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NUCLEAR REGULATORY COMMISSION DISCLAIMER

IMPORTANT NOTICE REGARDING CONTENTS AND USE OF THIS DOCUMENT
PLEASE READ CAREFULLY

This technical report was derived through research and development
programs sponsored by Exxon Nuclear Company, Inc. It is being sub-
mitted by Exxon Nuclear to the USNRC as part of a technical contri-
bution to facilitate safety analyses by licensees of the !'SNRC which
utilize Exxon Nuclesr-fabricated reload fuel or other technical services
provided by Exxon Nuclear for liaht water power reactors and it is true
and correct to the best of Exxon Nuclear's kne ,ledge, information,
and belief. The information contained herein may be used by the USNRC
in its review of this report, and by licensees or applicants before the
USNRC which are customers of Exxon Nuclear in their demonstration
of compiiance with the USNRC's regulations.

Without derogating from the foregoing, neither Exxon Nuclear nor
any person acting on its behalf:

A. Makes any warranty, express or implied, with respect to
the accuracy, completeness, or usefulness of the infor-
mation contained in this document, or that the use of
any information, apparatus, method, or process disclosed
in this document will not infringe privately owned rights;
or

B Assumes any liabilities with respect to the use of, or for

damrages resulting from the use of, any information, ap-
paratus, method, or process disclosed in this document.

XN- NF- FOO, 766
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1.0 INTRODUCTION AND SUMMARY

This report provides results of a LOCA ECCS analysis supporting St. Lucie
Unit 1 reactor operation at 2700 MWt with Exxon Nuclear Company (ENC)
supplied fuel. Contained within the report are results of (1) a LOCA break
spectrum analy<'s, and (2) a limiting break recalculation using the GAPEX
stored energy model and increased radial peaking. The break spectrum
analysis uses the RODEXZ2 stored energy model. All analyses were perforrad
using the EXEM/PWR ECCS evaluation model(1:2), For the limiting break (0.4
DECLG case) with beginning-of-1ife (BOL) stored energy (GAPEX value) and end-
of-cycle (EOC) fission gas release, the calculated peak clad temperature was
20599F with the axial power peak at 70 percent o‘ the core height and a peak
linear heat generation rate of 15.30 kw/ft (102% of 15.00 kw/ft). The
limiting break analysis was performed in conforman_e to A;pendix K of 10 CFR
50, yield results which satisfy the NRC criteria specified in 10 CFR 50.46.
The analysis applies only for Cycle 6 operation of St. Lucie Unit 1.

The LOCA break spectrum calculations included guillotine break con-
figurations for double-ended cold leg pipe breaks (DECLG' with discharge
coefficients of 1.0, 0.6 and 0.4. The split configuration breaks of the cold
leg pipe were also calculated with a break area equal to twice the cross-
sectional pipe area (DECLS, 10.01 ft2), then with break areas of 6.01 and 0.8
square feet. The break spectrum analysis was performed for a core composed
of ENC fuel at nominal beginning-of-life (BOL) conditions. The results of

the spectrum analysis identified the limiting break to be the 0.4 DECLG case.
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A detailed discussion of the break spectrum results is provided in Section
2.0. All of th. calculations in the break spectrum were performed at a core
power of 2754 MWt, which is 102 percent of rated power.

The break spe:trum calculations were performed with a version of the
RODEX2 code supplying the initial stored energy. The NRC is currently
reviewing the RODEX2 code, with approval not expected in time for St. Lucie
Unit 1 Cycle 6 startup. Therefore, ENC repeated (he limiting break analysis
using the GAPEX stored energy model previously approved by NRC. A
combination of BOL maximum stored energy and EOL maximum fission gas release

was used to bound Cycle 6 operation.
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2.0 SREAK SPECTRUM ANALYSIS

