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Part II: FSAR – The safety case 

THE SAFETY CASE 

Safety by design 

Oklo designed the Aurora according to the high-level Aurora safety principles, which identify 
high-level safety goals and operational goals (Chapter 5), as well as principal design criteria 
(Chapter 4).  These principles and criteria guided the design from the beginning of the design 
process. 

Safety and defense-in-depth are fundamentally accomplished in the Aurora design by its 
inherent characteristics, including: 

• Small size, low power output, low power density, and low decay heat output 

• Low fuel burnup, small inventory of fuel, and limited available source term 

• Low decay heat term, removed by inherent and passive means 

• High thermal conductivity materials reduce temperature hot spots, and large thermal 
mass provides capacity for heat dissipation 

• Inherent reactivity feedbacks ensure reactor power is controlled during overpower or 
overtemperature events 

• Multiple barriers to fission product release 

• High thermal conductivity materials reduce temperature hot spots, and large thermal 
mass provides capacity for heat dissipation 

• Ambient pressure system removes sources of pressure and limits driving forces for 
release 

• No use of water cooling, uses dry heat rejection instead 

The Aurora produces 4 MWth, which is far smaller than any commercial reactor in the U.S., 
and smaller even than some research reactors.  The lower power of the Aurora also leads to low 
decay heat production.  For reference, 30 seconds after shutdown, the reactor is generating 153 
kW of decay heat, 30 minutes after shutdown, the reactor is producing 65 kW of decay heat, one 
day after shutdown the reactor is producing 21 kW of decay heat, and 1 month after shutdown, 
the reactor is producing 7 kW of decay heat.  This small amount of heat is generated and 
dissipated in a module that contains tens of tons of metal, and tens more tons of shielding and 
other structural material.  

For comparison, one fuel assembly at Diablo Canyon produces approximately 4 times as much 
power as the entire Aurora core, and contains approximately 0.5 tons of fuel, cladding, and 
structural material (or about 0.6 tons when the assembly is immersed in water and the water 
mass is included). 
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The safety case methodology 

The safety of the Aurora is communicated in this Final Safety Analysis Report (FSAR) as a 
“safety case.”  The safety case for the Aurora powerhouse presented in the FSAR utilizing the 
historical standard of a systematic search for a maximum credible accident (MCA), analyzing 
and utilizing precedent for historical plant methodology as well as in-depth internal and 
external event analyses, to identify the worst credible accident based on the single worst 
credible failure or single worst credible common cause of failures.  Background on the MCA is 
given in Section 5.1.1.  

The internal event types analyzed, with relevant discussion incorporated into Chapter 5, 
include: 

• Generic events to all nuclear reactors 

• Metal-fueled fast reactor events and operating experience 

• Compact reactor operating experience and analytical methods 

• Review expert opinion on similar conceptual designs 

• Light water reactor events and methodology, including: 

o Increase in heat removal by the secondary system 

o Decrease in heat removal by the secondary system 

o Decrease in reactor coolant system (RCS) flow rate 

o Reactivity and power distribution anomalies 

o Increase in reactor coolant inventory 

o Decrease in reactor coolant inventory 

o Radioactive release from a subsystem or component 

Common cause failures due to 36 external hazards were analyzed, with relevant discussion 
included in Chapter 1.  Some external hazards have chapters dedicated to their discussion.  
Seismic analysis is described in Chapter 7 and Fire Analysis is described in Chapter 6. 

The maximum credible accident is identified based on iteration between these analyses and is 
then analyzed with added defense-in-depth from risk analysis.  The analysis of the MCA with 
the addition of defense-in-depth is presented to show that the Aurora is safe, even in events 
beyond those previously licensed against.  There is no credible accident within the site envelope 
which leads to a release. 

Then, inherent safety features or inherent design parameters that are assumptions in these 
safety analyses are codified into design bases, assured by design commitments, and tied to 
programmatic controls as described, by system, in Chapter 2.  Programmatic controls include 
quality assurance, license conditions (Part VI of the application), pre-operational testing and 
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startup testing (Chapter 14 of this Part), ITAAC (Part VI of the application), and technical 
specifications (Part IV of the application). 

The result is a robust and integrated system for describing and assuring safety from design, to 
the as-built and operated plant.  The intent of this FSAR is to describe the safety case through 
this holistic methodology.  The inherent safety characteristics of the Aurora – such as its very 
small size and inventory, very low power density, low burnup, robust fuel, and not requiring 
water for cooling – not only affect the safety analysis but also other portions of the application 
such as the environmental analysis and security analysis. 

Introduction to the Aurora design 

Oklo designed the Aurora  with inherent and passive safety features.  The description of all 
structures, systems and components is given in Chapter 2.  Oklo used engineering practices and 
insights from deterministic analyses, defense-in-depth practices, and risk analyses to design the 
Aurora.  The Aurora has large operating and design margins, and relies on passive and inherent 
characteristics to ensure materials are contained and heat is removed.   

The Aurora operates with a low power density and is thermally connected via conduction to 
large thermal masses provided by structures and shielding.  Heat is normally transported from 
the fuel to the power conversion system via heat pipes which carry heat from the fuel to the 
power conversion heat exchanger.  During normal shutdown operations, residual heat is 
removed via the power conversion heat exchangers.  However, the low power density and large 
thermal mass allow heat to be removed from the fuel by conduction throughout the system, and 
to the boundary of the shell where it is removed by convection, radiation, and conduction to the 
environment without the use of the power conversion system heat exchangers.  This means fuel 
temperatures can remain below operating limits relying purely on conduction, convection, and 
radiation. 

The Aurora has negative reactivity feedbacks due to thermal expansion of the fuel and 
structural materials, as well as doppler broadening.  These feedbacks ensure reactor stability 
during operations and can help shut the reactor down should the reactor rise in 
temperature.  Furthermore, the Aurora uses multiple, independent and redundant reactivity 
control systems.  These include three rotating control drums, and three shutdown rods.  Only 
one rod is needed to shutdown the reactor.   

 The Aurora is very small reactor with low fuel burnup, which results in a small inventory of 
radionuclides.  In addition to a small inventory, the Aurora has multiple layers and barriers to 
prevent the release of radionuclides.  The fuel matrix is the first barrier.  The low burnup of the 
Aurora design, and the characteristics of metal fuel mean that most radionuclides remain in the 
fuel matrix over the course of the fuel lifetime.  Next, the fuel is surrounded by a steel envelope, 
called the cell can.  The cans are then placed in a capsule, which is a steel vessel that houses the 
cells.  The capsule is sealed and placed within the shell, another steel vessel which houses 
shielding and structures, as well as the capsule.  The shell is also sealed.  The shell is emplaced 
in the reactor emplacement in the basement of the Aurora powerhouse.  The Aurora does not 
operate at elevated pressures, and there is not a source of driving pressure in the 
core.  Altogether, these barriers provide defense-in-depth to the release of radionuclides to the 
environment. 
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 SITE ENVELOPE AND BOUNDARY 

 Purpose 

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(1) requires the following 
be submitted: 

(i) The boundaries of the site; 

(ii) The proposed general location of each facility on the site; 

(iii) The seismic, meteorological, hydrologic, and geologic characteristics of the 
proposed site with appropriate consideration of the most severe of the natural 
phenomena that have been historically reported for the site and surrounding 
area and with sufficient margin for the limited accuracy, quantity, and time in 
which the historical data have been accumulated; 

(iv) The location and description of any nearby industrial, military, or 
transportation facilities and routes; 

(v) The existing and projected future population profile of the area surrounding 
the site; 

(vi) A description and safety assessment of the site on which the facility is to be 
located.  The assessment must contain an analysis and evaluation of the major 
structures, systems, and components of the facility that bear significantly on the 
acceptability of the site under the radiological consequence evaluation factors 
identified in paragraphs (a)(1)(vi)(A) and (a)(1)(vi)(B) of this section.  In 
performing this assessment, an applicant shall assume a fission product release 
from the core into the containment assuming that the facility is operated at the 
ultimate power level contemplated.  The applicant shall perform an evaluation 
and analysis of the postulated fission product release, using the expected 
demonstrable containment leak rate and any fission product cleanup systems 
intended to mitigate the consequences of the accidents, together with applicable 
site characteristics, including site meteorology, to evaluate the offsite radiological 
consequences.  Site characteristics must comply with part 100 of this chapter.  
The evaluation must determine that: 

(A) An individual located at any point on the boundary of the exclusion area 
for any 2-hour period following the onset of the postulated fission product 
release, would not receive a radiation dose in excess of 25 rem total effective 
dose equivalent (TEDE). 

(B) An individual located at any point on the outer boundary of the low 
population zone, who is exposed to the radioactive cloud resulting from the 
postulated fission product release (during the entire period of its passage) 
would not receive a radiation dose in excess of 25 rem TEDE ; 

Table 1-1 shows where each 10 CFR 52.79(a)(1) requirement is addressed in this chapter. 
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Table 1-1.  Organization of Chapter 1 

Section Section title Requirement 
1.1 Proposed site overview 10 CFR 52.79(a)(1)(i) 

  10 CFR 52.79(a)(1)(ii) 
  10 CFR 100.21(a) 
  10 CFR 100.21(b) 
  10 CFR 100.21(h) 

1.2 Evaluation of the proposed site 10 CFR 52.79(a)(1)(iii) 
  10 CFR 52.79(a)(1)(iv) 
  10 CFR 52.79(a)(1)(v) 
  10 CFR 52.79(a)(1)(vi) 
  10 CFR 100.21(c) 
  10 CFR 100.21(d) 
  10 CFR 100.21(e) 
  10 CFR 100.21(f) 
  10 CFR 100.21(g) 
  10 CFR 100.23(c) 
  10 CFR 100.23(d) 

1.3 Safety assessment of the proposed site 10 CFR 52.79(a)(1)(vi) 
Appendix A External hazards evaluation 10 CFR 52.79(a)(1)(iii) 

  10 CFR Part 100, Subpart B 
Appendix B Generic site envelope None 

The purpose of this chapter is to provide a description of the proposed site and to evaluate any 
safety impacts of the proposed site on the Aurora. 

1.0.1 Definitions 

The following terms are specific to the Aurora and are used throughout this chapter. 

Aurora INL site:  The area that is used for the siting of the Aurora, usually referred to as the 
“site boundary.”  The only significant building onsite is the Aurora powerhouse.  Other small 
structures include microgrid interconnections and the backup thermal storage.  This site is 
leased from Idaho National Laboratory (INL) as per the Site Use Permit.  It is possible for the 
public to walk on the site and up to the Aurora powerhouse.  The area within the site boundary 
may be frequented by the public and encompasses the owner-controlled area and parking 
lot.  This term refers to the specific site that will be chosen from the candidate sites. 

candidate sites:  The sites, determined as per the Site Use Permit, that could be locations for 
the Aurora. 

Idaho National Laboratory (INL):  The part of the U.S. Department of Energy’s complex of 
national laboratories, which is headquartered in Idaho Falls, ID. The mission of INL is to 
discover, demonstrate and secure innovative nuclear energy solutions, other clean energy 
options and critical infrastructure. 
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INL Site:  The INL Site is an administratively controlled area with access to facilities granted 
for official business.  The INL Site contains nuclear facilities is located in the desert, about 45 
miles away from Idaho Falls, ID.  Public access is allowed on the highways, the Big Lost River 
rest area, and at the Experimental Breeder Reactor No. 1 (EBR-I) visitor center.  It is the area 
controlled by the Department of Energy and comprises Idaho National Laboratory. 

Aurora powerhouse:  The only building onsite.  The Aurora powerhouse houses the reactor 
module and secondary system as well as other supporting equipment.  The Aurora powerhouse 
makes up the exclusion area, low population zone, and emergency planning zone. 
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 Proposed site overview 

The purpose of this section is to satisfy the requirements of 10 CFR 52.79(a)(1)(i)-(ii), 
10 CFR 100.21(a)-(b), and 10 CFR 100.21(h).  This section describes the proposed site and the 
boundaries of the proposed site. 

1.1.1 Description of the proposed site 

An Aurora will be sited at Idaho National Laboratory (INL) Site in southeast Idaho, which is 
referred to as the “Aurora INL site.”  The Oklo Inc. site use permit request was evaluated by the 
Department of Energy Office of Nuclear Energy (DOE-NE), a field office of the DOE, through 
the site use permit process and received a permit on September 26, 2019.  This Site Use Permit 
grants Oklo personnel access to the land on the INL Site leased to Oklo Inc.  Oklo Inc. 
subsidiary Oklo Power LLC (Oklo Power) will own and operate the Aurora at the INL Site. 

One of the missions of DOE is to advance nuclear power as a resource capable of meeting the 
Nation’s energy, environmental, and national security needs by resolving technical, cost, safety, 
proliferation resistance, and security barriers through research, development, and 
demonstration as appropriate.  Idaho National Laboratory, previously known as the National 
Reactor Testing Station (1949), the Idaho National Engineering Laboratory (1977), and the 
Idaho National Engineering and Environmental Laboratory (1997), has been the home to 52 
reactors, with 3 currently operating.  Since the main objective for a first-of-a-kind Aurora is to 
optimize the design, INL Site is an optimal location for a first-of-a-kind reactor.  The lessons 
learned from the Aurora INL site will allow for the proliferation of advanced reactors in the U.S. 
in places needing reliable, affordable, and carbon-free electricity, while promoting new 
U.S.-based reactor designs worldwide. 

Idaho National Laboratory is approximately 890 square miles and is located in 5 separate 
counties in eastern Idaho including Butte County, Bingham County, Bonneville County, Clark 
County, and Jefferson County.  The Aurora INL site is in Bingham County, approximately 35 
mi northwest of Idaho Falls as can be seen in Figure 1-1. 
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Figure 1-1:  Aurora INL site and surrounding area 

More specifically, the Aurora INL site will be by the Materials and Fuels Complex (MFC) at 
INL, which is located close to the southeast corner of the INL Site, as shown in Figure 
1-2.  There are six major facilities located at the MFC:  (1) the Hot Fuel Examination Facility, 
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(2) the Experimental Fuels Facility, (3) the Irradiated Materials Characterization Laboratory, 
(4) the Analytical Laboratory, (5) the Fuel Manufacturing Facility, and (6) the Transient 
Reactor Test Facility.  Most famously, EBR-II and the supporting fuel cycle facilities operated at 
MFC from 1961 to 1994.  A layout of the facilities in the MFC can be seen in Figure 1-3. 

 

Figure 1-2:  Key facilities on the INL Site [1] 
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Figure 1-3:  MFC layout [2] 

The Aurora INL site will be chosen from five candidate sites, each of which is located on a dry 
flat desert on a bed of basalt within roughly one mile of the fence surrounding the MFC as 
shown in Figure 1-4.  The MFC is located at latitude 43º 35’ 40” N and longitude 112 º 39’ 17” W. 
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Figure 1-4:  Location of the candidate sites 

The exact location of the Aurora INL site will be determined by Oklo Inc. and DOE-NE, through 
the Site Use Permit process.  Figure 1-4 and Figure 1-5 show the candidate sites, which are 
labeled Site 1-Site 5.  These five sites are the five potential locations for siting the Aurora.   
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Figure 1-5:  Location of the candidate sites by MFC 
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1.1.2 Boundaries of the proposed site 

1.1.2.1 Determination of exclusion area and low population zone 

Section 100.3, “Definitions,” of 10 CFR, defines an exclusion area and a low population zone. 

The definition for an exclusion area is as follows: 

…that area surrounding the reactor, in which the reactor licensee has the 
authority to determine all activities including exclusion or removal of personnel 
and property from the area.  This area may be traversed by a highway, railroad, 
or waterway, provided these are not so close to the facility as to interfere with 
normal operations of the facility and provided appropriate and effective 
arrangements are made to control traffic on the highway, railroad, or waterway, 
in case of emergency, to protect the public health and safety.  Residence within 
the exclusion area shall normally be prohibited.  In any event, residents shall be 
subject to ready removal in case of necessity.  Activities unrelated to operation of 
the reactor may be permitted in an exclusion area under appropriate limitations, 
provided that no significant hazards to the public health and safety will result. 

The definition for a low population zone is as follows: 

…the area immediately surrounding the exclusion area which contains residents, 
the total number and density of which are such that there is a reasonable 
probability that appropriate protective measures could be taken in their behalf in 
the event of a serious accident.  These guides do not specify a permissible 
population density or total population within this zone because the situation may 
vary from case to case.  Whether a specific number of people can, for example, be 
evacuated from a specific area, or instructed to take shelter, on a timely basis 
will depend on many factors such as location, number and size of highways, scope 
and extent of advance planning, and actual distribution of residents within the 
area. 

The exclusion area and the low population zone for the Aurora are set at the Aurora powerhouse 
boundary.  There are no residents in the low population zone.  The Aurora powerhouse is within 
the Aurora INL site as can be seen in Figure 1-6. 
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Figure 1-6:  Schematic of an Aurora site  

1.1.2.2 Determination of population center 

Section 100.3, “Definitions,” of 10 CFR, defines a population center distance as “the distance 
from the reactor to the nearest boundary of a densely populated center containing more than 
about 25,000 residents.”  Additionally, 10 CFR 100.21(b) requires the following: 

The population center distance, as defined in § 100.3, must be at least one and 
one-third times the distance from the reactor to the outer boundary of the low 
population zone.  In applying this guide, the boundary of the population center 
shall be determined upon consideration of population distribution.  Political 
boundaries are not controlling in the application of this guide; 

Since the distance from the reactor to the Aurora powerhouse wall varies between 8.5 and 47 
feet, the longer of the two values is assumed.  This results in a population center distance of 63 
feet from the powerhouse.  This distance is significantly smaller than the distance to the closest 
densely populated center, which is Idaho Falls, which is 25 miles away. 
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 Evaluation of the proposed site 

The purpose of this section is to evaluate the proposed site against the generic site envelope and 
to provide information related to site characterization.  The purpose of providing an evaluation 
of the proposed site against the generic site envelope is to satisfy 10 CFR 52.79(a)(1)(iii)-
(v).  The purpose of providing information related to site characterization is to satisfy 
10 CFR 52.79(a)(1)(vi) which requires, in part, “Site characteristics must comply with part 100 
of this chapter,” which further requires 10 CFR Part 100, Subpart B, “Evaluation Factors for 
Stationary Power Reactor Site Applications on or After January 10, 1997.”  Therefore, the 
purpose of this section is to meet the requirements of 10 CFR 52.79(a)(1)(iii)-(vi), 
10 CFR 100.21(c)-(g), and 10 CFR 100.23(c)-(d)1 by providing an evaluation of the proposed site, 
which includes a description against the Oklo Aurora generic site envelope, described further in 
this section, as well as information on seismic, meteorological, hydrologic, geologic, man-made 
hazards, and population demographic characteristics of the proposed site. 

1.2.1 Generic site envelope evaluation 

The generic site envelope is the set of bases to ensure safe operation of the Aurora and is 
outlined in detail in Appendix B, "Generic site envelope,” of this chapter.  The generic site 
envelope defines five site bases:  (1) coastal site, (2) external fire, (3) geologic, (4) man-made 
hazards, and (5) seismic.  Each basis has specific site commitments, which are derived from the 
external hazards evaluation, described in Appendix A, "External hazards evaluation,” of this 
section.  A site commitment is made by Oklo Power to perform a specific action when 
undergoing site selection for the Aurora.  This section discusses each of the generic site envelope 
site bases. 

1.2.1.1 Coastal site evaluation 

The generic site envelope requires further investigations for coastal sites.  Since the proposed 
site is not located on a coastline, the proposed site meets the coastal site basis of the generic site 
envelope by default. 

1.2.1.2 External fire evaluation 

The generic site envelope requires that 30 feet within the Aurora foundation be cleared from 
vegetation and any vegetation slash, as per National Fire Protection Association (NFPA) 1144, 
“Standard for reducing structure ignition hazards from wildland fire.”  This requirement is not 
dependent on the specific location of the site and is therefore applicable to the Aurora INL 
site.  Oklo Power makes the appropriate site commitment, summarized below and verified by an 
Inspection, Tests, Analyses, and Acceptance Criteria (ITAAC), to ensure the Aurora INL site 
meets the requirements of the generic site envelope to mitigate the external fire hazard. 

                                                 
1 The remainder of the 10 CFR Part 100, Subpart B, requirements that apply to the Aurora are 
10 CFR 100.21(a)-(b) and 10 CFR 100.21(h).  These requirements are discussed in other sections of this chapter. 



 

Copyright © 2020 Oklo Inc., all rights reserved  29 

II.01 Site envelope and boundary 

OkloPower-2020-PartII-NP, Rev. 0 

 

1.2.1.3 Geologic evaluation 

The generic site envelope requires further geologic investigations to satisfy the geologic site 
basis.  These investigations are discussed in the following sections. 

1.2.1.3.1 Avalanches 

The generic site envelope requires information be provided on if the proposed site is in an 
avalanche-prone environment.  The proposed site is considered to be in an avalanche-prone 
environment if the proposed site has both of the following characteristics: 

• Is within 1 mi of a slope greater than 25 degrees, judged by 100 ft contour lines  

• Has data indicating avalanches have occurred in the region or geomorphologic indicators 
of avalanches  

The area directly surrounding the proposed site is flat, as can be seen in Figure 1-7.  There are 
no slopes near any of the sites with a greater gradation than 25 degrees as judged by 100 foot 
contour lines.   Additionally, historical data shows no evidence of avalanches in the area and 
there are no geomorphologic indicators of avalanches. 

Site basis: 

SB.01 The proposed site will not damage the Aurora facility due to an 
external fire.  

Site evaluation summary:  

The INL Aurora site is described in Section 1.1.  It is evaluated against the generic 
site envelope in Appendix B of this chapter.  As described in the generic site envelope, 
the external hazard presented by an external fire can be mitigated by clearing the 
area surrounding the reactor.  A site commitment is taken to clearing the area, and 
the appropriate programmatic controls are in place to verify it.  

Site commitments and programmatic controls: 

SC.01.A The area directly surrounding the Aurora powerhouse will be cleared 
during site preparation in accordance with NFPA 1144. 

ITAAC.SS.01.A (see Part VI)  
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Figure 1-7:  Topographic map of the area surrounding the proposed site 

Since the proposed site is not located in an avalanche-prone environment, the proposed site 
meets the avalanche site commitment of the geologic basis by default. 
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1.2.1.3.2 Landslides 

The generic site envelope requires further investigations for landslide-prone environments.  If 
the proposed site has either of the following characteristics: 

• Is within 2 mi of a slope greater than 15 degrees, judged by 100 ft contour lines  

• Has data indicating landslide have occurred in the region  

Then the proposed site is considered to be in landslide-prone environment and requires further 
landslide investigations. 

As can be seen in Figure 1-7, the area directly surrounding the proposed site is flat.  There are 
no slopes near any of the sites with a greater gradation than 15 degrees as judged by 100 foot 
contour lines.   Additionally, historical data does not indicate landslides in the region [3]. 

Since the proposed site is not located in a landslide-prone environment, the proposed site meets 
the landslide site commitment of the geologic basis by default. 

1.2.1.3.3 Sinkholes 

The generic site envelope requires further investigations to determine if the proposed site is in a 
karst terrain, i.e., terrain where water can drain below the ground and dissolve water-soluble 
evaporate rock such as salt, gypsum, or carbonate rocks.  As can be seen in Figure 1-8, the area 
directly surrounding the site does not have karst terrain.  Therefore, the proposed site meets 
the sinkhole site commitment of the geologic basis. 
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Figure 1-8:  Karst terrains surrounding INL 
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1.2.1.4 Man-made hazards evaluation 

The generic site envelope requires further investigation for man-made hazards.  Specifically, it 
requires that an evaluation be conducted surrounding the proposed site to determine if there 
are any explosive hazards.  This requirement is not dependent on the specific location of the site 
and is, therefore, applicable to the Aurora INL site.  Oklo Power makes the appropriate site 
commitment, summarized below and verified by an ITAAC, to ensure the Aurora INL site meets 
the requirements of the generic site envelope to mitigate man-made hazards. 

 

1.2.1.5 Seismic evaluation 

The generic site envelope requires that further evaluations be performed if the largest recorded 
PGA, as per ASCE 7, is greater than 0.5 g.  The ASCE 7 PGA value for the proposed site is 
determined by looking up the coordinates of the proposed site, with the following settings: 

• ASCE/SEI 7-16 

• Risk category IV 

• Site soil class “A” – hard rock 

The ASCE 7 PGA for the proposed site is found to be 0.106 g.2   Since this value is smaller than 
0.50 g, no further evaluations are required, and the seismic basis of the generic site envelope is 
met by default. 

                                                 
2 This value is current as of February 29, 2020 via the ASCE 7 online tool, available at 
https://asce7hazardtool.online/. 

Site basis: 

SB.02 The proposed site will not damage the Aurora reactor by an explosion.  

Site evaluation summary:  

The INL Aurora site is described in Section 1.1.  It is evaluated against the generic 
site envelope in Appendix B of this chapter.  As described in the generic site envelope, 
the external hazard presented by man-made hazards, namely explosive hazards, 
must be evaluated for every site.  If blast hazards are identified, further evaluation is 
required.  A site commitment is taken to conducting the required evaluation(s), and 
the appropriate programmatic controls are in place to verify it.  

Site commitments and programmatic controls: 

SC.02.A The area surrounding the proposed site will be evaluated for explosive 
hazards.  Blast hazards that are identified will be evaluated to 
determine if their resulting pressure exceeds the blast capacity. 

ITAAC.SS.02.A (see Part VI) 

https://asce7hazardtool.online/
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1.2.1.6 Generic site envelope results 

The generic site envelope is established in Appendix B of this chapter.  The generic site 
envelope defines four site bases:  coastal site, external fire, geologic, and man-made 
hazards.  The coastal site basis is inherently met by the proposed site since the Aurora INL site 
is farther than one-half of a mile from a coastline.  The external fire basis is met through an 
appropriate Oklo Power commitment and verified by ITAAC.SS.01.A.  The geologic basis is met 
since there are no slopes greater than 15 degrees within the proposed site, historical data does 
not indicate avalanches or geomorphic indicators of avalanches, historical data does not indicate 
landslides, and the proposed site is not within a quarter mile of karst terrain.  The man-made 
hazards basis is met through an appropriate Oklo Power commitment and verified by 
ITAAC.SS.02A.  The evaluation of the proposed site against the generic site envelope is shown 
in Table 1-2. 

Table 1-2:  Generic site envelope evaluation results 

Basis Commitment Parameter Value 
Coastal        

Coastal Distance to a coast (mi) > 0.5 
External fire        

Fire Brush clearing (ft) 30 
Geologic       
 

Avalanche Distance to slope greater than 25 degrees (mi) > 1 
  

Historic avalanche data or geomorphologic 
indicators of avalanches (Y/N) 

N 

 
Landslide Distance to slope greater than 15 degrees (mi) > 0.25 

  
Historic landslide data (Y/N) N 

 
Sinkhole Distance to karst terrain (mi) > 0.25 

Man-made 
hazards 

      

 
Man-made 
hazards 

Blast hazards investigation (mi) 0 

1.2.2 Proposed site characterization information 

Site characterization information is required by 10 CFR 52.79(a)(1)(iii)-(v) and 
10 CFR Part 100, Subpart B, and is provided for purposes of meeting the regulatory 
requirements, but is not needed in order to evaluate the safe operation of the Aurora at the 
proposed site.  Therefore, this section provides only high-level information.  Table 1-3 provides 
information on the organization of this section, as well as which regulatory requirements that 
are being addressed. 

Table 1-3:  Organization of proposed site characterization information 

Section Section title Requirement 

1.2.1 Seismic evaluation 10 CFR 52.79(a)(1)(iii) 
  10 CFR 100.21(d) 
  10 CFR 100.23(c) 
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  10 CFR 100.23(d) 
1.2.2 Meteorological evaluation 10 CFR 52.79(a)(1)(iii) 

  10 CFR 100.21(d) 
1.2.3 Hydrologic evaluation 10 CFR 52.79(a)(1)(iii) 
 

 10 CFR 100.21(d) 
1.2.4 Geologic evaluation 10 CFR 52.79(a)(1)(iii) 
  10 CFR 100.21(d) 
  10 CFR 100.23(c) 
  10 CFR 100.23(d) 
1.2.5 Man-made hazards evaluation 10 CFR 52.79(a)(1)(iv) 
  10 CFR 100.21(e) 
1.2.6 Population demographics evaluation 10 CFR 52.79(a)(1)(v) 
  10 CFR 100.21(h) 
1.2.7 Atmospheric dispersion characteristic evaluation 10 CFR 100.21(c) 
1.2.8 Security plan impact evaluation 10 CFR 100.21(f) 
1.2.9 Emergency plan impact evaluation 10 CFR 100.21(g) 
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1.2.2.1 Seismic evaluation 

Site-specific seismic information is typically provided for large reactors for many reasons, 
including hazards to the powerhouse, failure of safety systems, and other reactor safety 
disturbances.  However, the Aurora is evaluated and found robust against an extreme seismic 
event, as part of the external hazards evaluation in Appendix A, "External hazards evaluation,” 
of this chapter.  This major seismic event assumes a complete collapse of the powerhouse and 
applies an extreme ground acceleration to the reactor module, without challenging the safety of 
the reactor.  Since it is impractical to bound all large ground accelerations, an extreme ground 
acceleration was assumed as part of the deterministic analysis for the seismic event family.  
Therefore, the generic site envelope provides for a site commitment related to the assumed 
ground acceleration, located in Appendix B, "Generic site envelope.” 

1.2.2.1.1 Generic site envelope consideration 

There is one seismic commitment included in the generic site envelope that relates to the safe 
operation of the Aurora.  This commitment relates to evaluating the proposed site to ensure that 
the recorded PGA is bounded by the external hazards seismic analysis.  This commitment is 
discussed in the generic site envelope evaluation in Section 1.2.1.5. 

