BUBGW NUCLEAR	CALCULATION SUMMARY SHEET (CSS)
DOCUMENT IDENTIFIER	32-1236435-00
TITLE CR-3, PRESSURIZI	ER SURGE NOZZLE STRESSES
PREPARED BY:	REVIEWED BY:
E D.E. COSTA	NAME J. F. SHEPARD
GNATURE UE 4028	signature JF Shepara
TLE PRINCIPAL ENGR DATE 2/	23/45 TITLE SUPERVISORY ENGR DATE 2 73
ST CENTER 41020 REF. PAGE(S) 5	TM STATEMENT: REVIEWER INDEPENDENCE
RPOSE AND SUMMARY OF RESULTS:	
PURPOSE: The purpose of this a stresses at the juncture of the lower head. Stresses due to p associated with surge line stre	analys 3 is to determine and document the e pressurizer surge nozzle-to-pressurizer ressure, temperature, and external loads atification are included.
The stresses will be used as in of Reference [1].	nput to the fatigue crack growth analysis
RESULTS: The pertinent results analysis are contained in micro 7-1.	s for input to the fatigue crack growth ofiche CR3SCL2.OUT and summarized in Table
THIS DOCUMENT IS A NON-PROPRIED DOCUMENT 32-1235087-00. THIS D PROPRIETARY VERSION EXCEPT APP	TARY VERSION OF THE BWNT PROPRIETARY DOCUMENT IS BASICALLY IDENTICAL TO THE ENDIX A HAS BEEN REMOVED.
THE FOLLOWING COMPUTER CODES HAVE BEEN USED	IN THIS DOCUMENT:
	CODE / VERSION / REV THIS DOCUMENT CONTAINS
CODE / VERSION / REV	THE REAL PROPERTY AND ADDRESS OF THE PARTY ADDRESS
NONE	ASSUMPTIONS THAT MUST BE VERIFIED PRIOR TO USE ON SAFETY-RELATED WORK

RECORD OF REVISIONS

REVISION

00

*

DESCRIPTION ORIGINAL RELEASE

DATE

2/95

PREPARED	BY:	<u>D.</u>	E.	COSTA	DATE :		
REVIEWED	BY:	<u>J.</u>	F .	SHEPARD	DATE:	 PAGE:	

BAW NUCLEAR TECHNOLOGIES ** NON-PROPRIETARY ** 32-1236435-00

TABLE OF CONTENTS

SECTION	DESCRIPTION	PAGE
	RECORD OF REVISIONS	2
	TABLE OF CONTENTS	3
1.0	INTRODUCTION	4
2.0	RESULTS/CONCLUSION	4
3.0	LIST OF ASSUMPTIONS	5
4.0	REFERENCES	5
5.0	DISCUSSION OF ANALYSIS	6
6.0	BASE CASE STRESSES	9
7.0	NOZZLE-TO-MEAD WELD STRESS SUMMARY	12
APPENDIX A	FORTEAN PROGRAM LISTING	21
APPENDIX B	FORTRAN PROGRAM VERIFICATION	22
APPENDIX C	MICROFICHE	26

PREPARED	BY:	D.	<u>E.</u>	COSTA	DATE:		
REVIEWED	BY:	<u>J.</u>	F.	SHEPARD	DATE:	 PAGE :	

BAW NUCLEAR TECHNOLOGIES

1.0 INTRODUCTION:

During 9R Section XI examinations of the pressurizer, a flaw indication was found in the weld connecting the pressurizer surge nozzle to the pressurizer lower head. The flaw was determined to exceed the flaw acceptance standards of ASME Section XI, IWB-3500.

A fatigue crack growth analysis, Reference [4], as prepared to justify continued operation of the plant. Due to time constraints and lack of detailed stresses at the location of the flaw, the analysis was performed assuming the maximum stress ranges from any transient were applicable for all transient cycles. This very conservative approach resulted in a flaw acceptability of only one fuel cycle.

In order to perform a less conservative more realistic flaw evaluation, the membrane and bending stresses through the thickness of the pressurizer lower head at the location of the flaw (surge nozzle-to-heal weld) are required.

The purpose of this analysis is to determine and document the stresses at the juncture (weld) of the pressurizer surge nozzle-to-pressurizer lower head. Stresses due to pressure, temperature, and external loads associated with surge line stratification are included.

The stresses will be used as input to the fatigue crack growth analysis of Reference [1].

2.0 <u>RESULTS/CONCLUSIONS</u>: The pertinent results for input to the fatigue crack growth analysis are contained in microfiche CR3SCL2.OUT and summarized in Table 7-1.

PREPARED	BY:	<u>D.</u>	Ε.	COSTA	DATE:		
REVIEWED	BY:	<u>J.</u>	F.	SHEPARD	DATE:	 PAGE :	

BEW NUCLEAR TECHNOLOGIES

3.0 LIST OF ASSUMPTIONS:

1) Although the stresses due to the external loads (moments) are tensile on one side of the nozzle and compressive on the other, only the tensile stresses are added to the thermal and pressure transient stresses. By adding the external load tensile stress to the thermal and pressure transient stresses, the membrane and membrane plus bending tensile stresses are maximized. The maximum external load stress at the nozz' to-head juncture is 8.6 ksi, Reference [2] page 54.

4.0 REFERENCES :

- BWNT Document # 32-1235116-00, "FM Assessment of CR-3 Pzr WP-15 Flaw Until End-of-Life", by L.T. Hill (this document is proprietary to BWNT, a nonproprietary version is contained in BWNT document 32-1236235-00)
- 2) BWNT Document # 32-1179379-00, "LL Pressurizer Surge Nozzle Evaluation, Thermal Stratification", by D.E. Costa
- 3) BWNT Document # 32-1202340-01, "TE Pressurizer Surge Nozzle Thermal Stratification Analysis", by D.E. Costa
- 4) BWNT Document # 32-1233483-00, "CR-3 Pressurizer Surge Nozzle Flaw Evaluation", by L.T. Hill
- 5) BWNT Locument # 32-1235087-00, "CR-3, Pressurizer Surge Nozzle Stresses", by D.E. Costa

NOTE: Reference [5] is the proprietary version of this document.

PREPARED	BY:	<u>D.</u>	E .	COSTA	DATE:		
REVIEWED	BY:	<u>J.</u>	F.	SHEPARD	DATE :	 PAGE:	5

BAW NUCLEAR TECHNOLOGIES ** NON-PROPRIETARY **

5.0 DISCUSSION OF ANALYSIS:

Stresses in the surge nozzle-to-pressurizer weld (the flaw location) are caused by the pressure, thermal, and external loadings associated with thermal stratification of the surge line. Reference [2] contains the detailed stress and fatigue analysis of the pressurizer surge nozzle for the B&W lower loop plants (including CR-3) for surge line stratification. Although Reference [2] provides the complete stress and fatigue analysis of the surge nozzle, it does not include a listing of the detailed transient stresses at the location of the flaw.

In addition to the lower loop surge nozzle analysis, Reference [3] contains the detailed stress and fatigue analysis of the pressurizer surge nozzle for the B&W raised loop plant (Davis Besse) for surge line stratification. The lower and raised loop nozzle analyses used the same methodology for determining stresses at various locations in the nozzles. The raised loop analysis actually uses (references) many of the stresses from the lower loop analysis. The one difference in the two analyses is that the raised loop analysis uses a FORTRAN program to manipulate all the data associated with the surge line stratification transients.

The stresses at the flaw location will be determined using a combination of information from References [2] and [3]. The methodology used in both Reference [2] and [3] for determining stresses at other locations in the nozzle will be used for determining the stresses at the nozzle-to-head weld.

The following summary describes the method of analysis used in the surge nozzle evaluations of References [2] and [3];

Due to the number of transient data points (PVs, peaks and valleys) associated with surge line stratification it was not practical to evaluate each one individually. Therefore, the transient PVs (572 for lower loop) were reviewed and a series of thermal "base cases" (94) were created using various ramp rates, starting temperatures and delta temperatures. A pressure base case using 2200 psi was also made. The base cases were designed to cover the broad spectrum of actual transient conditions. The thermal stresses for each PV were determined by comparing the PV thermal parameters to the base case thermal parameters and using the base case stresses from the most representative base case. The pressure stresses for each PV were determined by multiplying the base case pressure stresses by the ratio of the PV pressure to the base case pressure (2200 psi). Stresses due to the PV external loads were determined and added to

PREPARED	BY:	<u>D.</u>	E.	COSTA	DATE:		
REVIEWED	BY:	J.	F.	SHEPARD	DATE:	 PAGE :	6

BAW NUCLEAR TECHNOLOGILS

the thermal and pressure stresses for each PV for use in ASME code analysis.

The same method described above for the surge nozzle analyses will be used for the nozzle-to-head weld. The procedure outline for determining the nozzle-tohead stresses is given below.

- 1) <u>SUMMARIZE TRANSIENT CONDITIONS FOR CR-3</u>: The transient data for the lowered loop plants (including CR-3) is taken from Table A-1 of Reference [2]. The transient information includes starting temperature, ending temperature, ramp rate, pressure, and external load (moment) associated with the thermal stratification of the surge line. A summary of the thermal stratification transient parameters in contained in the FORTRAN output of microfiche CR3SCL2.OUT. The transient cycles for CR-3 are taken from Table C-0 (page C-3) of Reference [2] and are also summarized in the FORTRAN output of microfiche CR3SCL2.OUT and in Table 7-1.
- 2) TABULATE BASE CASE CONDITIONS AND RESULTING STRESSES: The base case transient parameters are taken from Table 10-3 of Reference [3]. Per Reference [4] and Figure 10-2 of Reference [2], stress classification line number 2 is appropriate for the nozzle-to-head weld. The linearized component stresses for the nozzle-to-head weld, SCL 2, are taken from the microfiche of References [2] and [3]. A summary of the base case parameters and resulting stresses is contained in Table 6-1.
- 3) <u>CHOOSE BASE CASE FOR EACH TRANSIENT PV</u>: The FORTRAN program listed in Appendix A is used to determine the appropriate base case for each PV. The program compares ramp rate, starting temperature, and delta temperature of the PVs to those of the base cases and selects the base case that best represents the PV thermal parameters. The selected base case for each transient PV is summarized in the FORTRAN output of microfiche CR3SCL2.OUT. Verification of the selection process is contained in Appendix B.
- 4) <u>DETFRMINE PV THERMAL STRESSES</u>: The thermal stresses from the appropriate base case determined in step 3 above are multiplied by the ratio of the transient PV AT to base case AT to arrive at the transient PV thermal stresses. The resulting thermal stresses for each PV are tabulated in the FORTRAN output of microfiche CR3SCL2.OUT. Verification of the procedure is contained in Appendix B.

PREPARED	BY:	D.	<u>E.</u>	COSTA	DATE:		
REVIEWED	BY:	<u>J.</u>	F.	SHEPARD	DATE:	 PAGE :	7

5) DEFINE PV METAL TEMPERATURES: In addition to stresses, the fracture mechanics evaluation of Reference [1] requires the metal temperatures for the PVs. The metal temperatures from the selected base case are used to approximate the actual PV metal temperatures. The base case metal temperatures at the wall ID, OD, and flaw location (nodes 88, 96, and 93 respectively) are taken from the microfiche of References [2] and [3] and listed in CR3SCL2.OUT. The selected PV metal temperatures are contained in the stress intensity summary table of CR3SCL2.OUT.

From Reference [4], the flaw is located approximately 1.5" radially from the outer surface of the pressurizer wall. Node 93 of the finite element model of References [2] and [3] corresponds to this location. Node 88 represents the base metal ID and node 96 represents the base metal OD.

- 6) DETERMINE PV PRESSURE STRESSES: The pressure stresses from the base case pressure case are multiplied by the ratio of the transient PV pressure to base case pressure (2200 psi) to arrive at the transient PV pressure stresses. The resulting pressure stresses for each PV are tabulated in the FORTRAN output of microfiche CR3SCL2.OUT. Verification of the procedure is contained in Appendix B.
- 7) DETERMINE PV EXTERNAL LOAD STRESSES: The resultant external moments used the surge nozzle analysis are also used for the nozzle-to-head weld stresses. The stresses for the nozzle-to-head weld are determined using the Bijlaard method for determination of stresses for cylinder-to-sphere connections. From pages 54 and 55 of Reference [2], the stresses associated with a moment of 2508422 in-1bs are:

stress	out	tside surface	inside surface				
component	stress (psi)	stress-to-moment ratio	stress (ksi)	stress-to-moment ratio			
radial	0.0	0.0	0.0	0.0			
longitudinal	6400	0.0026	3800	0.0015			
hoop	8600	0.0034	6200	0.0025			

The moments for each transient PV are multiplied by the stress-to-moment ratio to arrive at the PV external load stresses. The PV moment and resulting external load hoop stress for each PV are tabulated in the

PREPARED	BY:	<u>D.</u>	<u>E.</u>	CUSTA	DATE:		
REVIEWED	BY:	<u>J.</u>	F.	SHEPARD	DATE:	 PAGE:	8

BAW NUCLEAR TECHNOLOGIES

output of microfiche CR3SCL2.OUT. The resulting external load radial and longitudinal stresses are calculated and used in the FORTRAN evaluation but are not printed out in the microfiche. Verification of this procedure is contained in Appendix B.

As stated in Assumption 1), only the tensile stress associated with the moments are considered. This is conservative because it maximizes the tensile membrane and bending stresses used in the fracture mechanics evaluation.

8) <u>DETERMINE PV TOTAL STRESSES</u>: The PV thermal stresses, pressure stresses and external stresses determined in step 4,5 and 6 above are added to achieve the PV total stresses. The PV total stresses are summarized in the FORTRAN output of microfiche CR3SCL2.OUT and summarized in Table 7-1. These results are used as input to the fracture mechanics evaluations of Reference [1].

6.0 BASE CASE STRESSES:

This section contains the base case stresses used in the determination of transient stresses. The base case temperatures and pressures are summarized in Table 10-3 of Reference [3] and the stresses are taken from the microfiche of References [2] and [3].

