WESTINGHOUSE CLASS 3

Although information contained in this report is nonproprietary, no distribution shall be made outside Westinghouse or its licensees without the customer's approval.

EVALUATION OF THE ACCEPTABILITY OF THE REACTOR
VESSEL HEAD LIFT RIG, REACTOR VESSEL INTERNALS
LIFT RIG, LOAD CELL, AND LOAD CELL LINKAGE
TO THE REQUIREMENTS OF NUREG 0612
for
PUBLIC SERVICE ELECTRIC AND GAS COMPANY
SALEM GENERATING STATION
UNITS 1 AND 2

FEBRUARY, 1983

L. J. MALANDRA, P. E.

Approved:

J.R. Marshall P. E., Manager
Refueling Equipment Engineering

WESTINGHOUSE ELECTRIC CORPORATION Nuclear Energy Systems P.O. Box 355 Pittsburgh, PA 15230

ABSTRACT

An evaluation of the Salem reactor vessel head and internal lift rigs, load cell, and load cell linkage was performed to determine the acceptability of these devices to meet the requirements of NUREG 0612. The evaluation consists of: (1) a comparison report of the ANSI N14.6 requirements and the requirements used in the design and manufacture of these devices; (2) a stress report in accordance with the design criteria of ANSI N14.6; and (3) a list of recommendations to enable these devices to demonstrate compliance with the intent of NUREG 0612 and ANSI N14.6.

TABLE OF CONTENTS

Section	Title	Page
	ABSTRACT	111
1.	INTRODUCTION	1-1
	1.1 Background	1-2
2.	COMPONENT DESCRIPTION	2-1
	2.1 Reactor Vessel Head Lift Rig	2-1
	2.2 Reactor Vessel Internals Lift Rig	2-1
	2.3 Load Cell and Load Cell Linkage	2-2
3.	SCOPE OF EVALUATION	3-1
	3.1 Study of ANSI N14.6-1978	3-1
	3.2 Stress Report	3-1
	3.3 Recommendations	3-2
4.	DISCUSSION OF EVALUATIONS	4-1
	4.1 Study of ANSI N14.6-1978	4-1
	4.2 Stress Report	4-1
	4.3 Recommendations	4-2
5.	CONCLUSIONS	5-1
6	RECOMMENDATIONS	6-1

LIST OF ILLUSTRATIONS

Figure	Title	Page
2-1	Reactor Vessel Head Lift Rig	2-3
2-2	Reactor Vessel Internals Lift Rig	2-4

ATTACHMENTS

- A. Comparison of ANSI N14.6-1978 Requirements for Special Lifting
 Devices and the Requirements for the Reactor Vessel Head Lift Rig,
 Reactor Vessel Internals Lift Rig, Load Cell, and Load Cell Linkage
 for Public Service Electric and Gas Company, Salem Generating
 Station, Units 1 and 2.
- B. Stress Report Reactor Vessel Head Lift Rig, Reactor Vessel Internals Lift Rig, Load Cell, and Load Cell Linkage for Public Service Electric and Gas Company, Salem Generating Station, Units 1 and 2.

REFERENCES

- 1. George, H., Control of Heavy Loads at Nuclear Power Plants

 Resolution of Generic Technical Activity A-36, NUREG 0612,

 July, 1980.
- ANSI N14.6-1978 Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds or More for Nuclear Material
- ANSI B 30.9-1971. Slings, American National Standards Institute, New York, 1971.
- Westinghouse Drawing 685J059 3 Loop Head Lifting Rig General Assembly
- 5. Westinghouse Drawing 113E480 4 Loop Plants Lifting Rig Internals General Assembly

SECTION 1 INTRODUCTION

The Nuclear Regulatory Commission (NRC) issued NUREG 0612 "Control of Heavy Load at Nuclear Power Plants"[1] in 1980 to address the control of heavy loads to prevent and mitigate the consequences of postulated accidental load drops. NUREG 0612 imposes various training, design, inspection and procedural requirements for assuring safe and reliable operation for the handling of heavy loads. In the containment building, NUREG 0612 Section 5.1.1(4) requires special lifting devices to meet the requirements of ANSI N14.6-1978-"American National Standard for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds or More for Nuclear Materials".[2] In general, ANSI N14.6 contains detailed requirements for the design, fabrication, testing, maintenance, and quality assurance of special lifting devices. In addition, ANSI N14.6 requires that when wire rope or chain is used in the design of a special lifting device, the wire rope or chain shall be in conformance with ANSI B30.9-1971 "American National Standard Safety Standard for Slings" [3] The Salem Generating Station lifting devices which can be categorized as special lifting devices and which are contained in the scope of this report are:

- 1. Reactor vessel head lift rig
- 2. Reactor vessel internals lift rig
- 3. Load cell
- 4. Load cell linkage

This report contains the evaluation performed on these lifting devices to determine the acceptability of these devices to meet the above requirements.

1.1 BACKGROUND

The reactor vessel head lift rig, the reactor vessel internals lift rig. load cell, and load cell linkage were originally designed and built for the Salem Generating Station circa 1967-71. Subsequently, the Unit 2 internals lift rig was transferred to another plant site in 1975-76 and replaced in 1977 with an almost identical design. The actual design criteria is unknown for the lifting devices. It appears that Westinghouse used the design criteria that the resulting stress in the load carrying members, when subjected to the total combined lifting weight, should not exceed one fifth (1/5) of the ultimate strength of the material. These items were not classified as nuclear safety components and requirements for formal documentation of design requirements and stress reports were not applicable. Thus, stress reports and design specifications were not formally documented. Westinghouse defined the design, fabrication and quality assurance requirements on detailed manufacturing drawings and purchase order documents. Westinghouse also issued field assembly instructions for the reactor vessel head and internals lift rigs which included an initial load test followed by non-destructive surface examination of critical load bearing areas. Additionally, the new Unit 2 internals lift rig was load tested at the manufacturers shop at 125 percent of the maximum weight. Subsequent modifications (presently in progress) to the internals lifting rig include rotolock studs and inserts designed, manufactured, and tested to the requirements of ANSI N14.6.

SECTION 2 COMPONENT DESCRIPTION

2.1 REACTOR VESSEL HEAD LIFT RIG

The reactor vessel head lift rig^[1] is a three-legged carbon steel structure, approximately 43 feet high and 14 feet in diameter, weighing approximately 28,000 pounds. It is used to handle the assembled reactor vessel head.

The three vertical legs and Control Rod Drive Mechanism (CRDM) platform assembly are permanently attached to the reactor vessel head lifting lugs. The tripod sling assembly is attached to the three vertical legs and is used when installing and removing the reactor vessel head. During plant operations, the sling assembly is removed and the three vertical legs and platform assembly remain attached to the reactor vessel head.

2.2 REACTOR VESSEL INTERNALS LIFT RIG

The reactor vessel internals lift rig^[2] is a three-legged carbon and stainless steel structure, approximately 25 feet high and 14 feet in diameter weighing approximately 14,500 pounds. It is used to handle the upper and lower reactor vessel internals packages. It is attached to the main crane hook for all lifting, lowering and traversing operations. A load cell linkage is connected between the main crane hook and the rig to monitor loads during all operations. When not in use, the rig is stored on the upper internals storage stand.

The original rig design attaches to the internals packages by means of three engaging screws which are screwed into tapped holes in the internals flanges. These screws are manually operated from the manipulator crane walkway using a handling tool which is essentially a long wrench. The screws are normally spring retracted upward and are depressed to engage the tapped holes by the weight of the handling tool. Modifications to these rigs, presently in progress, include installation of an

operating pletform, integral tools and a change to the type of engagement with internals to a rotolock stud and insert type. These rotolock studs are manually operated from the new internals lift rig platform using a handling tool which is an integral part of the rig. The studs are normally spring retracted upward and are depressed to engage the inserts. Rotating the mechanism locks it in both positions. Since these rotolock studs are in the process of being incorporated, both types of load carrying items are included in this report.

2.3 LOAD CELL AND LOAD CELL LINKAGE

The load cell is used to monitor the load during lifting and lowering the reactor vessel head or internals to ensure no excessive loadings are occurring. It is installed between the load cell linkage and the lifting device. The load cell is a strain gage (tension) type, rated at 400,000 pounds and built by W. C. Dillon and Co. The load cell linkage is an assembly of pins, plates and bolts which connect the polar crane main hook to the load cell.

Figure 2-1. Reactor Vessel Head Lift Rig

Figure 2-2. Reactor Vessel Internals Lift Rig

SECTION 3 SCOPE OF EVALUATION

The evaluation of these lifting devices consists mainly of three parts:

- 1. A detailed review of the ANSI N14.6 requirements
- 2. Preparation of a stress report
- Recommendations to demonstrate compliance with NUREG 0612, Section 5.1.1(4).

Discussion of these items follows.

3.1 REVIEW OF ANSI N14.6-1978

A detailed comparison was made of the information contained in ANSI N14.6 with the information that was used to design, manufacture, inspect and test these special lifting devices. The detailed comparison is provided in three parts:

- 1. Overall item by item comparison of requirements
- Preparation of a critical item list per ANSI N14.6 Section
 3.1.2, and
- Preparation of a list of nonconforming items.

This detailed analysis is contained in Attachment A to this report.

3.2 PREPARATION OF A STRESS REPORT

Section 3.1.3 of ANSI N14.6 and NUREG 0612 Section 5.1.1(4) require a stress report to be prepared. Special loads and allowable stress criteria are specified for this analysis. The stress report is Attachment B to this report.

3.3 RECOMMENDED ACTIONS

An obvious result from the previous evaluations is a list of items that can be performed to demonstrate to the NRC that these special lifting devices are in compliance with the guidelines of ANSI N14.6 and NUREG 0612 Section 5.1.1(4). These recommendations are identified in Section 6.

SECTION 4 DISCUSSION OF EVALUATIONS

4.1 STUDY OF ANSI N14.6-1978

A review of ANSI N14.6 identifies certain analyses to be performed and certain identifications that are required to be made to demonstrate compliance with this document. These are a preparation of a stress report in accordance with Section 3.2 and a preparation of a critical items list in accordance with Section 3.1.2. The stress report is Attachment B to this report. The critical items list has been prepared per Section 3.1.2 and is contained in Appendix A to Attachment A. This list identifies the critical load path parts and welds, the materials of these items, and the applied non-destructive volumetric and surface inspections that were performed. (Details of these non-destructive processes and acceptance standards are available at Westinghouse should they be needed.)

A detailed item by item comparison of all the requirements of ANSI N14.6 and those used for the design, manufacture and inspection of these lifting devices is contained as Table 2-1 of Attachment A. The comparison shows that these devices meet the intent of the ANSI document for design, fabrication and quality control. However, they do not meet the requirements of ANSI N14.6 for periodic maintenance, proof and functional testing. Thus, a tabulation of those ANSI N14.6 requirements that are incompatible with these lifting devices was prepared and is Appendix B to Attachment A. Included in Appendix B to Attachment A are recommended actions that may be used to demonstrate acceptability to the NRC.

4.2 STRESS REPORT

As part of the invoking of the ANSI N14.6 document, the NRC requested utilities to demonstrate their compliance with the stress criteria with some qualifying conditions. Attachment B is the stress report for these devices performed in accordance with the criteria of ANSI N14.6. A

discussion is included which responds to the NRC qualifying conditions of NUREG 0612. All of the tensile and shear stresses meet the design criteria of Section 3.2.1.1 of ANSI N14.6, requiring application of stress design factors of three and five with the accompanying allowable stress limits of yield and ultimate strength, respectively.

4.3 RECOMMENDATIONS

The recommendations identified in Section 6 require a review of plant maintenance and operating instructions to ensure that they contain information relative to the identification, maintenance and periodic testing required by ANSI N14.6. The extent of the periodic testing is also addressed and the recommendations identify procedures which are intended to fully meet the intent of NUREG 0612 and ANSI N14.6 with the least amount of perturbation to the refueling sequence. These recommendations do not involve any equipment changes unless stricter compliance becomes necessary, and then a change to the sling blocks is recommended.

SECTION 5 CONCLUSIONS

The following conclusions are apparent as a result of this evaluation:

- The ANSI N14.6 requirements for design, fabrication and quality assurance are generally in agreement with those used for these special lift devices.
- The ANSI N14.6 criteria for stress limits associated with certain stress design factors for tensile and shear stresses are adequately satisfied.
- 3. These devices are not in strict compliance only with the ANSI N14.6 requirements for acceptance testing, maintenance and verification of continuing compliance. Recommendations are included to identify actions that should enable these devices to be considered in compliance with the intent of ANSI N14.6.
- 4. The application of the ANSI N14.6 criteria for stress design factor of 3 and 5 are only for shear and tensile loading craditions. Other loading conditions are to be analyzed to other appropriate criteria.

SECTION 6 RECOMMENDATIONS

The following recommendations address the areas of ANSI N14.6 which are incompatible with the present lifting devices and which are considered most important in demonstrating the continued reliability of these devices. They consist of suggestions and proposed responses to identify compliance to the NRC and future considerations.

- 6.1 Review plant operating procedures to include consideration of ANSI N14.6 Sections 5.1.3 through 5.1.8. These sections include requirements for: scheduled periodic testing; special identification and marking; maintenance, repair, testing and use. Westinghouse remarks on addressing these sections are listed in Attachment A, Appendix B, Items 7, 8, and 9.
- 6.2 A proposed response to the requirement of ANSI N14.6 Section 5.2.1 requiring an initial acceptance load test prior to use equal to 150 percent of the maximum load is as follows:

After site assembly these special lifting devices were subject to a 100 percent load test followed by non-destructive testing of all critical areas. The Unit 2 internals lift rig was subject to a 125 percent load test followed by appropriate non-destructive testing of all critical areas. The new load path items will be tested to 150 percent of the maximum load prior to shipment.

6.3 A proposed response to ANSI N14.6 Section 5.3 which requires, annually, either a 150 percent maximum load test or dimensional, visual and non-destructive testing of major load carrying welds and critical areas follows. (Since the 150 percent load test is very impractical, the approach identified in the following recommendation is to perform a minimum of non-destructive testing.)

a. Reactor Vessel Head Lift Fig

Prior to use and after reassembly of the spreader assembly, lifting lug and upper lifting legs to the upper portion of the lift rig, visually check all welds. Raise the vessel head slightly above its support and hold for 10 minutes. During this time, visually inspect the sling block top lug to top plate weld, side lugs to support pipe welds, and spreader lug to spreader arm weld. If no problems are apparent, continue to lift, monitoring the load cell readout at all times.

b. Reactor Vessel Internals Lift Rig

Prior to use, visually inspect the rig components and welds while on the storage stand for signs of cracks or deformation. Check all bolted joints to ensure that they are tight and secure. After connection to the upper or lower internals, raise the assembly slightly off its support and hold for 10 minutes. During this time, visually inspect the sling block top lug to support plate weld, side lugs to support pipe welds, spacer to leg weld, and brace plate and leg support block to leg welds. If no problems are apparent, continue to lift, monitoring the load cell readout at all times.

The above actions do not include a non-destructive test of these welds because:

- a. Access to the welds for surface examination is difficult. These rigs are in containment and some contamination is present.
- b. All tensile and shear stresses in the welds are well within the allowable stress.

- c. The items that are welded remain assembled and cannot be misused for any other lift other than their intended function.
- d. To perform non-destructive tests would require:
 - (1) Removal of paint around the area to be examined which is contaminated.
 - (2) Performance of either magnetic particle inspection or liquid penetrant inspection and
 - (3) Repainting after testing is completed.
 - (4) Cleanup of contaminated items.

Performing non-destructive tests on these welds every refueling would increase the critical path refueling time.

Dimensional checking is not included since these structures are large (about 14 feet diameter by 30 feet high) and the results of dimensional checking would always be questionable. Other checks on critical load path parts such as pins, are also not included since an examination of these items would require disassembly of the special lift devices.

- 6.4 Recommend that a periodic non-destructive surface examination of critical welds and/or parts be performed once every ten years as part of an inservice inspection outage.
- 6.5 Recommend that the head and internals lift rig sling block be changed to a forged block with welded side lugs to reduce the number of welds and eliminate any concern, if any, of lamellar tearing, should the NRC require yearly surface inspection of welds and plates.

- 6.6 Recommend that no changes be made to the reactor vessel internals lift rig should the stresses, discussed in Attachment B, be considered excessive by others because:
 - a. The design weight used in the stress calculations is based on the weight of the lower internals. The lower internals are only removed when a periodic inservice inspection of the vessel is required (once/10 years).
 - b. Prior to removal of the lower internals, all fuel is removed. Thus the concern for handling over fuel is non-existent in this particular case.
 - c. Normal use of the rig is for moving the upper internals which weigh less than one-half of the lower internals. The design weight is based on lifting the lower internals. Thus all the stresses could be reduced by more than 50 percent and considered well within the ANSI N14.6 criteria for stress design factors.

WESTINGHOUSE CLASS 3 .

Al though information contained in this report ATTACHMENT A is nonproprietary, no distribution shall to WCAP-10167 be made outside Westinghouse or its licensees without the customer's approval.

Comparison of ANSI N14.6-1978 Requirements for Special Lifting Devices and the Requirements for the Reactor Vessel Head Lift Rig, Reactor Vessel Internal's Lift Rig, Load Cell, and Load Cell Linkage for

Public Service Electric and Gas Company
Salem Generating Station
Units 1 and 2

February 1983

L. J. Malandra, P.E.

Approved

J. R. Marshall, P.E. Manager

Refueling Equipment Engineering

ABSTRACT

The requirements used in the original design, fabrication, testing, maintenance and quality assurance were compared to the ANSI N14.6-1978 requirements for the Salem reactor vessel head and internals lift rig, load cell and load cell linkage. A critical items list per ANSI N14.6 section 3.1.2 has been prepared and a tabulation of ANSI N14.6 requirements that are, at present, incompatible with the Salem lifting devices has been prepared.

TABLE OF CONTENTS

Section	Title	Page
	ABSTRACT	111
1	PURPOSE	1-1
2	INTRODUCTION	2-1
	2.1 Background	2-1
	2.2 Component Description	2-2
	2.2.1 Reactor Vessel Head Lift Rig	2-2
	2.2.2 Reactor Vessel Internals Lift Rig	2-2
	2.2.3 Load Cell and Load Cell Linkage	2-3
3	DISCUSSION	3-1
4	CONCLUSIONS	4-1
APPENDIX A	- CRITICAL ITEMS LIST PER ANSI N14.6-1978	A-1
APPENDIX B	- TABULATION OF ANSI N14.6-1978 REQUIREMENTS	8-1
	INCOMPATIBLE WITH THE SALEM SPECIAL	
	LIFTING DEVICES	

LIST OF ILLUSTRATIONS

Figure	Title	Page
A-1	Reactor Vessel Head Lift Rig	A-5
A-2	Reactor Vessel Internals Lift Rig	A-10
A-3	Rotolock Studs and Inserts Arrangement	A-11

LIST OF TABLES

Table	Title	Page
2-1	Comparison of the Requirements of ANSI N14.6 and Salem Special Lifting Devices	2-4
A-1	Reactor Vessel Head Lift Rig, Critical Items List of Parts per ANSI N14.6-1978	A-3
A-2	Reactor Vessel Head Lift Rig, Critical Items List of Welds per ANSI N14.6-1978	A-4
A-3	Reactor Vessel Internals Lift Rig, Load Cell and Load Cell Linkage, Critical Items List of Parts per ANSI N14.6-1978	A-6
A-4	Reactor Vessel Internals Lift Rig, Load Cell and Load Cell Linkage, Critical Items List of Welds per ANSI N14.6-1978	A-12

REFERENCES

- 1. Westinghouse Drawing 685J059 Read Lifting Rig General Assembly
- Westinghouse Drawing 113E480 4 Loop Plants L'fting Rig Internals General Assembly

SECTION 1 PURPOSE

The purpose of this report is to compare the requirements of the special lifting rigs used to lift the reactor vessel head, reactor vessel upper and lower internals with the requirements contained in ANSI N14.6 for special lifting devices.

SECTION 2 INTRODUCTION

ANSI N14.6-1978-"American National Standard for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds or More for Nuclear Materials" contains detailed requirements for the design, fabrication, testing, maintenance and quality assurance of special lifting devices. NUREG 0612 "Control of Heavy Load at Nuclear Power Plants", paragraph 5.1.1(4), specifies that special lifting devices should satisfy the guidelines of ANSI N14.6-1978. Subsequently the Nuclear Regulatory Commission (NRC) has requested operating plants to demonstrate compliance with NUREG 0612. To demonstrate compliance with this document, a detailed comparison of the original design, fabrication, testing, maintenance and quality assurance requirements with those of ANSI N14.6 is necessary.

Thus, the ANSI N14.6 document has been reviewed in detail and compared to the requirements used to design and manufacture the reactor vessel head lift rig, the reactor vessel internals lift rig, load cell, load cell linkage and the reactor coolant pump motor lift sling. This comparison is listed in Table 2-1.

2.1 BACKGROUND

The reactor vessel head lift rig, the reactor vessel internals lift rig, load cell, and load cell linkage were originally designed and built for the the Salem Generating Station circa 1967-1971. Subsequently, the Unit 2 internals lift rig was transferred to another plant site in 1975-76 and replaced in 1977 with an almost identical design. The actual design criteria is unknown for the lifting devices. It appears that Westinghouse used the design criteria that the resulting stress in the load carrying members, when subjected to the total combined lifting weight, should not exceed one fifth (1/5) of the ultimate strength of the material. These items were not classified as nuclear safety components and requirements for formal documentation of design requirements and stress reports were not applicable. Thus, stress reports and design specifications were not formally documented. Westinghouse defined the

design, fabrication and quality assurance requirements on detailed manufacturing drawings and purchase order documents. Westinghouse also issued field assembly instructions for the reactor vessel head and internals lift rigs which included an initial load test followed by non-destructive surface examination of critical load bearing areas. Additionally, the new Unit 2 internals lift rig was load tested at the manufacturers shop at 125 percent of the maximum weight. Subsequent modifications (presently in progress) to the internals lifting rig include rotolock studs and inserts designed, manufactured, and tested to the requirements of ANSI N14.6.

2.2 COMPONENT DESCRIPTION

2.2.1 Reactor Vessel Head Lift Rig

The reactor vessel head lift rig^[1] is a three-legged carbon steel structure, approximately 43 feet high and 14 feet in diameter, weighing approximately 28,000 pounds. It is used to handle the assembled reactor vessel head.

The three vertical legs and control rod drive mechanism (CRDM) platform assembly are permanently attached to the reactor vessel head lifting lugs. The tripod sling assembly is attached to the three vertical legs and is used when installing and removing the reactor vessel head. During plant operations, the sling assembly is removed and the three vertical legs and platform assembly remain attached to the reactor vessel head.

2.2.2 Reactor Vessel Internals Lift Rig

The reactor vessel internals lift $\operatorname{rig}^{[2]}$ is a three-legged carbon and stainless steel structure, approximately 25 feet high and 14 feet in diameter weighing approximately 14,500 pounds. It is used to handle the upper and lower reactor vessel internals packages. It is attached to

the main crane hook for all lifting, lowering and traversing operations. A load cell linkage is connected between the main crane hook and the rig to monitor loads during all operations. When not in use, the rig is stored on the upper internals storage stand.

The original rig design attaches to the internals packages by means of three engaging screws which are screwed into tapped holes in the internals flanges. These screws are manually operated from the manipulator crane walkway using a handling tool which is essentially a long wrench. The screws are normally spring retracted upward and are depressed to engage the tapped holes by the weight of the handling tool. Modifications to these rigs, presently in progress, include installation of an operating platform, integral tools and a change to the type of engagement with the internals to a rotolock stud and insert type. These rotolock studs are manually operated from the new internals lift rig platform using a handling tool which is an integral part of the rig. The studs are normally spring retracted upward and are depressed to engage the inserts. Rotating the mechanism locks it in both positions. Since these rotolock studs are in the process of being incorporated, both types of load carrying items are included in this report.

2.2.3 Load Cell and Load Cell Linkage

The load cell is used to monitor the load during lifting and lowering the reactor vessel head or internals to ensure no excessive loadings are occurring. It is installed between the load cell linkage and the lifting device. The load cell is a strain gage (tension) type, rated at 400,000 pounds, built by W. C. Dillon and Co. The load cell linkage is an assembly of pins, plates and bolts which connect the polar crane main hook to the load cell.