1.2.2.1.2 Proposed site considerations and evaluations 

The information provided in this section is strictly to meet the requirements of 
10 CFR 52.79(a)(iii), 10 CFR 100.21(d), and 10 CFR 100.23(c)-(d), but does not contribute to the 
safety of the plant. 

Sections 52.79(a)(1)(iii) and 100.21(d) of 10 CFR require general seismic information regarding 
the site in order to evaluate the safety impact of the proposed site to the facility.  This 
information is addressed through the external hazards evaluation and the generic site envelope, 
since they relate to the safety of the Aurora, and are located in Appendix A, "External hazards 
evaluation,” and Appendix B, "Generic site envelope,” of this chapter of the final safety analysis 
report.  Section 100.23(c)-(d) of 10 CFR contains specific requirements for seismic information to 
be submitted, which are included in this section, and are as follows: 

• Data on vibratory ground motion 

• Tectonic and nontectonic surface deformation 

• Earthquake recurrence rates 

• Fault geometry and slip rates 

• Seismically-induced flooding 

• Site foundation material 

• Safe Shutdown Earthquake Ground Motion 

• Liquefaction potential 

Other requirements from 10 CFR 100.23(d), such as, soil and rock stability, natural and 
artificial slope stability, cooling water supply, and remote safety-related structure siting, are 
discussed in Section 1.2.2.4. 
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1.2.2.1.2.1 Vibratory ground motion 

The intensity of an earthquake, experienced at a given distance from the epicenter, depends on 
the underlying bedrock and soil characteristics as well as the magnitude of the 
earthquake.  The rock underlying the western U.S. does not transfer vibratory ground motion as 
far as the east coast.  This is due, in part, to the existence of more faults in the western U.S., 
which do not allow a transfer of energy as easily as land with fewer faults (i.e., the eastern U.S.) 
[4].  After a thorough review of the region around the proposed site, a 175 mi radius around the 
Aurora INL site was found to be sufficiently large in order to include earthquakes that could 
likely be felt at the Aurora INL site.  Figure 1-9 shows earthquakes within 175 mi of the site.  

Table 1-4 provides recorded 6.0 Richter-scale earthquakes experienced in the 175 mi radius 
around the Aurora INL site to provide an illustration of the overall historic vibratory ground 
motion of the region.  Figure 1-10 provides an illustration to convey the relative size and 
frequency of earthquakes in the region. 

Table 1-4:  Distance from earthquake epicenters to the Aurora INL site [5] 

Rank 
Magnitude 

(Richter) Date Location 
Distance from 

site (mi) 
1 7.3 1959 W. Montana 106 
2 6.9 1983 S. Idaho 68 
3 6.6 1934 N. Utah 131 
4 6.5 1959 Yellowstone  124 
5 6.4 1897 W. Montana 118 
6 6.1 1947 W. Montana 97 
7 6.1 1944 S. Idaho 106 
8 6.1 1975 S. Idaho 132 
9 6.0 1945 S. Idaho 140 
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Figure 1-9:  Earthquakes since 1890 within 175 mi of the Aurora INL site [5] 
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Figure 1-10:  Earthquakes since 1890 with a Richter scale magnitude of 6.0 or greater [5] 
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Figure 1-11:  Earthquakes since 1890 with a Richter scale magnitude of 7.0 or greater [5] 
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1.2.2.1.2.2 Tectonic and nontectonic surface deformation 

Surface deformation3 is a typical concern for large light water reactors, which have large sites 
and rely on water for cooling.  These large facilities have site boundaries that are on the order of 
square miles and reactors that rely on water that must be obtained from a local ultimate heat 
sink (e.g., lake, river, ocean).  The proposed site for the Aurora, which is less than an acre, is 
extremely small in comparison, so there are no concerns associated with moving fluids long 
distances.   

The primary concern for tectonic and nontectonic surface deformation, aside from seismic 
accelerations, is differential displacement of the site.  For the Aurora, there is only one building, 
the powerhouse, which houses the reactor and the secondary system, and the ultimate heat sink 
does not require piping outside of the Aurora powerhouse.  Additionally, the Aurora does not 
use water for cooling, nor any other fluid that must be imported from offsite.  As a result, there 
is no concern surrounding differential displacement across a fault.  Therefore, surface 
deformation is not a concern and no further information is provided. 

Figure 1-12 shows the active faults found within 300 mi of the Aurora INL site.  Descriptions of 
the classes of active faults are given in Table 1-5.  The class B active faults could be surface 
faults.  There are several class B active faults near the site, but none directly under the site.  
The closest class B active fault is approximately 7.8 mi away.  

                                                 
3 Surface deformation, as defined in 10 CFR 100.3 is “a distortion of geologic strata at or near the ground 
surface by the processes of folding or faulting as a result of various earth forces.” 
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Figure 1-12:  Active faults and their associated class [6] 

Table 1-5:  Classes used for active faults, liquefaction features, and deformation [7] 

Class category Definition 



 

Copyright © 2020 Oklo Inc., all rights reserved  43 

II.01 Site envelope and boundary 

OkloPower-2020-PartII-NP, Rev. 0 

Class A Geologic evidence demonstrates the existence of a Quaternary fault of tectonic origin, 
whether the fault is exposed for mapping or inferred from liquefaction or other 
deformational features. 

Class B Geologic evidence demonstrates the existence of a fault or suggests Quaternary 
deformation, but either (1) the fault might not extend deeply enough to be a potential 
source of significant earthquakes, or (2) the currently available geologic evidence is 
too strong to confidently assign the feature to Class C but not strong enough to assign 
it to Class A. 

Class C Geologic evidence is insufficient to demonstrate (1) the existence of tectonic fault, or 
(2) Quaternary slip or deformation associated with the feature. 

Class D Geologic evidence demonstrates that the feature is not a tectonic fault or feature; this 
category includes features such as demonstrated joints or joint zones, landslides, 
erosional or fluvial scarps, or landforms resembling fault scarps, but of demonstrable 
non-tectonic origin. 

1.2.2.1.2.3 Earthquake recurrence rates 

Figure 1-13 includes the approximate recurrence rates of different magnitude earthquakes 
impacting INL.  However, earthquake recurrence rates do not have a significant impact on the 
Aurora since the Aurora is extremely seismically robust against the earthquakes possible in the 
region.  Additionally, the operating life of the Aurora is shorter than large light water reactors. 
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Figure 1-13:  Earthquake recurrence rate from the INL SSHAC-S analysis [8] 

1.2.2.1.2.4 Fault geometry and slip rates 

The active faults within the Aurora INL site are presented in Figure 1-14.  The class B active 
faults nearest to the site have unknown slip rates.  As the faults are class B, they are unlikely 
to result in a significant seismic event.  The majority of active faults in the region have a slip 
rate of less than 0.2 mm/yr. 
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Figure 1-14:  Slip rates associated with regional active faults [6] 
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1.2.2.1.2.5 Seismically-induced flooding 

The Aurora INL site is not located along a coastline.  There are no concerns or provided 
information related to seismically-induced flooding. 

1.2.2.1.2.6 Site foundation material 

The site foundation material is primarily concrete, and there are no safety concerns associated 
with the site settling.  As the Aurora facility is contained in one building, there are no concerns 
with differential displacement of the site across a fault. 

1.2.2.1.2.7 Safe Shutdown Earthquake ground motion 

The safe shutdown earthquake (SSE) is site agnostic for the Aurora, rather than determined on 
a site-by-site basis.  This is possible due to the robustness of the Aurora against a large seismic 
event, as is shown by the external hazards evaluation.  The Aurora is analyzed to ground 
accelerations that are greater than any forecasted ground acceleration in most of the U.S.  The 
PGA of the proposed site is 0.106 g and the Aurora is analyzed to 0.50 g.  The seismic site 
commitment that relates to this analysis is in Section 1.2.1.5.  Therefore, the proposed site does 
not challenge the design and no additional design features are needed to alleviate the seismicity 
of the region. 

1.2.2.1.2.8 Liquefaction potential 

Liquefaction can occur during a seismic event due to a reduction in the volume of soil as void 
spaces are filled due to earthquake shock.  The soils that are most vulnerable to liquefaction are 
poorly drained granular soils.  Liquefaction is most common in areas with shallow groundwater, 
which generally means that the water table is less than 50 feet from the ground surface 
[7][8].  As can be seen in Figure 1-15, the groundwater at the MFC is significantly lower than 50 
ft, so there are no liquefaction concerns.  The values given at each well site are the most 
recently measured value as of January 2020 and are the values for depth to water level, feet 
below land surface. 
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Figure 1-15:  Groundwater levels measured near the MFC [11] 
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1.2.2.2 Meteorological evaluation 

Site-specific meteorological information is typically provided for many reasons, including 
hazards to the Aurora powerhouse, potential flooding, and meteorological parameters that 
become part of the atmospheric dispersion calculations in the dose analysis.  However, the 
external hazards evaluation in Appendix A, "External hazards evaluation,” of this chapter of the 
final safety analysis report found the Aurora robust against extreme meteorological hazards, 
which assume a complete collapse of the powerhouse and water inside the facility.  Lastly, site-
specific atmospheric dispersion parameters are not relevant because no fission product release 
is postulated, as addressed in Section 1.3.  Additionally, dose calculations done in the design 
phase of the Aurora used wind speeds that would maximize dose, which is another conservative 
mechanism to analyze atmospheric dispersion effects on dose consequences without requiring 
meteorological data.  Therefore, the information provided in this section is strictly to meet the 
regulations and is not needed for determining the safety of the plant at the proposed site. 

1.2.2.2.1 Generic site envelope consideration 

The generic site envelope does not contain any meteorological evaluations that need to be 
performed for the proposed site to ensure the safety of the Aurora. 

1.2.2.2.2 Proposed site considerations and evaluations 

The information provided in this section is strictly to meet the requirements of 
10 CFR 52.79(a)(iii) and 10 CFR 100.21(d).  Since 10 CFR 52.79(a)(1)(iii) and 10 CFR 100.21(d) 
require general meteorological information regarding the site in order to evaluate the safety 
impact of the proposed site to the facility, those requirements are encapsulated in the generic 
site envelope.  Since there is no additional meteorological information that is required, nothing 
further is provided. 
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1.2.2.3 Hydrologic evaluation 

Hydrologic information, as it relates to a proposed site, is typically provided to assess whether a 
site is prone to flooding and how that flooding might affect the safety of the facility.  For large 
light water reactors, there are diverse hydrologic considerations typically due to reliance on 
large bodies of water of certain characteristics for use in cooling.  Aurora does not require water 
for cooling and flooding to the Aurora facility is generally not challenging.  The introduction of 
water in the facility is covered by the external hazards evaluation in Appendix A, "External 
hazards evaluation,” of this chapter of the final safety analysis report.  This analysis assumed 
water inside the facility and finds that the safety of the Aurora is not challenged by flooding, so 
no site-specific evaluation is needed for safety purposes.  Therefore, the information provided in 
this section is strictly to meet the regulations and is not needed for determining the safety of the 
plant at the proposed site. 

1.2.2.3.1 Generic site envelope consideration 

The generic site envelope does not contain any hydrologic evaluations that need to be performed 
for the proposed site to ensure the safety of the Aurora. 

1.2.2.3.2 Proposed site considerations and evaluations 

The information provided in this section is strictly to meet the requirements of 
10 CFR 52.79(a)(iii) and 10 CFR 100.21(d).  Since 10 CFR 52.79(a)(1)(iii) and 10 CFR 100.21(d) 
require general hydrologic information regarding the site in order to evaluate the safety impact 
of the proposed site to the facility, those requirements are encapsulated in the generic site 
envelope.  Since there is no additional meteorological information that is required, nothing 
further is provided. 
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1.2.2.4 Geologic evaluation 

Geologic site information is typically provided to ensure that soil and topography does not 
negatively affect the safety of the plant.  As can be seen in the external hazards evaluation 
included in Appendix A, "External hazards evaluation,” of this chapter, the Aurora is generally 
not susceptible to geologic hazards due to the robustness of the reactor module.  However, 
several specific external hazards are not evaluated as part of the external hazards evaluation 
and have related site commitments, provided in Appendix B, "Generic site envelope” of this 
chapter.  Therefore, the information provided in this section is strictly to meet the regulations 
and is not needed for determining the safety of the plant at the proposed site. 

1.2.2.4.1 Generic site envelope consideration 

There are several geologic site commitments included in the generic site envelope that relate to 
the safe operation of the Aurora.  These commitments are for avalanches, landslides, and 
sinkholes and are discussed in the generic site envelope evaluation in Section 1.2.1.3.  

1.2.2.4.2 Proposed site considerations and evaluations 

The information provided in this section is strictly to meet the requirements of 
10 CFR 52.79(a)(iii), 10 CFR 100.21(d), and 10 CFR 100.23(c)-(d), but does not contribute to the 
safety of the plant. 

Sections 52.79(a)(1)(iii) and 100.21(d), of 10 CFR require general geologic information regarding 
the site in order to evaluate the safety impact of the proposed site to the facility.  This 
information is  addressed through the external hazards evaluation and the generic site envelope 
since they relate to the safety of the Aurora.  The external hazards evaluation and the generic 
site envelope are located in Appendix A, "External hazards evaluation” and Appendix B, 
"Generic site envelope” of this chapter.  Specific requirements for seismic information to be 
submitted, which partially include geologic information, are discussed in Section 1.2.2.1.  Other 
geologic requirements from 10 CFR 100.23(c)-(d) are discussed in this section and include the 
following: 

• Soil and rock stability 

• Liquefaction potential 

• Natural and artificial slope stability 

• Cooling water supply 

• Remote safety-related structure siting 

1.2.2.4.2.1 Soil and rock stability 

As can be seen in Figure 1-16, the candidate sites are located on sands over basalt or 
loess.  Table 1806.2 of the 2018 International Building Code states the vertical foundation 
pressure applied to sand, silty sand, clayey sand, silty gravel and clayey gravel should be no 
greater than 2000  pounds per square foot (psf).  The maximum vertical load given for clay, 
sandy clay, silty clay, clayey silt, silt and sandy silt is 1500 psf.  The Aurora powerhouse and 
reactor module both have vertical loads less than 1500 psf, thus there are no concerns 
surrounding the vertical load bearing capacity of the soil at the proposed site. 
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Figure 1-16:  Soil underlying the are nearby the MFC [12] 

Additionally, groundwater can impact the stability of the soil.  Groundwater at the proposed 
site does not run within the underlying reactor module or building, thus groundwater is not 
further considered as impacting the soil and rock stability.  
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1.2.2.4.2.2 Natural and artificial slope stability 

Information relating to natural slope is provided in Section 1.2.1.3.  The only slight artificial 
slope is the small berm around the Aurora powerhouse, which is several feet tall.  The artificial 
slope created by the berm around the powerhouse will be designed to allow appropriate 
drainage and with soils compacted in such a way as to mitigate the likelihood of failure.  If a 
berm does fail, that does not challenge the safety of the Aurora. 

1.2.2.4.2.3 Cooling water supply 

The Aurora does not use water for cooling, nor any other fluid that must be imported from 
offsite, therefore no information on cooling water supply is provided. 

1.2.2.4.2.4 Remote safety-related structure siting 

The Aurora does not have associated remote safety-related structures, as the site is comprised 
mainly of the powerhouse.  Therefore, no information on remote safety-related structure siting 
is provided. 
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1.2.2.5 Man-made hazards evaluation 

For large reactors, man-made hazards can be seen as a potential threat to the operation of a 
reactor, in particular if nearby sites are capable of producing a large explosion.  As can be seen 
in the external hazards evaluation included in Appendix A, "External hazards evaluation” of 
this chapter of the final safety analysis report, the Aurora is not generally susceptible to large 
explosive hazards due to the robustness of the reactor module.  However, it is not possible to 
bound all blast scenarios and therefore, the generic site envelope provides for a site 
commitment, located in Appendix B, "Generic site envelope” of this chapter of the final safety 
analysis report.  Therefore, the information provided in this section is strictly to meet the 
regulations and is not needed for determining the safety of the plant at the proposed site. 

The purpose of this section is to satisfy the requirements of 10 CFR 52.79(a)(1)(iv) as well as the 
requirements of 10 CFR 100.21(e).  

1.2.2.5.1 Generic site envelope consideration 

There is one man-made hazard commitment included in the generic site envelope that relates to 
the safe operation of the Aurora.  This commitment relates to evaluating explosive hazards 
within a certain distance of the site and the commitment is discussed in the generic site 
envelope evaluation in Section 1.2.1.4.  

1.2.2.5.2 Proposed site considerations and evaluations 

Information relating to man-made hazards for the proposed site is provided in Section 1.2.1.4. 
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1.2.2.6 Population demographics evaluation 

Historically, population demographics have been submitted in prior large reactor applications 
due to the large radionuclides inventories and large site boundaries.  Large reactors have 
radionuclide inventories that are orders of magnitude above that of the Aurora 
reactor.  Further, the Aurora does not have a credible accident that could lead to a fission 
product release, as discussed in Section 1.3.  Therefore, the information provided in this section 
is strictly to meet the regulations and is not needed for determining the safety of the plant at 
the proposed site. 

1.2.2.6.1 Generic site envelope consideration 

The generic site envelope does not contain any evaluations related to population demographics 
that need to be performed for the proposed site to ensure the safety of the Aurora. 

1.2.2.6.2 Proposed site considerations and evaluations 

The purpose of this section is to satisfy the requirements of 10 CFR 52.79(a)(1)(v), which 
requires, “The existing and projected future population profile of the area surrounding the site,” 
and 10 CFR 100.21(h), which requires:  

Reactor sites should be located away from very densely populated centers.  Areas 
of low population density are, generally, preferred.  However, in determining the 
acceptability of a particular site located away from a very densely populated 
center but not in an area of low density, consideration will be given to safety, 
environmental, economic, or other factors, which may result in the site being 
found acceptable. 

The Aurora INL site is located in southeastern Idaho and is in an area of low population 
density.  No one resides within the Aurora INL site, nor within the INL Site.  INL has 3,900 
employees, and the proposed site is approximately 25 miles away from Idaho Falls and 
approximately 50 miles away from Pocatello. 

Idaho Falls and Pocatello are the two largest cities in southeastern Idaho.  The U.S. Census 
Bureau states the population, as of 2018, for Idaho Falls and Pocatello as 61,535 and 55,193 
people, respectively, and that Idaho Falls has experienced a growth rate of 7.7% over the last 8 
years for an average annual growth rate of slightly less than 1% per year, which is slightly 
greater than the average U.S. growth rate.  The Pocatello population had an approximate 3.7% 
increase over the last 8 years, which is significantly less than the average U.S. growth rate. 

Figure 1-17 displays the INL Site in the irregularly shaped shaded tan-colored area, and the 
location of the Aurora INL site with a blue star.  The size of the blue bubbles represent the size 
of the population centers in the area.  As can be seen in Figure 1-17, there is no one living 
nearby the site, and very few people living within the general region.  Because of the small size 
of the Aurora INL site and low population density of the region, no further detailed information 
is included. 



 

Copyright © 2020 Oklo Inc., all rights reserved  55 

II.01 Site envelope and boundary 

OkloPower-2020-PartII-NP, Rev. 0 

 

Figure 1-17:  Population surrounding INL [13] 
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1.2.2.7 Atmospheric dispersion characteristics evaluation 

Atmospheric dispersion characteristics of a site are typically provided because they are key in 
determining the effect of a pollutant from the plant to the local environment.  However, the 
Aurora does not have significant effluent inventories nor a credible accident that could lead to a 
fission product release, as discussed in Section 1.3, so atmospheric dispersion parameters are 
not needed to be considered for the proposed site.  Therefore, the information provided in this 
section is strictly to meet the regulations and is not needed for determining the safety of the 
plant at the proposed site. 

1.2.2.7.1 Generic site envelope consideration 

The generic site envelope does not contain any evaluations related to atmospheric dispersion 
that need to be performed for the proposed site to ensure the safety of the Aurora. 

1.2.2.7.2 Proposed site considerations and evaluations 

This purpose of this section is to satisfy the requirements of 10 CFR 100.21(c), which requires 
site-specific information for atmospheric dispersion characteristics for radiological effluent 
release limits, associated with normal operations, and for radiological dose consequences of 
postulated accidents. 

1.2.2.7.2.1 Radiological effluent release limits 

The Aurora utilizes almost no fluids during normal operation.  The two fluids that are used of 
note are:  (1) the backfill noble gas, sealed in the reactor module; and (2) the secondary system 
coolant, sealed in the secondary system.  Because these two fluids do not become significantly 
activated, as discussed in Chapter 3, “Radioactive materials to be produced in operation,” and 
are completely contained within the respective systems over plant life, the Aurora does not have 
anticipated normal effluent releases during normal operations.  Therefore, atmospheric 
dispersion parameters are not used, and no further information is provided. 

1.2.2.7.2.2 Radiological dose consequences of postulated accidents 

The Aurora does not have a credible accident that could lead to a fission product release, as 
discussed in Section 1.3, therefore atmospheric dispersion parameters are not used, and no 
further information is provided. 
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1.2.2.8 Security plans impact evaluation 

Specific site characteristics have historically been taken into account when evaluating potential 
sites to determine if there are physical characteristics of the site that could impact security 
plans.  However, the security plans used for the Aurora are generally transferable to most sites 
due to the small size of security footprint.  The Physical Security Plan is included under Part 
VII, “Enclosures.” 

1.2.2.8.1 Generic site envelope consideration 

The generic site envelope does not contain any security plan impact evaluations that need to be 
performed for the proposed site, as security plan impact evaluations are outside of the scope of 
the external hazards evaluation. 

1.2.2.8.2 Proposed site considerations and evaluations 

This purpose of this section is to satisfy the requirements of 10 CFR 100.21(f), which requires 
that, “site characteristics must be such that adequate security plans and measures can be 
developed.” 

The Physical Security Plan is simple and are generally transferable between sites.  The 
proposed site does not have physical characteristics, such as challenging topography, that could 
limit the actions required by the Physical Security Plan.  Additionally, security response times 
are not challenged at the proposed site, as the security force responsible for the Aurora is 
located adjacent to the Aurora INL site.    
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1.2.2.9 Emergency Plan impact evaluation 

Regional population is not important to the operations nor the safety of the plant since the 
emergency planning zone (EPZ) boundary is the Aurora powerhouse. 

Specific site characteristics have historically been taken into account when evaluating a 
potential site to determine if there are physical characteristics of the site that could impact the 
emergency plan of a facility.  However, the Aurora Emergency Plan is generally transferable to 
most sites due to the small EPZ and minimal necessary actions.  The Emergency Plan is 
included under Part VII. 

1.2.2.9.1 Generic site envelope consideration 

The generic site envelope does not contain any emergency plan impact evaluations that need to 
be performed for the proposed site, as emergency plan impact evaluations are outside of the 
scope of the external hazards evaluation 

1.2.2.9.2 Proposed site considerations and evaluations 

This purpose of this section is to satisfy the requirements of 10 CFR 100.21(g), which requires 
that, “physical characteristics unique to the proposed site that could pose a significant 
impediment to the development of emergency plans must be identified.” 

The Aurora Emergency Plan is simple and is generally transferable between sites.  The 
proposed site does not have unique physical characteristics, such as challenging topography, 
that could limit the actions required by the Emergency Plan.  Additionally, the Aurora EPZ is 
small, and the actions required by the Emergency Plan pertain largely to actions within the 
Aurora INL site.  Emergency Plan offsite responder response times are unchallenged by the 
proposed site because the offsite responders are located adjacent to the Aurora INL site.    
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 Safety assessment of the proposed site 

The purpose of this section is to address the requirements of 10 CFR 52.79(a)(1)(vi).  However, 
since there is no credible accident that could lead to a fission product release, it is not assumed 
in this assessment; the relevant exemption is located in Part V, “Non-applicabilities and 
requested exemptions.”  Because there is no credible accident that could lead to a fission 
product release, the requirements of 10 CFR 52.79(a)(1)(vi)(A) and 10 CFR 52.79(a)(1)(vi)(B) are 
met by default.
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Appendix A: External hazards evaluation 

A.1  Overview of methodology 

Since a design objective of the Aurora is the ability to be sited in the majority of the U.S., 
external hazards must be evaluated for a wide range of possible extreme events.  Due to the 
small size of the Aurora and the simple safety case, it is possible to evaluate the design against 
most bounding extreme external hazards for the U.S. 

Traditional external hazards evaluations utilize a probabilistic risk assessment (PRA) to 
determine which external hazards are likely to occur for a given site.  Alternatively, it is 
possible to use deterministic analyses as a method of screening external events from a 
PRA.  Deterministic analyses can show the resiliency of the facility against extreme external 
hazards and obviate the further analysis typically done by a PRA.  For most external hazards, 
deterministic analyses have been performed for the Aurora.  Hazards associated with accidents 
resulting from purposeful human-induced security threats (e.g., sabotage, terrorism) and risks 
associated with accidental radiological exposures to onsite personnel are explicitly excluded 
from the external hazards evaluation. 

The steps for analyzing external hazards are the following: 

1. Identify all potential external hazards that may affect the plant considering all plant 
operating states. 

2. Perform a preliminary screening to group external hazards that have a common 
challenge or to identify the external hazards as site-dependent. 

3. Define event families for the external hazards grouped by a common challenge. 

4. Perform bounding deterministic analyses for each event family, evaluated against 
quantitative screening criteria. 

5. Define commitments to address limitations from the bounding deterministic analyses or 
to resolve site-dependent external hazards. 

These steps are also shown in Figure 1-18. 
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Figure 1-18:  External hazards methodology overview 
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A.2  Definitions 

bounding event:  A challenging event at the most extreme end of the range of possible events. 

challenge, common challenge:  The specific phenomenon that could pose damage to the 
Aurora facility. 

deterministic analysis:  A type of analysis that does not take probabilities into account, and 
instead assumes specific causes completely and certainly determine specific outcomes. 

event family:  A method of grouping common challenges for the purposes of conducting a 
single, bounding, deterministic analysis. 

generic site envelope:  The set of parameters the site must meet to ensure the site does not 
adversely impact the safety of the Aurora. 

site bases:  Siting principles that assure that the safety of the Aurora is not affected due to the 
natural features of the proposed site. 

site commitment:  A commitment to perform a specific action when undergoing site selection 
for the Aurora.  Site commitments are derived from the external hazards evaluation. 

site-dependent hazard:  An external hazard whose impacts are mitigated through site 
commitments. 
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A.3  Identification of all potential external hazards 

This section follows step one of the external hazards methodology.  To ensure a full range of 
potential hazards are taken into consideration, a thorough literature review was done, 
including: 

• ASME/ANS RA-S-2008, “Standard for Level 1/Large Early Release Frequency 
Probabilistic Risk Assessment for Nuclear Power Plant Applications” 

• ASME/ANS RA-S-1.4-2013, “Probabilistic Risk Assessment Standard for Advanced Non-
LWR Nuclear Power Plants” 

• NUREG/CR-2300, “PRA Procedures Guide:  A Guide to the Performance of Probabilistic 
Risk Assessments for Nuclear Power Plants” 

• NUREG/CR-5042, “Evaluation of External Hazards to Nuclear Power Plants in the 
United States ” 

From the above literature, the potential external hazards identified as the first step of this 
methodology are listed in Table 1-6.  

Table 1-6:  All potential external hazards 

Avalanche Hurricane Seismic event 
Biological events Ice cover (causing blockage of river) Sinkholes 
Coastal erosion Landslide Snow 
Drought Lightning Soil shrink-swell 
External flooding Low lake or river water level Storm surge 
Forest fire Low winter temperature Tornadoes (extreme winds) 
Frost Non-safety building fire Toxic gas 
Grass fire Precipitation, intense Transportation accident [1] [2] 
Hail Release of chemicals from onsite storage Tsunami 
High summer temperature River diversion Turbine-generated missiles 
High tide Sandstorm Volcanic activity 
High winds Seiche Waves 
[1] - Transportation accidents include the following external hazards: aircraft impact, industrial or military 
facility accident, pipeline accident, railroad accidents, ship impact, vehicle impact, and vehicle/ship 
explosion.  This binning of transportation accidents is in accordance with accepted methodology in NUREG-
5042. 
 
[2] - The fog external hazard is not included as an independent event on this list.  Fog is an external 
hazard that raises the probability of transportation accidents, because it increases the likelihood of man-
related error.  Since no probabilistic risk assessment is performed on the transportation accident hazard, 
the fog external hazard is not included as an independent event. 
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A.4  Screening external hazards for common challenges 

All of the potential external hazards, shown in Table 1-6, are evaluated to determine the 
challenge to the facility.  A challenge is defined as the specific phenomenon that could pose 
damage to the Aurora facility.  For hazards that present multiple challenges to the facility, the 
hazard is screened into all challenges. 

A.4.1  External hazards that do not apply to the Aurora 

The following external hazards do not apply to the Aurora design: 

• Biological events 

• Drought 

• Lightning 

• Low lake or river water level 

• Non-safety building fire 

• Release of chemicals from on-site storage 

• River diversion 

• Soil shrink-swell 

• Toxic gas 

• Turbine-generated missiles 

Biological events, drought, low lake or river water level, and river diversion are hazards that 
are associated with a loss of cooling via a natural water source.  Biological events include 
growths such as detritus and zebra mussels that degrade the ultimate heat sink 
performance.  Since the Aurora does not depend on water for cooling, these hazards do not 
apply. 

Lightning is a hazard that is associated with a loss of power to the facility.  Since the Aurora 
does not depend on electric power for any safety function, this hazard does not apply. 

Non-safety building fire is a hazard that is associated with a fire, which originates in a 
non-safety building and propagates to a safety building.  However, the Aurora has only one 
major building onsite, which is the Aurora powerhouse.  Since internal fires in the powerhouse 
are already analyzed and there are no other major buildings onsite, this hazard does not apply. 