PREPARED	BY:	<u>D.</u>	E .	COSTA	DATE :			
REVIEWED	BY:	<u>J.</u>	F.	SYBPARD	DATE:	-	PAGE:	9

*

TABLE 6-1

BASE CASE STRESSES, SCL 2, MOZZLE-TO-READ WELD

1.1		TRANSIENT INFORMATION		ON	LINEARIZED STRESSES					METAL	TEMPERJ	MICROFICHE			
Base	Tempe	ratur	es (F)	Ramp	Press	Inside Sur	réace	Outsid	le Sur	face	(BASE)	AETAL, 1	NODE #)	NJ	ME
Run,		-	nates	Rate	Innes	RAD LONG	(kei)	(kai) (LONG	(kmi)	10	93	96	THRM	STRS.it
DR #	BUTT	End :	Delce	F/Br	(par)	(KBL) (KBL)		SARASES I							
1.1	80	462	402	900		0 -15.9	-26.3	0	19.5	19.6	362	249	230	GDHR	GRKJ,7
1.2	80	446	366	900		0 -14.7	-15.1	0	18	18.1	331	223	206	1.1	6
1.3	80	373	293	900	1.1.2.1	0 -11.9	-12.4	0	14.6	24.0	269	177	162	1.1.2	5
1.4	80	309	229	900		0 -9.3	-9.8	0	11.6	21.7	210	141	109	1	
1.5	80	253	173	900		0 -6.9	-5.1	0	6.6	6.4	142	98	52	1	2
1.0	80	172	42	900	1.100	0 -3.1	-3.3	0	3.9	4.2	119	88	85		1
2.1	250	550	300	1000		0 -15.3	-15.7	0	19.1	20	449	342	325	GMCO	GEEK, 7
2.2	250	484	234	1000		0 -11.9	-12.2	0	15	16.3	394	307	294	No. 54	e
2.3	250	430	180	7000		0 -8.9	-9	0	22.5	12.9	352	263	273	1.1	
2.4	250	382	132	1000	1.1.1.1	0 -5	-3.4	0	5.5	6.0	203	258	254	1.0	3
2.5	250	316	65	1000	Pro- 5.33	0 -2	-1.4	i o	3.6	4.7	275	253	251	1	2
2.7	250	292	42	1000		0 -0.7	0	0	1.9	3	262	251	250		1
3.1	150	500	350	1500	11023	0 -17.6	-18.8	0	21.6	22.5	373	241	221	GO5X	GRJH, 7
3.2	150	443	293	1500	1.1.1.1	0 -34.8	-15.7	0	28.2	19.3	331	180	177	1.00	5
3.3	150	383	233	1500	1	0 -7 7	-8.1	0	9.0	11	260	171	163	1.103	4
3.8	150	285	135	1500	12200	0 -5.3	-5.4	0	6.9	8	212	161	156		3
3.6	150	248	98	1500		0 -3.2	-3.1	0	4.4	5.3	189	155	152	1	2
3.7	150	220	70	1500	1.0.0	6 -1.7	-1.5	0	2.7	3.4	174	152	151	a me	COPPT E
4.1	250	482	232	2000	1	0 -12.4	-12	0	10.7	15 6	371	264	265	IND IA	A A
4.2	250	431	130	2000	1	0 -5 3	-5.1	ő	7.5	9.1	309	257	253		3
4.4	250	352	102	2000		0 -3	-2.6	0	4.8	6.2	287	253	251	1.000	2
4.5	250	320	70	2000		0 -1.4	-0.7	0	2.7		271	251	250		1
5.3	200	450	250	5000		0 -13.7	-14.8	0	17.1	19.1	336	225	211	BCOL	EDKG, 7
5.2	200	420	220	5000	100	0 -12.2	-13	0	11 6	16.8	321	212	207	800	e notes
5.3	200	370	130	5000		0 -7.1	-7.7	ő	8.9	0.0	272	213	206		e notes
5.5	200	290	90	5000	1	0 -4.9	-5.3	D	6.2	6.9	250	209	204	50	e notes
5.6	200	260	60	5000		0 -3.3	-3.6	0	4.1	4.6	233	205	203	80	e notes
6.1	80	400	320	99999		0 -14.9	-16.6	0	18.3	19.9	242	102	87	BCOY	EDJZ, 2
7.1	500	650	150	1600		0 -8.6	-8.2	0	12.1	14.5	555	511	505	CD6.	GRAT, 4
7.2	500	611	111	1000		0 -3.2	-4.9	0	5.8	8.1	537	504	502		2
7.6	500	555	55	1000	1.0	0 -1.4	Ū.	0	3.7	5.9	521	502	500	1.00	1
8.1	500	650	150	1500	1	0 -7.9	-7.5	0	11.4	14.1	580	513	506	GNLU	GEEZ, 3
8.2	500	624	124	1500		0 -5.5	-5.1	0	9	11.5	561	508	503	1.5	2
8.3	500	590	90	1500	1.1.1	0 -3.3	-2.2	0	10 7	0.5	525	503	418	ONNE	GREW 5
9.1	400	650	250	2000		0 -13 8	-10.0	0	18	20.3	534	427	415	-	4
0.3	400	580	180	2000		0 -9.4	-9.4	0	13	15.2	494	414	407		3
9.4	400	535	135	2000	1.1	0 -5.9	-5.5	0	8.9	10.9	463	407	402		2
9.5	400	500	100	2000	1000	0 -3.4	-2.7	0	5.9	7.8	441	403	401	Imme	1
10.1	500	650	150	21000		0 -10	-9.9	0	13.6	16.4	590	515	506	BORZ	(BUTZ, 6
20.2	500	569	104	21000	1. 5.	0 -0.9	-4.6	i o	6.3	7.5	541	507	503	50	e notes
10.4	500	546	46	21000	1	0 -3.1	-3	0	4.2	5	526	505	502	se	e notes
11.1	500	600	100	99999	1.00	0 -6.4	-5.6	0	9.2	11.7	559	511	505	RDLE	RDUE, 2
12.1	550	550	0	0	1.1.1.1	0 0.8	2.6	0	1.1	3	550	550	550	GJGJ	GMVN, 1
12.2	450	450	0	0	1.1.1	0 0,7	2.8	0	0.9	1.0	450	300	300	GROK	CATE 1
12.3	200	20	0	0	1.00	0 0	0	0	0	0	70	70	70	none	none
13.1	550	300	-250	-800		0 16.3	19.3	0	-17.4	-14.6	364	465	481	GJGJ	GMVW, 8
13.2	550	332	-218	-800		0 15	15.1	0	-15.7	-13.3	392	484	499		1
13.3	550	386	-164	-800		0 12	25.2	0	-12.2	-10.3	437	513	524		0
23.4	550	432	-118	-800	1.000	0 8.8	11.8	0	-8.9	8.9"	502	542	546	1.0	
13.5	550	493	-67	-800		0 3 9	6.3	0	-2.8	-1.1	520	547	549		3
13.7	550	514	-36	-800		0 2.3	4.4	0	-0.8	0.9	535	569	550		2
14.1	450	100	-350	-1700	1.1	0 22.1	25.9	0	-24.8	-23.2	210	364	388	GJDK	GMVG, 0
14.2	450	145	-305	-1700		0 19.9	23.8	0	-22.1	-20.9	247	386	406	1 12	
14.3	450	215	-235	-1700	1.1.1.1	0 11 6	14 0	0	-12 6	-11 7	344	430	440	100	5
14.5	450	315	-135	-1700	1.5.5	0 8.3	11	0	-8.5	-7.5	377	441	446	1.1	4
34.6	450	350	-100	-1700		6 5.6	7.9	0	-5.3	-6.1	401	446	449	10.0	3
14.7	450	380	-70	-1700	1	0 3.4	5.5	0	-2.7	-1.4	421	449	450	1.00	2
14.8	450	405	-45	-17 0		0 1.9	3.7	0	-0.8	0.7	435	450	450	Ins Pa	acome a
10.1	450	100	-350	- 000	1	0 20.7	26 8	0	- 23	-22 7	260	414	432	ane a	WWAL, O
15.3	450	198	-252	3000	1	0 18 7	19.6	0	-17.5	-17.2	307	429	441		6
15.4	450	254	-196	-3000		0 11.3	14.6	0	-12.4	-11.8	347	440	446	1	5
15.5	450	396	-154	-3000	1.000	0 8.1	10.9	0	-6.5	-7.7	375	445	449	1	4
15.6	450	338	-112	-3000	1	0 5.1	7.4	0	-4.9	-3.8	402	448	450	1	1 3
35.7	450	373	-37	- 5000	1	0 24.9	28.9	0	-26 6	-25 5	254	410	437	GRAV	GFHP 5
16.2	442	218	-2 6	-4000	1	0 20	23.6	0	-22	-20.9	294	423	445	80	e notes
16.3	482	276	- 06	-4000		0 15.6	18.4	0	-17.1	-16.3	335	436	453	50	e notes
16.4	482	321	181	-4000	1	0 12.2	24.4	0	-13.4	-12.8	368	446	460	30	e notes
17.1	450	200	-250	-20000	1	0 18.6	22.9	0	-20.6	-20.5	293	429	443	EDMD	BDUJ, S
17.2	450	240	+210	-20000		0 15.6	23 7	0	-17.3	-12 1	318	437	446	80	e notes
17.4	450	350	-100	-20000		0 7.4	9.2	0	-8.2	-8.2	367	642	647	80	e notes
28.5	600	520	-80	- 99999	1	0 7.2	10.1	0	-6.2	-4.9	548	592	597	BDMH	RDUQ, 2

PREPARED	BY:	<u>D.</u>	E .	COSTA	DATE :		
REVIEWED	BY:	J.	F.	SHEPARD	DATE:	PAGE:	10

TABLE 6-1

BASE CREE STRESSES, SCL 2, NOZZLE-TO-HEAD WELD

100.0	TRANSIENT INFORMATION					LINEARIZED STRESSES METAL TEMPERATURES					MICRO	DFICHE				
Base	Temps	ratu	CHB (F)	Ramp	Press	ING	ide Sur	EAG8	Outes	ide Sur	CEACE	(BASE !	METAL,	NODE #)	1 14	APR8
Run				Rate	1000017	RAD	LONG	HOOP	RAD	LONG	HOOP	ID	FLAM	OD	1.	
nn 4	01.00	Rod	Dalta	P/Mr	Inuil	(kei)	(kei)	(ksi)	(k#1)	(ksi)	(ksi)	68	93	96	THRM	STRS, it
10 F. W	05.5.6	Deriva	BARD A SUM													******
****	******			200			6.0	33 7	0	-11	-9.6	266	237	249	GPGK	GATN. 6
19.1	300	200	- 200	-700	1	1 .	8.2	10 5	1 6	. 0 .	0.2	196	258	268	1	5
19.2	300	137	-163	-700	1 10.13	0		10.5	1 6			231	224	286	10.01	
19.3	300	2.83	-117	-700	1.000	0	0.5	6.3		-0.0		204	200	204	1.0	
19.4	300	217	-83	-700	1.	0	4.5	6.2	0	-4.4	24B	457	290	394	10.00	
12.5	300	243	~87	-700	10.00	0	2.9	4.4	0	-2.5	1.5	274	296	298	-	
20.2	250	100	-150	-1500	1. C.	0	7.3	9.1	0	-8.1	-7.6	174	235	242	EDNS	RDOR'4
26 2	250	148	-102	-1500	1.1.1	0	4.4	5.P	0	-4.7	-4.1	205	244	248	1.1	3
20.2	260	3.80	- 20	-1500		0	2.5	3.8	0	-2.4	-1.7	224	248	249	1.003	2
20.3	220	200	-41	-1500	1.1.1.1.1.1	0	1 2	2.3	0	-0.7	0.2	239	250	250	1.1.1.1	2
20.4	250	209	-41	-7500	0000		3.6	22.8	0	10 3	11 6		1.12.20		none	GEMC.1
10.1					2200		a . B	A.B D.	N 10						1	

NOTES :

1) The stresses for these cases are calculated by multiplying the maximum stresses for the ramp rate by the ratio of desired delta T to maximum stress delta T.

