

(814) 865-6351 Fax (814) 863-4840

College ... En

Radiation Science and Engineering Cemer

Breazeale Nuclear Reactor Building The Pennsylvania State University University Park, PA 16862

Nuclear Regulatory Commission Document Control Room Washington, DC 20555

REF: Revision to the Safety Analysis Report

Penn State Breazeale Reactor License No. R-2. Docket No. 50-05

Dear Sir or Madame:

August 23, 1991

On April 19, 1991, an amendment request was filed for the above-referenced license. The submittal included revisions to the Safety Analysis Report which introduced numerous new terms and acronyms related to the new reactor control system. For the concenience of the reader, a glossary was prepared and is hereby submitted as a further amendment to the Safety Analysis Report. Instructions for updating the report as a follows:

Remove Old Page Insert New Page

Number	Date	Number	Date
Title Page iv viii	4/19/91 4/19/91 4/19/91	Title Page iv viii ix VII-5F VII-57	8/23/91 8/23/91 8/23/91 8/23/91 8/23/91 8/23/91

Sincerely,

Marcus H. Voth, Director

Radiation Colonce and Engineering Center

Attachments

MHV/tjw

cc: Charles L. Hosler

NRC Region I Administrator

9109090184 910823 PDR ADOCK 05000005 PDR Kosp 1

Safety Analysis Report

for the

Penn State Breazeale Reactor

License Number R-2 Docket Number 50-05

The Pennsylvania State University University Park, PA 16802

August 23, 1991

	(3.	Systems Operation Description	A11-50
		Reactor Safety System Description	VII-22
		2. RSS Relay Logic Design	VII-22
		a. SCRAM Logic	VII-24
		b. Transient Rod Air Interlock Logic	VII-25
		c. Rod Drive Interlocks	VII-26
	Η.	PCMS Hardward Description	VII-27
		1. Computers	VII-27
		2. Input/Output Hardware	VII-29
		a. Chassis Arrangement and Watchdog/Test Cards	VII-29
		b. Analog Signal I/O Cards	VII-30
		c. Digital Signal I/O Cards	VII-30
		d. Watchdog and I/O Self Test Circuits	VII-32
		Motors and Associated Controllers	VII-33
		a. Motor Control	VII-34
		4. Power Supplies	VII-37
		5. I/O Assignment	Vil-37
	1.	PROTOL Generic Softwarn Description	VII-39
		1. Control Language	VII-39
		The Operating System	VII-40
		 Generic Tasks Running in the PROTROL System 	VII-41
		System Self Checks and Defenses	VII-42
		Defenses Against Loss of Field Sensor	VII-43
		 Defenses Against Loss of Power 	VII-43
		c. Defenses Against I/O Failure	VII-43
		d. Defenses Against Computational Faults	VII-44
		e. Defenses Against Program Corruption Faults	VII-44
		5. DCC-X/DCC-Z Self Tests and Robustness Functions	VII-45
		a. Self Tests on Start Up	VII-45
		b. Self Tests While On Line	VII-46
	J.	Application Softward	VII-48
		Block Language Tasks	VII-48
		2. Non-Block Language Tasks	VII-48
	K	Control Room	VII-50
		1. General Description	VII-50
		Monitor Indications in the Control Room	VII-50
	L.	Minimum Safety SCRAMS and Interlocks	VII-53
	M.	References	VII-55
	N.	Glossary	VII-56
VIIL		NDUCT OF OPERATION	
VIII			VIII-1
	A.	Organization and Responsibility	VIII-1
	B.	Reactor Operating Safety Philosophy	VIII-1
	C.	Training	VIII-3
	D.	Written Procedures	VIII-3
	E.	Records	VIII-4
	F.	Review and Audit of Records	VIII-4