TABLE 2-1

COMPARISON OF THE REQUIREMENTS OF ANSI N14.6 AND SALEM SPECIAL LIFT DEVICES

ANSI N14.6 Section	Description of ANSI N14.6 Requirement	Actual Special Lift Device Requirements
1 1.1 to 1.3 2	Scope and Definitions - These sections define the scope of the document and include pertinent definitions of specific items	These sections are definitive, and not requirements.
3 3.1 3.1.1 to 3.1.4	Design Designer's Responsibilities - This section contains requirements for preparing a design specification and its' contents, stress reports; repair procedures; limitations on use with respect to environmental conditions; marking and nameplate information; and critical items list.	A. No original design specification was written concerning these specific requirements. Subsequent modifications to the internals lift rig meet these requirements. However, assembly and detailed manufacturing drawings and purchasing documents contain the following requirements: (1) Material specification for most of the critical load path items to ASTM,
		ASME specifications or special listed requirements. (2) All welding, weld procedures and welds to be in accordance with ASME Boiler and Pressure Vessel Code - Section IX.
		(3) Special non-destructive testing for specific critical load path items to be performed to written and approved procedures in accordance with ASTM or specified requirements

TABLE 2-1 (cont) COMPARISON OF THE REQUIREMENT OF ANSI N14.6 AND SALEM SPECIAL LIFT DEVICES

ANSI N14.6 Section	Description of ANSI N14.6 Requirement	Actual Special Lift Device Requirements
		(4) All coatings to be performed to strict compliance with specified requirements.
		(5) Letters of compliance for materials and specifications were required for verification with original specifications.
		B. A stress report was not originally required but has been prepared and is Attachment B.
		C. Repair procedures were not identified.
		D. No limitations were identified as to the use of these devices under adverse environments.
		E. Markings and nameplate information was not addressed.
		F. Critical item lists have been prepared for each device and are identified as Appendix A to this Attachment A.

TABLE 2-1 (cont) CUMPARISUN OF THE REQUIREMENT OF ANSI N14.6 AND

SALEM SPECIAL LIFT DEVICES

ANSI N14.6 Section	Description of ANSI N14.6 Requirement	Actual Special Lift Device Requirements
3.2 3.2.1 3.2.6	Stress Design Factors - These sections contain requirements for the use of stress design factors of 3 and 5 for allowable stresses of yield and ultimate respectively for maximum shear and tensile stresses; high strength material stress design factors; special pins; wire rope and slings to meet ANSI B30.9-1971; and drop-weight tests and Charpy impact test requirements	1. The actual design criteria is unknown for the lifting devices. It appears that for the head lifting rig, internals lift rig and load cell, that in most cases the design criteria used was that the resulting stress in the load carrying members, when subjected to the total combined lifting weight, should not exceed one fifth (1/5) of the ultimate strength of the material. A stress report (Attachment B) has been generated which addresses the capability of these rigs to meet the ANSI design stress factors. 2. High strength materials are used in some of these devices (mostly for pins, loadcell). Although the fracture toughness was not determined, the material was selected based on it's excellent fracture toughness characteristics. However, the stress design factors of ANSI N14.6 Section 3.2.1 of 3 and 5 were used in the analysis and the resulting stresses are acceptable. 3. Where necessary, the weight of pins was considered for handling.

TABLE 2-1 (cont) COMPARISON OF THE REQUIREMENT OF ANSI N14.6 AND SALEM SPECIAL LIFT DEVICES

ANSI N14.6 Section	Description of ANSI N14.6 Requirement	Actual Special Lift Device Requirements
3.3 3.3.1 to 3.3.8	Design Considerations - These sections contain considerations for; materials of construction, lamellar tearing; decontamination effects; remote engagement provisions; equal load distribution; lock devices; position indication of remote actuators; retrieval of device if disengaged; and nameplates.	4. Drop weight and Charpy impact tests were not required nor performed. Decontamination was not specifically addressed. Lamellar tearing was considered in the design of the reactor vessel and internals lift rig sling blocks by requiring non-destructive tests (ultrasonic, magnetic particle and radiograph) of the base material and assembly welds. Even distribution of the load is evident from these designs. Locking plates, pins, etc. are used throughout these special lifting devices. Remote actuation is only used when engaging the internals lift rig with the internals, however, present modifications include positive position indication of engagement. All these items were considered and the designs reflect these requirements.
3.4 3.4.1 to 3.4.6	Design Considerations to Minimize Decontam- ination Efforts in Special Lifting Device Use - These sections contain fabrication, welding, finishes, joint and machining requirements to permit ease in decontamination.	Decontamination was not specifically addressed. However, the design and manufacture included many of these items, i.e. lock devices, pins, etc.

TABLE 2-1 (cont) COMPARISON OF THE REQUIREMENT OF ANSI N14.6 AND SALEM SPECIAL LIFT DEVICES

ANSI N14.6 Section	Description of ANSI N14.6 Requirement	Actual Special Lift Device Requirements
3.5 3.5.1 to 3.5.10	Coatings - These sections contain provisions for ensuring proper methods are used in coating carbon steel surfaces and for ensuring non-contamination of stainless steel items.	The requirements for coating carbon steel surfaces are contained in a Westinghouse process specification referenced on the assembly and detail drawings. This specification requires a proven procedure, proper cleaning, preparation, application and final inspection of the coating. These requirements meet the intent of 3.5.1 through 3.5.8. No provisions were included in these designs for consideration of decontamination materials or the use of non-contaminating contact materials for use in stainless steel parts.
3.6 3.6.1 to 3.6.3	Lubricants - These sections contain requirements for special lubricants to minimize contamination and degradation of the lubricant and contacted surfaces or water pools	No specific lubrication requirements have been identified. However, neolube is recommended for use with the engaging screws in the internals lift device which are under water and silicone grease for the load cell pins which are out of water.

ANSI N14.6 Section	Description of ANSI N14.6 Requirement	Actual Special Lift Device Requirements
4 4.1 4.1.1 to 4.1.12	Fabrication Fabricators Responsibilities These sections contain specific requirements for proper quality assurance, document control, deviation control, procedure control, material identification and certificate of compliance.	A formal quality assurance program for the manufacturer was not specifically required However, all the manufacturers welding procedures and non-destructive testing procedures were reviewed by Westinghouse prior to use. All critical load carrying member require letters of compliance for material requirements. Westinghouse performed certain checks and inspections during various steps of manufacturing. Final Westinghouse review includes visual, dimensional, procedural, cleanliness, personnel qualification, etc. and issuance of a quality release to ensure conformance with drawing requirements.
4.2 4.2.1 to 4.2.5	Inspectors Responsibilities -These sections contain requirements for a non-supplier inspector.	Westinghouse Quality Assurance personnel performed inprocess and final inspections similar to those identified in these sections. (Also see comments to Section 4.1 above)
4.3 4.3.1 to 4.3.3	Fabrication Considerations -These sections contain special requirements for ease in decontamination or control of corrosion.	General good manufacturing processes were followed in the manufacture of these devices. However, the information defined in these sections was not specifically addressed.

ANSI N14.6 Section	Description of ANSI N14.6 Requirement	Actual Special Lift Device Requirements
5 5.1 5.1.1 to 5.1.8	Acceptance Testing Maintenance, and Assurance of Continued Compliance Owner's Responsibilities - Sections 5.1.1 and 5.1.2 require the owner to verify that the special lifting devices meet the performance criteria of the design specification by reviewing records and witness of testing.	Both of these rigs were load tested after initial assembly on site followed by non-destructive testing of critical load bearing areas. The new Unit 2 internals lift rig was also load tested to 125% of the design weight. However, the Westinghouse Quality Release may be considered an acceptable alternate to verify that the criteria for letters of compliance for materials and specifications required by the Westinghouse drawings and purchasing documents was satisfied.
	Section 5.1.3 requires periodic functional testing	Maintenance and inspection procedures should be revised to include a visual check of critical welds and parts during lifting to comply with this requirement for functional testing.
	Section 5.1.4 requires operating procedure	Operating instructions for the reactor vessel internals lift rig were furnished to the utility and operating procedures were prepared and are used.

continue to the second

ANSI N14.6 Section	Description of ANSI N14.6 Requirement	Actual Special Lift Device Requirements
	Sections 5.1.5, 5.1.5.1 and 5.1.5.2 require special identification and marking to prevent misuse.	It is obvious from their designs that these rigs are special lifting devices and can only be used for their intended purpose. Specific identification of the rig can be made by marking, with stencils, the rig name and rated capacity, preferably on the spreader assembly.
	Sections 5.1.6, 5.1.7 and 5.1.8 require the owner to provide written documentation on the maintenance, repair, testing and use of these rigs.	Operating instructions and maintenance instructions should be reviewed to assure that they contain the requirements to address maintenance logs, repair and testing history, damage incidents etc.

ANSI N14.6 Section	Description of ANSI N/4.6 Requirement	Actual Special Lift Device Requirements
5.2 and 5.3 5.2.1 to 5.2.3 and 5.3.1 to 5.3.8	Acceptance Testing and Testing to Verify Continuing Compliance - These paragraphs require the rigs to be initially tested at 150% maximum load followed by non-destructive testing of critical load bearing parts and welds and also annual 150% load tests or annual non-destructive tests and examinations; qualification of replacement parts.	The head and internals lift rigs were load tested after field assembly. In addition, the new Unit 2 internals lift rig was load tested to 125% load at initial manufacture. The new load bearing modifications presently in progress will meet these requirements. It is suggested that a check of critical welds and parts be included in the maintenance procedures. Preferably, a visual check during initial lift should be acceptable. Further note that with the use of the load cell for the head and internals, lifting and lowering is monitored at all times. However, the load cell, cannot exceed the rated load by 20% without being inaccurate. This would preclude monitoring of a 150% load test with the present equipment. Replacement parts should be in accordance with the original or equivalent requirements.

ANSI N14.6 Section	Description of ANSI N14.6 Requirement	Actual Special Lift Device Requirements
5.4 5.4.1 to 5.4.2	Maintenance and Repair - This section requires any maintenance and repair to be performed in accordance with original requirements and no repairs are permitted for bolts, studs and nuts.	Maintenance and repair procedure should contain, as much as possible, requirements that were used in the original fabrication. The critical items list of Appendix A contains the original type of non-destructive testing. The procedure should also define bolts, studs and nuts as non-repairable items.
5.5 5.5.1 to 5.5.2	Non-destructive Testing Procedures, Personnel Qualifications, and Acceptance Criteria - This section requires non- destructive testing to be performed in accordance with the requirements of the ASME Boiler and Pressure Vessel Code	Liquid penetrant, magnetic particle, ultrasonic and radiograph inspections were performed on identified items. These were in accordance with Westinghouse process specifications or as noted on detailed drawings and provide similar results to the requirement of the ASME Code.
6 6.1 6.2 6.3	Special Lifting Devices for Critical Loads - These sections contain special requirements for items handling critical loads.	It is assumed that compliance with NUREG 0612, Section 5.1 has been demonstrated and therefore this section is not applicable to these devices.

SECTION 3 DISCUSSION

The reactor vessel head and internals lift rigs, load cell and load cell linkage generally meet the intent of the ANSI N14.6 requirements for design and manufacture. However, they are not in strict compliance with the ANSI N14.6 requirements for acceptance testing, maintenance and verification of continuing compliance.

Although no specific design specification was written, the assembly and detailed manufacturing drawings and purchase order documents contain equivalent requirements. A stress report has been prepared for these devices and the design criteria is considered satisfied. These devices, were manufactured under Westinghouse surveillance with identified hold points, procedure review and personnel qualification which adequately meet these related ANSI requirements. Acceptance testing as defined in ANSI N14.6 was not performed, but an initial 100 percent load test was conducted on these special lift devices followed by non-destructive testing of critical areas. In addition, the Unit 2 internals lift rig was 125 percent load tested. The new modifications of load bearing items will comply with ANSI N14.6. The load cell was calibrated in tension at its capacity of 400,000 pounds.

It is anticipated that a 100 percent load test, performed on each device, followed by a visual check of critical welds would be sufficient to demonstrate compliance. This may require modification of Salem operating and maintenance procedures.

SECTION 4 CONCLUSIONS

The review of the ANSI N14.6 requirements and comparison with the original Westinghouse requirements has shown that these items are generally in agreement for the design, fabrication and quality assurance of the lifting devices. However, the lifting devices are not in strict compliance with the ANSI N14.6 requirements for acceptance testing, maintenance and verification of continuing compliance. These specific requirements that are incompatible with the lifting devices are discussed in Appendix B with suggested actions. Westinghouse's objective was to provide a quality product and this product was designed, fabricated, assembled and inspected in accordance with internal Westinghouse requirements. In general, Westinghouse requirements meet the intent of ANSI N14.6 but not all the specific detailed requirements.

APPENDIX A

CRITICAL ITEMS LIST PER ANSI N14.6-1978

1. GENERAL

Section 3.1.2 of ANSI N14.6-1978 specifies that the design specification shall include a critical items list, which identifies critical components and defines their critical characteristics for material, fabrication, non-destructive testing and quality assurance.

"Critical items list" is further defined in ANSI N14.6, Section 2 as:

"critical items list. A list that specifies the items of a special lifting device and their essential characteristics for which specified quality requirements shall apply in the design, fabrication, utilization, and maintenance of the device."

Load carrying members and welds of these special lifting devices are considered to be the critical items.

Tables A-1, A-2, A-3, and A-4, are the critical items list of parts and welds for the reactor vessel head lift rig, the reactor vessel incernals lift rig, load cell and load cell linkage, respectively. These tables include the material identification, and the applicable volumetric and surface inspections that were performed in the fabrication of these special lifting devices. In some instances, non-destructive testing was not specified since the material selection and strength result in very low tensile stresses and thus, non-destructive testing was not justified.

The material selection for most critical load path items was made to ASTM, ASME or special material requirements. The material requirements were supplemented by Westinghouse imposed non-destructive testing, and/or special heat treating requirements for all of the critical items. Westinghouse required all welding, welders, and weld procedures

to be in accordance with ASME Boiler and Pressure Vessel Code Section IX for carbon steel welds. Westinghouse required certificates, or letters of compliance that the materials and processes used by the manufacturer were in accordance with the purchase order and drawing requirements. Westinghouse also performed final inspections on these devices and issued quality releases. The new modifications to the internals lift rig pertinent to critical items are also included.

TABLE A-1
REACTOR VESSEL HEAD LIFT RIG
CRITICAL ITEMS LIST OF PARTS
PER ANSI N14.6-1978

Item(a)	Description	Material	Non-destructive Testing	
			Material	Finished
1,3,6,10,	Pins	ASTM A434 Class BD	Ultrasonic	Magnetic Particle
2	Side Plate	ASTM A514 or USS-T1	Ultrasonic	Magnetic Particle
4,5	Sling Assembly Link and Lug	ASTM A237 Class A	Ultrasonic	Magnetic Particle
7,9	Clevis	ASTM A237 Class BD	Ultrasonic	Magnetic Particle
8	Arm	ASTM A306 Grade 70	Ultrasonic	Magnetic Particle
11	Support Lug	ASTM A515 Grade 70	Ultrasonic Magnetic Particle	
12	Ring Girder	ASTM A285 Grade C		
13	Leg	ASTM A36		
14	Clevis Plate	ASTM A515 Grade 70	Ultrasonic Magnetic Particle	

⁽a) See figure A-1

TABLE A-2
REACTOR VESSEL HEAD LIFT RIG
CRITICAL ITEMS LIST OF WELDS
PER ANSI N14.6-1978

Item(a)	Weld	Non-destructive Testing		
	Description	Root Pass	Final	
4,5	Link Lugs to Link (full penetration)		Radiograph Magnetic Particle	
11,12	Ring Girder to Support Lug (fillet)		Magnetic Particle	
13,14	Clevis Plate to Leg (fillet)	Visual	Magnetic Particle	

⁽a) See figure A-1.

Figure A-1. Reactor Vessel Head Lift Rig

TABLE A-3 REACTOR VESSEL INTERNALS LIFT RIG, LOAD CELL AND LOAD CELL LINKAGE CRITICAL ITEMS LIST OF PARTS PER ANSI N14.6-1978

Item(1)	Description	Material	Non-destructi	ve Testing
			Material	Finished
1,3,7,	7-1/2" Dia. Hook Pin 6" Dia. Adaptor Pin 6" Dia. Removable Pin 4" Dia. Clevis Pin	ASTM A434 Class BD AISI 4340	Ultrasonic	Magnetic Particle
2	Load Cell Linkage Side Plates	ASTM A515 Grade 70	Ultrasonic	
4,6	Adaptors	AISI 4340	U1 trasonic	Magnetic Particle
5	Load Cell	17-4 pH Stain- less Steel, Condition H- 1100	Ultrasonic	Liquid Particle
8a, 10a(2)	Top Lug Support Plate	ASTM A515 Grade 70	Magnetic Particle Ultrasonic	
86,106(2)	Top Lug Support Plate	ASTM 533 Grade B Class 1	Magnetic Particle Ultrasonic	
11a(2)	Side Lug	ASTM A515 Grade 70	Magnetic Particle Ultrasonic	
116(2)	Side Lug	ASTM A588 Grade A Class 1	Ultrasonic Magnetic Particle	

⁽¹⁾See figure A-2
(2)Subscript (a) refers to Unit 1 only, while subscript (b) refers to
Unit 2; no subscript means identical to both units.

TABLE A-3 (cont) REACTOR VESSEL INTERNALS LIFT RIG LOAD CELL AND LOAD CELL LINKAGE CRITICAL ITEMS LIST OF PARTS PER ANSI N14.6-1978

Item(1)	Description	Material	Non-destructive Testing	
			Material	Finished
13a,15a ⁽²⁾	Clevis	SA508 Class 2	Ultrasonic	Magnetic Particle
13b,15b ⁽²⁾	Clevis	ASTM A668 AISI 4340 Class M	Ultrasonic ·	Magnetic Particle
14a ⁽²⁾	Sling Leg	AISI 1117 Hot Rolled AISI 1020 Cold Rolled		
145(2)	Sling Leg	ASTM A434 Class BC AISI 4340	U1 trasonic	Magnetic Particle
16	4" Dia. Clevis Bolt	ASIM A434 Class BD AISI 4340	Ultrasonic	
20	Spacer	ASTM A588 Grade A or B		
21,22	Leg Channel Brace Plate	ASTM A36		
23	Leg Support Block	AISI 8620	Ultrasonic Magnetic Particle	

⁽¹⁾See figure A-2
(2)Subscript (a) refers to Unit 1 only, while subscript (b) refers to
Unit 2; no subscript means identical to both units.

TABLE A-3 (cont) REACTOR VESSEL INTERNALS LIFT RIG LOAD CELL AND LOAD CELL LINKAGE CRITICAL ITEMS LIST OF PARTS PER ANSI N14.6-1978

Item(1)	Description	Material	Non-destructive Testing	
			Material	Finished
24a ⁽³⁾ , 26a ⁽³⁾ ,	Adaptor Guide Sleeve	ASTM A276 Type 304 Condition A		
25a (3)	Outer Tube	ASTM A312 Type 304 Seamless		
27(3)	Engaging Screw	ASTM A564 Grade 630, Cond. 1100	Ultrasonic	Liquid Penetrant
286(2)	Load Nut	ASTM A276 Type 304 Cond. A		
296(3)	Tube Housing	ASTM A276 Type 304 Cond. A		
306(3)	Guide Sleeve	ASTM A276 Type 304 Cond. A		

(1) See figure A-2
(2) Subscript (a) refers to Unit 1 only, while subscript (b) refers to Unit 2; no subscript means identical to both units.
(3) These items will be replaced in the forthcoming modifications.

TABLE A-3 (cont) REACTOR VESSEL INTERNALS LIFT RIG LOAD CELL AND LOAD CELL LINKAGE CRITICAL ITEMS LIST OF PARTS PER ANSI N14.6-1978

Item(1)	Description	Material	Non-destructive Testing	
			Material	Finished
31 a (4)	Load Nut	ASTM A276, Type 304 SS Condition A	Ultrasonic	
32(4)	Rod Housing	ASTM A276 Type 304 SS Condition A	Ultrasonic	
33(4)	Guide Sleeve	ASTM A276 Type 304 SS Condition A	Ultrasonic	Liquid Penetrant
34(4)	Rotolock Stud	ASTM A564, Type 630, 17-4 pH, H1100	Ultrasonic	Liquid Penetrant
35 ⁽⁴⁾ ,	Upper and Lower Internals Inserts	ASTM A637 Grade 688 Type 2 Inconel X-750	U1 trasonic	Liquid Penetrant

⁽¹⁾ See figure A-2, A-3 (4) These items are the new items to be installed.

Figure A-2 Reactor Vessel Internals Lift Rig

*NEW ITEMS
LETTER "A" SUFFIX IS FOR UNIT 1 ONLY (PSE)

Figure A-3. Rotolock Studs and Inserts Arrangement

TABLE A-4

REACTOR VESSEL INTERNALS LIFT RIG

LOAD CELL AND LOAD CELL LINKAGE

CRITICAL ITEMS LIST OF WELDS

PER ANSI N14.6-1978

Item	Weld Description	Non-destructive Testing		
		Root Pass	Final	
8,10	Sling Block Top Lugs to Support Plate (full penetration)	Magnetic Particle	Ultrasonic Magnetic Particle	
9,11	Side Lugs to Support Pipe (full penetration)	Magnetic Particle	Radiograph Magnetic Particle	
20	Spacer to Leg Weld (Top and Bottom) (full penetration)	Magnetic Particle	Visual Magnetic Particle	
24a ⁽¹⁾ , 25a	Torque Tube Adapter to Outer Tube (full pene- tration)	Liquid Penetrant	Liquid Penetrant	
21,22,23	Brace Plate and Leg Support Block to Leg Weld (fillet)	Magnetic Particle	Visual Magnetic Particle	

⁽¹⁾ Subscript (a) refers only to Unit 1.

APPENDIX B

TABULATION OF ANSI N14.6-1978 REQUIREMENTS INCOMPATIBLE WITH THE SALEM LIFTING DEVICES

1. GENERAL

The comparison of the various ANSI N14.6 requirements and those of these lifting devices has shown that these devices are not in strict compliance with all the ANSI N14.6 requirements. Listed below is a tabulation of those sections of ANSI N14.6 considered most important in demonstrating the continued load handling reliability of these special lifting devices. Associated Westinghouse remarks are also listed and could be used as suggested actions and/or responses to demonstrate compliance to the NRC.

la. Requirement:

Para. 3.1.4 - requires the designer to indicate permissible repair procedures and acceptance criteria for the repair.

1b. Remarks:

Any repair to these special lifting devices is considered to be in the form of welding. Should pins, bolts or other fasteners need repair, they should be replaced, in lieu of repair, in accordance with the original or equivalent requirements for material and non-destructive testing. Weld repairs should be performed in accordance with the requirements identified in NF-4000 and NF-5000 (Fabrication and Examination) of the ASME Boiler and Pressure Vessel Code, Section III, Division 1 Subsection NF.

2a. Requirement:

Para. 3.2.1.1 - requires the design, when using materials with yield strengths above 80 percent of their ultimate

strengths, to be based on the material's fracture toughness and not the listed design factors.

2b. Remarks:

High strength materials are used in these devices.

Although the fracture toughness was not determined, the material was selected based on it's excellent fracture toughness characteristics. However, in lieu of a different stress design factor, the stress design factors listed in 3.2.1 of 3 and 5 were used in the analysis and the resulting stresses are considered acceptable.

3a. Requirement:

Para. 3.2.6 requires material for load-bearing members to be subjected to drop-weight or Charpy impact tests.

3b. Remarks:

Fracture toughness requirements were not identified for the material used in these special lifting devices except for the upper and lower clevises of the internals lift rig. The applicable specification for these items is an ASME specification which requires Charpy tests. However, all material selection was based on its excellent fracture toughness characteristics.

4a. Requirement:

Para. 3.3.6 requires an indication that an actuating mechanism is engaged.

4b. Remarks:

The original reactor vessel internals lift rig design employs a long handled too¹ to engage the rig and the internals. The tool depresses a spring loaded tube and turns the engaging screw into the internals. No specific position indication is identified, except for scribe marks on the tool, and the visual difference in the top of the

spring loaded tube is considered sufficient indication that the internals are engaged. However, the new modifications, presently in progress, include an integral tool with indication of engagement.

5a. Requirement:

Para. 4.1.6 requires a formal quality assurance program for the manufacturer and para. 4.1.7 requires certification and identification of materials.

