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SECTION 1
SUMMARY OF RESULTS

The analysis of the reactor vessel matenal contained in Capsule T, the third reactor vessel mater

1"
sUurveniar

1t 2
P

ce capsule which was removed from the Carolina Power and Light Company H. B. Robin

reactor pressure vesse! after approximately 7.2 effective full power years of operation

) the following conclusions

The surveillance ¢ air.\u!r'. received an average fast neutron fluence (E MeV) of
- 2 - . +~n19 flomy.-
411 x 1079 n/ecm< compared to a calculated fluence of 3.81 x 1 n'cm#

: . . -~ 1 2 . o 54
Irradiation of base metal plate materialto4.11 x 10 9n cm< resulted ina42°(
~rease in the 41-joule transition temperature when compared with unirradiated

values. The transition temperature increase, when compared with prior results atter
. «.n18 : . . :
irradiation to 3.69 x 10'9® n/cm¥4, indicates that the increased neutron fluence

produced an additional 34°C increase in transition temperature

Submerged arc weld metal irradiated to 4.11 x 019 n/cm< showed a 41-joule

transition temperature increase of 158°C compared to a 97°C increase f
1 " ]

tests irradiated at 5.84 x 1 ' n/cm<

or prior

Comparisons of the 41-joule transition temperature increases for the H. B. Robinson
Unit 2 surveillance materials with Regulatory Guide 1.99 Revision 1 predictions

show that the increases after irradiation to 4 x 10'Y n/cm# are significantly

than ‘\r.-.] cted

al




SECTION 2
INTRODUCTION

nation of (;:1[3\'.,1“‘ the third capsule t
e program which monitors the affect:s
1ateriais \ er operat

e program the reactor pressure vessel materials was designed ¢
nghouse Ele« Corporation. A description cf the surveillance progran
echanical properties of the reactor vessel materials are presented in W
ygram was planned to cover the 40-vear life of the reactor press

\Ce pr
ASTME185-66. Westinghouse Nucle

yf procedures for removing the capsule from the react

onnel were

Technology Division per

for the preparatior
the Westinghouse Research and Development Laboratory, where the pos
ind tens specimens w

tact




SECTION 3
BACKGROUND
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DESCRIPTION OF PRCGRAM
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— T (2.63) — S (1.88)

VvV (0.76)

THERMAL SHIELD — REACTOR VESSEL

Figure 4-1. Arrangement of Surveillance Capsules in the H.B. Robinson Unit 2 Reactor Vessel
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TABLE 4-1

CHEMICAL COMPOSITION AND HEAT TREATMENT OF MATERIAL
FOR THE H. B. ROBINSON UNIT 2 REACTOR VESSEL
SURVEILLANCE PROGRAM

Chemical Composition (W1t%)

Plate Plate Plate Weld Weld Metallal Correlation
Element W10201-4 | W10201-5 | W10201-6 | Metal W21 wW20| Monitor
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N e ‘..~

—

Heat Treatment
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SECTIONS
TESTING OF SPECIMENS
FROM CAPSULET

5-1 OVERVIEW

he postrradiation mect al testing e C /-notch and tension specimens was per

+

rmed at the \/«'9_‘1,\un, y ar . d Development Laborat

)( ory with consultation by Westing
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eint of the capsule at the laboratoi the specimens a
’ . 3

1spected Tor igenti jtion number, and checked agaimnst

repancies were fount

579°F) and 310°C (590°F) eutect

of either type of thermal ynitor. Based on this exam n, the maximum temperature

ui

mens were exposed was (ess than 304°C

sts were performed nius-Olsen Model 74, 358 joule machine

of the Ch arpy machine 1s instr umented with an F”p, ts vf)‘r’*r‘(\ju{z’ hf,)‘\r};xi 51:"

d-time and energy-time signals can be recorded in

el

ergy (Ep). From the lo ) rve, the load of

0 general y

jetermined

the nero
ef £ 1y

slent to the

}
)11 the




CHARPY V-NOTCH IMPACT TEST RESULTS




TABLE 5-1

CHARPY IMPACT DATA FORH. B. ROBINSON UNIT 2
REACTOR VESSEL SHELL PLATE W10201-6
(IRRADIATED AT4.11 x 1019 n/ecm?)

