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Outline

• Introduction
• Probabilistic storm surge modeling
• Uncertainty
• Data Sources
• Methods and Models

• SRR
• Marginal Distributions
• Generating synthetic storm set
• Error and integration

• Epistemic uncertainty
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Introduction

• Project part of U.S. NRC’s Probabilistic Flood Hazard Assessment 
(PFHA) research plan.

• Support risk-informed licensing and oversight activities. 
• Develop hazard curves with uncertainty represented through 

confidence limit curves.
• Approach informed by USNRC guidance on probabilistic seismic 

hazard assessment (PSHA)
►Evaluation of data, models, and methods used in probabilistic storm surge 

models. 
►Epistemic uncertainty is quantified and propagated through logic trees.

• Consider AEPs that go beyond traditional state-of-practice in non-
nuclear facilities (e.g., 10-4 to 10-6).
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Probabilistic storm surge hazard modeling
• Based on the joint probability analysis of tropical cyclone 

(TC) forcing and responses.
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• Basic elements:
• SRR: Frequency of occurrence 

at location.
• Development of Synthetic TCs 

and their probabilities.
• Hydrodynamic Modeling: wind 

and pressure fields, circulation 
modeling (water levels), wave 
modeling.

• Integration of response and 
uncertainty.
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Uncertainty 

 Uncertainty:
• Aleatory – natural randomness of a 

process, not reducible.
• Epistemic – lack of knowledge about 

validity of models and data for the 
representation of real system.

 PSHA based approach:
• Epistemic uncertainty based on the 

selection and application of alternative 
data, methods, and models.

• Capture the center, body, and range of 
technically densible interpretations.
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JPM Integral
𝜆𝜆𝑟𝑟 �𝑥𝑥 >𝑟𝑟 = 𝜆𝜆�𝑃𝑃 𝑟𝑟 �𝑥𝑥 + 𝜀𝜀 > 𝑟𝑟| �𝑥𝑥, 𝜀𝜀 𝑓𝑓�𝑥𝑥 �𝑥𝑥 𝑓𝑓𝜀𝜀 𝜀𝜀 𝑑𝑑 �𝑥𝑥𝑑𝑑𝜀𝜀

≈ ∑𝑖𝑖𝑛𝑛 𝜆𝜆𝑖𝑖 𝑃𝑃 𝑟𝑟 �𝑥𝑥 + 𝜀𝜀 > 𝑟𝑟|�𝑥𝑥, 𝜀𝜀

where:
𝜆𝜆𝑟𝑟 �𝑥𝑥 >𝑟𝑟 = AEP of TC response r due to 
forcing vector �𝑥𝑥
�𝑥𝑥 = 𝑓𝑓 𝑥𝑥𝑜𝑜,𝜃𝜃,∆𝑝𝑝,𝑅𝑅𝑚𝑚𝑚𝑚𝑥𝑥,𝑉𝑉𝑡𝑡
λ = SRR (storms/yr/km)
�̂�𝜆i = probability mass (storms/yr) or λ 𝑝𝑝𝑖𝑖 ,   

with 𝑝𝑝𝑖𝑖=product of discrete probability and 
TC track spacing (km)
𝑃𝑃 𝑟𝑟 �𝑥𝑥 + 𝜀𝜀 > 𝑟𝑟|�𝑥𝑥, 𝜀𝜀 conditional 

probability that storm 𝑖𝑖 with parameters �𝑥𝑥𝑖𝑖
generates a response larger than r
𝜀𝜀 = unbiased error or aleatory uncertainty 

of r
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Data Sources

• NOAA HURDAT2
• Extended Best Track Dataset - EBTRK (Demuth et al. 2006) 
• GCM downscaling data
• Stochastic Track models
• Statistical models: e.g. Rmax and Holland B
• Advance Tropical Cyclone Forecasting (ATCF) Data 
• CHS Data (historical data reconstruction using metamodeling 

techniques)
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Epistemic Uncertainty in SRR Models

 Models for Calculating SRR.
• Uniform kernel function (UKF) 

or capture zone.
• Gaussian kernel function 

(GKF).
• Epanechnikov kernel function 

(EKF).
 SRR uncertainty contribution (Δp ≥ 

28 hPa): 
• Sampling uncertainty – 65% 
• Selected period of record – 19%
• Gaussian kernel size – 15%
• Observational data – 1%
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The Battery, NY Virginia Beach, VA

Differences less than 0.61 m
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Defining Joint Probability of Storm Parameters

 Effect of selection of Δp distribution on hazard curve. 
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LTWD & DTWD 
curve considers the 
discretization of 
TCs into high and 
low intensity.