Release of chemicals from onsite storage and toxic gas are hazards that are associated with 
incapacitation of onsite personnel.  Since the Aurora does not have any safety-related human 
actions, this hazard does not apply.  Human actions that are discussed in this license 
application related to emergency preparedness, security plans, and others, are largely required 
by operating procedures to ensure the safety of the onsite personnel and are not needed to 
assure the safety of the Aurora reactor.  Further, it is important to note that the Aurora does 
not contain large amounts of chemicals onsite. 
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Soil shrink-swell is a hazard that occurs when soils expand when wet and retract when 
dry.  This phenomenon can cause cracks in the foundation, leading to a reduction in structural 
strength and an opportunity for differential displacement between buildings on a site.  Cracking 
does not immediately result in significant structural damage and can be managed by 
maintenance.  Differential displacement is not a concern for the Aurora since there is only one 
major building onsite.  Therefore, the soil shrink-swell hazard does not apply. 

Turbine-generated missiles are hazards that originate from the dislodging of a turbine blade 
from a large, typically steam-driven, turbine.  The turbine utilized by the Aurora is of 
significantly different design than a typical steam-driven turbine.  It is smaller, roughly the size 
of a desk in length and cannot propel a missile in a similar way to a steam-driven turbine.  Even 
if it could, such a small turbine missile would not pose a challenge to the facility because it 
would likely not travel past the secondary system casing.  Additionally, the secondary system 
and reactor module are located on different elevations, such that a turbine-generated missile 
would not be able to reach the reactor module.  Therefore, the turbine-generated missiles 
external hazard does not apply. 

These external hazards do not pose a challenge to the safety of the Aurora, because they do not 
apply to the design of the facility.  Therefore, these external hazards are not further analyzed as 
part of the external hazards evaluation. 

A.4.2  External hazards that could challenge the heat sink 

External hazards that could challenge performance of the heat sink are as follows: 

• Frost 

• High summer temperature 

• Low winter temperature 

• Volcanic activity 

Frost, high summer temperature, and low winter temperature are hazards that are associated 
with unexpected extreme temperature deflections that could challenge the heat sink.  Volcanic 
activity is a hazard that is associated with potential ash in the region and could challenge the 
heat sink.  All of these hazards could potentially cause a challenge to the cooling of the 
secondary system at the Aurora, which would degrade the capability of the secondary system. 

The secondary system is what removes heat from the Aurora reactor.  A complete loss of 
secondary system is called a “loss of heat sink” in the internal events analysis, located in 
Chapter 5.1 of the final safety analysis report.  A loss of heat sink results in a reactor trip for 
the Aurora.  Due to the simple nature of the Aurora, only decay heat needs to be analyzed 
following a complete loss of heat sink.  Because the decay heat of the reactor is so small, no fuel 
damage is possible in the event of a loss of heat sink, even for a long period of time. 

Therefore, since a complete loss of heat sink is already analyzed as an internal event and does 
not challenge the safe state of the reactor, these external hazards are not further analyzed as 
part of the external hazards evaluation. 
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A.4.3  External hazards that could result in an explosion 

The external hazard that could challenge the reactor module by a high incident pressure, due to 
an explosion, is a transportation accident. 

A transportation accident could result in an explosive force nearby the Aurora powerhouse from 
incidents such as a pipeline accident, railroad accident, or an industrial or military facility 
accident.  The specific phenomenon associated with an explosive force is the resulting pressure 
wave to nearby structures.  Specifically, the resulting incident pressure on the reactor module is 
of interest in this analysis and the reactor module is analyzed further for overpressure. 

Therefore, a high incident pressure on the reactor module is further analyzed, and these 
hazards are grouped under the “explosions event family” for the purposes of the external 
hazards evaluation. 

A.4.4  External hazards that could cause a fire 

The external hazard that could challenge the facility by a fire inside the Aurora powerhouse is a 
transportation accident. 

Transportation accidents relate to industrial accidents that could potentially cause a fire inside 
the powerhouse from incidents such as a vehicle impact or an industrial or military facility 
accident.  These transportation accidents could cause an internal fire from the leak of a 
flammable fluid inside the powerhouse.  Fires within the building are analyzed in the 
deterministic Fire Hazards Analysis (FHA), which assumes a large fire inside the powerhouse. 

Therefore, the external hazards that can cause a fire inside the building are grouped under the 
“fire event family” and are further discussed in this external hazards evaluation. 

A.4.5  External hazards that could cause a flood 

External hazards that could challenge the facility by water inside the Aurora powerhouse are as 
follows: 

• External flooding 

• High tide 

• Hurricane 

• Ice cover (causing blockage of river) 

• Precipitation, intense 

• Seiche 

• Snow 

• Storm surge 

• Tsunami 

• Waves 
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The above external hazards could cause unexpected water levels to approach the 
facility.  Although it is unlikely that water could enter the facility, the phenomenon of interest 
is an analysis of water in the basement of the powerhouse, where the reactor module is located. 

Therefore, these external hazards that could cause standing water in the powerhouse are 
grouped under the “flood event family” and are further discussed in this external hazards 
evaluation.  

A.4.6  External hazards that could challenge the Aurora powerhouse 

External hazards that could challenge the integrity of the powerhouse are as follows: 

• Hail 

• High winds 

• Precipitation, intense 

• Sandstorm 

• Seismic event 

• Snow 

• Tornadoes (extreme winds) 

• Transportation accident 

Hail, high winds, sandstorm, and tornadoes (extreme winds) are hazards associated with 
extreme winds that could also potentially cause damage to the powerhouse.  Precipitation 
(intense) and snow are hazards associated with extreme roof loadings that could also potentially 
cause damage to the powerhouse.  A transportation accident could potentially cause damage to 
the powerhouse by a collision from a vehicle impact or an industrial or military facility accident.  
Seismic events have an associated ground acceleration, which could cause structural damage, 
and could cause damage to the powerhouse. 

Therefore, damage to the powerhouse is further analyzed.  These hazards are grouped under 
the “seismic event family” for purposes of the external hazards evaluation. 

A.4.7  External hazards that could cause a ground acceleration 

The external hazards that could challenge the integrity of the reactor module by a ground 
acceleration are as follows: 

• Seismic event 

• Tsunami 

A tsunami or an independent seismic event could have large ground accelerations that would 
cause structural loading on the reactor module. 

Therefore, structural loading of the reactor module is further analyzed, and these hazards are 
grouped under the “seismic event family” for purposes of the external hazards evaluation. 
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A.4.8  Summary of external hazards screening for common challenges 

The above screening of external hazards resulted in the external hazard being identified in one 
of the following ways: 

• Is not applicable to the Aurora design 

• Relates to a heat sink challenge 

• Has a common challenge 

• Is site-dependent 

The external hazards that are not applicable to the Aurora design are not further 
analyzed.  The external hazards that relate to a heat sink challenge are part of the internal 
safety analysis and are not further discussed in this external hazards evaluation.  The external 
hazards that have a common challenge are grouped together into event families and analyzed in 
this external hazards evaluation.  The external hazards that are site-dependent are handled 
through site commitments and are described further in this external hazards evaluation.  The 
external hazards screening is summarized in Table 1-7. 
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Table 1-7:  Summary of external hazards screening 

Hazard 
Not 
applicable 

Heat sink 
challenge 

Common 
challenge 

Site-
dependent 

Avalanche 
   

x 
Biological events x       
Coastal erosion 

   
x 

Drought x       
External flooding 

  
x 

 

Forest fire       x 
Frost 

 
x 

  

Grass fire       x 
Hail 

  
x 

 

High summer temperature   x     
High tide 

  
x 

 

High winds      x   
Hurricane 

  
x 

 

Ice cover (causing blockage of river)     x   
Landslide 

   
x 

Lightning x       
Low lake or river water level x 

   

Low winter temperature   x     
Non-safety building fire x 

   

Precipitation, intense     x   
Release of chemicals from onsite storage x 

   

River diversion x       
Sandstorm 

  
x 

 

Seiche     x   
Seismic event 

  
x 

 

Sinkholes       x 
Snow 

  
x 

 

Soil shrink-swell x       
Storm surge 

  
x 

 

Tornadoes (extreme winds)     x   
Toxic gas x 

   

Transportation accident     x   
Tsunami 

  
x 

 

Turbine-generated missiles x       
Volcanic activity 

 
x 

  

Waves     x   
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A.5  Event family definitions 

The purpose of this section is to define event families, based on a common challenge.  The 
external hazards that have a common challenge fall into one of the following categories: 

• Result in an explosion 

• Cause a fire 

• Cause a flood 

• Challenge the Aurora powerhouse 

• Cause a ground acceleration 

Hazards that could result in an explosion are analyzed by assuming a large explosion nearby 
the facility and are included in the explosions event family.  Hazards that could cause a fire are 
analyzed by assuming an internal fire and are included in the fire event family.  Hazards that 
could cause a flood are analyzed by assuming an internal flood and are included in the flood 
event family.  Hazards that could challenge the powerhouse and the reactor module are 
analyzed by a powerhouse collapse and large earthquake, respectively, and are included in the 
seismic event family.  Therefore, the resulting event families are explosion, fire, flood, and 
seismic.  A summary of the event families, their common challenge, the bounding event 
analyzed, and the bound hazards is shown in Table 1-8. 

Table 1-8:  External hazard event families 

Event 
family Challenge Bounding event Bound hazards 
Explosion High incident pressure on the 

reactor module 
Large nearby explosion Transportation accident 

Fire Fire in the powerhouse Internal fire Transportation accident 
Flood Water in the powerhouse Internal flood External flooding 
      High tide 
      Hurricane 
      Ice cover (causing blockage of river) 
      Precipitation, intense 
      Seiche 
      Snow 
      Storm surge 
      Tsunami 
      Waves 
Seismic Integrity of the powerhouse Powerhouse collapse Hail    

High winds    
Precipitation, intense    
Sandstorm    
Seismic event    
Tornadoes (extreme winds)    
Transportation accident    
Tsunami  

Integrity of the reactor module Large earthquake Seismic event 
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For the event families, bounding events are selected for deterministic analyses that are 
performed to evaluate the resilience of the Aurora.  Each event family deterministic analysis is 
discussed in this external hazards evaluation, in the following sections: 

• Section A.6  Explosion event family analysis 

• Section A.7  Fire event family analysis 

• Section A.8  Flood event family analysis 

• Section A.9  Seismic event family analysis 

The quantitative criterion used for the bounding deterministic analyses is that the 
consequences from any release would not cause a whole-body projected dose more than 1 rem 
over four days as given in the Environmental Protection Agency’s Protective Action Guides 
Manual, “Protective Action Guides and Planning Guidance for Radiological Incidents,” 
published January 2017. 
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A.6  Explosion event family analysis

The external hazard that could challenge the facility by a nearby explosion is a transportation 
accident. 

This hazard could cause an explosion nearby the facility.  Depending on the size of the 
explosion, the resulting pressure could pose a challenge to the facility.  A large explosion could 
result in a full collapse of the Aurora powerhouse; that phenomenon is not evaluated in this 
section because a powerhouse collapse is examined as part of the seismic event family. 

The parameter of interest is the ability to shut down the reactor.  Reactor shutdown is achieved 
by the shutdown rods (see Chapter 2 of the final safety analysis report), which are normally 
held in place by electromagnets.  On a loss of power to the magnets, the shutdown rods drop 
into the reactor and reactor shutdown is achieved.  Because of the simple design of the 
shutdown rods, the system of interest in an explosion is the reactor enclosure system (see 
Chapter 2 of the final safety analysis report).  Specifically, the module equipment housing, 
which protects the shutdown rod electromagnets and drive lines, as can be seen in Figure 
1-19.  If the integrity of the module equipment housing is maintained, the shutdown rods are
not prevented from dropping into the reactor.

Figure 1-19:  Schematic showing the shutdown rod components housed within the module equipment housing 

Therefore, the goal of the explosion event family is to determine the maximum explosion that 
could occur nearby the Aurora, without exceeding material limits of the module equipment 
housing.  Instead of running a sensitivity study on the module equipment housing to calculate 
effects of differently-sized explosions, the blast capacity of the module equipment housing is 
found.  The blast capacity, as used in this chapter, is the maximum static overpressure 
allowable, before material limits are exceeded. 

{

}
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A.6.1  Explosion event family analysis

The blast capacity of the module equipment housing was determined by applying directional 
pressure until material limits were exceeded.  This pressure was approximated using various 
idealized hand calculations for plates, cylinders, and rings with uniform load conditions, which 
is extremely conservative.  If computer modeling is performed on the same components, it is 
likely that the blast capacity would be significantly higher.  Additionally, the pressure 
calculated was a static overpressure, which is extremely conservative for this type of analysis, 
as opposed to a dynamic overpressure, which would result in a much higher blast capacity.   

The following assumptions were applied in this analysis:  

• The static overpressure is assumed to be directional and only applied to half of the
cylinder portion of the module equipment housing.

• The module equipment housing is assumed to be stainless steel 304.

The cylinder and top plate of the module equipment housing are evaluated separately 
analytically [14].  The cylinder was evaluated for the nominal static load that would reach the 
elastic limit of the module equipment housing in bending.  Next, the cylinder was evaluated for 
through uniform radial pressure loading, with the ends capped.  Third, the elastic stability of 
the cylinder was investigated and idealized as a curved panel with uniform load.  Fourth, the 
limiting static pressure of the cylinder was evaluated by idealizing the cylinder as a plate with 
orthogonal dimensions accounting for the arching effects due to the shape of the cylinder.  From 
these four steps, the static pressure capacity was found for the cylinder.  Similarly to the 
cylinder, idealized hand calculations were performed for the top plate of the module equipment 
housing.  

To validate the analytical calculations, an idealized LS-DYNA finite element analysis was 
performed.  A simple elastic model was created to represent the module equipment housing, 
with a fixed boundary condition at the bottom of the module equipment housing.  Two 
simulations were performed, linearly varying pressure-time loads.  A time step was determined 
at which the elastic limit was exceeded for the module equipment housing.  Next, a load-curve 
correlation was applied to determine the corresponding pressure.  

This analysis confirms 
the hand calculations as appropriately conservative. 

A.6.2  Explosion event family analysis results

  Therefore, the explosion event family analysis resulted in one site commitment, 
discussed in Section A.6  Explosion event family analysis.” 

{
}

{

}

{

}
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A.7  Fire event family analysis

The external hazard that could challenge the facility by a fire inside the Aurora powerhouse is a 
transportation accident. 

A transportation accident could cause a fire nearby the powerhouse.  For purposes of this 
deterministic analysis, the fire is assumed to enter the facility.  Therefore, this external hazard 
is analyzed to be the initiator to an internal fire and is already addressed through an FHA.  The 
FHA is included in Chapter 7 of the final safety analysis report.  The purpose of this section of 
the external hazards evaluation is to summarize the FHA. 

A.7.1  Fire event family analysis methodology

The goal of the FHA is to describe the Fire Protection Program (FPP) and to conduct a fire 
hazards analysis.  The primary objectives of the FPP are to minimize both the probability of 
occurrence and the consequences of fire.  The fire hazards analysis contains the following:  

• An evaluation of the potential in situ and transient fire hazards

• A determination of the effects of a fire in any location in the plant, including the impact
on the ability to achieve a safe state and minimizing the risk of radioactive release to the
environment

• A determination of the appropriate measures for fire prevention, fire detection, fire
suppression, and fire containment for each area containing components necessary for
achieving a safe state

The goal of the FHA is to analyze the consequences of a single, credible fire.  Specifically, the 
FHA analyzes whether such a fire could impede placing the reactor in a safe state.  Each fire 
area in the Aurora is analyzed for the effects of a single, credible fire and summarized in this 
section. 

Fire areas are separated by rated fire barriers capable of protecting the components necessary 
to achieve and maintain the safe state, and each fire area contains areawide detection.  The fire 
areas are shown in Figure 1-20 and are the following: 

• Fire area 1 – Atrium

• Fire area 2 – Power conversion system (PCS) area

• Fire area 3 – Control cabinet 1

• Fire area 4 – Control cabinet 2

• Fire area 5 – Basement

Fire hazards are characterized as a combination of ignition sources and combustible 
material.  It is important to note that each fire area, other than fire area 1 (atrium), contains 
limited combustible materials; no combustible liquid is maintained inside fire areas 
2-5.  Therefore, the deterministic assumption of a fire in each fire area is extremely
conservative, as there are no likely combustion or ignition sources to be the source of the fire.
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Figure 1-20:  Fire areas in the Aurora facility 

A fire in fire area 1 has no effect on achieving the safe state.  A single, credible fire in fire area 1 
does not challenge the secondary system, therefore reactor heat removal is maintained.  Since 
reactor heat removal is maintained, there is no need to shut down the reactor.  Additionally, it 
does not affect the capability of the automatic reactor trip, the logic for which is housed in 
control cabinets 1, and 2. 

A fire in fire area 3 or 4 is assumed to disable the control cabinet housed in that fire area.  The 
Aurora is designed with two redundant control cabinets, which are used to initiate an automatic 
reactor trip.  Control cabinet 1 and 2 are located in fire area 3 and 4, respectively.  Disabling 
one control cabinet in either fire area does not challenge achievement of the safe state because 
the automatic reactor trip is protected by the redundancy of the control cabinets.  

A fire in fire area 2 is assumed to fully disable the secondary system, which is normally 
responsible for providing heat removal from the reactor module.  It is important to note that it 
is extremely conservative to assume, in an area with little to no combustion or ignition sources, 
that a fire is capable of fully disabling heat removal from the reactor module via the secondary 
system.  This scenario is similar to what is analyzed for a total loss of heat sink (i.e., loss of 
secondary system) in the internal events analysis in Chapter 5.1.  Nevertheless, the 
achievement of the safe state is unchallenged, because the automatic reactor trip logic is housed 
in fire area 3 and 4 and remains capable of initiating a reactor trip. 

A fire in fire area 5 (basement) is assumed to fully disable all control logic cables that are 
present in the basement.  These cables are how control cabinets 1 and 2 communicate with the 
instrumentation located in the reactor module.  It is important to note that a fire in the 
basement cannot cause an internal transient, namely a reactivity insertion, due to the design of 
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the components in the reactor module.  Therefore, the only consequence of a fire in the 
basement is the temporary loss of communication via the control logic cables due to a postulated 
circuit failure, with no reactor transient.  Further, a fire in fire area 5 cannot disable the 
automatic reactor trip, because the shutdown rod electromagnets open on a loss of power and 
drop the shutdown rods into the reactor.  This is ensured by wrapping the power cables to the 
electromagnets in conduit without compatible energized sources, and by ensuring that the 
automatic trip generated in the control cabinet removes the all power to the cables.  Therefore, 
a fire in fire area 5 does not challenge achieving the safe state. 

A.7.2  Fire event family analysis results

For purposes of the fire event family, a fire was assumed inside the Aurora facility and was 
deterministically analyzed through the FHA.  The FHA further analyzed whether the safe state 
of the facility was challenged.  The safe state was defined as the reactor reaching a shutdown 
condition following a single, credible fire.  Next, a single, credible fire was assumed in each fire 
area and the impacts to the automatic reactor trip were analyzed.  Because of the robustness of 
fire protection included early in the design of the Aurora, a single, credible fire is not capable of 
preventing the ability to reach the safe state.  Therefore, the fire event family analysis did not 
result in any site commitments. 
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A.8  Flood event family analysis

External hazards that can challenge the facility by water inside the powerhouse are as follows: 

• External flooding

• High tide

• Hurricane

• Ice cover (causing blockage of river)

• Precipitation, intense

• Seiche

• Snow

• Storm surge

• Tsunami

• Waves

The above external hazards are associated with large amounts of unexpected water potentially 
entering the powerhouse.  Most events that are associated with extreme weather typically have 
sufficient advance notice to prepare a facility against the associated effects.  External hazards 
that could cause standing water to enter the facility are almost always associated with extreme 
weather, therefore, they are rarely unanticipated.  The ability to predict possible flood events 
provides the ability to prepare for a potential flood. 

The design of the Aurora is such that the Aurora powerhouse is enclosed by a large berm.  The 
purpose of the berm is for investment protection reasons, and it is not included for any safety 
reasons.  The berm is simply ground around the powerhouse that has been artificially elevated 
as can be seen in Figure 1-21. 



Copyright © 2020 Oklo Inc., all rights reserved 78 

II.01 Site envelope and boundary

OkloPower-2020-PartII-NP, Rev. 0 

Figure 1-21:  Berm surrounding the Aurora powerhouse 

Even if flooding was able to reach the site, the water would still have to make it through the 
berm to the powerhouse.  Further, if the water was able to make it on the site, past the berm, 
and into the powerhouse, water would need to advance to the basement to be of interest in this 
analysis.   

The Aurora powerhouse has two elevations:  (1) a ground floor, and (2) a basement.  The 
elevation of interest in this analysis is the basement since it contains the reactor module.  The 
square footage of the basement is very large, as it compares the remainder of the 
building.  Therefore, for enough water to accumulate in the basement such that it can reach a 
height great enough to enter the area around the reactor module is very unlikely.  

Nevertheless, the goal of this external hazards flood event family analysis is to analyze the 
effects of standing water in the basement.  Specifically, it is of interest to examine the effects of 
water in the basement as they relate to the removal of heat from the reactor and reactivity 
effects on the reactor. 

A.8.1  Flood event family analysis methodology

There are two phenomena of interest related to standing water in the facility:  (1) effects of heat 
transfer from the reactor module, and (2) reactivity effects to the reactor.  The goal of the heat 
transfer analysis is to evaluate heat transfer effects from the reactor module.  This parameter is 
specifically of interest because reactor decay heat is credited in the safety analysis to be 
removed only by passive means through natural convection to air.  Since there are no systems 

{

}
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in the Aurora for the removal of decay heat, it is of interest to analyze the effects of water in the 
basement to the capability to remove decay heat. 

The goal of the reactivity analysis is to ensure that even in the most limiting shutdown state, 
the reactor cannot increase unexpectedly in reactivity and reach criticality.  The most limiting 
shutdown state is at the coldest temperature, which is assumed to be room temperature. 

The module is designed with a large gap, called the reactor cavity, between the outer surfaces of 
the shell and the inner surfaces of the reactor emplacement.  The reactor module and reactor 
emplacement configuration can be seen in Figure 1-22.  The purpose of the reactor emplacement 
is to provide structural support for the reactor module.   
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Figure 1-22:  Reactor cavity between the reactor module and the reactor emplacement 



 

Copyright © 2020 Oklo Inc., all rights reserved  81 

II.01 Site envelope and boundary 

OkloPower-2020-PartII-NP, Rev. 0 

The reactor cavity is designed to provide a sufficient gap such that air can remove the decay 
heat following a reactor shutdown through natural convection.  As described in the safety 
analysis, in Chapter 5.1, “Transient analysis,” the most challenging event to the Aurora is a 
complete loss of the secondary system, referred to as a loss of heat sink.  The secondary system 
is the primary mode of heat removal from the reactor during normal operations.  Following a 
loss of heat sink, the reactor is shutdown, and decay heat is removed passively from the reactor 
module to the air in the reactor cavity, and ultimately to the environment.  Specifically, this 
decay heat removal occurs by natural convection from air circulating through the reactor cavity.  
Therefore, the effects of water in the basement to this heat removal are important to 
understand for the safety case. 

The basement is the lower elevation of the Aurora powerhouse and contains the reactor module.  
Surrounding the reactor module is a slight elevation in the basement floor, which is standard 
practice for industrial facilities and is included for investment protection reasons.  This slight 
elevation gain is described as a reactor module curb and can be seen schematically in Figure 
1-23.  The purpose of the reactor module curb is to maintain the cleanliness of the reactor 
module and reactor cavity and is mostly intended for maintenance intervals; there are no safety 
implications to this design feature. 

 

Figure 1-23:  Emplacement of reactor module in basement with emphasis on reactor module curb 

In the event that water reaches the site, penetrates through the berm, enters the powerhouse, 
and is able to reach the basement, it is extremely unlikely the water would make it over the 
reactor module curb.  The basement area is large, as compared to the rest of the facility, such 
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that for enough standing water to accumulate so that it is able to overcome the height of the 
reactor module curb, over 30,000 gallons of water would have to reach the basement.  It is 
unlikely this much water could enter the basement suddenly, with no warning to the Aurora 
staff.  Nevertheless, for the heat transfer and reactivity effects analyses, water is assumed to 
overcome the reactor module curb and enter the reactor cavity. 

A.8.1.1  Flooding heat transfer methodology

During normal operations, the reactor cavity is filled with air, and air flow is driven by natural 
convection from the surface of the reactor module.  The heat transfer coefficient from the reactor 
module to the air in the reactor cavity is described in the safety analysis, located in Chapter 5.1 
of the final safety analysis report.  This coefficient is estimated at the same value during both 
normal operations and following shutdown.  The heat transfer from the surface of the reactor 
module to the fluid in the reactor cavity can be described as follows: 

�̇�𝑞 = ℎ𝐴𝐴𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒�𝑇𝑇𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓� (1) 

Where �̇�𝑞 is the heat transfer rate, ℎ is the heat transfer coefficient, 𝐴𝐴𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 is the heat transfer 
area on the surface of the reactor module shell, 𝑇𝑇𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 is the temperature of the reactor module 
shell, and 𝑇𝑇𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓 is the temperature of the fluid.  In the unlikely event of a flood that allows 
water to exceed the height of the reactor module curb and start flowing into the reactor cavity, 
water would initially fill up the lower volumes of the reactor cavity.  In an even more unlikely 
event, water would fill up the entire volume of the reactor cavity.   

A.8.1.2  Flooding heat transfer results

The heat transfer coefficient from the reactor module to water, driven by natural convection and 
conservatively ignoring the effects of evaporation, is estimated to be about an order of 
magnitude higher than that of nominal conditions, from reactor module to air [15].  If boiling 
effects are included, the heat transfer coefficient could be as high as four times larger than 
nominal conditions [15].  These increased heat transfer coefficients mean that heat removal 
from the surface of the reactor module to the fluid in the reactor cavity, be it air, water, or a 
mix, is significantly increased.  Since one of the goals of the safety analysis is to show that there 
is sufficient heat transfer from the reactor module to the fluid in the reactor cavity, increasing 
the heat transfer coefficient only increases the heat removal from the reactor module.  
Therefore, the effects of water in the reactor cavity put the reactor in a less challenging state 
than analyzed in the safety analysis. 

A.8.1.3  Flooding reactivity effects methodology

Similar to the flooding heat transfer effects approach, the unlikely event in which water is able 
to partially, or fully fill, the reactor cavity is considered in this analysis.  The most limiting state 
is assumed to be a shutdown state at the coldest temperature.  Room temperature is assumed 
because reactivity is higher at room temperature than at hot temperatures; therefore, flooding 
at higher temperatures is bounded by this analysis. 

The reactor cavity is substantially far (i.e., over one meter from the outermost reactor cell) from 
the active portions of the core and separated from the active core by a significant amount of 
shielding.  Nonetheless, reactivity effects from water in the reactor cavity, primarily through 
increased neutron moderation, are considered.  For this analysis, flooding is assumed to fully fill 
the reactor cavity with water to bound the effects of a partial flood of the reactor cavity.  
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Furthermore, for this analysis, the control drums, which are designed to control reactivity 
letdown with fuel depletion, are assumed to be in the highest reactivity positions. 

A.8.1.4  Flooding reactivity effects results

The most limiting shutdown state, with all materials at room temperature, water fully filling 
the reactor cavity, and control drums in the highest reactivity positions, was modeled using 
Serpent and shows that the reactor maintains subcriticality with a margin of more than 4000 
pcm.  Therefore, in the highly unlikely event of a full flood of water into the reactor cavity in the 
most limiting state, the reactor does not unexpectedly reach criticality. 

A.8.2  Flood event family analysis results

Following a flood nearby the site, it is extremely unlikely that water could enter the building 
and reach the reactor module.  The powerhouse is surrounded by a berm, which is unlikely to be 
penetrated by localized flooding.  Further, the basement of the powerhouse is a significantly 
large area, such that reaching a substantial water height is unlikely.  The reactor module is 
located in the basement and features a reactor module curb, which is an elevated portion of the 
basement floor.  It is unlikely that enough water could accumulate to overcome the added 
elevation of the reactor module curb to enter the reactor cavity.  Nevertheless, water was 
postulated to enter the reactor cavity to partially and fully mix with the normal fluid (i.e., air). 

The purpose of the heat transfer analysis was to assure that heat can be adequately removed 
from the reactor module, which is a primary method of decay heat removal following a 
worst-case accident.  Since the heat transfer coefficient to water, or an air-water mix, is 
significantly higher than to air alone, water entering the reactor cavity only increases heat 
removal from the reactor module.  Therefore, in the extremely unlikely event that water enters 
the reactor cavity, the heat removal from the reactor module is only increased, and the reactor 
is in a less challenging state. 