2) The temperatures for these cases are determined by the following equation:

T @ max &T = values from microfiche for iteration in question

T @ other $\Delta Ts = T_{strt} + (T @ max \Delta T - T_{strt}) (\Delta T_{other} / \Delta T_{max})$

PREPARED	BY:	D. E.	COSTA	DATE:		
REVIEWED	BY:	<u>J. F.</u>	SHEPARD	DATE:	 PAGE:	

196

7.0 NOZZLE-TO-HEAD WELD STRESS SUMMARY: Reference microfiche CR3SCL2.OUT

This section contains a summary of the transient stresses at the surge nozzle-to-pressurizer head weld. As previously mentioned, these stresses include the effects of thermal, pressure, and external loads associated with surge line stratification transients. The table is taken from the microfiche output of CR3SCL2.OUT

TABLE 7-1

			12 P. L. L. L.	TOTAL L	INEARIZED	STRES	S (ksi)		BA	SE METAI	6
TRANS	PV	TRANSIENT	INS	IDE SUR	FACE	OUTS	IDE SUR	PACE	TEMPE	RATURES	(F)
NAME	#	CYCLES	RAD	LONG	HOOP	RAD	LONG	HOOP	ID	FLAW	OD
			****		97 35 45 45 45 45 45 45 45 45 45 45 45 45 45		****		·····································		AL AL AL AL AL AL
HUIAI	1.	10.	0.0	0.0	0.1	0.0	0.1	0.1	70.	70.	70.
HUIAI	2.	10.	-0.6	-11.7	-7.2	0.0	29.1	31.5	362.	249.	230.
HULAI	3.	10.	-0.6	26.0	33.3	0.0	-22.5	-20.5	253.	410.	437.
HUIAI	4.	10.	-0.6	-8.1	-3.6	0.0	25.0	27.4	331.	223.	206.
HUIAI	5.	10.	-0.6	30.5	38.5	0.0	-28.6	-26.5	253.	410.	437.
HUTLAI	6	10.	-0.6	-1.0	3.6	0.0	16.1	11.9	174.	114.	106.
HULAI	7	10.	-0.6	11.9	18.4	0.0	1.3	4.6	196.	258.	268.
HITTAT	8.	10.	-0.6	-7.1	-3.0	0.0	23.7	26.9	331.	216.	199.
HITTAN	0	10.	-0.6	16.3	22.8	0.0	-12.7	-11.7	307.	429.	441.
HETTA	10	10.	-0.6	-3.6	0.2	0.0	16.9	19.7	240.	171.	163.
LITTO D 1	23	10	-0.6	8.9	13.2	0.0	-3.8	-2.1	196.	258.	268.
HUTTE NI	12	10	-0.6	0.6	3.6	0.0	5.6	6.8	174.	152.	151.
MULPLL MULPLL	12	10	-0.6	5 1	9.2	0.0	-0.2	1.1	257.	290.	294.
HULPLI HULPLI	1.0.	10	-0.6	-1.8	2 5	0.0	16.2	19.1	240.	171.	163.
NULMI	19.	10	-0.6	8 7	13 1	0.0	-3.9	-2.2	196.	258.	268.
HUIAL	15.	10.	-0.6	-3.7	-6 1	0.0	15.3	18.2	336.	264.	257.
HULAL	10.	10.	-0.6	0 4	12 0	0.0	-4 9	-3.2	196.	258.	268.
HULAI	17.	10.	-0.0	-2.3	1 7	0.0	33.7	15 7	174	114.	106.
HULAI	18.	10.	-0.0	0.3	33 6	0.0	-3.4	.1.8	196	258	268
HULAI	19.	10.	~0.6	0.3	16.0	0.0	10 2	21 0	281	189	177.
HULAL	20.	10.	-0.6	-0.5	-2.0	0.0	10.3	-5 7	302	484	499
HULAI	21.	10.	-0.6	14.0	17.9	0.0	22.0	25.2	373	241	221
HUIAI	22.	10.	-0.6	-15.8	-14.4	0.0	43.2	-2.2	303.	484	499
HULAL	23.	10.	-0.6	1 2	21.6	0.0	-2.8	14.3	332.	409.	401
HULAL	24.	10.	-0.6	0.7	5.2	0.0	11.1	19.1	****	503.	504
HUIAI	25.	10.	-0.6	12.5	19.0	0.0	-2.1	0.5	437.	313.	161
HUIAI	26.	10.	-0.6	2.1	6.2	0.0	8.5	10.5	1/4.	104.	101.
HULAL	27.	10.	-0.6	5.1	9.3	0.0	-0.2	1.2	257.	290.	274.
HU1A1	28.	10.	-0.6	-6.9	-3.7	0.0	18.8	21.8	371.	210.	200.
HU1A1	29.	10.	-0.6	14.5	20.0	0.0	-9.8	-7.1	392.	909.	433.
HULAL	30.	10.	-0.6	-0.4	3.0	0.0	9.0	10.8	189.	155.	156.
HU1A1	31.	10.	-0.6	8.2	13.2	0.0	-3.7	-2.0	\$75.	532.	539.
HULAL	32.	10.	-0.6	-8.3	-5.8	0.0	15.9	16.8	269.	177.	162.
HUIAL	33.	10.	-0.6	19.3	26.4	0.0	-9.8	-5.4	364.	465.	481.
HUIAI	34.	10.	-0.6	-5.7	-2.5	0.0	17.1	19.4	281.	185.	177.
HULAL	35.	10.	-0.6	6.5	11.5	0.0	1.2	3.1	401.	446.	449.
HU1A1	36.	10.	-0.6	~0.3	4.4	0.0	11.6	15.2	539.	503.	501.
HU1A1	37.	10.	-0.7	11.8	17.6	0.0	-6.4	-4.9	344.	430.	440.
HU1A1	38.	10.	-0.7	-1.6	3.2	0.0	14.7	17.9	309.	257.	253.
HU1A1	39.	10.	-0.9	11.3	17.9	0.0	-4.7	-2.5	437.	513.	524.
HU1A1	40.	10.	-1.5	-10.1	-2.0	0.0	32.3	35.0	449.	342.	325.
HULAL	41.	10.	-1.6	7.1	16.6	0.0	8.8	11.9	422.	449.	450.
HU1A1	42.	10.	-1.6	2.9	12.2	0.0	16.5	20.5	537.	504.	502.
HULAL	43.	10.	-1.7	13.4	24.7	0.0	3.3	7.0	475.	532.	539.
HULAL	44.	10.	-1.7	2.7	12.6	0.0	17.8	22.3	539.	503.	501.
HU1A1	45.	10,	-1.8	15.0	26.0	0.0	-1.8	0.5	344.	430.	440.
HULAL	46.	10.	-1.8	-0.B	8.2	0.0	20.7	24.7	562.	510.	504.
HULAL	47	10	-2.0	12.8	23.8	0.0	0.9	3.7	437.	513.	524.
HULAI	48	10	-2.0	-1.2	9.1	0.0	24.1	28.3	494.	414.	407.
HULAI	49	10.	-2.1	9.2	20.7	0.0	8.4	11.3	401.	446.	449.
HULAI	50	10	-2.1	1.5	13.0	0.0	22.4	27.2	561.	508.	503.
the second se											

PRFPARED	BY:	<u>p.</u>	Ε.	COSTA	DATE:			
REVIEWED	BY:	3.	F.	SHEPARD	DATE:	<u></u>	PAGE :	12

BAW NUCLEAR TECHNOLOGIES ** NON-PROPRIETARY ** 32-1236435-00

14

TABLE 7-1 cont.

TRANS NAME	₽V #	TRANSIENT	INS RAL	TOTAL LI IDE SURI LONG	INEARIZE FACE HOOP	D STRESS OUTS RAD	S (ksi) IDE SURI LONG	FACE HOOP	BASE METAL TEMPERATURES (F) ID FLAW OD			
-		*********	****		市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市	******		********	10 10 10 10 10 10 10 10 10 10 10 10 10 1	「白田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田		
HU1A1	51.	10.	-2.2	10.8	22.5	0.0	3.9	6.1	377.	941.	440.	
HULAI	52.	10.	-2.2	-7.8	4.1	0.0	35.7	92.4	588.	521.	513.	
HU1A1	53.	10.	-2.2	18.2	30.9	0.0	-2.0	1.9	392.	484.	499.	
HU1A1	54.	10.	-2.2	1.0	12.1	0.0	21.8	25.9	463.	407.	402.	
HUIAI	55.	10.	-2.2	13.1	25.9	0.0	4.0	7.3	475.	532.	539.	
HULA1	56.	10.	-2.2	-2.8	8.7	0.0	27.9	33.6	580.	513.	506.	
HULAL	57.	10.	-2.2	15.4	28.2	0.0	1.0	4.4	437.	513.	524.	
HUIAI	58.	20.	-2.2	1.6	12.9	0.0	21.0	25.3	561.	508.	503.	
HULAL	59.	10.	-2.2	7.8	19.6	0.0	8.5	11.6	520.	547.	549.	
HULAL	60.	10.	-2.2	-2.4	8.5	0.0	24.7	29.1	588.	521.	513.	
HUIAI	61.	10.	-2.2	12.6	25.2	0.0	4.6	7.8	475.	532.	539.	
HULAI	62.	10.	-2.2	2.8	14.1	0.0	17.8	21.8	537.	504.	502.	
HULAI	63.	10.	-2.2	10.7	22.7	0.0	5.9	8.7	475.	532.	539.	
HITTAL	64	10.	-2.2	-2.8	7.2	0.0	21.4	25.3	580.	513.	506.	
WIT / 1	65	10.	-2.2	13.7	25.9	0.0	2.3	5.4	437.	513.	524.	
LETTI B.1	66	10	-2.2	4.0	15 6	0.0	16.7	20.B	521.	502.	500.	
HULPLL .	67	10	-2.2	8.1	20 1	0.0	8.8	12.1	520.	547.	549.	
MULPLA	60	10	-2.2	-16	9 1	0.0	22.9	26.9	588	521.	513	
TIULASA ATTI DI	60.	10.		0 0	22 0	0.0	7 3	10 3	502	542	546	
HULRI	07.	20.	2.0	3.4	24.2	0.0	34 6	17 0	521	502	500	
HUIAL	70.	10.	-6.6	0.0	14.5	0.0	14.0	17.9	20.	70	70	
HULAZ	4.	8.	0.0	0.0	0.0	0.0	22.0	24.4	222	222	206	
HU1A2	2.	8.	-0.2	-9.8	-7.2	0.0	22.0	29.9	331.	450.	425	
HULAZ	3.	8.	-0.2	18.3	23.5	0.0	-1/.2	-16.5	200.	414.	100.	
HU1A2	4.	8.	-0.2	-7.3	-4.7	0.0	19.8	21.8	209.	111.	102.	
HU1A2	5.	8.	-0.2	21.9	27.6	0.0	-22.3	-21.7	239.	404.	925.	
HU1A2	6.	в.	-0.2	-3.1	-2.0	0.0	6.6	7.2	142.	98.	92.	
HU1A2	7.	8.	-0.2	9.1	13.7	0.0	0.7	3.3	231.	279.	286.	
HU1A2	8.	8.	-0.2	-6.6	-3.7	0.0	19.2	22.1	394.	307.	294.	
HU1A2	9.	8.	-0.4	11.0	15.3	0.0	-8.3	-7.1	174.	235.	242.	
HU1A2	10.	8.	-0.4	-4.4	-1.2	0.0	16.1	18.9	352.	283.	273.	
HU1A2	11.	8.	~0.4	9.2	12.7	0.0	-6.4	-4.9	196.	258.	268.	
HU1A2	12.	8.	-0.4	-5.4	-2.2	0.0	19.2	22.2	281.	189.	177,	
HU1A2	13.	8.	-0.4	11.0	14.8	0.0	-8.0	-6.1	165.	237.	249.	
HULA2	14.	8.	-0.4	-4.3	-1.6	0.0	14.5	17.3	336.	264.	257.	
HU1A2	15.	8.	-0.4	9.4	13.0	0.0	-6.3	-4.7	196.	258.	268.	
HITI A 2	16	8.	-0.4	-2.8	0.1	0.0	12.9	14.8	174.	114.	106.	
HULLAS	17	8.	-0.4	8.2	11.7	0.0	-4.8	-3.3	196.	258.	268.	
HULLAS	18	8	-0.4	-5.8	-3.2	0.0	17.2	19.7	281.	189.	177.	
HULAS	19	8.	-0.4	9.6	12.9	0.0	-7.2	-5.6	165.	237.	249.	
LITTI D 2	20	8	-0.4	-3.2	-0.9	0.0	10.6	12.6	212.	161.	156.	
ALL ALL	21	8	-0.4	3 2	6.2	0.0	-0.1	1.1	274	296	298.	
HULM2		0.	-0.4	- 9 3	- 8 0	0.0	14 3	14 8	269	177.	162	
HULPS 2	23	0.	-0.4	14 7	20.2	0.0	-6.9	-3.6	392	484	499.	
HULPLE	23.	0.	0.4	0.7	4.0	0.0	0.0	11 2	287	253	251	
HULAZ	29.	0.	-0.4	22.7	37 3	0.0	-2 5	-0.8	437	513	524	
HULAZ	40.	B.	-0.4	11.1	47.4	0.0	7 4	6 3	174	152	151	
MULAZ	20.	0,	-0.4	1.0	8. /	0.0	-1.6	-0.4	257	200	204	
HULAZ	67.	D .	-0.4	D.1	0.0	0.0	17 7	20.5	271	276	265	
HULAZ	28.	8.	-0.4	=7.5	-5.3	0.0	27.7	20.5	371.	404	400.	
HULAZ	29.	8.	-0.4	14.2	18.8	0.0	-11.1	-8.5	392.	101.	422.	
HULAZ	30.	8.	-0.4	-1.0	1.5	0.0	7.9	9.6	189.	152.	134.	
HU1A2	31.	8,	-0.4	6.2	9.3	0.0	-3.6	-2.5	231.	279.	200.	
HU1A2	32.	8.	-0.4	-9.3	-8.1	0.0	14.4	14.6	269.	177.	162.	
HU1A2	33.	8.	-0.4	18.5	24.5	0.0	-10.7	-6.6	364.	465.	481.	
HULA2	34.	8.	-0.4	-7.4	-5.1	0.0	17.9	20.3	281.	189.	177.	
HU1A2	35.	8.	-0.4	6.0	10.3	0.0	0.6	2.4	402.	448.	450.	
HULA2	36.	8.	-0.4	-1.7	1.8	0.0	11.8	14.8	559.	511.	506.	
HULA2	37.	8.	-0.4	13.6	18.5	0.0	-11.5	-10.4	302.	413.	428.	
HU1A2	38	8	-0.6	-7.7	-4.1	0.0	19.9	21.5	269.	177.	162.	
HULA2	39	8.	-0.6	4.8	9.8	0.0	3.3	5.3	421.	449.	450.	
SALTIN.	40	8	-0.6	2.8	7.0	0.0	9.6	12.9	521	502.	500.	
HUIDO	41		-0.7	0.0	16.0	0.0	-1.9	0.5	475	532	539	
WITT NO	42	8	-0.7	0.0	5.0	0.0	10 6	13.7	539	503	501	
HITI BO	40		-0.7	10.0	16 7	0.0	-4 4	-2.3	437	513	524	
HUTT BO	40.	0.	-0.0	.0.0	3 5	0.0	36.0	20 6	563	SOR	503	
LITTS NO	44.	0.	-1.0	22.0	10 7	0.0	-3.5	-1 1	437	513	524	
HOTHE	45.	В.	-1.0	77.6	10.1	0.0	-3.5	-4-4	2011	24.23	and .	

PREPARED BY: D. E. COSTA DATE: DATE: ____ PAGE: 13 REVIEWED BY: J. F. SHEPARD

BAW NUCLEAR TECHNOLOGIES ** NON-PROPRIETARY ** 32-1236435-00

*

TABLE 7-1 cont.