5b. Remarks:

A formal quality assurance program for the manufacturer was not required for all items. However, the manufacturers welding procedures and non-destructive testing procedures were reviewed by Westinghouse prior to use. All of the critical load carrying members require letters of compliance for material requirements. Westinghouse performed certain checks and inspections during various steps of manufacturing. Final Westinghouse review includes visual, dimensional, procedural, cleanliness, personnel qualification, etc. and issuance of a quality release to ensure conformance with drawing requirements.

6a. Requirement:

Para. 5.1 lists Owner Responsibilities and 5.1.2 requires the owner to verify that the special lifting devices meet the performance criteria of the design specification by records and witness of testing.

6b. Remarks:

There wasn't any design specification for these rigs.

Load testing was performed on these lifting devices after field assembly. These were 100 percent load tested and non-destructive testing was conducted on critical welds following the test. In addition, the new Unit 2 internals

lift rig was load tested at assembly to 125 percent of the design weight. However, the Westinghouse Quality Release may be considered an acceptable alternate to verify that the criteria for letters of compliance for materials and specifications required by the Westinghouse drawings and purchasing document were satisfied.

7a. Requirement:

Para. 5.1.3 requires periodic functional testing and a system to indicate continued reliable performance.

7b. Remarks:

Maintenance and inspection procedures should include a visual check of critical welds and parts during lifting to comply with this requirement for functional testing.

8a. Requirement:

Para. 5.1.5, 5.1.5.1 and 5.1.5.2 require special identification and marking to prevent misuse.

8b. Remarks:

It is obvious, from their designs, that these rigs are specific lifting devices and can only be used for their intended purpose and parts are not interchangeable.

Specific identification of the rig can be made by marking with stencils, the rig name and rated capacity, preferably on the spreader assembly.

9a. Requirement:

Para. 5.1.6, 5.1.7 and 5.1.8 require the owner to provide written documentation on the maintenance, repair, testing and use of these rigs.

9b. Remarks:

Operating instructions and maintenance instructions should be reviewed to assure that they contain the requirements

to address maintenance logs, repair and testing history, damage incidents and other items mentioned in these paragraphs.

10a. Requirement:

Para 5.2.1 requires the rigs to be initially tested at 150 percent maximum load followed by non-destructive testing of critical load bearing parts and welds.

10b. Remarks

The head lift rig and internals lift rig were all load tested at assembly to 100 percent of the load followed by non-destructive testing of critical welds. In addition, the new Unit 2 internals lift rig was 125 percent load tested at assembly.

11a. Requirement:

Para 5.2.2 requires replacement parts to be individually qualified and tested.

11b. Remarks

Replacement parts, should they be required, should be made of identical (or equivalent) material and inspections as originally required. Only pins, bolt and nuts are considered replacement parts for the reactor vessel head and internal lift rigs.

12a. Requirement:

Para 5.3 requires testing to verify continuing compliance and annual 150 percent load tests or annual non-destructive tests and examinations to be performed.

12b. Remarks

These special lifting devices are used during plant refueling which is approximately once per year. During plant operation these special lifting devices are

inaccessable since they are permanently installed and/or remain in the containment. They cannot be removed from the containment unless they are disassembled and no known purposes exist for disassembly. Load testing to 150 percent of the total weight before each use would require special fixtures and is impractical to perform. It is suggested that a check (visual) of critical welds and parts be conducted at initial lift prior to moving to full lift and movement for these devices. Preferably, a visual check during initial lift should be acceptable. Further note that with the use of the load cell for the head and internals lift rigs, all lifting and lowering is monitored at all times.

2. SUMMARY

The requirements for periodic checking and functional load testing appear to be the ANSI N14.6 requirements that are most difficult to demonstrate compliance. It is almost impractical to perform the 150 percent load test prior to each use. It is suggested that the proposal to the NRC include a 100 percent load test to be performed with a minimum of non-destructive testing, (visual-only) in the critical parts and welds.

WESTINGHOUSE CLASS 3

ATTACHMENT B to WCAP-10167

Although information contained in this report is nonproprietary, no distribution shall be made outside Westinghouse or its licensees without the customer's approval.

STRESS REPORT

REACTOR VESSEL HEAD LIFT RIG,

REACTOR VESSEL INTERNALS LIFT RIG,

LOAD CELL AND LOAD CELL LINKAGE

FOR

PUBLIC SERVICE ELECTRIC AND GAS COMPANY

SALEM GENERATING STATION

UNITS 1 AND 2

February 1983

L. J. Malandra, P.E.

Approved:

N. R. Marshall, P. E., Manager
Refueling Equipment Engineering

ABSTRACT

A stress analysis of the Salem reactor vessel head and internal lift rigs, load cell and load cell linkage was performed to determine the acceptability of these devices to meet the design requirements of ANSI N14.6.

ACKNOWLEDGMENT

Acknowledgment is hereby made to the following individuals who contributed to the structural analysis presented in this report.

J. W. Richard, P.E.

J. S. Urban

F. Peduzzi

TABLE OF CONTENTS

Section	Title	Page
	ABSTRACT	111
1	INTRODUCTION	1-1
	1.1 Background	1-1
2	COMPONENT DESCRIPTION	2-1
	2.1 Reactor Vessel Head Lift Rig	2-1
	2.2 Reactor Vessel Internal's Lift Rig	2-1
	2.3 Load Cell and Load Cell Linkage	2-2
3	DESIGN BASIS	3-1
	3.1 Design Criteria	3-1
	3.2 Design Weights	3-2
•	MATERIALS	4-1
	4.1 Material Description	4-1
5	SUMMARY OF RESULTS	5-1
	5.1 Discussion of Results	5-1
	5.2 Conclusion	5-4
APPENDIX A	DETAILED STRESS ANALYSIS - REACTOR	
	VESSEL HEAD LIFT RIG	A-1
APPENDIA B	DETAILED STRESS ANALYSIS - REACTOR	
	VESSEL INTERNALS LIFT RIG, LOAD CELL	
	AND I THY AGE	B-1

LIST OF ILLUSTRATIONS

Figure	Title	Page
5-1	Reactor Vessel Head Lift Rig	5-12
5-2	Reactor Vessel Internals Lift Rig, Load Cell and Linkage	5-35
6.1	Rotolock Studs and Inserts Arrangement	5-36

LIST OF TABLES

Table	Title	Page
4-1	Reactor Vessel Head Lift Rig	
	Material and Material Properties	4-2
4-2	Reactor Vessel Internals Lift Rig,	
	Load Cell and Load Cell Linkage	
	Material and Material Properties	4-3
5-1	Summary of Results - Reactor Vessel	
	Head Lift Rig	£.
5-2	Summary of Results - Reactor Vessel	
	Internal's Lift Rig, Load Cell and	
	Load Cell Linkage	5-13

REFERENCES

- 1. George, H., Control of Heavy Loads at Nuclear Power Plants

 Resolution of Generic Technical Activity A-36, NUREG 0612, July,
 1980.
- ANSI N14.6-1978, "Special Lifting Devices for Shipping Containers Weighing. 10,000 Pounds (4500kg) or More for Nuclear Material," American National Standards Institute, New York, 1978.
- ANSI B-30.9-1971, "Slings," American National Standards Institute, New York, 1971.
- Westinghouse Drawing 113E775 3 Loop Head Lifting Rig General Assembly
- Westinghouse Drawing 1099E84 General Assembly Lifting Rig Internals
- Lin, C. W., "Approximate Evaluation of Dynamic Load Factors for Certain Types of Load Factors for Certain Types of Loading," ASME Paper 70-WA/NE-2.
- 7. Biggs, J. M., <u>Introduction to Structural Dynamics</u>, McGraw-Hill, New York, 1964.
- 8. Gwinn, Jr., J. T., "Stop Over-Designing for Impact Loads," Machine Design, 33, pp. 105-113 (1961).
- Timoshenko, S., Strength of Materials, Part 1, Elementary Theory and <u>Problems</u>, D. Van Nostrand Company, Inc. Third Edition April 1955, pp. 263-279.

- 10. ASME Boiler and Pressure Vessel Code, Section III, Division 1, "Nuclear Power Plant Components," American Society of Mechanical Engineers, New York, 1980.
- 11. Manual of Steel Construction, Seventh Edition, American Institute of Steel Construction, New York, 1973.

SECTION 1 INTRODUCTION

The Nuclear Regulatory Commission (NRC) issued NUREG 0612 "Control of Heavy Load at Nuclear Power Plants"[1] in 1980 to address the control of heavy loads to prevent and mitigate the consequences of postulated accidental load drops. NUREG 0612 imposes various training, design, inspection and procedural requirements for assuring safe and reliable operation for the handling of heavy loads. In the containment building, NUREG 0612 requires special lifting devices to meet the requirements of ANSI N14.6-1978 "American National Standard for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds or More for Nuclear Materials". [2] In general, ANSI N14.6 contains detailed requirements for the design, fabrication, testing, maintenance and quality assurance of special lifting devices. In addition, ANSI N14.6 requires that when wire rope or chain is used in the design of a lifting device, the wire rope or chain shall be in conformance with ANSI B30.9-1971 "American National Standard Safety Standard for Slings". [3] The NRC has requested operating plants to demonstrate compliance with these requirements.

This report contains the stress analysis performed on the Salem reactor vessel head lift rig, reactor vessel internals lift rig, load cell and load cell linkage to determine the acceptability of these devices to meet these requirements.

1.1 BACKGROUND

The reactor vessel head lift rig, the reactor vessel internals lift rig, load cell, and load cell linkage were originally designed and built for the Salem Generating Station circa 1967-1971. Subsequently, the Unit 2 internals lift rig was transferred to another plant site in 1975-76 and replaced in 1977 with an almost identical design. The actual design criteria is unknown for the lifting devices. It appears that Westinghouse used the design criteria that the resulting stress in the load carrying members, when subjected to the total combined lifting

1-1

weight, should not exceed one fifth (1/5) of the ultimate strength of the material. These items were not classified as nuclear safety components and requirements for formal documentation of design requirements and stress reports were not applicable. Thus, stress reports and design specifications were not formally documented. Westinghouse defined the design, fabrication and quality assurance requirements on detailed manufacturing drawings and purchase order documents. Westinghouse also issued field assembly instructions for the reactor vessel head and internals lift rigs which included an initial load test followed by non-destructive surface examination of critical load bearing areas. Additionally, the new Unit 2 intenals lift rig was load tested at the manufacturers shop at 125 percent of the maximum weight. Subsequent modification (presently in progress) to the internals lifting rig include rotolock studs and inserts designed, manufactured and tested to the requirement of ANSI N14.6.

SECTION 2 COMPONENT DESCRIPTION

2.1 REACTOR VESSEL HEAD LIFT RIG

The reactor vessel head lift rig^[4] is a three-legged carbon steel structure, approximately 43 feet high and 14 feet in diameter, weighing approximately 28,000 pounds. It is used to handle the assembled reactor vessel head.

The three vertical legs and control rod drive mechanism (CRDM) platform assembly are permanently attached to the reactor vessel head lifting lugs. The tripod sling assembly is attached to the three vertical legs and is used when installing and removing the reactor vessel head. During plant operations, the sling assembly is removed and the three vertical legs and platform assembly remain attached to the reactor vessel head.

2.2 REACTOR VESSEL INTERNALS LIFT RIG

The reactor vessel internals lift rig^[5] is a three-legged carbon and stainless steel structure, approximately 25 feet high and 14 feet in diameter weighing approximately 14,500 pounds. It is used to handle the upper and lower reactor vessel internals packages. It is attached to the main crane hook for all lifting, lowering and traversing operations. A load cell linkage is connected between the main crane hook and the rig to monitor loads during all operations. When not in use, the rig is stored on the upper internals storage stand.

The original rig design attaches to the internals packages by means of three engaging screws which are screwed into tapped holes in the internals flanges. These screws are manually operated from the manipulator crane walkway using a handling tool which is essentially a long wrench. The screws are normally spring retracted upward and are depressed to ergage the tapped holes by the weight of the handling tool. Modifications to these rigs, presently in progress, include

installation of an operating platform, integral tools and a change to the type of engagement with the internals to a rotolock stud and insert type. These rotolock studs are manually operated from the new internals lift rig platform using a handling tool which is an integral part of the rig. The studs are normally spring retracted upward and are depressed to engage the inserts. Rotating the mechanism locks it in both positions. Since these rotolock studs are in the process of being incorporated, both types of load carrying items are included in this report.

2.3 LOAD CELL AND LOAD CELL LINKAGE

The load cell is used to monitor the load during lifting and lowering the reactor vessel head or internals to ensure no excessive loadings are occurring. It is installed between the load cell linkage and the lifting device. The load cell is a strain gage (tension) type, rated at 400,000 pounds, built by W. C. Dillon and Co. The load cell linkage is an assembly of pins, plates and bolts which connect the polar crane main hook to the load cell.

SECTION 3 DESIGN BASIS

3.1 DESIGN CRITERIA

NUREG 0612, paragraph 5.1.1(4) states that special lifting devices should satisfy the guidelines of ANSI N14.6. Further, NUREG 0612, 5.1.1(4) states: "In addition, the stress design factor stated in Section 3.2.1.1 of ANSI N14.6 should be based on the combined maximum static and dynamic loads that could be imparted on the handling device based on characteristics of the crane which will be used. This is in lieu of the guideline in Section 3.2.1.1 of ANSI N14.6 which bases the stress design factor on only the weight (static load) of the load and of the intervening components of the special handling device".

It can be inferred from this paragraph that the stress design factors specified in Section 3.2.1.1 of ANSI N14.6 (3 and 5) are not all inclusive. Also, it can be inferred that the specified ANSI N14.6 stress design factors should be increased by an amount based on the crane dynamic characteristics. The dynamic characteristics of the crane would be based on the main hook and associated wire ropes holding the hook. Most main containment cranes use sixteen (16) or more wire ropes to handle the load. Should the crane hook suddenly stop during the lifting or lowering of a load, a shock load could be transmitted to the connected device. Because of the elasticity of the sixteen or more wire ropes, the dynamic factor for a typical containment crane is not much larger than 1.0. The maximum design factor that is recommended by most design texts [6,7,8] is a factor of 2 for loads that are suddenly applied. The stress design factors required in Section 3.2.1.1 of ANSI N14.6 are:

- 3 (weight) < Yield Strength
- 5 (weight) < Ultimate Strength

The factor of 3 specified, certainly, includes consideration of suddenly applied loads for cases where the dynamic impact factor may be as high

as 2.0. Thus, we feel that the use of the design criteria in ANSI N14.6 satisfies the NUREG requirement.

To provide flexibility on stress design factor, the summary table list the stresses with stress design factors of 1, 3 and 5. Thus, any stress design factor may be easily applied to satisy any concerns.

3.2 DESIGN WEIGHTS

The following design weights were used in the analysis of the lifting devices:

3.2.1 Reactor Vessel Head Lift Rig

The design weight is 345,000 pounds which is the total weight of the reactor vessel head, its attachment and the lift rig.

- 3.2.2 Reactor Vessel Internals Lift Rig, Load Cell, and Load Cell Linkage
 - (a) The design weight for the internals lift rig is 285,000 pounds which is the total weight of the lifting device and the lower internals.
 - (b) The design weight is 285,000 pounds for the load cell and load cell linkage.

SECTION 4
MATERIALS

4.1 MATERIAL DESCRIPTION

The materials and material properties for the reactor vessel head lift rig, the reactor vessel internals lift rig, load cell and load cell linkage are listed in Tables 4-1 and 4-2.

TABLE 4-1
REACTOR COOLANT HEAD LIFT RIG MATERIAL AND MATERIAL PROPERTIES

			Yield Strength	Ultimate Strength	
Item(a)	Description	Materials	Sy (ksi)	Sult (ksi)	
1 15 6,10	7 1/2" Diameter Pin 3.9" Dia. Bottom Clevis Pin 5" Dia. Clevis Pins 8" Dia. Pin	ASTM A434 Class BD	100 110 105 100	130 140 135 130	
11	Support Lug	ASTM A515 or Gr. 70	38	70	
2	Side Plate	ASTM A514 or USS-TI	90	100	
4,5	Sling Assembly Link, Lug	ASTM A237 Class A	50	80	
13	Leg	ASTM A36	38	70	
12	Ring Girder	GR. C	30	55	
7,9	Upper Clevis Clevis	ASTM A237 C1. A	50	80	
8	Arm	ASTM A306 Gr. 70	35	70	
14	Clevis Plate	ASTM A515 Gr. 70	38	70	

⁽a) See figure 5-1

TABLE 4-2 REACTOR VESSEL INTERNALS LIFT RIG, LOAD CELL AND LOAD CELL LINKAGE MATERIAL AND MATERIAL PROPERTIES

			Yield Strength	Ul timate Strength	
Item ⁽¹⁾	De scription	Material	Sy (ksi)	Sult (ksi)	
1,3,7,	7 1/2" Dia. Hook Pin, 6" Dia. Adaptor Pin, 6" Dia. Removable Pin 4" Dia. Clevis Pin	ASTM A434 AISI 4340 Class BD	120	135	
2	Side Plate	ASTM A515 Grade 70	38	70	
4,6	Load Cell Adaptors	AISI 4340	120	135	
5	Load Cell	17-4 pH s/s Cond. H1100	115	140	
8a (2) 10a (2) 11a (2)	Top Lug, Support Plate Sid: Lug	ASTM A515 Grade 70	38	70	
8b(2) 10b(2)	To', Lug Support Plate	ASTM 533 Grade B Class 1	50	80	
9	Support Pipe	ASTM A106	30	48	
116(2)	Side Lug	ASTM A588 Grade A Class 1	. 50	70	
13a(2) 15a(2)	Upper Clevis, Lower Clevis	ASME SA 508 Class 2	50	80	
13b(2) 15b(2)	Upper Clevis Lower Clevis	ASTM A668 AISI 4340 Class M	110	135	

See figures 5-2 and 5-3
 Subscript(a) refers to Unit 1 only, while subscript(b) refers to Unit 2; no subscript means identical to both units

TABLE 4-2 (cont)

REACTOR VESSEL INTERNALS LIFT RIG, LOAD CELL AND
LOAD CELL LINKAGE MATERIAL AND MATERIAL PROPERTIES

			Yield Strength	Ultimate Strength
Item ⁽¹⁾	Description	Material	Sy (ksi)	Sult (ksi)
27(3)	Engaging Screw	ASTM A564 Grade 630 Cond. 1100	115	. 140
28b(2)	Load Nut	ASTM A276 Type 304 Cond. A	30	75
29b(2,3)	Tube Housing	ASTM 1276 Type 304 Cond. A	30	75
30b(2,3)	Guide Sleeve	ASTM A276 Type 304 Cond. A	30	75
31a(2,4)	Load Nut	ASTM A276 Type 304 SS Condition A	30	75
32(4)	Rod Housing	ASTM A276 Type 304 SS Cond. A	30	75
33(4)	Guide Sleeve	ASTM A276 Type 304 SS Cond. A	30	75
34(4)	Rotolock Stud	ASTM A564, Type 630, 17-4 Ph, H11	115	140
35(4), 36(4)	Upper and Lower Internals Inserts	ASTM A637 Grade 688 Type 2 Inconel X-75	115	140

⁽¹⁾ See figure 5-2 and 5-3.

⁽²⁾ Subscript(a) refers to Unit 1 only, while subscript(b) refers to Unit 2; no subscript means identical to both units.

⁽³⁾ These items will be replaced in the forthcoming modifications.

⁽⁴⁾ These items are the new items to be installed.

SECTION 5 SUMMARY OF RESULTS

Tables 5-1 and 5-2, summarize the stresses on each of the parts which make up the reactor vessel head and internals lift rig, load cell, and load cell linkage respectively. All of the tensile and shear stresses meet the design criteria of section 3.2.1.1 of ANSI N14.6, requiring application of stress design factors of three and five with the accompanying allowable stress limits of yield and ultimate strength, respectively. Application of the ANSI N14.6 criteria to structural members subject to compression, bearing, or combined loads result in some stresses exceeding this criteria. However, when using more appropriate criteria, the resulting stresses are considered acceptable.

5.1 DISCUSSION OF RESULTS

5.1.1 Application of ANSI N14.6 Criteria

The design criteria of section 3.2.1.1 of ANSI N14.6, requiring application of stress design factors of three and five with the accompanying allowable stresses, are to be used for evaluating load bearing members of a special lifting device when subjected to loading conditions resulting in shear or tensile stresses. Application of these design load factors to other loading conditions is not addressed in ANSI N14.6. However, these two stress design factors have been used to determine the stresses of the load carrying members when subject to other loading conditions, viz. bearing, bending, buckling. This is an extremely conservative approach and in some cases the resulting stresses exceed the accompanying allowable stress limit.

Structural elements loaded in compression are analyzed by the empirical equations of the ASME and/or AISC rules. Allowable stresses for compression members are based on the estimate that the upper limit of elastic buckling failure is defined by an average column stress equal to one-half of the yield stress. These equations do not determine the limiting stresses of members in buckling but indicate whether or not the calculated stress is or is not within the allowable values. Instead, the ultimate load carrying capability of the member is the determining factor in the structural member's acceptability.

Timoshenko^[9] notes that the ultimate load for short struts is equal to the material yield point. Calculation of the ultimate load results in this load being larger than the nominal design load and thus, these members are considered acceptable.

5.1.2 Bearing Stresses

For the internals lifting rig, several of the parts do not meet this criteria. However, since they are localized stresses, they can, if necessary, be considered under section 3.2.1.2, which states that the stress design factors of 3.2.1.1 are not intended to apply to situations where high local stresses are relieved by slight yielding. None of the bearing stresses reach the yield stress, and in fact, all of the bearing stresses meet the design criteria of the AISC^[11] code of 0.9 yield.

5.1.3 Combined Stresses

The combined tensile stress from bending and tension, in the lower sling rod clevis (item 15), of the internals lift rig exceed the section 3.2.1.1 criteria. Bending is not a uniform stress, but is at a maximum at the outermost fiber. Bending contributes to the major portion of the stress shown in the table, and, as a result, the tensile stress without the bending is extremely low and well within the section 3.2.1.1 criteria. The combined stresses also meet the AISC code criteria.

5.1.4 Fillet Weld Stresses

The fillet weld stress at the leg support block to leg weld on the internals lift rig meets the ASME criteria for weld stresses based on base material properties. However, when applying the ANSI N14.6 5W criteria to the nominal stress value, the ASME allowable stress value is exceeded. However, the ANSI N14.6 criteria is satisfied for this weld and thus it is considered acceptable.

5.1.5 Structures Loaded in Compression

The spreader assembly of the reactor vessel internals lift rig, when analyzed for axial compression loadings, does not meet the allowable stresses of the AISC code. However, it does meet the 3W and 5W criteria of the ANSI N14.6 criteria. It is well known that care should be taken when addressing members in compression to ensure elastic stability. Thus, structures loaded in compression are analyzed by the empirical equations of the [10] ASME Boiler and Pressure Vessel Code Section III, Appendix XVII or the AISC [11] Part 5 rules.

If we were designing a new structure, the material and member size would be changed to ensure these allowable stresses would be satisfied for all loading conditions. However, these calculations are being applied to an existing structure and since these conditions are not satisfied then the ultimate load carrying capability must be determined.

The column under consideration is relatively short $(\frac{k}{r} = 33.7)$. Timoshenko^[9] states that experiments show that short columns buckle when the compressive strength reaches the material yield point. (The horizontal line on the figure below).

Therefore the total stress

$$\sigma = \frac{P}{A}$$

must be less than or equal to the material yield stress.

For the case of the internals lift rig spreader;

$$Q_{Total} = \frac{P}{A} = 6530 \text{ psi}$$

which is less than the material yield strength (Sy)

Then to find the ultimate column load, let $\sigma_{\text{max}} = S_y = 36,000 \text{ psi}$

Then the maximum column load is the ratio of

$$\sigma_{\text{max}}/\sigma_{\text{total}} = \frac{36,000}{6,530} = 5.5$$

Thus the ultimate column load is 5.5 times the nominal value.

The internals lift rig spreader members are considered acceptable for this condition of axial compression.