The purpose of the reactivity effects analysis was to ensure that the reactor cannot 
unexpectedly increase in reactivity and reach criticality.  The analysis was conducted in the 
most limiting shutdown state.  All materials were assumed at room temperature, the reactor 
cavity was assumed to be fully filled with water, and the control drums were assumed to be in 
the highest reactivity positions.  The analysis shows that the reactor maintains subcriticality 
with a margin of more than 4000 pcm, and unexpected criticality does not occur.  Therefore, the 
flood family analysis did not result in any site commitments. 
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A.9  Seismic event family analysis

External hazards included in the seismic event family pose either a challenge to the Aurora 
powerhouse or a challenge to the reactor module and are as follows:   

• Hail

• High winds

• Precipitation, intense

• Sandstorm

• Seismic event

• Snow

• Tornadoes (extreme winds)

• Transportation accident

• Tsunami

In order to fully analyze the effects of the external hazards included in the seismic event family, 
a large resulting force from a ground acceleration and a full powerhouse collapse are analyzed.  
Specifically, analysis of the resulting force from the ground acceleration on the reactor module is 
of interest.  Since the reactor module is densely packed of nearly all metal components,4 a 
structural analysis of the reactor module is an appropriate indicator of the integrity of the 
internals.  The complement to this analysis is the powerhouse collapse analysis to also analyze 
the structural integrity of the reactor module, specifically the module equipment housing.  
Therefore, the relevant features of interest in the seismic analysis are the following:5 

• Ability for the shutdown rods to insert into the reactor

• Protection to the shutdown rod equipment, provided by the reactor module

• Integrity of the reactor module and internals

4 Further information of the reactor module components is located in Chapter 2. 

5 Seismic events have traditionally been considered the most bounding events for metal-fueled fast reactors, 
primarily due to the possibility of large positive reactivity insertions caused by control rod motion relative to the 
core lattice or reactor coolant sloshing.  Reactivity challenges typically associated with seismic events are not of 
concern for the Aurora.  These challenges typically include sloshing coolant, or oscillating control rods.  Since 
the Aurora does not utilize a reactor coolant, there are no reactivity concerns associated with sloshing of the 
coolant.  Additionally, since the Aurora does not operate with control rods, oscillation of rods is not of concern.  
The shutdown rods used in the Aurora are fully withdrawn a significant distance from the core during normal 
operation and would not pose a risk in the same manner as control rods which are inserted during normal 
operation.  The other reactivity system is situated in the same structure as the reactor such that any 
oscillations would affect both the system and the reactor similarly, or would place the reactor in a less reactive 
configuration. 
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Ultimately, these three features can be analyzed through an evaluation of the reactor module 
integrity.  If the reactor module does not reach structurally-challenging limits, then the reactor 
is shut down, and decay heat is passively rejected to the air and surrounding structures.  These 
results would be within the design parameters of the Aurora systems, as described in Chapter 2, 
and within the assumptions and consequences of the safety analysis, in Chapter 5. 

The seismic analysis included as part of this external hazards evaluation is a summary of 
Chapter 7, “Earthquake criteria.” 

A.9.1  Seismic event family analysis methodology

For purposes of this deterministic seismic analysis, this section is broken up into two sections:
(1) analysis of a large ground acceleration, and (2) analysis of a full powerhouse collapse.  The
goal of the large ground acceleration analysis is to confirm that the reactor module integrity
remains intact, which assures integrity of the internals.  The goal of the powerhouse collapse is
to analyze the reactor module integrity, specifically those portions that protect the shutdown
rod equipment.  If the reactor module integrity is upheld after an extreme ground acceleration
and a full powerhouse collapse, the safety of the reactor is unchallenged.

A.9.1.3  Large ground acceleration methodology

The purpose of the ground acceleration analysis is to evaluate the structural effects on the 
reactor module, following a hypothetical extreme ground acceleration, as a result of a large 
earthquake.  This analysis assumes a large earthquake occurs nearby the Aurora that disables 
heat removal by the secondary system and results in an automatic reactor trip.  Therefore, this 
analysis focuses on showing that the structural limits of the reactor module are unchallenged. 

The first step in the large ground acceleration analysis is to define a conservatively large, 
bounding, ground acceleration that would result following an extreme earthquake.  Instead of 
assessing the largest earthquake at a specific U.S. site, this analysis assessed the largest 
earthquake experienced in the U.S., including areas outside of the contiguous U.S.  The goal of 
this analysis is to define a set of conservative seismic design parameters, such that the Aurora 
could be sited in most U.S. locations, without seismic concerns.  This approach is based upon a 
review of seismic ground motions of operating nuclear plants in the contiguous U.S. and 
evaluation of seismic parameters at other representative U.S. locations, such as Alaska, Hawaii, 
Puerto Rico, and the Virgin Islands.  The peak ground acceleration (PGA) used was 1.75 g and 
the resulting response spectrum was the basis for the modal analysis of the reactor module; the 
response spectrum was developed in accordance with RG 1.60, “Design response spectra for 
seismic design of nuclear power plants,” Revision 2, issued July 2014.  More information on the 
determination of this PGA is in Chapter 7. 

The following assumptions are made for the ground acceleration portion of this analysis: 

• The reactor module is modeled as a single body, which is appropriate because of the
similarity of materials present in the reactor module shell and internal components, as
well as the rigidity of the internal components within the module.

• The reactor module is modeled with a shell model, which is appropriate because the
width of the reactor module walls are less than 1/10 the diameter of the reactor module.

• The density of the model is adjusted to account for the reactor module internals.
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• The reactor module is assumed to be rigidly mounted at the support flange, which is
approximately at the foundation elevation of the powerhouse, such that no significant
amplification of seismic accelerations is assumed.

• The analysis assumes a close coupling of the reactor module and the ground.

• The module is conservatively assumed to have the damping value of 5%, the smallest
damping value outlined in RG 1.60.

• Material properties used in the analysis assume a temperature of the module shell of
300 C, which is conservatively high in comparison to the temperatures expected during
operation.

Next, a three-dimensional finite element model is analyzed using modal and response spectrum 
analyses in ANSYS Mechanical [16].  The reactor module is modeled with a refined mesh to 
adequately capture localized failure modes. 

It is necessary to determine the dominant modes of the reactor module so the corresponding 
spectral acceleration could be applied to the ANSYS model.  Due to the simplicity of the model, 
more than 67% of the participating modal mass is within the first two mode shapes, of 
approximately 18.8 Hz, and correspond to cantilever, or flexural shapes applicable to the reactor 
module; higher mode shapes are primarily circumferential in nature. 

The two parameters of interest for the reactor module for the large ground acceleration analysis 
are (1) the peak equivalent (von Mises) stress, and (2) the horizontal displacement of the reactor 
module.  The stresses in the reactor module are analyzed to assure that the reactor module did 
not reach material limits that could result in failure and to evaluate any concerns related to 
deflection of the module sufficient to distort internals so that the shutdown rods could not 
drop.  The results are summarized as follows: 

• The maximum stress in the model is 40.6 MPa, which is substantially lower than the
conservative yield strength of 129 MPa.

• The maximum horizontal displacement, taken at the lowest tip of the reactor module,
which experiences the greatest displacement, is 2.1 mm.  Since the shutdown rod
tolerance is approximately 7.9mm, a 2.1 mm maximum displacement of the entire
module would not compromise the ability for the shutdown rods to drop.

A.9.1.4  Large ground acceleration results

Following an extreme earthquake, the secondary system is assumed to be lost.  The loss of the 
secondary system results in an automatic reactor trip signal being sent to the shutdown rods via 
the reactor trip system.  Because of the large ground acceleration that results from an extreme 
earthquake, the reactor module is analyzed for mechanical loading and maximum displacement, 
to confirm no material failure is experienced, and to confirm the shutdown rods are able to 
insert to shutdown the reactor.  

This portion of the seismic analysis concludes that the reactor module experiences mechanical 
loads within its material limits, confirming that the integrity of the module is maintained, and 
also that the ability of the shutdown rod to insert will not be compromised due to deflection. 
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A.9.1.1  Aurora powerhouse collapse methodology

The purpose of the Aurora powerhouse collapse analysis is to evaluate the structural effects on 
the module equipment housing following a hypothetical complete collapse of the 
powerhouse.  This analysis assumes a full powerhouse collapse in order to bound all external 
hazards that could pose a challenge to the powerhouse.  This analysis assumes a full 
powerhouse collapse disables the secondary system since the secondary system is located on the 
first floor of the powerhouse, directly underneath the powerhouse roof.  The result of the 
secondary system being disabled is an automatic reactor trip, if not already triggered by 
another secondary failure.  Therefore, this analysis focused on the ability of the reactor to be 
shut down by the shutdown rods, following an automatic reactor trip signal.  To maintain 
shutdown functionality, the integrity of the reactor module must be upheld.  Specifically, the 
subcomponent of the reactor module analyzed is the module equipment housing, which 
functions to protect equipment such as the shutdown rods.  The goal of this analysis is to 
demonstrate the integrity of the module equipment housing through an impact analysis of the 
heavy powerhouse components. 

Figure 1-24:  Aurora powerhouse 

The Aurora powerhouse is an A-frame, as shown in Figure 7-3, which has a relatively small 
square footage of less than 5,000 sq. ft.  The module equipment housing is a reactor module 
component and is located in the basement of the powerhouse as shown in Figure 7-4.  One of the 
functions of the module equipment housing is to protect the shutdown rod equipment, which 
was the function of interest to this analysis.  The module equipment housing, which is made of 
stainless-steel 304, is assumed to have an ultimate tensile strength of 517 MPa [17].  The 
considerations analyzed the impacts from a collapsed roof, crane, and floor to assess the 
deformation and penetration damage on the module equipment housing following a powerhouse 
collapse. 
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Figure 1-25:  Module equipment housing location 

The Aurora powerhouse includes several heavy components that could cause damage to the 
module equipment housing upon collapse.  The falling objects considered were the heavy objects 
in the powerhouse that had a line of sight to the module equipment housing.  These included 
the roof, the crane, and the floor, with the following general assumptions: 

• The roof falling objects included several A-frame roof beams, which are arranged in a
triangle formation and are supported at the base and top of the A-frame, and of
standard steel roof construction.

• The crane falling object included a single girder crane type, which is underhung, and
supported by a standard I-beam girder.

{

}
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• The floor falling object included the first floor of the powerhouse, which is located
directly above the module equipment housing, and was conservatively assumed to be
thick concrete.

These falling objects can be seen in Figure 7-5.  

Figure 1-26:  Schematic of falling objects considered 

From these falling objects, the roof (i.e., roof beams) are determined to cause the maximum 
impact damage to the module equipment housing and are used in this analysis.  The module 
equipment housing thickness required to prevent penetration by the roof beams is calculated 
based on idealized hand calculations from BC-TOP-9A, Revision 2, “Topical Report - Design of 
structures for missile impact,” issued September 1974.  The roof beam is assumed to land on 
edge for minimum effective missile diameter and maximum penetration force.  Even following 
such an extreme collapse scenario, the thickness of the module equipment housing is found to be 
great enough such that no penetration was experienced from the falling roof beam. 

A.9.1.2  Aurora powerhouse collapse results

Following a full Aurora powerhouse collapse, the secondary system is lost.  The loss of the 
secondary system results in an automatic reactor trip signal being sent to the shutdown rods via 
the reactor trip logic.  Subsequently, the shutdown rods insert and shut down the 
reactor.  Because of several heavy powerhouse components, the goal of the powerhouse collapse 
analysis is to confirm that the shutdown rods would be able to insert.  This analysis analyzed 
whether the integrity of the module equipment housing is upheld through an impact and 
penetration analysis of the falling of heavy powerhouse components.   

{
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The powerhouse collapse analysis found that the thickness of the module equipment housing is 
sufficient to withstand impact from falling objects due to a full powerhouse collapse.  Therefore, 
the shutdown rods are able to insert into the reactor following a full powerhouse collapse. 

A.9.1.4  Seismic event family analysis results

Following an extreme earthquake, it is unlikely that the Aurora powerhouse would suffer 
complete collapse and that the reactor module would see such extreme structural 
loads.  Nevertheless, for the purposes of the seismic event family, the powerhouse is assumed to 
completely collapse, and the reactor module is assumed to be experience a large ground 
accelerations. 

The purpose of the large ground acceleration analysis is to assure that the integrity of the 
reactor module is maintained, following an extreme earthquake.  The first step of this analysis 
was to determine a ground acceleration that would bound the entire U.S., including islands and 
Alaska.  The ground acceleration applied in this analysis was 1.75 g PGA, corresponding to a 
0.50 g PGA ASCE 7 value.  Next, this ground acceleration is applied to the reactor module and 
reactor module material properties are analyzed through ANSYS.  The reactor module material 
properties of interest are not found to be close to their limits, so a large ground acceleration is 
not found to challenge the integrity of the reactor module.  

The purpose of the powerhouse collapse analysis was to assure that the shutdown rods are able 
to fully insert into the reactor module, in order to shut down the reactor.  To conduct this 
analysis, an impact evaluation is performed on the reactor module.  Even following a collapse of 
the heaviest object in the most limiting orientation to the reactor module, the reactor module is 
found to be robust and is not penetrated.  Therefore, a full powerhouse collapse is not found to 
impede insertion of the shutdown rods. 

As a result of these analyses, the seismic event family resulted in one site commitment, 
discussed in Section A.10  Site commitments.”  This site commitment ensures that any proposed 
site will be verified to be within the ground acceleration analyzed in the seismic analysis. 
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A.10  Site commitments

The last step of the external hazards methodology is to define commitments to address 
limitations from the bounding deterministic analyses or to mitigate site-dependent hazards. 

A.9.2.1  Event family site commitment

Sections A.6, A.7, A.8, and A.9 describe bounding analyses performed for the explosion, fire, 
flood, and seismic event families, respectively.  The fire and flood event families assumed a 
bounding event and did not result in a state that challenged the safety of the reactor; therefore, 
no site commitments are necessary for the fire and flood event families.  From the four event 
families, the explosion and seismic event families require site commitments, in order to ensure 
that any proposed site (1) does not challenge the blast capacity of the reactor module and (2) 
does not have a recorded PGA higher than what was analyzed for the Aurora.   

A.9.2.1.2  Explosion event family

A man-made hazard nearby the site could result in an explosion, which could pose damage to 
key Aurora components.  In order to conservatively bound these man-made hazards, a blast 
analysis was performed as part of the explosion event family in the external hazards 
methodology.  The blast analysis assumed a large explosion nearby the facility and calculated 
the maximum pressure several key Aurora reactor components could withstand, referred to as 
the “blast capacity.”    A site 
commitment is made as a result of the deterministic analysis conducted for the explosion event 
family.  This site commitment ensures that the blast capacity of the reactor module is not 
exceeded and is named the “man-made hazards commitment.” 

Man-made hazards commitment:  The area surrounding the proposed site will be evaluated 
for explosive hazards.  Blast hazards that are identified will be evaluated to determine if their 
resulting pressure exceeds the blast capacity. 

A.9.2.1.2  Seismic event family

An extreme earthquake could have two effects: damage to the Aurora powerhouse and a 
resulting force from the ground acceleration.  The seismic event family assumed a full 
powerhouse collapse following an extreme earthquake, so no site commitment is needed for that 
portion of the deterministic analysis.  Since it is impractical to bound all large ground 
accelerations, an extreme ground acceleration was assumed as part of the deterministic analysis 
for the seismic event family.  In order to ensure that proposed sites are within this assumed 
ground acceleration value, a site commitment is made and is named the “seismic event 
commitment.” 

Seismic event commitment:  The largest recorded PGA for the proposed site will be 
determined under ASCE 7.  If the PGA of the proposed site exceeds 0.50 g, additional analyses 
must be performed. 

A.9.2.2  Site-dependent hazards commitments

The site-dependent external hazards are the remainder of the external hazards from the list of 
all potential external hazards in Table 1-6.  These are the external hazards that do apply to the 
Aurora, are not associated with a challenge to the heat sink, and were not found to have a 
common challenge, as summarized in  

{ }
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Table 1-7.  Site-dependent hazards can be mitigated by appropriate site selection and are as 
follows: 

• Avalanche

• Coastal erosion

• Forest fire

• Grass fire

• Landslide

• Sinkholes

A.9.2.2.1  Avalanche site commitment

The external hazards evaluation did not analyze an avalanche hazard. 

Avalanches are generally considered a mass of snow, rock, ice, soil, and other materials moving 
rapidly down a mountainside.  The steepness of the mountainside generally needs to have a 
25-45 degree slope for an avalanche to occur and is illustrated in Figure 1-27.

Figure 1-27:  Relationship between slope degree and avalanche frequency 
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Terrain that lies in the fall line, or along a downhill line of trajectory, could also be considered 
as capable of being hit by an avalanche.  Typically, the critical incline of the avalanche start 
zone is measured as the steepest part of a slope with a down slope length of 60 ft or more 
[18].  An avalanche occurring either above or below the proposed site could damage the site, 
depending on its characteristics.  

If the proposed site has both of the following characteristics: 

• Is within 1 mi of a slope greater than 25 degrees, judged by 100 ft contour lines

• Has data indicating avalanches have occurred in the region or geomorphologic indicators
of avalanches

Then, the proposed site is considered to be in an avalanche-prone environment and requires 
further avalanche investigations. 

Avalanche commitment:  Information will be provided on whether the proposed site is in an 
avalanche-prone environment.  If the proposed site is in an avalanche-prone environment, 
further investigations will be performed to evaluate the potential avalanche concerns. 

A.9.2.2.2  Coastal erosion site commitment

The external hazards evaluation did not analyze a coastal erosion hazard. 

The regions in the U.S. with highest rate of coastline retreat can lose over 50 ft per year of coast 
due to erosion [19].  The concern of coastal erosion impacting the proposed site within the 20 
year Aurora lifetime can be eliminated by not siting within one-half of a mile of a coastline, even 
assuming the greatest historically recoded coastline retreat. 

Coastal erosion commitment:  Further investigations will be performed for possible coastal 
erosion concerns if the proposed site is located within one-half of a mile of a coastline. 

A.9.2.2.3  External fire site commitment

The external hazards evaluation did not evaluate external fires that could occur nearby the 
Aurora facility, although it did evaluate hazards that resulted in an internal fire. 

External fire hazards considered are the following site-dependent external hazards: 

• Forest fires

• Grass fires

In order to conservatively bound these external fire hazards, the area around the Aurora will be 
cleared from vegetation.  Oklo Power will follow the guidance in NFPA 1144.  Specifically, 
vegetation will be modified to mitigate hazardous conditions within 30 ft of the Aurora 
powerhouse foundation.  Additionally, all slash from vegetation modification and construction 
debris will be treated or removed prior to or immediately upon completion of construction.  By 
removing all vegetation around the Aurora foundation, the potential for damage due to external 
fires is ameliorated. 
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External fire commitment:  The area directly surrounding the powerhouse will be cleared 
during site preparation in accordance with NFPA 1144. 

A.9.2.2.4  Landslide site commitment

The external hazards evaluation did not analyze a landslide hazard. 

A landslide is broadly defined as the downslope movement of a mass of regolith or bedrock 
under the influence of gravity.  For this discussion, the term landslide incorporates earthflows, 
rockslides, and slump blocks.  Earthflows and rockslides can be fast moving events, whereas a 
slump block tends to be slower moving.  Landslides could cause damage to the proposed site if it 
is located at the top of the land mass or near the bottom. 

The USGS and local geologic organizations inventory landslide data and suggest areas of 
increased probability of experiencing a historic landslide.  Contributing site characteristics that 
indicate the potential of a landslide include the slope, the soil strength, and ground water.  The 
likelihood of a landslide occurring is also impacted by the seismic activity, fire activity, 
precipitation, flood activity, and volcanic activity of a region.  Generally, landslides are more 
likely to occur on slopes greater than 15 degrees, though they can occur on smaller 
slopes [20].  It is appropriate to investigate for historic landslides within a mile of the proposed 
site. 

If the proposed site has either of the following characteristics: 

• Is within 2 mi of a slope greater than 15 degrees, judged by 100 ft contour lines

• Has data indicating a landslide has occurred within 2 miles of the site

Then, the proposed site is considered to be in landslide-prone environment and requires further 
landslide investigations. 

Landslide commitment:  Additional information will be provided on whether the proposed 
site is in a landslide-prone environment.  If the proposed site is in a landslide-prone 
environment, further investigations are necessary to evaluate the potential landslide concerns. 

A.9.2.2.5  Sinkhole site commitment

The external hazards evaluation did not analyze a sinkhole hazard. 

Sinkholes are a type of underground void that form in karst terrains, i.e., terrain where water 
can drain below the ground and dissolve water-soluble evaporate rock such as salt, gypsum, or 
carbonate rocks.  The largest recent land collapse due to a sinkhole in the U.S. was about 325 ft 
long [21].  

Sinkhole commitment:  Additional information will be provided on the proposed site, to show 
whether it is within one-fourth of a mile of karst terrain.  If the proposed site is found to be in 
an area that has karst terrain, further investigations will be performed to determine if there are 
underlying voids within a radius of 300 feet outside of the site boundary that could result in a 
significant ground collapse. 
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A.9.3  Conclusion

One the design objectives of the Aurora is the ability to be sited in the majority of the U.S.  In 
order to develop a set of site suitability parameters that are bounding for most U.S. sites, a 
broad external hazards evaluation was conducted.  Although external hazards have been 
traditionally evaluated on a site-specific basis through PRA, the simple design of the Aurora 
allows for the evaluation of most extreme external hazards on a deterministic basis. 

A total of 36 external hazards were evaluated as part of this methodology.  Most external 
hazards were grouped together, in event families, due to a common challenge to the 
Aurora.  The event families were further evaluated under extreme deterministic analyses to 
determine if the safety of the Aurora was adversely affected.  The Aurora was found to be 
resilient for most of the event families, requiring only two site commitments to ensure the 
safety of the Aurora.  For those external hazards that were not grouped into event families (i.e., 
site-dependent hazards), specific site commitments were made to ensure that the safety of the 
Aurora is maintained through appropriate site selection.  The collection of these site 
commitments comprise the set of parameters that any proposed site must be evaluated against 
to assess the safety suitability of the site.  This set of parameters is called the generic site 
envelope. 
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Figure 1-28:  External hazard methodology summary 
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Appendix B: Generic site envelope 

The external hazards evaluation resulted in several site commitments.  Site commitments are 
specific actions to be performed during site selection or site preparation.  These site 
commitments are grouped under site bases, which are siting principles that assure that the 
safety of the Aurora is not adversely affected by the natural features of the proposed site.  The 
collection of site bases comprise the generic site envelope.  Ultimately, the generic site envelope 
is the set of parameters the site must meet to ensure the site does not adversely impact the 
safety of the Aurora.  This generic site envelope development process is shown in Figure 1-29.  

Figure 1-29:  Generic site envelope development process 

The generic site envelope consists the coastal site, external fire, geologic, man-made hazards, 
and seismic bases and consider the following siting principles: 

• Coastal site basis:  The proposed site will not damage the Aurora reactor by coastal
hazards.

• External fire basis:  The proposed site will not damage the Aurora facility due to an
external fire.

• Geologic basis:  The proposed site will not damage the Aurora facility due to soil or
topographic characteristics.

• Man-made hazards basis:  The proposed site will not damage the Aurora reactor by an
explosion.

• Seismic basis:  The proposed site will not damage the Aurora reactor by a large ground
acceleration.

The bases and the respective site commitments are depicted in Figure 1-30. 
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Figure 1-30:  Generic site envelope hierarchy 

As sites are considered, the first step is to make sure the site conditions fit within the generic 
site envelope, shown in Table 1-9.  The proposed site is evaluated for each site commitment 
parameter.  For proposed sites that have parameters which exceed the allowable values, further 
investigations must be conducted to evaluate the effect on the safety of the Aurora. 

Table 1-9:  Generic site envelope 

Site commitment parameter Value 
Coastal site basis 

Distance to a coast (mi) 0.5 
External fire basis 

Brush clearing (ft) 30 
Geologic basis 

Avalanche site commitment 
Distance to slope greater than 25 degrees (mi) 1 
Historic avalanche data or geomorphologic indicators of avalanches (Y/N) N 

Landslide site commitment 
Distance to slope greater than 15 degrees (mi) 0.25 
Historic landslide data (Y/N) N 

Sinkhole site commitment 
Distance to karst terrain (mi) 0.25 

Man-made hazards basis 
Blast hazards investigation (required for all sites) -
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DESCRIPTION AND ANALYSIS OF STRUCTURES, SYSTEMS, 
AND COMPONENTS 

Purpose 

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(2) requires, in part: 

A description and analysis of the structures, systems, and components of the 
facility with emphasis upon performance requirements, the bases, with technical 
justification therefor, upon which these requirements have been established, and 
the evaluations required to show that safety functions will be accomplished.  It is 
expected that reactors will reflect through their design, construction, and 
operation an extremely low probability for accidents that could result in the 
release of significant quantities of radioactive fission products.  The descriptions 
shall be sufficient to permit understanding of the system designs and their 
relationship to safety evaluations.  Items such as the reactor core, reactor coolant 
system, instrumentation and control systems, electrical systems, containment 
system, other engineered safety features, auxiliary and emergency systems, 
power conversion systems, radioactive waste handling systems, and fuel 
handling systems shall be discussed insofar as they are pertinent. The following 
power reactor design characteristics and proposed operation will be taken into 
consideration by the Commission: 

(i) Intended use of the reactor including the proposed maximum
power level and the nature and inventory of contained radioactive
materials;

(ii) The extent to which generally accepted engineering standards
are applied to the design of the reactor;

(iii) The extent to which the reactor incorporates unique, unusual
or enhanced safety features having a significant bearing on the
probability or consequences of accidental release of radioactive
materials;

(iv) The safety features that are to be engineered into the facility
and those barriers that must be breached as a result of an
accident before a release of radioactive material to the
environment can occur. Special attention must be directed to plant
design features intended to mitigate the radiological consequences
of accidents. In performing this assessment, an applicant shall
assume a fission product release 7 from the core into the
containment assuming that the facility is operated at the ultimate
power level contemplated;

The purpose of this chapter is to provide an overview of the structures, systems, and 
components (SSCs) that are part of the Aurora design.  The level of detail provided for each SSC 
is scoped to correspond directly to the safety functions required of the SSC, with additional 
detail provided only when required for basic understanding of the system’s function.  This 
chapter focuses on the expected functions of the Aurora SSCs and addresses the majority of the 

https://www.nrc.gov/reading-rm/doc-collections/cfr/part052/part052-0079.html#footnote_7
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requirements in 10 CFR 52.79(a)(2).  Functions of SSCs during abnormal conditions is covered 
by Chapter 5.1, “Transient analysis.” 

Introduction 

2.1.1 Design bases, design commitments, and programmatic controls 

Design bases are the characteristics of a system that ensure the safe operation of the 
reactor.  Most major systems in the reactor have at least one design basis, but some systems 
that are not relied on for safe operation do not have any design bases.  Each design basis has 
one or more design commitments, which are the specific commitments made to ensure that the 
design basis is met.  Each design commitment has one or more programmatic controls that are 
used to verify that the commitment is met. 

The central importance of the design bases drives the structure of this chapter.  Each major 
system of the Aurora design is described in its own section, and each section is organized 
around the design bases of the system.  The level of detail of the section is scoped to provide the 
required information to evaluate the sufficiency of the design bases in ensuring safe operation. 

Programmatic controls are used to verify that design commitments are met, and therefore that 
design bases are satisfied.  These controls include preoperational tests (POTs), inspections, 
tests, and analysis acceptance criteria (ITAAC), startup tests (SUTs), and technical 
specifications (TS). 

The assumptions and inputs modeled in the safety analysis in Chapter 5.1 are chosen to ensure 
that the transient analysis model reflects the characteristics described in the design bases and 
resultant design commitments.  The programmatic controls function not only to verify that the 
design commitments are met (i.e., that the as-built system is as described in this chapter), but 
to provide assurance that the assumptions in the safety analysis are valid (i.e., that the modeled 
system is representative of the as-built system). 

Some additional information about each system is provided for the purpose of improving overall 
understanding of the system.  In particular, performance bases are provided for each system as 
a means of describing functions of the system that are not relied on for safe operation of the 
reactor.  Because the performance bases are not relied on for safety, they do not require design 
commitments and programmatic controls.  As a result, analyses related to the performance 
bases are generally not included in this application.  Systems that have no functions that are 
relied on for safe operation of the reactor only have performance bases, and their sections have a 
correspondingly limited level of detail. 
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2.1.2 Design basis summaries 

2.1.3 Design parameters 

For the purpose of understanding the function and layout of systems, this chapter provides 
schematics drawn to scale, and nominal dimensions in tabular form.  In contrast to large 
reactors, the Aurora has very few dimensions that affect the design bases and, ultimately, the 
safety of the plant.  The dimensions that are fundamental in the description and analysis of 
SSCs and their design bases are referred to as “key dimensions.”  The few key dimensions are 
the result of intentional design decisions and are an important aspect to the philosophy of the 
Aurora design.   

2.1.3.1 Key dimensions 

The fundamental building block of the active core of the Aurora is the reactor cell, described in 
this chapter and shown schematically in Figure 2-3.  The reactor cell forms the simplest self-

Gray summary boxes are used throughout this chapter to summarize each design basis at 
the end of the section describing the applicable system.  These boxes contain the design 
basis, a summary of the evaluation that explains how the design basis is met, and a listing of 
the design commitments and programmatic controls that ensure the design basis is met. 

The following abbreviations are used in the summaries: 

• Design basis (DB)

• Design commitment (DC)

• Preoperational test (POT) (see Chapter 14)

• Startup test (SUT) (see Chapter 14)

• Inspections, tests, and analysis acceptance criteria (ITAAC) (see Part VI)

• Technical specification (TS) (see Part IV)

For example: a design basis (DB) for the shutdown rod system (SRS), the resulting design 
commitment (DC), and the required programmatic controls, would be listed as follows in the 
summary box: 

DB.SRS.01  The shutdown rod system provides sufficient negative reactivity to achieve 
cold shutdown with insertion of one rod. 

DC.SRS.01.A The worth of each shutdown rod will be greater than 1400 pcm, where
1400 pcm is greater than the total of: the reactivity worth associated 
with the temperature decrease from hot full power conditions to cold 
zero power conditions, and an additional margin of 500 pcm. 

SUT.SRS.01.A1 and A2 (see Chapter 14) 
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contained unit of core reactivity and heat flow.  As described by the principal design criteria of 
the Aurora, core reactivity and thermal performance are the two driving phenomena to ensure 
robust and safe operation.  The means by which the reactor cell dimensions impact the 
neutronic performance and the thermal characteristics of the Aurora are further described in 
this chapter and Chapter 5. 