TRANS	PV #	TRANSIENT	INS RAD	TOTAL L IDE UR LONG	INEARIZE FACE HOOP	D STRESS OUTS RAD	S (ksi) IDE SUR LONG	FACE HOOP	BA TEMPE ID	SE METAJ RATURES FLAW	(F) OD
		********			0 81.00130			*****			****
HU1A2	46.	8.	-1.0	-6.7	-0.1	0.0	25.2	30.3	588.	521.	513.
HU1A2	47.	8.	-1.2	13.9	21.5	0.0	-6.1	-3.4	392.	484.	499.
HU1A2	48.	8.	-1.4	-9.0	-0.7	0.0	30.8	36.9	588.	521.	513.
HU1A2	49.	8.	-1.7	26.5	27.3	0.0	-1.2	2.6	392.	484.	499.
HU1A2	50.	8.	-1.7	0.8	9.8	0.0	18.9	22.6	463.	407.	402.
HULA2	51.	8.	-1.9	12.7	24.4	0.0	2.4	5.5	475.	532.	539.
HU1A2	52.	8.	-2.2	-5.8	4.8	0.0	31.2	36.0	534.	427.	415.
HULA2	53.	8.	-2.2	16.6	28.9	0.0	-0.6	3.1	392.	484.	499.
HU1A2	54.	8.	-2.2	1.2	12.5	0.0	22.6	26.9	463.	407.	402.
HU1A2	55.	8.	-2.2	9.4	21.4	0.0	5.5	9.4	502.	542.	546.
HULAS	56	8.	-2.2	-5.2	5.2	0.0	26.0	30.5	588.	521.	513.
HTT1 A 2	57	8	-2.2	14 9	27.9	0.0	4 0	7 7	437	513	524
LITTL B 2	50	8	-2.2	-2.8	7 1	0.0	21 5	25 4	580	513	506
HUTTA 2	50.	6	-9 0	14 7	27 6	0.0	3 7	7 3	437	513	524
HULMA MILLAR	59,	0.		29.7	27.0	0.0	17.0	23.0	537	513.	500
MULAZ	60.	0.	-2.2	2.0	14.1	0.0	17.0	43.0	557.	504.	DUL.
HULAZ	61.	8.	-2.2	9.1	20.9	0.0	1.5	10.3	502.	542.	540.
HU1A2	64 .	8.	~2.2	-0.5	10.7	0.0	22.0	26.6	561.	508.	503.
HU1A2	63.	8.	-2.2	9.8	22.0	0.0	7.3	10.3	502.	542.	546.
HU1A2	64.	8.	-2.2	3.9	15.1	0.0	15.4	19.0	521.	502.	500.
HULAS	1.	45.	0.0	0.0	0.1	0.0	0.1	0.1	70.	70.	70.
HU1A3	2.	45.	-0.2	-10.0	-7.4	0.0	22.4	24.2	331.	223.	206.
HULAS	3.	45.	-0.2	17.3	22.4	0.0	-16.3	-15.6	260.	414.	432.
HULAS	4.	45.	-0.2	-6.9	-4.4	0.0	18.9	20.7	269.	177.	162.
FALUH	5	45	-0.2	20.3	25.9	0.0	-20.5	-19.9	260	414	432
HULLS	6	45	~0.2	-2.8	-1.8	0.0	6.2	6.8	142	9.8	92
11771 2 3	7	45	-0.2	6 3	10 7	0.0	0.9	2 3	221	279	286
LITTS B 2		45.	0.2	6.0	.2.2	0.0	17.0	20 5	204	207	204
HULAS	0.		-0.2	-0.0	-3.3	0.0	17.3	40.5	374.	507.	229.
HULAS	9.	95.	-0.0	10.0	14.1	0.0	-7.3	-0.2	179.	235.	296.
HULAS	10.	45.	-0.4	-3.8	-0.8	0.0	14.7	17.3	352.	283.	273.
HUIA3	11.	45.	-0.4	7.9	11.2	0.0	-5.2	-3.8	196.	258.	268.
HU1A3	12.	45.	-0.4	-5.1	-1.6	0.0	18.4	21.7	352.	283.	273.
HU1A3	13.	45.	-0.4	10.0	13.5	0.0	-7.0	-5.2	165.	237.	249.
HU1A3	14.	45.	-0.4	-3.7	-1.3	0.0	12.9	14.9	240.	171.	163.
HULA3	15.	45.	-0.4	8.3	11.7	0.0	-5.2	-3.7	196.	258.	268.
HU1A3	16.	45.	-0.4	-2.0	0.7	0.0	11.5	13.2	142.	98.	92.
HULAS	17.	45.	-0.4	7.6	11.3	0.0	-4.0	-2.5	231.	279.	286.
HUDAS	18	45	-0.4	-5.7	-2.8	0.0	16.6	19.4	352	283	273
ETTER A	19.	45	-0.4	13.0	78.1	0.0	-9.4	-7.1	437	513	524
C A FTTH	20	45	-0.4	-14 0	-13 4	0.0	20.3	21 2	373	241	221
LITTA B 3	20.	40	0.4	10 0	20 5	0.0	E . E		439	£12	204
HULRS	21.	92.	-0.4	16.9	10.3	0.0	-2.5	-6.1	437.	213.	269.
HULAS	44.	45.	-0.4	1.0	4.0	0.0	7.9	9.2	174.	152.	151.
HULAS	23.	45.	-0.4	10.5	16.0	0.0	-2.6	0.1	475.	532.	539.
HU1A3	24.	45.	-0.4	1.5	4.5	0.0	6.6	8.2	174.	152.	151.
HULA3	25.	45.	-0.4	3.8	7.1	0.0	0.0	1.3	274.	296.	298.
HU1A3	26.	45.	-0.4	-5.0	-2.6	0.0	14.3	17.0	336.	264.	257.
HU1A3	27.	45.	-0.4	12.4	17.3	0.0	-8.8	-6.5	437.	513.	524.
HU1A3	28.	45.	-0.4	-0.5	1.9	0.0	7.0	8.4	189.	155.	152.
HU1A3	29.	45.	-0.4	6.5	10.8	0.0	-2.9	-1.1	502.	542.	546.
HU1A3	30.	45.	-0.4	-7.3	-6.1	0.0	12.0	12.6	216.	141.	129.
HULAS	31	45	-0.4	16 5	22 3	0.0	-9 (-5 5	392	484	499
HTT1 A 3	32	45	-0.4	-6.2	-4.7	0.0	11 7	12 5	216	243	120
10113 8.2	22	45.	-0.4	6.6	30 0	0.0	44.1	2 2	403	445	440
LITTA B 2	33.	40.	-0.4	-0.2	20.5	0.0	0.0	12.0	E27	E04	500
HULAS	39.	95.	-0.4	-0.3	3.5	0.0	9.8	12.9	537.	504.	502.
HULA3	35.	45.	-0.4	11.7	16.6	0.0	-7.8	-5.6	437.	513.	524.
EALUH	36.	45.	~0.4	0.4	3.0	0.0	6.9	8.1	119.	86.	85.
HULAS	37.	45.	-0.4	3.9	7.8	0.0	0.4	2.1	520.	547.	549.
HU1A3	38.	45.	-0.6	-5.6	-2.3	0.0	16.2	17.7	216.	141.	129.
HU1A3	39.	45.	-0.6	3.9	8.8	0.0	4.1	6.4	435.	450.	450.
HU1A3	40.	45.	-0.6	1.2	5.6	0.0	7.7	10.3	521.	502.	500.
HULAS	41.	45.	-0.7	8.3	14.8	0.0	1.2	4.0	502.	542	546.
HULAS	42	45	-0.7	1.6	6.8	0.0	9.2	12.4	521	502	500
FULAS	43	45	+0.7	0 1	15 1	0.0	-2 3	-0.2	475	532	539
HITTO	4.4	45	-0.0	-1 6	3.6	0.0	14 0	37 6	550	511	506
SITTE B >	45	40.	-1.0	0.3	16.3	0.0	-0.0	3.4	475	620	520
NULAS	82.	40.	-1.0	5.0	10.3	0.0	-0.8	1.0	17D.	536.	539.
norro			- 4.0	- 2.3	2.0	0.0	66.5	20.7	200.	DEL.	243.
PREPARE	D BY:	D. E. CO	ATA				DAT	E:			
REVIEWE	D BY:	J. F. SHI	EPARD				DAT	E :		PA	GE:

.

TABLE 7-1 cont.

HU1A3		No. 10. No. With States.	RAD	LONG	HOOP	RAD	LONG	HOOP	ID	FLAW	OD
HU1A3		*****	*****		ET (1): 30: 50 (1): 50			的影響的影響		******	
Property of the second	47.	45.	-1.2	11.9	19.6	0.0	-3.7	-1.3	437.	513.	524.
HULA3	48.	45.	-1.4	-8.5	-1.9	0.0	23.0	27.1	588.	521.	513.
HULAS	49.	45.	-1.7	14.7	25.9	0.0	1.9	5.6	437.	513.	524.
FAITTHE	50	45	-1.7	2.0	11.7	0.0	17.5	21.8	539.	503.	501.
17773 8 3	53	45	-1.9	10.9	22.0	0.0	4.3	7.1	475.	532.	539.
NULRS	24.	45		-0.0	10.0	0.0	23 0	28 7	580	513	505
HUIAJ	52 .	45.	-2.1	-0.8	10.0	0.0	40.0	20.7	175	520	500
HU1A3	53.	45.	-2.2	11.5	23.9	0.0	6.1	9.2	9/5.	534.	539
HU1A3	54.	45.	-2.2	3.0	14.7	0.0	19.8	24.4	539.	503.	501
HU1A3	55.	45.	-2.2	8.3	19.8	0.0	7.5	10.1	502.	542.	546
HTT1A3	56	45.	-2.2	-2.6	8.3	0.0	25.1	29.6	568.	521.	513
LITTS B 3	57	45	-2.2	12.9	25.6	0.0	4.2	7.5	475.	532.	539
nuins	57.	40.	0.0	2.0	24.2	0.0	37 6	21 6	520	503	501
HULAS	58.	90.	-6.6	4.7	14.1	0.0	41.0	0.2.5	475	500.	620
HU1A3	59,	45.	-2.2	10.6	22.5	0.0	6.0	8.7	4/5.	534.	535
HU1A3	60.	45.	-2.2	-1.6	9.2	0.0	23.5	28.0	580.	513.	506
HU1A3	61.	45.	-2.2	13.6	25.7	0.0	1.9	4.9	437.	513.	524
HUILAS	62.	45.	-2.2	3.2	14.2	0.0	17.0	20.7	539.	503.	501
LIFT'S A D	62.	45	- 5 - 5	0.0	20 5	0.0	77	10.5	502	542	546
NULAS	63.	40.	2.2	0.0	20.0	0.0	22.0	26 6	561	508	503
HU1A3	64.	45.	-2.2	-0.5	10.6	0.0	22.0	20.0	201.	508.	203
HU1A3	65.	45.	-2.2	9.8	22.0	0.0	1.3	10.3	502.	542.	546
HULAS	66.	45.	-2.2	3.9	15.1	0.0	15.4	19.0	521.	502.	500
HULLA	1.	29.	0.0	0.0	0.0	0.0	0.0	0.0	70.	70.	70
HTTLDA	2	29	-0.4	-10.6		0.0	25.4	27.5	362.	249.	230
11773 2 4		20	-0.4	22.0	20 0	0.0	-21 7	-19 9	253	410	437
HUTWA		47.	-0.4	63.0	40.0	0.0	00.0	24.5	225	353	205
HU1A4	4.	29.	-0.4	-1.9	-4.3	0.0	44.3	29.5	331.	223.	206
HU1A4	5.	29.	-0.4	28.5	35.3	0.0	-27.8	-25.9	253.	410.	437
HULA4	6.	29.	-0.4	-3.3	-1.8	0.0	7.8	8.6	142.	98.	92
HUTLA4	7.	29.	-0.4	10.4	16.0	0.0	1.2	4.2	231.	279.	286
LITTI B.C	0	20	-0.4	-6 2	-3.0	0.0	20.5	23.7	281	189	177
HULMS	0.	47.	-0.4	10.6	25.5	0.0	0.3	.0 1	274	225	242
HULAA	9.	29.	-0.4	12.0	10.0	0.0	-9.3	-0.4	2/4.	433.	696
HU1A4	10.	29.	-0.4	-4.3	-1.1	0.0	16.0	10.8	352.	283.	273
HU1A4	11.	29.	-0.4	9.1	12.6	0.0	-6.4	-4.8	196.	258.	268
HULLA4	12	29.	-0.4	-5.4	-2.2	0.0	19.2	22.2	281.	189.	177
HITTI D.4	13	29	-0.4	11.0	14.8	0.0	-8.0	-6.1	165.	237.	249
17773 3.4	2.4	20	0.4	4.7	-1.6	0.0	14 5	17 3	336	264	257
HULAS	14.	29.	-0.4	-9.3	-1.0	0.0	74.0	11.5	330.	203.	200
HU1A4	15.	29.	-0.4	9.0	12.5	0.0	-0.0	-4.5	730.	258.	200
HU1A4	16.	29.	-0.4	-2.2	0.5	0.0	11.0	13.1	212.	161.	156
HU1A4	17.	29.	-0.4	4.8	8.1	0.0	-0.1	1.1	205.	244.	248
HULA4	18.	29	-0.4	-0.1	2.6	0.0	8.3	9.8	119.	88.	85
MTT1 BA	10	29	-0.4	5.8	8 9	0.0	-2.9	-1.7	231.	279.	286
1111111	20	20	0.4	5.0		0.0	35.0	17 1	240	173	163
HUIA9	20.	49.	-0.6	-2.6	-6.6	0.0	72.0	41.4	220.	414.	103
HU1A4	21.	29.	-0.6	3.8	7.8	0.0	1.0	2.3	219.	290.	298
HU1A4	22.	29.	-0.6	-8.7	-6.5	0.0	15.4	16.0	269.	177.	1.62
HU1A4	23.	29.	-0.6	13.4	18.5	0.0	-9.5	-7.1	392.	484.	499
SITTI BA	24	29	-0.6	0.0	5 5	0.0	11.1	14.0	441.	403.	401
ENGLAPS R.A.		20	0.0	33 6	10.2	0.0	-2.6	0.5	437	513	524
NULAS	23.	29.	-0.6	14.0	17.6	0.0	-2.0	10.0	237.	252	263
MULAA	26.	29.	-0.6	2.1	6.9	0.0	6.8	10.9	1/4.	152.	721
HU1A4	27.	29.	-0.6	5.1	9.3	0.0	0.1	1.4	257.	290.	294
HU1A4	28.	29.	-0.6	-7.0	-3.7	0.0	19.2	22.3	371.	276.	265
HILLAA	29	29.	-0.6	14.9	20.5	0.0	-10.0		392.	484 .	499
HTTT BA	20	20	-0.6	-0.4	2 1	0.0	0 2	11 1	199	155	150
THU LING	30.	29,	-0.0	0.9	32.4		2.6		475	E 2 2	630
HULAS	31.	29.	-0.6	8.4	13.5	0.0	-2.1	-2.0	\$ 7.2 .	552.	239
HU1A4	32.	29.	-0.6	-8.9	-6.7	0.0	15.6	16.2	269.	177.	162
HULA4	33.	29.	-0.6	19.6	26.8	0.0	-9.9	-5.4	364.	465.	481
HULA4	34	29.	~0.6	-5.8	-2.5	0.0	17.3	19.7	281.	189.	177
HITLDA	35	29	-0.6	E P	12 0	0.0	1.7	3 1	401	445	449
LIVIN D. A	20.		0.0	0.0	4.5	0.0	33.0	25 6	630	503	Ent
NULAS	36.	29.	-0.6	-0.3	9.5	0.0	77.3	75.0	539.	503.	501
HUIA4	37.	29.	-0.6	11.8	17.4	0.0	-6.8	-5.3	394.	430.	140
HU1A4	38.	29.	-0.6	-1.6	2.6	0.0	13.5	16.5	309.	257.	253
HULA4	39.	29.	-0.6	10.1	15.2	0.0	-5.7	-3.8	437.	513.	524
HULAA	40	29	-0.6	-5.4	-2.1	0.0	16.1	17.6	216	141	129
SITTO DA	45	20	-0.5	6.6	10.0	0.0			403	445	440
NO1M4	41.	49.	-0.6	0.5	44.3	0.0	6.4	*.3	401.	440.	449
HULRA	42.	29.	-0.6	0.6	4.7	0.0	6.9	9.2	521.	502.	500
HU1A4	43.	29.	-0.6	8.9	14.4	0.0	-2.9	-0.8	475.	532.	539
HULA4	44.	29.	-0.6	0.6	4.7	0.0	8.8	11.2	539.	503.	501
HU1A4	45.	29.	-0.B	6.7	12.6	0.0	0.4	2.4	502.	542.	546
REPAREI	D BY:	D. E. CO	STA				_ DAT	E:			