2.1 IDENTIFICATION OF CAUSES AND ACCIDENT DESCRIPTION

The analyses for large breaks specified by 10 CFR 50.46(3),
"Acceptance Criteria for Ewergency Core Cooling Systems for Light Water Power
Reactors,” 1s presented in this section. The results of the 1oss of coolunt
accident analysis are shown in Tables 2.1 and 2.2, and indicate compliance
with the Acceptance Criteria. The analytical techniques used are in
compliance with Appendix K of 10 CFR 50, and are as described in XN-75-41,
Volumes 1 and 11, and supplements(l); ENC EXEM/PWR model is described in XN-
NF-82-20(P) and Supplements(z). The detailed system models are as given in
the example problem report for a Combustion Engineering 2x4 PWR which is
Supplement 3 of XN-NF-82-20(P).

For the purpose of loss-of-coolant accident (LOCA) analyses, a LOCA
is defined as a hypothetical rupture of the Reactor Primary Coolant System
piping, up to and including the double-ended rupture of the largest pipe in
the Reactor Coolant System or of any line connected to that system up to the
first closed valve.

Should a major break occur, depressurization of the Reactor Coolant
System results in a pressure decrease in the pressurizer. A reactor trip
signal occurs when the pressurizer lower pressure trip setpoint is reached.
Reactor trip and scram were conservatively neglected for the large break
analyses. A Safety Injection System signal is actuated when the appropriate
setpoint (high containment pressure) is reached. These countermeasures will

limit the consequences of the accident in two ways:
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1. Reactor trip and borated water injection complements void
formation in causing rapid reduction of power Lo a residual
level corresponding to fission product decay heat.

8 Injection of borated water provides heat transfer from the
reactor core and prevents excessive clad temperatures.

At the beginning of the blowdown phase, the entire Reactor Ccolant

System contains subcooled liquid which transfers heat from the core by forced
convection cooling. After the break develops, the time to departure from
nucleate boiling (DNB) is calculated consistent with Appendix K of 10 CFR
50(3),  Post-DNB core heat transfer (both transition and film boiling
occurring) is also calculated in accordance with Appendix K of 10 CFR 50. As
the core becomes uncovered, both turbulent and laminar forced convection to
steam are considered as core heat transfer mechanisms.

When the Reactor Cooi 't System pressure falls below 230 psia, the
accumulators begin to inject borated water. The conservative assumption is
made that accumulator ECC water bypasses the core and goes out through the
break until the termination of bypass. This conservatism is consistent with

Appendix K of 10 CFR 50.

2.2 THERMAL ANALYSIS

2.2.1 Method of Analysis

For breaks greater than 0.8 ftZ, the RELAP4-EM code in
EXEM/PWR is used to calculate the transient depressurization of the Reactor
Coolant System as well as to describe the mass and enthalpy of f1.w out of the

break. A specialized calculation (RELAP4-EM/HOT CHANNEL) is wused to
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calculate cladding temperatures using time dependent boundary conditions in
the upper and lower pienum volumes from the basic blowdown analysis. Beyond
the point of refill to the bottom of the core, a specialized calculation
(REFLEX) is applied to determine the reflooding rate and system conditions.
After end-of-bypass (EOBY), the program TOODEE2 is used to calculate peak
clad temperatures,

2.2.2 Large Break LOCA Analysis Modeling

The St. Lucie Unit 1 nuclear power plant is a 2x4 Combustion
Engineering pressurized water reactor with a dry containment. The reactor
coolant system is nodalized into control volumes representing reasonably
homogeneous regions, interconnected by flow paths or "junctions" as described
in Supplement 3 of XN-NF-82-20(2). The nodalization in Figure 2.1 differs
from the example problem nodalization in the broken loop cold leg region. The
number of broken loop cold leg volumes have been reduced.