The reactor cell dimensions presented here form an important component of the reactor design, 
as the reactivity of the system is most sensitive to these parameters.  This is because, in a fast 
spectrum reactor like the Aurora, no moderating material is present in the core, and as such, 
neutrons are not expected to slow down significantly after being generated in fission.  As a 
result, the probability of a neutron causing fission is most dependent on the probability that a 
neutron encounters fuel before being absorbed in another material or escaping from the 
core.  The probability of a neutron encountering fuel is first-order dependent on the dimensions 
of the fuel relative to the immediately surrounding structural materials, namely the heat pipe 
and the reactor cell can, making these dimensions of primary importance for evaluating the 
reactivity of the system. 

The dimensions of the reactor cell are also of primary importance for evaluating the heat 
transfer characteristics of the core at steady-state.  The heat pipe in each reactor cell is the 
primary heat transfer pathway for removing heat generated by fission in the fuel and 
transferring it to the power conversion system via the heat exchanger system.  This means that 
the heat pipe, the reactor cell inner cylinder wall, and the fuel form the primary resistances in 
the thermal conduction network through which the heat flows from the fuel to the heat 
exchanger system.  Thus, the radial dimensions of these components, together with their 
thermal conductivities, determine to first order the temperature gradient that exists between 
the fuel and the heat pipe.  Likewise, in transient thermal analyses, these dimensions, together 
with the thermal conductivity and heat capacity of the materials, determine the change in the 
temperature distribution over time. 

The dimensions with first order importance to the core reactivity and thermal characteristics of 
the system are the key dimensions of the Aurora.  The key dimensions are summarized in  
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Table 2-1 and depicted in Figure 2-1.  Other dimensions, such as the thicknesses of the 
surrounding reflector and structural components outside of the active core, do have some effect 
on the core reactivity and thermal characteristics.  However, since these components are at a 
distance from the fuel and the primary heat transfer pathway of the heat pipes, the neutronic 
and thermal response of the system is only second- or third-order dependent on these 
dimensions, making their exact values less relevant than those of the reactor cells.  As such, 
only the reactor cell dimensions presented here are considered key dimensions of the Aurora. 
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Table 2-1:  Key dimensions for the Aurora 

{

}
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Figure 2-1:  Schematic showing location of key dimensions 

{

}
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2.1.4 Chapter structure 

The goal of this chapter is to describe the Aurora SSCs and to provide an analytical basis for the 
design bases selected.  This chapter is organized by the Aurora major systems, which are the 
following: 

• Reactor system (Section 2.2)

• Control drum system (Section 2.3)

• Shutdown rod system (Section 2.4)

• Reactor enclosure system (Section 2.5)

• Heat exchanger system (Section 2.6)

• Instrumentation and control system (Section 2.7)

• Power conversion system (Section 2.8)

• Electric power system (Section 2.9)

• Building and auxiliary systems (Section 2.10)

Each major system is composed of subsystems, as needed.  Each of the sections for these major 
systems or subsystems includes a description and the bases of the system.  The bases of the 
system are further divided into design bases and performance bases.  Design bases, as discussed 
in Section 2.1.1, are the characteristics of a system that ensure the safe operation of the reactor.  
Performance bases are intended functions of a system but do not relate to the safe operation of 
the reactor. 
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Reactor system 

2.2.1 Summary description 

The Aurora reactor is a compact fast reactor, using metal uranium zirconium (UZr) fuel to 
generate heat, and heat pipes (rather than flowing coolant) to transport the heat from the 
reactor core.  It has a rated thermal output of 4 megawatts (MW), and a core power density of 
3.91 W/cm3.  The fast spectrum, small size, and lack of flowing coolant in the core enable a 
simple design with few moving parts. 

The reactor system is the fundamental system of the Aurora.  It is designed to generate heat, 
which is converted to the appropriate end product by the secondary system.  This section 
describes the design of the mechanical and nuclear components of the reactor system, which is 
composed of the following subsystems: 

• Reactor core system (Section 2.2.2)

• Reflector system (Section 2.2.3)

• Shielding system (Section 2.2.4)

The reactor core subsystem is responsible for generating heat and transporting it to the heat 
exchanger system (see Section 2.6).  The reflector subsystem surrounds the reactor core system 
and functions to improve fuel utilization by reflecting neutrons back into the core.  The 
shielding subsystem functions to limit onsite and offsite radiation exposure and keep radiation 
fluence to equipment and enclosures below a level at which embrittlement or other significant 
radiation damage may occur. 

The thermal design of the reactor system provides cooling for the fuel and the core components 
during steady-state, full-power conditions via heat pipes.  Steady state analyses at full power 
are shown in Section 2.2.2.5.1.  As the reactor system does not include a flowing coolant 
traveling through the core, many of the typical concerns of thermal and hydraulic behavior need 
not be considered (e.g., critical heat flux, flow velocities, coolant and moderator voids).   

The low power level of the core leads to low decay heat production.  After shutdown, adequate 
cooling of the fuel and core components is achieved through heat conduction from the fuel to the 
surrounding systems, and ultimately transferred to the environment.  The very low power 
density, and the high thermal conductivity of the materials in the reactor system, allow for 
effective radial and axial conduction of heat out of the core and ensure that decay heat does not 
present a challenge to safety.  Analysis of important transients is presented in Chapter 5.1. 



Copyright © 2020 Oklo Inc., all rights reserved  115 

II.02 Description and analysis of SSCs

OkloPower-2020-PartII-NP, Rev. 0 

2.2.2 Reactor core system 

2.2.2.1 Introduction to the reactor core system 

The reactor core system consists of a matrix of hexagonal “reactor cells.”  The reactor cells are 
integrated structural, nuclear, and thermal units.  Collectively they function to achieve 
criticality, generate heat, and transport the heat to the heat exchanger system (see 
Section 2.6).  The reactor cells operate entirely passively. 

2.2.2.2 Bases of the reactor core system 
2.2.2.2.1 Design bases of the reactor core system 

The design bases (DB) for the reactor core system, a subsystem of the reactor system (RXS), are 
as follows: 

DB.RXS.01 The reactor core system uses metal fuel with well characterized properties. 

DB.RXS.02 The reactor core system is operated at steady state thermal power levels that 
prevent damage to the system during transients. 

DB.RXS.03 The reactor core system has inherently negative reactivity feedback. 

DB.RXS.04 The reactor core system provides a pathway to conduct heat from the fuel to the 
surrounding systems and ultimately to reject it to the environment. 

2.2.2.2.2 Performance bases of the reactor core system 

The reactor core system is also designed to meet both of the following performance bases: 

• The reactor core system generates heat through fission in the nuclear fuel and transfers
it to the heat exchanger system.

• The reactor core system is robustly designed, such that it may reliably meet the energy
generation needs of its deployment.

2.2.2.3 Description of the reactor core system 
2.2.2.3.1 Reactor cells 

The reactor core system consists entirely of reactor cells, which are integrated structural, 
nuclear, and thermal units.  Each reactor cell is composed of the following components: 

• Can

• Lower axial reflector

• Metal fuel

• Upper axial reflector,

• Gas plenum

• Axial shielding
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• Sodium bond

• Heat pipe

The stainless steel can encloses the fuel, upper and lower axial reflectors, a gas plenum, and 
axial shielding.  The fuel, reflectors, and shielding are annular, and are fully enclosed by the 
hexagonal outer can wall and the cylindrical inner can wall.  Each reactor cell also contains a 
heat pipe, which is inserted into the cylindrical “socket” formed by the inner can wall, and 
extends from the base of the can, through the annular components, and into the heat 
exchanger.  Nominal reactor cell dimensions are summarized in Table 2-2, and a reactor cell 
and its components are shown in Figure 2-2.  

Table 2-2:  Nominal reactor cell dimensions 

The reactor cell can provides structural support for the reactor core and is one of the passive 
physical barriers described in the safety analysis in Chapter 5.1.  The lower and upper axial 
reflectors function to reflect neutrons back to the fuel region of the reactor cell.  The metal fuel 
generates heat for the reactor core system.  The gas plenum exists in part for packaging reasons 
but also provides volume to accommodate fission gases released from the fuel during 
operation6.  The axial shielding reduces fluence to the heat exchanger system (see Section 
2.6).  Finally, the heat pipe functions to transport the heat generated in the fuel out of cell and 
into the heat exchanger.  The cell can contains a small amount of sodium, referred as the bond, 
that occupies the gaps between the fuel, reflector blocks, and cell can to improve heat transfer. 

A cross-sectional view of a reactor cell is shown in Figure 2-3.  Sections A, B,C  and D provide 
cross-sectional schematics of different portions of the reactor cell.  Section A shows the heat pipe 
region.  Section B shows the axial shielding region.  Section C shows the fuel region, including 
the annular fuel element and the sodium bond.  Section D shows the lower reflector region (with 
the same cross section as the upper reflector region), including the can, reflector, and sodium 
bond. 

6 Since the Aurora core operates at a very low burnup, little to no fission gas is expected to be released from the 
fuel.  The gas plenum is very conservatively oversized given this expectation. 

{

}
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Figure 2-2:  Reactor cell isometric and schematic views 
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Figure 2-3:  Cross-sectional views of a reactor cell 



Copyright © 2020 Oklo Inc., all rights reserved  119 

II.02 Description and analysis of SSCs

OkloPower-2020-PartII-NP, Rev. 0 

2.2.2.3.2 Heat pipes 

The heat pipe in the center of each reactor cell is a sealed tube with a small amount of 
potassium working fluid.  The heat pipes operate passively, requiring no pumps or external 
piping.  They also operate at sub-atmospheric pressure.  Because each heat pipe is a sealed, 
independent heat transport device they offer redundant and reliable cooling, increasing defense-
in-depth. 

Heat pipes are nearly isothermal, with an equivalent thermal conductivity orders of magnitude 
greater than high-conductivity metals like copper; as a result, they are often referred to as 
thermal superconductors.  More description of equivalent thermal conductivity is provided in 
5.6.2.12.2. 

Heat pipes can operate at a wide range of temperatures, and the operational temperature range 
depends on heat pipe characteristics, including size, and materials.  The maximum power 
throughput of a heat pipe is dependent on its operating temperature.  When operated within a 
specific operational temperature range, heat pipe performance increases with temperature, 
automatically maintaining proper power-flow ratios in the event of transients.  This inherent 
maintenance of power-flow ratios is beneficial for behavior in transients including failure of 
neighboring heat pipes.  The heat pipes in the Aurora are designed to operate within this range. 

The nominal dimensions of heat pipes in the Aurora design are shown in Table 2-3 and the 
corresponding regions of the heat pipe are shown in Figure 2-4.  The base of each heat pipe is 
located below the bottom of the active core (i.e., the fuel).  

Table 2-3:  Nominal heat pipe dimensions 
{

}
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Figure 2-4:  Heat pipe regions within the reactor cell 

{

}



Copyright © 2020 Oklo Inc., all rights reserved  121 

II.02 Description and analysis of SSCs

OkloPower-2020-PartII-NP, Rev. 0 

2.2.2.3.3 Core layout 

The reactor core consists of  reactor cells, arranged in a hexagonal lattice on the 
base plate.  The base plate is part of the reactor enclosure system and is located at the bottom of 
the capsule (see Section 2.5).  

Figure 2-5:  Radial configuration of the reactor core 

  Absorber cells do not contain 
fuel, and they are considered part of the reflector system (see Section 2.2.3).  The centermost 
position in the core is an instrumentation position, which is used primarily for the startup 
source. 

Figure 2-5 also shows the positions of the control drums (see Section 2.3), and the shutdown 
rods (see Section 2.4).  The three control drums are located at vertices of the core, within the 
reflector system.  The three shutdown rods are in locations of high reactivity worth in the active 
core, occupying lattice positions that would otherwise contain reactor cells. 

The reactor uses various instrumentation systems to monitor core performance; neutron flux 
monitors, cell temperature sensors, and other instrumentation systems are used to provide the 

{ }

{

}

{ }
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operating parameters, trips, and alarms.  More information on instrumentation and control 
systems is provided in Section 2.7. 

Important core design characteristics and operating conditions of the Aurora are summarized in 
Table 2-4. 

Table 2-4:  Reference core design characteristics and operating conditions 

Characteristic Value 
Core thermal output (MWth) 4 
Number of core enrichment zones 1 

Instrumentation positions 1 
Control drums 3 
Shutdown rods 3 

2.2.2.4 Materials of the reactor core system 

The reactor cell can is constructed using stainless steel 316L (SS316L), chosen for its low 
neutron absorption in the fast spectrum, significant operating and irradiation experience, and 
strength at operating conditions. 

The reflector material used in the reactor cells is zirconium.  Zirconium has well-characterized 
behavior in reactors and is chosen for its high neutron scattering cross-section and low neutron 
absorption. 

The reactor core uses UZr metal fuel, often referred to as binary metal fuel.  UZr also has 
significant operating experience in fast reactors, which operated over decades, and has many 
favorable characteristics for the Aurora design.  Section 2.2.2.4.1 describes the fuel material in 
more detail. 

The heat pipes consist of a SS316L wall, with a porous metal wick thermally bonded to the 
inner surface.  They also contain a small amount of potassium working fluid.  These materials 
are described further in Section 2.2.2.4.3. 

2.2.2.4.1 Fuel material 
2.2.2.4.1.1 Fuel type 

The reactor core system employs a metal alloy in the form of uranium alloyed with 10% 
zirconium (U-10Zr).  Metal fuel has a long history of use in U.S. fast reactors, beginning with 
the Experimental Breeder Reactor I (EBR-I) in 1951 and employed extensively in the 
Experimental Breeder Reactor II (EBR-II), which operated between 1964 and 1994 [22].  Over 
130,000 metal fuel pins were irradiated in the experiments over decades [23]. 

The thermophysical properties of metal fuel provide favorable performance in fast reactor 
operating conditions [24].  U-10Zr has a very high theoretical density of 15.5 g/cm3, which 
enables significant heavy metal core loadings for enhanced reactivity.  The thermal conductivity 
of metal fuel is high, at 32 W/m-K, which helps to reduce peaking of fuel temperatures and 
precludes local hot spots.  In addition, the low heat capacity of U-10Zr, at 260 J/kg-K, limits the 
amount of stored heat in the fuel while operating at temperature, enabling easier cooling of the 
fuel when shutting down or progressing through an abnormal event.  Table 2-5 provides a 
summary of relevant U-10Zr thermophysical property values at a reference temperature.  

{ }
{ }
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Table 2-5:  Selected thermophysical properties of U-10Zr at a reference temperature [24] 

Material property Value at 650 C 

Density (g/cc) 15.5 
Thermal conductivity (W/m-K) 31.7 
Specific heat (J/kg-K) 248 

2.2.2.4.1.2 Fission gas generation and fuel swell 

During irradiation, fission gases form void pores in the fuel, which in turn causes metal fuel to 
swell.  The phenomenology of fuel at higher irradiation levels is that once the fuel swells by 
approximately a third of its volume, the fission gas voids interconnect and the fission gasses are 
released to the upper plenum, with very little additional swelling.7  This interconnection of  
fission gas voids typically occurs at a burnup of 2-3 atom per cent (at.%),8 which means that at 
lower burnups, the vast majority of fission gases are retained in the fuel [25], [26]. 

Since the Aurora core’s peak burnup never exceeds 1 at.%, pore interconnection and substantive 
fission gas release to the plenum is not expected.  Although the burnup is not high enough to 
reach the maximum extent of swelling, the reactor cells are nevertheless designed with enough 
internal free volume to accommodate such swelling. 

2.2.2.4.2 Eutectic formation considerations 

Although the melting (solidus) temperature for the fuel is high, at 1,230 C, a more relevant 
limit for the Aurora fuel and the surrounding reactor cell can arises from considerations 
relating to eutectic formation.  Eutectic effects between steel and fuel have been analyzed at 
length historically and were typically referred to as fuel-clad chemical interactions.  The Aurora 
design does not employ clad fuel, so the eutectic considerations are referred to as fuel-steel 
chemical interaction.  Effects caused by fuel-steel chemical interaction occur at elevated 
temperatures where interdiffusion occurs between the uranium component of the U-10Zr fuel 
and the stainless steel.  This interdiffusion begins to form a lower melting-point eutectic. 

A correlation developed by Argonne National Laboratory (ANL) and applied to the safety 
analyses in Chapter 5.1 shows that this process begins around 720 to 725 C but proceeds very 
slowly at this temperature (< 0.01 μm/s), increasing with temperature until reaching a rate of 
0.1 μm/s at 830 C [27].  This correlation was developed with a series of dipping tests, where 
solid iron samples were dipped into a series of molten U-Fe baths, and the eutectic penetration 
rate was measured [28].  These tests represent bounding behavior of uranium and iron at high 
temperatures.  In other words, the eutectic penetration rates experienced with actual fuel 
designs would be less than the rates observed in these tests. 

Several irradiated fuel pins, irradiated to 2-10 at.% burnup, were studied using out-of-pile tests 
and showed eutectic formation rates that were bounded by the ANL correlation [27].  
Lanthanide fission products and fuel alloying element redistribution enhance fuel-steel 

7 Accordingly, metal fuel designed for reaching high burnups includes enough volume to accommodate swelling 
of the fuel, which helps to limit the stress applied to the fuel enclosure by the fuel itself. 

8 Fuel burnup can be expressed as percent of heavy metal atoms that have fissioned (at.%) or in units of fission 
energy produced per unit mass of heavy metal (GWd/MTHM or MWd/kgHM).  A burnup of 1 at.% of burnup 
corresponds to roughly 9.4 GWd/MTHM.  The nuclear fleet of large LWRs in the U.S. operates at around 50 
MWd/kgHM. 



Copyright © 2020 Oklo Inc., all rights reserved  124 

II.02 Description and analysis of SSCs

OkloPower-2020-PartII-NP, Rev. 0 

chemical interaction.  These effects occur in high burnup fuel and are not expected to be 
relevant for the Aurora design.  Furthermore, the steel dimensions of interest in this 
experimental work were significantly smaller than the steel in the Aurora design.  Thicker steel 
may lead to self-arresting eutectic penetration behavior due to the dilution of eutectic 
constituents as the eutectic progresses through the steel.  For these reasons, the ANL 
correlation is substantially conservative for the Aurora design.  

In light of this, eutectic penetration occurring between 720 C and 830 C progresses slowly, if at 
all in the Aurora design.  Therefore, 720 C is considered a conservative operating limit, and 
there is considerable margin above that temperature before eutectic penetration occurs at rates 
that may lead to steel breach in timescales of interest to the Aurora design. 

2.2.2.4.3 Heat pipe materials 

The heat pipe wall is a SS316L tube.  The wick is composed of high-porosity metal that provides 
capillary pressure to help drive the flow of the heat pipe working fluid.  The wick is thermally 
bonded to the inner surface of the heat pipe wall.  These materials, along with the potassium 
working fluid, were chosen because of their suitability at the operating temperature, heat flux, 
and irradiation, as well as their compatibility with one another. 

2.2.2.4.3.1 Behavior in radiation 

The materials used in the heat pipes are common materials in fast reactors with well 
understood behavior during irradiation.  The capture cross-sections in the fast spectrum are 
very low; thus, the amount of activation is minimal.  More information on activation of 
materials is in Chapter 3, “Radioactive materials to be produced in operation.” 

2.2.2.4.3.2 Impurity induced corrosion 

Impurity induced corrosion was identified as the only significant life-limiting factor for heat 
pipe operation.  Nonmetallic impurities, especially carbon and oxygen, located in the working 
fluid, container, wick, and surrounding structures (including the fuel and heat exchanger) 
diffuse into the working fluid and are carried toward the evaporator, where they 
concentrate.  These impurities can precipitate and reduce flow in the wick, form low melting 
point eutectics with the container, or form ternary compounds with the container and working 
fluid.  These problems can be avoided entirely by reducing the potential for contamination via 
proper material selection, and by removing contaminants with thorough cleaning and high-
temperature bakeoff during the fabrication process [29].  High temperature baking is standard 
in heat pipe production, and visual inspection of the cold end of the heat pipe is sufficient to 
identify impurities.  As such, standard production produces heat pipes of sufficient quality for 
long lifetimes, and there is no mechanism for producing heat pipes with significant impurities 
with standard production. 

2.2.2.5 Design evaluation of the reactor core system 

As described in Chapter 5.1, the top-level safety goal of the Aurora is to minimize the risk to the 
public and the environment by controlling dose.  This top-level safety goal is accomplished by 
meeting two safety subgoals: (1) maintain fuel integrity and (2) maintain reactor cell can 
integrity.  The primary challenge to both of these subgoals is temperature.   

Eutectic formation, a phenomenon described in Section 2.2.2.4.2, can result in localized melting 
at temperatures lower than the melting temperature of fuel or steel components 
alone.  Therefore, the reactor cell is designed and operated in such a way as to avoid exceeding 
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the eutectic formation temperature for durations that would cause the cell can wall integrity to 
be compromised.  For practical purposes, this is most easily accomplished by showing that the 
peak fuel temperature remains below 720C, which is the conservatively defined temperature at 
which eutectic formation onset may occur.  This is achieved primarily by operating with 
sufficient temperature margins during normal steady state operation.  These margins rely on 
inherent properties of the system such as high thermal conductivity (DB.RXS.01) and on setting 
the appropriate operating limits (DB.RXS.02). 

The inherent negative reactivity feedback of the reactor core system (DB.RXS.03) and passive 
conduction of heat away from the core (DB.RXS.04) contribute to maintaining acceptable 
temperatures during transients. 

The performance of the reactor core system is analyzed using the neutron transport code 
Serpent, and the thermal analysis code ANSYS.   

2.2.2.5.1 Steady state operating condition 

2.2.2.5.1.1 Fast neutron spectrum 

The Aurora reactor operates in the fast spectrum, where neutrons born at fission energies of 2-
3 MeV slow down only to about 1 keV to 1 MeV.  Fast spectrum reactors are generally less 
sensitive to material selection because more materials are transparent to neutrons at those 
energies than at the thermal energy range.  Materials such as stainless steel, for structural 
support, and zirconium, for neutron reflection, are suitable, and they are heavy enough to 
largely avoid neutron moderation. 

Fast spectrum reactors also do not experience significant sensitivity to fission product poisoning 
effects, since most strong thermal-spectrum absorbers like xenon-135 have very small cross-
sections at high energies.  Figure 2-6 shows spectrum plots for the Aurora reactor in comparison 
to a pool-type, metal-fueled sodium fast reactor (SFR) and a pressurized water reactor 
(PWR).  The Aurora core operates with a spectrum very similar to the SFR. 
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Figure 2-6:  Comparison of the neutron spectra of the Aurora reactor to other designs 

2.2.2.5.1.2 Core power distribution 

The Aurora core operates with relatively low radial and axial power peaking factors, despite 
employing a constant core-wide U-235 enrichment.  Small fast reactor cores, like the Aurora 
core, operate with relatively low radial and axial power peaking factors compared to most other 
reactor types due in large part to the unusually long mean free path of fast neutrons in the core 
and the small size of the core.  Since the total neutron cross-section decreases with increasing 
incident neutron energy, a faster spectrum contributes to a large mean free path.  A large 
neutron mean free path reduces core power peaking, helps the core to react to transients in a 
unified manner, and limits susceptibility to localized effects.  

The maximum radial peaking factor in the Aurora core is less than 1.20 and the maximum axial 
peaking factor in the peak radial cell is 1.18, for a combined total maximum local peaking of 
1.42.  The maximum radial peaking decreases less than 1% from core beginning-of-life (BOL) to 
core end-of-life (EOL), and the location of peak power stays the same throughout fuel cycle 
life.  Therefore, analysis of the peak temperatures conservatively uses the peaking factor at 
BOL.  The radial reactor cell power peaking distribution at BOL is shown in Figure 2-7.   
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Figure 2-7:  Beginning of life (BOL) radial reactor cell power peaking distribution 

The axial power distribution is nearly symmetric, with a maximum axial offset of -1.5% in the 
peak reactor cell, and nearly follows the idealized cosine shape often used as an approximation 
for axial power distributions in other reactor systems.  The near-ideal axial power shape is due 
to the absence of an axial coolant temperature rise since the heat pipe maintains near-constant 
temperature along its entire length, as well as nearly symmetric reflector configurations above 
and below the active core region.  The axial power distribution for the peak cell is shown in 
Figure 2-8. 

{

}
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Figure 2-8:  Axial power peaking profile in the peak reactor cell 

The power peaking results in this section correspond to the core configuration with the absorber 
cells (see Section 2.2.3) in their maximum reactivity configuration (i.e., no absorber rods 
inserted).  This is not an expected operating state for the Aurora; however, it does result in the 
highest radial power peaking values, which means that this radial power distribution is the 
bounding distribution for any potential configuration of the absorber cells.  As such, the 
transient analysis presented in Chapter 5.1 is not sensitive to the configuration of the absorber 
cells, as the presence of absorber rods will only serve to reduce the power peaking below that 
which was modeled. 

2.2.2.5.1.3 Peak fuel temperature 

Both temperature and axial power peak at the core midplane due to the cosine-shaped axial 
power distribution and the near axially isothermal heat pipe working fluid temperature.  The 
peak fuel temperature therefore occurs at the axial midplane of the peak reactor cell, within the 
innermost ring of reactor cells.  Aside from the core power level, the most important driver of 
the peak fuel temperature during steady-state is the thermal conductivity of the fuel. 

A conservative assumption was made in the calculation of fuel temperature: the thermal 
conductivity of the fuel was taken at 70% of its nominal value.  This was done to account for the 
degradation in thermal conductivity associated with increasing porosity generated during 
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irradiation [24].  Oklo analysis showed that an assumption of 30% degradation in thermal 
conductivity for the entire cycle is conservative because at low burnups the actual degradation 
would be significantly less than 30%. 

Using this conservative approach, operating at the core maximum power level of 4 MWth 
results in a steady-state maximum fuel temperature of 640 C at the core midplane in the 
reactor cell at the peak location.  Figure 2-9 and Figure 2-10 show the radial temperature 
distribution in the peak reactor cell at the core mid-plane, for the full reactor cell and for the 
just the fuel, respectively.  Figure 2-11 shows the axial temperature distribution of the peak 
reactor cell at multiple radial locations.  These temperature distributions were calculated using 
the ANSYS code.  

Figure 2-9:  Radial temperature distribution in the peak reactor cell at the peak axial position 

{

}
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Figure 2-10:  Radial temperature distribution in the fuel of the peak reactor cell at the peak axial position 

{

}
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Figure 2-11:  Axial temperature profile of the peak reactor cell 

The peak fuel temperature of 640 C during steady state operation at full power provides  
approximately an 80 C margin to the conservatively defined operating limit of 720 C.  As 
described in the safety analysis in Chapter 5.1, this margin is large enough to prevent eutectic 
formation during the maximum credible accident.  To ensure that proper margins are 
maintained during normal operation, the appropriate limit will be placed on the core power 
level (DC.RXS.02.A). 

2.2.2.5.2 Inherent feedback mechanisms 

The Aurora core possesses a net negative power coefficient of reactivity, which contributes to 
safe behavior during transient conditions.  The primary contributor to the net negative power 
coefficient of reactivity in the Aurora reactor core is the temperature feedback coefficient of 
reactivity.  The temperature feedback coefficient components of interest in the Aurora reactor 
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are the fuel thermal expansion coefficient of reactivity, the fuel Doppler coefficient of reactivity, 
and the structural material thermal expansion coefficient of reactivity. 

The fuel thermal expansion temperature coefficient of reactivity is the reactivity change in the 
core associated with the material expansion with increasing temperature of the metal fuel.  The 
fuel Doppler coefficient is the reactivity change associated with the broadening of the fuel’s 
reaction cross-sections with increased temperature.  The reactor cell thermal expansion 
coefficient includes the effects of material expansion of the reactor cell can wall and the heat 
pipe wall.  The fuel thermal expansion coefficient is the most impactful driver of negative 
reactivity feedback since it is both relatively large (as shown in Table 2-6) and is the quickest to 
respond to power changes. 

Table 2-6:  Temperature coefficients of reactivity at full-power conditions 

Component 

Reactivity 
coefficient 

(pcm/K) 
Fuel thermal expansion -0.50 
Fuel doppler -0.15 
Reactor cell thermal expansion                  -0.07 
Baseplate thermal expansion -1.40 
Net -2.12 

Other temperature coefficients of reactivity contribute to the net reactivity coefficient beyond 
those displayed in Table 2-6, such as the radial reflector temperature coefficient.  However, 
these additional components will operate on slightly slower timescales since they rely on heat 
generated in the fuel to be conducted radially outward through the core.  Their contribution to 
the net coefficient is expected to be large and negative, but less ultimately meaningful due to 
their slower timescale of response.   

A design commitment (DC.RXS.03.A) is taken to demonstrate a net negative power coefficient of 
reactivity of the system.  This commitment ensures that all components of the reactivity 
feedback discussed here, and any other less impactful components, collectively contribute to safe 
behavior during transient conditions.  The safety analysis in Chapter 5.1 conservatively 
neglects  reactivity feedback entirely, and therefore does not rely on the magnitude of the 
negative feedback coefficient. 

2.2.2.5.3 Passive conduction of decay heat 

As described in the safety analysis in Chapter 5.1, the Aurora reactor does not rely on active 
cooling during the decay heat phase following shutdown during the maximum credible 
accident.  The reactor passively conducts heat between the systems within the reactor module 
(the reactor core system, reflector system, shielding system, enclosure system, and heat 
exchanger system), distributing heat throughout the substantial thermal mass presented by the 
module.  The heat is then removed from the module via natural convection at the surface of the 
module shell.  The safety analysis shows that this passive heat removal is sufficient to maintain 
acceptable fuel temperatures and meet the top-level safety goal of the Aurora in the event of the 
maximum credible accident. 