BAW NUCLEAR TECHNOLOGIES ** NON-PROPRIETARY ** 32-1236435-00

1

1.

TABLE 7-1 cont.

TRANS	₽V ₩	TRANSIENT CYCLES	INS. RAD	IDE SURI	INEARIZE FACE HOOP	D STRES OUTS RAD	S (ksi) IDE SUR LONG	FACE HOOP	BA TEMPE ID	SE META RATURES FLAW	(F) OD
100 102 300 104 300 300 404 10		※飲料料を設定料準 のの	******					57 0	89888	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	EASERA
HULAA	20.	27.	-0.2	E D	10 3	0.0	4.0	6 4	520	547	540
HULAA	47.	29.	-0.5	5.0	7.0	0.0	12.2	9.0	520.	5.04	502
HULMA	40.	47.	-1.0	0.0	12 6	0.0	42.3	4.2	507.	542	EAC
HULAS	49.	29.	-1.2	0.0	13.0	0.0	6.6	9.4	502.	292.	540.
HULA4	50.	29.	-1.4	-6.3	1.3	0.0	25.1	30.0	588.	521.	513
HULA4	51.	29.	~1.6	13.7	23.7	0.0	-1.4	1.5	437.	513.	524
HU1A4	52.	29.	-1.6	0.1	8.8	0.0	17.7	21.6	561.	508.	503
HULAS	53.	29.	-1.8	10.5	20.8	0.0	3.6	6.3	475.	532.	539
HU1A4	54.	29.	-1.9	-2.7	7.5	0.0	25.4	30.6	580.	513.	506
HUILA4	55.	29.	-2.2	14.2	26.6	0.0	2.0	5.3	437.	513.	524
HULA4	56.	29.	-2.2	1.5	12.9	0.0	21.0	25.4	561.	508.	503
HULA4	57.	29.	-2.2	7.8	19.6	0.0	8.5	11.6	520.	547.	549
HULAA	58.	29.	-2.2	-2.4	8.5	0.0	24.7	29.2	588.	521.	513
HULA4	59.	29.	-2.2	12.6	25.2	0.0	4.6	7.8	475.	532.	539
SITTI LA	60	29.	-2.2	2.8	14.1	0.0	17.8	21.8	537.	504.	502
11711 7.4	61	29	-2.2	10 7	22 7	0.0	5.0	8.7	475	632	539
HULPS	62.	29	-2.2	-2.0	7 2	0.0	21 4	25.3	580	513	506
HULMA	62.	29.	2.2	13 7	25.0	0.0	5 3	23.5	437	652	500
HULAS .	03.	29.	-2.2	13.1	20.9	0.0	2.3	2.4	437.	513.	500
HUIA4	64.	29.	-2.2	4.0	15.6	0.0	10.7	20.8	221.	502.	500
HUIA4	65.	29.	-2.2	8.1	20.2	0.0	8.8	12.1	520.	597.	549
HU1A4	66.	29.	-2.2	-1.6	9.1	0.0	22.9	26.9	588.	521.	513
HU1A4	67.	29.	-2.2	9.8	22.0	0.0	7.2	10.3	502.	542.	546
HU1A4	68.	29.	-2.2	3.4	14.3	0.0	14.6	17.9	521.	502.	500
HULAS	1.	148.	0.0	0.1	0.1	0.0	0.1	0.2	70.	70.	70
HULAS	2	148.	-0.2	-9.5	-7.3	0.0	20.7	22.3	331.	223.	206
HULAS	3	148	-0.2	15.1	19.B	0.0	-15.9	-13.2	307.	429.	441
HITTLDE	4	148	-0.2	.6.3	-4 2	0.0	16.8	18.6	216	141.	129
11775 3 6		140	-0.2	18 0	22 6	0.0	.18 2	-17 6	260	414	432
NULMO	2.	340	0.2	10.0	-1 4	0.0	5 1	5 7	110	88	85
HULAS	0.	140.	-0.2	-6.6	-1.3	0.0	2.1	2.7	227.	220	285
HULAS	7.	148.	-0.2	7.6	11.5	0.0	0.5	2.1	231.	219.	280
HULAS	8.	148.	-0.2	-3.7	-1.5	0.0	13.4	15.4	174.	114.	106
HULAS	9.	148.	-0.2	8.7	11.8	0.0	-7,1	-6.2	174.	235.	242
HULAS	10.	148.	-0.3	-2.1	0.2	0.0	10.7	12.4	142.	98.	92
HULAS	11.	148.	-0.4	7.3	10.4	0.0	-4.4	-3.2	196.	258.	268
HU1A5	12.	148.	-0.4	-3.2	-0.1	0.0	15.2	17.5	174.	114.	106
HULAS	13.	148.	-0.4	9.9	13.4	0.0	-6.8	-5.1	165.	237.	249
HITTAS	14	148	-0.4	-3.6	-1.1	0.0	12.6	14.6	240.	171.	163
HIDAS	15	168	-0.4	83	11.6	0.0	-5.1	-3.7	196.	258.	268
LITTIBE	16	148	-0.4	-1.9	0.6	0.0	11 3	13.1	142	98	92
HULPED BE	4.0 .	140.	0.4	9 9	22.0	0.0	-4 0	-2 5	223	279	286
HULPS	41.	140.	-0.4		11.4	0.0	36 5	30.3	365	283	272
HULAS	18.	748.	-0.9	-5.0	-6.1	0.0	10.5	13.6	427	203.	513
HULAS	19.	148.	-0.4	13.0	18.0	0.0	-9.4	-7.0	937.	213.	224
HULAS	20,	148.	-0.6	-16.1	-14.0	0.0	29.9	25.7	313.	291.	221
HULAS	21.	148.	-0.6	15.5	22.0	0.0	~5.8	-2.3	392.	484.	633
HULAS	22	148.	-0.6	0.7	5.3	0.0	11.4	14.4	441.	403.	401
HU1A5	23.	148.	-0.6	12.8	19.4	0.0	-2.8	0.3	437.	513.	524
HULAS	24.	148.	-0.6	2.2	6.4	0.0	8.7	10.8	174.	152.	151
HULAS	25.	148.	-0.6	6.5	11.7	0.0	-0.8	1.1	502.	542.	546
HULAS	26.	148.	-0.6	-7.0	-3.7	0.0	19.2	22.3	371.	276.	265
HULAS	27	148	-0.6	14.8	20.5	0.0	-10.0	-7.2	392.	484.	499
HULAS	28	148	-0.6	-0.4	3.1	0.0	9.2	11.1	189.	155.	152
HUDDE	20	149	-0.6	8.4	13 5	0.0	-3 7	-2.0	475	532	539
ATTIN B.F.	20	140.	-0.6	.0.5		0.0	16.2	17 3	260	377	162
NULAD	30.	140.	0.6	20.0	25.0	0.0	.30.0		264	ACC	4.9.3
HULAS	31.	748.	-0.6	42.1	20.9	0.0	-10.0	10.0	204.	100.	101
HULAS	32.	148.	-0.6	-5.8	-2.5	0.0	17.5	19.9	281.	169.	111
HULAS	33.	148.	-0.6	6.6	11.8	0.0	1.3	3.3	401.	446.	449
HULAS	34.	148.	-0.6	-0.3	4.6	0.0	11.9	15.5	539.	503.	501
HULAS	35.	148.	-0.6	11.9	17.5	0.0	-6.8	-5.4	344.	430.	440
HULAS	36.	148.	-0.6	-1.6	2.6	0.0	13.5	16.5	309.	257.	253
HULAS	37.	148.	-0.6	10.2	15.2	0.0	-5.8	-3.9	437.	513.	524
HULAS	38	148	-0.6	-5.4	-2.1	0.0	16.1	27.7	216.	141.	129
HULLS	2.9	148	-0.6	6.9	12 3	0.0	2.2	4.3	401	446	449
HITTRE	40	148	-0.5	DE	4 7	0.0	6.0	9.2	521	502	500
LITTO DE	41	190.	0.0	0.0	34.4	0.0	-2.0	-0.0	475	530	520
HULAS		148.	0.6	0.9	49.9	0.0	6.5	11.0	620	603	603
nozas			-0.0	0.0		0.0	0.0				
REPAREI	D BY:	D. E. CO	STA				DAT	B:			

BEW NUCLEAR TECHNOLOGIES ** NON-PROPRIETARY ** 32-1236435-00

*

TABLE 7-1 cont.