5.2 CONCLUSION

Application of the ANSI N14.6 criteria of (3 and 5) to these special lifting devices results in acceptable stress limits for tensile and shear stresses. Application of this criteria to all structural members subject to other types of loadings tend to result in oversimplified convervatism and with some stresses exceeding the accompanying allowable limits. However, when using the more appropriate criteria for those cases not addressed by the ANSI N14.6 criteria the stresses are within the appropriate allowable limits. Further, these calculations are being applied to an existing structure and if we were designing a new structure, the materials and member sizes would be changed to ensure

these limits would be satisfied for all loading conditions. In conclusion, these special lift devices adequately meet the ANSI N14.6 criteria for tensile and shear stresses and meet other appropriate criteria for loading conditions that result in combined, bearing, and buckling stresses.

TABLE 5-1 SUMMARY OF RESULTS REACTOR VESSEL HEAD LIFT RIG

		Calculated Stress		Material Allowable			
Item ^(a)	Part Name And Material			Value		101	ksi)
No.		Designation	M(p)	3W	5W	Sy (c)	S _{ult} (d)
	7 1/2" Dia. Hook Pin ASTM A434 Class BD	Bending	13.3	39.9	66.5	100	130
1		Shear	3.9	11.7	19.5	-	
		Bearing on Pin	5.8	17.4	29.0		
		Bearing on Side Plate	7.7	23.1	38.5		
2	Side Plate	Tension @ 8" Dia. Hole	6.9	20.7	34.5	90	100
	ASTM A514	Shear @ 8" Dia. Hole	6.9	.20.7	34.5		
	or USS TI	Bearing @ 7 1/2" Dia. Hole	7.7	23.1	38.5		

- (a) See figure 5-1 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (si)
 (d) S_{ult} is the ultimate strength of the material (ksi)

TABLE 5-1 (cont) SUMMARY OF RESULTS REACTOR VESSEL HEAD LIFT RIG

(2)		Calculated Stre	Material	Allowable					
Item(a) No.	Part Name			Value			(ksi)		
	And Material	Designation	M(p)	3W	5W	Sy (c)	Sult		
3	3 8" Dia. Bottom Pin ASTM A434 Class BD	Bending	10.9	32.7	54.5	100	130		
		Snear	3.4	10.2	17.0				
		Bearing on Lug	5.4	16.2	27.0				
		Bearing on Side Plate	7.2	21.6	36.0				
4	Sling Assembly	Tension @ Hole	5.0	15.0	25.0	50	80		
	Link	Shear @ Hole	5.0	15.0	25.0				
	ASTM A237	Bearing @ Hole	5.4	16.2	27.0				
	Class A	Tension @ Shank	6.6	19.8	33.0				

- (a) See figure 5-1 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)

TABLE 5-1 (cont) SUMMARY OF RESULTS REACTOR VESSEL HEAD LIFT RIG

. (a)		Calculated Stresses (ksi)					Material Allowable	
Item(a)	Part Name And Material		1.	Value			ksi)	
No.		Designation	M(p)	3₩	5w	Sy ^(c)	Sult (d)	
5	Link Lug	Tension @ Hole	4.0	12.0	20.0	50	80	
	ASTM 237	Shear Tearout @ Hole	4.0	12.0	20.0			
	Class A	Bearing @ Hole	6.3	18.9	31.5			
		Maximum Tension @ Koot of Lug	3.7	11.1	18.5			
		Vertical Shear @ Root of Lug	1.4	4.2	7.0			
6	5" Dia.	Bending	10.5	31.5	52.5	105	135	
	Clevis Pin	Shear	3.2	9.6	16.0	1		
	ASTM A434	Bearing on Clevis	5.3	15.9	26.5			
	Class BD	Bearing on Lug	6.3	18.9	31.5			

- (a) See figure 5-1 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) S_{ult} is the ultimate strength of the material (ksi)

TABLE 5-1 (cont) SUMMARY OF RESULTS REACTUR VESSEL HEAD LIFT RIG

Item ^(a) No.	Part Name And Material	Calculated Stresses (ksi)					terial Allowable (ksi)	
		Designation	M(p)	3W	5W	Sy (c)	Sult (d)	
7	Upper Clevis	Tension @ Hole	3.2	3.6	16.0	50	80	
	ASTM A237	Shear @ Hole	3.2	9.6	16.0			
	Class A	Bearing @ Hole	5.3	15.9	26.5			
		Thread Shear	2.3	6.9	11.5			
8	Arm	Thread Tension	7.1	21.3	35.5	35	70	
	ASTM A306 Gr. 70	Thread Shear	2.3	6.9	11.5			
9	Bottom Clevis	Stresses are the same as	Same as	Same as	Same as	50	80	
	ASTM A237 Class A	Item 7.	Item 7	Item 7	Item 7			

- (a) See figure 5-1 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) S_{ult} is the ultimate strength of the material (ksi)

TABLE 5-1 (cont) SUMMARY OF RESULTS REACTOR VESSEL HEAD LIFT RIG

		Calculated Stress	ses (ksi)			Material	Allowable
Item(a)	Part Name			Value			ksi)
No.	And Material	Designation	W(p)	3W	5W	s _y (c)	Sult (d)
10	5" Dia.	Stresses are the same as	Same as	Same as	Same as	105	135
	Bottom Clevis Pin ASTM A434	Item 6	Item 6	Item 6	Item 6		
	Class BD						
11	Support Lug	Tension @ Hole	4.0	12.0	20.0	38	70
	ASTM A515	Shear @ Hole	4.0	12.0	20.0		
	Gr. 70	Bearing @ Hole	6.5	19.5	32.5		
12	Ring Girder	Total Shear	3.2	9.6	16.0	30	55
	ASTM A285	Maximum Bending	2.6	7.8	13.0		
	Gr. C	Maximum Tensile Stress	4.8	14.4	24.0		
		Ring Girder to Support Weld	3.2	9.6	16.0	18 ^(e)	

- (a) See figure 5-1 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) Sy is the yield strength of the materia! (ksi)
- (d) Sult is the ultimate strength of the material (%5)
- (e) Stress limit for fillet weld from ASME Boiler & Pressure Vessel Code, Section III, Division 1 -Subsection NF 1980 Edition, Table NF - 3292.1-1 page 50

TABLE 5-1 (cont) SUMMARY OF RESULTS REACTOR VESSEL HEAD LIFT RIG

Item(a)		Calculated S	Calculated Stresses (ksi)					
	Part Name And Material	USA SERVICE MAKE MAKE		Value			(ksi)	
No.		Designation	М(р)	3W	5W	Sy (c)	S _{uit} (d)	
13	Leg ASTM A36	Tension	9.7	29.1	48.5	38	70	
14	Clevis Plate	Weld	5.6	16.8	28.0	18(e)		
	ASTM A515	Tension	3.2	9.6	16.0	38	70	
	Gr. 70	Shear	3.2	9.6	16.0			
		Bearing	7.3	21.9	36.5			
15	3.9" Diameter Pin	Bending	18.9	56.7	94.5	110	140	
	ASTM A434	Shear	4.7	14.1	23.5			
	Class BD	Bearing on Lug	7.3	21.9	36.5			
		Bearing on Clevis	7.0	21.0	35.0			

- (a) See figure 5-1 for location of item numbers and section
- b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) S is the ultimate strengt

Figure 5-1. Reactor Vessel Head Lift Rig

. (a)		Calculated Str	Material	Allowable					
Item(a)	Part Name			· Value			(ksi)		
No.	And Material	Designation	M(p)	3₩	5W	Sy (c)	Sult (d)		
1	Hook Pin	Shear	3.6	10.8	18.0	120	135		
	ASTM A434	Bearing (Hook)	5.2	15.6	26.0				
	AISI 4340	Bearing (Side Plate)	10.9	32.7	54.5				
		Bending	12.1	36.3	60.5				
2	Side Plate	Tension @ 7 1/2" Dia. hole	10.9	32.7	54.5	38	70		
	ASTM A515	Bearing @ 6" Dia. hole	13.6	40.8	68.0				
	Gr. 70	Shear Tear-out	14.0	42.0	70.0	41(e)	77(e)		

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)
- (e) Actual certified mechanical properties

TABLE 5-2 (cont) SUMMARY OF RESULTS

REACTOR VESSEL INTERNALS LIFT RIG, LOAD CELL AND LOAD CELL LINKAGE

Item(a)	Part Name And Material	Calculated Stresses (ksi) Value				Material Allowable (ksi)	
No.		Designation	M(p)	3W	5W	Sy(c)	Sult (d)
3 Adaptor Pin	Shear	5.7	17.1	28.5	120	135	
	ASTM A304	Bearing (Adaptor)	6.5	19.5	32.0		1 - 3 - 1
AISI 4340	Bearing (Side Plate)	13.6	40.8	68.0			
	Bending	23.7	71.1	118.5			
4	Upper Adaptor	Tension @ Pin Hole	14.8	44.4	74.0	120	135
	AISI 4340	Bearing @ Pin Hole	6.4	19.2	32.0		
		Tension @ Thread Relief	5.7	17.1	28.5		
		Thread Shear	13.7	41.1	68.5		
		Shear Tear-out	6.8	20.4	34.0		

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi) (d) S_{ult} is the ultimate strength of the material (ksi)

THE PRINCE STATE OF THE PRINCE STATE OF

Item(a) No.		Calculated Str	Material	Material Allowable				
	Part Name		Value			(ksi)		
	And Material	Designation	M(p)	3₩	5W	S _y (c)	Sult (d)	
5	Load Cell	Tension @ Thread	23.9	71.7	119.5	115	140	
	17-4-pH s/s Cond H-1100	Thread Shear	13.7	41.1	68.5			
6	Lower Adaptor	Tension @ Pin Hole	15.9	47.7	79.5	120	135	
	AISI 4340	Bearing @ Pin Hole	8.5	25.5	42.5			
		Tension @ Thread Relief	7.4	22.2	37.0			
		Thread Shear	13.7	41.1	68.5			
		Shear Tear-out	8.7	26.1	43.5			

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi) (d) S_{ult} is the ultimate strength of the material (ksi)

Item(a)		Calculated	Stresses (ksi				Allowable ·
Item'	Part Name		-7:1	Value		1	ksi)
No.	And Material	Designation	М(р)	3W	5W	S _y (c)	Sult (d)
7	Removable Pin	Shear	5.0	15.0	25.0	120	135
	ASTM 'A304	Bearing on Adaptor	7.6	22.8	38.0		
	AISI 4340	Bearing on Top Lug	7.9	23.7	39.5		
		Bending ,	21.0	63.0	105.0		
8 _a	Top Lug	Tension @ Hole	8.0	24.0	40.0	8 _a 38	70
	ASTM A515	Bearing @ Hole	7.9	23.7	39.5		
	Gr. 70	Tension @ Weld	4.0	12.0	20.0		
		Shear Tear-out	8.0	24.0	40.0		
8 _b	ASTM A533					8 _b 50	80
Ü	Gr. B, C1 1					1	

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)

(-)		Calculated	Material Allowable					
Item(a)	Part Name	Harris Market Control	Value			(ksi)		
No.	And Material	Designation	M(p)	3W	5W	Sy ^(c)	S _{ult} (d)	
9	Support Pipe ASTM A106	Tension	3.1	9.3	15.5	30	48	
10 _a	Support Plate ASTM A515 Gr. 70	Tension	.7	2.1	3.5	38	70	

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)

(a)		Calculated Stre	Materia.	Materia, mllowable				
Item(a)	Part Name		Value			(ksi)		
No.	And Material	Designation	M(p)	3W	5W	Sy (c)	Sult (d)	
10 _b	ASTM A533 Gr. B, Cl. 1	Tension	1.1	3.3	5.5	50	80	
11,	Side Lug	Tension @ Hole	5.1	15.3	25.5	38	70	
	ASTM A515	Combined Stress @ Weld	6.5	19.5	32.5			
	Gr. 70	Shear @ Weld	2.0	6.0	10.0			
		Bearing @ Hole	7.5	22.5	37.5			
		Shear Tear-out	4.5	13.5	22.5			

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi) (d) S_{uli} is the ultimate strength of the material (ksi)

(a)		Calculated Stre	Material	Material Allowable				
Item(a)	Part Name	Value				(ksi)		
No.	And Material	Designation	M(p)	3W	5W	Sy (c)	Sult (d)	
11,	Side Lug	Tension @ Hole	5.2	15.6	26.0	50	80	
	ASTM A588	Combined Stres: @ weld	6.7	20.1	33.5			
	Gr. A, Cl. 1	Shear @ Weld	2.0	6.0	10.0			
		Bearing @ Hole	7.7	23.1	38.5			
		Shear Tear-out	4.5	13.5	22.5			
12	Clevis Pin	Shear	4.7	14.1	23.5	120	135	
	ASTM A434	Bearing On Side Lug	7.5	22.5	37.5			
	AISI 4340	Bearing on Upper Clevis	7.5	22.5	37.5			
		Bending	19.2	57.6	96.0			

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi) (d) S_{ult} is the ultimate strength of the material (ksi)

m instrumente

TABLE 5-2 (cont) SUMMARY OF RESULTS REACTOR VESSEL INTERNALS LIFT RIG, LOAD CELL AND LOAD CELL LINKAGE

Item(a)		Calculated S	Material Allowable				
Item'	Part Name			Value			ks1)
No.	And Material	Designation	M(P)	3W	5W	S _y (c)	Sult
13 _a	Upper Clevis	Tension @ Pin Hole	7.7	23.1	38.5	13 _a 50	80
	SA-508 C1. 2	Bearing on Pin	7.5	22.5	37.5	13 _b 110	135
13 _b	ASTM A668	Thread Shear	3.3	9.9	16.5		
	AISI 4340 C1. M	Tear-out Shear	7.7	23.1	38.5		

a proper property and the second of the seco

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi) (d) S_{ult} is the ultimate strength of the material (ksi)

Item(a)		Calculated :	Material Allowable,						
Item'	Part Name			Value			(ksi)		
No.	And Material	Designation	M(p)	3W	5W	S _y (c)	Sult (d)		
14 _a	Sling Leg	Thread Shear	3.2	9.6	16.0	45	69		
	AISI 1117	Tension @ Thread	10.7	32.1	53.5	0	r		
	Hot Rolled or 1018 Cold Rolled					32	60		
14 _b	Sling Leg	Thread Shear	3.2	9.6	16.0	85	110		
	ASTM A434 C1. BC AISI 4340	Tension @ Thread	11.6	34.8	58.0				

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) S_{ult} is the ultimate strength of the material (ksi)

(-)		Calculated	Stresses (ksi)			Material	Allowable
Item(a)	Part Name			Value			ksi)
No.	And Material	Designation	М(Р)	3W	5W	S _y (c)	Sult (d)
15 _a	Lower Clevis SA-508 Cl. 2 ASTM A668	Thread Shear Combined Stress	3.3 30.6 0.87 ^(f)	9.9 91.8	16.5 153.0	15 _a 50 15 _b 110 Ratio <1.	80 135 0 ^(f)
15	AISI 4340 C1. M						

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)
- (e) Actual certified mechanical properties
- (f) Stress ratio Limit for combined bending and tension from AISC manual Chapter 5, Sect. 1.6.2

1-1		Calculated	Stresses (ksi)		Material	Allowable.
Item(a)	Part Name			Value			ksi)
No.	And Material	Pesignation	M(p)	3W	5W	S _y (c)	Sult (d)
16	Clevis Bolt	Shear	5.6	16.8	28.0	85	110
	ASTM A434	Bending	7.8	23.4	34.0		
	CI. BC AISI 4340	Bearing	14.9	44.7	74.5		
17	Spreader Leg ASTM A36	Compression	6.5	19.5	32.5	36 F _a	58 18.9 ^(g)

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)
- (g) F_a is the compressive buckling strength of the material (ksi)

(a)		Calculated :	Stresses (ksi	Material Allowable					
Item(a)	Part Name	Value					(ksi)		
No.	And Material	Designation	M(p)	3₩	5W	Sy (c)	Sult (a)		
18	Backing Block ASTM A276	Bearing on Spreader Leg	11.7	35.1	58.5	30	75		
	Type 304 Cond. A	Compression in Block	7.9	23.7	39.5				
19	End Plate ASTM A36	Bearing on Channel	6.5	19.5	32.5	36	58		

⁽a) See figure 5-2 for location of item numbers and section

⁽b) W is the total static weight of the component and the lifting device

⁽c) S_y is the yield strength of the material (ksi) (d) S_{ult} is the ultimate strength of the material (ksi)

(2)		Calculated St	Material Allowable				
Item ^(a)	Part Name And Material			Value	(kşi)		
No.		Designation	M(p)	3W	5W	s _y (c)	Sult (d)
20	Spacer	Bearing	14.9	44.7	74.5	50	70
	ASTM A588 Gr. A and B	Combined Stress @ Hole	25.3 0.995	75.9	126.5	61.5 ^(e) Ratio	88.6 ^(e)
		Shear in Weld	1.8	5.4	9.0		
21	Leg Channel	Bearing	14.9	44.7	74.0	36	58
	ASTM A36	Tension @ Cross-section	8.7	26.1	43.5		

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) Sy is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)
- (e) Actual certified mechanical properties
- (f) Stress ratio Limit for combined bending and tension from AISC manual Chapter 5, Sect. 1.6.2

(2)		Calculated	Stresses (ksi)		Material	Allowable
Item(a)	Part Name		Value			(ksi)	
No.	And Material	Designation	M(p)	3W	5W	Sy (c)	S _{ult} (d)
22,23	Leg Support	Shear (weld)	4.8	14.4	24.0	18 ^(h)	
	Block	Bearing on	8.8	26.4	44.0	36	58
	Brace Plate	Adaptor Nut		12 2			
	ASTM A36						

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)
- (h) Stress limit for fillet weld from ASME Boiler & Pressure Vessel Code, Section III, Division 1-Subsection NF 1980 Edition, Table NF-3292.1-1. page 50

(2)		Calculated St	Material Allowable .					
Item(a)	Part Name		Value			(ksi)		
No.	And Material	Designation	M(p)	3W	5W	Sy(c)	Sult (d)	
24 _a (i)	Adaptor	Thread Shear	2.3	6.9	11.5	30	75	
	ASTM A276 Type 304 Cond. A	Tension @ Thd Relief	8.3	24.9	41.5			
5 _a (i)	Outer Tube	Thread Shear	5.7	17.1	28.5	30	70	
	ASTM A312 Type 304	Tension @ Thd Relief	9.6	28.8	48.0			

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)
- (i) These items will be replaced in the forthcoming modifications

(2)		Calculated Stre	Material Allowable				
Item ^(a) No.	Part Name And Material		Value			(ksi)	
		Designation	M(P)	3W	5W	Sy (c)	Sult (d)
26 _a (1)	Guide Sleeve	Bearing On Engaging Screw	17.0	51.0	85.0	30	75
	ASTM A276	Thread Shear	5.7	17.1	28.5		
	Type 304 Cond. A	Compression	10.1	30.3	50.5		
27 _a (1)	Engaging Screw	Bearing on Guide Sleeve	17.0	51.0	85.0	115	140
	ASTM A564	Tension @ Thread Relief	12.6	37.8	63.0		
	Grade 630 Cond. 1100	Thread Shear	6.6	19.8	33.0	158 ^(e)	168 ^(e)
27 _b (1)		Bearing on Guide Tube	12.4	37.2	62.0		

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)
- (e) Actual certified mechanical properties
- (1) These items will be replaced in the forthcoming modifications

Item ^(a) No.	Part Name And Material	Calculated Str	Material Allowable				
			Value			(ksi)	
		Designation	M(p)	3₩	5W	Sy ^(c)	S _{ult} (d)
28 _b	Load Nut	Bearing	8.8	26.4	44.0	30	75
	ASTM A276 Type 304 Cond. A	Thread Shear	4.7	14.1	23.5		

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) S_{ult} is the ultimate strength of the material (ksi)
- (i) These items will be replaced in the forthcoming modifications

(a)		Calculated	Calculated Stresses (ksi)				
tem ^(a)	Part Name			Value		(ksi)
lo.	And Material	Des ignat ion	M(p)	3₩	5W	Sy (c)	Sult (d)
9 _b (i)	Tube Hous ing	Thread Shear	4.1	12.3	20.5	30	75
	ASTM A276 Type 304 Cond. A	Tens ion	9.0	27.0	45.0		
) _b (i)	Gu ide Sleeve	Thread Shear	4.1	12.3	20.5	30	76
D	ASTM A276	Tens ion	10.3	30.9	51.5	30	75
	Type 304 Cond. A	Bear ing	12.4	36.8	62.0		

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (2011)
- (i) These items will be replaced in the forthcoming modifications

Item(a)		Calculated Stre	sses (ksi			-	Allowable
	Part Name		765	Value		1 (6)	ksi)
No.	And Material	Des ignat ion	M(p)	3₩	5W	Sy (c)	Sult (d)
31 _a (j)	Load Nut	Bearing to Mounting Block	8.7	26.1	43.5	30	75
	ASTM A276 Type 304	Thread Shear	4.5	13.5	22.5		
12 _a (j)	Rod Hous ing	Tens ion @ Thread Relief	9.1	27.3	45.5	30	75
	ASTM A276 Type 304	Thread Shear on Upper Threads	4.5	13.5	22.5		
		Lower Threads Shear	4.5	13.5	22.5		

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)
- (j) These items are the new items to be installed

(a)		Calculated Str	esses (ksi)		Mater ial	Allowable
Item(a)	Part Name			Value		1	ksi)
No.	And Material	Des ignation	M(p)	3W	5W	Sy(c)	Sult (d)
32 _b (j)	Rod Hous ing	Tension @ Thd Relief	7.8	23.4	39.0	30	75
	ASTM A276 Type 304	Thread Shear in Upper Threads	4.2	12.6	21.0		
		Lower Threads - Shear	4.5	13.5	22.5		
33(j)	Gu ide Sleeve	Thread Shear	4.5	13.5	22.5	30	75
	ASTM A276	Tension @ Thread Relief	9.7	29.1	48.5		
	Type 304 SST	Bearing to Stud	9.9	29.7	49.5		

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)
- (j) These items are the new items to be installed

(-)		Calculated Stre	sses (ks)		Material	Allowable
Item(a)	Part Name			Value		- (ksi)
No.	And Material	Designation	M(P)	3W	5W	Sy (c)	Sult (d)
34 ^(j)	Rotolock Stud ASTM A564	Tensile Stress @ Cross- Section	27.7	83.1	138.5	115	140
	Type 630	Shear Stress on Land Root	9.7	29.1	48.5		
	17-4 pH H1100	Bearing on Land Surfaces	50.3	150.9	251.5		
		Bearing on Guide Sleeve	25.9	77.7	129.5		
		Bending in Lands	9.9	29.7	49.5		

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)
- (j) These items are the new items to be installed

Item(a)		Calculated Stre	sses (ks	1)		Material	Allowable
No.	Part Name		1.1	Value		1,,1	ksi)
	And Material	Designation	M(P)	3M	5W	s _y (c)	S _{ult} (d)
35	Upper Internal	Bending In Lands	13.7	41.1	68.5	115	170
V.F.	Insert	Shear Stress on Land Root	5.6	16.8	28.0		
	ASTM A637	Bearing on Land Surfaces	41.5	124.5	207.5		
	Gr 688 Type 2	Thread Shear	2.3	6.9	11.5		
36	Lower Internal Insert	Bending Stress	19.8	59.4	99.0	115	170
	ASTM A637	Shear Stress on Land Root	8.1	24.3	40.5		
4 4 3	Gr 688	Bearing on Land Surfaces	59.9	179.7	299.5		
- 11	Type 2	Thread Shear	6.9	20.7	34.5	F-81.3	

- (a) See figure 5-2 for location of item numbers and section
- (b) W is the total static weight of the component and the lifting device
- (c) S_y is the yield strength of the material (ksi)
- (d) Sult is the ultimate strength of the material (ksi)

Figure 5-2. Reactor Vessel Internals Lift Rig, Load Cell, and Linkage

*NEW ITEMS
LETTER "A" SUFFIX IS FOR UNIT 1 ONLY (PSE)

Figure 5-3. Rotolock Studs and Inserts Arrangement

APPENDIX A DETAILED STRESS ANALYSIS - REACTOR VESSEL HEAD LIFT RIG

This appendix provides the detailed stress analysis for the Salem reactor vessel head lift rig in accordance with the requirements of ANSI N14.6. Acceptance criteria used in evaluating the calculated stresses are based on the material properties given in section 4.

PTNP-188 ·	Salem Units I and II	1 or 33
R.V. Head Lift Rig Assembly	PDC -	
F. Peduzzi F. C. Pedugy	J. Richard & w. 1	quilary

- The purpose of this analysis is to determine the acceptability of this rig to the requirements of ANSI N14.6.
- 2. The results show that all stresses are within the allowable stresses.

