TN-32B High Burnup (HBU) Demonstration Cask

NRC Docket 71-9377

24 March 2020

Agenda

- Introductions
- Meeting Objectives
- Plan for Collection of Thermal Data in Transportation Configuration
- TN-32B HBU Demonstration Cask Design Transport
- Updated Planned Schedule for License Application
- Questions

Meeting Objectives

- Review of TN-32B HBU Demonstration Cask and Payload
- Discuss Collection of Additional Thermal Data
- Discuss TN-32B HBU Demonstration Cask Transport Configuration
- Discuss Leak Tightness of Thermocouple Lance Assemblies for Transport
- Discuss the Revised Schedule for Submittal of Application

TN-32B HBU Demonstration Cask Design

- Metallic, Welded Constructed Storage Cask
- Maximum Gross Weight: 272,002 lb_m
- Overall Dimensions: Ø144 inch × 262 inch length
 - 1.5-inch thick inner containment shell and bottom plate
 - 4.5-inch thick closure lid containment plate w/ 6-inch thick welded shield plate
 - 8-inch thick outer shield forging surround containment shell
 - 8.75-inch thick shield plate covering bottom containment plate
 - 4.5-inch thick neutron shield surrounding outer shield forging
- Impact limiters installed on each end
 - Same design as utilized on licensed TN-40 & TN-68 casks
 - Utilizes same redwood & balsa wood for impact absorption
- Modified Closure Lid
 - Thermocouple lance assemblies installed through lid

High Burnup (HBU) Payload

- Selected (32) PWR HBU fuel assemblies
 - Spent nuclear fuel assemblies with burnup greater than 45 GWd/MTU
 - Four different cladding types: (18) M5[™], (12) ZIRLO[™], (1) Zr-4, and (1) Low-Sn Zr-4
 - Stored on North Anna Power Station's ISFSI for 10-years
- Assembly temperatures monitored by seven (7) thermocouple lance assemblies installed through the closure lid
- Six (6) Poison Rod Assemblies (PRAs) installed for criticality control
- Payload loaded in cask and placed on ISFSI pad in November 2017

Collecting Additional Thermal Data

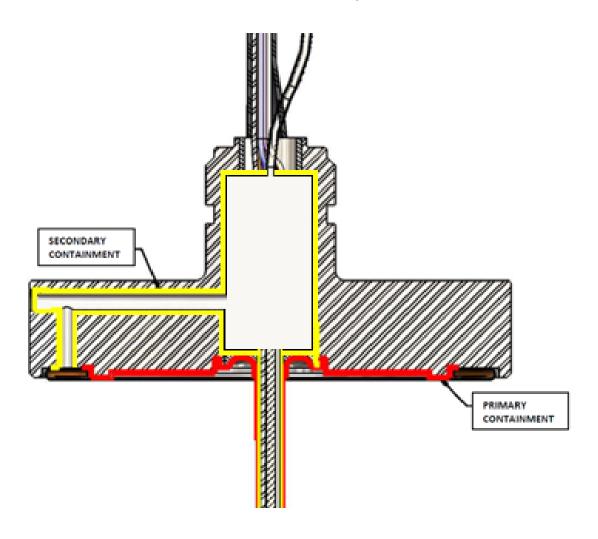
- Previously planned approach for transport:
 - Cease collecting thermal data at the end of the storage period at North Anna
 - Abandon thermocouples in preparation for transport
 - Sever thermocouple cables/OP tubing
 - Seal penetrations with a solid 1-inch thick welded alloy steel plate
 - Install 2-inch thick puncture resistant alloy steel plate
 - Thermocouple lance assemblies not part of containment boundary
- Following discussions with stakeholders (DOE, EPRI, National Labs), desire to obtain additional thermal data in the horizontal orientation after transport
- Results in the need to maintain thermocouples intact for transport

Maintaining Thermocouples in Transport

- Required changes to planned approach for transport to maintaining thermocouples intact:
 - Thermocouple cables/OP tubing are not severed
 - Provide thru-hole in 1-inch thick welded alloy steel plate for cable/connector pass-thru
 - Raise puncture resistant plate off the closure lid surface for cable/connector clearance
 - Revise the thickness of the puncture resistant plate to 1.75 inch to allow for machining
 - Insert spacer support steel bars around the thermocouple lance penetrations
 - Thermocouple lance assemblies become part of containment boundary
 - Provide defense in depth to provide containment of payload:
 - Primary
 - Secondary
 - Tertiary

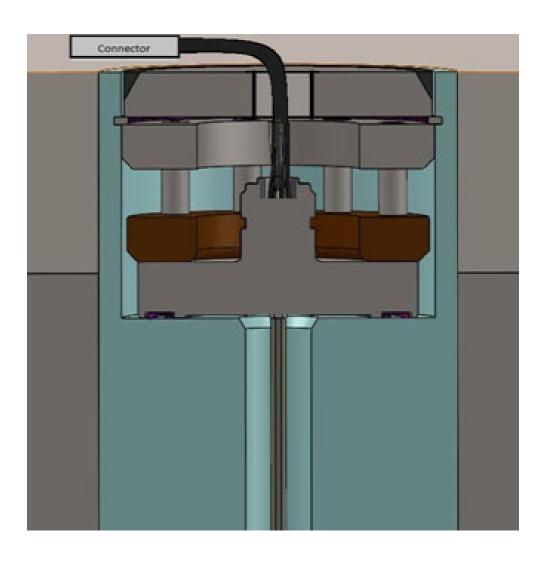
TN-32B HBU Demonstration Cask, Containment Boundary