Five percent of the steam generator tubes were assumed to be
uniformly plugged. The unbroken loop was assumed symmetrical and modeled the
same as the broken lcop except for the break nodalization and the pres-
surizer. Pump performance curves characteristic of the St. Lucie Unit 1
pumps were used in the analysis. System input parameters are given in Table
2.3,

The reactor core is modeled with heat generation rates
determined from reactor kinetics equations with reactivity feedback and with
decay heating as required by Appendix K of 10 CFR 50. The axial power profile
used for the break spectrum analysis is a top skewed curve with the power peak

above the core midplane.
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The values for the primary coolant system core inlet
temperatures and the steam generator secondary side pressure were set for the
St. Lucie Unit 1 plant based upon information provided by the utility. The
values of the co.e inlet temperature and the steam generator secondary side
pressure are 5499F and 870 psig, respectively.

The containment backpressure for the analysis of the
postulated LOCA was evaluated in accordance with the discussion presented in
XN-75-41, Supplement 5, Section 4.6. A containment analysis was performed
using the computer code CONTEMPT-LT, Version 22, modified as described in
Supplement 5, Rev sion 1 of XN-75-41(1), The condensing heat transfer
coefficient is modeled in accordance with Branch Technical Position CSB 6-1,
“Minimum Containment Pressure Model for PWR ECCS Performance Evaluation*(4),
The containment parameters used in the containment analysis to determine the
ECCS backpressure are presented in Table 2.4.

The reflood nodalization for the guillotine and split breaks
in the break spectrum are shown in Figures 2.2 and 2.3. These nodalizations
include a leakage path between the upper plenum and the upper downcomer.

2.3 BREAK SPECTRUM RESULTS

Using the EXEM/PWR codes, transient system behavior is determined
by solving the governing conservation equations for mass, energy, and
momentum. Energy transport, flow rates, and heat transfer are determined
from appropriate correlations. Table 2.1 presents the timing and sequence of
events as determined for the large break guillotine configuration with
discharge coefficients of 1.0, 0.6 and 0.4 and the split break configuration

with break areas of 10.01, 6.01, and 0.8 square feet.



7 XN-NF-82-98

The blowdown calculations for the break spectrum were initialized
with the ENC fuel performance code RODEX2. Pending NRC approval of RODEX2,
the limiting break in the spectrum was reanalyzed using GAPEX for fuel rod
stored energy initialization. The fuel initialization using GAPEX encom-
passes the maximum fuel rod stored energy (BOL) and end-of-cycle (EOC)
fission gas release for Cycle 6. The input radial peaking factor was also
increased to bound measurement uncertainties while the peak liner heat
generation rate was maintained at 15 kw/ft. The limiting break results which
have been initialized with GAPEX and include the increased radial peaking
factor are identified in Tables 2.1 and 2.2.

In general, the transient events occur slower for smaller discharge
coefficients or break sizes. Table 2.2 presents the peak clad temperatures
and maximum metal-water reaction results for the above spectrum of break
cases. This range of break sizes was determined to include the limiting case
for peak clad temperature.

The analysis of the loss-of-coolant accident is performed at 102%
of 2700 MWt (2754 MWt). The core power and other parameters used in the
analyses are given in Table 2.3. Since there is usually margin between the
value of the peak linear power density used in this analysis and the value
expected in operation, a lower peak clad temperature would be obtained by
using the peak linear power density expected during operation.

For the result discussed below, the hot spot is defined to be ihe
location of maximum peak clad temperature. This location is given in Table

2.2 for each break size analyzed.
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Figures 2.4 througn 2.22 present the results of the revised
analysis for the limiting break (0.4 DECLG). Unless otherwise noted, zero
time corresponds to the time of break initiation.

The maximum peak cladding temperature of 20599F was calculated for
the double-ended cold leg guillotine break configuration (Cp = 0.4) with a
total linear heat generation rate of 15.30 kw/ft for ENC fuel (102% of 15.00
kw/ft). The maximum local metal-water reaction is less than 5% and the core-
wide reaction is less than 1%, all well below the limits set by the criteria
of 10 CFR 50.46.