Temperature Impact Energy [ Lateral Expansion

ftib ! mm mils

) -
L e
] 5

LO VD

A
43 (

TABLES5-2

CHARPY IMPACT DATA FOR H. B. ROBINSON UNIT 2
REACTOR VESSEL WELD METAL AND HAZ MATERIAL
(IRRADIATED AT4.11 x 1019 n/cm?)

Sample Temperature
—_—

 — appw——
No. | € [ F | J | b |

——————————————————————————————————————————————

‘ lr;{;»)'act Ene;gy i | Lateral Expansion Shear

Charpy V




TABLE 5-3

DATA FORTHE ASTM A302B

CHARPY IMPACT

CORRELATION MONITOR MATERIAL
IRRADIATED AT 4.11 x 1019%1/cm?)
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Figure 5-1. Charpy V-Notch Impact Data for H.B. Robinson Unit 2
Reactor Vessel Shell Plate W10201-6
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Figure 5-3. Charpy V-Notch Impact Data for H B. Robinson Unit 2 Reactor Vessel
Weld HAZ Matenal
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TABLE 5-4

INSTRUMENTED CHARPY IMPACT TEST RESULTS FORH. B. ROBINSON UNIT 2
REACTOR VESSEL SHELL PLATEW10201-6

- —




TABLE 5-5

ISTRUMENTED CHARPY IMPACT TEST RESULTS FORH. B. ROBINSON UNIT 2
WELD METAL AND HAZ MATERIAL

|
|
|
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TABLE 5-6

INSTRUMENTED CHARPY IMPACT TEST RESULTS
FORASTM A302B CORRELATION MONITOR MATERIAL

e —_—————y—

——————

hzed Energies

-
| Maximurn 1O Yield Time NTIUTY 1 Fracture ’ Arrest
|

Load ) | ¢ Viaximur Load Load

N , ! N N
- — — . - ——— w»*v-—r‘r—v-v—»-4~




TABLE 5-7

THE EFFECT OF 288°C IRRADIATION AT 4.11 x 1079 n/cm?2 (E > 1.0 MeV) ON THE NOTCH
TOUGHNESS PROPERTIES OF H. B. ROBINSON UNIT 2 REACTOR VESSEL MATERIALS

Zi s

Transition Temperature Average Energy Absorption
A Transition Tempersture
Unw adiatea lrradiated ot Full Shear
S0t 0nn 35 mus S0 v 30 ftin 38 mus 50 i 30 35 mils
68 LA 9 mm 68 J 4@y ® mm 68 4y 9 mm Uniradiated Irradisted \ Energy
Mataral 'C) ¥ e N 2] I ¥ {C1 ] tF (E=8 B8 rCiLjIre C) '\ (E=8 Ny 2 N =8 Ba 2 (P13 RLAR 1) (i [F 1 LRl
Plate ¢ L 3 d i% 60 L2+ 413 Y05 a9 2 44 8¢ 47 7S 47 ’% 154 114 421 1058 3
WI10Z01 &
We K i . L1 22% 58 8 58 BS &8 L1 2 1
My ta
A S 43 45 i 104 - 178 3 3 37 an ia
Meta
wie 8 ( ¢ S 854 4 4 3 R
ar
Mo




4676A-18

L-46 L-43

L-47 L-45

Figure 5.5, Charpy Impact Specimen Fracture Surfaces for H.B, Robinson Unit 2
Reactor Vessel Shell Plate W10201-6
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4676A-19

W-17

H-17 H-24

Figure 5-6. Charpy Impact Specimen Fracture Surfaces for H.B. Robinsen Unit 2
Weld Metal and HAZ Metal
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4676A-20

