A-B =(PMPHSE)*/CS1 A-P1 A-BZ .
CS1 A-P1 A-CSG =(CR)*/CS1 A-P1 A-CSGZ.
CS1 B-PP-PMD-B =(CR)*/CS18-PP-PMD-BZ.
CS18-CX-SUMP-B = (PMPHSE) * /CS18-C X -SUMP-BZ .
CS18-PP-PMS-B =(CR + 2 AB"2RB) */CS18-PP-PMS-BZ .g

CS18-P18-8 = (CR) * /CS18-P1 B-BZ .
CS18-P18-CSG =(CR) * /CS18-P1 B-C SG Z .
SWA-HX-0ILCO-B =(TBSMTVVPT)*/SWA-HX-0ILCO-BZ.)
SWA-PP-PMD-B =(3EQUIPRM+ESGRM*WSGRM+2AB)*/SWA-PP-PMD-BZ.

.SWA-VV-PMD =(3EQUIPRM+2AB)*/SUA-VV-PMDZ.
SWB-HX-0ILCO-B =(CHPMCUB)*/SWB-HX-0ILCO-BZ. .

SWB-PP-PMD-B =(3EQUIPRM+ESGRM*WSGRM+2AB)*/SWB-PP-PMD-BZ.
SWB-VV-PMD =(3EQUIPRM+2AB)*/SWB-VV-PMDZ.

| CHO-HX-RVESS-B =(CR)*/CHO-HX-RVESS-BZ. .

| CHD-PP-PMD-B =(CHPMCUB+2AB)*/CHO-PP-PMD-BZ.
i
|

| -

!
-46-

, __ - .

1

I
|
|

CHO-MV1286ABCOC =(CR+MCC1HCV*MCC1JCV+CHPMCUB)*/CHO-MV12BSABCOCZ.
CHO-MV1867ABCC =(CR+MCC1HCV*MCC1JCV+2AB)*/CHO-MV1BB7ABCCZ.~

CHO-MV1867BDCC =(CR+MCC1JCV*MCC1HCV+2AB)*/CHO-MV1867BDCCZ.
CHO-P1A-B =(CHPMCUB)*/CHO-P1A-BZ.
CHO-P1A-CSG =(CHPMCUB)*/CHO-P1A-CSGZ.-

CHO-P18-B =(ESGRM)*/CHO-P18-BZ.
CHO-P18-CSG = (CHPMCU B) */CHO-P18-CSG Z .
LI =(CHPMCUB + 2AB + ESGRM + CR + RC)*/LIZ.
CS1A-HS =(SFGRDA + MCC1HCV)*/CS1A-HSZ.
CS18-HS =(SFGRDA + MCC1JCV + WSGRM)*/CS1 B-HSZ .
SWA-CS-PMS =(TBSMTVVPT)*/SWA-CS-PMSZ.
SUB-CS-PMS =(TBSMTVVPT)*/SWB-CS-PMSZ.
SWA-MD-P10A =(CR'+ 3EQUIPRM)*/SWA-MD-P10AZ.
SWB-MD-P108 =(CR + 3EQUIPRM)*/SUB-MD-P10BZ.
CHO-CS-PMS =(RWST + 2RWST+CR + 2AB + CHPMCUB)*/CHD-CS-PMSZ.
DG-NO3-AUX = DGRM2)*/DG-NO3-AUXZ.
DG-N01-AUX DGR M1) * /DG -N01 - A UX Z .=

DG-NO3-CSG = CR + RLYRM + DGRM1*DGRM2)*/DG-NO3-CSGZ.
DG-N01 -C SG = CR + RLYRM + DGRM1 *DGRM2) * /DG-N01 -CSGZ .

7.2.2 Setting the Type 2 Vital Areas to / OMEGA

The second statement in the SETS user program, RDBLK
(TYPE 2-PHI), reads the set of equations which sets all of the Type
2 areas to / OMEGA. In Boolean algebra, / OMEGA = PHI, however,
SETS will only recognize the / OMEGA representation in a Boolean
equation. The input block TYPE 2-PHI for the example is given by:

BLOCK $ TYPE 2-PHI,
SFGRDB = /0MEGA.
SFGRDA = /0MEGA.
MCC1JCV = /0MEGA.
MCC1HCV = /0MEGA.
DGRM2 = /0 MEG 4.
DGRM1 = /0MEGA.
USGRM = /0MEGA.
3EQUIPRM = /0MEGA.
PMPHSE = /0MEGA.
2RB = /0MEGA.
TBSMTVVPT = /0MEGA.
RC = /0MEGA.
RWST = /0MEGA..

2RWST = /0MEGA.
RLYRM = /0MEGA.

,

,

-47-

p . _ . . _ _ , . , .

The following BLKSTAT statement is used to verify the contents of
the-block file at this point in the analysis. For the example,
the_ output of the BLKSTAT statement is:

THE BLOCK FILE CONTAINS THE FOLLOWING BLOCKS 1. SABOTAGE-FT
,

2. AREA-EQUATIONS
3. OMEGA-ASSUMPTION
4. VITAL-AREA-MCS .

S. VITAL-AREA-COMP
6. SCENARIO-EQNS
7. TYPE 2-PHI

7.2.3 The-Equation File

The LDBLK (SABOTAGE-FT, SCENARIO-EQNS, TYPE 2-PHI, OMEGA-
ASSUMPTION) statement loads the equations contained in these
blocks into the equation file, in the order in which the blocks
are listed in the LDBLK statement. The following equations are
now in the equation file:

- The equations which represent the sabotage fault tree, as
listed in Section 4.3.1.

- The scenario equations from Section 7.2.1.

- The equations which set the Type 2 vital areas to / OMEGA,
given in Section 7.2.2.

- The events wnich are assumed to always occur or never
occur, set to OMEGA or / OMEGA, respectively, as given in
Section 4.3.3.

Note that the difference between this LDBLK and the LDBLK
statement in the program which determined the vital area minimal
cut sets is that the blocks which contain the scenario equations
and the equations which set the Type 2 vital areas to / OMEGA are.
loaded instead of the area equations.

7.2.4 Solving the Sabotage Fault Tree for Scenarios

We now proceed with - the SUBINEQN and REDUCEQN _ statements which
solve the same gates, in the same order, as the SETS program in
Section 5.4 which solved the fault tree for vital area _ minimal cut
sets. The SUBINEQN statements are identical in the two programs.
The REDUCEQN statements are modified to include the truncation
parameter of 1 and the EXCEPTCMP option. The truncation parameter
of 1 'is used so we do not get scenarios for combinations of Type 1
vital areas. The EXCEPTCMP option is used since we do not want

,the sabotage acts to be counted when_ truncating; there may be any
number of sabotage acts in a particular scenario. The last
REDUCEQN statement is the one which reduces the cut sets'of the -

top gate to minimal cut sets. The final name of the solution is
the second' parameter of this REDUCEQN, so it is called SCENARIOS-
TYPEl rather than VITAL-AREA-MCS as in the earlier program.

,

-48-

1

|

|
ITo summarize, the SUBINEQN and REDUCEQN statements are exactly

the s'ame, and in the same order, as the ones in the program used
to solve the sabotage fault tree for vital areas except:

. - A truncation parameter of 1 is added to each REDUCEQN.

- The EXCEPTCMP option is added to each REDUCEQN.
.

- The second parameter of the final REDUCEQN is given a
suitable name for this solution.

Thus we are really solving the same fault tree, in the same
order, over again. The equations in the equation file have been
changed, however, so that the substitution process is terminating
on combinations of Type 1 vital areas and sabotage acts, instead
of on just vital areas as in the previous program in Section 5.4.

7.2.5 The Solution Equation

The FRMBLK (SCENARIOS-TYPE 1 *ONLY$ SCENARIOS-TYPEl) statement
forms a block containing only the final equation which identifies
the scenarios for the Type 1 vital areas. The BLKSTAT is used to
check the status of the block file which is:

THE BLOCK FILE CONTAINS THE FOLLOWING B'_0CKS 1. SABOTAGE-FT
2. AREA-EQUATIONS
3. OMEGA-ASSUMPTION
4. VITAL-AREA-MCS
5. VITAL-AREA-COMP
6. SCENARIO-EQNS
7. TYPE 2-PHI
8. SCENARIOS-TYPE 1

Finally, the solution equation is printed by the PRTEQNDNF
statement. The output is:

,

e

4

e

!

!
i

-49-

.

*** * LITERAL OCCURRENCE TABLE * * *"

.

NUMBER OF OPPOSITION NUMBER OF
LITERAL OCCURRENCES LITERAL OCCURRENCES

,

CR 2S
ESGRM B

/EP-BS-1J-DZ 2
/CB-C1J-0Z 2
/EP-BS-1H-DZ 4
/CB-C1H-0Z 4

2AB 4

/ID-BS-480J-DZ 2
/CS1A-CX-SUMP-BZ S

/CS1 A-PP-PMS-BZ S

/CS1 A-P1 A-CSGZ S

/CS18-PP-PMD-BZ 4
/CS1B-PP-PMS-BZ 4
/CS$8 '18-BZ 4
/CL.b-P1B-CSGZ 4

CHPMCUB S

/CHD-HA- .~SS-BZ 1

/CHO-PP-PMD-BZ 2
/CHO-M'!? 28C ABCOC Z 2
/CHG-MV1867ABCCZ 2
/CHO-MJ1867BDCCZ 2
/CHO-P1A-BZ 1

/CHO-P1A-CSGZ 1

/CHO-P18-BZ 2
/CHO-P18-CSGZ 2
/LIZ 42
/CHO-CS-PMSZ 3
/DG-NO3-CSGZ 4
/0G-N01-CSGZ 5

THERE ARE 29 DIFFERENT LITERALS IN THE
EQUATION FOR SCENARIOS-TYPE 1

TERM NUMBER OF
N L'M B E R LITERALS

SCENARIOS-TYPE 1 =

1 3 CR * /LIZ * /CHO-CS-PMSZ + -

2 3 CR * /CHO-mil 1867BDCCZ * /LIZ +
.

3 3 CR * /CHO-MV1867ABCCZ * /LIZ +
4 3 CR * /CHO-MV1286APCOCZ *-/LIZ +

-50-

TERM NUMBER OF
NUMBER LITERALS-

*

/CHO-HX-RVESS-BZ * /LIZ5 3 CR * +

6 3 CHPMCUB * /LIZ * /CHO-CS-PMSZ +

7 3 CHPMCUB # /CHO-MV1286ABCOCZ /LIZ" +

/LIZ +8 3 CHPMCUB * /CHO-PP-PMD-BZ x

/LIZ * /CHO-CS-PMSZ9 3 2AB a +

/LIZ +10 3 2AB * /CHO-MV1867BDCCZ "

11 3 2AB * /CHO-MV1867 ABCC Z /LIZ" +

/CHO-PP-PMD-BZ * /LIZ +12 3 2AB *

13 4 CR * /LIZ " /DG-NO3-CSGZ * /DG-N01-CSGZ +

/DG-N01 -CSGZ +/CS18-P1 B-CSG Z /LIZ14 4 CR * ""

1S 4 CR * /CS18-P18-BZ /LIZ " /DG-N01 -CSGZ +*

16 4 CR * /CS18-PP-PMS-BZ /LIZ /DG-N01 -CSG Z* " +

17 4 CR * /CS18-PP-PMD-BZ *-/LIZ * /DG-N01-CSGZ +

/CS1 A-91 A-CSGZ * /LIL18 4 CR * /DG-NO3-CSGZ* +

/CS1 A-P1 A-CSGZ19 4 CR a /CS18-P18-CSGZ /LIZ +* "

20 4 CR * /CS1 A-P1 A-CSGZ /CS18-P18-BZ /LIZ" " +

21 4 CR * /CS1 A-P1 A-CSGZ * /CS18-PP-PMS-BZ * /LIZ +
,

/CS1 A-P1 A-CSGZ22 4 CR u /CS1B-PP-PMD-BZ /LIZ* a +

23 4 CR * /CS1 A-PP-PMS-BZ /LIZ /DG-NO3-CSGZ" * +

24 4 CR * /CS1 A-PP-PMS-BZ /CS18-P18-CSGZ /LIZ ** *

25 4 CR " /CS1A-PP-PMS-BZ /CS18-P18-BZ /LIZ* " +.

.

-51-

.

.