ENC has performed numerous analyses and sensitivity studies on PWR
systems using the ENC ECCS evaluation model. These studies have demonstrated
the adequacy of the system nodalization used. In addition, these studies
have shown that for transient conditions similar to those calculated for the
St. Lucie Unit 1 reactor during the LOCA, the reactor coolant inlet pipe or
cold leg 1s the worst break location.

NSSS vendor analyces have shown large breaks to be more limiting

than small breaks for St. Lucie Unit 1 ECCS analyses.



Table 2.1 St. Lucie Unit 1 Large Break Events
Event Time (seconds)
DECLG* DECLG DECLG DECLG 1.0 DECLS 0.6 DECLS 0.08 DECLS
(Cp=0.4) (Cp=0.4) (Cp=0.6) (Cp=1.0) (10.01 ft¢) (6.01 ft2) (0.8 ft?)
Start 0. 0. 0. 0. 0. 0. 0.
Initiate Break 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Safety Injection Signal 1.20 1.20 0.98 0.82 0.86 0.91 5.20
Pressurizer Empties 8.95 8.35 8.85 8.80 9.10 9.25 9.25
Accumulator Injection,

Intact Loops 22.58 22.65 18.50 16.65 16.65 17.33 99.70
End-of-Bypass 28.01 27.03 24.27 21.98 21.21 21.96 103.53
Safety Injection Flow, SIS 31.20 31.20 30.98 30.98 30.82 30.86 35.20
Start of Reflood 45.58 44.42 42.07 39.78 38.87 39.61 120.57
Peak Clad Temperature Reached 161.5 156.5 159.1 161.6 156.0 153.1 420.5

*[nitial Stored Energy calculated with GAPEX code and radial peaking factor increased.

86-28- IN-NX
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Table 2.3 5t. Lucie Unit 1 PWR Data

Primary Heat Output, MWt

Primary Coolant Flow, 1bm/hr

Primary Coolant Volume, ft3

Operating Pressure, psia

Inlet Coolant Temperature, OF

Reactor Vessel Volume, ft3

Pressurizer Volume, Total, ft3

Pressurizer Volume, Liquid, ft3

Accumulator Volume, Total, ft3 (one of four)
Accumulator Volume, Liquid, ft3

Accumulator Pressure, psia

Steam Generator Heat Transfer Area, ftZ (one of two)
Steam Generator Secondary Flow, lbm/hr
Steam Generator Secondary Pressure, psia
Reactor Coolant Pump Head, ft

Reactor Coolant Pump Speed, rpm

Moment of Inertia, lbm-ftZ/rad

Cold Leqg Pipe, 1.D., in.

Hot Leg Pipe, 1.D., in.

Pump Suction Pipe, 1.D., in.

XN-NF-82-98

2700*
1.394 x 108
19,214**
2250

549

4402

1500

800

2020

1090

230

74,722
5.899 x 106
885

280

886

101,900

30

42

30

* Frimary Heat Output used in RELAP4-IM Model - 1.02 x 2700 = 2754 MuWt,

** Includes total accumulator and pressurizer volume.
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3.0 CONCLUSIONS

For breaks up to and including the double-ended severance of a reactor

coolant pipe, the St. Lucie Unit 1 Emergency Core Cooling System will meet the

Acceptance Criteria as presented in 10 CFR 50.46 with the Cycle 6 core, with

the results described herein and for ENC reload fuel. That is:

1.

The calculated peak fuei element clad temperature does not exceed
the 22000F 1limit.

The amount of fuel element cladding that reacts chemically with
water or steam does not exceed i% of the total amount of zircaloy in
the reactor.

The cladding temperature transient is terminated at a time when the
core geometry is still amenable to cooling. The hot fuel rod
cladding oxidation limits of 17% are not exceeded during or after
quenching.

The system long term cooling capabilities provided for previous

cores remain applicable for ENC fuel.

These Acceptance Criteria are satisfied if the St. Lucie Unit 1 reactor

is operated at 2700 MWt within the maximum LHGR of 15.00 kw/ft.
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