R-63 R-59 R-62

R-58 R-60 R-61 R-57

Figure 5.7 Charpy Impact Specimen Fracture Surfaces for H.B. Robinson Unit 2 ASTM
A3028B Correlation Monitor Material
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SUMMARY OF H. B. ROBINSON UNIT 2 REACTOR VESSEL
SURVEILLANCE CAPSULE CHARPY IMPACT TEST RESULTS

TABLES-8

68 J
50 ftib 30ftib Decrease in
Trans. Temp Trans. Temp Upper Shelf
Fluence Increase Increase - Ener
Material (1019 n/ecm?2) °c) °F) (°c) (°F) (J (ft ib)

Plate W10201-4 0.369 25 45 17 30 1 8
Plate W10201-5 0.369 p & 40 1 20 18 13
Plate W10201-5 0584 28 50 25 45 0 0
Plate W10201-6 0369 14 25 8 15 8 6
Plate W10201-6 411 44 80 42 75 12 9
Weld Metal 0584 119 215 97 175 57 42
Weld Metal 411 158 285 158 285 - -
HAZ Métal 0584 47 85 36 65 47 35
HAZ Metal 411 - - —_ - 46 34
Correlation Monitor 0369 - — 39 70 4 3
Correlation Monitor 0584 - - 39 70 4 3
Correlation Monitor 411 - - 84 150 4 3

The fracture appearance of each irradiated Charpy specimen from the various materials is shown

in figures 5-5 through 5-7. An increasing ductile or tougher appearance with increasing tempera-

ture can be noted for cach of the matenais.

Figure 5-8 shows a comparison of the 41-joule transition temperature increase for the H. B. Robin-
son Unit 2 surveillance materials with predicted increases using the methods of NRC Regulatory
Guide 1.99 Revision 1. This comparison shows that all the materials exhibited 41-joule transition

temperature increases lower than would be predicted by the Guide. This behavior is consistent

with the results from other reactor vessel surveillance capsules evaluated as part of this EPRI

program. Based on the surveillance capsule test results to date, it can be concluded that the H. B.

Robinson Unit 2 surveillance materials are not as sensitive to radiation as predicted by the Guide.

5-16
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Figure 5-8. Comparison of Actual Versus Predicted 41-Joule Transition Temperature increase
for H.B. Robinson Unit 2 Reactor Vessel Materials Using the Prediction Methods
of Regulatory Guide 1.99 Revision 1

5-3 TENSION TEST RESULTE

The results of tension tests performed on shell plate W10201-6 and weld metal are shown in table
5-9 and figures 5-9 and 5-10, respectively. An increase in 0.2 percent yieid strength of approxi-
mately 12 and 27 ksi (82 7 and 186.2 MPa) was exhibited by the plate and weld metal,
respectively. These increases .ndicate that the weld metal is more sensitive to radiation than the
base metal plate which is consistent with transition temperature increases observed for these
materials. Photographs of the fractured tension specimens for each material are shown in figure
5-11_A typical stress-strain curve for the tension specimens is shon in figure 5-12
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5-4 WEDGE OPENING LOADING TESTS

Wedge opening loading (WOL) rracture mechanics specimens which were contained in the surveil-
lance capsule have been siured at the Westinghouse Fesear«h Lahoratory; they will be tested and
reported on {ater

518



616

TENSILE PROPERTIES FOR H. 8. ROBINSON UNIT 2

TABLES-9

REACTOR VESSEL MATERIALS IRRADIATED TO4.11 x 1079 n/em?2

Test 0 2% Yield Ultimate Fracture Fracture Fracture Uniform Total Reduction
Somple Temp Strength Strength Load Stress Strength | Elongation | Elongation m Area
No Material CtUF MPa (ksi) NMPa (ksi) N (kip) MPa (ksi) MPa (ks (%) (%) (%)
L? Plare 93 389 527 12 800 980 40% 138 237 59
W10201.6 (2001 (56 4) (76 4) 2 B8) 141 85) 58 7
L6 Plate 288 337 530 13,900 850 438 132 2156 49
W10201-6 550) 45 % (76 8 312 1124 0) 63 6
w5 Weld 135 611 692 15,800 1370 499 87 178 64
Metai 275 88 6) 1100 4 (3 55) {198 2) (72 31
we Weld 288 597 702 18,700 1290 590 &4 162 54
Mets' {550) 186 6) 1101 9) i4 20) (187 21 85 61
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Figure 5-10. Tensile Properties for H.B. Robinson Unit 2
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SECTION 6
RADIATION ANALYSIS AND NEUTRON DOSIMETRY