		Original Issue	
REVISION NO.	DATE	DESCRIPTION	84

RESULTING REPORTS, LETTERS OR MEMORANDA!

TITLE	R. V. Head	Lift Rig			PAGE	OF	33
PROJECT	PSE/PNJ .		183 J.W. Rich	1/83 CHK'D.	8 Y	0,	DATE
s.o.	PTNP-188	CALC. NO.	ELE NO.	GROUP	*	CHE	

DESIGN WEIGHT

310,000 lbs from Assy Owg (625J058)
28,000 lbs Rig weight

7.000 lbs contingencies
345,000 lbs

SLING LEG ANGLE

$$Tan \alpha = (82.00 - 12.75) = 69.25 = .4660$$
 147.60
 147.60

X = 25°

-					
NO.	REV. DATE	AUTHOR	DATE CHK'D. BY	DATE CHK'D. 8Y	DATE

R. V. Head Lift Rig	PAGE 4 0# 33
1 - 0 1	J.W. Richard GROUP
PTNP-188	CHE
7.5"DIA PIN AT'L: ASTM A 434 CLASS BD	SHEAR STRESS fr = P/2A, P = 345,000 A = Trd2/4 A = Tr(7.495)2/4 A = 44.120 in2 fr = (345,000)/2 + 44.121 fr = 3910 PSI
P= force acting on assembly, the d = diameter of pin, in. I = length of bearing surface of center body, in. a = length of bearing surface one side of outer body, in. g = gap between bearing surfaces, in. L = total active length of pin, in = I + 2(a + g)	BEARING STRESS f. = P/A, P = 345,000 INNER Av = d S = (7.495 × 8.00 = (59.96) in 2 f. = (345,000)/(57.96) f. = 5754 PLE OUTER
P = 345,000 1b. d = 7.495 in. P = 8.00 in. 3.00 in. 9 = .1875 in. [14375-2(3.00)-8]/2	OUTER A = 2ad=2(3.00)(7.495 = (44.97) in2 fc = (345,000)/(44.97) fc = 7672 PSE

R. V. Head	Lift Rig		PAG	
PSE/PNJ	G.C. Pedrusi 1/83	CHK'D. BY	GROUP GROUP	04 33
PTNP-188	CALE NO.	-de NO	GROUP	CHE
PIN	0			
BENDIN	G STRESS (2)			
M= = (1 :	9+9+41)			
f = Mc/: I = πd"/ c = d/2	I /64			
to= (30	+g+ + 1)(2)(md2)			
= 16 P(2	SP + .1875 + 70)/17.495			
tb = P (.c	3856)			
= 345,00	(.03856)			
= 13,3 03	s psI			
1) ADAPTED F	ROM			
HEN EU, A REFER	INCL INCUE OF			
REV	LAUTHOR DATEIC	HK'D. BY	DATE CHK'D. BY	DATE

TITLE	R. V. Head	Lift Rig		PAG		22
PROJECT	PSE/PNJ'		O.W. Ring	TATE CHK O. BY	OF	DATE
5.0	PTNP-188	CALC NO.	TENO.	GROUP	CHE	-

Shear at 8.030 Hole

$$fv = \frac{E}{2Av}$$
 $A_v = \left(\frac{16.50 - 8.030}{2}\right)(3.00) - \left(\frac{7.56 - 7.030}{2}\right)(.50)$

fv = 6860 PSI

Bearing 9+ 7.515" & Hole

The maximum bearing stress is the same as the outer bearing stress on the hook pin .

fc= (345,000)/44.97 = 7672 PSI

-					
REV.	MEV	AUTHOR	DATE CHK'D. BY	DATE CHK'D. BY	DATE
NO.	DATE	Land Street Contract			
Management of the last				the state of the s	

R. V. Head Lift Rig	PAGE 9 0# 33
OJECT . AUTHOR DATE C	LENO CHE
8" DIA. 3	SHEAR STRESS
MAT'LE ASTM A434 CLASS BD	f. = P/2A. P = 345,000
₹ 1 + 9 9 + 1 P/2	$A_{v} = \pi d^{2}/4$ $A_{v} = \pi (7.000)^{2}/4$ $A_{v} = 50.27 \text{ in}^{2}$
	f. = (345,000)/(2 = 50.27) f. = 3431 PSI
P= force acting on assembly, b. d = diameter of pin, in. 1 = length of bearing surface	F. P/A.
of center body, in. a = length of bearing surface one side of outer body, in g = gap between bearing surfaces, in.	INNER Av = al 9 = (7.00 × 8.06) = (64.48) in= f = (345,000)/(64.48)
L . total active length of pin, in 1+2(a+g)	f = 5350 PM
P = 345,000 1b. d = 8.00 in. P = 6.06 in. R = 3.00 in.	$A_{\nu} = 2ad = 2(3.00)(2.00)$ $= (47.0)_{in^{2}}$ $f_{c} = (345,000)/(42.0)$
9 = ,1575 In [14.375 - 2(3.00) - 8.06]/2 V. DATE OATE OF	HK'D. BY DATE CHK'D. BY DA

R. V. Head	Lift Rig	PAGE 9 OF	2.0
PSE/PNJ .	AUTHOR DATE CHE'D	Rickard GROUP	33 DA
	CALC. NO. 183 f. W	Hickard	
PTNP-188		CHE	
PIN	01		
	9		
BENDI	NG STRESS (2)		
M= = (1	a+ g+ \dag 2)		
I = 49	164		
c= d/2			
C . \$ (t .	+9+41)(2)(4)		
=16P('4a	+g+4 8)/(πd²)		
	04.1575+ 8.04)/TT 8.00°		
= 164(3	+ .1515+ 4 // 11 8.00		
= P (.	03156)		
= 345,0	00 (.03156)		
Fb = 10,5			
1) ADAPTED F			
FACTENING !	NO JOINING,		
th Ed, a Resea			
PAGE 27	UN, PINTON PUBLISHESS		
		Y DATEICHK'D BY	

PROJECT
PSE/PNJ JUTTOR
PSE/PNJ JUTTO

TENSION at 7.030 6 Hole

ft=P A= (8.28-4.015)(8.15)(2) - 24(.045)2 = 69.515 In2

Ft = 4963 PSI

-	TAUTHOR	DATE CHE'D BY	DATE CHK'D. BY	DA"E
MEY	AUTHOR		The second second second second	
DATE				
	REV. DATE		me v	REV

TITLE	R. V. Head	Lift Rig			PAGE	- 22
PROJECT	PSE/PNJ"	AUTHOR	1/83 9. W.	Richard CHAO	av 0,	DATE
5.0	PTNP-188	CALC NO OF	Jul 40	GROUP	CHE	

Shear at 8.030 \$ Hole

Bearing on 8.00 & Pin

the bearing stress is the same as the inner bearing stress on the bottom pin connected through the side plate. The pin is item 3.

fc = 345,000/64.47 = 5350 PSI

Tension at cylindrical section

-	District of the last of the la	The second second second			
wev	REV	AUTHOR	DATE CHK D. BY	DATE CHK'D. BY	DATE
NO	DATE				-
-	10000				

TITLE	R. V. Head L	ift Rig			12	OF.	33
PROJECT		F. C. Pedun;	1/83 J. W. Richar	R.	i v		DATE
50	PTNP-188	CALC NO OT	OLE NO	GROUP		CHE	

LINK LUG ASTMAZZT CLASS A

Tension at 5.02" & Hole

Shear Tear at hole

Fv = 3975 PSI

-	_	AND DESCRIPTION OF THE PARTY OF		AND DESCRIPTION OF PERSONS ASSESSMENT ASSESS	-
MEV	MEV	AUTHOR	DATE CHR'D. BY	DATE CHE'D BY	DATE
NO	DATE				

R. V. Head	ift Rig	PAGE 13 OF
PSE/PNJ "	F. C. Leduyi 1/83 J. W. R	A PLATETOWN IN THE
PTNP-188	CALC NO UV DEENO	GROUP
Bearing o	+ 5.02" p hole	
The beari bearing st	ng stress is the san	vis pin 6.
fc= 126,88	1/20.01 = 6341 PSI	
Combined	stress from Tension a	ind Bending
M = 8.675	Fv - 3.5 FH	
M = 18.6751	115,000) - (3.5)(53,625)	
	938 in-16.	
ft = E# +	M 2	
A= (4)(20)	= 70 in 2	
Z = 1 (4)(2	$(0)^2 = 267 \text{ in}^3$	
ft = 53625 70	+ 709937	
Ft = 670	+ 3033	
Ft = 3703	PSI	

6	R. V. Head I	ift Rig		PAGE 4	or 33
ECT	R. V. Head L	Fr. C. Peduni 1	183 J.W. Rie	LATE CHK'O. BY	DA
		CALC NO	OLE NO.	GROUP	CHE
-	PTNP-188				
	vertical	Shear at Fu	LL Penetra	tion weld	
	fv= Ev Av	A = (4)(20)	= 80 in2		
	fv = U5,00	CD = 1437 P	sī		
				DATE CHE D. 8Y	
	THE RESERVE THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER.	AUTHOR	DATE CHE'D BY	DATELONS U. B.	Section 1 in contrast

R. V. Head I	ift Rig		15 or 33
PSE/PNJ	F. C. Peduzzi 1/83	V.W. Bicker	15 of 33
PTNP-188	1		CHE
PI	A-434 CLASS BD	fy = P/26 A = Tr (5 A = 19	2 A. ,888 /4 5.0025)2/4
d = diameter f = length or of center a = length or one side g = gap bets surfaces,	f bearing surface body, in. f bearing surface of outer body, in ween bearing in. tive length of	= (20.0	(5.0025 X 4.00) (78 (5.0025 X 4.00) (1) in 2 (86) / (2 c.c.)
d = 5.0015 P = 4.00 a = 2.40 9 = .240	1b. in. in. in. in. in. i.+1-2(,046) in. i.(.045)-4.007/2	A. = 2ad:	2(2.40)(5.0025

R. V. Head Lift Rig	16 or 3
PSE/PNJ. G. C. Poduni 183 J. W. Pi	1/03 CHKO. BY
PTNP-188 PTNP-188	CHE
FINF-100	
PIN (b)	
BENDENG STRESS (2)	
BENDENG SIKES	
M= = (= = + + 1)	
fo = MC/I	
C= d/2	
fo = \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{4}\) \(\frac{1}{2}\) \(\frac{1}{4}\)	
=16P('82+g+4) /(md2)	
-11-0/2 us 2 us 11/2 son?	
= 16 P (2,40 + .240 +4)/#5,0003	
= 126,888 (.08299)	
= 10531 PSI	
(1) ADAPTED PROM	
FASTENING AND JOINING ,	
4th Ed, a mereasure theme of	
MACHINE DESIGN , PANTEN PUBLISHES	
PAGE 27	DATE CHK'D. BY

O#
CHE

THREAD SHEAR \$\frac{1}{4} \cdot P/A_\top A_\top P/A_\top P/A_\	R, V. Head	F. C. Peduge 1/83	Jewa Riches	IGHE OF 33
ARM Av = Dial TI/2 FOR AN EXTERNAL THREAD Pich = (5)-64952/14) = (4.8376)6. Phon = major diameter of external thread h = roumber of thread h = roumber of thread n = roumber of thread h = 126,888 lbs fy = 2303 PME THREAD TENSION ft = D/At ton extra name threade parts		, C	/	CHE
MATL: ASTM - A 306 GR.70 Prich = Dhom64952/1 Prich = (5)64952/1 Prich = (4.8376) in. Prom = major diameter of external thread engages 1 = longth of thread engages 2.25 THEREOL Ay = (55.092) in P = 126,888 ibs THREAD TEMSION fy = P/Ay son extranacy threader pants	AR	m ®	f. P/Av	
fe = D/At	MAT'L: AST	1 - A 306 GR.70	Prom = Phome Phome Porth = (5) Phome may of external this h = rumber l = largth of = 7.25	64952/h)64952/4) 576)in. jor diameter read r of threads/in Handengagement
1 5.00 HUNDA		S.CO-YUNZA	ft = D/At	KARLO PARTS

R. V. Head L	ift Rig		19 0* 33
PSE/PNJ PTNP-188	Fr. C. Reduy: 1/8	J. W. Rich's	GROUP CHE
S"DIA. PIR MAT'LE ASTM AY	The same of the sa	f. = P/2 P= 126, A.= Trds Av= 19	STRESS 2A, 888 /4 (.co25) ² /4
d = diameter f = length of of conter b a = length or	bearing surface ody, in. f bearing surface of outer body, in. seen bearing in. live length of	f. = (126,8)	ER (5.0025 X 3.91) (60) in 2 88)/(19.560)
d = 5.0025 1 d = 3.91 a = 2.40 g = .285 c 9.37 - 20.49);	b. n. 2 (1,25)+1.50-2(.015) n. 2.44-2 (.045) n. 2 (.045)-3.912/2 AUTHOR	fe = (24.0 fe = (126,8	2(2.40)(5.co25) (2)in' 88)/(24.012)

R. V. Head	Lift Rig		20		33
PSE/PNJ	G. C. Podus	1/83 g.co	 CHK'O. BV		0
PTNP-188	CALE NO. US	OLE NO	GROUP	CHE	
		\sim I			-
PIN		(10)			
		-			
BENDE	NG STRESS	2 (2)			
M= = (\$	a+g++1)				
I = # d;	1/64				
C= d/2					
f. = (3)	+4+41)(\$	Y (gray)			
=16P('S	2+9+41)	/(md ²)			
	40 -285+391)				
	5 ess. 4 v	13,0043			
= 126,77	17 (.04391)				
= 10,	647 PSI	1			
(2) ADAPTED		11.			
	MIMIOL GUA				
	EGN , PRITCH PUT				
· · · · · · · · · · · · · · · · · · ·	m die Lugidie sal	all surves			
PAGE 27					

R. V. Head Lift Rig F. C. Pedugi 1/8 J. W. PSE/PNJ. 5.0. PTNP-188 CHE

SUPPORT LUG ASTM A-515 GR. 70 NET

Tension at Pin Hole

$$f = \frac{F}{A}$$
 $A_{t} = (13.00 - 5.02) 4 - 4(\frac{1}{2})(.045)^{2} = 31.91616^{2}$

Shear at Pin Hole

$$FS = F = 126,878 = 3976 PSI, A= (6.5-2.51)(4) - 2(2)(.045)^2$$
2Av 31.916

Av = 15.957 In2

REV.	REV.	AUTHOR	DATE CHK'D. BY	DATE CHK'D. BY	DATE
NO.	DATE				

rus	Marie 19-51				PAGE	22
R. V. I	Head Lift Rig	D.A	TE CHK'D. BY	1983 CH	1 72 of	33 DA
PSE/PN	J AC.PS	duni 1/8	3 Jaw. B	ichaid		
PTNP-1	CALC. NO	00	FILE NO.	GA	CHE	
Bearing	at 5.02"	hole				
The be	aring st	ress 15	the same	e as the	inner	
bearing	stress	on the	clevis p	in (10).		
			1 07 OST			
+c= 12	6,888/19.	560 - 6	487 F31			

DATE CHK'D. BY

DATE

DATE CHK'D. BY

WESTINGHOUSE FORM 552130

REV.

REV.

AUTHOR

nc
HE
OF 33

TITLE	R. V. Head	Lift Rig		PAGE
ROJE	PSE/PNJ	G. C. Pedini 11	73 J. W. Richard	CHK'D BY DAT
0.	PTNP-188	CALC. NO. 00	OLE NO.	CHE
	shear			
	fv= En = .	53625 (35.935)(18.25)	-(34.935)(17.25)	= <u>53625</u> 53.185
	fv= 1008	PSI		
	Total Sh	ear = fror +	fv = 2262+100	x
	Total She	par = 3270 F	SI	28) w
	Bending	stress Roark	1.158, case 9	P
	fm max =	$LWR\left(\frac{1}{5}-\frac{1}{6}\right)$) Between Loads	~
	M max = 1 2	(53625)(91.12	$(5)\left(\frac{1}{\sin\theta} - \frac{1}{\theta}\right)$	
	0=60° ,	0 = 1.047 Rad.	1 = 1.154 1 = .	955 Rad,
	Mmax = (53625)(91.125))(1.154955)	
	Mmax =	972429 1b-in		
	-Mmax=	-1 WR (+ - CO	te), at each loo	ıd .
	0=60°;	0= 1.047 Rad,	+ = .955 Rad.	
EV.	REV.	AUTHOR D	ATE CHK'D. BY DATE	CHK'D. BY DA

R. V. Head	Lift Rig	in the section	25 of 33
PSE/PNJ	AUTHOR Podusi 1	B J. W. Rish	25 of 33
PTNP-188	CALC. NO. 00	ALE NO	CHE
0+0= .5	דר		
-M max =	-1 (53 625)(9	1.125)(.955	577)
-Mmax =-	923563 1b-in		
$2 = \frac{k_1 h_1^2 - 12}{12}$	$b_1h_2^3 = (35.935)$ b_1l_2	(6)(18.25) ³ - (34.	
2 = 357	in ³		
fb = Mmax	L = <u>973563</u> = 357	2587 PSI	
1aximum	Tensile stres	s	hz hz
max = fB	$+ \sqrt{\left(\frac{2}{\xi \beta}\right)^2}$	+ (fv)2	
max = 25	$\frac{587}{2} + \sqrt{\frac{258}{2}}$	7)2 + (327 0)	2
mqx = 12	93.5 + 5 16731	142 + 106929	100
max = 12	93.5 + 3517		
fmax = 4	EII PSI		

TITLE	R. V. Head	Lift Rig		PAGE 26 OF	33
PROJECT	PSE/PNJ	J. C. Pedueri	183 J. W. Rinks	DATE CHK'D. BY	DATE
5.0.	PTNP-188	CALC. NO.	LE NO.	GROUP	

WELD OF SUPPORT LUG TO RING GIRDER

Ref.: Shigley's Mechanical Engineering Design 3RD Edition

from Table 7-1

$$\overline{y} = \frac{b^2}{2b+d} = \frac{35.435^2}{2(35.435) + 17.25} = 14.249 \text{ in.}$$

$$\overline{X} = \frac{d}{2} = \frac{12.25}{2} = 8.625 \text{ in.}$$

-			The same of the sa		
REV.	REV.	AUTHOR	DATE CHK'D. BY	DATE CHK'D. BY	DATE
NO.	DATE				

R. V. Head	Lift Rig			27 of 33
PSE/PNJ	F. Pohum	1/93 D. W. Ra	1/83 CHK	D. BY DATE
PTNP-188	CALC. NO. O	PLE NO.	GRO	CHE
$M = (F_{H})(100)$ $M = (53625)$ $J = 265 + 4$ $b = 35$ $J_{V} = 8(35)$ $J_{V} = 353$ $J = 0.707$ $W = 0.38$	$6bd^{2}+d^{3}$ 12 435", $d = \frac{(35)^{3}+b(35)^{3}+b(35)^{3}}{(25)^{3}+b(35)^{3}}$ 62-17892 62-17892 61Let well (.38)(17476	$1223400 \text{ lb.}-$ $-\frac{b^4}{2b+d}$ $17.25''$ $5.435)(17.25)^2 +$ $= 17470 \text{ ln}$ d	17.253	
Aw = .70	7 w (2b +d)		
Aw = (.7	07)(.38)[2(3	5.435)+ 17.25	5] 2 = 47.	35 In2
T'X = EH =	. 53625 . 47.35	= 113	3751	
Z'y = WA	= 5000 = 47.35	106 PSI		

TITLE	R. V. Head	Lift Rig	estable is a line	PAGE 27 OF	33
PROJECT	PSE/PNJ	F.C. Podusi	183 D. W. Rie	1/85 CHK'D. BY	DATE
s.o.	PTNP-188	CALC. NO. DO	FOLE NO.	GROUP	

w = 5000 (downward load)

$$T_{y}^{*} = M_{CX} = \frac{(1223400)(8.625)}{9387} = 1124 PSI$$

$$2x = My = (1223400)(14.249) = 1857 PSI$$
 $\sqrt{3}$

Resultant stress in weld

$$T = \int (106 + 1124)^2 + (1133 + 1857)^2$$

-					
REV.	REV.	AUTHOR	DATE CHK'D. DY	DATE CHK'D. BY	DATE
NO.	DATE				

TITLE	R. V. Head	Lift Rig		PAC 7	q	33
PROJECT	PSE/PNJ	F.C. Peduri 18	3 J.W. Richa	BATE CHK'D. BY	- 1 0	DATE
s.o.	PTNP-188	CALC NO. 01	MLE NO.	GROUP	CHE	

13 LEG ASTM A-36

Tension in Leg Tubing

Ft= F At

For 8"x6" x.50" wall Tubing, At = 11.9 in2 (AISC)

fe = 45,000 = 9664 PSI

REV.	REV.	AUTHOR	DATE CHK'D. BY	DATE CHK'D. BY	DATE
NO.	DATE				

R. V. Head L			30 of 3
DCC /DN 1	1 A	11/23	K.D. BA
PSE/PNJ	Fi.C. Pedugi 1/83 J. 1	O. Michael	ROUP
PTNP-188	Per add Test (C. College Colle		CHE
Length $la = 4$ $fw = \frac{p}{la}$	F CLEVIS PLATE TO of Available We (12) + 4(2,25435) = 115,000 = 1710 167.26	-8.00 1.EG i.d + 2 (6) = 67	

Tension at Pin Hole

ft = E,
$$A = ((12 - 3.952)(2.25) - 4(\frac{1}{2})(.08)^{2})2 = 36.19 11.2$$

$$ft = 115,000 = 3178 PSI$$
 36.19

Shear at Pin Hole

$$F_V = E_{2A_V}$$
, $A_V = ((6 - 1.976)(2.25) - 2(1)(.07)^2)_2 = 18.09 in^2$

$$fv = 115,000 = 3178 PSI$$

 $2(18.09)$

The Bearing stress is the same as the cuter hearing stress on the 3.9345 PIN FC = 7307 PSI

REV. REV. DATE CHK'D. BY DATE CHK'D. BY DATE

TITLE D. W. Hand Lift Dia	77 of 33
ΙΛ	E CHK'D. BY DATE CHK'D. BY DATE
PSE/PNJ GALC NO. 1/8	3 J. W. Richard GROUP
PTNP-188	CHE
3.9345 PIN (15) MAT'L: ASTM A 434 CLASS BD	SHEAR STRESS f. = P/2A.
	P = 115,000
	A,= md2/4
81-1-9 9-1-18	Av= Tr(3.9345)2/4
1	Ay = 12.158 in2
	fr = (115,000)/(2*12.158)
P ₂ P ₂	fy = 4729 PSI
P=force acting on assembly, lb. d = diameter of pin, in. l = length of bearing surface of center body, in. a = length of bearing surface one side of outer body, in. q = qap between bearing surfaces, in. L * total active length of pin, in = 1+2(a+q) P = 115,000 lb. d = 3.9345 in. P = 4.00 nom. lh a = 2.09 in 2.25 - 2(.08) g = .265 in [4.37 + 2(.08) - 4]/2 REV. REV. AUTHOR DATE	BEARTING STRESS fc = F/A, P = 115,000 INNER Av = d J = (3.9345)(4.00) = (15.738)in² fc = (115,000)/(15.738) GUTER Av = 2ad = 2(2.09)(3.9345) = (16.446)in² fc = (115,000)/(16.446) fc = (993 PST EICHK'D.8Y DATE CHK'D.8Y DATE
NO. DATE WESTINGHOUSE FORM 55213D	

R. V. Head	Lift Rig			PAGE	22
PSE/PNJ s.o. PTNP-188	F. C. Pedugi 17	3 J. W. Richard	GROUP		DAT
PIN	15			CHE	
$M = \frac{P}{2} \left(\frac{1}{3} \right)$ $f_b = \frac{MC}{3}$ $C = \frac{1}{3} $ $f_b = \frac{P}{2} \left(\frac{1}{3} \right)$ $f_b = \frac{P}{2} \left(\frac{1}{3} \right)$ $f_b = \frac{P}{2} \left(\frac{1}{3} \right)$	19 + 4 1) (2 X 64 7 64 7 64 7 64 7 64 7 64 7 64 7 64				
(1) ADAPTED FE FASTENING A 4th Ed, A REFERE	som No Joining,				
REV. REV. DATE	AUTHOR DAT	ECHK'D. BY DATE	CHK'O. BY		DATE

APPENDIX B DETAILED STRESS ANALYSIS - REACTOR VESSEL INTERNALS LIFT RIG, LOAD CELL AND LINKAGE

This appendix provides the detailed stress analysis for the Salem reactor vessel internals lift rig, load cell and linkage, in accordance with the requirements of ANSI N14.6. Acceptance criteria used in evaluating the calculated stresses are based on the material properties given in section 4.