TERM NUMBER OF
NUMBER LITERALS *

/LIZ +/CS18-PP-PMS-BZ/CS1A-PP-PMS-BZ **26 4 CR *

27 4 CR * /CS1 A-PP-PMS-BZ * /CS18-PP-PMD-BZ * /LIZ +

/DG-NO3-CSGZ +/CS1 A-CX-SUMP-BZ * /LIZ28 4 CR * *

/CS1A-CX-SUMP-BZ29 4 CR * /CS18-P18-CSGZ * /LIZ +*

30 4 CR * /CS1 A-CX-SUMP-BZ * /CS18-P18-BZ * /LIZ +

/CS1A-CX-SUMP-BZ * /CS18-PP-PMS-BZ /LIZ +31 4 CR * *

32 4 CR * /CS1 A-CX-SUMP-BZ /CS18-PP-PMD-BZ* /LIZ +*

33 4 ESGRM * /CB-C1 H-0Z * /CHO-P18-BZ * /LIZ +
34 4 ESGRM * /CB-C1H-02 * /ID-BS-4803-DZ * /LIZ +

/CB-C13-0Z * /CB-C1H-0Z * /LIZ +3S 4 ESGRM *

36 4 ESGRM a /EP-BS-1J-DZ * /CB-C1H-0Z * /LIZ +
37 4 ESGRM a /EP-BS-14-0Z * /CHO-P19-BZ * /LIZ +
38 4 ESCRM * /EP-BS-1H-DZ * /ID-BS-480J-DZ * /L1Z +
39 4 ESGRM * /CB-C13-0Z * /EP-BS-1 H-DZ * /LIZ +
40 4 ESCRM * /EP-BS-1J-DZ * /EP-BS-1 H-DZ * /LIZ +

41 4 CHPMCUB * /CHO-P1 A-CSGZ * /CHO-P18-CSGZ * /LIZ +

42 4 CHPMCUB * /CHO-P1A-BZ * /CHO-P10-CSGZ * /LIZ

.

S

e

-52-

The first minimal cut set, 2AB*/LIZ*/CHO-CS-PMSZ tells us that
one successful scenario which can be accomplished in Type 1 vital
area 2AB is to commit sabotage acts LI and CHO-CS-FMS (in their
original notation). The remaining 48 minimal cut sets are
interpreted similarly.

,

7.3 Potential Problems in Determining the Scenarios
.

If the fault tree has any troublesome replicated subtrees or
AND gates, these will already have been dealt with in the program
which solved the fault tree for vital area minimal cut sets. All
of the additional SUBINEQN and REDUCEQN procedure calls to deal
wirn these problems should be left in for the program that
determines scenarios, with the REDUCEQN statements modified by
ddding the truncation value of 1 and the EXCEPTCMP option. In
other words, this program should already deal with all of the
problem areas of the fault tree by virtue of being essentially the
same program as the one which solved the fault tree for vital area
minimal cut sets. So the only problem likely to be encountered is
that the number of all scenarios for the Type 1 vital areas is so
large that we would rather get the scenarios for just one vital
area at a time, particularly if the vital area is something like
the control room which typically has a large number of scenarios.

When identifying the Type 1 vital areas we would like to
process individually, it is helpful to have a list of all of the
sabotage acts which can be accomplished in each Type 1 vital
area. This information may have other uses for the analyst as
well. Recall that the area equations tell us areas in which a
sabotage act can be accomplished. We now wish to know which
sabotage acts can be accomplished in an area. If the area
equations are thought of as a mapping (o r transformation) from
sabotage acts to areas, we now seek the reverse mapping (o r
transformation) from areas to sabotage acts. For the example
problem, the reverse mapping from areas to sabotage acts is given
by:

4

4

4

-53-

LOCATZONS FOR VITAL AREA EQUATIONS

. NO.0F ' LOC ATIONS = 19
NO.0F EVENTS LOCATIONS EVENTS

2 SFGRDB
IHR-NHRS
OI-RC .

S SFGRDA
RPS-D
AFO-CS-PMS -

AFWS-LO-IHR
CS1A-HS
CS1B-HS

9 MCC1JCV
SSRS-D
AFO-PMD-HS
AFO-P18-B
AFO-P18-CSG
AFWS-LO-IHR
CHO-MV1286 ABCOC
CHO-MV1867ABCC
CHO-MV1867BDCC
CS18-HS

B MCC1HCV
SSRS-D
AFO-P1 A-B
AFO-P1A-CSG
AFWS-LO-IHR
CHO-MV1286 ABCOC
CHO-MV1867 ABCC
CHO-MV1867BDCC
CS1 A-HS

19 CR
AFO-PMD-HS
AFWS-LO-IHR
CS1A-CX-SUMP-B
CStA-PP-PMS-B
CS1 A-P1 A-CSG
CS10-PP-PMD-B
CS18-PP-PMS-B
CS18-P18-8

i CS18-P18-CSG
d CHO-HX-RVESS-B
! CHO-MV1286ABC0C
i CHO-MV1867 ABCC

C;iO-MV1867BDCC

. LI'
SWA-MD-P10A

*

SUB-MD-P108
CHO-CS-PMS

'0G-NO3-CSG .

OG -N 01 -C S G ;

5 DGRM2 |,

1

|
AFO-P1A-C00L -

' DG-NO3-8-
DG-NO3-AUX
DG-NO3-CSG .

| |
-54-

_ _ _ _ _ _ _ _ _ _
_ ._ ----__ _ _. ,_. _ ,_ ,_

'

.

!

|

LOCATIONS FOR VITAL AREA EQUATIONS

NO.0F LOCATIONS = 19
NO.0F EVENTS LOCATIONS EVENTS

DG-N01-CSG
S DGRM1

AFO-P18-C00L-

DC-N01 -B
DG-N01 - A UX

,

DG-NO3-CSG
DG-N01 -C S G

10 ESGRM
AFO-P18-C00L
EP-BS-1 J-D
CB-C1J-0
EP-BS-1H-D
CB-C1H-0
ID-BS-400J-D
SWA-PP-PMD-B
SUB-PP-PMD-B
CHO-P18-B
LI

4 USGRM
ID-BS-400H-D
SWA-PP-PMD-B
SWB-PP-PMD-B

' CS18-HS
12 2AB

ID-TR-SSXFM1H-D
CS1A-PP-PMS-B
CS10-PP-PMS-B
SWA-PP-PMD-B
SWA-VV-PMD
SUB-PP-PMD-B
SWB-VV-PMD
CHO-PP-PMD-B
CHO-MV1BB7ABCC
CMO-MV1867BDCC
LI -

CHO-LS-PMS
B 3EQUIPRM,

ID-TR-SSXFM13-D
CS1A-PP-PMD-B
SWA-PP-PMD-P
SWA-VV-PMO
SWB-Pn.pMD-B
SWB-VV-PMD
SWA-MD-P10A

-SWB-MD-P108
2 PMPHSE,

CS1 A-P1 A-B
CS18-CX-SUMP-8

1 2RB-

| CS18-PP-PMS-B
!, 3 TBSMTVVPT
| SWA-HX-DILCU-B
| SWA-CS-PMS

|
'

-SS-

. . _ ._

_ _ _ _

LOCATIONS FOR VITAL AREA EQUATIONS
.

NO.0F LOCATIONS = 19
NO.0F EVrNTS LOCATIONS EVENTS ,

SUB-CS-PMS
8 CHPMCUB

SWB-HX-0ILCO-B
CHO-PP-PMD-B
CHO-MV1286ABCOC
CHO-P1A-B
CHO-P1 A-CSG
CHO-P18-CSG
LI
CHO-CS-PMS

1 RC
LI

1 RWST
CHO-CS-PMS

1 2 RUST
CHO-CS-PMS

2 RLYRM
DG-NO3-CSG
OG-N01 -C S G

%

*

*

O

-56-

7.3.1 Determining the Scenarios of a Single Type 1 Vital Area

If a Type 1 vital area has a relatively large number of
sabotage acts like the control room CR here in our example, we may
want to determine its scenarios without including the other Type 1.

vital area scenarios. To accomplish this, a slight modification
to the SETS program that finds all scenarios for all the Type 1

' * vital areas is required. After the LDBLK procedure call which
loads all of the equations into the equation file, we establish
equations which set all of the Type 1 vital areas to / OMEGA except
the one we wish to find the scenarios for, in this case CR. The
remaining Type 1 vital. areas; 2AB, CHPMCUB and ESGRM are set to
/ OMEGA by Boolean equations. The SETS statements:

2AB = / OMEGA.
CHPMCUB = / OMEGA.
ESGRM = / OMEGA.

establish these equations in the equation file. The only other
change in the program is to change the name of the solution from

. SCENARIOS-TYPEl to SCENARIOS-CR in the final REDUCEQN statement
' and in the FRMBLK and PRTEQNDNF statements. Thus the SETS program

to find the scenarios for just CR is as follows:

PROGRAM $ EXAMPLE-7.
. BLKSTAT.
'

LDBLK(SABOTAGE-FT,SCENARID-EQNS, TYPE 2-PHI,0MEGA-ASSUMPTION).
ESGR9 = /0MEGA.
2AB = /0MEGA.
CHPMCUB = /0MEGA.
SUBINEON(AC-4160-B1J.AC-4160-B1J).
REOUCEQN(AC-4160-813/1, AC-4160-81 J *EXCEPTCMP$) .
SUBINEQN(AC-41E3-01H,AC-4160-B1H).
REDUCEQN(AC-4160-B? H/1, AC-4160-B1 HaEXCEPTCMPT) .
SUBIf4EQN(SWA-IHR.SUA-IHR).
REDUCEQN(SW A -IHR/1, SU A-IHR * E X CEP TCDP$) .
SUBINEQN(SW9-IHR,SU3-IHR).
REDUC EQ N (SWB-I HR /1,5UB-iHR * E X CE P TCMP $) .
SdBINEON(CHD P1 A-C00L,CHO-P1 A-C00L) .4

! REDUCEQN(CHO-P1A-C00L/1,CHO P1A-COOL).
SUBINEQN(CdD-P18-C00L,CHO-P18-C00L). -

.

R EDUC E Q N(CHO-P18-C00L /1, C HO-P18-COOL) .
SUBINEQN(ECRS-0,ECR$-D).
R EDUC E Q N(ECR S-O /1, E CR S-D * E X CEPTCMP $) .
SUBINEQN(AFO-PM-L,AFO-PM-L).
REOUCEQN(AFO-PM-L/1, AFO-PM-L*EXCEPTCMP$) .
SUBINEQN(CHO-PM-L,CHO-PM-L).
RE00CEQN(CHO-PM-L/1,CHO-PM-L*EXCEPTCMP$).
SUBINEON(FM-TI,FM-TI)..

REDUCEQN(FM-TI/1,FM-TI*EXCEPTCMP$).
SUBINEQN(LI-MSD,LI-MSD).
REDUCEQN(LI-MSD/1,LI-MSD*EXCEPTCMP$).-

SUBINEQN(TOP, TOP).
REOUCEQN(TOP /1, SCENARIOS-CR*EXCEPTCMP$).
FRMBLK(SCENARIOS-CR*0NLY$ SCENARIOS-CR).
BLKSTAT.
PRTEQNDNF(SCENARIOS-CR).

-57-

i

. . . - . _ .

The output of the PRTEQNDNF statement identifies the scenarios for
,,

CR:

SCENARIOS-CR =' ~

1 3 CR * /LIZ * /CHO-CS-PMSZ + .

2 3 CR * /CHO-MV1867BDCCZ * /LIZ +

3 3 CR * /CHO-MV1867 ABCCZ * /LIZ +

4 3 CR * /CHO-MV1286ABCOCZ * /LIZ +

S 3 CR * /CHO-HX-RVESS-BZ * /LIZ +

6 4 CR * /LIZ * /DC-NO3-CSGZ * /DG-N01 -CSGZ +

7 4 CR * /CS18-P18-CSGZ * /LIZ * /DG-N01 -CSGZ +
B 4 CR * /CS18-P18-BZ * /LIZ * /DG-N01 -CSGZ +
9 4 CR * /CS18-PP-PMS-BZ * /LIZ * /DG-N01 -CSGZ +

10 4 CR * /CS18-PP-PMD-BZ * /LIZ * /DG-N01 -CSGZ. +;

11 4 CR * /CF A-P1A-CSGZ * /LIZ * /0G-NO3-CSGZ +
1 12 4 CR * /C 31 A-P1 A-CSGZ * /CS18-P18-CSGZ * /LIZ +

13 4 CR * /CS1 A-P1 A-CSGZ * /CS18-P18-BZ * /LIZ +

14 4 CR * /CS1 A-P1 A-CSGZ ti /CS18-PP-PMS-BZ * /LIZ +

! 15 4 CR * /CS1 A-P1 A-CSCZ * /CS18-PP-PMD-BZ * /LIZ +

, CR * /CS1 A-PP PMS-BZ * /LIZ * /DG-NO3-CSGZ +16 4
~

i

17 4 CR * /CSIA-PP-PMS-BZ * /CS18-P18-CSGZ * /LIZ +

18 4 CR * /CS1 A-PP-PMS-BZ * /CS18-P18-BZ * ' /LIZ +

19 4 CR * /CS1 A-PP-PMS-BZ * /CS18-PP-PMS-BZ * /LIZ +

20 4 CR * /CS1A-PP-PMS-BZ * /CS18-PP-PMD-BZ * /LIZ +
4

21 4 CR * /CS1 A-CX-SUMP-BZ * /LIZ # /DG-NO3-CSGZ +
'

22 4 CR * /CS1 A-CX-SUMP-BZ * /CS18-P18-CSGZ * /LIZ +

23 4 CR * /CS1 A-CX-SUMP-BZ * /CS18-P18-BZ * /LIZ + -

24 4 CR * /CS1A-CX-SUMP-BZ'* /CS18-PP-PMS-BZ # /LIZ +,

'

2S 4 CR * /CS1 A-CX-SUMP-BZ * /CS18-PP-PMD-BZ * /LIZ

-58-
,

- . - - .