Design commitments are taken for each system to ensure that it is properly configured to 
provide conduction between systems (including DC.RXS.04.A), and a commitment is taken to 
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test the ability of the module to passively remove heat at decay heat levels during startup 
testing (DC.RXS.04.B).  In addition, a design commitment is made for the building system to 
ensure that the reactor emplacement supports passive cooling of the module shell 
(DC.BAS.01.A).   

2.2.2.6 Summary of the reactor core system 

Design basis: 

DB.RXS.01 The reactor core system uses metal fuel with well characterized 
properties. 

Design evaluation summary: 

The analysis in this section has shown that the steady state operating temperature of 
the reactor core system provides substantial margin to fuel-steel eutectic formation 
temperatures at full power.  The safety analysis in Chapter 5 shows that this margin 
is sufficient to maintain the safety and operational goals of the Aurora in the event of 
the maximum credible accident.  A design commitment is taken to the ensure that the 
fuel used in the Aurora meets the critical characteristics required to maintain the  
safety and operational goals, and the appropriate programmatic controls are in place 
to ensure the commitments are met. 

Design commitments and programmatic controls: 

DC.RXS.01.A The fuel in the reactor system is procured according to
10 CFR Part 50 Appendix B, with a critical characteristic of thermal 
conductivity. 

(see Oklo Quality Assurance Program Description) 
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Design basis: 

DB.RXS.02 The reactor core system is operated at steady state thermal power 
levels that prevent damage to the system during transients. 

Design evaluation summary: 

The analysis in this section has shown that the steady state operating temperature of 
the reactor core system provides substantial margin to fuel-steel eutectic formation 
temperatures at full power.  The safety analysis in Chapter 5 shows that this margin 
is sufficient to maintain the safety and operational goals of the Aurora in the event of 
the maximum credible accident.  A design commitment is taken to the steady state 
operating power level to ensure that this margin is maintained, and the appropriate 
programmatic controls are in place to ensure the commitments is met. 

Design commitments and programmatic controls: 

DC.RXS.02.A The power level of the reactor system is limited to 4 MWth.

See also DC.ICS.01.A through D 

Design basis: 

DB.RXS.03 The reactor core system has inherently negative reactivity feedback. 

Design evaluation summary: 

The analysis in this section has shown that the reactivity feedback of the reactor core 
system is dominated by the large negative temperature reactivity feedback due to 
thermal expansion of metal fuel.  Although reactivity feedback is not relied on in the 
safety analysis presented in Chapter 5, a design commitment is taken for a negative 
power coefficient of reactivity and the appropriate programmatic controls are in place 
to ensure that this commitment is met. 

Design commitments and programmatic controls: 

DC.RXS.03.A The net power coefficient of reactivity of the reactor core system is
negative. 

SUT.RXS.03 (see Chapter 14) 
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Design basis: 

DB.RXS.04 The reactor core system provides a pathway to conduct heat from the 
fuel to the surrounding systems and ultimately to reject it to the 
environment. 

Design evaluation summary: 

This section described the layout of the reactor core system, a matrix of hexagonal 
reactor cells.  Decay heat is conducted away from the fuel in both the axial and radial 
directions both within and among the reactor cells and outward toward surrounding 
systems.  The transient analysis in Chapter 5 shows that, when configured as 
designed, the reactor core system provides adequate heat conduction to maintain fuel 
temperatures below their required limits during the decay heat phase of the 
maximum credible accident (without active cooling).  Design commitments are made 
to ensure proper as-built configuration of the core prior to operation and to 
demonstrate that the reactor core system can be cooled via conduction.  The 
appropriate programmatic controls are in place to verify them.  

Design commitments and programmatic controls: 

DC.RXS.04.A The critical components of the reactor core system, as identified in the
appropriate procedure, are installed as described in the design 
documents referenced by the procedure.  

SUT.RXS.04.A (see Chapter 14) 

DC.RXS.04.B The reactor core system can be cooled by conduction through the
surrounding systems (reflector system, shielding system, heat 
exchanger system, and reactor enclosure system) and subsequent 
convection from the module shell after shutdown. 

SUT.RXS.04.B 
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2.2.3 Reflector system 

2.2.3.1 Introduction to the reflector system 

The reflector system functions primarily to reflect neutrons back into the core, improving fuel 
utilization, increasing neutron economy, and flattening the power profile of the core.  It consists 
of absorber cells, and solid reflector blocks.  The reflector system is configurable during initial 
startup to adjust for the initial core reactivity, then remains fixed during normal operations. 

2.2.3.2 Bases of the reflector system 
2.2.3.2.1 Design basis of the reflector system 

The design basis for the reflector system, a subsystem of the reactor system (RXS), is as follows: 

DB.RXS.05 The reflector system provides a pathway to conduct heat from the reactor core 
system to the surrounding systems and ultimately to reject it to the environment. 

2.2.3.2.2 Performance bases of the reflector system 

The reflector system is also designed to meet all of the following performance bases: 

• The reflector system is designed to improve fuel utilization.

• The reflector system is designed to be configurable during startup testing to adjust for
the initial core reactivity and remains fixed during normal operation.

• The reflector system is designed to reduce neutron fluence to the capsule and module
shell.

2.2.3.3 Description of the reflector system 

The reflector system functions to enhance fuel utilization and adjusts for uncertainties in the 
core initial reactivity.  It consists of three major components: 

1. Axial reflector blocks integrated into the reactor cells of the reactor core system (see
Section 2.2.2)

2. A reconfigurable ring of six absorber cells, located in the center of the reactor core
system

3. A fixed reflector region surrounding the outermost ring of cells, made up of zirconium
and stainless steel blocks

Absorber cells are similar in structure to reactor cells, but they do not contain fuel.  Instead of 
fuel, the absorber cells contain a reflector block that spans the full height of the core 
region.  They also contain a smaller heat pipe than the reactor cells, which functions to 
distribute heat axially throughout the absorber cell but is not actively cooled by the heat 
exchanger system.   

The reflector block in the absorber cells is either a solid monolithic block or contains six holes 
that can be configured to contain absorber rods or reflector rods.  The absorber rods consist of a 
hollow steel rod containing boron carbide absorber, and the reflector rods are solid 
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steel.  Absorber cells can be configured with any combination of absorber and reflector 
rods.  Figure 2-12 shows a schematic of an absorber cell. 

Figure 2-12:  Absorber cell schematic 

Absorber cells are configured during startup testing to adjust the initial reactivity of the 
core.  This initial adjustment ensures the core has the desired excess reactivity, and that the 
design commitments for the reactivity worth of (1) the control drum system (Section 2.3) and (2) 
the shutdown rod system (Section 2.4) can be met.  If the initial reactivity is too low, absorber 
rods can be replaced with reflector rods in the absorber cells.  If the initial reactivity is too high, 
reflector rods can be replaced with absorber rods.  After this initial adjustment, the 
configuration is fixed during normal operation.  A representative configuration of the absorber 
cells is shown in Figure 2-13.  

{

}
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Figure 2-13:  Schematic showing a representative configuration of absorber cells in the center of the core 

The fixed reflector region consists of hexagonal blocks of zirconium and stainless steel that 
surround the last ring of reactor cells and extend out to the capsule, as shown in Figure 
2-5.  These blocks provide additional neutron reflection.  The control drum system is located
within the fixed reflector region.

2.2.3.4 Materials of the reflector system 

The reflector materials used in the reactor are zirconium and SS316L, which have well-
characterized behavior in reactors.  Zirconium is chosen for its high neutron scattering cross-
section and low neutron absorption.  SS316L is durable, inexpensive, has an acceptable neutron 
scatter-to-capture cross-section, and possesses high strength at operating temperatures. 

Boron carbide is used as the neutron absorber in the absorber rods.  Boron carbide was chosen 
as the neutron poison material due to its relatively high neutron absorption cross-section in the 
fast spectrum, at 1 barn.  Other benefits of boron carbide include a high melting temperature, 
chemical stability at high temperatures, and low production of gamma radiation upon neutron 
absorption. 

{

}
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The maximum operating temperatures of the reflector system is bounded by the peak fuel 
temperature of 640 C, which is much lower than the melting point for the reflector system 
materials, and well below their thermal design limits. 

2.2.3.5 Design evaluation of the reflector system 
2.2.3.5.1 Steady state operating condition 

The reflector system is completely passive.  The only adjustments made to it are during startup 
testing, and the configuration remains fixed during operation.  The primary function of the 
reflector system is to reflect neutrons back into the core, which has the following benefits: 

• maximizing fuel usage, which increases neutron economy, and

• flattening the power profile of the core

The performance of the reflector system is analyzed using the neutron transport code 
Serpent.  Because the neutronic performance of the reflector system relates to its performance 
bases only, the related analysis is not presented. 

2.2.3.5.2 Passive conduction of decay heat 

As described in the safety analysis in Chapter 5.1, the Aurora reactor does not rely on active 
cooling for decay heat removal, following shutdown after the maximum credible accident.  Decay 
heat is passively conducted from the fuel to the substantial amount of available thermal mass of 
the other systems within the reactor module.  This conduction and thermal mass availability 
applies to the systems within the reactor module, which include: (1) the reactor core system, (2) 
the reflector system, (3) the shielding system, (4) the enclosure system, and (5) the heat 
exchanger system.  The heat is then removed from the reactor module via natural convection of 
air at the surface of the module shell.  The safety analysis shows that this passive heat removal 
is sufficient to maintain acceptable fuel temperatures and meet the top-level safety goal of the 
Aurora in the event of the maximum credible accident. 

Design commitments are taken for each system to ensure that it is properly configured to 
provide a conduction pathway between systems (including DC.RXS.05.A for the reflector 
system), and a commitment is taken to test the ability of the reactor module to passively remove 
heat at decay heat levels during startup testing (DC.RXS.04.B).  In addition, a design 
commitment is made for the building system to ensure that the reactor emplacement supports 
passive cooling of the module shell (DC.BAS.01.A).   
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2.2.3.6 Summary of reflector system 

  

Design basis: 

DB.RXS.05 The reflector system provides a pathway to conduct heat from the 
reactor core system to the surrounding systems and ultimately to 
reject it to the environment. 

Design evaluation summary:  

This section describes the reflector system, a matrix of hexagonal reflector and 
absorber cells, and blocks of fixed reflector material that surround the reactor core 
system.  Decay heat is conducted away from the reactor core system and outward 
toward surrounding systems.  The transient analysis in Chapter 5 shows that, when 
configured as designed, the reflector system provides adequate heat conduction to 
maintain fuel temperatures below their required limits during the decay heat phase 
of the maximum credible accident (without active cooling).  A design commitment is 
made to ensure proper as-built configuration of the reflector system prior to operation 
and the appropriate programmatic controls are in place to verify it.  

Design commitments and programmatic controls: 

DC.RXS.05.A The critical components of the reflector system, as identified in the 
appropriate procedure, are installed as described in the design 
documents referenced by the procedure. 

POT.RXS.05.A (see Chapter 14) 
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2.2.4 Shielding system 

2.2.4.1 Introduction to the shielding system 

The shielding system, a subsystem of the reactor system, functions to (1) limit occupational 
radiation exposures, and (2) keep radiation fluence to equipment and reactor enclosures below a 
level at which embrittlement or other significant radiation damage could occur.  It is made up of 
components located throughout the reactor module, including components within the reactor 
cells of the reactor core system, functioning collectively to meet shielding design and 
performance goals. 

2.2.4.2 Bases of the shielding system 
2.2.4.2.1 Design basis of the shielding system 

The design basis for the shielding system, a subsystem of the reactor system (RXS), is as 
follows: 

DB.RXS.06 The shielding system provides a pathway to conduct heat from the reactor core 
system and reflector system to the surrounding systems and ultimately to reject 
it to the environment. 

2.2.4.2.2 Performance bases of the shielding system 

The shielding system is also designed to meet all of the following performance bases: 

• The shielding system minimizes occupational dose rates and exposures.

• The shielding system is designed to minimize radiation fluence, and activation, to the
power conversion system fluid in the heat exchanger system.

• The shielding system is designed to reduce the total fluence to the module shell.

• The shielding system is designed to minimize the radiation exposure to equipment in the
module equipment housing.

2.2.4.3 Description of the shielding system 

The shielding system is composed of five major regions: 

1. The heat exchanger shield, integrated into the reactor cells of the reactor core system
(see Section 2.2.2)

2. The capsule backfill shield, located above the fixed reflector region

3. The top shield, located near the top of the capsule

4. The radial shield, located in the radial gap between the capsule and the module shell

5. The bottom shield, located in the axial gap between the capsule and module shell below
the capsule



Copyright © 2020 Oklo Inc., all rights reserved  142 

II.02 Description and analysis of SSCs

OkloPower-2020-PartII-NP, Rev. 0 

Collectively, these components function to meet shielding design and performance bases.  
Figure 2-14 shows the axial layout, and Figure 2-15 shows the radial layout of each major 
component of the shielding system.  All of the shields utilize boron carbide.  

The heat exchanger shield is made up of individual axial shielding components integrated into 
each reactor cell, as shown in Figure 2-3 in Section 2.2.2.  The purpose of the heat exchanger 
shield is to attenuate the axial core radiation flux, in order to limit activation of the power 
conversion system fluid in the heat exchanger. 

The capsule backfill shield is located outside the core lattice, above the fixed reflector and below 
the capsule lid.  Its purpose is to reduce neutron pathways outside the core lattice.   

The purpose of the top shield is to attenuate neutron pathways out of the core into the module 
equipment housing.  The top shield rests above all reactor module internal structures save the 
upper insulator, which is positioned directly below the capsule lid.  The top shield is removable 
to allow access to the reactor internals for maintenance, and has penetrations for shutdown rod 
drive lines, control drum drive shafts, power conversion system piping, and instrumentation 
cabling. 

The radial shield is located in the radial space between the capsule and the module shell.  The 
purpose of the radial shield is twofold.  First to minimize the radiation exposure to the module 
shell and second to conduct heat radially from the capsule to the module shell and which allows 
the heat ultimately to reject to the environment.   
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Figure 2-14:  Axial schematic showing regions of the shielding system 

{
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Figure 2-15:  Radial schematic showing regions of the shielding system 

2.2.4.4 Materials of the shielding system 

All components of the shielding system are made of stainless steel, boron carbide and zirconium 
hydride.  Stainless steel 304 (SS304) and SS316L are used for structural material, and boron 
carbide is used as the primary absorber material.  The behavior of these materials is well-
characterized under irradiation.  Boron carbide and SS316L are described in more detail in 
Sections 2.2.2.4 and 2.2.3.4.  Metal hydrides, like Zirconium hydride, may be added to enhance 
shielding performance in some locations. 

2.2.4.5 Design evaluation of the shielding system 
2.2.4.5.1 Steady state operating condition 

The shielding system is a structure and therefore completely passive.  The only function of the 
shielding system is to limit occupational radiation exposures and keep radiation fluence to 
equipment and enclosures below a level at which embrittlement or other significant radiation 
damage may occur.   

The performance of the shielding system is analyzed using the neutron transport code 
Serpent.  Because the neutronic performance of the shielding system relates to its performance 
bases only, the related analysis is not presented. 

{
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2.2.4.5.2 Passive conduction of decay heat 

As described in the safety analysis in Chapter 5.1, the Aurora reactor does not rely on active 
cooling for decay heat removal, following shutdown after the maximum credible accident.  Decay 
heat is passively conducted from the fuel to the substantial amount of available thermal mass of 
the other systems within the reactor module.  This conduction and thermal mass availability 
applies to the systems within the reactor module, which include: (1) the reactor core system, (2) 
the reflector system, (3) the shielding system, (4) the enclosure system, and (5) the heat 
exchanger system.  The heat is then removed from the reactor module via natural convection of 
air at the surface of the module shell.  The safety analysis shows that this passive heat removal 
is sufficient to maintain acceptable fuel temperatures and meet the top-level safety goal of the 
Aurora in the event of the maximum credible accident. 

Design commitments are taken for each system to ensure that it is properly configured to 
provide a conduction pathway between systems (including DC.RXS.06.A for the shielding 
system), and a commitment is taken to test the ability of the reactor module to passively remove 
heat at decay heat levels during startup testing (DC.RXS.04.B).  In addition, a design 
commitment is made for the building system to ensure that the reactor emplacement supports 
passive cooling of the module shell (DC.BAS.01.A).   
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2.2.4.6 Summary of the shielding system 

Design basis: 

DB.RXS.06 The shielding system provides a pathway to conduct heat from the 
reactor core system and reflector system to the surrounding systems 
and ultimately to reject it to the environment. 

Design evaluation summary: 

This section describes the shielding system, which primarily functions to limit 
occupational radiation exposures and keep radiation fluence to equipment and 
enclosures below a level at which embrittlement or other significant radiation 
damage may occur.  The shielding system also functions to conduct heat from the 
reactor core system and reflector system outward toward the module shell.  The 
transient analysis in Chapter 5 shows that, when configured as designed, the 
shielding system provides adequate heat conduction to maintain fuel temperatures 
below their required limits during the decay heat phase of the maximum credible 
accident (without active cooling).  A design commitment is made to ensure proper as-
built configuration of the shielding system prior to operation and the appropriate 
programmatic controls are in place to verify it.  

Design commitments and programmatic controls: 

DC.RXS.06.A The critical components of the shielding system, as identified in the
appropriate procedure, are installed as described in the design 
documents referenced by the procedure. 

POT.RXS.06.A (see Chapter 14) 

SUT.RXS.06.A1 and A2 
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Control drum system 

2.3.1 Introduction to the control drum system 

The control drum system functions to control reactivity letdown with fuel depletion.  It has no 
reactor shutdown function, as shutdown is achieved using the shutdown rod system (see Section 
2.4).  The control drum system consists of three control drums of equivalent worth, located at 
three vertices of the active core lattice, within the reflector region (see Section 2.2.3).  Each 
drum (i.e., control drum) contains a half-cylinder of absorber, and a half-cylinder of 
reflector.  The control function is achieved by rotating the drums to adjust the relative positions 
of absorber and reflector, inserting positive reactivity by rotating the absorber portion out of the 
core, and inserting negative reactivity by rotating the absorber portion into the core.  Generally, 
the control drums are designed to rotate the absorber portion very slowly out of the core to add 
reactivity to compensate for reactivity loss with fuel depletion, over fuel cycle life. 

2.3.2 Bases of the control drum system 

2.3.2.1 Design basis of the control drum system 

The design basis for the control drum system (CDS) is as follows: 

DB.CDS.01  The control drum system is designed to limit both the rate and magnitude of 
reactivity insertion that the system can achieve so as to minimize the effect of an 
unintended reactivity insertion.  

2.3.2.2 Performance basis of the control drum system 

The control drum system is also designed to meet the following performance basis: 

• The control drum system controls reactivity letdown with fuel depletion.

2.3.3 Description of the control drum system 

2.3.3.1 Configuration and location of the control drum system 

Each control drum consists of a SS316L cylindrical enclosure, containing a half-cylinder of 
boron carbide absorber material and a half-cylinder of zirconium reflector.  The components of 
the control drum are shown schematically in Figure 2-16. 
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Figure 2-16:  Control drum axial schematic and section view 

The reflector and absorber regions of the control drum are the same height as the core 
region.  The drums are placed at three of the vertices of the active core cell lattice, spaced evenly 
with rotational symmetry around the outer perimeter as shown in Figure 2-5.  The control 
function is achieved by rotating the drums.  The boron carbide absorber is rotated into the core 
to reduce core reactivity and rotated out of the core to increase core reactivity, as shown in 
Figure 2-17. 
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 Figure 2-17:  Control drum rotation schematic showing absorber rotated fully in and fully out 

2.3.3.2 Operation of the control drum system 

The control drum rotation is driven by a shaft that extends into the module equipment housing 
(see Section 2.5), where it is coupled to the control drum drive motor via the appropriate 
gearing.  The drums are not rotated continuously, rather the drive motor and gearing are 
designed to rotate the control drums a very small amount at regular intervals to compensate for 
reactivity letdown associated with fuel depletion.  The maximum total rotation of the control 
drums is 180 degrees over the course of operation.  

The control drums are not relied upon in any safety analysis.  The drums are designed to stop in 
place on a reactor trip signal or loss of control signal.  This function is achieved using an 
electromagnetic brake that allows drum rotation when energized and prevents rotation when 
de-energized. 

To reduce the impact of a spurious drum rotation, the drive motors and gearing are designed to 
limit the maximum rotation speed of the drum.  This limit is achieved by specifying the 
maximum speed of the motor, and the transmission ratio of the gearing.  The maximum rotation 
speed is chosen to limit the rate of reactivity insertion, as described in Section 2.3.5. 

To further reduce the impact of spurious drum rotation, the total reactivity worth of the drums 
is also limited.  This limits the total reactivity insertion possible during a single spurious 
movement, as described in Section 2.3.5.   

{

}
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Each control drum is instrumented and controlled as described in Section 2.7.  

2.3.4 Materials of the control drum system 

The reflector and absorber materials, zirconium and boron carbide, are the same as those used 
in the reflector system and are used for the same reasons described in Section 2.2.3.  The drum 
cylinder and internal separator are made of SS316L, which is chemically compatible with both 
boron carbide and zirconium. 

2.3.5 Design evaluation of the control drum system 

The control drums cannot insert sufficient reactivity to challenge the safety of the core, because 
the system is limited in multiple ways.  First, the total reactivity worth of the drums is low, 
which is enabled by a very small reactivity letdown over fuel cycle life.  Second, the speed of 
rotation of the drums is limited physically by the motor and gearing specified. 

The reactivity worth of the control drum system is analyzed using the neutron transport code 
Serpent.   

2.3.5.1 Reactivity letdown over fuel cycle life and drum worth limit 

The combined worth of the drums is limited to 700 pcm, to compensate for the reactivity 
letdown over fuel life with some additional margin.  By design, the control drums are only 
required to compensate for the reactivity loss associated with fuel depletion, as they have no 
shutdown function.  This means that from absorber fully rotated in, to absorber fully rotated 
out, the drums can provide only 700 pcm of reactivity insertion. 

2.3.5.2 Control drum rotation limits 
The control drums rotate at regular intervals, rather than continuously during operation, to 
offset the reactivity letdown with fuel burnup.  The low rate of reactivity letdown requires an 
insertion rate of .  At times, including during startup, larger drum 
rotation speeds is required to make larger reactivity adjustments.  As a result, a drum speed 
rotation limit of 1×10-2 deg/sec is set.  At this drum speed, it takes roughly five hours to fully 
insert the drum absorbers.  This maximum speed is set to provide an acceptable maximum 
rotation time while limiting the potential challenge to core safety, as analyzed in Chapter 5.1.  
The control drum motor and gearing are designed to be incapable of exceeding this rotational 
speed limit, and this limit is verified using the appropriate programmatic controls, as 
summarized in Section 2.3.6.
In addition, an electromagnetic brake prevents drum rotation in the direction of positive 
reactivity insertion when the drums are not being actively rotated and whenever a reactor trip 
signal is received (see Section 2.7.3).  This provides an additional layer of protection against 
spurious drum rotation, such that if a reactor trip signal is received, the electromagnetic brake 
engages, stopping the drums in place.  

{ }
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2.3.6 Summary of the control drum system 

Design basis: 

DB.CDS.01  The control drum system is designed to limit both the rate and 
magnitude of reactivity insertion that the system can achieve so as to 
minimize the effect of an unintended reactivity insertion. 

Design evaluation summary: 

The analysis in this section shows that the control drum system has a low reactivity 
worth and a low maximum drum rotation speed.  These design features limit the rate 
of reactivity insertion that the control drum system can provide.  Further, stepper 
motors are used to prevent unintended rotation of the control drums.  The safety 
analysis in Chapter 5 shows that these limits provide sufficient protection against 
spurious reactivity insertion.  Design commitments are taken for these limits, and the 
appropriate programmatic controls are in place to ensure the design commitments 
are met. 

Design commitments and programmatic controls 

DC.CDS.01.A The maximum rotation speed of the drums is limited to 1×10-2 deg/sec.

POT.CDS.01.A (see Chapter 14) 

DC.CDS.01.B The total reactivity worth of the drums is less than 700 pcm at all
operating conditions. 

SUT.CDS.01.B 

DC.CDS.01.C The control drum actuators use stepper motors to eliminate the
possibility of unintentional rotation. 

POT.CDS.01.C 
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 Shutdown rod system 

2.4.1 Introduction to the shutdown rod system 

The shutdown rod system functions to shut down the reactor core by putting it in a sub-critical 
state.  During normal operation, the shutdown rods are fully withdrawn from the core and 
reactivity control is achieved using negative temperature feedback and the control drum system 
(see Section 2.3).  The shutdown rod system consists of three redundant shutdown rods of equal 
worth, such that each rod can independently provide sufficient negative reactivity to shut down 
the reactor.  The rods are suspended above the core by electromagnets.  The rods insert via 
gravity when the electromagnets are de-energized, and each rod has an independent 
electromagnet to ensure redundancy.  A loss of power results in rod (i.e., shutdown rod) release 
and insertion, and subsequent reactor shutdown. 

2.4.2 Bases of the shutdown rod system 

2.4.2.1 Design bases of the shutdown rod system 

The design bases for the shutdown rod system (SRS) are as follows: 

DB.SRS.01  The shutdown rod system provides sufficient negative reactivity to achieve cold 
shutdown with insertion of one rod. 

DB.SRS.02 The shutdown rod system fully inserts the shutdown rods within a sufficient time 
after receiving a trip signal to prevent damage to the reactor. 

2.4.2.2 Performance bases of the shutdown rod system 

The shutdown rod system is also designed to meet all of the following performance bases: 

• The shutdown rod system is designed to shut down the reactor and hold it shutdown, 
under conditions which allow for activities such as fuel loading, inspection, and repair. 

• The shutdown rod system is designed to prevent a stuck rod. 

• The shutdown rod system fails in the tripped (inserted) condition. 

• The shutdown rod system requires deliberate action to initiate removal of the shutdown 
rods from the core. 

2.4.3 Description of the shutdown rod system 

2.4.3.1 Configuration and location of the shutdown rod system 

The shutdown rods consist of an absorber portion and a drive line.  The absorber portion of the 
shutdown rod is a SS316L cylinder filled with boron carbide.  The drive line is a SS316L rod 
that extends into the module equipment housing (see Section 2.5), where it is connected to the 
shutdown rod retrieval mechanism via an electromagnet.  A schematic of a shutdown rod is 
shown in Figure 2-18.   



Copyright © 2020 Oklo Inc., all rights reserved  153 

II.02 Description and analysis of SSCs

OkloPower-2020-PartII-NP, Rev. 0 

Figure 2-18:  Shutdown rod schematic 
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Figure 2-18, Section A shows a cross-sectional view of an inserted shutdown rod.  The shutdown 
rod travels vertically within the shutdown rod sleeve, and the space between the rod and the 
sleeve is referred to as the channel.  During normal operation the rod is held outside of the core 
and the portion of the sleeve in the active core region is empty. 

2.4.3.2 Operation of the shutdown rod system 

During normal operation, the shutdown rods are fully withdrawn from the core and the only 
function of the shutdown rod system is to shut down the reactor.  During reactor startup, the 
shutdown rods are slowly withdrawn as the core temperature increases to nominal operating 
temperature.  The shutdown rod system consists of three redundant shutdown rods and their 
associated electromagnets and retrieval mechanisms.  The electromagnets and withdrawal 
mechanisms are mechanically and electrically independent for redundancy.  The release of the 
shutdown rods is actuated by the reactor trip system, which is further described in 
Section 2.7.3. 

Each rod is independently withdrawn by its own shutdown rod withdrawal mechanism.  The 
shutdown rod withdrawal mechanisms are used to withdraw the shutdown rods from the core 
and suspend them in the withdrawn position.  The shutdown rods are fully withdrawn from the 
reactor core during normal operation as shown in Figure 2-19. 

When a trip signal is received from the reactor trip system, the electromagnet suspending each 
rod de-energizes, and all three of the rods are inserted via gravity.  A loss of power to a 
shutdown rod electromagnet, for any reason, also causes a rod release.  The released rod falls by 
gravity into the reactor core and is guided by the shutdown rod sleeve, which reduces the 
probability of a shutdown rod misalignment.  A hard stop with a spring and damper is used to 
prevent damage to the shutdown rod from impact when it inserts. 

The mass of the shutdown rods can be suspended by an electromagnet, and do not require a 
mechanical latching or clamping mechanism to hold the rods.  This substantially reduces the 
complexity of the system and improves the reliability of rod release.  The electromagnet is 
attached to a linear actuator that is used to withdraw the rod from the core during startup.  To 
withdraw a rod, the linear actuator lowers the electromagnet into contact with the top of the 
drive line.  After the electromagnet is engaged, the linear actuator raises the electromagnet and 
the attached rod out of the core.  The components of the shutdown rod mechanism are shown 
schematically in Figure 2-20. 
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Figure 2-19:  Schematic of shutdown rod in fully withdrawn position 
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Figure 2-20:  Schematic of shutdown rod mechanisms 

2.4.4 Materials of the shutdown rod system 

The absorber material used for the shutdown rods is boron carbide.  Boron carbide is chosen for 
its high neutron absorption cross-section, its stability at high temperatures, and its lack of 
gamma ray production upon neutron absorption.  

SS316L is used for the casing of the shutdown rod and the drive line.  SS316L was chosen for its 
high strength at operating temperatures and low chemical interaction with the absorber 
material and other core materials.  Because SS316L is not magnetic, a small plain steel disc is 
attached to the top of the drive line to allow the electromagnet to retrieve the shutdown rod.  

2.4.5 Design evaluation of the shutdown rod system 

To meet the required design bases the rods must have sufficient reactivity worth to achieve 
their shutdown function.  They must also insert sufficiently quickly and reliably.  

The worth of the shutdown rods is analyzed using the neutron transport code Serpent. 

