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1.0 INTRODUCTION

.1 Pugou

This report applies to the Comanche Peak plant reactor coolant system primary
loop piping. It is intended to demonstrate that specific parameters for the
Comanche Peak plant are enveloped by the generic analysis performed by
Westinghouse in WCAP-9558, Revision 2 (Reference 1) and accepted Dy the NRC

(Reference 4).

1.2 Scope

The current structural design basis for the Reactor Coolant System (RCS)
primary loop requires that pipe breaks be postulated as defined in the
approved Westinghouse Topical Report WCAP-8082 (Reference §). In addition,
protective measures for the dynamic effects associated with RCS primary loop
pipe breaks have been incorporated in the Comanche Peak plant design.

However, Westinghouse has demonstrated on a generic basis that RCS primary
loop pipe breaks are highly unlikely and should not be included in the
structural design basis of Westinghouse plants (see Reference 6). [n order to
demonstrate this applicability of the generic evaluations to the Comanche Peak
plant, Westingnouse has performed: a comparison of the loads and geometry for
the Comanche Peak plant with envelope parameters used in the generic analyses
(Reference 1), a fracture mechanics evaluation, 2 determination of leak rates
from a through-wall crack, fatigue crack growth evaluation, and an assessment
of margins.

1.3 Objectives

The conclusions of WCAP-9558, Revision 2‘” support the elimination of RCS
primary loop pipe breaks for the Comanche Peak plant. In order to validate
this conclusion the following objectives must be achieved,
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4. Demonstrate that Comanche Peak plant parameters are enveloped by generic
Westinghouse studies.

b. Demonstrate that margin exists between the critical crack size and a
postulated crack which ylelds a detectable leak rate.

¢. Demonstrate that there is sufficient margin between the leakaje through &
postulated crack and the leak detection capability of the Comanche Peak

plant.

d. Demonstrate that fatigue crack growth is negligible.

1.4 Background Information

Westinghouse has performed considerable testing and analysis to demonstrate
that RCS primary loop pipe breaks can be eliminated from the structural design
basis of all Westinghouse plants. The concept of eliminating pipe breaks in
the RCS primary loop was first presented to the NPC in 1978 in WCAP-9283
(Reference 7). This Tepical Report employed a deterministic fracture
mechanics evaluation and a probabilistic analysis to support the elimination
of RCS primary loop pipe breaks.

This approach was then used as 4 means of addressing Generic [ssue A-2 and
Asymmetric LOCA Loads. Westinghouse performed additional testing and analysis
to justify the elimination of RCS primary loop pipe breaks. As a result of
this effort, WCAP.9588, Revision 2, WCAP.9787, and Letter Report NS-EPR.2619
(References 1, 2, and }) were submitted to the NRC

The NRC funded research through Lawrence Livermore sational Laboratory (LLNL)
to address this same fssue using a probabilistic .pproach. As part of the
LLNL research ef fort, Westinghouse performed ext nsive evaluations of specific
plant loads, material properties, transients, and system geometries to
demonstrate that the analysis and testing previously performed by Westinghouse
and the research performed by LLNL applied to all Westinghouse plants
including Comanche Peak (References § and 9). The results from the LLNL study
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Water Hammer
jverall, there is a low potential for water hammer 10 the QCS since 1t 1S
designed and operated 1o preclude the voiding condition 1in normally filled
lires. The reactor coolant system, including piping and primary components,
is designed for normal, upset, emergency, and faulted condition transients
The design requirements are conservative relative to both the number of
transients and their severity. Relief valve actuation ind the associated
hvdraulfc transients following valve opening are considered in the system
rher valve and pump actuations are relatively siow transients with
-ant effect on the system dynamic loads. To ensure dynamic system

ity, reactor coolant parameters are stringently controlled. Temperature

during normal operation 1S maintained within a narrow range Dy -ontrol rod

position; pressure 1S controlled by pressurizer heaters and pressurizer spray
11s0 within a narrow range for steady-state conditions. The flow
characteristics of the system remain constant during a fuel cycle because the
rly governing parameters, namely system resistance and the reactor coolant
pump characteristics are controlled in the design process. Additionally,
Westinghouse has instrumented typical reactor coolant systems to verify the
flow and vibration characteristics of the system. Preoperational testing and
operating experience have verified the Westinghouse approach. The operating
transients of the RCS primary piping are such that no significant water hammer
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As seen from this Tabl the junction of hot leg and the reactor
let nozzle is the worst location for crack stability analysis based
the hioghest stress due to combined pressure, dead weight, thermal
exransion, and SSE (Safe Shutdown Earthquake) loading. At this location, the
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axial load (F) and the bending moment (M) are | ]9*~** (including
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axial force due to pressure) and | 192%2% respectively. he

lcads of are calculated as follows:

The axial force F and transverse bending moments, My and Mz‘ are chosen

for each static load (pressure, deadweight and thermal) based on
elastic-static analyses for each of these load cases. These pipe load
components are combined algebraically to define the equivalent pipe static

yads F , M , and M__. Based on elastic SSE response spectra analyses,
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amplified pipe seismic loads, F., M ., M_, are obtained. The maximum
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nipe loads are obtained by combining the static and dynamic load components as

where:
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FIGURE 2  SCHEMATIC DIAGRAM OF PRIMARY LOOP SHOWING WELD LOCATIONS
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