The effect is to 
lower the hazard 
curve.

Choice of Δp 
distribution showed 
limited impact
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Defining Joint Probability of Storm Parameters

 Effect of selection of Rmax distribution on hazard curve
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Data sources and distributions:
• EBTRK: 

• Gumbel
• Lognormal
• Normal
• Weibull

• Vickery and Wadhera (2008) 
statistical model:

• Lognormal

More spread in the family of 
curves than for central pressure.
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Defining Joint Probability of Storm Parameters

 Effect of selection of Vt distribution on hazard curve
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Data sources and distributions:
• HURDAT2 derived 

• Gumbel
• Lognormal
• Normal
• Weibull

Smallest spread in the family of 
curves. 
Grouping reflects the difference 
between considering all 
distributions and separating by 
intensity. 
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Generation of Synthetic Storm Sets

Three methods for computing synthetic storm probability 
masses:
• Hybrid optimal sampling approach (applied to JPM-Reference):

• Discretization technique:
► Bayesian Quadrature: Rmax and Vf
► Uniform Discretization: ∆p and heading (θ)

• Assignment of probability weights: Bayesian quadrature
• Monte Carlo Sampling

• 1,000,000 yrs
• Empirical distribution, implicit probability weights in sampling

• Meta Gaussian Distribution
• TC parameter dependencies -> Gaussian Copula
• Relative probability weights of each synthetic TC:
• estimated dividing its multivariate probability by the sum of the multivariate 

multivariate probabilities of all the synthetic storms
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Coastal Reference 
Location

Number of TCs 
Sampled

Virginia Beach, VA 364,228
The Battery, NY 211,997

Newport, RI 267,505
Boston, MA 205,668
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MGD Parameter 

• MGD allows explicit consideration of parameter correlations.
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Sensitivity analysis for Δp and Rmax correlation Comparison generalized correlation estimate 
vs correlation from data.
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Generation of Synthetic Storm Sets

The Battery, NY
Synthetic Storm 

Generation Method
Percent Change (%) JPM-reference

1X10-2 0.2X10-3 1X10-3 1X10-4 1X10-6

JPM-OS Hybrid -18.0 -16.7 -13.0 -3.1 -0.3

MCS -6.3 -8.4 -8.3 -5.3 1.1

MGD 1.4 1.2 1.3 1.7 1.7

MGD, Corr.=0 -8.7 -8.2 -6.9 -3.3 -0.7

JPM-Reference - - - - -
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MGD was based on the same storms used 
for JPM-Reference. The method for both are 
consistent, being the only difference the 
assignment of probability weights. Small 
difference between the two results. 
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Sources of Error 
• Hydrodynamic modeling
• Meteorological modeling errors
• Track error 
• Holland B 
• Tide (Gulf coast)
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Uncertainty

North Atlantic 
Coast Comp. 

Study
(2015)

Sabine Pass to 
Galveston Bay 

Wave and Water 
Level Modeling 

Study
(2015)

South Atlantic 
Coast Study: 
Puerto Rico 
and the U.S. 

