NCAR

How well can Kilometer -Scale Models Capture Recent Intense Precipitation Events?

Andreas F. Prein, D Ahijevych, J Powers, R Sobash, C Schwartz

National Center for Atmospheric Research

Photo by <u>@KenGeiger</u>

5th Annual Probabilistic Flood Hazard Assessment Workshop, Feb. 19, 2020

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsor ed by the National Science Foundation under Cooperative Agreement No. 1852977

Convective outbreak

Model

Correct representation of:

- Spatial structures
- Intensities
- Time evolution

Observation

Step Improvement in Simulating Intense Rainfall Storms

100 km

100 km

100 km

Deep convection in atmospheric models

GCM grid spacing (~100 x 100 km)

- Deep convection is sub-gridscale process
- Needs cumulus parameterization

When do we start to resolve deep convection?

 ~4 km horizontal grid spacing (Weisman et al. 1997)

24 km grid spacing

NRC project NR. 31310019S0015 "Convection-Permitting Modeling for Intense Precipitation Processes"

Probable Maximum Precipitation (PMP)

Does not allow quantification of uncertainties in hazard estimates in either a physical or a risk sense.

Convection-Permitting Models

Can they facilitate a more physically-based probabilistic flood risk assessments?

Intense Precipitation Events in Eastern CONUS

Daily, 1-in-5-yr precipitation amount for 3646 stations for the period of 1950–2010

Evaluation in Four Regions

Kunkel et al. 2012

Convection-Permitting Model Simulations

Dataset	Δx	Elements	Period	Region	References
NCAR Real-time Ensemble	3 km	10-member ensemble forecasts	5/1/2015- 12/31/2017	CONUS	Schwartz et al. (2014, 2015a, 2015b), Romine et al. (2014)
NCAR MPEX Ensemble	3 km & 1 km	10-member ensemble forecasts	5/15/2013- 6/15/2013	Central / eastern U.S.	Schwartz et al. (2017)
NCAR Severe Weather Study	3 km & 1 km	Deterministic forecasts; 500 cases	2010-2017	Central / eastern U.S.	Sobash et al. (2019), Schwartz et al. (2019)

- 10,570 36-hour WRF simulations/forecasts at 3-km horizontal grid spacing (1.8 mi)
- 810 36-hour simulations at $\Delta x=1$ km (0.6 mi)

Are Intense Precipitation Events Harder to Simulate?

Model skill increases with intensity of event

Southern U.S.

Case Selection | Top 20 Events in Each Region

Top 20 Events in Appalachia Region

Lagrangian Evaluation Framework

West Virginia Flooding of 2016

Simulation has to capture:

- Track
- Movement speed
- Size evolution
- Precipitation volume
- Peak accumulation

West Virginia Flooding of 2016

West Virginia Flooding of 2016

- Large spread due to initial condition perturbations
- 3 km and 1 km results are comparable
- 3 km seem to have too much rainfall on lee-side

Best Peak Accumulation

Best Volume | 1 km

Worst Overall Simulation

0 10 20 40 60 80 100 120 140 160 180 200 220 240 260

Tropical Storm Bill | June 2015

Datasets

Next Steps

NCAR

- Assessment of model performance based on ensemble of intense events
- Quantification of systematic model biases
- Analyses of uncertainty sources to model performance
- Conceptual framework to use CPM simulations in Monte Carlo rainfallrunoff simulations

Uncertainty Source	Setting
Horizontal grid spacing (Δx)	3 km, 1 km (1.8 mi, 0.6 mi)
Precipitation observations	Stage-IV (Crosson et al. 1996, Fulton et al. 1998) Mosaic WSR-88D (Zhang and Gourley 2018) PRISM (Daly et al. 1994, 2002, 2008) Newman (Newman et al 2015)
Initial Conditions	Ensemble datasets to be used reflect initial condition perturbations

Summary and Conclusions

• Convection-permitting models can capture recently observed intense rainfall events east of the Continental Divide

- Predictability increases with rarity of event
- Sensitivity to initial condition perturbations is large
- 3 km and 1 km simulations show comparable results

This work is sponsored by NRC under the Interagency Agreement Number 31310019S0015