. _ _ ___ .__ . . _ _ _ __

%

.Once the scenarios for the control room have been determined,
we can find the scenarios for the remaining Type 1 vital areas as

; a group or one at a time. If we want to solve the remaining Type
1 vital areas as a group, we replace the equations:

.

2AB = / OMEGA.
CHPMCUB = / OMEGA., ,

i ESGRM = / OMEGA.

by the equation:

CR = / OMEGA.
:

; We also change the name of the solution equation in the final'

REDUCEQN procedure call and the FRMBLK and PRTEQNDNF statements,
and rerun the program. For the example, the SETS program to
identify the scenarios for the Type 1 vital areas except CR is
given by:

;

PROGR AM$EX AMPLE- 8.
BLKSTAT.
LDBLK(SABOTAGE-FT, SCENARIO-EQNS, TYPE 2-PHI,0MEGA-ASSUMPTION). -

CR = /0MEGA.
} SUBINEQN(AC-4160-813,AC-4160-81J).

RE00CEQN(AC-4160-81 J/1, AC-4160-81 J aEXCEPTCMP$) .
I SUBINEQN(AC-4160-B1H,AC-4160-81H).

REDUCEQN(AC-4160-81 H/1, AC-4160-81 H*EXCEPTCMP$) .
SUBINEQN(SUA-IHR,SWA-IHR),
REDUCEQN(SWA-IHR/1,SWA-IHR*EXCEPTCMP$).
SUBINEQu(SWB-IHR,SWB-IHR).
REDUCEQN(SWB-IHR/1,SWB-IHR*EXCEPTCMD$).
SUBINEQU(CHO-P1A-C00L,CHO-P1A-C00L).
REDUCEQN(CHO-P1 A-C00L /1,CHO-P1 A-C00L) .
SUBINEQN(CHD-P18-C00L,CHO-P*B-C00L).
REDUCEQN(CHO P18-C00L/1,Ch0 P18-COOL).
SUBINEON(ECRS-0,ECRS-D). ,

>

REDUCE 1N(ECRS-D/1,ECRS-D*EXCEPTCMP$).
SUBINE QN(AFO-PM-L , AFD-PM-t) .
REDUCEUN(AFU-PM-L/1,AFO-PD-L*EXCEPTCMP$).
SUBINEQN(CHO-PM-L,CHO-PM-L).

! REDUCEQN(CHO-PM-L/1.CHO-PM-L'EXCEPTCMP$).
! SU8INEQN(FM-TI,FM-TI).*

REDUCEQN(FM-TI/1.FM-TI*EXCEPTCMP$).
SUBINEON(LI-MSD,LI-MSD).

'

REDUCEQN(LI-MSD/1,LI-MSD*EXCEPTCMP$).
SUBINEON(TOP, TOP).
REDUCEQN(TOP /1, SCEN ARIO S-RE ST * E X CE P TCMP $) ..

+

FRM8LK(SCENARIOS-REST *0NLY$ SCENARIOS-REST).
BLKSTAT.
PRTEQNDNF(SCENARIOS-REST).

*

a

,

-S9-

!
, -. . -. . -

_2e. . =a .

The output of the PRTEQNDNF prints the scenarios for the
. Type 1 vital areas except CR:

i.

. .

TERM NUMBER OF
NUMOER LITERALS

1

SCENARIOS-REST =

/LIZ * /CHO-CS-PMSZ +1 3 CHPMCUB *

2 3 CHPMCUB * /CHO-MV1286ABC0CZ * /LIZ +

3 3 CHPMCUB # /CHO-PP-PMD-BZ * /LIZ +,

4 3 2AB * /LIZ * /CHO-CS-PMSZ +

S 3 2AB * /CHO-MV186780CCZ * /LIZ +
,

6 3 2AB * /CHO-MV1867ABCCZ * /LIZ +

7 3 2AB * /CHO-PP-PMO-BZ * /LIZ +
4

8 4 ESGRM # /CB-C1H-0Z * /CHO-P18-BZ /LIZ +*

1

9 4 ESGRM * /CB-C1H-0Z * /ID-BS-480J-0Z * /LIZ +
+

10 4 ESGRM * /C6-C13-0Z * /CB-C1H-0Z * /LIZ +
.

11 4 ESGRM * /EP-BS-1 J-DZ * /CB-C1H-0Z * /LIZ +
! 12 4 ESCRM * /EP-B S-1 H-0 Z * /CHG-P18-BZ-* /LIZ +

13 4 ESGRM * /EP-BS-1H-DZ # /ID-BS-480J-DZ * /tIZ +,

14 4 ESGRM * /CB-C1J-0Z * /EP-BS-1H-0Z # /LIZ +
i 1S 4 ESGRM # /EP-BS-1 J-DZ * /EP-BS-1 H-DZ * /LIZ +

P

16 4 CHPMCUB * /CHO-P1A-CSGZ * /CHO-P18-CSGZ # /LIZ +
17 4 CHPMCUB * /CHO-P1A-BZ * /CHO-P18-CSGZ * /LIZ .

.

4

-60-

. . . - - _ - . -

- -. .. _ _ _

!
|

We may choose to solve all of the Type 1 vital areas
individually. This is done in the same way 'that the scenarios for
CR were determined. An individual run is made for each Type 1
vital area with all of the other Type 1 vital areas set to / OMEGA,
as was done in the example for CR..

7.3.2 Determining a Subset of Scenarios
.

Occasionally, a single vital area such as the control room may
have a large number of scenarios, say 10,000. To determine all of
these scenarios is a rather costly computer run and it is unlikely
that anyone is interested in examining all 10,000 scenarios. We
can obtain a subset of the scenarios, at much less cost, by only
determining scenarios with n or fewer sabotage acts (a typical
value for n is 6). If we change the truncation value from 1 to
n+1 (n + 1 because the vital area is counted as one literal) and
remove the EXCEPTCMP option from each REDUCEQN statement in the
program, then we will obtain all scenarios for the vital area with
no more than n sabotage acts since the truncation criteria no
longer excludes the sabotage acts from the counting process. For
example, the following SETS program identifies the scenarios for
the control room, CR, with less than three sabotage acts.

PROGRAM $ EXAMPLE-9.
BLKSTAT.
LDBLK(SABOTAGE-FT, SCENARIO-EQNS, TYPE 2-PHI,0MEGA-ASSUMPTION).
ESGRM = /0MEGA.
2AB = /0MEGA.
CHPMCUB = /0MEGA.
SUBINEQN(AC-4160-81 J , AC-4160-81 J) .
REDUCEQN(AC-4160-B1 J/3, AC-4160-81 J) .
SUBINEQN(AC-4160-B1 H , AC-4160-81 H) .
REDUCEQN(AC-4160-B1 H/3, AC-4160-81 H) .

j SUBINCQN(SUA-IHR,5UA-IHR).
REDUCEQN(SWA-IHR/3,SUA-IHR).'

SUBINEQN(SWB-IHR.SWB-IHR).
t RE00CEQN(SWB-IFR/3,SUB-IHR).

SUBINEQN(CHO-P1 A-C00L ,CHO-P1 A-C00L) .
REDUCEQN(CHO-P1 A-C00L/3,CHO-P1 A-COOL) .
SUBINEQN(CHO-P18-C00L,CHO-P18-COOL).
REDUCECN (CHO-P18-C00L / 3, CHO-P18-COOL) .
SUBINEON(ECRS-D,ECRS-D).
REDUCEQN(ECRS-D/3,ECRS-D).
SUBINEQN(AFO-PM-L,AFO-PM-L).
REDUCEQN(AFO-PM-L/3,AFO-PM-L). :

SUBINEQN(CHO-PM-L.CHO-PM-L). I
REDUCEQN(CHO-PM-L/3,CHO-PM-L).
SUBINEON(FM-TI,FM-TI),-

REOUCEQN(FM-TI/3,FM-TI).
SUDINEQN(LI-MSD.LI-MSD).
REDUCEQN(LI-MSD/3,LI-MSD).*

,

SUBINEQN(TOP, TOP).
REDUCEQN(TOP /3, SCENARIOS-CR-3).
FRMBLK(SCENARIOS-CR-3"0NLY$ SCENARIOS-CR-3).
BLKSTAT.;

PRTEQNDNF(SCENARIOS-CR-3).
-61-

.- -

The output of this program identifies all scenarios for the
control room which require fewer than three sabotage acts:

TERM NUMBER OF
NUMBER LITERALS -

SCENARIOS-CR-3 =
.

1 3 CR * /LIZ * /CHO-CS-PMSZ +
2 3 CR * /CHO-MV1867BOCCZ /LIZ +*

3 3 CR * /CHO-MV1867ABCCZ * /LIZ +
4 3 CR * /CHO-MV1286ABCOCZ * /LIZ +

5 3 CR * /CHO-HX-RVESS-BZ * /LIZ

7.3.3 Using Truncation when the STOP Option is Being Used

If there are any gates in the sabotage fault tree which are
being solved using stop points, as described in Section 5.5.2, thestop points should not be counted toward the truncation value
since we want to count only the vital area toward the truncation
value. To avoid counting the stop points toward the truncation
value, the EXCEPTNONCMP (except non-complemented variables) is
used. The names of the gates which are stop points follow the
EXCEPTNONCMP statement. For example, the SETS user program to
solve gate X in Section 5.5.2 for scenarios of Type 1 vital areas
would be altered as follows:

SUBINEON(X,X*STOP$C,D,E).
REDUCEQN (X/1,X *EXCEPTCMP$/EXCEPTNONCMP$C , D ,E) .
SUBINEQN(X,X*STOP$D,E).
REDUCEON(X/1,X*EXCEPTCMP$/EXCEPTNONCMP$D,E).
SUBINEQN (X ,X *STOP$E) .
REDUCEQN (X/1,X *EXCEPTCMP$/EXCEPTNCNCMP$E) .
SUBINEQN (X ,X) .

! REDUCEQN (X/1,X *EXCEPTCMP$) .

|

.

.

,

!

i
*

-62-

APPENDIX A

Procedures Available in SETS
.

Each of the procedures available in SETS is invoked by a*

procedure call statement in a SETS user program. A procedure call
begins with a procedure identifier and is usually followed by a
parameter part that is enclosed in parentheses. There are options
that can be specified in the calls for some of the procedures which
affect the processing that is achieved with those procedures.
Some of the options involve the concepts of phi and omega. In the
context of set theory, phi represents the empty set (+), and omega
represents the universal set (n); while in the context of Boolean
algebra, phi = 0 and omega = 1. The processing that is accom-
plished by the execution of a procedure and any options that can
be used to affect that processing will be described for each pro-
cedure discussed.

A.1 Read Block

A call of the Read Block procedure has the form:

RDBLK (bt,b2, ..., b)-k

This procedure is used to read blocks. The parameters bl, b2<
bk are the names of the blocks that are to be read. The...,

blocks must be supplied as input in the same left to right order
that the block names occur as paremeters in the procedure call.

A block is a set of Boolean equations that can be read oy tne
4 Read Block procedure. A block is comprised of a block header and

a group of one or more Boolean equations. The block neader
precedes the equations and has the form:

.

BLOCK $ block-name.,

I

where

" block-name" is the name of the block.

Each equation in the block must be terminated with a period.

The equations in a block are checked as they are read to
ensure that they are correctly formed equations. After each block
has been read and the equations have been checked, the block is
added to the block file.,

A.2 Read Fault Tree
.

A call of the Read Fault Tree procedure has the form:

RDFT (ftl, ft2, ..., ft)-k,

A-1

. - ,. --

This procedure is used to read fault trees. The parameters fti,
ftk are the names of the fault trees that are to beft2, ...,

rend. The fault trees must be supplied as input in the same left
to right order that the fault tree names occur as parameters in
the procedure call. .

The fault tree input that was defined in Chapter 2 is a data
atructure that can be read by the Read Fault Tree procedure. The -

redundancy inherent in the input representation of a fault tree is
used to check the structure of each fault tree as it is read and
processed. Af ter each fault tree is read and checked, a block is
created for that fault tree and added to the block file. The block
contains the intermediate event equations for the fault tree, and
the block name is the same as the fault tree name.