Virgin Islands
(ongoing)*

Flood 
Insurance 

Study: 
Coastal 

Counties, 
Texas
(2011)

FEMA 
Region II 

Storm 
Surge 

Project
(2014)

Mississippi 
Coastal 
Analysis 
Project
(2008)

Hydrodynamic 
Modeling 0.48 m

0.91 m
(combined with 
meteorological 

modeling)

0.20 m (constant)
0.30 (proportional) 0.56 to 0.76 0.39 0.23 m

Meteorological 
Modeling 0.38 m - 0.14 (proportional)

0.09 (constant) 0.07 to 0.30 0.54 0.36 m

Strom Track 
Variation 0.25 m 0.09 m N/A 0.20 x wave 

setup N/A N/A

Holland B 0.15 x storm 
surge elevation

0.17 x surge 
elevation N/A 0.15 x surge 

elevation N/A 0,15 x surge 
elevation

Astronomical 
Tide variable 0.20 m 0.11 m N/A N/A 0.20 m *Average values over 15,000 virtual gages

Holland B. Estimated, highly 
correlated to other parameters, 
specially Rmax

𝜎𝜎𝜀𝜀 = 𝜎𝜎𝜀𝜀12 + 𝜎𝜎𝜀𝜀22 + ⋯+ 𝜎𝜎𝜀𝜀𝑖𝑖2
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Spatially-varying modeling error

Modeling error: has a direct effect on hazard curve shape and confidence 
limits.

• Global uncertainty: 1.42 ft.
• Spatially varying uncertainty:

15

1.42 ft
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Characterization of Uncertainty in JPM integral

• Methods: 
• Zero uncertainty, 𝜎𝜎 = 0
• Constant uncertainty, 𝜎𝜎 = 0.61 m
• Proportional uncertainty, 𝜎𝜎 = 

0.2*WL
• Constrained uncertainty, 

𝜎𝜎=min(𝜎𝜎_constant, 
𝜎𝜎_proportional)

• Mean of constant and 
proportional, 𝜎𝜎=mean 
(𝜎𝜎_constant, 𝜎𝜎_proportional)
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𝑊𝑊𝑊𝑊𝑛𝑛 = 𝜇𝜇 + 𝜎𝜎(𝑍𝑍∗)
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Epistemic Uncertainty – Simplified Logic Tree Example
17

The variations in data, 
model, and methods 
closely align with 
previous study 
approaches. 
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Family of Hazard Curves – The Battery, NY
Family of hazard curves 
representing alternate data, 
model and methods. 

Number of curves: 1,261. 

About 1.2 m spread at 100 
years and 1.5 at 1,000 years.

Uncertainty (84% CL-Mean) 
less than 0.40 m for the 
graphed AEPs.
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Family of Hazard Curves – Additional Locations
• The uncertainty 

computed as the 
difference between the 
84% confidence limit 
and the mean for the 
curves tops out at 
about 0.45 m for 
Chesapeake Bay. 

• Curves cluster based 
on intensity grouping.

• Branches added 
based on method to 
characterize 
uncertainty would 
increase uncertainty. 
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Newport, RI Boston, MA Chesapeake 
Bay, MD
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Reports
• Gonzalez V.M., N.C. Nadal-Caraballo, J.A. Melby, and M.A. 

Cialone. 2019. Quantification of Uncertainty in Probabilistic 
Storm Surge Models: Literature Review. ERDC/CHL SR-19-1.

• Nadal-Caraballo, N.C., V.M. Gonzalez, and L. Chouinard. 2019. 
Quantification of Uncertainties in Probabilistic Storm Surge 
Models: Storm Recurrence Rate Models for Tropical 
Cyclones, ERDC-CHL TR-19-4. Vicksburg, MS: U.S. Army 
Engineer Research and Development Center.

• Nadal-Caraballo, N.C., V.M. Gonzalez, E. Ramos-Santiago, and 
M.O. Campbell. Data, Models, and Methods for Defining Joint 
Probability of Storm Parameters and Generating Synthetic 
Storm Simulation Sets. ERDC/CHL TR-20-X (In Review)
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Contact Information

U.S. Army Engineer R&D Center
Coastal and Hydraulics Laboratory

Norberto C. Nadal-Caraballo, Ph.D.
Phone: (601) 634-2008
Email: Norberto.C.Nadal-Caraballo@usace.army.mil

U.S. Nuclear Regulatory Commission
Joseph F. Kanney, Ph.D.

Phone: (301) 980-8039
Email: Joseph.Kanney@nrc.gov
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