TRANS	PV B	TRANSIENT	INSI RAD	TOTAL LI LDE SURI LONG	INEARIZE PACE HOOP	D STRESS OUTSI RAD	(ksi) IDE SURF LONG	HOOP	BAI TEMPEJ ID	SE METAI RATURES FLAW	(F) OD
		***	******								
HULAS	43.	148.	-0.8	6.7	12.6	0.0	0.4	2.4	502.	542.	545.
HULAS	44.	148.	-0.9	-1.2	4.3	0.0	14.0	17.3	559.	511.	506.
HULAS	45.	148.	-0.9	5.8	12.4	0.0	4.0	6.4	520.	547.	549.
HULAS	46.	148.	-2.0	0.5	7.1	0.0	13.3	17.0	537.	504.	502.
HUIAS	47.	148.	-1.2	6.6	13.7	0.0	2.2	4.2	502.	542.	546.
HTTLAS	48	148.	-1.4	-6.3	1.3	0.0	25.1	29.9	588.	521.	513.
MULTI BS	40	148	-1.6	13.7	23.7	0.0	-1.4	1.5	437.	513.	524.
EFTTI & C	50	148	-1.6	0.1	R.R	0.0	17.7	21.6	561.	508.	503.
RULAD	50.	140.	-1.0	10 5	20.8	0.0	3.6	6.3	475	532.	539.
HULAS	21.	140.	-1.0	-2.2	7 6	0.0	25 4	30 6	580	513.	506
HULAS	52.	190.	-1.9	-6.1	26 6	0.0	2.0	5 3	437	513	524
HULAS	53.	198.	-2.2	19.6	40.0	0.0	23.0	25.4	563	EAP.	503
HULAS	54.	148.	-2.2	1.5	12.9	0.0	21.0	42.4	201.	500.	505.
HULAS	55.	148.	-2.2	7.8	19.6	0.0	0.5	11.0	540.	297.	249.
HULAS	56.	148.	-2.2	-2.4	8.5	0.0	24.7	29.2	566.	221.	513.
HULAS	57.	148.	-2.2	12.6	25.2	0.0	4.6	7.8	475.	532.	539.
HULAS	58.	148.	-2.2	2.8	14.1	0.0	17.8	21.8	537.	504.	502.
HULAS	59.	148.	-2.2	10.7	22.7	0.0	5.9	8.7	475.	532.	535.
HULLAS	60	148.	-2.2	-2.8	7.2	0.0	21.4	25.3	580.	513.	506.
HTT1 25	61	148	-2.2	13.7	25.9	0.0	2.3	5.4	437.	513.	524.
MULTIN DE	64.	140	.2.2	4.0	15 6	0.0	16.7	20.8	521	502.	500
BUIAS	04.	240.		0.5	20.1	0.0	8.0	12 1	520	547	549
HULAS	03.	148.	6.6	0.4	0.1	0.0	22.0	26 9	SPR	521	513
HULAS	64.	148.	-2.2	-1.0	2.1	0.0	22.3	10.3	500.	540	EAC.
HULAS	65.	148.	-2.2	9.8	22.0	0.0	1.3	10.3	502.	500	540.
HU1A5	66.	148.	-2.2	3.4	14.3	0.0	14.6	17.9	521.	502.	500.
CD1B1	1.	40.	-2.2	5.1	15.7	0.0	13.8	16.3	521.	502.	500.
CD1B1	2.	40.	-2.2	8.2	20.3	0.0	10.1	13.4	520.	547.	549.
CD1B1	3.	40.	-2.2	4.7	16.4	0.0	17.0	21.1	521.	502.	500.
CDIRI	4	40	-2.2	12.7	24.5	0.0	1.9	4.6	437.	513.	524.
00101	5	40	-2.2	-6.6	4.8	0.0	32.4	38.4	588.	521.	513.
COIDI	2.	40	- 2 - 2	7 8	10 0	0.0	11.7	15.0	422.	449.	450.
CDIBI	0.	20.		7.0	15.5	0.0	10 4	23 0	537	504	502
CDIBL	7.	40.	-2.2	3.0	10.0	0.0	5.4	0.5	275	445	044
CD1B1	8.	40.	-2.0	13.6	26.4	0.0	5.4	8.2	3/5.	445.	500 E
CD1B1	9.	40.	-1.0	0.9	6.9	0.0	9.3	22.2	541.	504.	500.
CD1B1	10.	40.	-1.0	22.0	30.3	0.0	-16.5	-14.4	247.	386.	406.
CD1B1	11.	40.	-0.7	-4.2	-1.0	0.0	13.8	15.8	272.	213.	206.
CD1B1	12.	40.	-0.7	10.5	16.7	0.0	-4.1	-1.9	475.	532.	539.
CD1B1	13.	40.	-0.7	-1.4	2.4	0.0	11.1	13.1	212.	161.	156.
COLEI	14	40	-0.7	8.8	14.5	0.0	-2.9	-1.0	475.	532.	539.
CDIDI	25	40	-0.7	-3.7	0.4	0.0	16.7	19.4	240.	171.	163.
CDIBI	40.	40.	0.7	24.2	20.0	0.0	-9.1	-6.5	392	484	499
CD1B1	10.	40.	-0.7	14.2	20.0	0.0	15 7	18.3	294	217	207
CD1B1	17.	40.	-0.7	-5.9	-4.3	0.0	12.7	10.1	437	612	524
CD1B1	18.	40.	-0.7	11.6	17.5	0.0	-0.1	-3.0	927.	52.5.	269.
CD1B1	19.	40.	-0.7	-4.1	-0.2	0.0	16.0	18.5	240.	1/1.	103.
CD1B1	20.	40.	-0.7	12.9	19.4	0.0	-6.0	-3.4	437.	513.	524.
CD1B1	21.	40.	-0.7	-0.1	4.2	0.0	10.7	13.2	287.	253.	251.
CD1B1	22.	40.	-0.7	10.0	16.0	0.0	-4.8	-2.7	475.	532.	539.
CDIBI	23	40.	-0.7	-9.5	-5.5	0.0	23.5	25.9	449.	342.	325.
CIDIEI	24	40	-0.7	18 6	25.0	0.0	-13.9	-10.3	364	465.	481.
COIDI	29.	40	-0.7	-6 5	-2 9	0.0	18.9	21.4	281	189	177.
CDIBL	40.	40.	-0.7	26.2	22.2	0.0	-11 2	- 8 3	392	484	400
CDIBI	26.	40.	-0.7	10.1	66.6	0.0	33.0	15.0	272	212	206
CD1B1	27.	40.	-0.7	-4.4	-1.4	0.0	13.3	10.0	475	530	520
CD1B1	28.	40.	-0.7	10.0	16.1	0.0	-3.8	-1.6	\$/D.	336.	237,
CD1B1	29.	40.	-0.7	-2.3	1.7	0.0	13.0	15.3	212.	161.	156.
CD1B1	30.	40.	-0.7	10.6	16.1	0.0	-5.0	-3.0	437.	513.	524.
CD1B1	31.	40.	-0.7	-3.8	0.1	0.0	16.1	18.6	240.	171.	163.
CDIBI	32	40	+0.7	12.0	17.8	0.0	-7.9	-6.7	344.	430.	440.
CDIBI	33	40	-0.7	-6.6	-2.6	0.0	19.6	21.3	269.	177.	162.
CDIPI	28	40	-0 7	12 3	18 7	0.0	-4.6	-2.7	344	430.	440.
CDIDI	29.	40.	-0.5	-3 6	0.9	0.0	16 5	19 9	588	521	513
CDIRI	35.	40.	-0.6	-3.0	0.9	0.0	10.5		344	420	640
CD1B1	36.	40.	-0.6	13.0	19.0	0.0	-8.4	-7.0	399.	1.00	1 7 7 7
CD1B1	37.	40.	-0.6	-5.3	-1.5	0.0	16.8	21.5	281.	109.	411.
CD1B1	38.	40.	-0.6	10.3	16.5	0.0	-1.9	0.2	377.	961.	996.
CD1B1	39.	40.	-0.6	-3.0	1.5	0.0	16.5	20.1	588.	521.	513.
CD1B1	40	40.	-0.6	14.1	21.0	0.0	-4.0	-1.5	344.	430.	440.
CDIBI	41	4.0	-0.6	-7.5	-4.4	0.0	16.2	19.2	588.	521.	513.
REPARE	D BY:	D. E. CO	STA				_ DAT	B:			
EVIEWE	D BY:	J. F. SH	EPARD				DAT	B:		P3	GE:

B&W NUCLEAR TECHNOLOGIES ** NON-PROPRIETARY ** 32-1236435-00

1

.

٦

TABLE 7-1 cont.

RANS AME	PV #	TRANSIENT	INS RAD	TOTAL LI IDE SURI LONG	INEARIZE PACE HOOP	D STRES OUTS RAD	S (ksi) IDE SUR LONG	FACE HOOP	BA TEMPE ID	SE METAL RATURES FLAW	(F) OD
***		100 SAL 000 GE 001 CO. 627 GE 001	-		IN R R R R R	*****	NERNERS C		######		440
D1B1	42.	40.	-0.5	7.6	13.3	0.0	2.9	5.5		440.	997.
D1B1	43.	40.	-0.5	-0.6	3.4	0.0	a.2	12.9	231.	504.	302.
01B1	44.	40.	-0.5	11.2	16.5	0.0	-4.8	-3.1	344.	430.	440.
DIBI	45.	40.	-0.5	-3.6	0.3	0.0	16.2	19.7	588.	521.	51.3.
0181	46.	40.	-0.4	5.7	10.7	0.0	4.5	7.0	421.	449.	450.
01B1	47	40.	-0.4	-0.2	2.8	0.0	5.3	7.4	521.	502.	500.
04.843	4.0	40	-0.4	16.0	21.6	0.0	-14.6	-14.0	307.	429.	441.
LDI	40.	40.	0.4	20.0	4.2	0.0	18 1	19 7	269	177	152
DIBI	49.	40.	-0.4	-7.0	-9.6	0.0	20.2	47.5	247	205	ADE
01B1	50.	40.	-0.4	16.8	21.8	0.0	-14.9	-13.5	297.	360.	400.
DIBI	51.	40.	-0.4	-6.5	-3.8	0.0	17.9	20.5	281.	189.	111
01B1	52.	40.	-0.4	16.3	21.6	0.0	-12.3	-9.4	392.	484.	499.
D3 B1	53	40.	-0.4	-5.5	-3.4	0.0	14.3	16.5	294.	217.	207.
0181	54	40	-0.4	12.4	17.4	0.0	-8.9	-6.7	437.	513.	524
1404	55	40	-0.4	-6 6	-5 0	0.0	12 4	13.9	240.	171.	163.
DIBL	22.	40.	0.4	6.1	10.4	0.0	-1.9	-0.1	502	542	546
0181	56.	40.	-0.4	0.1	10.4	0.0	4.2		100.	355	350
0181	57.	40.	~0.4	-1.6	0.5	0.0	6.1	7.3	189.	155.	152.
D1B1	58,	40.	-0.4	8.6	14.5	0.0	2.2	5.2	502.	542.	546.
01B1	59.	40.	-0.4	2.0	5.7	0.0	9.0	11.2	174.	152.	151.
DIRI	60	40	-0.4	8.5	14.3	0.0	2.3	5.3	502.	542.	546.
DIPI	61	40	-0.4	0.2	3.9	0 0	11.1	13.6	189.	155.	152
12.822	64.		-0.4	15 1	20.2	0.0	-12 4	-12 1	302	413	428
DIBI	02.	40.	-0.4	10.1	20.2	0.0	00.4	25.4	222	216	100
D1B1	63.	40,	-0.4	-11.4	-9.0	0.0	63.9	20.9	331.	410.	433.
D1B1	64.	40.	-0.4	19.4	25.5	0.0	-18.3	-17.6	260.	414.	432.
)1B1	65.	40.	-0.4	-5.4	-3.7	0.0	10.7	12.0	240.	171.	163.
01B1	66.	40.	-0.4	14.1	20.7	0.0	-3.5	0.0	437.	513.	524.
0181	67	40	-0.4	-9.3	-6.2	0.0	23.8	27.7	371.	276.	265.
0101	50	40	-0.4	19 8	25 5	0.0	-18 6	-17.1	247	386	406
DIBT	00.		0.4	23.0	.0.6	0.0	22 3	25 4	331	216	199
DIBI	69.	40.	-0.4	-11./	-9.0	0.0	43.1	40.9	222.	420	440
D1B1	70.	40.	-0.3	11.4	16.1	0.0	-6.5	-4.9	399.	430.	440.
D1B1	71.	40.	-0.3	-2.6	0.0	0.0	11.8	14.2	212.	161.	156.
D1B1	72.	40.	-0.3	14.2	18.8	0.0	-11.9	-10.6	302.	413.	428.
0181	73	40	-0.2	-3.6	-2.1	0.0	10.7	12.1	174.	114.	106.
5181	74	40	-0.2	14 2	17 7	0.0	-13.6	-11.2	392.	484 .	499.
DIDI	79.	40	0.0	-1 3	-1.2	0.0	2.0	2.2	119	88.	85
DIBI	75.	40.	0.0	2.0	4.0	0.0	-2.0	-2.3	257	290	294
DIBI	76.	40,	0.0	3.9	9.8	0.0	-3.0	-6.3	201,	670.	509
D1B2	1.	200.	-2.2	5.1	15.7	0.0	13.8	16.3	521.	502.	500.
D1B2	2.	200.	-2.2	8.2	20.3	0.0	10.1	13.4	520.	547.	549.
D182	3.	200.	-2.2	4.7	18.4	0.0	17.0	21.1	521.	502.	500.
0182	4	200	-2.2	12.7	24.3	0.0	1.8	4.5	437.	513.	524
0182		200	-1 5	-5 0	2.8	0.0	22.7	27.0	588.	521.	513
0100	6	200.	- 2 2		14 0	0.0	3 7	5.7	401	445	649
102	0.	200.	4.3	0.0	29.2	0.0	10.0	15 2	537	504	502
DIBZ	7.4	200.	-1.3	0.2	20.2	0.0	46.3	20.0	220	364	200
D1B2	8.	200.	~1.2	23.7	32.8	0.0	-17.3	-14.8	210.	304.	306
0182	9.	200.	-0.4	-1.1	1.4	0.0	7.8	9.8	287.	253.	251
01B2	10	200.	-0.4	7.6	11.6	0.0	-3.7	-2.1	475.	532.	539
1182	11	200	-0.4	-0.B	1.6	0.0	7.2	8.8	189.	155.	152
11 8 2	10	200	-0.4	6.3	10 4	0.0	-2 3	-0.5	502	542	546
0.1.00.0	44.	200.		0.5		0.0	12 2	15 0	174	114	106
JIBZ	13.	200.	-0.4	4.1	-1.7	0.0	43.3	15.0	200	404	400
D1B2	14.	200.	-0.4	13.5	17.9	0.0	-10.7	-8.3	392.	464.	433
01B2	15.	200.	-0.4	-2.5	-0.1	0.0	9.6	11.7	309.	257.	253
D1B2	16	200.	-0.4	8.7	13.0	0.0	-4.8	-3.0	475.	532.	539
0187	17	200	-0.4	-2 5	-0.2	0.0	10.3	11.7	342	98.	92
2222	A7.	200.	-0.4	6.5	34 5	0.0	-4.0	-2.8	475	532	530
U1B2	10.	200.	-0.4	3.1	74.5	0.0	4.9	2.0	100	355	350
D1B2	19.	200.	-0.4	~0.5	1.9	0.0	1.2	6.7	169.	105.	126
D1B2	20.	200.	-0.4	7.3	11.2	0.0	-4.3	-2.8	475.	532.	539
D1B2	21.	200.	-0.4	-5.5	-3.2	0.0	14.2	15.6	216.	141.	129
DIRO	22	200	-0.4	14 6	19.2	0.0	-11.6	-9.0	392	484.	499
0100	53	200	-0.4	-1 5	-2.4	0.0	13 3	15 2	240	171	163
0104	6.2.	200.	0.4	10.0	17 5	0.0	-0.5		437	612	524
D1B2	24.	200.	-0.4	12.5	17.3	0.0	-3.6	-1.3	437.	513.	264
D1B2	25.	200.	-0.4	-1.2	1.3	0.0	7.8	9.8	287.	253.	251
D1B2	26.	200.	-0.4	7.3	11.2	0.0	-3.4	-1.8	475.	532.	539
DIB2	27	200	-0.4	-1.9	0.4	0.0	9.1	10.8	212.	161.	156
0182	2.0	200	-0.4	7 7	11 7	0.0	-4.0	-2 4	475	532	539
111 10 10	20.	000.	0.4		-7.5	0.0	12.2	12.0	174	114	106
1182	29.	200.	-0.4	3.0	15 0	0.0	-0.0	43.0	244	430	440
U1.08	30.	200.	-0.4	10.6	10.0	0.0	0.0				
EPAREI	BY:	D. E. CO	STA				DAT	E:			
		and the second se									

.....