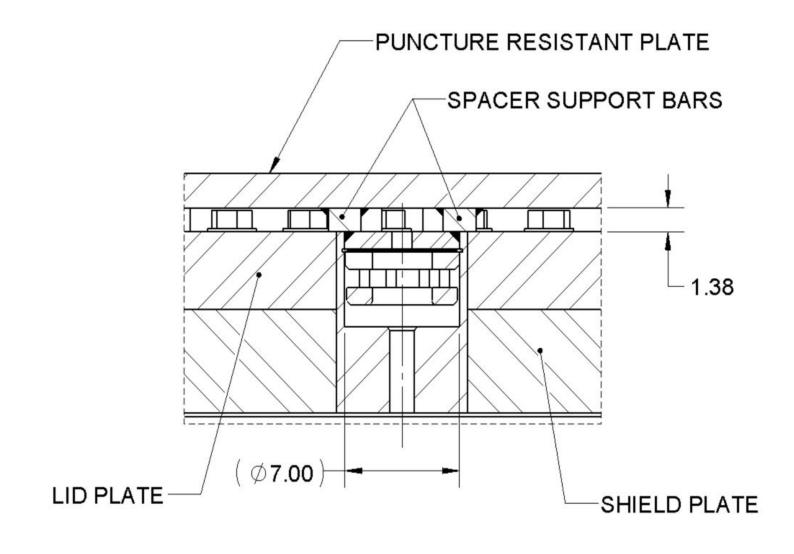
- Propose to Utilize Lance Assembly's:
 - Primary and Secondary Confinement Boundaries in Storage →
 - Primary and Secondary Containment Boundaries in Transport
- Primary Containment Boundary of Lance Assembly
 - Closure is constructed of Type 304L stainless steel
 - 160.2-inch long lance oversheath tube, reinforcing oversheath tube, lower closure plug and tip plug are constructed of annealed alloy Type UNS N06600
 - Penetration is sealed by a Helicoflex® silver jacketed metallic O-ring seal
 - All welds performed using Gas Tungsten Arc Welded (GTAW) process
- Secondary Containment Boundary of Lance Assembly
 - Closure, same as primary
 - Upper closure plug is constructed of Type 304L stainless steel
 - Overpressure tubing, which is constructed of annealed nickel-based alloy (Type UNS N06600), will be capped for transportation
 - Upper closure plug to closure weld performed using GTAW process
 - Upper closure plug–to–metal sheathed thermocouples and overpressure tubing are silver brazed


TN-32B HBU Demonstration Cask, Containment Boundary (con't)

- Tertiary Containment Boundary Modified Puncture Resistant Alloy Steel Plate
 - A 1.38-inch gap is added between plate and modified closure lid for storing the thermocouple lance cables
 - Closure lid bolts are covered completely
 - Spacer support bars are welded to puncture resistant plate or closure lid:
 - Spans the lance penetration cover plate weld joint
 - Provides additional protection of lance assembly for postulated HAC puncture drop impact
 - Directs postulated HAC puncture bar impact load into closure lid plate
 - Double elastomer O-ring seals added to seal against cask body flange to provide an additional level of containment

TN-32B HBU Demonstration Cask, Transport Configuration (cont'd)


Containment boundaries of thermocouple lance assemblies


TN-32B HBU Demonstration Cask Design, Transport Configuration (cont'd)

Thermocouple Lance Penetration Cover Plate with thru-hole for Connector/Cable

TN-32B HBU Demonstration Cask Design, Transport Configuration (cont'd)

Leak Tightness of Lance Assemblies For Transport

- Lance Assemblies and O-ring Seals Leakage Rate Tested per ANSI N14.5:
 - Verification test included containment weld of penetration forging
 - Verified to be leaktight during fabrication and assembly for storage
 - Metallic O-ring seals continuously monitored during storage period
- §71.73(c)(1) 9-meter (30-foot) Free Side Drop Effect on Assembly
 - Postulated lateral movement of assembly due to impact
 - Metallic O-ring seal could possibly be affected
- Plan to Test of Prototypic Lance Assembly and Metallic O-ring Seal Interface
 - Configuration to replicate installed lance assemblies in cask lid
 - Perform leakage rate test pre-lateral movement of metallic O-ring seal
 - Exert lateral force on assembly to translate assembly/seal maximum displacement
 - Perform leakage rate test post-lateral movement of metallic O-ring seal
 - Effect of temperature to be considered in test
 - Record lateral force to translate lance assembly for comparison to side drop impact
 - Test results to demonstrate leak tightness of lance assembly/seal is maintained during transport

Leak Tightness of Lance Assemblies For Transport (con't)

- Primary Containment Provided by Lance Assemblies:
 - Protected by impact limiter for postulated free drop impacts and thermal event per §71.73(c)(1) and §71.73(c)(4), respectively
 - Protected by 1.75-inch thick puncture resistant plate and support bars for postulated puncture bar impact per §71.73(c)(3)
 - Plan to verify sealing maintained during any lateral translation of thermocouple lance assembly
 - Verified lance oversheath complies with ASME III NB Level D stress limits for 0.416 inch lateral displacement of funnel/fuel assembly
 - Additional assurance provided by sealing of puncture resistant plate to cask body flange
- Defense in depth provided by secondary and tertiary containment boundaries

Planned Schedule for License Application

- Calculations and SAR chapters to be completed within 6 months
- Submittal of SAR to NRC in early 4th quarter 2020
- Receipt of NRC Requests for Additional Information (RAIs) in 2nd quarter 2021
- Receipt of NRC Certificate of Compliance in 4th quarter 2021
- License application submittal to support planned transport in 2027
- Planned pre-transport activities:
 - Fabrication of impact limiters, transportation skid, and auxiliary equipment
 - Transportation planning from NAPS to a site to be identified later

Questions?

Giving nuclear energy its full value