{

}
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2.4.5.1 Reactivity worth 

The design basis DB.SRS.01 requires that the shutdown rod system be capable of achieving 
shutdown with insertion of any single rod.  To achieve this requirement, the worth of any single 
shutdown rod must account for the reactivity changes associated with temperature (as the core 
cools, reactivity feedbacks result in increased reactivity of the fuel).  An additional margin of 
500 pcm excess reactivity is incorporated to account for any uncertainties. 

Table 2-7:  Shutdown rod worth spanning the range of temperature operating conditions 

 Note that no significant reactivity worth is associated from moving from the hot 
zero power temperature condition of all core materials at 600 C to the hot full power 
temperature condition (with peak fuel temp at 640 C) due to the small increase in peak fuel 
temperature (only 40 C). 

Design commitments are taken that each rod will have sufficient reactivity worth to meet this 
design basis.  The programmatic controls used to ensure that the design commitments are met 
involve testing during startup to verify that the worth of each rod is sufficient to meet the 
commitments. 

2.4.5.2 Shutdown rod insertion time 

The safety analysis in Chapter 5.1 shows that the peak fuel temperature is not exceeded when 
modeling a rod insertion delay time of 10 seconds.  This does not mean that 10 seconds is a 
limit, rather that this time meets the acceptance criteria in Chapter 5.  

There are two steps that contribute to the shutdown rod insertion time.  The first is the 
detection and signaling time, or the time it takes for the instrumentation and control system to 
detect that a reactor trip setpoint has been exceeded (or that a manual trip signal has been 
initiated) and to send a trip signal to the shutdown rod system.  This step is the focus of 
DB.ICS.01 (see Section 2.7).  The second step is the rod release and drop into the core.  This step 
is the focus of DB.SRS.02 in this section.   

Design commitments are made to limit the shutdown rod insertion time to 10 seconds or less, 
the insertion time assumed for the safety analysis.  Specifically, commitments are made to limit 
the detection and signaling time to 6 seconds (DC.ICS.02.A) and to limit the rod release and 
drop time to 4 seconds (DC.SRS.02.A).  

{

}
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2.4.6 Summary of the shutdown rod system 

Design basis: 

DB.SRS.01  The shutdown rod system provides sufficient negative reactivity to 
achieve cold shutdown with insertion of one rod. 

Design evaluation summary: 

The analysis in this section has shown that the shutdown rods have sufficient 
reactivity worth to shut down the reactor using only a single rod.  A design 
commitment is taken for this rod worth, and the appropriate programmatic controls 
are in place to verify that the commitment is met prior to beginning normal 
operation. 

Design commitments and programmatic controls: 

DC.SRS.01.A The worth of each shutdown rod will be greater than 1400 pcm, where
1400 pcm is greater than the total of: the reactivity worth associated 
with the temperature decrease from hot full power conditions to cold 
zero power conditions, and an additional margin of 500 pcm. 

SUT.SRS.01.A1 and A2 (see Chapter 14) 
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Design basis: 

DB.SRS.02 The shutdown rod system fully inserts the shutdown rods within a 
sufficient time after receiving a trip signal to prevent damage to the 
reactor. 

Design evaluation summary: 

This section describes the system responsible for shutdown rod insertion.  This 
system receives a trip signal from the reactor trip system (see Section 2.6.3), the 
electromagnets de-energize, and then the rods drop by gravity into the core.  The 
safety analysis in Chapter 5 showed that an assumed rod insertion time of 10 seconds 
upholds the safety goal of the Aurora in the event of the maximum credible accident.  
A design commitment is taken to a maximum time for each of the two components of 
the rod insertion time such that the total rod insertion time is less than 10 seconds, 
and the appropriate programmatic controls are in place to ensure that this limit is 
not exceeded. 

Design commitments and programmatic controls: 

DC.SRS.02.A The shutdown rod system fully inserts shutdown rods within 4 seconds
of receiving a trip signal. 

POT.SRS.02.A (see Chapter 14) 

SUT.SRS.02.A  

TS.LCO.01 (see Part IV) 

(See also DC.ICS.02) 
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Reactor enclosure system 

2.5.1 Introduction to the reactor enclosure system 

The reactor enclosure system functions to enclose and provide structural support to the systems 
within the reactor module, and to maintain acceptable boundary integrity.  The system consists 
of two main components: the capsule and the module shell.  Collectively these two components 
contain: (1) the reactor system (see Section 2.2), (2) the control drum system (see Section 2.3), 
(3) the shutdown rod system (see Section 2.4), (4) the heat exchanger system (see Section 2.6)
and (5) portions of the instrumentation and control system (see Section 2.7).  The bulk of these
systems are contained in the capsule, which is contained in the module shell.  The module
equipment housing is located on top of the module shell lid, and acts as an extension of the
module shell.  The module equipment housing contains portions of the control drum system and
shutdown rod system.

2.5.2 Bases of the reactor enclosure system 

2.5.2.1 Design basis of the reactor enclosure system 

The design basis for the reactor enclosure system (RES) is as follows: 

DB.RES.01 The reactor enclosure system provides a pathway to conduct heat away from the 
systems inside it and to reject it to the environment. 

2.5.2.2 Performance bases of the reactor enclosure system 

The reactor enclosure system is also designed to meet all of the following performance bases: 

• The reactor enclosure system provides two passive physical barriers to fission product
release: the capsule and the module shell.

• The reactor enclosure system supports, protects, and properly locates the reactor system,
the shutdown rod system, the control drum system, the heat exchanger system, and
portions of the instrumentation and control system.

2.5.3 Description of the reactor enclosure system 

The capsule and module shell are both made of SS304.  They do not serve as pressure 
boundaries.  They operate at near-atmospheric pressure and they are backfilled with an inert 
gas.  Each is a passive physical barrier to radiation release, but they are not credited to perform 
this function.  Figure 2-21 shows a schematic of the reactor enclosure system, and each 
component is further described in this section. 
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Figure 2-21:  Reactor enclosure schematic 

{

}
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2.5.3.1 Capsule 

The capsule is cylindrical with  thick walls.  It contains a 
thick SS316L base plate which is used to locate the cells and reflector blocks that make up the 
reactor core system and reflector system, as well as the in-core components of the shutdown rod 
and control drum systems.  It also contains mounting structures for the heat exchanger system 
to properly support and locate the heat exchangers.  The capsule is sealed with a gasket and 

 thick lid, both made of SS304.  The capsule lid contains penetrations for 
instrumentation pathways, heat exchanger piping, control drum drive shafts, and shutdown rod 
drive lines.  These penetrations are sealed to restrict gas flow, and the capsule is backfilled with 
inert gas. 

2.5.3.2 Module shell 

The module shell is also a cylinder with   thick walls.  The capsule is entirely 
contained within the module shell, along with a layer of shielding between the two enclosures.  
This layer of shielding is part of the shielding system (see Section 2.2.4), and functions to reduce 
the fluence to both the module shell and the surrounding environment.  Further discussion of 
the Radiation Protection Program can be found in Chapter 20.  The shell is also sealed with a 
gasket and  thick lid, both made of SS304.  The shell lid contains penetrations 
for instrumentation pathways, heat exchanger piping, control drum drive shafts, and shutdown 
rod drive lines.  These penetrations are sealed to restrict gas flow, and the shell is backfilled 
with inert gas. 

The module equipment housing is another sealed volume that acts as an extension of the 
module shell.  It is bolted on top of the module shell lid and contains the actuators for the 
control drum system and shutdown rod system.  When the shutdown rods are withdrawn from 
the core the shutdown rod drive lines remain fully enclosed by the module equipment housing, 
protecting them from damage.  The module equipment housing has penetrations for 
instrumentation pathways, and heat exchanger piping.  These penetrations are sealed to 
restrict gas flow and the housing is backfilled with inert gas.  The gas backfill is discussed 
further in 3.3.1.2. 

2.5.4 Materials of the reactor enclosure system 

All major components of the reactor enclosure system are constructed from SS304, except for 
the base plate at the bottom of the capsule, which is SS316L.  Both of these alloys are durable, 
readily available, have an acceptable neutron scatter-to-capture cross-section, and possess high 
strength at operating temperatures. 

2.5.5 Design evaluation of the reactor enclosure system 

2.5.5.1 Passive conduction of decay heat 

As described in the safety analysis in Chapter 5.1, the reactor does not rely on active cooling 
during the decay heat phase following shutdown during the maximum credible accident.  The 
reactor passively conducts heat between the systems within the reactor module (the reactor core 
system, reflector system, shielding system, enclosure system, and heat exchanger system), 
distributing heat throughout the substantial thermal mass presented by the module.  The heat 
is then removed from the module via natural convection of air at the surface of the module 
shell.  The safety analysis shows that this passive heat removal is sufficient to maintain 

{ }

{ }

{ }

{ }
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acceptable fuel temperatures and to meet the top-level safety goal of the Aurora in the event of 
the maximum credible accident. 

Design commitments are taken for each system to ensure that it is properly configured to 
provide conduction between systems (including DC.RES.01.A), and a commitment is taken to 
test the ability of the module to passively remove heat at decay heat levels during startup 
testing (DC.RXS.04.B).  In addition, a design commitment is made for the building system to 
ensure that the reactor emplacement supports passive cooling of the module shell 
(DC.BAS.01.A). 

2.5.6 Summary of the reactor enclosure system 

Design basis: 

DB.RES.01  The reactor enclosure system provides a pathway to conduct heat away 
from the systems inside it and to reject it to the environment. 

Design evaluation summary: 

This section describes the layout of the reactor enclosure system, which consists of 
two cylindrical steel containers that surround the reactor system and the other major 
systems within the reactor module.  Decay heat is conducted away from the reactor 
system and other surrounding systems to the reactor enclosure system.  The 
transient analysis in Chapter 5 shows that, when configured as designed, the reactor 
enclosure system provides adequate heat conduction to maintain fuel temperatures 
below their required limits during the decay heat phase of the maximum credible 
accident (without active cooling).  A design commitment is made to ensure proper as-
built configuration of the reactor enclosure system prior to operation and the 
appropriate programmatic controls are in place to verify it.  

Design commitments and programmatic controls: 

DC.RES.01.A The critical components of the reactor enclosure system, as identified
in the appropriate procedure, are installed as described in the design 
documents referenced by the procedure. 

POT.RES.01.A1 and A2 (see Chapter 14) 

SUT.RES.01.A 



 

Copyright © 2020 Oklo Inc., all rights reserved  164 

II.02 Description and analysis of SSCs 

OkloPower-2020-PartII-NP, Rev. 0 

 Heat exchanger system 

2.6.1 Introduction to the heat exchanger system 

Heat is generated in the reactor core system (see Section 2.2.2) and transported by the heat 
pipes to the heat exchanger system.  The heat exchanger system functions to transfer heat from 
the heat pipes to the power conversion system (see Section 2.8). 

2.6.2 Bases of the heat exchanger system 

2.6.2.1 Design basis of the heat exchanger system 

The design basis for the heat exchanger system (HXS) is as follows: 

DB.HXS.01 The heat exchanger system provides a pathway to conduct heat from the heat 
pipes of the reactor core system to the surrounding systems and ultimately to 
reject it to the environment. 

2.6.2.2 Performance basis of the heat exchanger system 

The heat exchanger system is also designed to meet the following performance basis: 

• The heat exchanger system directs coolant to transfer heat from the heat pipes of the 
reactor core system to the power conversion system during normal operation. 

2.6.3 Description of the heat exchanger system 

The heat exchanger system is made up of six heat exchanger units, each servicing one sixth of 
the heat pipes in the reactor core system.  Each heat exchanger unit is served by a cold leg and 
a hot leg from the header system.  The units are installed by lowering them onto the heat pipes, 
which penetrate the heat exchanger units and extend beyond the top of the units.   

Inside each heat exchanger unit, the power conversion system coolant removes heat from the 
heat pipes.  During normal operation the primary function of the heat exchanger system is to 
ensure that each heat pipe is able to transfer heat to the power conversion system coolant.  The 
detailed design of the heat exchanger units is outside the scope of this application, because the 
safety analysis shows it is not necessary to function in order to provide a conduction pathway 
for decay heat. 

Low-enthalpy supercritical carbon dioxide (sCO2) enters the heat exchanger unit via the cold leg 
and exits the heat exchanger via the hot leg at high enthalpy.  Each group of six hot and cold 
legs combine into a single main leg, such that a single hot leg and a single cold leg exit the 
reactor enclosure to service the power conversion system.  A schematic of the heat exchanger 
system and its associated piping, as well as the connection to the power conversion system can 
be seen in Figure 2-22.  
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Figure 2-22:  Schematic of the heat exchanger system 

{
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The heat exchanger units are optimized based on the particular power conversion system that is 
installed (see Section 2.8).  For a representative sCO2 system, with an approximate flowrate of 
25 kg/s is sufficient to transfer the heat generated during full power operation.  For the same 
representative system, the approximate average coolant flowrate per heat pipe is 0.22 kg/s and 
the nominal system pressure is on the order of 20 MPa.  The maximum sCO2 working fluid 
temperature is below 550 C. 

2.6.4 Materials of the heat exchanger system 

The heat exchanger system is constructed primarily of SS316.  Stainless steel 316 was chosen 
because of its suitability at the operating temperature, pressure, and heat flux, as well as its 
compatibility with sCO2, the power conversion system coolant.  Compatibility between SS316 
and sCO2 has been shown to 550 °C, and SS316 is commonly used in supercritical CO2 heat 
exchangers [30].  Both stainless steel and sCO2 have relatively low cross-sections in the fast 
spectrum, and the heat exchanger system is exposed to a greatly reduced fluence compared to 
in-core materials. 

2.6.5 Design evaluation of the heat exchanger system 

2.6.5.1 Steady state operation 

During steady state operation the heat exchanger system functions to remove heat from the 
reactor core system by convectively cooling the heat pipes.  The system is optimized to account 
for the radial power peaking in the core and to remove the appropriate amount of heat from 
each heat pipe.  This steady state heat removal function relates only to the performance basis of 
the system, so further details of operation during steady state are not presented. 

2.6.5.2 Passive conduction of decay heat 

As described in the safety analysis in Chapter 5.1, the Aurora reactor does not rely on active 
cooling during the decay heat phase following shutdown during the maximum credible 
accident.  The reactor passively conducts heat between the systems within the reactor module 
(the reactor core system, reflector system, shielding system, enclosure system, and heat 
exchanger system), distributing heat throughout the substantial thermal mass presented by the 
module.  The heat is then removed from the module via natural convection of air at the surface 
of the module shell.  The safety analysis shows that this passive heat removal is sufficient to 
maintain acceptable fuel temperatures and meet the top-level safety goal of the Aurora in the 
event of the maximum credible accident. 

Design commitments are taken for each system to ensure that it is properly configured to 
provide conduction between systems (including DC.HXS.01.A), and a commitment is taken to 
test the ability of the module to passively remove heat at decay heat levels during startup 
testing (DC.RXS.04.B).  In addition, a design commitment is made for the building system to 
ensure that the reactor emplacement supports passive cooling of the module shell 
(DC.BAS.01.A). 
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2.6.6 Summary of the heat exchanger system 

Design basis: 

DB.HXS.01 The heat exchanger system provides a pathway to conduct heat from 
the heat pipes of the reactor core system to the surrounding systems 
and ultimately to reject it to the environment. 

Design evaluation summary: 

This section describes the design of the heat exchanger system, which is made up of 
six heat exchanger units.  Decay heat is conducted away from the heat pipes of the 
reactor core system and outward toward surrounding systems through the heat 
exchanger system.  The transient analysis in Chapter 5 shows that, when configured 
as designed, the heat exchanger system provides adequate heat conduction to 
maintain fuel temperatures below their required limits during the decay heat phase 
of the maximum credible accident (without active cooling).  A design commitment is 
made to ensure proper as-built configuration of the heat exchanger system prior to 
operation and the appropriate programmatic controls are in place to verify it.  

Design commitments and programmatic controls: 

DC.HXS.01.A The critical components of the heat exchanger system, as identified in
the appropriate procedure, are installed as described in the design 
documents referenced by the procedure. 

SUT.HXS.01.A (see Chapter 14) 
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 Instrumentation and control system 

2.7.1 Summary description 

The instrumentation and control system includes the components and systems required to 
monitor and control the Aurora reactor. These systems are used for control of the plant and 
include the following subsystems: 

• Reactor trip system (Section 2.7.3) 

• Reactivity management system 

• Plant control system 

• Information display system 

Each of the instrumentation and control subsystems rely on a common set of sensors and other 
components.  These components are described in Section 2.7.2.  Because Section 2.7.2 describes 
components common to multiple subsystems, it is not structured in the same way as the other 
system descriptions in this chapter.  Design bases related to these components are contained in 
the subsystem descriptions for the subsystems that rely on the components. 

The reactor trip system is the only subsystem credited in the safety analysis in Chapter 5, and 
therefore contains the only design bases for the instrumentation and control system.  The 
reactor trip system is described in detail in Section 2.7.3.  The other subsystems of the 
instrumentation and control system are briefly summarized in Section 2.7.4. 
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2.7.2 Instrumentation and control system components 

This section describes components that are common to multiple subsystems of the 
instrumentation and control system.  It is not an exhaustive description of the instrumentation 
and control system components, but it describes all of the components that are relied on to meet 
design bases of the reactor trip system, as described in Section 2.7.3.   

2.7.2.1 Definitions 

The following terms are specific to the Aurora and are used throughout this section. 

channel:  A channel is the combination of components including a sensor, lines, amplifiers, 
output devices, and a limit monitor which are connected for the purpose of measuring the value 
of a parameter and enforcing operational limits. 

direct temperature measurement:  A temperature channel with a sensor on the heat pipe, 
located in the specific reactor cell that is the subject of the temperature measurement.  The 
direct temperature channel provides a direct temperature measurement of the reactor cell being 
measured. 

failed sensor:  A sensor with a sensing element that has stopped measuring the intended 
process variable.  A thermocouple, for example, becomes a failed sensor when the thermocouple 
junction electrically separates and creates an open-circuit.   

fault signal:  A fail-safe digital signal to the control logic indicating a process variable has 
exceeded a limit setpoint, power to the limit monitor or sensor was lost, or the sensor was 
disconnected. 

indirect temperature measurement:  A temperature channel with a sensor on a heat pipe 
located in a neighboring reactor cell to the specific reactor cell that is the subject of a 
temperature measurement.  The indirect temperature channel provides an indirect temperature 
measurement of the reactor cell being measured and can be used in conjunction with direct 
temperature channels to evaluate the temperature of the cell.  

limit:  A quantity and a designation that defines a maximum or minimum allowed value for a 
parameter.  A limit can be “exceeded” when a parameter is above the maximum allowed value, 
or below the minimum allowed value. 

limit setpoint:  A process limit monitor configuration that specifies a maximum or minimum 
limit value. 

operating limits:  A range of allowed values for a parameter bounded by a maximum limit and 
a minimum limit.  If only a maximum limit is defined for a parameter, then values less than or 
equal to the maximum limit are allowed.  If only a minimum limit is defined for a parameter, 
then values greater than or equal to the minimum limit are allowed.  

power operation:  State when the reactor is at operating temperature, the reactor power is 
generally at steady-state but may be increased or decreased, and significant power is being 
produced. 
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process limit monitor:  A device that measures an analog signal from a sensor, compares the 
measured value to one or more limit setpoints, and sets the state of one or more digital outputs 
based on the result of the comparison(s). 

process variable:  The measured value of a particular part of a process. 

reactor trip signal:  A fail-safe digital output from a reactor trip circuit to the shutdown rod 
system that causes the shutdown rods to be released. 

rod insertion time:  The elapsed time between the initiation of a reactor trip and the instant 
the shutdown rod reaches its fully inserted position.  Rods are inserted into the core by gravity.  

startup:  State when the reactor temperature is being increased, and the reactor power is being 
increased, but the reactor is not producing significant power.  

2.7.2.2 Introduction 

Sensors are located as needed to measure specific process variables.  Heat pipe temperature 
sensors, neutron flux detectors, and control drum position sensors are located in the reactor 
module.  Process limit monitors, control logic, motor controllers, and relay logic are contained in 
the instrumentation enclosures and control enclosures.   

Redundant sensors are included to reduce maintenance activities by obviating the need for 
immediate replacement of failed sensors during operation.  For example, the temperature of 
each heat pipe is measured by three thermocouple junctions and the reactor can continue 
operating with one failed thermocouple junction at a particular heat pipe. 

Enclosures are the physical containers that contain the components for the instrumentation and 
control system.  There are three independent instrumentation enclosures and two independent 
control enclosures, all located on the first floor of the powerhouse.  Specifically, both of these 
enclosures are located in the same room as the power conversion system.  The enclosures 
provide for physical separation of the instrumentation and control components as well as other 
functions needed for the continuous operation of the plant. 

The reactor trip system, reactivity management system, plant control system, and the 
information display system all utilize data measured by the sensors and utilize components in 
the instrumentation and control enclosures.  The reactor trip system includes a hard-wired fail-
safe circuit that does not rely on digital computers or custom software for reactor trips.  The 
reactivity management system, plant control system, and information display system rely on 
stored data, custom software, and computational resources which are located in the 
computational enclosure (which is part of the plant control system). 

Figure 2-23 provides a simplified overview of the instrumentation and control system that 
identifies major components and interconnects. 
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Figure 2-23:  Instrumentation and control system block diagram overview 

{

}
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2.7.2.3 Instrumentation enclosures 

Three functionally identical instrumentation enclosures provide redundancy.  The analog 
signals from the redundant sensors are routed to one of the three instrumentation 
enclosures.  The instrumentation enclosures include signal conditioning, process variable limit 
monitors, and analog-to-digital conversion for each of the analog signals.  The limit monitors 
provide independent fault signals to each of the control enclosures for each of the monitored 
process variables.  The analog signals are also digitized, and the data is provided to a computer 
in the computational enclosure for analysis, recording, and display. 

2.7.2.4 Control enclosures 

Two functionally identical and independent control enclosures are included for 
redundancy.  The control enclosures are used to aggregate fault signals to generate a reactor 
trip signal, control the shutdown rod release mechanisms, control the shutdown rod withdrawal 
and control drum motor drivers, receive analog feedback from sensors monitoring the actuators, 
and to control the power conversion system.   

The control enclosures independently aggregate the fault signals received from the three 
instrumentation racks to determine the reactor trip state.  Aggregation is performed to allow 
the reactor to continue operating, for example, with one failed thermocouple junction at a heat 
pipe when the other two thermocouple junctions at that heat pipe are measuring temperatures 
that are within operating limits.  The aggregation is performed with discrete logic components. 

The control enclosures receive analog feedback from drum position sensors and shutdown rod 
position sensors.  Duplicate actuator sensor feedback is included to prevent a failure in one 
control enclosure from corrupting the sensor data in the other control enclosure.  The control 
enclosures include motor drivers to interface with the control drum system motors and the 
shutdown rod system motors. 

The two control enclosures independently aggregate the independent fault signals to generate a 
reactor trip signal from each control enclosure.  The two reactor trip signals are combined such 
that if either control enclosure signals a shutdown, a reactor shutdown occurs.  Only one of the 
control enclosures actively controls components such as the control drum system motors, 
shutdown rod system withdrawal motors, and the power conversion system at a time.  A switch 
is used to determine which control enclosure is actively controlling these components.  

Two control enclosures are included for redundancy and both control enclosures are typically 
operational.  This redundancy allows the reactor system to continue operating, for example, if 
one of the control enclosures needs to be temporarily bypassed for maintenance. 

2.7.2.5 Process variable limit monitors 

Process variable limits are monitored by commercially available limit monitors installed in the 
instrumentation and control enclosures.  Each limit monitor is capable of monitoring one 
process variable and enforcing an upper limit and a lower limit.  Each limit monitor has several 
normally-open mechanical relay contacts.  The coils for the normally-open contacts are 
energized when the monitored process variable is within the operating limits.  If the process 
variable exceeds the operating limits, the associated coil is de-energized causing a normally-
open relay contact in the limit monitor to open, sending a fault signal to the control 
enclosure.  A user must physically interact with the limit monitor to configure the limit 
setpoint(s).  These limit monitors are normally locked out and not normally accessible to onsite 
personnel.  The limit monitors are externally powered.  If external power to a limit monitor is 
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lost, the normally-open relay contacts in the limit monitor open and send a fault signal to the 
control enclosure.  Limit monitors are configured to send a fault signal when the input sensor is 
disconnected from the limit monitor.  Limit monitors are configured to detect some sensor 
failure modes and to send a fault signal when a failed sensor is detected.  

2.7.2.6 Manual reactor trip buttons 

Manual reactor trip buttons are hard-wired in the reactor trip circuit to provide a user-operable 
reactor shutdown.  The signal from the reactor trip buttons directly results in a reactor 
shutdown.  Manual reactor trip buttons are installed in several locations in the powerhouse. 

2.7.2.7 Reactor instrumentation 
2.7.2.7.1 Neutron flux detectors 

Neutron flux in the reactor core is monitored by wide range fission chambers located on the 
periphery of the reactor core.  These fission chambers are operated in different modes to 
measure several decades of neutron flux and span flux levels from startup to normal power 
operation.  Neutron flux detectors provide continuous measurement of core parameters such as 
power and period. 

The neutron flux detectors are located in the zirconium reflector on the periphery of the reactor 
core in the three corners that are not occupied by control drums.  The detectors and associated 
wiring are located in a protected chamber with a zirconium plug directly above that can be 
removed for inspection and maintenance. 

2.7.2.7.2 Heat pipe temperature sensors 

The temperature limits in the Aurora design are based on fuel temperature.  Because heat pipes 
are nearly isothermal in operation, fuel temperatures can be inferred from heat pipe 
temperatures.  Each heat pipe is instrumented with three thermocouples to provide 
redundancy.  The thermocouples are located above the top of the reactor core in the heat 
exchanger region to reduce exposure to radiation. 

2.7.2.7.3 Control drum absolute position sensors 

2.3Position sensors are used to monitor the absolute position of each control drum.  The control 
drum position sensors are located in the module equipment housing. 
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2.7.3 Reactor trip system 

2.7.3.1 Introduction to the reactor trip system 

The purpose of the reactor trip system is to trigger a reactor shutdown to protect the personnel, 
reactor, and facility.  Reactor trip signals can be generated automatically, in response to the 
detection of abnormal plant operating conditions, or manually by onsite personnel.  Signals from 
multiple sources are aggregated by the control logic and, when appropriate, a reactor trip signal 
is sent to the shutdown rod system (see Section 2.4), resulting in the insertion of the shutdown 
rods into the reactor core. 

2.7.3.2 Bases of the reactor trip system 
2.7.3.2.1 Design bases of the reactor trip system 

The design bases for the reactor trip system, a subsystem of the instrumentation and control 
system (ICS), are as follows:  

DB.ICS.01 The reactor trip system monitors reactor process variables and sends a reactor 
trip signal when a process variable exceeds a limit setpoint. 

DB.ICS.02 The reactor trip system sends a reactor trip signal to the shutdown rod system 
within a sufficient time of exceeding a limit to prevent damage to the reactor. 

DB.ICS.03 The reactor trip system provides the means for a reactor trip signal to be sent 
manually. 

DB.ICS.04 The reactor trip system requires deliberate action to reset a reactor trip signal 
and return the system to normal operation. 

DB.ICS.05 The reactor trip system is protected against unauthorized configuration changes. 

DB.ICS.06 The reactor trip system is fail-safe. 

2.7.3.3 Performance bases of the reactor trip system 

The reactor trip system is also designed to meet all of the following performance bases: 

• The reactor trip system allows periodic in-service testing when the reactor is in
operation.

• The reactor trip system can receive a trip signal from the plant control system.

2.7.3.4 Description of the reactor trip system 

The reactor trip system aggregates fault signals and reactor trip signals to trigger a reactor 
shutdown.  Fault signals and reactor trip signals can be initiated automatically when an 
operating limit for a process variable is exceeded or manually when personnel press a shutdown 
button.  Fault signals from multiple sources are aggregated by the control logic to determine if a 
reactor trip signal is sent. 

Process variables are monitored by sensors inside and outside the reactor module.  Operating 
limits for process variables are defined to protect the reactor and equipment.  Each operating 
limit is enforced by a limit monitor or sensor that sends a fault signal to the control logic when 
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the process variable exceeds the defined operating limits.  A fault signal is sent when the 
operating limits of any of the following process variables are exceeded: 

• Reactor over-temperature

• Reactor under-temperature

• Reactor over-power

• Reactor period too short

The steady state fuel temperature limits are set such that the safety limit is not challenged by 
the increase in temperature that would result from the maximum credible accident or any other 
off-normal event discussed in Chapter 5.  The reactor trip system thermocouples do not directly 
measure fuel temperature, rather they infer the fuel temperature from measurements of the 
heat pipe temperature in the heat exchanger region.  Fault signals generated by these 
temperature measurements are described in Section 2.7.3.4.2.1. 

The other operating limits listed are not relied on in the safety analysis but are included for 
investment protection purposes and defense-in-depth.  Fault signals generated for reactor over-
power and reactor period are described in Section 2.7.3.4.2.4 and Section 2.7.3.4.2.5, 
respectively. 

Redundant sensors allow the reactor to continue operating with some failed sensors.  Fault 
signals from redundant sensors are aggregated with discrete logic to allow the reactor to 
continue operating as long as the required number of functional sensors are within the 
operating limits for the process variable.  The limit monitors are configured to detect values 
outside of operating limits, disconnected sensors, and some sensor failures and automatically 
send a fault signal. 

2.7.3.4.1 Reactor trip circuit 

The reactor trip circuit is a hard-wired fail-safe circuit that does not rely on digital computers or 
custom software.  Devices that can initiate a reactor trip are connected in series in the reactor 
trip logic circuit.  If none of the devices that can initiate a trip are in the trip state, the output of 
the trip logic is high, the shutdown rod electromagnets remain energized, and the reactor can 
operate.  If one or more of the devices in the trip logic are in the trip state, the output of the trip 
logic is low, a reactor trip signal is sent, the shutdown rod electromagnets de-energize, and the 
reactor is shut down.  Figure 2-24 shows a simplified overview of the reactor trip circuit. 