Each block that is generated by the Read Fault Tree procedure
contains a representation of the fault tree in addition to the
equations that are contained in the block. This internal repre-
sentation of the fault tree is used to produce the Fault Tree
Event Table when the fault tree is printed using the Print Block
procedure.

A.3 Print Equation

A call of the Print Equation procedure has the form:

Vk)-PRTEQN (vi, v2e a

This procedure is used to print equations that are in the equation
file. The parameters vi, v2r Vk are processed from*

left to right and the equation for each variable is printed as it
is encountered. If the equation file does not contain an equation

particular vi, the messagefor a

THERE IS NO SET EQUATION FOR vi

is printed.

The equations in the equation file are in a factored form, and
they are printed in this form by the Print Equation procedute. If
there are any parentheses in an equation, an integer will be
printed immediately below each parenthesis when the equation is
printed. The numbers are provided to aid in the interpretation of
complex equations. Paired parentheses have the same number and
the numbering begins with the number 1 for an outermost set of
parentheses. In a printed equation, the operations of AND, OR,
cnd NOT are represented by *, +, and /, respectively.

~

A.4 Print Equation In Disjunctive Normal Form

A call of the Print Equation in Disjunctive Normal Form ,

procedure has the form:

PRTEQNDNF (pi, p2s Pk)-e
.

A-2

This procedure is used to print equations that are in the equation
file. Each of the parameters pi, p2s Pk is either aa

variable name vi, or it is a variable name and a truncation value
of the form vi/n, where n is a positive integer. The parameters
are processed from left to right and the equation for each vari--

able is printed as it is encountered. If the equation file does
not contain an equation for a particular vi, the message

.

THERE IS NO SET EQUATION FOR vi

is printed.

When a truncation value is specified, only those terms of the
equation with n or fewer variables are printed. If every term of
an equation contains more than n variables, the message

THE SET EQUATION IS PHI
,

is printed.

A Literal Occurrence Table is printed preceding each equation
that is printed. The table indicates the number of times that a
variable (literal) occurs in the printed equation. Since the
equation is printed in a disjunctive normal form, the number of
occurrences of a variable is also the number of terms which con-
tain the variable. If any terms of an equation are discarded
because of a truncation value, some variables that occur in the
full equation may not occur in the truncated equation that is

. printed. The Literal Occurrence Table contains a count of only
those variables which occur in the printed equation.

Following the Literal Cccurrence Table for an equation, the
equation is printed in a disjunctive normal fore.. The terms are
numbered and they are printed in tne order of an increasing number

1 of variables per term.

A.5 Delete Equation

A call of the Delete Equation procedure has one of the forms:

a. DLTEQN.
I

; b. DLTEQN (vi, v2r Vk)-e

This procedure is used to delete equations from the equation
file. If there is no parameter list in the procedure call (form
a.),'every equation is deleted from the equation file. When a

_ parameter list occurs in the call (form b.), only the equations
for the variables vi, v2r Vk are deleted from the equa-e

tion file. If there is no equation in the equation file for a
particular variable vi, then no action is taken for that.

parameter.

| |

| |
1

A-3

1

A.6 Substitute In Equation

A call of the Substitute In Equation procedure has one of the
forms:

a. SUBINEQN (vi, v2)-
.

b. SUBINEQN (vi, v2 * 01/02/03). '

This procedure is used to create a new equation and enter it into
the equation file. The right side of the new equation is gener-
ated from the equation for vi by a repeated process of substi-
tuting equals for equals. The left side variable for the new
equation is v2-

For both forms of the procedure call, a copy of the equation
for the first parameter, vi, is used to start the substitution
process. If there is no equation for vi in the equation file,
then vi is taken as the right side expression for the new equa-
tion. If there is an equation for vi in the equation file, then
ecch variable in the right side expression of the equation for
v1 which has an equation in the equation file, is replaced by
the right side of the equation for that variable. By repeating
this substitution process for every variable in the right side
expression, including variables that have been introduced by a
prior substitution, the expression will ultimately contain only
variables for which there is no equation in the equation file and
no further substitutions can be made.

If there are no substitution control options in the procedure
call (form a.), the substitution process will terminate when none
of the variables remaining in the expression have an equation in
the equation file. However, if substitution control options occur
in the call (form b.), these options are used to arrest the sub-
stitution process priot to its normal completion. The parameters
ol, o2, and o3 represent the three options that can occur in
this form of the procedure call.

An omega option has tha form:

OMEGA $ vi, v2, .. , yk

The omega option causes every occurrence of each vi to be
replaced by the variable OMEGA rather than the right side of the
equation for vi. The equation for vi in the equation file is
not affected.

A phi option has the form:
.

PHI $ vi, v2s Vka

.

The phi option causes every occurrence of each vi to be replaced
by the variable 7 OMEGA rather than the right side of the equation
fer vi. The equation for vi in the equation file is not affected.

.

A-4

A stop option has the form:

STOP$ vl, v2s Yks

The stop option causes every occurrence of each vi to be treated.

as if there is no equation for vi in the equation file (ie, no
substitution for vi will take place), and vi will remain in
the expression. The equation for vi in the equation file is not-

affected. One or more of the options ols 02, or o3 can occur
in the procedure call separated by "/" delimiters. Moreover, the
options can occur in any order.

A.7 Reduce Equation

A call of the Reduce Equation procedure has one of the forms:

a. REDUCEQN (vi, v2)*

b. REDUCEQN (vi, v2 * 01/02).

c. REDUCEQN (v1/n, v2)-

d. REDUCEQN (v1/n, v2 * 01/02/03/04).

This procedure is used to create a new equation and enter it into
the equation file. The right side of the new equation is gener-
ated by applying certain Boolean identities to the right side of
the equation for v1 The left side variable for the new
equation is v2-

The processing by the Reduce Equation procedure is concerned
primarily with the reduction of a Boolean expression. During the
processing, the form of the expression changes from a factored
forn, to a disjunctive normal form, and then back again to a,

'

factored form. The processing begins with a copy of the right
side expression from the equation for vi and is achieved in
three steps:

1. Expansion

a. Apply DeMorgan's Rules to the factored form of the
expression to eliminate NOT operators.

a

b. Repeatedly apply the distributive law to the factored
form of the expression to generate a disjunctive normal
form of the expression.

'
c. Apply-the identities P*P = P and P* 7P = + to the

r

expression to eliminate repeated variables in a term
,

and terms with zero products.
, .

A-5

_ _ _ _ _ _ _ _

2. Simplification

Apply the identity P + P*Q = P to the uisjunctive normal
form of the expression to eliminate terms that are
logically contained in other terms (absorption rule). .

3. Factorization
.

Factor (group) the disjunctive normal form of the
expression to create a factored form of the reduced
expression. (The factoring scheme is based on choosing as
a factor the most often occurring variable whenever a
factor is selected.)

For all forms of the procedure call, a copy of the right side
expression from the equation for vi is expanded, simplified, and
fcctored to form the right side of the new equation. If there is
no equation for vi in the equation file, then vi is taken as
tha right side expression of the new equation. If there is no
truncation value and there are no reduction control options in the
procedure call (form a.), the rocessing will consist of the equa-
tion reduction already described. If there is no truncation value
but there are reduction control options (form b.), the parameters
01 and o2 are the reduction control options that can occur in
this, form of the procedure call.

An omega option has the form

OMEGA $ vi, v2e +++e Vk

The omega option causes every occurrence of each vi to be
replaced by the variable OMEGA. Then, the identities O + P = 0
cnd G*P = P w!.ll be applied to the expression prior to expansion.

A phi option has the from:

PHI $ vl, v2 Vk+++e

The phi option causes every occurrence of each vi to be replaced
by the variable 7 OMEGA. Then, the identities + + P = P atid

.

+0P = + will be applied to the expression prior to expansion. Any
number of the 01 or o2 Options can occur in the procedure call
ssparated by "/" delimiters, and they can occur in any order.

If there is a truncation value but there are no reduction
control options (form c.), the expression will be truncated during
cxpansion. The parameter n is a counted literals maximum (ie, the
truncation value). Every term which contains moro than n
variables will be discarded.

~

If there is a truncation value and there are reduction control .

cptions (form d.), the parameters oi, o2e 03, and o4 are
tha options for this form of the procedure call. These options
cay be included in any order. The first option, 01, is the omega

,

A-6

' ''u
_ m

option and the second option, 02, is the phi option. These are
the same options that were described for form b.

The options 03 and o4 are related to n, the counted
literals maximum parameter. The option, o3, is the except.

complement option and it has one of the following forms:

1. EXCEPTCMP$*

2. EXCEPTCMP$ vi, v2e , Vk

If the except complement option does not have a variable list
(form 1.), all complement variables are excluded from counting
toward the truncation value. If the except complement option has
a variable list (form 2.), only the complement variables corre-
sponding to each vi in the list are not counted toward the
truncation value.

The option, o4, is the except noncomplement option and it
has one of the following forms:

1. EXCEPTNONCMP$

2. EXCEPTNONCMP$ vi, v2e * Vk

These options function exactly like the except complement options
,

(o3), but it is the noncomplement variables that are excluded
from counting toward the truncation value rather than the
complement variables.

Any number of the o1, o2e 03, or o4 options can occur
in the procedute call separated by "/" delimiters, and they can
occur in any order.

A.R Form Block

A call of the Form Block procedure has one of the forms:

a. FRMBLK (b).

b. F RMB LK (b * ol).

This procedure is used to form a block and add it to the block
file. In all forms of the procedure call, the parameter b is the
block name for the block to be formed. If there is no selection
control option in the procedure call (form a.), a block is formed
which contains all of the equations that are in the equation file
when the procedure is executed.

,

If there is a selection control option in the procedure call
(form b.), a block will be formed which contains a subset of the.

equations in the equation file. The selection control option,
01, will have one of the following forms:

|
|
'

A-7
|

, ,, ;v. gn , ., .- .- -

> \ .

~ ~' (,a

.> , ., .
,

- '
%4,

, ,, ,
*

(s : ,_
,,

*

1. ONLYS vl, v2s V k 's , . Dse

s s

'EXCEPT$vi,v2*~G-*|'{k - '

~ ''

2.

Only-one/selectioncontrol;opti$nicanoccdrfiEacalloftheForm
Block. procedure. If the only' option is used.-(form'l.), the block

*

that is' formed will contain only those eq'uations~from the equation
file that hav_e ,a lef t ' side variable which occurs 'in the variable .

' list of the option. . It -the except option is used J(form 2.) , the
-block ,that is formed will conta'in edery eduition from the equations

file,except tnose that"have a left side variable which occurs in
the variable list of,the ophion~ . If there"is' no' equation in the.

equati~on file for a variable 'that occurs in the selection control
*

option,'the effect issas if the veriable<had'not o,ccurred in the
,

~~ 'option.' . .~ .
, s ,_. > s

It is possible to'fbrm a, block khich does not contain any~

equations,-although such a block servss no daeful purpose. How-
4 ..e v e rJ, if a selection contro10 option results in excluding all of

the-equations that..are is the equation-file, or if there are no
equations in the,bg~uation file,, then a block without any equations
wil1~bo generated.1 x

A.9 Load Block '
4

.

A call of the Load Block pro'cedure has the form:

,LDBLK (bi, 62, ..., b)-k.

This procedure is used to'lhad the equati6ns/ contained in a block
into the equation; file. 'The parameters b , b2, ...,

~

_ i bk are the
1 names of the blocks to be lo'aded. The parameters are processed from
I left to right 'and as each block"name 31s encountered, the equations

contained in that block are loaded,intocthe-equation file. The
blocks in'the block' file are not'affected'by this loading process.

~
<

If the equation file alteady containslan' equation for some
variable vi, and ..an equation {for viis conta(i'ried in a block _ to
be loaded,qthe equation,for vi from the block.will' replace the
equation forsvi In,the equation file. Otherwise,Lequations'in the;

equation file will no,t be changed when a block is loaded. Thus,E
after each block'is loaded 6 the equation file will consist of all of
the equations from the block,- together with those equations which

! were in the equation file 'whenithe' block was loaded -and were not
~

replaced by an equation from theib1ock. Loading a block does not
change the block file'in any way.. Also,-l'f a. block is specified for

' loading.which'is notfin the blcck file,-anfarror condition.will'be
.datected and an error messdge will be'' printed'.~

'

.. ,
,, .

~A ~ block cannot contain mor e than one equation wi.th the same lef t
~ si'de variable because'su'ch'a block cannot be formed. However, if
several blocks are'to be loaded,Jan equation with the same left side *

variable can occur in,more~than'one of the blocks. Since each' block
is loa'ded as its' block name is encountered while processing the

x -

, . .

.s%

f 5, % m. \

j a- 'A-8
w . 'q : ; < _ _..

--

:1: g .

I \/ ..'S , ;
. _ - _ _L. . __ _ _ _.

~

__

parameters bi, b2, ..., bk from left to right, the last
equation loaded for a particular variable will be the equation in
the equation file when execution of the procedure is completed.
A.10 Print Block.