.0.	PTNP-188	3	Salem Units I and		1 OF 67
11711	R.V. Int	ernals Lift Ri		PDC -	
ac 1 m08	J. S. UT	40 1	J. Richar	d y. Ric	har 22/8
1.	The purpo	ese of this and ne requirements	lysis is to determine of ANSI N14.6.	V	
2.	The resul	ts show that a	ll stresses are withi	n the allowabl	e stresses.
		A.	HONWEAL THE		
		0.00	SEPH W. RICHARD		
		A.	NO. 007167-E		
			N'S Y LY		
		20	v. Ruhar	el	
					1
			Original Issue		J. Urban
REVI	SION NO.	DATE	DESCRIPTION	ON	BY

BESULTING REPORTS, LETTERS OR MEMORANDA:

R. V. Interna			2 0 6 7
PSE/PNJ	- Haraulan	2/83 NPicks	193 DATE CHK'D. BY
PTNP-188	chid No.	FIZE NO:	GROUP
WHERE PSE A ARE DISTING ITEMS BY A "		PSE ITEMS , THE PNJ	7-1/2 DIA HOOK PIN ① ————————————————————————————————————
_	AD CELL		BOTTOM ADAPTOR (6)
A&B (8)	TOP LUG		- 6" DIA REMOVABLE PIN ①
A&B 12 4" DIA CL	EVIS PIN —		SUPPORT PLATE 9 A&B
A&B (1) S	IDE LUG	A PIPO	SUPPORT PIPE 10 A&E
A&B (13) UPPER	CLEVIS	- H	SLING LEG (14) A&E
A&B (15)	LOWER		SPACER 20
	The state of the s		BOLT END PLATE (19)
AS (18) 8	READER G SEMBLY ACKING LOCK	73B -23B	LEG CHANNELS (21)
28 B LOAD NO 29 B TUBE HO 30 B GUIDE S	DUSING	298 308 278	24A 23A PSE 25A 26A
2 BRACE P			
	PORT BLOCK	TARK	ADAPTOR 24 A
	RING GIRDER	A COL	OUTER TUBE (25) A
		9	GUIDE SLEEVE 26 A
			ENGAGING SCREW 27 A&B

R. V. Inter	nals Lift Rig	No. of the last of	P	AGE
PSE/PNJ	of ma was	DATE CHK'D. BY	DATE CHK'D. BY	DATE
PTNP-188	CALÉ. NO.	VLE NO.	GROUP	CHE

DESIGN WEIGHTS:

WEIGHT OF LOWER INTERNALS = 260,000#

INTERNALS LIFTING RIG WEIGHT 14,500#

CONTINGENCIES 10,000#

284,500#

THE DESIGN WEIGHT FOR ITEMS

1 THROUGH G WILL BE 320,000 lb

AS THEY ARE ALSO USED TO MONITOR

THE HEAD LIFT RIG LIFT

NOMENCLATURE:

A = 3103, in2 C= distance from center of flexure to extreme fikers, in d = chameter, in. for benching stress, psi fc = bearing stiess, psi ft = tensile stress, pai fy = shear stress, psi I = moment of mertia, in4 K= outword force exerted by Spreader , = 71,751# L = tension in lifting iez=94,833* M= moment, in-16 P= general force, 1h T= + ension in sling les = 118,916# W= design weight x= angle slim les makes to vertical

The nominclature of references or variables defined at a calculation may be used as supplements to the above list. Where this is so, the meanings of the terms are defined where the coulculations are made.

-					
REV.	REV.	AUTHOR	DATE CHK'D. BY	DATE CHK'D. BY	DATE
NO.	DATE				

R. V. Interna	ls Lift Rig		PAGE 4 OF 67
PSE/PNJ	& moulan!	TATE CHK'D. BY 2/83ATE	CHK'D. BY DATE
PTNP-188	CAUC. NO.	FLE NO.	GROUP CHE
SPACER NOT SPACER	AD CELL AD CELL	LINKAGE ASS ——HOOK ——HOOK PIN ——SIDE PLATE(——ADAPTOR PI ——UPPER ADAF ——LOAD CELL(——LOWER ADAF	1 (2) 3 (4) 5 (5)
REV. REV.	AUTHOR C	ATE CHK'D. BY DATE	CHK'D. 8Y DATE

R. V. Internals Lift Rig	[5)
PSE/PNJ Ama w Im 12/2	TE CHK'D. BY
PTNP-188	DATE CHYO. BY ANTHONY CALE. NO. DATE CHYO. BY ANTHONY CALE. NO. PIN A 434 CLASS BD SI 4340 STEEL P = W Av = $Trd^2/4$ Av = $Trd^2/$
	SHEAR STRESS
HOOK PIN (1)	
8 9 3 18	Av= Tr (7.492)2/4
	f - (> > > 16-14)
	= W(0.011342)
3 3	
Pa force acting on assemble is	REARTNIC STRESS
d = diameter of pin, in.	DEULTIAG 311/23
of length of bearing surface	f. P/A.
of center body, in	
one side of outer body in .	
g = gap between bearing	= (61.66) in2
surfaces, in.	fc = (W)/(61.66)
L * total active length of pin, in.	
• 1+ 2(a+q)	TC - 3190 PSE
1 1/2	A = 2ad=2(1.96)(7.49
1 222	$f_{i} = ($
a = 2.04/1.96 h	= W(0.03405)
1 - 12 00/10 02	fe = 10,896 PSE
- 13. 1/4 13. 1	

P. V. Intern	als Lift Rig		6	OF (
PSE/PNJ	Amou my	292. Ju Rich	GROUP CUE	
PTNP-188	CALE NO.	CLE NO.	GROUP CHE	
BENDE fo=(P/2) fo=(W2) 1 8.23 = W(0) fo-12,0	NG STRESS' 92+9+94) # 1/2*(1,96/2+6 1/4)*32/(#(1.5) 082 PSE.	29 = L-1 29 = 13.77 - 9 = 0.08	ANEOUS CALCULAT - 2 a - 2 spacers - (8.23) - 2(1.96) - 2	thul

R. V. Inter	nals Lift Rig			PAGE
PSE/PNJ	AUTHOR A	OATE CHK'D. BY	· 12 BATE CHK	7 OF 67.
° PTNP-188	CALG. NO.	PLE NO.	GRO	CHE
- BE	NLING STRESS	EORMU A TE	TUATTON	CHE
	NG FORCES IN			
	CENTERS A			
CENTER LUG	TO ACT AT	TWO PLACES	OTHI YAW P	
THE LUG:	\$ 1 kg kg	+ 2/2 -1 (P/2)		stucen sy surfaces of one sicle
7 1	THE PARTY			oble - luy bearing
. 2///	1112	VIIIII	surfac	
	B (%)		of bearing
	1 2 3			of center lug
	84	B	P. force à	icting on a . xmbly
1	1 . 1 . 1	1. La 1. 4.1	d= diame	ter of pin
FORCE FOR	-1- of -40 -40 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 1	16d-16 15 July 54		
	I In In		fb = Mc	
			4/	
			C = 7 ₂ Ι = π	d9/64
	1	3 - 9 - 2 -	fb = Mmax[c/	+1
- SHEAR -	1- 11			
. 65	13.9.44	t	b. (P/2)(= +9+ + +	$\frac{32}{\pi d^3}$
MOMENT			moment also occ	
	NII		forces are assur	
		/	distributed acros	
	1 1	/ 1 -	sur faces	7
	/ / /	/	0.	
	1.	- Mrax = 2 (2+9+4)-	
, DEV	AUTHOR	DATE CHK'D. 8Y		

TITLE						PAGE	
R. V.	Internal	s Lift Rig				8 0	F 67
PROJECT PSE/	PNJ	AUTHOR	Q 146	I W R	· , 2/83	CHK'D. BY	DAT
5.0.		CALE NO.	mm 192	FALE NO.	selection	GROUP	
PTNP-18	8			0		CHE	
PTNP-188 SID MAT'L: 7.523 Φ 7.523 Φ 7.515 Φ 2.04 1.96 THICK B 203 Φ	E PLA ASTM- QUENCHE W	A 5 15 G	R. 70 MPERED. R. 70 MPERED. R. 70 R.	BE THE PH	TEAR TEAR	SEC A-A	-3
W=	320.	000 #				- 19.04-6.023/2)1.96
			12 1 1 1				1
					- 11/5	nu3ar 1	
					T. MC	04385.	T
					#: M.	04385.)	Ī
REV. REV.		AUTHOR	DATE	CHK'D. BY	£v. 14	04385.) 033 PS	DAT

R. V. Intern	als Lift Rig		PAGE
PSE/PNJ	Mynnium la	12/92 Mu Rich	2/ PATE CHK'D. BY DAT
PTNP-188	CAUCINO	The NO.	GROUP
ADAPTOR PI		fyPAAx=	P/2A. P/2A. W Trd ² /4 Tr(5.992) ² /4 28.199 in ²
Pa form	STE PLA	fy =	(W)/2+28.199) W(0.01773) 5674 PSI
d = diameter I = length of of center l	f bearing surface	f = 1	P/A,
	of outer body, in ween bearing in.	f. = (49.314)in2 $W)/(49314)$ $W(0.02028)$
= J+2(a			6490 PSE UTER 2ad=2(1.96)(5.992)
d = 6.000//5992 J = 8.27//8.23	in. Ih in in in in in in	fc = (23.49) _{m²} W)/(23.49) W(0.04257) 3622 psz
REV.	AUTHOR	DATE CHK'D. BY	DATE CHK'D. BY DAT

R. V. Intern	als Lift Rig		10 of 67
PSE/PNJ	AUTHOR	Dan 182 DW Rie	12 PATE CHK'O. BY DATE
s.o. PTNP-188	CALE NO.	FE NO.	GROUP CHE
FIND THE SENDE OF SEN	NG STRE	29 = L-1-8 29 = 13.77-8 9 = 0.08 2+0.08 (5.992)	GROUP
* EQUATION I	DERIVED ON	P(7)	
REV. REV.	AUTHOR	DATE CHK'D. BY	DATE CHK'D. BY DATE

R. V. Internals Lift Rig	PAGE
PSE/PNJ AUTHOR Day	PATE CHK'D. BY DE CHK'D. BY D
PTNP-188	FILE NO. CHE
LOWER ADAPTOR 46	1 2 2 200
DWG 108 DOS 8 HOL AND HOZ MAT'L: AIST 4340 QUENCHED AND TEMPERED	BODY AREA AB = 2AC + π(2B) ² /4 + 360-4× 360
TENSILE STRINGH: 135,000 PSI.	C= \B2-A2 A= \frac{1}{2} B= \frac{1}{2} b
φ 210.2 8,52 A 1	$A_{B} = \frac{3}{2} \sqrt{b^{2} - a^{2}} + \pi b^{2} \left(\frac{340 - 4a}{4(340)}\right)$ $\frac{2}{4(340)}$ FOR LOWER ADAPTOR
4.31 mus AD 1.29 RIVERS	0 = 623 b=9.94 ∴ α= 51.19°
337 4.05	As = 57.59 m2
12180 (ORE MICK ONLY)	b= 9.94
5.03 4.97	AB = 71.13 m2
27 UPPER 23 ADAPTS G.23 ADAPTS GNLY)	
AEV. AUTHOR DA	TE CHK'D. BY DATE CHK'D. BY DA

R. V. Internals Lift Rig	12 0= 67
PSE/PNJ AUTHOR DATE	JU Richard GROUP CHE
PTNP-188	GLE NO. GROUP CHE
LOWER ADAPTOR 46	Accourse 6.023(6.23) = 37.52 in2 fc= W(0.02665)
W= 320,000 & TENSILE STRESS & A-A	fc.zn 8528 psz
At = As - Arele DATE At = 71.13 - 6.023 (8.23) OWER: At = 57.59 - 6.023 (6.23) Ft = P/At P = W	TENSILE STRESS & B-B $f_{t} = P/A_{t}$ $A_{t} = A_{s} - \pi d^{2}/4$
feurmer = W (0.04638) feurmer = 14,842 psz	Aturna = 4.31 Aturna = 71.13 - π(4.31) ² /4 = 56.54 Aturna = 57.59 - π(4.31) ³ /4 = 43.00 P = W
ft LOWER = W (0.04983)	f upper = W (0.017687)
ft.onex = 15,946 PSI	follower = W (0.02326)
BEARING STRESS @ A-A fc = P/Ac P = W Acorna = 6.023 (8.23) = 49.569 = 4	facoure = 7443 PSE

R. V. Internals Lift Rig	13 or 67
PSE/PNJ AUTHOR DATE C	1 W Richard GROUP
PTNP-188 CANCINO.	CE NO. CHE
LOWER ADAPTOR (A) AND UPPER ADAPTOR THREAD SHEAR $f_{V} = P/A_{V}$ $A_{V} = TT D_{PETCH} * J/2$ FROM MARKS HANDBOOK FOR MESS 8 ** ED, SME 8, FOR A 4½ - 8N-2B Detch * 4.1688 $J = 3.9539 = 3.56 in$ $A_{V} = TT (4.1688) 3.56/2$ $= 23.31 in^{2}$ $P = W$ $f_{V} = W (0.04290)$ $f_{V} = 13.728 pm$	Fy = P/2Av CONSERVATIONLY, LET AV DE THE AREA OF THE CROSS-SECTION DERECTLY ABOVE THE AXIS. EDE THE LOWER ADAPTOR Av = (5.98-6023/2 × 6.23) = 18.494 in² FOR THE UPPER ADAPTOR THE WIDTH OF THE MACHINED SURFACE IS 2 (4.97²-(8.23/2)²)²² = 5.574 in. THIS IS LESS THAN THE HOLE \$\Phi\$ = 6.023, SO LET THE THICKNESS BE 2 (4.97²-(6.023/2*)³² = 7.907 in INSTRAD OF 8.23 in. Av = (7.907 × 5.9′3-6.023/2) = 23.47 in² P= W
SHEAR TEAR-OUT	fruma = W/(2 * 23.47) fruma = W(0.02130)
	france = 6816 PSE france = W/(2+18.494) france = W(0.02704) france = 8653 PSE.

	Control of the Contro	REV. DATE	AUTHOR	DATE CHK'O. BY	DATE CHK'D. BY	DATE
- 3	THE RESERVE OF THE PERSON NAMED IN	The second secon	NAME AND ADDRESS OF THE OWNER, WHEN PERSON ADDRESS OF THE OWNER, WHEN PERSON AND ADDRESS OF THE OWNER, WHEN	COMMERCIAL PROPERTY OF THE PROPERTY AND ADDRESS OF THE PARTY OF THE PA	NAME AND ADDRESS OF THE OWNER, WHEN PERSON ADDRESS OF THE OWNER, WHEN PERSON AND ADDRESS OF THE OWNER, WHEN PERSON ADDRESS OF THE OWNER, WHEN PERS	-

R. V. Internals Lift Rig	PAGE 14 of	
PROJECT PSE/PNJ AUTHOR 12, CALC. NO. CALC. NO.	CATE CHK'D. BY CHE CHE CHE	DAT
MAT'L: 17-4 ph 5/5	TENSION C A-A $f_{\pm} = P/A_{\pm}$ $P = W$ FROM MARKS HANDBOOK FOR M 8 DEL, P8-13 STREES AREA = 13.3683 = A.	
	ft = W/13.36.83 ft = W(0.07480) ft = Z3,936 PSI THREAD SHEAR	W
14-8N-2A M-W-W	THE THREAD SHEARENG STRESS IN THE SAME AS FOR THE ADAPTORS $f_v = W(0.04290)$ $f_v = 13,728 psi$	
W= 329000 #	DATE CHK'D. BY DATE CHK'D. BY	DAT

	nals Lift Rig		15 of 67
PSE/PNJ	Aluxula 12/2	PATE CHK'O. BY WRight FAENO	CHK'D. BY
O. PTNP-188	CALC. NO.	FILE NO.	CHE
REMOVA	BLE PIN 7	W= 284,5 SHEAR STRE	
ESTWT: III.O MAT'L ASTM A AISI 4	434 CLASS BD	= 28.1 (P/2) = V	992) ² /4 99 in ² N/2
		f. = W(.0	
	5.000	f. = 504	4 PSI
SON ASSO	57	BEARIN	NG STRESS
13.73	P-W ADAPTOR	fe=(P/2)/A A=dt= = 17.9	3 (5.992)
ORCES DE	BLOCK ASSUMBLE	f _c = W/(2 f _c = W/(2 f _c = W(.0 f _c = 79 PIN TO A f _c = P/A	13 PST DAPTOR
9-12-0-27 	INTERFACE DIMENSIONS 3"STOCK	$P=W$ $A_c = dt=5$ $f_c = W(.0)$ $\vdots f_c = 7$	
V. REV	TAUTHOR D	ATE CHK'D. BY DATE	CHK'D. BY DA

R. V. Inter	nals Lift Rig		PAGE 10 OF 67
PROJECT PSE/PNJ	Ansula	12/92 NW Risk	2/83 CHK D. BY DAT
PTNP-188	CALC. NO.	FILE NO.	CHE

REMOVABLE PIN

BENDING STRESS*

P=W a=3. in J=6.23 in g=(6.405-6.23)/2=.0875 in d=5.992 in

fb=(2)(=+9+4)=32 = W4(1)+(3/2+.0875+623/4) +32/\pi/d3 fb=W(.07445) pst

fo= 21,181 RT

THE FORMULA FOR PIN BENCING
STRESS, USED ON THIS AND ALL
SUBSEQUENT PINS, IS DERIVED
ON THE FOLLOWING PAGE:
- PAGE 7-

REV.	REV.	AUTHOR	DATE CHK'D. BY	DATE CHK'D. BY	DATE
NO.	DATE				

	nals Lift Rig		17 of 67
PSE/PNJ	AUTHOR 126	32 J. W Rich	4830 CHK'O. BY DAT
PTNP-188	CALS NO.	PLE NO.	GROUP
CALCULAT TENSION 3	ION OF CEN SLING LEG	c= a-b	= 96"
	PER PIN BLOCK	√72.	632+962 = 120.38 (CALC)
SLING LEG &	4	4	T W/3 = L
LOWER PIN	c- 63	T= TENSIC	200 B OF LOWER INTERNALS + RIG WT. ON IN SLING LEG ARD FORCE EXERTED
	RIG &	· L = DOWNY	PFACER WARD FORCE EXERTED LEG = W/3
A = RIG & TO LOWER			= % = 12.63,96
6= (A-B) - 72.6	3	T = (.4	180)W
HEAD OF REMOVADI	TERLINES	Tsinx	118,916 1b
b = DIFFERENCE IN CF REMOVABLE	PIN AND	= .418 W = K = (K =	
	(FROM BLOCK ASSY) -1.0-8.5 = 17.0" AUTHOR DAT	E CHK'D. BY	DATE CHK'D. BY DATE

TITLE	R. V. Intern	nals Lift Rig		PAGE 8 OF 67
PROJECT	PSE/PNJ	AUTHOR	In 13/2 OW Rich	215 DATE CHK'D. BY DATE
s.o. PT	NP-188	CAYC. NO.	PLE NO.	CHE
F	eference th	is page to ide of section cu	ntify	ZZ
	A & C	B SUPPORTURES UPPER CLINES THE LEG	P LUG	REMOVABLE PIN 7
REV.	REV.	TAUTHOR	D#TE[CHK'D. BY	DATE CHK'D. BY DAT

R. V. Internals Lift Rig		19 of 67
PSE/PNJ AUTHOR DATE	J. W Richard CHK'O. B	y DA
PTNP-188	FILE NO. GROUP	CHE
TOP LUG 8A	tf = 8050	
MAT'L. ASTM A 515 GR 70 QUENCHED & TEMPERED	BEARINGO THE BEARING STRESS I AS THE OUTER BEARING ST REMOLABLE PIN. (7)	STHE SAME
W= 284,500#	$f_{t} = (P/2)/A_{t} = 1$ $A_{t} = 11.94(3.00)$ $f_{t} = W(0.01)$ $f_{t} = 3972$ SHEAR FOR THE	35.82 m ² 396)
TENSION C A-A $f_{t} = (P/2)/A_{t}$ $P = W$ $A_{t} = 3(11.94 - 6.028)$ $= 17.736 in^{2}$	SHEAR FOR TE f=(%)/2A= V 2A=3(1694-6.028 f=W(0.028) f=8020	v/4Av)=17.7361 9)

R. V. Inte	rnals Lift Rig		PAGE 20 0F 67
PROJECT PSE/PNJ	Johns Ja	OATE CHK'D. BY	20 OF 67
s.o. PTNP-188	CALE. NO.	FILE NO.	GROUP
SUPPORT		NOTENST A	Z84,500# N IN PLATE P/At = W/At
MAT'L			.002515) W
SUPPORT P	STPE NTM A106		716 PSE
SUPPORT	PLATE	TENSI	ON IN PIPE
FI PIPE		$A_{+} = \pi$ $= \pi$ $= 8$ $f_{+} = \sqrt{2}$	2/At = W/At /4(do²-di²) /4(17.94²-14.421²) 19.44 in² /(0.011181) 3181 BI
14	8.06 p		
REV. REV.	AUTHOR	DATE CHK'D. BY	DATE CHK'D. BY DATE

DCF (DN)	DATE CHK'D. BY
PTNP-188 CALC NO.	FIXE NO. GROUP
PINP-100	CHE
SIDE LUG WA	ft = T/At = .418W/At At = [4.94(2) - 4.026] * 3.98 = 23.31 in ²
MAT'L	f. = W (0.017932)
QUENCHED &	ft = 5102 PSI
TEMPERED	
	COMBINED STRESS
	G METD
	TENSION: f. Tuna /At
5.06 R	= .418 W sin 37.19 / 11.94 (3.99)
4.94	= W(0.005307)
12.04	= .418 W cos 37.11 / 11.94(3.98)
98 THICK	BENDING: IL = MC/I
+ +3 +0	= [Tcosx 503][11.94/2] - [3.95411.94
Max PINITEATTO	
020 0 T 4-5.03 - WELD	fb= W(0.017.731)
FULL PENETRATEON	fy = (0.007014)w fx+fb= w(.005307+.017731)
W= 28 4,5004	= W(.023039)
TENSION & HOLE	from = 6554 pi
	ty - w(. w)
THE AREA WILL CONSERVATIRLY BE TAKEN AS THE MINIMUM	fy = 1995psi
OBTAINED FOR HORIZONTAL FORCES	BEARING
	INNER DEARING = .02630W= 7481 PS

DATE

	als Lift Rig		22 0 67
PSE/PNJ	AUTHOR	12/82 IW Richa	PATE CHK'O. BY DA
PTNP-188	CALE NO.	VILE NO.	GROUP
AISI	A A A 34 CLASSON A 340 STEEL I. 98 = (4.00 - 7.02) PIN CLEVES FORCE DIM. INTERFACES	5.500 - 4UNC - 24 (DOTH ENDS) W= 25 SHEAT Fy = P/2 P= 7 Aya	8 4,500 # R STRES's

R. V. Inte	rnals Lift Rig			PAGE 73 OF	67
PSE/PNJ	10 Angula	with Dw Rack 2	SOATE CHE'D.	37	DAT
PTNP-188	CALE NO.	FILE NO.	GROUP	CHE	

BEARING STRESS

I PIN TO CLEVIS

fc = (P/2)/A. (P/2) = T/2 = (.418W/2) Ay = dt = 3.994 (1.98) . 7.91 in2 fc = .418w/(2 = 7.91) fc = W (.02642)

fc= 7517 px

PIN TO SIDE LUG

fe = P/Ay P=T=.418W Av = dt = 3.994 (3.98) = 15.89an2 fc = .418W/15.896 fc=W(.0.2630) fc = 7481 PSI