6-1. INTRODUCTION

Knowledge of the neutron environment within the pressure vessel - surveillance capsule geometry
Is required as an integral part of LWH pressure vessel surveillance programs for two reasons. First,
in the interpretation of radiation-induced property changes observed in materials test specimens,
the neutron environment (fluence, flux) to which the test specimens were exposed must be known
Second, in relating the changes observed in the test specimens to the present and future condition
of the reactor pressure vessel, a relationship between the environment at various positions within
the reactor vessel and that experienced by the test specimens must be establiched. The former re-
quirement is normally met by employing a combination of rigorous analytical techniques and mea-
surements obtained with passive neutron flux monitors contained in each of the surveillance
capsules The latter information is derived solely from analysis.

This section dascribes a discrete ordinates Sn transport analysis performed for the H. B Robinson
Unit 2 reactor to determine the tast neutron (£ > 1.0 MeV) flux and fluence as well as the neutron
energy spectra within the reactor vessel and surveillance capsules and, in turn, to develop lead fac-
tors for use in relating neutron exposure of the pressure vessel to that of the surveiilance capsules
Based on spectrum-2veraged reaciion cross sections derived from this calculation, the anaiysis of
the neutron dosimetry contained in Cansu'e T is discussed.

6-2. DISCRETE ORDINATES ANALYSIS

A plan view of the H. B. Robinson Unit 2 reactor gecmetry at the core midplane is shown in figure
6-1. Since the reactor exhibits 1/8th core symmetry, only a 45-degree sector is depicted. Eight ir-
radiaton capsules attached to the thermal shield are included in the design to constitute the reactor
vessel surveillance program. The location of each of the eight surveillance capsules relative to the
reactor core cardinal axes is also depicted in figure 6-1.

A plan view of a single surveillance capsule attached to the thermal shield is shown in figure 6-2
The stainless steel specimen container is 1-inch square and approximately 63 inches in height. The
containers are positioned axially such that the specimens are centered on the core midplane, thus
spanning the central 5 25 feet of the 12-toot-high reactor core.

6-1
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Figure 6-2. Plan View of a Reactor Vessel Surveillance Capsule

In the analysis of the neutron environment within the H. B. Robinson Unit 2 reactor geometry, pre

dictions of neutron flux magnitude and energy spectra were made with the DOT 5] two

dimensional discrete ordinates code e radial and azimuthal distnbutions wer2 obtained from an
R, # computation wherein the geometry siiown in figures 6-1 and 6-2 was described in the analvt

al model. In addition to the R, # computation, a second calculationinR, Z geometry was also

ca
rned out to obtain relauve axial var ations of neutron flux tt roughout the geometry of interest. In the
R, Z analysis the reactor core was treatad as ar

equivalent volume cylinder and, of course, the sur

velllance capsules were not includad in the modei

Both the R, v and the R, Z analyses employed 21 neutron energy groups, an Sg angular quadrature

ind a Py cross-section expansion. The cross sections were generated via the Westingnouse

GAMB1T!E! code system with broaa group processing by the APPROPOS 7] and ANISN!8! codes

The energy qroup structure used in the anaiysis is listed in table 6-I

A key input parameter in the analysis of the integrated fast neutron exposure of the reactor vessel

s the core power distribution. For this analysis, power distributions representative of time-
sveraged conditions derived from statistical studies of long-term operat'.n of Westinghouse

