Probabilistic Assessment of Flood Hazards Due to Combinations of Flooding Mechanisms: Study Progress and Next Steps

Michelle (Shelby) Bensi, Somayeh Mohammadi [University of Maryland] Shih-Chieh Kao, Scott T. DeNeale [Oak Ridge National Laboratory]

RIDGE National Laboratory

NRC COR: Meredith Carr

Project Overview

NRC Sponsored Project Title:

Methods for Estimating Joint Probabilities of Coincident and Correlated Flooding Mechanisms for Nuclear Power Plant Flood Hazard Assessments

Project Objective:

Provide technical background for the development of flood hazard curves for multimechanism floods (MMFs)

Project Overview

Project Objective:

Provide technical background for the development of flood hazard curves for multimechanism floods (MMFs)

Task	Description	Status
1	Survey of current concepts and methods in MMF hazards	Complete
2	Critical assessment of selected methods and approaches for quantifying probabilistic MMF hazard risk	Complete [Under Review]
3	Development of example case studies to illustrate best practices for quantifying probabilistic MMF hazard risk	In-Progress

Terminology Hierarchy

Categories of Flood Mechanism Combinations

Note: The ellipses ("...") in this figure indicate that nodes are (could be) present but are not explicitly shown.

(a) Coincident Mechanisms

(b) Concurrent Correlated Mechanisms (c) Induced Correlated Mechanisms

ΙZ

Scope of Existing Studies

	Storm surge combined with precipitation and/or river flow				
Coastal MMFs	Surge, waves, and water levels				
	Tides and tsunamis (process interactions)				
Non-coastal	Combined river discharges at river confluences (copula based flood frequency analysis)				
MMFs	Other hazards (e.g., rain on snow)				

Key Insights from Existing Studies

Key characteristics

- Site-specific (but geographically diverse)
- Focus on (relatively) short return periods
- Diversity in phenomena considered and definition of flood severity metrics

Diversity of modeling considerations

- Return periods considered (typically "short")
- Data source and length of record (often "short")
- Statistical modeling approaches and choices Ex:
 - Direct estimation? Bayesian Approach? Copula?
 - Why type of copula is better?
 - How to address concurrence of extrema?
- Model validation approach

Challenges and Gaps

- Inconsistencies in terminology Same words ↔ Different concepts Same concepts ↔ Different words
- Scope and focus of studies (intended results)

Development of hazard curve (surface)

VS.

"building blocks"

- Lack of comprehensive frameworks
- Limited treatment of certain phenomena and mechanisms

Next Steps

Project Objective:

Provide technical background for the development of flood hazard curves for multimechanism floods (MMFs)

Task	Description	Status
1	Survey of current concepts and methods in MMF hazards	Complete
2	Critical assessment of selected methods and approaches for quantifying probabilistic MMF hazard risk	Complete [Under Review]
3	Development of example case studies to illustrate best practices for quantifying probabilistic MMF hazard risk	In-Progress

Next Steps

Overall Approach: Copula

Data Sources: Observed (streamflow) and Synthetic (hydrologic [VIC] model output)

Key Models: Statistical, Numerical/Hydrologic

Anticipated Outcomes

Demonstrate:

- General procedures to construct multivariate joint distributions using copulas
- Selection of suitable marginal distributions and copula functions
- Potential applications of copuladerived joint distributions in PFHA
- Strengths and limitations of the copula-based MMF assessment approach

Next Steps

Overall Approach: Bayesian

Data Sources: Observed (tidal, streamflow, precipitation, hurricane track) and Synthetic (numerical model output)

Key Models: Statistical, Surrogate

Anticipated Outcomes

Demonstrate:

- General conceptual approach to construct multivariate joint distributions using Bayesian modeling approaches
- Development and use of requisite marginal and conditional distributions
- Quantification of joint distributions and development of hazard curves through forward inference
- Strengths and limitations of the Bayesian-motivated MMF assessment approach

Questions?