3

TABLE 7-1 cont.

TRANS	PV #	TRANSIENT	INS: RAD	TOTAL LI IDE SURI LONG	INEARIZE FACE HOOP	D STRES	S (ksi) IDE SURJ LONG	FACE HOOP	BA: TEMPEI ID	SE METAI RATURES FLAW	(F) OD
********		約 単 単 単 単 単 単 単			*****	新田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	「日本市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市	日本市のお井	######################################	2.4.2	120
CD1B2	31.	200.	-0.4	-4.8	-2.5	0.0	13.0	15.0	210.	141.	169.
CD1B2	32,	200.	-0.4	13.9	18.9	0.0	-1.2	-9.6	374.	409.	277.
CD1B2	33.	200.	-0.4	-1.8	0.3	0.0	0.7	0.4	207.	403.	451.
CD1B2	34.	200.	-0.4	9.7	13.7	0.0	-6.6	-4.8	437.	513.	524.
CD1B2	35.	200.	-0.4	-3.7	-1.0	0.0	12.4	14.9	317.	267.	260.
CD1E2	36.	200.	-0.4	11.1	15.7	0.0	-6.8	-4.7	437.	513.	524.
CD1B2	37.	200.	-0.4	-0.5	2.2	0.0	7.5	9.5	287.	253.	251.
CD1B2	38.	200.	-0.4	9.2	13.8	0.0	-5.6	-3.7	475.	532.	539.
CD1B2	39.	200.	-0.4	-0.2	1.6	0.0	4.2	5.0	174.	152.	151.
CD1B2	40.	200.	-0.4	5.1	9.2	0.0	2.5	4.6	274.	296.	298.
CD1B2	41.	200.	-0.4	-5.2	-2.9	0.0	24.6	16.8	240.	171.	163.
CD1B2	42.	200.	-0.4	13.0	17.1	0.0	-11.0	-8.7	392.	484.	499.
CD1B2	43.	200.	-0.4	-6.9	-4.4	0.0	17.1	18.6	26.9 .	177.	162.
CD1B2	44.	200.	-0.4	15.6	20.0	0.0	-13.4	-10.5	364.	465.	481.
CD1B2	45.	200.	-0.4	-7.1	-4.7	0.0	17.9	20.4	281.	189.	177.
CD1B2	46.	200.	-0.4	15.9	20.5	0.0	-12.7	-9.6	364.	465.	481.
CD1B2	47.	200.	-0.4	-5.2	-3.4	0.0	13.2	15.3	294.	217.	207.
CD1B2	48.	200.	-0.4	11.6	16.1	0.0	-8.6	-6.5	437.	513.	524.
CD1B2	49.	200.	-0.4	-6.2	-4.9	0.0	11.4	12.8	240.	171.	163.
CD1B2	50.	200.	-0.4	5.7	9.6	0.0	-1.9	-0.3	502.	542.	546.
CD1B2	51.	200.	-0.4	0.6	3.7	0.0	9.2	11.4	189.	155.	152.
CD1B2	52.	200.	-0.4	7.9	13.2	0.0	2.6	4.4	502.	542.	546.
CD1B2	53	200	-0.4	1.6	4.9	0.0	8.0	10.0	174.	152.	151.
CD1B2	54	200.	-0.4	7.8	13.0	0.0	1.7	4.5	502.	542.	546.
CD182	55	200	-0.4	0.0	3.2	0.0	9.9	12.2	189.	155.	152.
0182	56	200	-0.3	14.4	18.7	0.0	-12.5	-10.0	392.	484.	499.
(120202	57	200	-0.2	-6.9	-5.2	0.0	15.1	16.5	216.	141.	129.
CDIBS	50	200.	-0.2	15 8	20.4	0.0	-15.4	-14.2	302.	413.	428.
CDIBS	50.	200.	-0.1	-1.2	0.1	0.0	6.9	8.1	119.	88.	85.
CDIDA	27.	200.	-0.1	6.8	0.7	0.0	-2.1	-0.4	231.	279	286
CD102	¢0.	200.	-0.1	-5.3	- 4 7	0.0	7 9	9.4	317	267	260
CUIBE	04.	200.	0.1	7 5	0.2	0.0	-7.3	-6.2	196	258	268
CDIBZ	06.	200.	-0.1	2.0	-5 5	0.0	5 9	5.5	142	98	92
CD1B2	03.	200.	0.0	-4.9	7 4	0.0	-57	-4.8	221	279	286
CD182	06.	200.	0.0	0.0	0.5	0.0	2.1	2 6	110	00	85
CD182	53.	200.	0.0	-0.9	-0.5	0.0	3.2	3.0	274	206	200
CD1B2	66.	200.	0.0	2.5	3.8	0.0	-1.0	-0.9	272.	690.	#20. 05
CD1B2	67.	200.	0.0	-1.3	-1.0	0.0	3.7	9.6	117.	200.	204
CD1B2	68.	200.	0.0	3.4	4.8	0.0	-3.0	- 6 - 3	437.	290.	274.
TRAN2A	1.	1440.	-2.2	5.2	16.8	0.0	12.8	16.3	550.	550.	550.
TRAN2A	2.	1440.	-2.2	2.0	13.5	0.0	18.7	22.9	537.	504.	502.
TRAN2B	1.	1440.	-2.2	4.9	16.2	0.0	12.2	15.6	550.	559.	550.
TRAN2B	2,	1440.	-2.2	1.0	11.9	0.0	19.5	23.3	559.	bil.	500.
TRAN2B	3.	1440.	-2.2	9.1	20.6	0.0	6.3	8.8	401.	440.	447.
TRAN2B	4.	1440.	-2.2	0.6	11.5	0.0	20.1	24.0	559.	511.	506.
TRAN3	1.	48000.	-2.2	5.3	16.8	0.0	12.9	16.5	550.	550.	550.
TRAN3	2.	48000.	-2.3	-0.3	10.9	0.0	21.3	25.5	559.	511.	506.
TRAN4	1.	48000.	-2.2	3.7	15.1	0.0	15.9	19.8	521.	502,	500.
TRAN4	2.	48000.	-2.2	8.9	20.7	0.0	7.4	10.1	502.	542.	546.
TRAN5	0.	8000.	-2.2	3.4	13.6	0.0	12.8	15.3	521.	502.	500.
TRANS	0.	8000.	~2.2	4.9	16.2	0.0	12.2	15.6	550.	550.	550.
TRAN6	0.	8000.	-2.2	3.7	13.6	0.0	12.1	14.2	521.	502.	500.
TRANG	0.	8000.	-2.2	4.9	16.2	0.0	12.2	15.6	550.	550.	\$50.
TRAN7	1.	310.	-2.2	4.9	16.2	0.0	12.2	15.6	550.	550.	550.
TRAN7	2.	310.	-2.1	2.5	12.9	0.0	16.2	19.7	537.	504.	502.
TRAN7	3.	310.	-2.2	9.1	20.9	0.0	6.9	9.7	502.	542.	546.
TRAN7		310	-2.2	2.1	13.4	0.0	18.1	22.2	537.	504.	502.
TRANEA	1.	80.	-2.5	2.0	13.8	0.0	17.2	20.7	537.	504.	502.
TRANSA	2.	80.	-2.2	12.6	25.3	0.0	5.6	8.9	475.	532.	539.
TRANSB	1	162	-2.4	6.3	18.6	0.0	11.8	14.7	535.	549.	550.
TRANCE	2	162	-2.2	2.2	13.7	0.0	18 7	23.0	537	504	502
TRANKC	1	88	-2.6	5.0	17.7	0.0	16.7	20.0	521	502	500
TRANCC	2	00.	-2.2	P.4	20 6	0.0	10 4	13.8	520	547	549
TRANCO	3	20	-2 4	5 3	17 1	0.0	15 6	18 5	521	502	500
TRANCO		70.	-2.2	P. 4	20.7	0.0	11 1	14 6	520	547	549
I RAIN DU		10.	-6.6	0.8	20.7	0.0	14.4	17.4	625	502	500
TRANS	0.	*0.		11.0	74.0	0.0	2	5.6	475	533	520
I KANS	v.	40.	-2.2	****	23.9	0.0	5.0	0.0		236.	
PEDADEN	BY.	D. F. COL	TA				DAT	HE :			
REFARED	DII	D. B. CO	ED S D D				- DAT				CR.
PATRMED	DI	9. F. SH	TARD				DAT.				

B&W NUCLEAR TECHNOLOGIES ** NON-PROPRIETARY ** 32-1236435-00

th,

TABLE 7-1 cont.

TRANS	PV #	TRANSIENT	INS. RAD	LAL L	INEARIZI FACE HOOP	ED STRES	S (ksi) IDE SURF LONG	HOOP	BAI TEMPEI ID	se metai Ratures Flaw	(F) OD
	****	*******	*****	******		*****	****	1 10 10 10 10 10	50 30 AL 42 50 1	市場業業業業がおう	2.25.25.25.25.25.25.25.25.25.25.25.25.25
TRAN10	0.	20.	-2.2	4.2	15.1	0.0	14.7	17.8	521.	502.	500.
TRAN10	0.	20.	-2.2	5.2	16.7	0.0	12.8	16.3	550.	550.	550.
TRAN13	0.	140000.	-2.2	4.9	16.2	0.0	12.2	15.6	550.	550.	550.
TRAN13	0.	140000.	-2.2	4.9	16.2	0.0	12.2	15.6	550.	550.	550.
TOANIA	1	40	-2.2	4.8	16.0	0.0	12.1	15.4	550.	550.	550.
TOANIA	3	40	-23	1.8	12.8	0.0	16.3	19.7	537.	504.	502.
TRANIA		4000	-2.2	4.9	16.2	0.0	12.2	15.6	550.	550.	550.
TRANAS	0.	4000.	-2 3	4.9	16.2	0.0	12 2	15 6	550	550	550.
TRANIS	0.	4000.	2.2	4.0	36.2	0.0	10 0	15 6	550	550	550
TRN20A	0.	30000.	-2.2	9.9	10.2	0.0	10.0	15.0	EED.	550.	550
TRN20A	0.	30000.	-2.2	4.9	16.2	0.0	16.6	15.0	550.	550.	SEC.
TRN20B	1.	20000.	-2.2	4.8	16.0	0.0	12.1	15.9	350.	550.	550.
TRN20B	2.	20000.	-2.2	2.8	13.4	0.0	14.4	17.8	521.	502.	500.
TRN20C	0.	4000000.	-2.2	4.9	16.2	0.0	12.2	15.6	550.	550.	550.
TRN20C	0.	4000000.	-2.2	4.9	16.2	0.0	12.2	15.6	550.	550.	550.
TR20D1	1.	0.	-2.2	4.8	16.0	0.0	12.1	15.4	550.	550.	550.
TR20D1	2.	0.	-2.2	2.9	13.4	0.0	13.9	17.0	521.	502.	500.
TR20D2	1.	34000.	-2.2	5.7	17.4	0.0	13.6	17.4	550.	550.	550.
TR20D2	2	34000.	-2.2	1.7	12.2	0.0	16.2	19.6	537.	504.	502.
102281	1	5	-0.6	1.3	3.9	0.0	3.2	3.7	70.	70.	70.
156652	5	5	-0.6	-6.6	-2.3	0.0	22.6	25.0	269.	177.	162.
TRZZAL		2.	-0.0	0.7	1.0	0.0	1 7	1 0	70	70	70
TR22B1	1.	15.	-0.2	0.7	1.7	0.0	70 5	20.4	260	177	162
TR22B1	2.	15.	-0.2	-0.5	-3.9	0.0	10.5	20.4	205.	200	200
TR22C1	1.	10.	-0.9	2.5	1.1	0.0	5.6	1.0	300.	300.	220
TR22C1	2.	10.	-0.9	-3.0	2.2	0.0	18.0	20.3	216.	141.	129.
TR22D1	1.	10.	-0.7	2.1	6.4	0.0	4.8	6.7	300.	300.	300.
TR22D1	2.	10.	-0.7	-2.9	1.3	0.0	15.6	17.8	174.	114.	106.
TR22A2	1.	7.	-0.6	1.2	3.8	0.0	3.2	3.7	70.	70.	70.
TR22A2	2.	7.	-0.6	-6.7	-2.4	0.0	22.4	24.8	269.	177.	162.
TR2282	3.	7.	-0.6	9.7	15.7	0.0	-1.5	0.5	375.	445.	449.
TP22222	4	7	-0.6	-3.5	0.8	0.0	18.5	21.0	216.	141.	129.
700000	6	7	-0.6	15.7	21.6	0.0	-8.5	-6.6	335.	436.	453.
10460A	6	7	-0.6	-3.1	1 2	0.0	18.0	20.5	216.	141.	129.
TREEAZ	0.		-0.6	26.2	22.2	0.0	-9.1	-7.2	335	435	453
TRZZAZ	7.	1.	-0.6	10.3	46.4	0.0	36.2	30.0	374	114	106
TRZZAZ	В.	7.	-0.8	-1.9	2.4	0.0	10.2	10.0	207	420	442
TR22A2	9.	7.	-0.6	18.0	25.3	0.0	-11.3	-9.8	307.	442.	241.
TR22A2	10.	7.	-0.6	1.2	3,8	0.0	3.2	3.1	10.	70.	70.
TR22B2	1.	42.	-0.2	0.7	1.9	0.0	1.6	1.9	70.	70.	70.
TR2282	2.	42.	-0.2	-6.6	-4.0	0.0	18.4	20.3	269.	177.	162.
TR22B2	3.	42.	-0.2	8.1	12.3	0.0	-2.7	-1.2	375.	445.	449.
TR22B2	4.	42.	-0.2	-3.3	-0.7	0.0	14.4	16.6	174.	114.	106.
TR22B2	5.	42.	-0.2	9.7	14.5	0.0	-4.5	-2.8	375.	445.	-49.
TR2282	6.	42.	-0.2	-3.0	-0.3	0.0	14.0	16.2	174.	114.	106.
TE2282	7	42.	-0.2	10.0	14.8	0.0	-4.8	-3.1	375.	445.	449.
TH2282	R	42	-0.2	-2.2	0.5	0.0	12.7	14.8	174.	114.	106.
782282	0	42	.0.2	14 7	19.9	0.0	~10.6	-9.4	307.	429.	441.
TP22282	20	42	-0.2	0.7	1 0	0.0	1.6	1.9	70	70.	70.
154404	20.		0.0	2.4	76	0.0	5 7	7 7	300	300	300
REECZ	* .		-0.9	-2.2	2.0	0.0	18 0	20.2	216	141	129
TRZZCZ	4.		-0.9	- 2.4	14.0	0.0	20.0	4.0.2	403	445	440
TR22C2	3.	7.	-0.9	7.6	14.3	0.0	2.5	9.7	401.	430.	512
TR22C2	4.	7.	-0.9	-3.1	2.7	0.0	19.1	23.1	588.	521.	513.
TR22C2	5.	7.	-0.9	7.9	14.9	0.0	2.0	4.4	402.	448.	450.
TR22C2	6.	7.	-0.9	-2.7	3.1	0.0	18.4	22.2	588.	521.	513.
TR22C2	7.	7.	-0.9	8.9	15.7	0.0	0.4	2.3	375.	445.	449.
TR22C2	8.	7.	-0.9	-1.1	5.1	0.0	16.5	20.5	559.	511.	506.
TR22C2	9	7	-0.9	13.7	21.6	0.0	-5.1	-3.3	347.	440.	446.
TR22C2	10	7	-0.9	2.4	7.6	0.0	5.7	7.7	300.	300,	300.
782252	1	100	-0.7	2.0	6.3	0.0	4.7	6.6	300	300.	300
102202	4.	100.	-0.7	.2.0	1 1	0.0	15 5	17 7	174	114	106
184414	£ .	100.	-0.7	-3.0	10.4	0.0	10.0	2.0	401	446	440
TR22D2	3.	100.	-0.7	0.0	12.1	0.0	1.0	3.0	500	600	613
TR22D2	4.	100.	-0.7	-2.9	1.9	0.0	16.5	19.9	588.	244.	513.
TR22D2	5.	100.	-0.7	6.9	12.7	0.0	1.3	3.4	402.	448.	450.
TR22D2	6.	100.	-0.7	-1.9	3.3	0.0	15.7	19.6	559.	511.	506.
TR22D2	7.	100.	-0.7	7.1	12.9	0.0	1.1	3.2	402.	448.	450.
TR22D2	8.	100.	-0.7	-1.1	3.9	0.0	14.2	17.8	559.	511.	506.
TR22D2	9.	100.	-0.7	14.8	21.3	0.0	-7.9	-6.1	302.	413.	428.
TR22D2	10.	100.	-0.7	2.0	6.3	0.0	4.7	6.6	300.	300.	300.