3-loop plants were employed. These input distributions include rod-by-rod spatial variations for all

penpheral fuel assembiies

it should be noted that this particular power distribution 1s intended to produce accurate end-of-life

neutron exnosure levels tor the pressure ves

S0 ‘:\v such the al I tion "l.’f"t‘\j ’p[”e"“'" 3t Ve ( t

an average neutron tlux and small {Dlus Or minus 15 to ‘< percent) deviations from ¢ vcle to cycle

are to be expected




TABLE 6-1
21 GROUP ENERGY STRUCTURE
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Lower Energy (MeV) i
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Having the results of the R,# and R,Z calculations, three-dimensional variations of neutron flux may
be approximated by assuming that the following relation holds for the applicable regions of the

reactor
¢R.Z0.Eg) = 6(R.0.Eg) FIZEg) (6-1)
where
#R.Z0Eg = neutron flux at point R,Z.# within energy group g
¢(R,H,Eg) = neutron flux at point R,# within energy group g obtained from the R.#

calculation

6-3. NEUTRON DOSIMETRY

The passive neutron flux monitors included in the H. B. Robinson Unit 2 surveillance program are
listed in table 6-2 The first five reactions in tahle 6-2 are used as fast neutron monitors to relate
neutron fluence (E > 1 0 MeV) to measured materials properties changes To properly account
“or burnout of the product isotope generated by fast neutron reactions, it is necessary to aiso
determine the magnitude of the thermal neutron flux at the monitor location. Therefore, bare and
cadmium-covered c ybait-aluminum monitors were also included.

The relative ‘ocations of the varous monitors within the surveillance capsules are shown i figure
4.2 The nickel, copper, and cobalt-aluminum monitors, in wire form, are placed in hoies driliad in
spacers at several axial levels within the capsules The iron monitors are obtained by drilling sam-
ples from selected Charpy test specimens. The cadmium-shielded neptunium and uranium fission
monitors are accommodated within the dosimeter block located near the center of the capsule.

The use of passive monitors such as those listed in table 6-2 does not yield a direct measure of the
energy-dependent flux level at the point of interest. Rather, the activation or fission process is a
measure of the integrated effect that the time- and energy-dependent neutron flux has on the
target material over the course of the irradiation period. An accurate assessment of the average

6-5



TABLE6-2
NUCLEAR PARAMETERS FOR NEUTRON FLUX MONITORS

Target Fission
Monitor Material Reaction of Interest Weight

Response Product

Yield
Range Half-Life .
Fraction %)

e |




Having the measured activity of the monitors and the neutron energy spectra st the locations of
interest, the calculation of the neutron flux proceeds as follows.

The reactor product activity in the monitor is expressed as

N N p.
R = ~A3 fi v fu(E) ¢ (E) dE 3 Pml (1-¢ ) e M 6-2)
E =1 "
where
R =  induced product activity
No = Avogadro’'s number
A = atomic weight of the target isotope
f; = weight fraction of the target isotope in the target material
y = number of product atoms produced per reaction
o (E) =  energy-dependent reaction cross section
& (E) =  energy-dependent neutron flux at the monitor locatior with the reactor at full
power
P,v =  average core power level during irradiation period |
Pmax =  maximum or reference core power level
A = decay constant of the product isotcpe
t =  length of irradiation period |
tdq = decay time following irradiation pericd |

Because neutron flux distributions are calculated using multigroup transport methods and, further.
because tha prime interest is in the fast neutron flux above 1.9 MeV, spectrum-avaraged reaction
cross sections are defined such that the integral term in equation (6-2) is repiaced by the following

relation.