P= T= .418,W 8 = 1.98 1 = 3.98 9 = (4.64-3.98)/2 = 0:03 d = 3.994

fb=(为)(如+g+4)前d, fb = .418W/2 (1.98/2+.03 - 3.984). * 32/(T + 3.9943) f. - W (206733)

f. = 19,155 PAE

REV.	REV.	AUTHOR	DATE CHK'D. BY	DATE CHK'D. BY	DATE
NO.	DATE	Wall to the call of			

R. V. Inter	mals Lift Rig		24 of 67
PSE/PNJ	AUTHOR when	12/2 JW Richard	PATE CHK'O. BY DAT
PTNP-188	CALD NO.	ULE NO.	GROUP CHE
Raference th	assembly of some formation of social	ify	EZO
A to Ba	A SUPPORT A	B PTPE	MOVABLE PIN 7
3LT	UPPER CLIVES	(a)	CYLINOPR

R. V. Internals Lift Rig		25 of 67
PSE/PNJ AUTHOR Phopular I	OATE CHK'D. BY BURE S	HK'D. BY DAT
PTNP-188		CHE
TOP LUG 8B	f= 80	74 OS
8.029 d G.375	THE BEARING STRE AS THE OUTER GEARIN REMOVABLE PIN. (7)	S IS THE SAME
MAT'L ASTM A533 GR.B		.7315) PSI
CLASS 1 QUENCHED & TEMPERED	TENSION C	WELDGG-B
W= 284,500#	ft = (P/2)/At At = 11.99 (2.0 ft = W (0.0	35.82 12
	ft = 397	2 PSI
TENSION C A-A $f_t = (P/2)/A_t$ $P = W$ $A_t = 3(11.94 - 6.028)$ $= 17.736 in^2$	SHEAR FOR $f_{v} = (\frac{1}{2})/2A_{v} = \frac{1}{2}$ $2A_{v} = \frac{3}{1194-6.0}$ $f_{v} = W(0.02)$ $f_{v} = \frac{1}{2}$	W/4Av 23)=17.736 in2 819)

R. V. Interna	Is Lift Rig		26 of 67
PSE/PNJ	Amorala 12	IL YW Mukais	ATECHK'D. BY DAT
PTNP-188	CALE. NO.	FILE NO.	CHE
SUPPORT PL AS CO Pare	T PIPE (10) TPE TM A 106 GRB ILS. STEEL ATE TM A 533 GR. B LASS I UENCHED & TEMPERED PLATE	TENSION $f_{t} = P/A$ $A_{t} = \pi I$ $f_{t} = V$ $f_{t} = V$ $f_{t} = V$ $A_{t} = \pi A$ $f_{t} = \pi A$	284,500# IN PLATE At = W/At 7.942/4 = Td2/4 2.8 in2 0.003956) IN PIPE At = W/At (do2-di2) (17.942-14.4212) 44 in2 (0.011181) 181 RAT

R. V. Internals			27 of 67
PSE/PNJ A	Hans when it	1/2 DW Brita	GROUP OA
O. PTNP-188	JE. NO.	FIVE NO.	GROUP CHE
SIDE LUG	(1)B	At= [4.9	At = .418W/At 34(2) - 4.026] + 3.86
	588 GR.A	£= ω	(.018498)
	@ 1650°F	++ = 5	263 PSI
TENSILE STREN 80,000 TO 92,			ED STRESS
	E	TENSION: fi = -	
5.06 R D		= W(.00	
190 MICE	12.04	= .418 W CO: BENDING: 16 =	37.110/[1.9++3.86]
0	E +1 Pure	= [Tcosx 50'	3 11.94/2 / 3.86 +11.94
026 0	5.03 -	tp = M('0	4.011)(5.970) / 547.6
FULL PENETAL WELD		++++= W(.	005472+.018284)
TENSION C !		from = 6	758 pi
THE AREA WILL BE TAKEN AS THE		fv = 20	58 psi
OBTAINED FOR HOR	CLACT JATMOSI		SAME AS THE CLEUTS PER
	THOR D		= W(2711) = 7714 B

	mals Lift Rig			28 of 67
PSE/PNJ	Hansula 1	Be Jw Rich	1830ATE CHK'D	. BY DAT
PTNP-188	CALE. NO.	OLE NO.	GROU	CHE
PTNP-188 CL P	EVIS 12 I A 434 CLASS BD 4340 STEEL	CYPAAAA CY	P/2A, T=.418 W Trd2/4 Tr(3.994 12.529	CHE RESS /) 1/4 in2) /(2 + 12.529) 182)
d = dength of cont a = length one so g = gap b surfa		for A = 1 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2	15.417) .418W)/ V(.0271 7714	(15.417)
P=T=.4180 d=3.994 l=3.86 a=1.98 9=0.09 9=(4.04-3.8)	in. Ih.	A = (15.816)	((15.816) 13)
EV. REV.	TAUTHOR C	ATECHKO, BY	DATE CHK'D	BY DAT

TITLE	R. V. Inter	nals Lift Rig		PAGE 29 0F 67
PROJEC	PSE/PNJ	AUTHOR A. O.	12/gz & W And	2/80ATE CHK'D. 84 DAT
s.o. p	PTNP-188	CAVC. NO.	ELE NO.	GHOUP CHE
	BENDIN	G STRESS*		
f,	- (P/2) 9/2	2+9+94) md	3	
t	+ 3.86 /	*(1.98/2+.0 4)*32/(#(3.994 06833)	9 (")")	
			Committee of the	
			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
		1		
		:		
€∨. O.	REV.	AUTHOR	DATE CHK'D. BY	DATE CHK'D. BY DATE

R. V. Inter	nals Lift Rig		30 of 67
PSE/PNJ	MANA a	Jan 13 JW Ruh	CROUP SO OF G
PTNP-188	CALO,NO.	FILE NO.	GROUP CHE
- SLING L	EG ASSEM	BLY -	UPPER (13) ALE
			SLING 14 LEG A4B
			LOWER 15 A & B
EV. REV.	AUTHOR	DATE CHK'D. BY	DATE CHK'D. BY DAT

	als Lift Rig		PAGE 21 67
PSE/PNJ	Alus when 12/g	TE CHK'D. BY W Riel 2 83	31 OF 67
PTNP-188	CALLE. NO.	FIXE NO.	CHE
UPPER CI	LEVIS (13)	R 1.02	2.02
MAT'L: SA-5 QUEN YIELD 50 TRUSTLE 80 MAT'L: ASTM 6	1000 PSI 1000 PSI 100		F
ft = P. A. (7.94 - 7.75 P = 77.75 ft = .418W ft = W (0.	6 m ² +18 W/2 /7.756/2	8.06	40NK-2B-RH
f+= 766	6 PXE	THREAD SHEA	R
BEARING STRU BEARING STRU PRIVIOUS CALL CLEVES PIN AN for W (.)	ULATED DURING NALVIES. D 2642:)	fy = W(0.0) fy = 328 TEAR-OUT fy = (%)/2A,	<u>8 №</u> .
REV.	AUTHOR DAT	CHK'D. BY DATE	CHK'D. BY DATE

PSE/PNJ James	Le Day 1782 gra Rich	21932
PTNP-188	PHLE NO.	CHE
SLING LEG (4)A1B	
PSE MATL: AIDI- 1117 HOT ROLLED OR 1018 COLD ROLL	IM.0 13.9	A TI A 4.000 2A-
PN1		
MAT'L ASTM AHZY CL B AIS I H340 TUR OR ASTM A599 NCLMALIZED, TURNED GR	MED & CORDONO.	
W= 284,500#		
THREAD SHEAR & A-A		
FROM MARKS HAND GOOK FOR M SED ED. P 8-10		
Dprtch = 3.838 in		
EXTEND I "(TYP) PAST CLLVES THREADER L = G.O in' Ay = IT (3.838) 6.0/2 = 30	NG)	
P=T= .418W fv = .418W/36.17 fv = W(0.011557)	4.000-4UNC-	2A-UH
f. = 3288 BE		

R. V. Internals Lift Rig	PAGE 33 OF 67
PSE/PNJ Manual Pg2	CHX'D. BY
PTNP-188 CALE NO.	FLE NO. GROUP CHE
SLING LEG (14) A & B	SLING LEG (4)B
TENSILE STRESS	(LNA) PNJ HAS A THREAD RELUEF
ft = P/At CA-A FROM. MARKS HANDBOOK FOR MECHANICAL ENGENERS PO-D BUTELL; At = STRESS AREA = 11.0805 in THEREFORE famax = P/11.0805 P = T = 41.8W ft max = W(0.03772) ft max = 10.732 PSE.	$f_{t} = P/A_{t}$ $P = T_{t} \cdot 418W$ $A_{t} = \frac{1}{4}(3.617)^{2} = 10.275$ $f_{t} = \frac{418W}{10.275}$ $= W(.04068)$ $f_{t} = 11,574 \text{ ps.s.}$
EV. REV. AUTHOR DATE C	HK BY DATE CHATE OATE

R. V. Interna	ls Lift Riy		PAGE 34 o	F 67
PSE/PNJ	Whoulan 17,	82 JW Richa	283DATE CHK'D. BY	DATE
PTNP-188	CALE NO.	PLE NO.	CHE	

LOWER CLEVES

AFB

LOWER CLEVES' DIMENSIONS

ARE THE SAME AS THE UPPR

CLEVES' EXCEPT THAT THE

UPPER HOLE THROUGH BOTH LUGS

IS THREADED WITH

4000 JUNC-2B-RH

AND THE THREAD WHICH ATTACHES

TO THE SLENG LEG IS LH.

THREAD SHEAR

FROM THE SLENG LEG.

fu= W (0.011557)

fv = 3288 PX

TENSION

AT SECTION A-A (SEE UPPER CLEVIS SECTION) THE FIGH TENTILL STRESS IS FOUND TO BE (FROM SEC 9.5.2 OF TECHNOLOGY INCORPORATED STRESS ANALYSIS MANUAL)

F. 72 = (-13)W M = F(19)/2 0.2080W

$$f_{max} = W \left[\frac{.209 + 6(208)/1.99}{(9.94 - 4.023) 1.99} \right]$$

$$= W (0.10727)$$

N.B. THE THREADED BOLT REDUCES THE ASSUMED MOMENT.

femax = 30,518 psz

PERSONAL PROPERTY.	Charles place of the Control of the	Actual of the last			
REV.	REV.	AUTHOR	DATE CHK'D. BY	DATE CHK'D. BY	DATE
NO.	DATE				
-					

ROJECT	nals Lift Rig	. vela		35 of 67
PSE/PNJ	1 sephonelar 12	32 ruhicha	DATE CHE'D. B	DA DA
PTNP-188	CAUCI NO.	FILE NO.	GROUP	CHE
Check of fiber strss t Criteria From MANUAL	h AISC	FROM THE PA fby = 0 fbx = (w-d) = 6(.20	165 165)M	
CONSTRUCTED		= 22,89	Pl psi	W94060.=
ANTAL TENSION - PORMULA (1.6-	ON 1 BLNDING	fa = (w-a) + = 7,628 F		W18920. Egg.
d = computer stress fa = computer	bending tensile axial stress	50,000(.60) +	22,0	91 (2(7)S)
Fy = yield st Fa = axial str	1855 = 50,000 psi	. STRESSES ARE		د عسم
if axial foru	sec 1.5.1.1	7,629		
existed = .75 Fy per FORMULA (1.	momentalone sec 1.5.1.4.3 (6-1 b)		€ 1.0	
10.60 Fy + Fbx +	Foy < 1.0 .			

DATE CHK'D. BY

DATE CHY'D. BY

DATE

REV.

AUTHOR

REV.

R. V. Internal	S LITT KIG	DATECHED	36 of 67
PSE/PNJ	man wan	Par OW Rich	Laid
O. PTNP-188	CALC NO.	FILE NO.	GROUP
CLEVIS	BOLT 16		4.13 4.11 FULTHON
IVES -	CLEVE		4.000 3,992 ¢
ARZ MATL:	E LEG CHAN BB	FROM CHAP INCORPORATE 2) THE AMOUNT	ARING STRESS TER 9, SEC5 OF TECHNOLOGY 10'S STRESS ANALYSIS MANUIL: T OF BENDENG IS SIGNIFICANTLY
A STM CLASS	1 A434 BD 4340 STEE	SHEAR JOIN 2) ADSUMITE THE BEA	W AN UNTERVADED JOINT RING STREES DISTRIBUTION MODELED BY
Av = 17/4	TOTAMETIC OF THEFA		AND femax =
T=.4181		DATEICHK'D. BY	W= 284,500=

R. V. Intern	als Lift Rig		P	37 of 6
PSE/PNJ	RANDUL	WI THE CHK'D. BY	Z 83 CHK'D. B	V 0F 6
PTNP-188	CALC. NO.	FILE NO.	GROUP	CHE
CLEVES	BOLT (M	209W	
Assuming even of the momentum the lugs, and	assuming	fb = 12 (20) (10.15	200) (200))]-1]
yielding is not checked by fe. d= 4.015	nax being < France		.06062)(\1.	41.44 -
M = (!F)(1.99	(2080) = (2080) = (2080) = (2080) W	3)/2	0.02 76 0)	NI.
te max = ,200 v	1/(4.015+1.99 18)/4.015+1.9 0.10465)	92)		
femme 29		TO DONE ON	THE PRIOR ONLY TO DETERM O, THE ONLY CRI	PAGE
BENDING FROM SEC 9.5. STRESS FORMULA F	5 THE BENEING	APPROPRIATE ACTUAL BE	TT BE CELOW YI CALCULATION ARING IS TH SPACER-CHARM	FOR
formax = lais Ft (-	(2M) 2+1 - 2MP+	1) AND ES	W (.05233	5)
WITH M/Pt = C				
PASTIC ARIEN				

R. V. Intern	nals Lift Rig		38 of 67
PSE/PNJ	AUTHOR	DATE CHE'D. BY 2/1	DATE CHK'D. BY
PTNP-188	CALG. NO.	FILE NO.	GROUP
	DER ASSEM	SPREADER LEG ASS	BACKING BLOCK
		K/2 K/2	END PLATE

JECT	als Lift Rig		39 of 67
PSE/PNJ	12 houle	ATE CHK'D. BY 2/80	ATE CHK'D. BY
PTNP-188	CALC. NO.	FUE NO.	CHE
SPREAS LEG ASS		MAT'L: ASTM	- A36
	243 A 443 A	TON A-A	
₩ + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		14.00 REF	
5.58 + 10.02 5.58 + 5.58		1.02 6.98 6.99 7.99 2.98	

DSE /DN 1	AUTHOR A	DATE CHK'D. BY	DATE CHK'O. BY
	CALC. NO.	PLE NO.	GROUP CHE
SPREADER LA SSEMBLY W= 284. THE NOMINAL OF THE NOMINAL OF THE STATEST IN THE LEG - A. AREA A LEG - A. S.49 in 2	EG (T) 500 # DMPRESSIVE SPREADER AL DE PORCE ON SPHIALTER (252)W OF ONE CHANNEL OF A SHIP CHANNEL DECOK FOR MECH. END 2 /5.49 D2 2 95)	COMPRESENTE ALSO MANUAL TOLD FROM THE ALSO MANUAL TOLD FROM THE ALSO MANUAL TOLD FROM THE ALSO FROM THE ALS	CROUP CHE ESSION IN LEG STEEL CONSTRUCTION PS-16 SEC 1.5.1.3 STRESS PERMITTED IN COF GNOTING CUL LENGTH ENCTOR CENGTH SOF GYRATION US OF ELASTICITY MIDS/IN! FOR STELL MUM YIELD STRESS DOIVEDING ELASTIC ENELASTEC BUXKLENG TO 29,000,000/30,000) TO 29,000,000/30,000) CCC SECTION OF ANIMULOAGE HUMA LA'] Fy/(3.3A-8A (K.1/F)/CE
][I. 43.7 in		E /(23+(K2/r)*)
107 - 1 × 2	Sin 109 in 3		17 = 73.86

R. V. Internals Lift Rig	PAGE 41 OF G
PSE/PNJ PART CALE NO.	PLE NO. RILLED GROUP CHE
SPREADER LEG (17) ASSEMBLY COMPRESSION IN LEG (10NT) I = r2Ae I = Ico + cl2Ae I = Ico	A = 27.49/126.10 = 0.2180 A = 33.70/126.10 = 0.267 5 = 20,116 psz 5 = 19,674 psz THISE RESUME THE COLUMNS RET TOGETHER. THE CONDEST UNDERNO LENGTH ADOUT AXES 2-2 F2 40.02 Kes 0.65° (PAUL 5-134 OR ADE HANDON 15 40.02 F = 0.60 Kelfr = 43.36 < C = 126.10 (Xelfr)/Cc = 43.36/126.10 = .3439 Fa = 18,917 psz ** LES TANEN AS 21 EVETTE AVEC CENUTH AN THE ENDEY DOLTED AND (CONSUMPRESENT) MAY DEFLUCT SLEWICH IF 10032. THE CIPLE OF THE UNGLAND CENUTH HAS K = .65° AS IT IS WELDED TO THE PLATE AND SO WOULD DEFUM THE MODE NEXT THE PLATE AND SO WOULD DEFUM THE MODE NEXT THE BLATE AND SO TRESS SAME AS FOR THE BACKING

R. V. Internals Lift Rig	TE CHE'D. BY MODATE CHE'D. BY
PSE/PNJ Byrn 2 Jan 12/	Z JW BULLER GROUP CHE
PTNP-188	CHE
BACKING BLOCK	BEARING ACHANNEL = 5.49 in2
MAT'L: ASTM A 276 TYPE 304 C.F. COND A. THE BOLT HOLES ARE	Acontect = Acondetect = [8-2(1.5)](.) P= K/2 = .252W/2 = .126W fc = P/Acondet = .126W/3.055
BACKING BLOCKS RESIST THE INWARD FORCE R.	COMPRESSION INGLO
1.5	f. = P/A. P= K/2 = .752W/2 = .1260W A. = 1.5 x 3.0 = 4.5
STANNEL CUTLENE	fr = 1200/4.5 = W(.028) fr = 7966 psi
	m= 584,500*
AL AUTHOR OF	FEIGHN'S BY DATEIGHN'S BY

R. V. Intern			PAC	3 of 67
PSE/PNJ	A Music	was 1762 Juk	2/83 DATE CHK'D. BY	DA
PTNP-188	CALE NO.	F(LE NO.	GROUP	1E
END	PLATE	(9)		
A - MTZA	36			
HANNEL		NO		
BEAR OF CHANNE END PLATE &- P/A	(NEWSCHING	WELD MARM)		
	252 W/2 *W/2/5. (.02295)			

R. V. Int	ernals Lift Rig			14 of 67
PSE/PNJ	AUTHOR And	wlan PSZ JW Rich	283 DE CHK'D.	BY DA
o. PTNP-188	CALCINO.	FILE NO.	GROUP	CHE
· LEG A	TOPVIEW	1 A O	8	SPACER 20 - CHANNEL 21
		د •		SUPPORT 23 A & B
EV. REV.	AUTHOR	DATE CHK'D. BY	DATE CHK'D.	BY DA

PROJECT	nals Lift Rig		PAGE
PSE/PNJ	John 4. Co. 1	BY YW Richard	CHK.D. BA
PTNP-188	CALO NO.	EME NO	GROUP
			CHE .
SPACER	CHANNEL (20)	100 = 280	\$1200 ×
0	THANNEL (20)	SPACE	
			4.023
MAT'L			-
SPACER - AST	M A588	CHANNEL A 4	A 8.00
GRADES	AORR		7
CHANNEL -	ASTM-36	+2.002	/ B .
		SEC A-A LIER	11
W= 284 .	2004	SEC A-A /	→ \
BEARIN			SHIP CHANA
		THE SHEAR IN T	
THE FIRST BEA	RING CALCULATION	AND CALLY	HE WELD
OR THE CLEVES BOL	TIS A LOLAL	AND FILLT	WILD MOULD BY
TELL STRESS EZART	NO WHICH IS	fy = P/A	
ALCULATED MERELY	TO PRODUCE	P = (W/3)	, v
ו דעונס טאנדאהדב ו	OR DETERMINENU	Av = 8.00(1.62)	2 / 2 / + non(. Y . V
OBINTELO CISATE U	TON' INTHE	= 53.96 in	-1-1-1-101/0/-//
LEUES LUG AND SPA	LE CHANNEL	fu= W(0.006	
ELDMENT. TRADITION	ALLY, BEARING		
F PIN JOINTS IS	PONE IONORING	1757	PAT
XH LOCAL CONCENTR	ATTONS AND	IF AS A WORLT CASE I	
INTOSTAL SHT O	ATE CALCULATION	THAT ALL FORCE'S ACT ON	THE PACE
OR WHICH RIFERINA	ILL ALLOWACUS -		
C DIA	.2	D NOZUST	3-3
fe = P/At P= T= .418		ft = P/At	
A 1 18	We	P= W/3	
At = dt = 3.9	(2.00)	At = 2 AHANNE	= 2(5.49) = 10.98 mi
fc = .4130W / = W(.05	235/ 75.00	ft = W(0,0)	30358)
fc= 14,89	4 33	(0, 1	^
100	1 PSI	#= 064	O PAI

PROJECT
PSE/PNJ

AUTHOR

CAFG. NO.