PREPARED	BY:	<u>D.</u>	E.	COSTA	DATE :	-		
REVIEWED	BY:	<u>J.</u>	F.	SHEPARD	DATE:		PAGE :	

APPENDIX A: FORTRAN PROGRAM LISTING

THIS APPENDIX CONTAINS INFORMATION PROPRIETARY TO BWNT AND IS THEREFORE REMOVED FROM THIS NON-PROPRIETARY DOCUMENT. THE CONTENTS OF THIS APPENDIX ARE CONTAINED IN THE PROPRIETARY VERSION OF THIS DOCUMENT, REFERENCE [5].

FREPARED	BY:	<u>D.</u>	Β.	COSTA	DATE:		
REVIEWED	BY:	<u>J.</u>	F.	SHEPARD	DATE:	 PAGE:	

BEW NUCLEAR TECHNOLOGIES

APPENDIX B: FORTRAN PROGRAM VERIFICATION

This appendix contains a set of calculations used to verify the FORTRAN program listed in Appendix A. It should be noted that the program is a modification of the FORTRAN programs used previously in the fatigue analysis of the TE pressurizer surge nozzle for thermal stratification, Reference [3].

Test cases were run at several stages to verify the various routines as they were added to (or modified) the program. For example, after the routine to pick the base case for each pv was added, a sample of 200+ pv's was run and the actual pv data (starting temperature, AT, and ramp rate) was compared to the equivalent base case parameters chosen by the program. In addition to intermediate verifications and verification contained herein, both the preparer and reviewer have reviewed the programs logic and structure.

It should be noted that the program listing contained in Appendix A also contains numerous comment cards explaining the various program commands and routines. By reviewing the comment cards and the FORTRAN statements following, it is possible to verify if the intended procedure has been satisfied.

To verify that the program performs as intended, hand calculations will be performed to show that the results given in the output of the FORTRAN program are correct. HUIA1 pv 5 and HUIA1 pv 40 have been arbitrarily chosen for review.

VERIFICATION CASE, SCL 2 (nozzle-to-head juncture), FICHE CR3SCL2.OUT Data for HUIA1 pv 5:

Input Data:

Starting Temperature = $482F$ Ending Temperature = $97F$ Delta Temperature (ΔT) = $-385F$ Ramp Rate = -3849 F/Hr	Ref [2], Table A-1 Ref [2], Table A-1 Ref [2], Table A-1 Ref [2], Table A-1 Ref [2], Table A-1
Internal Pressure = 578 psi	Ref [2], Table A-1
Resultant Moment (Mr) = 280908 in-1bs	Ref [2], Table A-1
280.908 in-kips	
Stress-to-Moment Ratio: ID radial = 0.0 ID long = 0.0015 ID hoop = 0.0025 OD radial = 0.0 D long = 0.0026 OD hoop = 0.0034	Section 5.0
Number of Cycles = 10 for CR-3	Ref [2], Table C-0

Choose Base Case:

ramp rate is negative, therefore base cases 13.1 to 20.4
 start temp = 482, therefore base cases 13.1 to 18.5 (tstrt > 300)

PREPARED	BY:	<u>D.</u>	Е.	COSTA	DATE:		
REVIEWED	BY:	<u>J.</u>	F.	SHEPARD	DATE :	 FAGE:	22

*

5) ramp rate = -3849, therefore base cases 16.1 to 16.4 (rate = -4000) 4) ΔT = -385, therefore base case 16.1 (ΔT = -322)

Base Case Metal Temperatures:

inside surface temperature = 253°F flaw temperature = 410°F outside surface tempe.ature = 437°F

Base Case Stresses (linearized) :

Table 6-1

thermal stresses (base case 16.1)

inside	surface:	radial = 0.0 ksi longitudinal = 24.4 ksi hoop = 28.8 ksi	
outside	surface:	radial = 0.0 ksi	4

ongitudinal 26.8 KB1 hoop = -25.5 ksi

pressure stresses (base case 30.1)

inside	surface:	radial = -2.2 ksi longitudinal = 3.6 ksi hoop = 12.8 ksi
outside	surface:	radial = 0.0 ksi

that has der alle had fan	DULADUD:	TOPPTOT - DID P	
		longitudinal = 10.3	ksi
		hoop = 11.5 ksi	

Resulting PV stresses:

thermal stress: AT ratio = -385/-322 = 1.196

inside	surface:	radial = 0.0(1.196) = 0.0 ksi	
		longitudinal = 24.4(1.196) = 29.18 k	si
		hoop = 28.8(1.196) = 34.44 ksi	

outside surface: radial = 0.0(1.196) = 0.0 ksi longitudinal = -26.8(1.196) = -32.05 ksi hoop = -25.5(1.196) = -30.49 ksi

pressure ratio = 578/2200 = 0.263 pressure stresses:

inside surface: radial = -2.2(0.263) = -0.58 ksi longitudinal = 3.6(0.263) = 0.95 ksi hoop = 12.8(0.263) = 3.36 ksi

outside surface: radial = 0.0(0.263) = 0.0 ksi longitudinal = 10.3(0.263) = 2.71 ksi hoop = 11.5(0.263) = 3.02 ksi

moment stress:

radial = 280.908(C.0) = 0.0 ksi ins surface: longitudinal = 280.908(0.0015) = 0.42 ksi hoop = 280.908(0.0025) = 0.70 ksi

PREPARED	BY:	<u>p.</u>	<u>E.</u>	COSTA	DATE:		
REVIEWED	BY:	J.	F.	SHEPARD	DATE:	 PAGE:	23

BAW NUCLEAR TECHNOLOGIES

120

** NON-PROPRIETARY **

32-1236435-00

4

outside surface: radial = 280.908(0.0) = 0.0 ksi longitudinal = 280.908(0.0026) = 0.73 ksi h.op = 280.908(0.0034) = 0.96 ksi

Combined PV stresses:

inside surface:	radial = $0.0 + (-0.58) + 0.0 = -0.58$ ksi longitudinal = $29.18 + 0.95 + 0.42 = 30.55$ ksi hoop = $34.44 + 3.36 + 0.70 = 38.50$ ksi
outside surface:	radial = 0.0 + 0.0 + 0.0 = 0.0 ksi longitudinal = -32.05 + 2.71 + 0.73 = -28.61 ksi hoop = -30.49 + 3.02 + 0.96 = -26.51 ksi

Data for HUIA1 pv 40:

Input Data:

Starting Temperature = 282F	Ref [2], Table A-1
Ending Temperature = 591F	Ref [2], Table A-1
Delta Temperature $(\Delta T) = 309F$	Ref [2], Table A-1
Ramp Rate = 1058 F/Hr	Ref [2], Table A-1
Internal Pressure = 1543 psi	Ref [2], Table A-1
Resultant Moment (Mr) = 2092208 in-1bs	Ref [2], Table A-1
2092.208 in-kips	
Stress-to-Moment Ratio: ID radial = 0.0 ID long = 0.0015 ID hoop = 0.0025 OD radial = 0.0	Section 5.0
OD long = 0.0026 OD hoop = 0.0034	Def [2] Table C-0
NUMBER OF CYCLES = 10 FOF CR-5	Wer fell rente c.o

Choose Base Case:

1) ramp rate is positive, therefore base cases 1.1 to 11.1 2) start temp = 282, therefore base cases 1.1 to 6.1 (tstrt < 300) 3) ramp rate = 1058, therefore base cases 2.1 to 2.7 (1.1 rate = 1100) 4) $\Delta T = 309$, therefore base case 2.1 ($\Delta T = 300$)

Base Case Metal Temperatures:

inside surface temperature = 449°F .law temperature = 342°F outside surface temperature = 325°F

Base Case Stresses (linearized) :

```
Table 6-1
```

thermal stresses (base case 2.1)

inside surface: radial = 0.0 ksi longitudinal = -15.3 ksi hoop = -15.7 ksi

outside surface: radial = 0.0 ksi longitudinal = 19.1 ksi hoop = 20.0 ksi

PREPARED	BY:	<u>D.</u>	Ε.	COSTA	DATE:		
REVIEWED	BY:	J.	F.	SHEPARD	DATE :	 PAGE:	24

pressure stresses (base case 30.1)
inside surface: radial = -2.2 ksi
longitudinal = 3.6 ksi
hoop = 12.8 ksi
outside surface: radial = 0.0 ksi
longitudinal = 10.3 ksi
hoop = 11.5 ksi

Resulting PV stresses:

thermal stress: AT ratio = 309/300 = 1.03

inside surface: radial = 0.0(1.03) = 0.0 ksi longitudinal = -15.3(1.03) = -15.76 ksi hoop = -15.7(1.03) = -16.17 ksi

outside surface: radial = 0.0(1.03) = 0.0 ket longitudinal = 19.1(1.03) = 19.61 (41 hoop = 20.0(1.03) = 20.67 ket

pressure stresses: pressure ratio = 1543/2200 = 0 00

inside surface: radial = -2.2(0.70) = -1.54 ksi longitudinal = 3.6(0.70) = 2.52 ksi hoop = 12.8(0.70) = 8.96 ksi

outside surface: radial = 0.0(0.70) = 0.0 ksi longitudinal = 10.3(0.70) = 7.21 ksi hoop = 11.5(0.70) = 8.05 ksi

moment stress:

inside surface: radial = 2092.208(0.0) = 0.0 ksi longitudinal = 2092.208(0.0015) = 3.14 ksi hoop = 2092.208(0.0025) = 5.23 ksi

outside surface: radial = 2092.208(0.0) = 0.0 ksi longitudinal = 2092.208(0.0026) = 5.44 ksi hoop = 2092.208(0.0034) = 7.11 ksi

Combined PV stresses:

inside surface: radial = 0.0 - 1.54 + 0.0 = -1.54 ksi longitudinal = -15.76 + 2.52 + 3.14 = -10.10 ksi hoop = -16.17 + 8.96 + 5.23 = -1.98 ksi outside surface: radial = 0.0 + 0.0 + 0.0 = 0.0 ksi longitudinal = 19.67 + 7.21 + 5.44 = 32.32 ksi hoop = 20.60 + 8.05 + 7.11 = 35.76 ksi

CONCLUSION :

The values determined above are comparable to the values resulting from the FORTRAN calculations of CR3SCL2.OUT. It is therefore concluded that the FORTRAN program is correct.

PREPARED BY: <u>D. E. COSTA</u> DATE: ______ REVIEWED BY: <u>J. F. SHEFARD</u> DATE: _____ PAGE: ____ BAW NUCLEAR TECHNOLOGIES ** NON-PROPRIETARY **

.

.

APPENDIX C: MICROFICHE

CR3SCL2.IN - Echo of FORTRAN input file

dated 11-06-94 @ 11:31 am

Stress results for the nozzle-to-head weld region (stress classification line 2). The stresses are a result of surge CR3SCL2.OUT line stratification.

dated 11-06-94 @ 1:22 pm

COPIES OF MICROFICHE ARE NOT CONTAINED IN THIS DOCUMENT. THE MICROFICHE ARE CONTAINED IN REFERENCE [5].

PREPARED	BY:	D.	E .	COSTA	DATE:		
REVIEWED	BY:	<u>J.</u>	F.	SHEPARD	DATE:	PAGE:	26