/om 0(E) dE = 0 ¢ (E > 1.0 MeV)
E

where

oC

N
f o(E) o(E) dE Z Og g

S - g=1

ag
oo
fo(E) dE ﬁ 0
1.0 MeV ~91.0 Me\

=]
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TABLEG-3

CALCULATED FAST NEUTRON FLUX (E 1.0 MeV) AND LEAD
FACTORS FORH.B. ROBINSON UNIT 2 SURVEILLANCE CAPSULES

Azimuthal I (E : Lea

Location (deg (n/c ac) Factor

— e e

X

TABLEG-4

CALCULATED NEUTRON ENERGY SPECTRA AT THE CENTER
OF THEH. 8. ROBINSON UNIT 2 SURVEILLANCE CAPSULES

Neutron Flux (n «*mz sec)

g e —

10 deg




TABLE6-5

SPECTRUM AVERAGED REACTION CROSS SECTIONS AT THE
DOSIMETER BLOCK LOCATION FORH. B. ROBINSON UNIT 2
SURVEILLANCE CAPSULES

| ¥ (barns!
Reaction | 10 deg 20 deg

58

[ ru‘j‘ np V":a
N
|
!

reactor pressure vassel i1s shown. The relative axial variation of neutron flux within the vessel is
given in figure 6-5. Absolute axial variations of fast neutron flux may be obtained by multiplying

the levels given in figure 6-3 or 6-4 by the appropriate val.as from figure 6-5

In figure 6-6 the radial variations of fast neutron flux within surveillance Capsule T are presented
I'hese data, in conjunction with the maximum vessel flux, are used to develop lead factors for each
of the capsules. Here the lead factor is defined as the ratio of the fast neutron flux (E > 1.0 MeV)
1t the dosimeier block location (capsule center) to the maximum fast neutron flux at the pressure
vessel inner radius. Updated lead factors for all of the H. B. Robinson Unit 2 surveillance capsules

are listed in tabie 6-3

Since the neutiron flux monitors contained within the surveillance capsules are not all located at the
same radial location, the measured disintegration rates are analytically adjusted for the gradients
that exist within the capsules so that flux and fluence levels may be derived on a common basis at
3 common location. This point of comparison was chosen to be the capsule center. Analytically
determined reaction rate gradients for use ir. the adiustment procedures are shown in figure 6-7

-

for Capsule T. All of the applicable fast neutron reactions are included

In order to derive neutron flux and fluence levels from the measured disintegration rates, suitable
spectrum-averaged reaction cross sections are required. The neutron energy spectrum calculated
to exist at the center of each of the H. B. Robinson Unit 2 surveillance capsules is given in table

6-4 The associated spectrum-averaged cross sections for each of the five fast neutron reactions

re given in table 6-5

DOSIMETRY RESULTS

The irrac.ation history of the H. B. Robinson Unit 2 reactor is given in table 6-6. Comparisons of

measured and calculated saturated a« ‘ the flux monitors contained in Capsule T are listed in




TABLEE-6
IRRADIATION HISTORY OF CAPSULE T
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Irradiation | Decay Time

Time (Days) | (Days)
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TABLE 6-6 (cont)
IRRAD!ATION HISTORY OF CAPSULE T

Irradiation | Decay Time

Month | Year PjiiMW) Pmax(MW) Pi/Pmax Time (Days) (Days)
6 1974 161 2300 070 30 3024
7 1974 2028 2300 882 N 2993
8 1974 1949 2300 848 21 2962
9 1974 1994 2300 867 30 2932
10 1974 1991 2300 865 3N 2901
" 1974 2239 2300 973 30 2871
12 1974 2280 2300 991 31 2840
1 1975 2090 2300 909 31 2809
2 1975 2255 2300 980 28 2761
3 1975 2167 2300 942 31 2750
4 1975 795 2300 346 30 2720
5 1975 298 2300 130 31 2689
6 1975 1738 2300 756 30 2659
7 1975 1976 2300 859 31 2628
8 1975 2130 2300 926 31 2597
9 1975 2051 2300 892 3C 2567
10 1975 2125 2300 924 31 2536
1M 1975 0 2300 000 30 2506
12 1975 1133 2300 493 31 2475
1 1976 1899 2300 826 31 2444
3 1976 2267 2300 986 29 2415
3 1976 2194 2300 954 31 2384
4 1976 2132 2300 927 30 2354
5 1976 1525 2300 837 31 2323
6 1976 2166 2300 943 30 2293
7 1976 1988 2300 864 31 2262
8 1976 2066 2300 898 31 2231
9 1976 2133 2300 927 30 2201
10 1976 1991 2300 866 31 2170
1 1976 0 2300 000 30 2140
12 1976 1044 2300 454 31 2109
1 1977 2181 2300 948 31 2078
2 1977 1170 2300 509 28 2050
3 1977 1987 2300 864 3 2019
4 1977 1726 2300 750 30 1989