A call of the Print Block procedure has the form:
O

PRTBLK (bi, b, bg).2 ...,

This procedure is used to print the information contained in a
block. The parameters bl, b2, ..., bk are the names of the
blocks to be printed. As the block names b , b2, ...,l bk are
processed from left to right and as each block name is encoun-
tered, the information from that block will be printed. If the
block was generated by the Read Fault Tree procedure, it contains an
internal representation of the fault _ tree, and the first thing to be
printed will be the Fault Tree Event Table. Each event of the fault
tree is listed in the Fault Tree Event Table together with the
information specifying its relationship to the other events of the
fault tree. The numbering of the events begins with 2 because OMEGA
is always treated as the first variable in SETS and given the number
1. Since OMEGA cannot occur in a fault tree, it is simply not
printed in the Fault Tree Event Table, and the number of events in a
fault tree is one less than the number of the last event in the
Fault Tree Event Table.

The remainder of the information printed by the Print Block
procedure is printed in the same form for all blocks regardless of
how they were formed. The equations contained in the block are
printed one after the other in the same format used by the Print
Equation procedure to print factored equations.

A.ll Delete Block

A call of the Delete Block procedure has one of the forms:

a. DLTBLK.

b. DLTBLK (bi, b, b)-2 ..., k

This procedure is used to delete blocks from the block file. If
there is no parameter list in the procedure call (form a.), all
blocks are deleted from the block file. Careful consideration of
the consequences should precede the use of this form of the proce-
dure call. However, such a call should occur at the beginning of
any SETS user program intended to create a new block file.

-

If the parameter list is used with the procedure call (form b.),
the parameters b , b , bk .re the names of the blocks tol 2 ...,

be deleted. Only those blocks with a block name that occurs in theo

procedure call will be deleted. If more than one block on the block,

file has the same block name, and if that block name occurs as a
parameter in the procedure call, every block with that block name
will be deleted from the block file.

A-9

A.12 Block Status

A call of the Block Status procedure has the form:

BLKSTAT. .

This procedure is used to ascertain what blocks are on the block
file. If there are no blocks on the block file, the message -

THE BLOCK FILE IS EMPTY

will be printed. If the block file is not empty, the block names of
the blocks on the block file will be printed in the same order that
they occur on the block file.

.

.

I
I

.

A-10

. . . . -

._ __ __ .. __ _ _ --- +
-f

f

APPENDIX B
4

Execution Diagnostics
4 .

During the execution of the SETS program (i.e., during the
interpretive execution of a SETS user program), there are several-

errors that will be detected if they should occur. The errors
; . will be described in two groups. The first group is concerned

with the logic and implementation of the SETS program, and the
; second group concerns errors in a SETS user program.

$ B.1 SETS Errors

In general, errors detected in the execution of the SETS*

| program indicate a serious breakdown. Although these errors
} rarely occur, tests are included in SETS to detect them.in order

to preclude further execution that would produce erroneous.

j results. All of these errors will cause the execution of SETS to
be terminated after an appropriate message has been printed.a

| There are three illegal branch errors that can occur. The
* messages corresponding to these errors are as follows: '

AN ILLEGAL TRANSFER HAS OCCURRED FROM A COMPUTED
GOTO STATEMENT.

1 AN ITERATION PROCESS HAS BEEN COMPLETED WHICH SHOULD
HAVE BEEN EXITED PRIOR TO COMPLETION.,

I THERE HAS BEEN A COMPUTER MALFUNCTION OR AN ERROR
EXISTS IN THE SETS PROGRAM.

;

! An illegal branch error will occur if a character is used which is
not a' valid character in a SETS user program. An illegal branch.

| error may also'be caused by a computer malfunction and the job
; should be run again to make certain that the error was not the
i result of such a malfunction. An illegal branch error can also

occur if a situation occurs that was not anticipated when the SETS
program was coded. In this case, the cause of the-error must be

! determined and changes made in the SETS program to correct-the
|. error.
;
'

There are three file processing errors that can occur. The
| messages corresponding to these errors are as follows:-

AN END OF FILE ERROR HAS OCCURRED.,

A PARITY ERROR HAS OCCURRED.
'

I
.

A READY ' ERROR HAS OCCURRED. '

s

"

i

B-1
.

,

l

. . _ . . _ _ -_ ___ _ ._ _ __ _ _ _ _ . _ _ _ _ _ .-

. . . - . . . - .- -- - . .

5

I

;<

'

All,ofLthe file processing' errors can result from a bad file, or
j from the fact that the file used was not the correct one. The

user should first ascertain that the files specified are indeed
i the ones he intended to use and then run the job again. If the

error persists, then the file in question may simply be a bad file
and need to be regenerated--particularly'i? a parity error is oc- *

i curring. Like the illegal-branch errors, file processing errors
can be the' result of a situation that was not anticipated when the .

t SSTS program was coded. A change in the SETS program would then
- be required to correct the error.

,

; There is one further error that can occur during the execution
: of the SETS program. This error concerns.the printed output

generated by SETS, and the message for this error is as follows:

i . THE MAXIMUM NUMBER OF LINES PER PAGE IS TOO

= SMALL TO ALLOW PROPER PAGING OF THE OUTPUT.
I'
! This error cannot occur when the standard version of SETS is

used. However, the error can occur if a version of SETS is creat-
| ed that reduces the maximum number of printed lines per page to a
; value that is too'small to allow the printing of the headings that
t can occur in the printed output. This error can be eliminated by

using a version of SETS with a-larger value for the maximum numberi

i of lines per page.
!

B.2 Sets User Program Errors:

The SETS user program errors are syntax errors, and errors
,

that occur during the execution of the statements of the SETS user i
'

program. In general, these errors will not cause execution of the
!

4 SETS program to be terminated. However, the processing of the
j SETS user program following the detection.of one of_these errors
{ will be significantly different than normal processing. The pro-
] cessing that occurs after the detection of an error is intended

to determine whether or not'any remaining input is' syntactically
correct. It is not possible to accomplish _this task-completely
because recovery after a detected error is based on some syntactic

i characteristic -(eg, the period at the end of each statement) .
4 Nevertheless, many of the syntax' errors'can be detected during a

single' execution of a SETS' user program.

'

The execution of a-SETS user program occurs in two-phases.
First,.the SETS user program itself is read and tested to deter-
mine that it is syntactically _ correct. If an error is detected.

s while reading the SETS user-program, an attempt is made to read
end-test the remainder of the SETS user-program unless the error

|
occurred in the' program header in which case execution will be -

terminated.' The SETS' user program will not be executed if any,
,

errors occur while.it.is being read.'
!

.

i Once the' SETS' user program can be read without . error, its
! execution.wi11' proceed normally unless an error.is detected during
i

*

i.

f B-2

. _ __. _ _ ._ _ _ _ _ _ _ _ ._ _ _ _ _ _ _ _ _ _ _ _ _

1

'I
i

execution. If an error is detected during execution, an attempt
will be made to execute all remaining procedure calls that process
input (RDFT and RDBLK), but execution of all other statements in
the SETS user program will be bypassed. However, no blocks will
be formed from fault trees or blocks after an error has been,

detected.

B.2.1 Special Fault Tree Error Messages -- In addition to the-

numbered error conditions that are described in the next section,
there are certain fault tree errors which will cause special
messages to be printed. These special messages are as follows:

ERRORS OCCURRED IN THE DEFINITION OF THE EVENT event-name.

THERE WAS NO DEFINITION FOR THE EVENT event-name.

THE DEFINITION FOR THE EVENT event-name DOES NOT INCLUDE
ITS RELATIONSHIP TO THE EVENT event-name.

THE RELATIONSHIP BETWEEN THE EVENTS event-name AND
event-name IS INCONSISTENT.

where

" event-name" is the name of a fault tree event.
These special-messages are the result of tests performed after the
entire fault tree has been read. As a result, they provide infor-
mation which is sometimes already known. For example, when
processing the event definition for.an event X, if a name is
encountered that contains more than the maximum number of name
characters allowed, a numbered error message (Error 33) will be
printed. Later in the processing the message

'

ERRORS OCCURRED IN THE DEFINITION OF THE EVENT X
'I

will also be printed even though both messages are the result of
the same error. The special messages are helpful in tracking down
errors in the fault tree. Correction of the input will then
eliminate the errors.

i
. B.2.2 Numbered Error Messages -- Except for the special
| messages concerning certain fault tree errors, the detection of an

error during the execution of a SETS user program will result in a
numbered error message of the form:

****** ERROR NUMBER: n, name

~

where
:

"n" is the error number.

"name" is either empty or it is the name of some entity -
in the SETS user program or its associated input.

; B-3

. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

O

The descriptions of the errors that cause numbered error messages
cre listed below along with the error number that will appear in
the message. Furthermore, steps for correcting the error will be
indicated if they can be carried out by the user.

Error Number Error Description ~

l A special character is incorrect in the .

context in which it occurs. The characters
that occur in the input between the previous
special character and the special character
that is incorrect will be printed. Correct
the input.

2 A program header, a block header, or a fault
tree header is incorrect. The characters
that begin the header will be printed.
Correct the input.

3 The SETS user program exceeds the size of the
vector used to store the program. The name
of the SETS user program will be printed.
Break up the SETS user program into two or
more programs that achieve the same result as
the original program.

4 The procedure identifier of a procedure call
is incorrect. The incorrect procedure iden-
tifier will be printed. Correct the input.

5 The parameter part of a procedure call is
incorrect. The procedure identifier of the
procedure call will be printed. Correct the
input.

6 The block name in a block header, or the
fault tree name in a fault tree header is not
the same as the next parameter in a RDBLK
call or a RDFT call, respectively. The block
name or the fault tree name trom the header
will be printed. Correct the input.

7 The number of variables exceeds the size of
the table used to hold them. Initialize the
number of variables in the table by inserting
a call of DLTEQN with no parameters in the
SETS user program after taking steps to save
all meaningful equations in blocks. Also,
whenever possible, minimize the number of
variables in the table before calls of RDFT,
RDBLK, and PRTBLK since execution of these

*
procedures temporarily adds additional
variables to the table.

.

B-4

i

'

3 -

8 One of the records of a block exceeds the
' size of the vector used as a temporary trans-*

fer area for a DLTBLK call with a nonempty*

parameter part. Use a version of SETS with a
larger copy vector (equivalenced to the

,

i expression vector).

!- 9 The substitution control part of a SUBINEQN
.

call or the reduction control.part of a
b REDUCEQN call is incorrect. Specifically, a

variable has occurred more than once in the
j. same kind of control element, or a variable i

j has occurred in both an omega and a phi con-
'

trol element. The variable that caused the-

error will be printed. Correct the input.

| 10 The left side variable of an equ'ation is
i OMEGA. Correct the input. '

i

; 11 A fault tree does not have any event
! definitions (i.e., the fault tree body is
; empty). The fault tree will be printed.

Correct the input.
|

! 12 A fault tree has an incorrect alphabetic
j delimiter. The-incorrect alphabetic-
; delimiter will be printed. Correct the input.

] 13 An event definition does not contain any
1 relationship declarations. The name of the

event being defined will be printed. Correct'

the input.

14 A fault tree contains OMEGA as an event
j ' name. Correct the input.
:
'

15 An event has more than one event definition.
The name of the event with multiple defini-1

| tions will be printed. Correct the input.
:

1 16 A fault tree body begins with a relationship
declaration instead of an event declaration.;

'

The name of the fault tree will be printed,
j Correct the input.

17 The number of-prefixes used in a fault tree
! exceeds the size of the table used to store

them. The prefix that causes the error will
, '

be printed. Alter the fault tree so that,

: ' fewer. prefixes are required.
!, ;

,
.

;

B-5

c
-. . ~ . - - , . , . . . - _ . - . - - - , ~ . _ - - - - . . - - - - - - , . - . - ,---

Error Number Error Description

18 The number of relationships in a fault tree
exceeds the size of the' vector used to hold
them. The fault tree name.will be printed.
If possible, break up the fault tree into two -

or more smaller fault trees that represent
the same logic as the original fault tree.

,

19 An event exceeds the maximum rank (i.e., the
number of events related to it). The name of
the event with the excessive rank will be
printed. Insert one or.more additional
intermediate events into the fault tree so
that the logic is preserved, but none of the
events in the fault tree exceed the maximum
rank.

20 An event in a relationship declaration is the
same as the event being defined, or it occurs
in more than one relationship declaration in
the same event definition. (The same event
can occur in a similar input or a similar
output declaration if the prefixes are not
identical.) The name of the event being
defined will be printed. Correct the input.

21 An intermediate event definition with a
similar output declaration also has an output
declaration or a similar input declaration.
The name of the event being defined will be
printed. Correct the input.

22 A primary event definition has relationship
declarations other than output declarations.
The name of the event being defined will be
printed. Correct the input.

