ATTACHMENT 1 ANO-2 CYCLE 1 REFUELING OUTAGE FUEL EXAMINATION RESULTS

1.0 INTRODUCTION

Arkansas Nuclear One - Unit 2 shut down for its first refueling on March 28, 1981. Fuel shuffling and wet sipping operations on all 177 assemblies commenced on April 19 and were completed on May 1, 1981. Seven leaking assemblies were identified. Five of these that were scheduled for cycle 2 use were reconstituted using fuel rods from a discharged Batch "A" assembly. The reconstituted assemblies were then re-sipped and found to be leak free. A summary of the reconstitution effort, including the results of most of the fuel inspections, was reported in CEN-164(A)-P dated May 18, 1981. At that time, it was noted that further fuel examinations would be undertaken to diagnose the causes of the fuel rod failures. The examinations are now complete and the conclusions can be summarized. For coherency and completeness, some of the CEN-164(A)-P report data is repeated.

2.0 EXAMINATION OF LEAKING ASSEMBLIES

The conditions of the leaking assemblies and the reconstitution actions are summarized in Table I. The locations of the leaking assemblies are presented in Figure 1.

8206080258 820602 PDR ADDCK 05000368 PDR ADDCK PDR

 *	Ph 2 -	10	- 10
 a	BL	h	
 .,	0 L	Sec. 1	ж.

67

Assembly	Av. Burnup (MWD/MTU)	No. of Perforated Rods	No. of Replaced Rods <u>a</u> /
B03€ <u>b</u> ∕	14500	1	[]
A037	14090	1 <u>e</u> /	Not Reconstituted
BT02	13680	1	[]
B045 ⊆∕	13800	3	
A017	13520	2 <u>e</u> /	Not Reconstitute
C203	10480	1	Γ 1
C308 ⊆/	9580	_9 <u>d</u> /	
	TOTA	L 18 TOTAL	66

ASSEMBLY CONDITION AND RECONSTITUTION

a/ Fuel rods replaced with sound fuel rods from assembly A006 with Av. burnup of 12,600 MWD/MTU. Additional rods were removed for diagnostic examinations.

b/ Assembly received new upper end fitting.

- \underline{c} / Assembly re-caged with new lower end fittings, guide tubes and spacer grids.
- d/ 8 perforated fuel rods and 1 possible perforated corner poison rod. The poison rod was replaced with a solid Zircaloy rod.
- e/ Estimated from visual examination of intact assemblies. These assemblies were not disassembled.

	-	*	12	5.3	15	800	- 16		
	۳.	11	13		ĸ	£			
ANO		rs.		10	1.1	100	400		
ANU	-	1		٤.,	×.	1.1	- Bi	- T.	

1-3

1						6409	C328 67	C311	C307 68	C411	FUE	L TRANS	FER CON	a <u>r</u>	>
2				CH13	CS05	C106 57	B006	A044 52	5003	C103	C511	C412			
3			C503 66	C213	A041 45	5031	A050 33	6001			A102 46	C214	CS21 69		
		C406	C215	A006 39	6017	A248 25	5030	A103 ς	8092	A\$3¢ 26	5106	A043 40	(504	C410	
					r		17	6703	18		G		47		
	-			6.1		11		A107 8		15		27		59	
			36.		10		3	6050	4		19		35		70
3				0		1		A005		9		D		-59	C30
3			124		10		C	6208	S		2.2	1.2.2.2	36	5005	1030
0	C414	C108 SS	5039	250A 85	6051	A105 10	8058	A&33 6	5024	A016 13	6036	050A 85	5012	C105 60	C40
1		C205	A026 43	6054	AØ18 E	5052	A012 14	6055	960A	6019	AØ17 H		AØ51 48	C210	
12		C416	C506	86 86	8016	810A 22	BINGS	AØ35 A	6014	A106	6018	A027	C201	C402	
18			CS02 63	C501	9029 42	6046	AØ32 30	5040	A105 37,	Б©ЧЧ	A&45 43	C508	CS04 72		.
14				C415	6682	C102 54	6004	A025 50	6047	C101 61	CS15	C403			
15	;					C405	C302 62	C309	C301 73	C406		1			
	A	Б	С	D	ε	F	G	н	к	L	M	N	0	P	R

,

٦

Leaking Assemblies in Heavy Outline

3.0 DIAGNOSTIC PROGRAM RESULTS

Combustion Engineering carried out a diagnostic program¹ that included: visual examinations of the seven leaking assemblies as well as [] B and C fuel rods removed for this purpose from leaking assemblies, profilometry of fuel rods, length measurements of fuel rods, eddy-current examinations of fuel rods, examination of fabrication records, and a review of reactor operating history. The results from these examinations provided no evidence that could be linked with the failures of fuel rods in reconstituted assemblies B036, BTO2 and C308. This encompasses a total of ten fuel rods (8 rods in C308 alone).

The observations and conclusions for each leaking assembly are summarized in Table II.

The maximum assembly bow value cited in CEN-164(A)-P was []. This should be updated. When all the measurements were concluded, the maximum bow value recorded for an annealed guide tube bundle was [] and the maximum for a cold-worked guide tube bundle was [].

¹Measurements on oxide thickness, channel closure, fuel assembly bow, and guide tube growth were also carried out in conjunction with the EPRI/CE surveillance program. However, these results did not contribute toward an explanation of the fuel failures.

TABLE II

PERFORATED ROD OBSERVATIONS

Assembly		Observations				
B036		One perforated interior rod.				
A037		High interior rod (1" higher than others) found by visual exam - [].				
BT02		One perforated interior rod.				
B045		Perforations caused by foreign material trapped below bottom Inconel grid.				
A017		Visual exam showed perforations on 2 adjacent, peripheral rods.				
C203	۰.	Perforation of fuel rod caused by fretting from foreign material trapped below Inconel grid.				
C308		Γ				
	B036 A037 BT02 B045 A017 C203	B036 A037 BT02 B045 A017 C203				

4.0 CONCLUSIONS

.

- A. The fuel rod perforations in assemblies C203 and B045 were due to fretting induced by foreign material trapped below the bottom Inconel grid. Total of 4 rods.
- B. Despite further examinations and diagnostic work, the causes of the rod failures in the remaining five assemblies remains unknown. Total of 13 fuel rods.

In the meantime, the status of fuel integrity in cycle 2, as may be inferred from primary system iodine activity levels, remains unchanged from the stable condition reported in the reference letter to the NRC.

5

Reference:

D. C. Trimble to Robert A. Clark, Docket No. 50-368, Letter No. 2CAN118106, dated November 25, 1981.