6-17
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TABLE 6-6 (cont)
IRRADIATION HISTORY OF CAPSULE T

Irradiation Decay Time
Pmax!MW) Pi/Pmax Time (Days) (Days)

893

862

table 6-7. The data are presented as measured at the actual monitor locations as well as adjusted

fiqure 6-7

to the capsule center. All adjustments to the capsule center were based on the data presented |

The fast neutron (E > 1

table 6-8

o

0 MeV) flux and fluence levels derived for Capsule T are presented in

Th " C 3 i - -
e thermal neutron flux obtained from the cobalt-aluminum monitors is summarized ir

table 6-9. Due tn the relatively low thermal neutron flux at the ¢ apsule locations, no burnup corre«

Is estimated to be

less than 1

tion was made to any of the measured activities. The maximum error introduced by this assumption

5
percent forthe N 8

n,p) Co?® reaction and even less significant for
il of the other fast neutron reactions




TABLEG -7

COMPARISON OF MEASURED AND CALCULATED FAST NEUTRON FLUX MONITOR
SATURATED ACTIVITIES FORCAPSULE Y

Saturated Activity Adjusted Saturated Activity
Reactior Radial { lis
ind { 3t ' )
. ~ 4
Axial Locat n Capsule T Calculated ipsule V ] jJlateg
} - “ + + 4 4 —— -
’
] the jata presented in t e 6-8 g with the lead factors giver ible 6-3, the fas
' f ¢ e it MeV) for Apsuie as well as for tf 4 esse w diameter
aihle t ree etwes Hati ) ¢ Irer t excellent wit
{ $liie e le f A ) < ¢ [ ed ed 3 1R v 1 )
§
Pe €




TABLEG 8
RESULTS OF FAST NEUTRON DOSIMETRY FORCAPSULE T

Adjustied Saturated Activity
dis/s & (E > 1.0 MeV) ¢+ (E > 1.0MeV)
Reaction 3 (n/em2.- sec) (n/em?)
Measured Calculated Measured Calculated Measured | Calculated
Fe94(n pMn54 887x106 | 796x106 |181x10"|168x10"1|4a11x10'9|381x10'9
Cu83(n.41C080 770x10% | 570105 219x10M! 497x10'9
Ni58(n.p)Co58 124x108 | 116x108 177x10"7 402x10'9
Np237(nfics137 | 872x107 | 715x107 208 x10"! 465x10'9
U238 Hcs?37 | 132x107 | 965 x 108 227x10M 516x10'9
Note Irradiation time equals 2 27 x 108 eFPS
TABLEG-9
RESULTS OF THERMAL NEUTHON DOSIMETRY FORCAPSULL T
Saturated Activity
Axial dis/s dTh
Location g (n/em2-sec)
Bare Cd-Covered
Top i24x108 562x107 120x 101
Middle Not Measured 604 x 107 134 x1011al
Bottom 148 x 108 611x107 155x 101

a The mal neutron flux at the raiddle position is based on a bare wire activity equal to the aver-
age of the top and bottom mensurzments

Also listed in table 6-10 is a comperison of calculated values with the average value of all dosime-
ter measurements. Again, the agreement is good and within the assigned uncertainty of plus or
minus 20 percent for the analytical predictions.
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TABLEG6-10
SUMMARY OF NEUTRON DOSIMETRY RESULTS FORCAPSULE Y

irradiation f O b {E 1.0 Vessel Vessel
Time : MeV! Fluence Fluence (cdlculated )
(EFPS n - |  (n/em?)
i ‘ - + . — - -0,
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