23 A special intermediate event definition
contains a similar input declaration. The
name of the event being defined will be
printed. Correct the input.

24 An intermediate event definition does not
contain any input declarations. The name of
the event being defined will be printed.
Correct the input.

25 The logic expression in a special -

intermediate event definition does not con-
tain all of the events that occur in the in-
put declarations. The name of the event '

being defined will be printed. Correct the
input.

.

B-6

L-

Error Number Error Description

26 The logic expression in a special
intermediate event definition contains at
least one event that does not occur in an*

input declaration. The name of the event
being defined will be printed. Correct the
input.-

27 A Boolean expression exceeds the size of the
vector used to hold it. Use a version of
SETS with a larger expression vector.

28 A conditioning event is related to an event
that is not the output event of a PRIORITY
AND gate or an INHIBIT gate. The name of the
conditioning event will be printed. Cortect
the input.

29 The output event of a PRIORITY AND gate or an
INHIBIT gate does not have exactly one condi-
tioning event related to it. The name of the
output event of the PRIORITY AND gate or the
INHIBIT gate will be printed. Correct the
input.

30 The output event of a PRIORITY AND gate does
not have at least two input events related to
it. The name of the output event of the
PRIORITY AND gate will be printed. Correct
the input.

31 The output event of an INHIBIT gate does not
have exactly two input events related to it.
The name of the output event of the INHIBIT
gate will be printed. Correct the input.

32 A fault tree contains at least two similar
trees that overlap (i.e., generated event
names have more than one prefix). The
generated name of the event that causes the
error will be printed. Correct the input.

33 The number of characters in a name or
alphabetic delimiter exceeds the size of the
vector used to build these entities. The
first sixteen characters of the name or
alphabetic delimiter will be printed.*

Correct the input.

34 Two special characters (excluding the minus),

occur in juxtaposition in a context where
such an occurrence is incorrect. Correct the
input.

B-7

-

' Error Number' Error Description

35 Two special characters (excluding the minus)
do not occur in juxtaposition in a context
where such an occurrence is required. The ,

characters that occur between the two special
characters will be printed. Correct the
input. -

36 A generated event name is OMEGA, or it is
identical to a nongenerated event name, or it
is identical to a generated event name but
the prefixes are not the same. The generated
event name will be printed. Correct the
input.

37 The block file does not contain a block with
the block name that occurs as a parameter in
a LDBLK or a PRTBLK call. The block name
will be printed. Correct the input.

38 An equation cannot be printed without
,

exceeding the maximum length allowed for each
line of print. Use a version of SETS with a
larger maximum printed line length.

39 The right side of an equation is incorrect.
Specifically, a variable follows a right
parenthesis. The left side variable of the
equation will be printed. Correct the input.

40 The right side of an equation is incorrect.
Specifically, there is at least one unpaired
left parenthesis. The left side variable of
the equation will be printed. Correct the
input.

41 The right side of an equation-is incorrect.-
Specifically, the period terminating the
right side follows the equivalence operator,
a left parenthesis, or an operator. The left
side variable of the equation will be
printed. Correct the_ input.

42 The right side of an equation is incorrect.
i Specifically, an AND or OR operator follows a-

left parenthesis or another operator. The
left side variable of the equation will be

'

i printed. Correct the input.
.

! 43 The right side of an equation is~ incorrect. .

Specifically, a NOT operator follows another
NOT operator, a right parenthesis, or a
variable. The left side variable of the

*

equation will be printed. ' Correct the input.

B-8
|

L

I

|

Error Number Error Description

44 The right side of an equation is incorrect.
Specifically, a left parenthesis follows a
right parenthesis or a variable. The left,

side variable of the equation will be
printed. Correct the input.

.

45 The right side of an equation is incorrect.
Specifically, a right parenthesis follows a
left parenthesis or an operator. The left
side variable of the equation will be
printed. Correct the input.

46 The right side of an equation is incorrect.
Specifically, there is at least one unpaired
rignt parenthesis. The left side variable of
the equation will be printed. Correct the
input.

47 The level of an AND or OR operator exceeds
the maximum that can be accommodated during
expansion of an expression. The left side
variable of the equation which contains the
operator will be printed. If possible, break
up the equation and reduce it in stages
instead of all at once.

48 The left side variable of an equation occurs
in the right side of the equation, or the
process of substituting equals for equals
into the right side of an equation generates
a sequence of substitutions that is repeti-
tive and nonending. For the first case the
left side variable of the equation will be
printed, and for the second case the left
side variable from one of the equations in
the repetitive sequence will be printed.
Correct the input.

49 An integer contains a character other than a
digit, or an integer has occurred that is

99999999. Correct the input.

50 The number of vaciables in a term exceeds the
maximum that can be accommodated during the
expansion of an expression. Use a counted
literals maximum in the REDUCEQN or PRTEQNDNF'

call to truncate the equation.

.

D-9

_ -

I

- _ _ -_

Error Number Error Description

51 The number of equations that either are or
have been in the equation file since this
numbering was last initialized exceeds the'

maximum number that can be accommodated. The
*

name of the SETS user program will be printed.
Initialize the numbering of equations by -

inserting a call of DLTEQN with no parameters
in the SETS user program after taking steps
to save all meaningful equations in blocks.

t

' 52 The number of terms in an expression exceeds
the size of the vector used to hold them. If
this occurs during simplification or factor-
ization of an equation, break up the equation
and reduce it in stages instead of all at
once, or use a counted literals maximum in

1

j the REDUCEQN call to truncate the equation. '

If it occurs when an equation is being printed
in disjunctive normal form, use a counted
literals maximum in the PRTEQNDNF call to
truncate the equation.*

53 The region of Extended Core Storage (ECS)
used to store the right sides of equations
has been exceeded. The name of the SETS user
program will be printed. Initialize the use
of ECS by inserting a call of DLTEQN with no
parameters in the SETS user program after

' taking steps to save all meaningful equations
in blocks.

54 The number of variables in an expression
exceeds the size of the vector used to count
the number of occurrences of each literal.
If this occurs during factorization, break up'

! the equation and reduce it in stages rather
, than all at once, or use a counted literals
{ maximum in the REDUCEQN call to truncate the i

equation. If it occurs when an equation is
,

being printed in disjunctive normal form, use
a counted literals maximum in the PRTEQNDNF
call to truncate the equation.

'
|

.

|

.

B-10

. - - _ . _ - _ _ - - _ _ . ._. _- .-_

Appendix C

The Output of PRTBLK for the Example Sabotage Fault Tree and
its Area Equations

o

a a # " FAULT TREE EVENT TABLE " * " *
(SABOTAGE-FT)

-

SET NAME TYPE RANK RELATIONSHIPS

2 TOP OG 2 IN FM-TI,

IN FM-ILOCA,

3 FM-TI AG 3 IN TMS-D,

IN TI-RT,

OUT, TOP

4 FM-ILOCA OG 2 IN LI-MSO,

OUT, TOP

S LI-MSO AG 3 IN L-MSO,

IN LI,

OUT, FM-ILOCA

6 L-MSO OG 4 IN ECRS-D,

IN ECIS-0,

IN PAHRS-0,

OUT, LI-MSO

7 LI DE 1 007, LI-MSO

O LOSPW OE 4 00T. A C - 4160 -813 - NP
OUT, AC -4100-01 J - AP
OUT, A C -4160 -01 H -NP
OUT, AC-4160-01H-AP

9 AC-4160-01J-NP AG 3 IN LOSPW,

IN AC-4100-013 - AP,

OUT, A C - 4100 - 013 - P S

10 AC-4160-013-AP OG 3 IN LOSPW,

IN COMP-MPWT-0,

00T, A C-4160 -01 J -NP

11 A C -4160 -01 H - NP AG 3 IN , LOSPW
IN AC-4160-01H-AP,,

OUT, AC-4100-01H-PS

12 AC-4160-01H-AP OG 3 IN , LOSPW,

IN COMP-MPUI-0,

OUI, AC-4100-01H-NP

13 RPS-D DE 1 OUT, TMS-0

14 TMS-D OG 3 IN , RPS-D
IN OHRS-D,

C-1 00T FM-TI

SET NAME TYPE RANK RELATIONSHIPS

15 ADHRS-D OG 3 IN SSRS-D,

IN AFUS-LO-IHR,

OUT, OHRS-D *

16 DHRS-D AG 2 IN ADHRS-D,

OUT, TMS-D -

17 SSRS-D DE 1 OUT, ADHRS-D

18 AFWS-LO-IHR OG 2 IN AFO-IHR,

OUT, ADHRS-D

19 TI-RT OG 3 IN , DI-RC
IN IHR-NHRS,

OUT, FM-TI

20 OI-RC DE 1 OUT, TI-RT

21 IHR-NHRS DE 1 OUT, TI-RT

22 AFO-IHR OG 4 IN AFO-PMD-HS,

IN AFO-PM-L,

IN AFO-CS-PMS,

OUT, AFUS-LO-IHR

23 AFO-PMD-HS DE 1 OUT, AFO-IHR

24 AFO-PM-L AG 3 IN AFO-MD-P1A,

IN AFO-MD-P1B,

OUT, AFO-IHR

25 AFO-CS-PMS DE 1 OUT, AFO-IHR

26 AFO-MD-P1A OG 3 IN AFO-P1A-D,

IN AFO-P1A-EPU,

OUT, AFO-PM-L

27 AFO-MD-P10 OG 3 IN AFO-P10-0,

IN AFO-P18-EPW,

OUT, AFO-PM-L

20 AFO-P1A-D OG 4 IN AFO-P1A-8,

IN AFO-P1A-AUX,

IN AFO-P1A-CSG,

OUT, AFO-MD-P1A

*

29 AFO-P1A-EPW OG 2 IN A C - 4160 -01 H,

OUT, AFO-MD-P1A
'

30 AFO-P1A-D DE 1 OUT, AFO-P1A-D

31 AFO-P1A-AUX OG 2 IN AFO-P1A-C00L,

.

C-2

.

|SET NAME TYPE RANK RELATIONSHIPS
|

OUT, AFO-P1A-D
o

32 AFO-P1A-CSC BE 1 OUT, AFO-P1A-D

* 33 A C - 4160 -81 H OG 6 IN EP-BS-1H-D,

IN A C -4160 -B1 H -P S,

OUT, AFO-P1A-EPW
OUT, SWA-PM-L
OUT, CHO-P1A-EPW
GUT, AC-480V-8480H-PS

34 AFO-P1A-C00L DE 1 OUT, AFO-P1A-AUX

3S AFO-P1B-D OG 4 IN AFO-P18-B,

IN AFO-P18-AUX,

IN AFO-P18-CSG,

OUT, AFO-MD-P1B

36 AFO-P1B-EPW OG 2 IN AC-4160-B1J,

OUT, AFO-MD-P1B

37 AFO-P18-B BE 1 OUT, AFO-P18-D

30 AFO-P18-AUX OG 2 IN AFO-P1B-C00L,

OUT, AFO-P10-0

39 AFO-P18-CSG BE 1 OUT, AFO-P18-0

40 AC-4160-81J OG 6 IN EP-BS-1 J-D,

IN A C - 4160 - 813 - P S,

OUT, AFO-P10-EPW
OUT, SWB-PM-L
OUT, CHO-P18-EPW
OUT, AC-480V-84803-PS

41 AFO-P18-C00L DE 1 OUT, AFO-P18-AUX

42 ECRS-D AG 3 IN CS1 A-IHR,

IN CS18-IHR,

OUT, L-MSD
- _.

43 ECIS-D OG 2 IN CHO-IHR,

OUT, L-MSD

44 PAHRS-D UE 1 OUT, L-MSD
,

4S CS1A-IHR OG S IN CS1A-PMD-HS,

IN CS1 A-HS. ,

IN CS1 A-PM-L,

IN CS1A-HS-PMS,

OUT, ECRS-0

C-3

,

SET NAME TYPE RANK RELATIONSHIPS

66 CS18-IHR OG 5 IN CS18-PMD-HS.

IN CS18-HS *
,

IN CS18-PM-L,

IN CS18-HS-PMS,

OUT, ECRS-D -

47 CHO-IHR OG 4 IN CHO-PMD-HS,

IN CHO-CS-PMS,

IN CHO-PM-L,

OUT, ECIS-D

48 CS1 A-PMD-HS OG 3 IN CS1 A-CX-SUMP-B,

IN CS1A-PP-PMD-B,

OUT, CS1A-IHR

49 CS1 A-HS DE 1 OUT, CS1 A-IHR

50 CS1 A-PM-L "G 2 IN CS1A-MD-P1A,

OUT, CS1A-IHR

51 CS1A-HS-PMS OG 2 IN CS1 A-PP-PMS-B,

DUT, CS1 A-IHR

52 CS1 A-CX-SUMP-B BE 1 OUT, CS1A-PMD-HS

53 CS1A-PP-PMD-B BE 1 OUT, CS1 A-PMD-HS

S4 CS1 A-MD-P1 A OG 3 IN CS1 A-P1 A-D,

IN CS1A-P1A-EPW,

OUT, CS1 A-PM-L

SS CS1A-PP-PMS-B BE 1 OUT, CS1 A-HS-PMS

56 CS1A-P1A-D OG 3 IN CS1A-P1A-B,

IN CS1 A-P1 A-CSG,

OUT, CS1A-MD-P1A

S7 CS1A-P1A-EPW OG 2 IN AC-480V-8480H,

OUT, CS1A-MD-P1A

58 CS1 A-P1 A-B BE 1 OUT, CS1 A-P1 A-D .

59 CS1A-P1A-CSG BE 1 OUT, CS1A-P1A-D

60 AC-480V-8480H OG 3 IN AC-480V-8480H-PS,

IN ID-BS-480H-D ~

,

OUT, CS1 A-P1 A-EPW

61 CS18-PMD-HS OG 3 IN CS18-CX-SUMP-B
'

,

IN CS18-PP-PMD-B,

OUT, CS18-IHR

C-4

SET NAME TYPE RANK RELATIONSHIPS
l

i

62 CS18-HS DE 1 OUT, CS18-IHR
o

63 CS18-PM-L AG 2 IN CS18-MD-P1 B,

OUT, CS18-IHR
.