Safety Analysis Report

LIST OF EFFECTIVE PAGES

SAR - Title Page

Fage i

August 23, 1991

SAR - Table of Contents

Pages ii - iii

April 19, 1991

Pages iv

August 23, 1991

Pages v

April 19, 1991

SAR - List of Figures

Pages vi - vii April 19, 1991

SAR - List f Effective Pages

Pages viii - ix August 23,1991

SAR-I Introduction

Pages 1-2

March 1, 1935

SAR-II Site Characteristics

Pages 1-10 March 1, 1985

SAR-III Reactor Design

Pages 1-23 April 19, 1991

SAR-IV Reactor Pool and Water System

Pages 1-8 April 19, 1991

SAR-V Facility Construction

Pages 1-4 March 1, 1985
Pages 5-6 April 19, 1991
Pages 7-10 March 1, 1985

SAR-Vi Facilities and Experimenters

Pages 1-8 March 1, 1985 Pages 9-12 April 19, 1991 Pages 13-14 March 1, 1985

SAR-VII Reactor Safety, Protection, Control and Monitoring System

Pages 1-55 April 19, 1991 Pages 56-57 August 23, 1991

SAR-VIII Conduct of Operation

Pages 1-4 April 19, 1991

SAR-IX Safety Evaluation

Pages 1-28 March 1, 1985
Pages 29-30 April 19, 1991
Pages 31-48 March 1, 1985
Pages 49-53 April 19, 1991

N. GLOSSARY

TRADEMARKS

TRADEMARK	COMPANY	
IBM, AT	International Business Machines Corporation	
PROTROL	Atomic Energy of Canada Ltd.	
Megatorque	orque Motornetics Corporation; subsidiary of Nippon Seiko K.K. (NSK)	
TRIGA	General Atomics, San Diego, CA.	

GLOSSARY

ADC	Analog to Digital Converter.
Al	Analog Input.
AO	Analog Output.
BIOS	Basic Input/Output System.
CANDU	Canada Deuterium Uranium Nuclear Power Reactors (PHWR).
CCTV	Closed Circuit Television.
CPI	Computer Products Inc.
CRC	Cyclic Redundancy Check Code- This is a polynomial based
	error detection method typically used for network systems. This is
	a Consultative Committee on International Telephony and
	Telegraphy (CCITT) standard.
CSS	Control and Safety System.
DAC	Digital to Analog Converter.
DBE	Design Basis Event
dec	Decades - 10 folds of fraction full power.
DEFPAR	Definable Parameter (PROTROL block 0 tuning).
DCC	Digital Control Computer. The DCC-X computer performs all
	required protection, control, and monitoring functions. The DCC-Z
	computer performs only monitoring and historical data collection.
	The DCC-Z computer is not required to be operational for safe
	operation of the reactor.
DI	Digital Input.

DO Digital Output.

DOS Disk Operating System.

dps Decades per Second.

EOT End of Travel.

fac Factor.

FC Fission Chamber.

ffp Fraction Full Power.

fps Fractional Power (present value) per Second.

frac Fraction.

GIC Gamma Ion Chamber. LED Light Emitting Diode.

VO Input/Output.

LAN Local Area Network.

LN Natural Logarithm.

LSS Limiting Safety System.

PCMS Protection, Control and Monitoring System.

Reactor Safety Shutdown

PSBR Penn State Breazeale Reactor.

PSU Penn State University.

RAM Random Access Memory.

RSS Reactor Safety System.

TC Thermocouple.

SCRAM

TR Transient Rod.

Watchdog Circuit A circuit consisting of a timer and a relay. The timer energizes the relay as long as it is reset prior to the expiration of the timing interval (see figure 7-7). If it is not reset within the timing interval, the relay will de-energize thereby causing a SCRAM. The term "kicked the watchdog" is slang for resetting the watchdog timer. The term "killed the watchdog" is slang for ceasing to reset the watchdog timer.

Wrap Around Describes the situation where an output signal is fed back so that the output signal can be verified (see figure 7-7).