PTNP-188

PAGE

46 OF 67

DATE CHK'D. BY

2/8 PATE CHK'D. BY

DATE

CHE

PAGE

46 OF 67

DATE

CHE

CHE

CHE

CHECK OF MAXIMUM STRESS TO AISC CRITERIA

W= 284,500# T= .418W K= .252W

THE TENSILE STRESS
WILL BL BETERMINED
BY SPLITTING THE FORCE
T AND THE MOMENTS IT
PRODUCES INTO COMPONENTS
AND APPROXIMATING THE
SPACER-CHANNELWELDMENT
BY THE FOLLOWING:

At the stressed element shown four forces act

ftware 6/(8-4.023)/2=5,96/A

ft HORTZONTAL = 2/(8.5 * 2) = 2109 PM

combining by the square-rootof-the sum-of-the squares $f_t = \sqrt{f_{bu}^2 + f_{bv}^2} = 6,325pz$ $f_b = \sqrt{f_{bu}^2 + f_{bv}^2} = 18,972pz$

PROJECT PSE/PNJ AUTHOR PATE 18/22 LEG SUPPORT BLOCK 23 A AND BRACE PLATE 22 MAT'L LEG SUPPORT BLOCK: AISI 8620 BRACE PLATE : ASTM A-36	THREAD SHEAR A THE THREAD SHEAR IS THE SAME AS THAT FOR THE ADAPTOR $f_{V} = 5656$ $f_{V} = 5656$ THE CHK'D. BY CHE CHE CHE CHE CHE CHE CHE CH
LEG SUPPORT BLOCK 23 A AND BRACE PLATE 22 MAT'L LEG SUPPORT BLOCK: AISI 8620	THREAD SHEAR (A) E W = 294,500 M THE THREAD SHEAR IS THE SAME AS THAT FOR THE ADAPTOR Fy = W (0.019879)
MAT'L LEG SUPPORT BLOCK: AISI 8620	W= 284,500# THE THREAD SHEAR IS THE SAME AS THAT FOR THE ADAPOR Fy = W(0.019879)
- Carl N-26	TY - 0 60 0 PAT
BRACE 302 0.98 0.98 CHANNEL 450-HAN 8.08	WELD SHEAR THE BACK CHANNEL -TIFFENER HAS NEGLIGIBLE EFFECT ON THE WELD DISTRIBUTION. THE WELD GIVEN MORE THAN FULL STRENGTH TO THE BLOCK-PLATE CONNECTION. SO THE SHEAR STRESS IN THE FILLET WELDS IS
73 8.0	fy = P/Ay P= W/3 Ay= (.707)(.50)(8.0×4)+4(6)707 tymont lucco = 19.796 in fy = W(0.016838)
10.02	fv = 4,791 psz

R. V. Intern	als Lift Rig			48 of 67
PROJECT PSE/PNJ		CHK'D. BY	SPATE CHK'D.	BY DAT
PTNP-188	CALC.NO.	FILE NO.	GROUP	CHE
LEG SUPPO	ET BLOCK 23 B			
THAT THE 4.50	PSE UNIT (FOR ANACHED) (XCPT) -16UN-E THREADED D BY A SMOUTH-BUTTED			
F= W/3 Ac = {[649 = 10.7 fc = W/3,	- 2(.21)] 4.81} 4			
<u>fe= 8,8</u>	008 PSI			
EV. REV.	AUTHOR DATE	CHK'D. BY	DATE CHK'D	.BY DAT

OJECT	nals Lift Rig				PAGE 49 OF
PSE/PNJ	1 (4)	ula 182	WRist	PATE CHK	D. 8Y
PTNP-188	CALGNO.		FOE NO.	GRO'	CHE
• 10	RQUE T	UBE A	SSEMBLY	PSE	
THE TORQUE TO				_ADAP	A)A TOR
NEO THE SUPPLICK OF A LEG	DRT			- OUTER	5)A TUBE
				- GUIDE	SLEEVE
THE ENGAGING HREADS INTO T		- E	M/3	ENGAGIN	DA NG SCREW
REV.	AUTHOR	DATECHE	('D. 8Y	DATE CHK'D. B	Y DA

	als Lift Rig		50 of 67
PSE/PNJ	The war 17	ATE CHK'D. BY	GROUP CHE
PTNP-188	CALD. NO.	GLE NO.	GROUP
ADAPT OUTER T	1 /25//	5.5-4 THRI	N= 284,500° EAD SHEAR C 55. P/Av =(W/3)/Av
OUTER TUBE -	ASTM A-276 TYPE 304 HOT ROLLED & PICKLED COND A. ASTM A-312 TYPE 304	GUIDE 2.98 SLEEVE THREA A = TI	OUTERTUBE AD ENGAGEMENT TO GUTCE SLEEV 4.52)52 = 1 = 2.00 T Opital 1/2
	SMLS. CF. HT. TR.	Aν=π(= D ₃ 64952/n = 5.564952/4 = 5.3376 (\$33762)(2.00)/2 = 16.769 N (.019879) = 656 PSI
	5.08	fv = Aν = Popular Aν = π fv = 1	P/Ay=(W/3)/Av TDpmin 1/2 5.98 in = 4.4594 (MARKS, 8th Ed) 1(4.4594) 5.98 /2 = 41.88911 W/(3# 41.889) W(0.007958)
OTFR TUBE:	5.50 - 4UN - 2B	TE CHK'D. BY	2264 PI

	mals Lift Rig		PAGE
PSE/PNJ	ATMA what	DATE CHK'D. BY	SATE CHK'D. BY
PTNP-188	CAVE. NO.	JE NO. Rich	GROUP
F114F-100	1		CHE
ADAPTOR	1 60		
OUTER TO	600	A	
30.2.			
TENSIO	N & THREAD REL	755	
FROM MARKS	8,821-89, XCCQCMAH	ened	
	A CAH 3919 TEE ON		
0.0. OF 6.	625 in .		
++ = P/	A+=(W/3)/A+		
$A_{t} = \pi/4$	(do ² -di ²) (6625 ² -5.594 ²)		
= "/4	(66252-5.5942)		
	394 in ²		
tt = W(0.03369)		
1-0	500		
ft= 9	282 BI		
THE RESERVE AND DESCRIPTION OF THE PERSON NAMED IN	0 41/4 -110-10	_	
MOTERIST			
HOTENST MORE			
FROM MARKS	HANDEOOK, 8th Ed		
FROM MARICS	HANDEOOK, 8th Ed	2A	
FROM MARICS	HANDEOOK, 8th Ed	A5	
THE STREES AR	HANDEODK, 8th Ed ERA OF A 41/2-16UN-1 As = 15.4662 in 2	2A	
FROM MARKS THE STRESS AR THREAD IS $f_t = P/A$	HANDEODK, 8th Ed ERA OF A 412-16UN-1 As = 15.4662 in the E = (W/3)/At	ZA A	
FROM MARKS THE STRESS AR THREAD IS $f_t = P/A$ $At = As$	HANDEODK, 8th Ed EZA OF A 412-16UN-1 As = 15.4662 in 2 E = (W/3)/At - TGd; 2	2A	
FROM MARKS THE STRESS AR THREAD IS $f_t = P/A$ $At = As$ 15.0	HANDEODK, 8th Ed ERA OF A 412-16UN-1 As = 15.4662 in the E = (W/3)/At	2A	
FROM MARKS THE STRESS AR THREAD IS $f_t = P/A$ $At = AS$ = 11.3	HANDEODK, 8th Ed EXA OF A 14-16UN-16 As = 15.4662 in the color of th	2A	
FROM MARKS THE STRESS AR THREAD IS $f_t = P/A$ $At = AS$ $= 11.3$ $f_t = W(1)$	HANDESOK, 8th Ed EZA OF A 112-16UN-1 As = 15.4662 in 2 E = (W/3)/At - TGd.2 1662 - (TT/4 (2.29) 2 383 in 2	ZA A	

PROJECT PSE/PNJ AUTHOR JULIAN PS 1 1 M RILLING STRESS DETWEEN GUIDE SLEEVE 26 A MAT'L: ASTM A 276 TYPE 304 HOT ROLLED PTICKLED COND. A. $ f_c = 16,958 \text{ pst} $ COMPRESSION AT THE RELIEF AN UPPER LIMIT ANALYSIS $ f_t = -10,086 \text{ pst} $ THREAD SHEAR $ f_v = P/A_v = (W/3)/A_v $ $ f_v = W/(3 * (0.00)/2 * 16.769) $	R. V. Interna	als Lift Rig		52 of 67
GUIDE SLEEVE 26 A BEARING STRESS THE BEARING STRESS DETWEEN THE GUIDE SLEEVE AND ENDAGING SCREW IS CALCULATED IN THE ENGAGING SCREW SECTION. $f_{c} = 16,958 \text{ pst}$ COMPRESSION AT THE RELIEF -AN UPPER LIMIT AMALYSIS - $f_{t} = (-1) P/A_{t} = (W/3)/A_{t}$ $A_{t} = T/4 (d_{0}^{2} - d_{1}^{2}) = T/4 (S.11)^{2} - 377$ $f_{t} = -W/(3.4.9.40.2)$ FEOM ADAPTER/ONTER, TUBE $2 = 2.00$ $A_{v} = 5.3376 \pi(2.00)/2 = 16.769$ FOR A $5\sqrt{2} - 4$ UN -2 A THREAD	PROJECT	No Rena 12 law Pk	TE CHK'D. BY Richar	DATE
GUIDE SLEEVE 26 A BEARING STRESS THE BEARING STRESS BETWEEN THE GUIDE SLEEVE AND ENGAGING SCREW IS CALCULATED IN THE ENGAGING SCREW SECTION. $f_{c} = W(0.05961)$ $f_{c} = W(0.05961)$ $f_{c} = W(0.05961)$ $f_{d} = W(0.05961)$ f_{d}	PTNP-188	CALE. NO.	LE NO.	CHE
MAT'L: ASTM A 276 TYPE 304 HOT ROLLED ! PICKIED COND. A. $ f_{c} = 16,958 \text{ ps} $ $ f_{c} = 16,958 \text{ ps} $ COMPRESSION AT THE RELIEF AN UPPER LIMIT ANALYSIS— $ f_{+} = (-1) \text{ P/A}_{+} = (-1) $	GUIDE S	LEEVE 26A		
COMPRESSION AT THE RELIEF -AN UPPER LIMIT ANALYSIS - $f_{\pm} = (-1) P/A_{\pm} = (W/3)/A_{\pm}$ $A_{\pm} = T/4 (d_0^2 - d_1^2) = T/4 (S.117^2 - 3.77)$ $f_{\pm} = -W (0.03545)$ $f_{\pm} = -W (0.03545)$ THREAD SHEAR $f_{V} = P/A_{V} = (W/3)/A_{V}$ $A_{V} = D_{pikm} \pi D/2$ FROM ADAPTOR TO SHE PRODUCTION TO SHEAR $f_{V} = P/A_{V} = (W/3)/A_{V}$ $A_{V} = D_{pikm} \pi D/2$ FROM ADAPTOR TO SHEAR $f_{V} = P/A_{V} = (W/3)/A_{V}$ $f_{V} = D_{v} = (W/3)/A_{V}$ $f_{V} = W/3 + 10.769$	HQ TY	PE 304 TROLLED PICKLED	THE GUIDE SI SCREW IS CAL ENGAGING SO FC = W (CULATED IN THE CREW SECTION.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. : : : : : : : : : : : : : : : : : : :	5.50-404		o,958 ps
5.02 4.98 fv = P/Ay = (W/3)/Aν Ay = Dpith TI D/2 FROM ADAPTOR POSTE DE Z.00: Aν = 5.3376π(2.00)/2 = 16.769 fv = W/(3*16.769)	7.54 + 1.55 + 1.	5.117	-AN UPPER LIF $f_{\pm} = (-1)$ $A_{\pm} = T/4$ $f_{\pm} = -W$ $f_{\pm} = -W$	MET ANALYSIS- $P/A_{t} = (W/3)/A_{t}$ $(d_{0}^{2}-d_{1}^{2}) = \frac{\pi}{4}(5.117^{2}-3.77)$ (3*9.402) (0.03545)
= Ds 0.64952/n when Ds = major diameter and n = fi = 5656 ps= number of threads per inch	Dpitch = 5.500 = Ds - when Ds = major	N-2A THREAD - Q64952/4 Q64952/n diameter and n=	fu = F Ay = Dpitu From nonproxidures: Ay = 5.3376TI fy = W/(fy = W/(D/A _γ =(W/3)/A _γ π 1/2 ποσε 1. 2.00 τ(2.00)/2 = 16.769 (3.16.769) (0.019879)

PSE/PNJ	12 hallen As 17%	TE CHK'D. BY	53 OF 6
o. PTNP-188	care no.	L Ju Rihail	ROUP
			CHE
FN1000-		m=5841	500≠
ENGAGIN	G (27)A	BEARING	C B-B
SCREW			
MASI		fc = P/A	
MAT'L:		P= (W/3)	
ASTM	A-276	Ac= (do2 - d	2) 11/4
TYPE	304		.99-2(.07))2-
- CONE	. A.	(3.77+21	
		= 5.59	
•		fc= W/(:	
		fc = W (0	
	B 4		,
B+	1.05 0 × 45°	fc = 16,9	59 PST
	T T THERE		
-	5,01		
	5.01 ¢	TENSILE	HREAD RELIEF
		ft = PIA	
		P= W/3	
		A+ = T/4 d2 = 3	(096年):7.537
-	3.500 4	f= W/(3+75)	
	3.500 \$		
	3.118 THD	f. 12,58	31 PST
	\$098 RELITE		
	275 MIN.		
		THREAD :	SHEAR
-3.480	→	f. P/Av =1	W/3)/A,
THE O	۵ ا	Av = Dpitch TT 1/2 = 3.3	
ROM MARKS HANDBOOK	C EON M & C other	fy = W (00	
8: Dptha = 3.337	3 in.	fr= 657	7 PSI
		CHK'D. BY DATE CHK	THE PARTY NAMED IN COLUMN TWO IS NOT THE PARTY N
DATE		DATE	D. BY DAT

TITLE		nals Lift Rig			GE OF 67
ROJEC	PSE/PNJ	AUTHO DUE D	DATE CHK'D. BY	GROUP	OA
.о. р	TNP-188	CALE. NO.	FLE NO.	GROUP	HE
		ING SCREW (2"	DB		
TH'	CSAME AS REW EXCEP ARING STR	THE PSE ENGAGE T THAT THE ESS IS AS SHOU AL IS DIFFERENT	LNO NA		
THE	DIARING	TO THE DAME A	>		
		(.04348 .,370 PA			
AM		100			
EV.	REV.	AUTHOR	DATE CHK'D. BY	DATE CHK'D. BY	DA

R. V. Interna	7			PAGE
PSE/PNJ	NAME OF THE	ATE CHK'D. BY	2 JATE CHK'D	155 of 6
PTNP-188	CALE NO.	- Ju Ric	1230	
			GROUP	CHE
1 TORQ	E TUBE ASS	EMBLY . PI	NJ	
		₽ [₩] / ₃		
			28)	B OAD NUT
Brox - 5	DRT -		(29)	B HOUSTN
			30	DE STIEN
			27)E
			\$	ONTOACY W3A
	4			
	4			
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
REV. AUT	HOR DATE CH			

OJECT	AUTHOR	DATE CHE D. BY	DATE CHK'D. BY DA
PSE/PNJ	17 morelan	DATE CHK'D. BY	aid
PTNP-188	CALC. NO.	DLE NO.	CHE
LOAD 1	NUT 🙈)в	G.50 p
	276 TYPE 30	2.97	20 A 40°
CALCULATED IN BLOCK CALCS F	NG STRESS HAS BEE THE LEG SUPPO FOR ITEM 23 B (.030959 8,809 PSI	RT .	4,500 - 4UN - 2B
fv = P. P = W. Av = Dp J = 2.9 Dp = Ds = 4.3 Av = 4.33 Av = 4.33 Fv = 20	21/2		

R. V. Inter	nals Lift Rig		PAGE
PROJECT PSE/PNJ	AUTHOR	192 N. Briland	
PTNP-188	case No.	FUE NO PRILATE	GROUP
			CHE
TUBE H	OUSING &	B THREAD SHEAD	T LOAD NUT
MAT'L:		f .= w(.	016472)
	-276 TYPE 30L	fv = 46	56 PSI
HOT ROLLE	D PICKLED		
COND. A			NOITHE MUMINI
	2.15 p	ft = P/A+	
		P=W/3	T. ()
		At = AT-	4(2.15)
1		AT = 4 (Q	59743/n)2
00 -4UN-28-		= 1/4 (4.5	9743/4)2
		= 14,22	
		At= 14.229	
		= 10.5	
1 1		ft= WB/	
			031450)
		f+ = 89 "	
	.53		
1	:53	THREAD SHEAR ON	GUIDESLEEVE
47 D		fy = P/Ay =	(W/3)/Av
	3.5		2
1: !	34	Up = Us649	52/n=
/		= 5.500 -, 6	4952/4 = 5.3376in
25,500 - 4UN -	.09 49 3	1 = 3.4853	15 = 2.800 ih
.53 .15	CHOMERIE		2.80 1/2 = 23.476 in
1		fy= W/3/23.4	
3,49 GUEDE SLEE		= W(.01	1199)
10:15:	LINE B AGOVE	fv = 404 C) PSI
10 1 .53	.: 9=3.48-,53-,15		
The second secon	AUTHOR DAT	E CHK'D. BY DATE C	WW.
DATE	obber 1971	DATEC	HK'D. BY DATE

R. V. Internal	s Lift Rig				58 of 67
PSE/PNJ	A that on	Can For	Whichard	DATE CHK	D. BY DA
PTNP-188	CALE NO.	50	Michaile LE NO.	GROU	CHE
GUIDE SI MAT'L: ASTM A HOT RO COND A 1.52, 450 4.02 CHAMCER 3,78 (TYP 3 MACH)	eridender 1		TENSION A fy = V fy = V At = T tt = T	AT TUBE H N (.014 HO40 F T THREA P/A+	199) LT ND RELIEF () (55942) (221) (2015)
	G72		fc= Ac= do di Ac= fc=	P/Ac W/3 T4 (262- = 4.99-20 = 3.682+2 7.6711 W(.0	.07) = 4.85 .(.15) = 3.982
REV. REV.	AUTHOR	DATEC	HK'D. BY	DATE CHK	D. BY DA

R. V. Inter	nals Lift Rig	A THE		PAGE	
PROJECT PSE/PNJ	Author was	8/92 4117 D .	2/93 DATE CHK'D	159 ·	OF 67
PTNP-198	GALO NO.	FLE NO.	GROUP		

ROTO-LOCK BACKFIT

THESE ITEMS SEE ONLY THE LOAD FROM THE INTERNALS. THE LOWER INTERNALS WEIGH WL = 260,000 LB. THE UPPER INTERNALS WEIGH WU = 120,000 LB. ALL PARTS EXCEPT THE INSERTS ARE USED TO LEFT GOTH THE UPPER AND LOWER THERRALS TO W = 260,000 LB FOR THESE ITEMS. WHEN ANALYZING THE ENGAGEMENT OF THE STUDS TO THE INSERTS IT WILL BE CONSENIATIVELY ASSUMED THAT 9 OUT OF IR LANDS ARE ACTIVE WHEN LIFTING THE LOWERS, AND GOUTGES LANDS WILL BE ASSUMED ACTIVE WHEN ANALYZING THE LIFT OF THE UPPERS.

REV. REV. AUTHOR DATE CHK'D. BY DATE CHK'D. BY DATE

PROJECT PSE/PNJ AUTHOR 232TE CHX'D. BY DATE CHX'D.
PTNP-188 ROTO-LOCK EACKFIT LOAD NUT A THREAD SHEAR $f_v = F/A_v = (W/3)/A_v$ Avy Dp 1 11/2 Dp = Ds 64952/N = 4.25064952/A 14.0876 19.26210 24.0072 (3.0011/2 19.26210 24.007305) 10.017305) 10.017305
#ATL: ASTM A 276 TYPE 304 HOT ROLLED COND. A
4.250-40N-28 THD 5.50

TEICHK'D BY
JURichard BATE CHK'D. BY DA
FILE NO. GROUP CHE
UPPER THD. SHEAR
FOR PSE IT IS THE SAME AS FOR THE ROTO-LOCK CACKET LOAD NUT
fv = 4499 PEE (PSE)
POR PNU Fr = P/Av = W/3/Av Av = Dp D 17/2 Dp = A 4452/n = 4.500 - 6452/4 = 4.338 Fr = W/3/(4.338 + 300 = 17/2) = W(D1631)
fv: 4240 PSI (PNJ)
TENSION & MINIMUM AREA $f_{i} = F/A_{i} - W/2/A_{i}$ $A_{i} = T_{i} (d_{i}^{2} \cdot d_{i}^{2})$ $FSE do = 3.997$ $PNJ do = 4.147$ $d_{i} = 1.75$ $A_{i} = 0.52221n^{2}$ $A_{i} = 0.52221n^{2}$ $A_{i} = 0.52221n^{2}$ $A_{i} = 0.52221n^{2}$ $f_{i} = 0.102 \text{ m}^{2}$ $f_{i} = 0.102 \text{ for (FSE)}$ $f_{i} = 0.102 \text{ for (FSE)}$ $f_{i} = 0.102 \text{ for (FSE)}$
LOWER THREAD SHEAR TE THE LOWER THREAD SHEAR TE THE CAME AS FOR THE GUITES SLEEVE. \$ 4 475 psi
The same of the sa

PSE/PNJ AUTOR 100 PSE/PNJ PSE/	Is Lift Rig PAGE 62 of 67
PTNP-188 ROTOLOCK BACKFIT (33) GUT DE SLEEVE MAT'L: ASTM A276 TYPE 304 HOT ROLLED, ANNEALED & PICKLED COND A. THREAD SHEAR For P/Av = W/3/Av Av = TT Dp 1/2 Dp = Ds64952/4 = 5.3376 in le 2.7544 = 2.21 Av = TT (5.2376)(2.31)/2 = 19.368 in²	AUTHOR . AZOATI CHK'D. BY DATE CHK'D. BY DATE
ROTOLOCK BACKFIT (33) GUI DE SLEEVE MAT'L: ASTM A 276 TYPE 304 HOT ROLLED, ANNEALED & PICKLED COND A. THREAD SHEAR FU = P/AV = W/3/AV AV = TIDp 1/2 DP = D64952/4 = 5.33761ii 1 = 2.7544 = 2.31 AV = TI (5.2376)(2.31)/2 = 19.3681ii ²	CALE NO. FIVE NO. CHE
SEARING ON STU THE GRANING ON THE STUD SAME AS THE CRANING	SLEEVE \$\frac{1}{4} = \frac{1}{4} \left(\frac{1}{4} \right) \right(\frac{1}{4} \right) \right) \right) \right) \right\rig

R. V. Inte	ernals Lift Rig			PAGE / 7 / 7
PSE/PNJ	AUTHOR DE	DATE CHK'D. BY	2/83 CATE CHK'D.	63 OF 67
PTNP-188	ALG NO.	S JWKi	GROUP	CHŁ
	POTOLOG			
	ROTO-LOC	K BACI	KFIT	
	. \subset			
			-(34) STU	D
	L			
	P	-		
	Ç			
1	Ξ			
	1	1		
	1			
	T		35 UPPERS	INSERT
1				
1		V20	,	
	-	DO LOWE	R'S INSERT	

R. V. Internal	s Lift Rig		64 of 67
PSE/PNJ	Should 2/83	SWRichae	DAT
PTNP-188	dald No.	PLE NO.	CHE
ST	-UD 34	ft = P/A+ P= W/3	A-A (MIN.DIA) = 260,000/3 [4(1.999)2 = 3.135in2
MAT'L: ASTM A 564, T PRECIPITATION HA AGE TREATED 2116 AIR COOLED. Tmi	ardening es.	= M('10	1.135
D9 x 45°cmmere	4.790 \$	SHEAR OF TO FV = F/A AV = Lest Les Lines d = Diaptin of .800in	=(W/3)/A
OSS X453 CHAMCEX	300 (110)	LC = 8.474 (.8)	COO 29,889
	LANCE HAUS 3 TOUTH	fe = P/Ac = (4917) 84 PSE N GUIDE SLEEVE W/s)/AL 000 16 2(.09)]2-(2.937+2(.12))3) 2
Rev EACH TOOTH	54 DEON - SEDE.	CHK'D. BY DA	£ = 9889B
O. DATE	DATE	DA DA	TE CHK'D. BY DA

TITLE
R. V. Internals Lift Rig
DOT INVI
S.O. PTNP-188 CALC NO.
BENDING IN LANDS
INSERT 2408
STUD CENTER LINE
we width of bearing surface
= 2.498/2035-[2.038/2+.035] = 0.160 in
X = 2.498/2035160/2 - 1.998/2 = .135 in = moment arm of force
fb = M/Z
Zuno= Led2/6
3/(1008.) (1.998).30°)/6
= .10043 m3
M = bending moment = $P \times = \left(\frac{\omega}{3N}\right) (.135)$
N=9. M- (W/2/9)*.135 = .00500W

fb= .005 W/10043 W1.04979) fo 12,244 ==

GROUP

CHE

BEARING ON LAND SURFACES A, ~ (2.498 - 2.035)] 74 Az = [2.033+1,035)] 1/4 Ac = A1-A2: 1.1566 in2 A = N = A - 2N (w + . 04) N=9 Ac' = 1.446 m2 fc = P/A: =(W/3)/Ac = W (.2305) fc 59,929 PSI

The stresses in shear, kending, or 1 land borning or dependent on No W is maximum when lifting the lowers, so the higher theses occur when lifting the lowers. Therefore, for the stud stresses W= 260,000 16 N = 9 out of 17. a I melive

REV.	REV.	AUTHOR			
NO.	DATE	1 -01.11011	DATE CHK'D. BY	DATE CHK'D. BY	DATE
WESTIN	GHOUSE FORM	152120		*	

PSE/PNJ AUTHOR CALO NO.	MUDR: 42/83	TE CHK'D. BY D
O. CALO NO.	1 / w / man	2
PTNP-188	FIZE NO.	CHE
UPPER'S INSERT 35		SHEAR W/3/AU 952/m] ST/2)(4.507537)+T/2
MAT'L: ASTM A 637 GRADE 683 TYPE 2 HUNTINGTON ALLOYS X-750 HOT FINIHE ROUND 115,000 PSI MINIMUM YIELD, STRENGTH	= 17.72012	7.720 = w(.01881
3.160 	= 2.533/2 -,03 = .135 in FL = M/Z	din of bearing surface of force $5160/2 - 2.032/2$ $\frac{54}{360} \pi (2.533)(.573)^2/6$ ornent) 75) 065775
THE GEARING STREES IS THE SAME AS FOR THE STUD EXCEPT WE 120,000 PSI AND N=6 FC = W(.2305) & FC : F1,490 BI	Ay = 54 NT (2.5	= 6/3/AV 33) = 7.1619 m² 1= 60(.04654)

PROJECT	nals Lift Rig	0.0076	CHKIS THE		67 of 67
PSE/PNJ s.o.	CALCINO	Dow 2/83	Jw Rich	SOATE CHK	D. 8Y 0.
PTNP-188	1000		FIGE NO.	GRO	CHE
LOWER'S I	NSERT	36	fv = P/Av . Au = (03	SHEAR = W/3/A.	π/2
MAT'L: ASTM A 627 G HUNTING TON A FINISHED. ROUN YEL STRENGT	P. 115.000 RE	tor		m ²	w(.02671)
\$ 575 2 77P		\$75 148	THE BINGING SAME AS FOR EXCEPT W=	THE UPPER	INSERTS LB. # N = 9
250 \$3.035 43		7HD	THE SHEAR T THE SAME AS EXCEPT THAT	FOR THE UP	PR. PASERT O and N = 9 1
THE BEARING : SAME AS FOR THE fc = W(.	STRESS IS THE				