64 CS18-HS-PMS OG 2 IN CS18-PP-PMS-B,

OUT, CS18-IHR

6S CS1 B-CX -SUMP-B BE 1 OUT, CS18-PMD-HS

66 CS18-PP-PMD-B BE 1 OUT, CS18-PMD-HS

67 CS18-MD-P18 OG 3 IN CS18-P18-D,

IN CS18-P18-EPW,

OUT, CS18-PM-L

68 CS18-PP-PMS-B BE 1 OUT, CS18-HS-PMS

69 CS18-P10-D OG 3 IN CS18-P18-8,

IN CS18-P18-CSG,

OUT, CS18-MD-P18

70 CS18-P18-EPW OG 2 IN AC-480V-8480J,

OUT, CS18-MD-P1B

71 CS18-P18-8 BE 1 OUT, CS18-P18-D

72 CS18-P18-CSG BE 1 OUT, CS18-P18-D

73 AC-480V-8480J OG 3 IN AC-480V-8480J-PS,

IN ID-BS-480J-D,

OUT, CS18-P18-EPW

74 SWA-IHR OG S IN SWA-PMD-HS,

IN SWA-CS-PMS,

IN SWA-PM-L,

OUT, CHO-P1A-C00L
OUT, CHO-P18-C00L

75 SWA-PMD-HS OG 4 IN SWA-HX-0ILCO-8,

IN SWA-PP-PMD-B,

IN SWA-VV-PMD,

OUT, SWA-IHR

76 SWA-CS-PMS DE 1 OUT, SWA-IHR,

77 SWA-PM-L OG 3 IN AC -4160 -81 H,

IN SWA-MD-P10A, ,

OUT, SWA-IHR

78 CHO-P1A-C00L AG 3 IN SWA-IHR,

IN SWB-IHR,

C-5

SET NAME TYPE RANK RELATIONSHIPS

OUT, CHO-P1A-AUX
.

79 CHO-P18-C00L AG 3 IN SWA-IHR,

IN SUB-IHR,

OUT, CHO-P18-AUX -

80 SWA-HX-01LCD-B BE 1 OUT, SWA-PMD-HS

81 SWA-PP-PMD-B BE 1 OUT, SWA-PMb-HS

82 SWA-VV-PMD BE 1 OUT, SWA-PMD-HS

83 SWA-MD-P10A DE 1 OUT, SWA-PM-L

84 SWB-IHR OG S IN SUB-PMD-HS,

IN SUB-CS-PMS,

IN SUS-PM-L,

OUT, CHO-P1A-C00L
OUT, CHO-P18-C00L

85 SWB-PMD-HS OG 4 IN SWB-HX-0ILCO-B,

IN SWB-PP-PMD-B,

IN SWB-VV-PMD,

OUT, SWB-IHR

86 SWB-CS-PMS DE 1 OUT, SWB-IHR

G7 SUB-PM-L OG 3 IN AC - 4160 -01 J,

IN SWB-MD-P10B,

OUT, SWB-IHR

80 SUB-HX-0ILCO-B BE 1 OUT, SWB-PMD-HS

89 SUB-PP-PMD-B BE 1 OUT, SWB-PMD-HS

90 SWB-VV-PMD BE 1 OUT, SWB-PMD-HS

91 SWB-MD-P10B DE 1 OUT, SUB-PM-L

92 CHO-PMD-HS OG 4 IN CHO-HX-RVESS-B,

IN CHO-VV-PMD,

IN CHO-PP-PMD-B,

OUT, CHO-IHR

93 CHO-CS-PMS DE 1 OUT, CHO-IHR
.

94 CHO-PM-L AG 3 IN CHO-MD-P1A,

IN CHO-MD-P1B, ,

OUT, CHO-IHR

9S CHO-HX-RVESS-B BE 1 OUT, CHO-PMD-HS
.

C-6

[

. _ . -.

SET NAME TYPE RANK RELATIONSHIPS

96 CHO-VV-PMO OG 4 IN CHO-MV1286ABCOC,
'

. IN CHO-MV1867ABCC,

IN CHO-MV186780CC |,

OUT, CHO-PMD-HS
.

97 CHO-PP-PMD-B BE 1 OUT, CHO-PMD-HS

98 CHO-MD-P1A OG 3 IN CHO-P1A-D,

IN CHO-P1A-EPW,

OUT, CHO-PM-L,

99 CHO-MD-P1B OG 3 IN CHO-P18-0,

IN CHO-P18-EPW,

OUT, CHO-PM-L

100 CHO-MV1286ABCOC BE 1 OUT, CHO-VV-PMO

101 CHO-MV1867ABCC BE 1 OUT, CHO-VV-PMO

102 CHO-MV186780CC BE 1 OUT, CHO-VV-PMO

103 CHO-P1A-D OG 4 IN CHO-P1A-B,

IN CHO-P1A-AUX,

IN CHO-P1A-CSGi
,

OUT, CHO-MD-P1A

104 CHO-P1A-EPW OG 2 IN A C -4160 -81 H,

OUT, CHO-MD-P1A

105 CHO-P1A-B BE 1 OUT, CHO-P1A-D

106 CHO-P1A-AUX OG 2 IN CHO-P1A-C00L,

OUT, CHO-P1A-0

107 CHO-P1A-CSG BE 1 OUT, CHO-P1A-D
1

' 108 CHO-P18-0 OG 4 IN CHO-P18-B,

IN CHO-P18-AUX,

IN CHO-P10-CSG,

OUT, CHO-MD-P1B

i 109 CHO-PIB-EPW OG 2 IN AC-4160-813,

! OUT, CHO-MD-P1B

110 CHO-P18-B BE 1 OUT, CHO-P18-0
,

111 CHO-P18-AUX OG 2 IN CHO-P18-C00L,

'

00T, CHO-P18-0.

(
l 112 CHO-P10-CSG BE 1 OUT, CHO-P18-0

113 EP-BS-1J-0 BE 1 OUT, A C - 4160 -81 J
r

i

C-7

_ - _-__ _ _- _ _ _ ___ - __ - _ _ _ _ __ _ _ -_ _ _ _ - _______-____ _ __ _ .

SET NAME TYPE RANK RELATIONSHIPS

714 A C- 4160 -81 J -PS AG 3 IN A C - 4160 -B 13 - N P,

IN AC-4160-81J-SB, ,

OUT, AC - 4160 -81 J

115 AC-480V-8480J-PS OG 3 IN A C -4160 -81 J -
,

IN ID-TR-SSXFM13-0,

OUT, AC-480V-8480J

116 AC-4160-813-SB OG 3 IN CB-C1J-0,

IN DG-NO3-L,

OUT, AC-4160-81J-PS

117 CB-C13-0 BE 1 OUT, AC-4160-B1J-SB

118 OG-NO3-L OG 4 IN DG-NO3-CSG,

IN DG-NO3-B,

IN DG-NO3-AUX,

OUT, A C - 4160 - 813 - S B

119 COMP-MPUT-0 UE 2 OUT, AC-4160-813-AP
OUT, AC-4160-81 H- AP

120 E P-8S-1 H-0 BE 1 OUT, A C -4160 -B 1 H

121 AC-4160-81H-PS AG 3 IN A C - 4160 -81 H -NP,

IN AC-4160-81H-SB,

OUT , AC-4160-B1 H

122 AC-480V-8480H-PS OG 3 IN AC-4160-81H,

IN ID-TR-SSXFM1H-D,

OUT, AC-480V-0480H

123 A C -4160 -81 H - S B OG 3 IN CB-C1H-0,

IN DG-N01 -L,

00T, A C - 4160 -81 H - P S

124 CB-C1H-0 BE 1 OUT, AC-4160-81H-SB

12S DG-N01-L OG 4 IN DG -N01 -C S G,

IN DG - N01 -0,

IN DG-N01-AUX,

OUT, AC-4160-81H-SB

126 'DG-NO3-CSG DE 1 OUT, DG-NO3-L

127 DG-NO3-0 DE 1 OUT DG-NO3-L *

.

128 OG-NO3-AUX DE 1 OUT, DG-NO3-L
.

| 129 DG -N01 -C S G DE 1 OUT , DG-N01 -L
1

130 DG-N01 -0 DE 1 OUT , DG-N01 -L
!

! C-8

L_

SET NAME TYPE RANK RELATIONSHIPS

131 DG-N01 - AUX DE 1 OUT, DG-N01 -L
'

132 ID-BS-480H-D BE 1 OUT, AC-480V-0480H

e 133 ID-TR-SSXFM1H-D BE 1 OUT, AC-480V-8480H-PS

134 I0-0S-480J-0 BE 1 007, AC-480V-8480J

13S 10-TR-SSXFM13-D BE 1 OUT, AC-480V-8480J-PS

.

d

C-9

8 # # BLOCK SET EQUATIONS * ***
(SABOTAGE-FT)

TOP = FM-TI + FM-ILOCA

'

FM-TI = TMS-D " TI-RT

.

FM-ILOCA = LI-MSD

LI-MSD = L-MSD * LI

L-MSD = ECRS-D + ECIS-D + PAHRS-D

A C - 4160 -81 J-NP = LOSPW * AC-4160-81J-AP

AC-4160-B1J-AP = LOSPW + COMP-MPUT-D

AC-4160-B1 H-NP = LOSPW " AC-4160-81H-AP

AC-4160-81H-AP = LOSPW + COMP-MPWT-D

TMS-D = RPS-D + DHRS-D

ADHRS-D = SSRS-D + AFUS-LO-IHR

OHRS-D = ADHRS-D

AFUS-LO-IHR = AFO-IHR

TI-RT = OI-RC + IHR-NHRS

AFO-!HR = AFO-PMD-HS + AFO-PM-L + AFO-CS-PMS

AFO-PM-L = AFO-MD-P1A * AFO-MD-P10
.

AFO-MD-P1A = AFO-P1A-D + AFO-P1A-EPW
.

AFO-MD-PIB = AFO-PIB-D + AFO-P10-EPW

C-10

_.

AFO-P1 A-D = AFO-P1 A-B + AFO-P1 A- AUX + AFO-P1A-CSG

AFO-P1 A-EPW = AC-4160-81 H

* AFO-P1 A- AUX = AFO-P1A-C00L

AC-4160-B1 H = EP-BS-1 H-D + AC-4160-B1 H-PS

AFO-P1B-D = AFO-P18-B + AFO-P10-AUX + AFO-P18-CSG

AFO-P18-EPW = AC-4160-81J

AFO-P18-AUX = AFO-P18-C00L

AC-4160 -B1 J = EP-BS-1 J-D + AC-4160-81 J-PS

ECRS-D = CS1A-IHR * CS18-IHR

ECIS-D = CHO-IHR

CS1 A-IHR = CS1 A-PMD-HS + CS1 A-HS + CS1 A-PM-L +

CS1 A-HS-PMS

CS10-IHR = CS18-PMD-HS + CS18-HS + CS18-PM-L +

CS10-HS-PMS

CHO-IHR CHO-PMD-HS + CHO-CS-PMS + CHO-PM-L=

CS1 A-PMD-HS = CS1 A-CX-SUMP-B + CS1 A-PP-PMD-B

CS1A-PM-L = CS1 A-MD-P1 A
.

CS1A-HS-PMS = CS1A-PP-PMS-B
.

CS1 A-MD-P1 A = CS1A-P1A-D + CS1A-P1A-EPU

C-ll '

-

CS1 A-P1 A-D = CS1 A-P1 A-B + CS1 A-P1 A-CSG

CS1A-P1A-EPW = AC-480V-8480H

AC-480V-8480H AC-480V-8480H-PS + ID-BS-480H-D *=

CS18-PMD-HS = CS18-CX-SUMP-8 + CS18-PP-PMD-8 '

CS18-PM-L = CS18-MD-P18

CS18-HS-PMS = CS18-PP-PMS-B

CS18-MD-P1 B = CS18-P18-D + CS18-P18-EPU

CS18-P18-D = CS18-P18-8 + CS18-P18-CSG

CS18-P18-EPW = AC-480V-8480J

AC-480V-84803 AC-480V-84803-PS + 10-85-4803-D=

SWA-IHR = SWA-PMD-HS + SWA-CS-PMS + SWA-PM-L

SWA-PMD-HS = SWA-HX-0ILCO-8 + SWA-PP-PMD-B + SWA-VV-PMD

SWA-PM-L = AC-4160-81H + SWA-MD-P10A

CHO-P1A-C00L = SWA-IHR * SU8-IHR

CHO-P18-C00L = SWA-IHR * SWB-IHR

SUS-IHR = SUB-PMD-HS + SUB-CS-PMS + SUB-PM-L

SUB-PMD-HS n SUB-HX-0ILCO-B + SWB-PP-PMO-O + SW8-VV-PMD

.

SWB-PM-L = AC-4160-81 J + SWB-MD-p108

.

CHO-PMD-HS = CHO-HX-RVESS-B + CHO-VV-PMD + CHO-PP-PMD-B

C-12

CHO-FM-L = CHO-MD-P1A # CHO-MD-P10

CHO-VV-PMO = CHO-MV1286ABCOC + CHO-MV1867ABCC +

o CHO-MV186700CC

'

CHO-MO-P1A = CHO-P1A-D + CHO-P1A-EPW

CHO-MD-P10 = CHO-P10-0 + CHO-P10-EPW

CHO-P1A-D = CHO-P1A-0 + CHO-P1A-AUX + CHO-P1A-CSG

CHO-P1A-EPW = AC-4160-01H

CHO-P1A-AUX = CHO-P1A-C00L

CHO-P10-0 = CHO-P10-0 + CHO-P10- AUX + CHO-P10-CSG

CHO-P10-EPW = AC-4160-01J

CHO-P10- AUX = CHO-P10-C00L

AC-4160-01 J-PS = AC-4160-01 J-Nr * AC-4160-01 J-SO

AC-480V-04003-PS = AC-4160-01 J + 10-TR-SSXFM1 J-0

AC-4160-01 J-SO = CB-C1 J-0 + OG-NO3-L

DG-NO3-L = OG-NO3-CSG + DG-NO3-0 + DG-NO3-AUX

AC-4160-01H-PS = AC-4160-01H-NP " AC-4160-01H-SB

AC-480V-0480H-PS = AC-4160-01H + 10-TR-SSXFM1H-0
.

AC-4160-01 H-50 = CD-C1 H-0 + DG-N01 -L
.

DG-N01-L = OG-N01-CSG + DG-N01-0 + OG-N01-AUX

c-13

.__ . _ _ _ ._ __ _ _ _______ __-________ - _ _ _ _ _ _ _ _ _ _ _ _ _ - _ - _ _ _ _ _ _ _ _ _ _ _ - _ - _ _ _ _ _ _ _ _ _ _ _

oo a o OLOCK SET EQUATIONS # # # #
(AREA-EQUATIONS)

IHR-NHRS = SFGR00
e

RPS-D = SFSROA
.

OI-RC = SFCRGB

SSRS-D = MCC13CV + MCC1HCV

AFO-PMD-HS = CR + MCC1JCV

AFO-CS-PMS = SFGROA

AFO-P1A-B = MCC1HCV

AFO-P1A-CSG = MCC1HCV

AFO-P1A-COOL = OGRM2

AFO-P10-0 = MCC13CV

AFO-P10-CSG = MCC1JCV

AFO-P10-C00L = OGRM1 + ESCRM

EP-05-13-0 = ESGRM

CD-C1J-0 = ESGRM

EP-OS-1H-0 u ESCRM

CD-C1H-0 = ESCRM
,

DG-NO3-0 = OGRM2 .

00-N01-0 = OGRM1

C-14

c _ - _ - _ _ _ _ _ _ - - - _ _ _ _ _ - _ _ _ _ _ _ - _ _ _ - _ _ _ _ _ _ _ _ _ ___ _ _

____-_ - _ .__

|
|

! l
! ID-05-480H-D = WSGRM
|

l

| ID-TR-SSXFM1H-D = 2A0
|

9 10-05-480J-0 = ESGRM

ID-TR-SSXFM1J-D = 3EQUIPRM=
:

,

AFWS-LO-IHR = CR + MCC1HCV N MCC13CV + SFGRDA

CS1A-PP-PMD-0 = 3EQUIPRM

CS1A-CX-SUMP-0 = CR

CS1A-PP-PMS-D = CR + 2A0

CSIA-P1A-8 = PMPHSC

CS1A-P1A-CSG = CR

CS10-PP-PM0-0 = CR

CS10-CX-SUMP-0 = PMPHSE

CS10-PP-PMS-D = CR + 2A0 * 2RD

CS10-P10-0 = CR

CS10-P10-CSG = CR *

I f
,

SWA-HX-0!LCO-O = TOSMTVVPT

SWA-PP-PMD-0 = 3COUIPRM + ESGRM # WSGRM + 2A0
!

'
|

SWA-VV-PMD = 3CQUIPRM + 2A0

|.
,

| SWO-HX-0!LCO-O = CHPMCUB

|

C-15

i

... . _ .g. _ - . .
_

~

|,

w3

SWB-PP-PMD-B V 3EQUIPRM-+ ESGRM # WSGRM + 2AB. ,.

.SWB-VV-PMD =,3 EQUIP.VM + 2 8 -
s

CHO-HX-RVESS-D = CR. -

E

!- CHO-PP-PMD-B =' CHPMCUB + 2 AB *s

~~

CHO-MV128S ABCOC = ' CR + MCC1HCV # MCC1JCV + CHPMCUB

~

CHO-MV1867 ABCC = CR + MCC1 HCV . * MCC1 JCV + 2 AB
''

CHO-MV1867BDCC = .CR + MCC1 JCV * MCC1 HCV + 2 AB

s -

CHO-P1A-B = CHPMCUB.

,

CHO-P1A-C3G =" CHPMCUB -

1
,

CHO-P18-8 = ESGRM
.

' ~ '

CHO-P18-CSG = CHPMCUB '

,

_

{ LI =-CHPMCUB + 2AB + ESGRM +'CR + RC.

!
,

; CS1A-HS' SFGRDA+'kCC1HCV' ,

'

;.. . ,.

'

CS18-HS = SFGRDA-+ MCC1JCV +'WSGRM
. .

s

,.
. . s - ,

f SWA-CS-PMS = TBSMTVVPT . ': .

c-

"by , '
=] ,

SWB-CS-PMS = TBSMTVVPT.
'

- - -
,

' "

, s

' .s . .

SWA-MD-P10A =-CR + 3EQUIPRM. s
-

<
(- s ' ,,

SWB-MO-P108 =~CR.+-3EQUIPRM ^7
s,

! . .
. < .

|- CHO-CS-PMS.= RWST +-2RWST t CR'+ 2A,B_+ CHPMCUS.
'

,

4
,

. . .

'

;.m
'

.C-16:' :

. . m
* .')

"

, g.s ,

' - "V _[_, - - - . - , - - - - '-

-

.

DG-NO3-AUX = DGRM2

g
DG-N01 - AUX = DGRM1

0

DG-NO3-CSG = CR + RLYRM + DGRM1 * DGRM2

DG-N01-CSG = CR + RLYRM + DGRM1 * DGRM2

,

4

C-17

Distribution:

US NRC DistL'ibution Contractor (CDSI)
7300 Pearl Street

q Bethesda, MD 20014
230 copies for RS

' US Nuclear Regulatory Commission
Office of Nuclear Regulatory Research
Washington, DC 20555
Attn: W. C. Floyd/DFQ (5)

J. A. Murphy /DRA
D. M. Rasmuson/DRA

US Nuclear Regulatory Commission
Office of Nuclear Material Safety and Safeguards
Washington, DC 20555
Attn: R. F. Burnett/SG (2)

G. W. McCorkle/SG

US Nuclear Regulatory Commission
Office of Nuclear Reactor Regulation
Washington, DC 20555
Attn: R. J. Mattson/DSI

Science Applications, Inc.
P. O. Box 2351
La Jolla, CA 92038
Attn: P. Lobner (10)

International Energy Associates, Ltd.
1126 Santa Ana SE
Albuquerque, NM 87123
Attn: G. B. Varnado

Science and Engineering Associates
2500 Louisiana Boulevard NE
Suite 610
Albuquerque, NM 87110
Attn: J. L. Darby

University of California
School of Engineering and Applied Sciences
5532 Boelter Hall
Los Angeles, CA 90024
Attn: David Okrent

Energy Incorporated
,

1851 South Central Place
Suite 201
Kent, WA 98031.

Attn: Jon Young

!

;

I Dist-1

E

:

Distribution (Cont.),

GA Technologies
P. O. Box 81608
San Diego, CA 92138 f
Attn: M. G. Stamatelatos

Los Alamos National Laboratory *

Mail Stop: G777
Los Alamos, NM 87545
Attn: R. Haarman

3141-1 C. M. Ostrander (5)
3151 W. L. Garner
6400 A. W. Snyder
6410 J. W. Hickman
6411 D. M. Kunsman
6412 F. T. Harper
6412 S. W. Hatch
6412 G. J. Kolb
6412 A. C. Payne, Jr.
6412 D. W. Stack (16)
6412 T. A. Wheeler
6412 D. W. Whitehead
6414 D. M. Ericson
6414 W. R. Cramond
6414 S. L. Daniel
6414 D. R. Gallup
6414 G. A. Sanders
6415 D. C. Aldrich
6417 D. D. Carlson
6430 N. R. Ortiz
6432 L. D. Chapman
6432 R. B. Worrell'

j 6447 W. T. Wheelis
8424 M. A. Pound

'
|

!

,

o

Dist-2

|
..

/

NRC e ORu 335 1. REPORT NUMCE R 4ss,gneabv DDCJ
u.s. NUCLE An REcutATony couuiss ON

""" NUREG/C 3134
i; BIBLIOGRAPHIC DATA SHEET SAND 83- 074 1

2. (Leave coa,ht| |4 T|TLE AND SUB LE LActs volume lvo. st eoproproste)

/
A SETS USE S MANUAL FOR VITAL AREA ANALYSIS 3 RECIPIE S ACCESSION NO.g

7. AUTHORtSi 5. DATE[EPORT COMPLE TED
o Desmond W. Sta uopa

|1984
veaa

Mildred S. Hill @rch
9. PE RFORMING ORGANIZATION ME AND M AILING ADDRESS IIactua l.a Codel j[ATE REPORT ISSUED

/ March |1984
ONTM vtAR

Sandia National La atories
Albuquerque, New Mex o 87185 6 '' '* ' * ** * d

8 ILeave No"k)

12. SPONSORING ORGANIZATION N AVE AND "lLING ADDRESS (laciude I,o Coact
10 PROJECT /T ASK WORK LNIT NO

Division of Facility Ope tions
Office of Nuclear Regulat Research 11 FIN NO

U.S. Nuclear Regulatory Co. ission
Washington, DC 20555 NRC FIN No. A1338

,

13 TYPE OF REPORT -

| . AtOO COvf RE O fleclus've caresJ

Technical Report
'

15. SU''LE MEN TARY NOTE S 14 (Leave uanal

16. ABSTR ACT 200 woras or less) =

This manual describes the e f the Set Equation Transformation
System (SETS) for vital area an lys Various techniques are pre-.

sented for using SETS to solve vital rea analysis fault trees.
Depending on the input to SET the s lution to the vital area,

analysis fault tree can be i terms o vital areas or primary
events of the vital area an ysis faul tree. The techniques
presented are also suitabl and efficie for other kinds of
common cause analysis.

i
!

l

17. KEY WOROS AND DOCUMENT AN ALYS 17a DESCRIPTORS

Fault Trees
Minimal Cut Set Equ ions
Common Cause Analys s

! Variable Transform ions

|
*

17b IDENTIFIERS OPEN ENDED TERMS
,

18 AV AILABILITY ST ATEMENT 19 SE CURiTY CLASS (Tms report) 21 NO OF P AGES
Unclassified

Unlimited 20 SEcuRiTv CtA,SS <ya.s cari 22 PRICE
Unclassified s

NRC F ORM 335 sti su

I

i

I '

1
1

e

f

' .

120555078877 i LANLR5
US NRC
ADH-DIV OF T[DC& PUG MGT BR-POR NUREGPO LI CY
W-501 DC 20555
W A SH INGT ON

t

.

O