During startup and power operation, two redundant reactor trip circuits must be functional, 
and each reactor trip circuit is independently able to shut down the reactor.  The results of the 
redundant reactor trip circuits are combined such that if either trip circuit signals a shutdown, 
a reactor shutdown occurs.  Each reactor trip circuit includes a bypass switch that can be 
enabled to maintain the output of the bypassed reactor trip circuit in the high state.  The 
reactor trip circuit that is not bypassed functions normally.  Enabling both reactor trip circuit 
bypass switches at the same time causes a reactor trip.  Enabling a bypass switch starts a 
count-down timer that trips the reactor if the bypass is not removed in the required time.   
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Figure 2-24:  Simplified reactor trip circuit overview 
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During startup and power operation, one reactor trip circuit may be bypassed, and therefore be 
nonfunctional, for up to 7 days.  If a reactor trip circuit bypass is not removed within 7 days, the 
reactor trip system automatically initiates a reactor trip within 1 minute.  If one reactor trip 
circuit is nonfunctional and is not bypassed, the reactor trip system automatically initiates a 
reactor trip within 5 seconds.  If two reactor trip circuits are nonfunctional or bypassed, the 
reactor trip system automatically initiates a reactor trip within 5 seconds. 

2.7.3.4.2 Fault signals and reactor trip signals 

Fault signals generated by process variable limit monitors and other devices are sent to the 
control logic.  Based on sensor redundancy and the aggregation logic, multiple fault signals may 
be sent without generating a reactor trip signal.  A reactor trip signal causes a reactor 
shutdown.  Signals from some devices, such as manual reactor trip buttons, are not aggregated 
and directly cause a reactor trip.  The functionality of the individual fault signals and reactor 
trip signals that are used during normal operation is described in this section.  Limit setpoints 
used by specific channels are shown in Table 2-8, and described in more detail in the 
corresponding sub-sections for each channel type. 

Table 2-8:  Reactor trip system limit setpoints 

Channel Setpoint type 
Setpoint 

value 

Number of 
channels 

monitored 

Heat pipe temperature channel upper limit (Δ from nominal) +15 C 342 
Heat pipe temperature channel lower limit (Δ from nominal) -35 C 342 
Reactor thermal power upper limit 4.2 MW 2 

Reactor period lower limit 5 s 2 
2.7.3.4.2.1 Heat pipe temperature fault signal 

Upper and lower limits are established for heat pipe temperatures at the measured locations, as 
shown in Table 2-8.  The upper and lower limits establish the operating limits for the reactor 
cell heat pipe temperature channels, and each reactor cell has limits that are defined based on 
its nominal temperature at steady state full power.  The upper limits are set at a delta of +15 C 
above each nominal temperature channel value at steady state full power.  The lower limits are 
set at a delta of 35 C below each nominal temperature channel value at steady state full 
power.  Reactor cell heat pipe temperature channel operating limits are dependent on reactor 
state.  During power operation, the upper and lower temperature limits are enforced.  During 
startup, the upper temperature limits are enforced but the lower temperature limits are not 
enforced.   

Three independent thermocouple junctions are used to measure the temperature of each heat 
pipe in approximately the same location.  Independent process limit monitors for each 
thermocouple can send fault signals to the aggregation logic based on the measured 
temperature.  Measured temperatures may be outside of operating limits for 2 seconds before 
the process limit monitor sends a fault signal to the aggregation logic. 

The fault signals are aggregated such that at least one of the following criteria must be met for 
each reactor cell heat pipe: (1) two or more direct temperature channels shall not be sending a 
fault signal (schematic shown in Figure 2-25), or (2) one direct temperature channel and nine or 
more indirect temperature channels for a heat pipe with two failed sensors shall not be sending 
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a fault signal.  If any of the reactor cell heat pipe temperature channels do not meet these 
criteria, the reactor trip system automatically initiates a reactor trip within 5 seconds. 

 

Figure 2-25:  Simplified heat pipe fault signal aggregation logic 

2.7.3.4.2.2 Manual reactor trip signal 

Reactor trip signals can be initiated manually with onsite reactor trip buttons.  Onsite manual 
reactor trip signals are not aggregated by control logic and directly cause a reactor shutdown.     

2.7.3.4.2.3 Time delay AC power loss reactor trip signal 

The control enclosures are powered by independent electrical circuits from a power distribution 
panel.  The control enclosures also include independent battery backup power.  If the power 
from the distribution panel to a control enclosure is interrupted, the battery backup will keep 
the affected enclosure operational.  If the power to a control enclosure is interrupted, a count-
down timer in a time delay relay is activated and will send a reactor trip signal if power is not 
restored to the control enclosure prior to the expiration of the count-down timer.  The affected 
control enclosure continues to operate using the backup battery after the reactor trip to monitor 
the status of the reactor.  
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2.7.3.4.2.4 Over-power reactor trip signal 

The neutron flux detectors are calibrated to measure reactor thermal power.  As shown in Table 
2-8, the limit setpoint for reactor over-power is 4.2 MWth, or 5% over the licensed thermal
power.  If the reactor power exceeds the limit setpoint, the reactor trip system automatically
initiates a reactor trip within 5 seconds.  The over-power limit is always enforced.

The reactor over-power trip relies on one or more functional reactor thermal power 
channels.  The reactor thermal power channels must be calibrated on an appropriate 
interval.  During startup and power operation, if zero reactor thermal power channels are 
functional for 5 minutes, the reactor will automatically shut down.   

The reactor must not be intentionally operated at a thermal power greater than the licensed 
thermal power.  Although the reactor trip system limit setpoints prevent the reactor from 
exceeding the licensed thermal power by more than 5%, additional measures are in place to 
prevent any operation in excess of the licensed thermal power.  The plant control system 
actively controls plant parameters to produce power up to the licensed thermal power.  If the 
reactor power exceeds the licensed thermal power, the plant control system automatically takes 
action to reduce the thermal power [31][32].  If the reactor power has not been reduced below 
the licensed thermal power within 60 minutes, the plant control system initiates a reactor trip 
within 1 minute. 

2.7.3.4.2.5 Reactor period reactor trip signal 

The reactor is not be operated with a period shorter than 5 seconds, which is consistent with the 
safety analysis of Chapter 5.  If the reactor period is less than this limit, the reactor trip system 
automatically initiates a reactor trip within 5 seconds.  

The reactor period trip relies on one or more functional reactor period channels.  During 
startup, if zero reactor period channels are functional for 30 seconds, the reactor will 
automatically shut down.  During power operation, if zero reactor period channels are 
functional for 5 minutes, the reactor will automatically shut down.  

2.7.3.4.3 Anticipated user actions 

There are several manual actions that can be performed by a user.  Manual user actions are 
minimal during normal operation and most manual user actions are expected to occur outside of 
normal operation.   

2.7.3.4.3.1 User actions during normal operation 

Manual reactor trip buttons, as described in Section 2.7.2.6, allow the user to press a button to 
immediately trigger a reactor shutdown.  Users should rarely need to perform this action.   

2.7.3.4.3.2 User actions outside of normal operation 

When the reactor is shutdown, two control system features will prevent the reactor from 
restarting.  First, the lower operational temperature limits and the lower operational power 
limits will prevent shutdown rod removal when the reactor is shutdown.  To start the reactor, 
the control system needs to be put into a startup mode to bypass the lower operating 
limits.  Second, after a reactor trip, the shutdown logic latches in the trip state.  After the 
condition that initiated the trip has been resolved, a user must unlatch the reactor trip by 
pressing a button.  
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If one of the two control enclosures require maintenance, the enclosure needing maintenance 
must be bypassed before the maintenance activities are started.  A manual switch is provided 
for the user to bypass one control enclosure at a time.  

The upper limits for the control drum angular positions must be periodically updated to allow 
additional reactivity to be added (see Section 2.3).  Changing limit setpoints requires a user to 
manually interact with the appropriate limit monitor and is not possible during normal 
operations.  The control enclosure containing the limit monitor should be bypassed prior to 
changing the limit setpoint.  

2.7.3.5 Materials of the reactor trip system 

The materials and components in the reactor trip system are chosen to withstand normal and 
abnormal conditions.  Materials and components are also chosen to limit the quantity of 
flammable material and to meet applicable fire testing standards. 

2.7.3.6 Design evaluation of the reactor trip system 

To meet the required design bases the reactor trip system must automatically detect conditions 
requiring a reactor trip and send a reactor trip signal to the shutdown rod system.  It must 
accomplish both the detection and signaling sufficiently quickly to prevent damage to the 
reactor.  It must also allow for a manual triggering of a reactor trip signal.  Finally, it must be 
robust against failure and ensure that reactor trip signals require deliberate manual action to 
reverse. 

2.7.3.6.1 Automatic detection of conditions requiring trip 

The reactor trip system must reliably detect and respond to the exceedance of limit setpoints 
that challenge the safety goals of the system (DB.ICS.01).  The reactor over-temperature limit is 
the only condition that requires a trip to meet the safety goals, as shown in the transient 
analysis in Chapter 5.  The transient analysis further shows that the setpoints chosen are 
sufficiently conservative to prevent damage to the reactor, provided the resulting reactor trip 
occurs within the assumed time interval as described in Section 2.7.3.6.2. 

For defense-in-depth purposes and investment protection, a variety of other conditions will 
result in a reactor trip when detected.  An extended list of conditions that result in an automatic 
trip signal can be found in Section 2.7.3.4.2. 

Multiple steps must be taken to ensure the reliable detection of conditions requiring a reactor 
trip, including all of the following:  

• Sensors must be installed in the correct locations 

• Process limit monitors must be configured with the correct sensor scaling (or calibration) 
values and limit setpoints 

• Sensors must be connected to the correct process limit monitors, and the process limit 
monitors must be connected to the reactor trip logic 

• The process limit monitors send reactor trip signals 
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Design commitments are made to ensure that each of these steps have the appropriate 
programmatic controls in place to ensure the reactor trip system automatically detects and 
responds to conditions requiring a reactor trip (DC.ICS.01.A-D). 

2.7.3.6.2 Trip signaling time 

The safety analysis in Chapter 5.1 shows that the peak fuel temperature is not exceeded when 
modeling a rod insertion delay time of 10 seconds.  This does not mean that 10 seconds is a 
limit, rather that this time has been demonstrated to be acceptable. 

There are two steps that contribute to the shutdown rod insertion time.  The first is the 
detection and signaling time, or the time it takes for the reactor trip system to detect that a 
reactor trip setpoint has been exceeded (or that a manual trip signal has been initiated) and to 
send a trip signal to the shutdown rod system.  This step is the focus of DB.ICS.02.  The second 
is the rod release and drop into the core, which is the focus of the shutdown rod system design 
basis DB.SRS.02 (see Section 2.4). 

Design commitments are made to limit the shutdown rod insertion time to 10 seconds or less, 
the insertion time assumed for the safety analysis. Specifically, commitments are made to limit 
the detection and signaling time to 6 seconds (DC.ICS.02.A) and to limit the rod release and 
drop time to 4 seconds (DC.SRS.02.A). 

2.7.3.6.3 Manual reactor trip 

The ability to send a manual reactor trip signal is provided so that onsite personnel can respond 
to events that do not trigger an automatic shutdown. 

2.7.3.6.4 Protection of reactor trip function 

The reactor trip system is designed to be robust against numerous failure modes.  DB.ICS.04 
makes a commitment to ensuring that once a reactor trip signal is sent, the tripped state is 
latched in, so that deliberate user action is required to reset the tripped state as described in 
2.7.3.4.3.2.   

DB.ICS.05 makes commitments to ensure that no unauthorized configuration changes are made 
to the reactor trip system to ensure that no changes to the system prevent it from achieving the 
functions described in DB.ICS.01-03.   To prevent remote access, the reactor trip system uses no 
digital computers or custom software, and it is isolated from computer networks.  To limit 
physical access, the system is located in an access-controlled area and configurable components 
are password protected.  Access controls are discussed in the Physical Security Plan. 

The reactor trip system is configured to be fail-safe, such that no malfunction within the system, 
caused solely by the variations of external conditions within the ranges in the design basis, will 
result in unsafe failure (DB.ICS.06).  Loss of AC power to the control cabinets activates a time-
delay relay that sends a reactor trip signal if power is not restored promptly, as described in 
Section 2.7.3.4.2.3.  The failure of a power supply in an instrumentation cabinet also results in a 
reactor trip signal.  Additionally, disconnected sensors and most sensor failures result in fault 
signals, which are aggregated by control logic as described in Section 2.7.3.4, and result in a 
reactor trip signal if the required minimum redundancy of functional sensors is not maintained. 
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2.7.3.7 Summary of the reactor trip system 

 

Design basis: 

DB.ICS.01 The reactor trip system monitors reactor process variables and sends a 
reactor trip signal when a process variable exceeds a limit setpoint. 

Design evaluation summary:  

This section describes the design of the reactor trip system, which provides the ability 
to detect and respond to multiple trip conditions.  The transient analysis in Chapter 5 
shows that if reactor trip signals are sent in response to the chosen setpoints, and the 
shutdown rods insert within the appropriate time interval, then fuel temperatures 
will be maintained below the required limits.  Design commitments are made to 
ensure that each of the trip conditions will be reliably detected, and will result in a 
reactor trip signal, and the appropriate programmatic controls are in place to verify 
it.  

Design commitments and programmatic controls: 

DC.ICS.01.A  The reactor trip system sensors are installed in the correct locations. 

POT.ICS.01.A1 and A2 (see Chapter 14) 

SUT.ICS.01.A1 

DC.ICS.01.B The reactor trip system process limit monitors are connected to the 
correct locations, and are configured with the correct sensor scaling 
information and limit setpoints. 

POT.ICS.01.B1 and B2 

TS.LCO.02 (see Part IV) 

DC.ICS.01.C The reactor trip system sensors are connected to the correct process 
limit monitors. 

POT.ICS.01.C1 and C2 

SUT.ICS.01.C 

DC.ICS.01.D The reactor trip system process limit monitors send a fault signal 
when a process variable exceeds a limit. 

POT.ICS.01.D 

TS.LCO.02 
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Design basis: 

DB.ICS.02 The reactor trip system sends a reactor trip signal to the shutdown rod 
system within a sufficient time of exceeding a limit to prevent damage 
to the reactor. 

Design evaluation summary: 

This section describes the design of the reactor trip system, which provides the ability 
to detect and respond to multiple trip conditions.  The transient analysis in Chapter 5 
shows that if reactor trip signals are sent in response to the chosen setpoints, and the 
shutdown rods insert within the assumed time interval, fuel temperatures will be 
maintained below the required limits.  A design commitment is made to ensure that 
the trip signal is sent sufficiently quickly, and the appropriate programmatic controls 
are in place to verify it.  

Design commitments and programmatic controls: 

DC.ICS.02.A The reactor trip system detects the exceedance of a limit setpoint and
sends a reactor trip signal within 6 seconds. 

POT.ICS.02.A (see Chapter 14) 

TS.LCO.02 (see Part IV) 

(See also DC.SRS.02) 

Design basis: 

DB.ICS.03 The reactor trip system provides the means for a reactor trip signal to 
be sent manually. 

Design evaluation summary: 

This section describes the design of the reactor trip system, which provides the ability 
to automatically detect and respond to multiple trip conditions.  The system is also 
designed to provide a means for manually initiating a reactor trip.  A design 
commitment is made to ensure that the manual reactor trip buttons send a reactor 
trip signal, and the appropriate programmatic controls are in place to verify it.  

Design commitments and programmatic controls: 

DC.ICS.03.A Manual reactor trip buttons send a reactor trip signal when pushed.

POT.ICS.03.A (see Chapter 14) 

TS.LCO.02 (see Part IV) 
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Design basis: 

DB.ICS.04 The reactor trip system requires deliberate action to reverse a reactor 
trip signal and return the system to normal operation. 

Design evaluation summary:  

This section describes the design of the reactor trip system, which provides the ability 
to automatically detect and respond to multiple trip conditions and provide a means 
for manually initiating a reactor trip.  As described, once a reactor trip signal is sent, 
the reactor trip is latched in and cannot be reversed without manual action.  This 
ensures that reactor shutdown occurs so that the condition that caused the reactor 
trip can be addressed.  A design commitment is made to ensure that the reactor trip 
system is latched in the tripped state following a reactor trip signal, and the 
appropriate programmatic controls are in place to verify it.  

Design commitments and programmatic controls: 

DC.ICS.04.A A reactor trip signal causes the reactor trip system to latch in the 
tripped state.  After the condition that caused the reactor trip has been 
resolved, a control must be toggled to reset the trip system from the 
tripped state.  

POT.ICS.04.A (see Chapter 14) 

TS.LCO.02 (see Part IV) 
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Design basis: 

DB.ICS.05 The reactor trip system is protected against unauthorized 
configuration changes. 

Design evaluation summary: 

This section describes the design of the reactor trip system, which provides the ability 
to automatically detect and respond to multiple trip conditions and provide a means 
for manually initiating a reactor trip.  This section also describes how the system is 
designed to prevent unauthorized configuration changes, through component 
selection, isolation, and other protections, and the appropriate programmatic controls 
are in place to verify it.  

Design commitments and programmatic controls: 

DC.ICS.05.A The reactor trip system does not use any digital computers or custom
software.  

POT.ICS.05.A (see Chapter 14) 

DC.ICS.05.B The reactor trip system is isolated from computer networks to prevent
changes to limit setpoints, scaling information, or other configuration 
by unauthorized personnel. 

POT.ICS.05.B 

DC.ICS.05.C The process limit monitors are installed in an access-controlled area to
prevent changes to limit setpoints, scaling information, or other 
configuration by unauthorized personnel. 

POT.ICS.05.C 

DC.ICS.05.D The process limit monitors are password protected to prevent changes
to limit setpoints, scaling information, or other configuration by 
unauthorized personnel. 

POT.ICS.05.D 
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Design basis: 

DB.ICS.06 The reactor trip system is fail-safe. 

Design evaluation summary:  

This section describes the design of the reactor trip system, which provides the ability 
to automatically detect and respond to multiple trip conditions and provide a means 
for manually initiating a reactor trip.  As described, the system is designed such that 
failures are detected and result in a safe condition.  Loss of power to control cabinets 
results in a reactor trip signal, and the disconnection of individual sensors results in 
fault signals.  The reactor trip logic aggregates these fault signals and sends a reactor 
trip signal if the required minimum redundancy in sensors is no longer met.  A design 
commitment is made to ensure that these failures result in safe conditions, and the 
appropriate programmatic controls are in place to verify it.  

Design commitments and programmatic controls: 

DC.ICS.06.A Loss of AC power to one or both control cabinets activates a time-delay 
that results in a reactor trip signal if power is not restored within five 
minutes.  

POT.ICS.06.A (see Chapter 14) 

DC.ICS.06.B Loss of DC power to the reactor trip circuit or the aggregation logic in 
one or both control cabinets causes a reactor trip signal. 

POT.ICS.06.B 

DC.ICS.06.C Detection of a disconnected sensor causes the associated process limit 
monitor to send a fault signal. 

 POT.ICS.06.C 

DC.ICS.06.D Redundant reactor trip system logic is installed in separate fire areas 
to prevent fire-induced failure of the reactor trip system. 

 POT.ICS.06.D 
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2.7.4 Other instrumentation and control systems 

The reactor trip system is designed to protect against spurious operation or failure of the other 
instrumentation and control systems from harming the reactor.  The other instrumentation and 
control systems have no design bases and are therefore only described briefly. 

2.7.4.1 Reactivity management system 

The reactivity management system monitors performance parameters in the reactor and can 
adjust core reactivity.  The primary function of the reactivity management system is to control 
rotation of the three control drums (see Section 2.3) to maintain core criticality.  During normal 
operation, actuation of the control drums is controlled automatically based on measurements of 
reactor parameters. 

During normal operation, the reactivity management system automatically maintains core 
criticality.  The automatic control components of the reactivity management system take inputs 
of several variables including neutron flux, temperature, and control drum position.  These 
measurements are used to determine the signals that are sent to the control drum actuators to 
maintain core criticality. 

2.7.4.2 Plant control system 

The plant control system performs plant-wide process monitoring and control, including plant 
automation and alarm indication.  Alarms are displayed onsite in the monitoring room and may 
be displayed in other offsite locations. 

2.7.4.2.1 Startup and shutdown capability 

The plant control system cannot over-ride or prevent the operation of the upper limit 
enforcement in the automatic reactor trip system or change process limit monitor 
setpoints.  The plant control system can bypass lower-limit enforcement for the purpose of 
reactor startup.  The plant control system cannot startup the reactor without a deliberate user 
action to initiate the startup.  The user controls to initiate the startup are part of the plant 
control system.  

The plant control system can initiate automatic reactor trips that provide defense-in-depth to 
the reactor trips initiated by the reactor trip system.  In addition to other trips not described 
here that are used for investment protection, the following types of reactor trips are 
implemented by the plant control system: 

• Secondary loop trips

• Shutdown rod insertion time trips

Secondary loop trips are used to ensure that the power conversion system is providing a 
sufficient heat sink for the reactor.  They are initiated by pressure switches and thermocouples 
in the secondary loop, and by the power conversion system.  These trips are for defense-in-depth 
and investment protection purposes because the reactor trip system would already initiate a 
reactor trip on over-temperature as described in Section 2.7.3.4.2.1 in the case of a loss of heat 
sink.  The safety analysis in Chapter 5.1 credits only the over-temperature trip. 

Shutdown rod insertion time trips are used to ensure the reactor is in compliance with the 
conditions analyzed in Chapter 5.  If the plant control system detects that one shutdown rod 
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exceeds the allowed insertion time, a 90 day countdown timer is automatically started.  The 
reactor can be restarted, and power operation can continue until the 90 day countdown timer 
expires, at which time an automatic reactor trip is initiated.  If the shutdown rod system is 
restored to meet the allowed insertion time within the 90 day limit, the countdown timer can be 
stopped.  If the rod insertion time for two shutdown rods exceeds the allowed rod insertion time, 
the plant control system disables the ability to restart the reactor.  After the shutdown rods are 
repaired, the ability to restart the reactor can be reenabled for the purpose of testing the rod 
insertion times.  Routine power operation cannot resume until the shutdown rod insertion time 
is restored to meet the allowed insertion time.   

2.7.4.2.2 Monitoring and recording capability 

The plant control system monitors plant-wide process variables and stores the data for data 
retention, analysis, use by the reactivity management system, and use by the information 
display system.  The plant-wide process data is also used to trigger audible and visual 
alarms.  Data collected from components outside of the reactor include area radiation monitor 
data, secondary loop data, power conversion system status information, facility information, and 
grid demand.  The plant control system monitors the status of many components in the 
instrumentation and control enclosures, including the status of the limit monitor digital 
outputs, individual logic aggregators, DC power supplies, and uninterruptable power 
supplies.  The plant control system monitors heat pipe thermocouple data, reactor power data, 
and reactor period data.   

2.7.4.2.3 Control function capability 

The plant control system controls the motor drivers for the motors in the shutdown rod system 
and the control drum system.  After the user action to initiate startup, the plant control system 
automatically performs a sequence of preprogrammed actions to bring the Aurora to full power 
operation.  Control drum and shutdown rod position process variables from the control drum 
system and the shutdown rod system are measured by the plant control system. 

During normal operation, the plant control system acts as an intermediary between the 
reactivity management system and the control drum system.  Drum position setpoints 
determined by the reactivity management system are communicated to the plant control 
system.  The plant control system verifies that the requested drum position value is within the 
drum position operating limit, and then commands the control drum to the requested 
position.  Figure 2-26 is a block diagram showing a simplified data flow between plant control 
system components. 

The plant control system transmits data to the power conversion system, receives power 
conversion system status data, and can control components in the power conversion system to 
ensure optimal operation of the Aurora reactor. 
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Figure 2-26:  Simplified overview of data flow 

{

}
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2.7.4.3 Information display system 

The information display system presents the status of parameters in the Aurora in the onsite 
monitoring room and remotely as needed.  The primary function of the information display 
system is to show the current state of the plant.  Important parameters are displayed in real-
time on fixed displays or indicators that cannot be reconfigured by the monitor 
personnel.  Other parameters are displayed on user-configurable displays or indicators that can 
display real-time data and past data.   

The data displayed by the information display system comes from multiple sources.  Important 
real-time parameters displayed on fixed indicators receive data directly from the associated 
instrumentation.  Other real-time displays receive data that has been aggregated by the plant 
control system.  Displays that show past data receive this data from a database that is part of 
the plant control system. 
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Power conversion system 

2.8.1 Introduction to the power conversion system 

The power conversion system functions to remove heat from the heat exchanger system (see 
Section 2.6) and convert the heat energy to electricity.  The power conversion system is 
synonymous with the secondary system for the Aurora.  It can also operate in turbine bypass 
mode, in which heat is rejected to the environment.  The power conversion system consists of a 
turbine, generator, controls, and auxiliary subsystems.  This is an off-the-shelf system that will 
be installed with the Aurora reactor. 

2.8.2 Bases of the power conversion system 

2.8.2.1 Design bases of the power conversion system 

The power conversion system has no functions that are relied on for safe operation of the Aurora 
during the maximum credible accident, and therefore has no design bases. 

2.8.2.2 Performance bases of the power conversion system 

The power conversion system is designed to meet all of the following performance bases: 

• The power conversion system utilizes heat from the heat exchanger system to create
electricity during power operation.

• The power conversion system provides the capability for complete turbine bypass flow in
the event of a turbine trip.

• The power conversion system provides the capability for partial turbine bypass flow in
the event of reduced electrical demand.

• The power conversion system provides the capability for storing the full volume of
secondary system working fluid during reactor maintenance.

• The power conversion system is monitored continuously during operation to detect
failures.

• The power conversion system turbine trips automatically under abnormal conditions.

2.8.3 Description of the power conversion system 

The Aurora reactor is designed to be compatible with different off-the-shelf power conversion 
systems or customized secondary systems.  Nominally, the power conversion system for the 
Aurora reactor will utilize a sCO2 Rankine cycle.   

Because the power conversion system does not have any design bases, a detailed description of 
the power conversion system is not provided. 
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 Electric power system 

2.9.1 Introduction to the electric power system 

The electric power system functions to serve power from the power conversion system (see 
Section 2.8) and the onsite energy storage system to both onsite and offsite loads.  Because the 
Aurora is intended to serve communities in off-grid locations, it is completely grid 
independent.  The Aurora provides its own power for onsite systems and treats the offsite grid 
strictly as a load rather than as a potential source of power.  An energy storage system is used 
between the power conversion system and the offsite grid to reduce short-term grid demand 
fluctuations on the power conversion system.   These functions are accomplished via three 
subsystems: 

• Facility power system 

• Energy storage system 

• Offsite power system 

2.9.2 Bases of the electric power system 

2.9.2.1 Design bases of the electric power system 

The electric power system has no functions that are relied on for safe operation of the Aurora, 
and therefore no design bases. 

2.9.2.2 Performance bases of the electric power system 

The electric power system is designed to meet all of the following performance bases: 

• The electric power system supplies all onsite and offsite electrical loads. 

• The electric power system prioritizes supplying onsite electrical loads. 

• The electric power system can both transfer power to and receive power from the energy 
storage system. 

• The energy storage system can be charged by the power conversion unit. 

• The energy storage system can supply power to the facility power system and offsite 
power system. 

• The offsite power system supplies power to offsite loads. 

2.9.3 Description of the electric power system 

A simplified block diagram of the electric power system is illustrated in Figure 2-27.  The power 
conversion system generator is connected to the energy storage system.  The energy storage 
system transmits power to the facility power system and the offsite power system.  The energy 
storage system includes battery storage and an inverter, and it can supply alternating current 
power to the facility power system when the power conversion system is offline.  The offsite 
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power system includes a disconnect switch to isolate the grid from the electric power system to 
prioritize supplying onsite electrical loads.  The offsite power system also includes components, 
such as transformers, to interface with the grid.  The offsite power system connects to an offsite 
transmission grid to distribute the power generated by the Aurora to electricity consumers.  The 
transmission grid acts strictly as an electrical load, and not as a source of electrical power. 

 

Figure 2-27:  Overview of electric systems 

Systems that are used to shut down the reactor and achieve a safe state are passive and do not 
require electricity.  This is a key characteristic to the inherent safety of the Aurora design, 
because these systems can be maintained indefinitely in a safe shutdown through natural forces 
and simplicity of design.  Therefore, the safe operation of the reactor is independent of onsite 
and offsite power, and the electric power subsystems are only briefly described in this section 
since they have no safety-significant function. 

The electric power system functions to supply power from the power conversion system to both 
facility and offsite loads, as well as to charge the energy storage system.  The electric power 
system prioritizes powering onsite loads over offsite loads.  During normal operation, power that 
is generated in excess of onsite loads is transmitted via the offsite power system to serve offsite 
loads.  Power generated in excess of both onsite and offsite loads is used to maintain the battery 
storage in the energy storage system.  The power conversion system can also operate in bypass 
mode to reduce electrical power output if the energy storage system is at capacity and power 
generation is in excess of onsite and offsite loads. 

The energy storage system functions to decouple the power conversion system from 
transmission grid load fluctuations.  Batteries in the energy storage system store excess power 
produced by the power conversion system and provide that power to both onsite and offsite 
loads as required.  The energy storage system provides power for startup and normal controlled 
shutdown capabilities.  The system can also be used to provide uninterrupted power in the 
event the power conversion system is temporarily unavailable.  The capacity of the backup 
storage is scaled based on expected need for such backup power.  Because the safe operation of 
the reactor is independent of power, backup battery capacity is determined by the power 
requirements to restart the Aurora, offsite power demand, and the length of time the offsite 
power demand is to be maintained.  The system can also be used to temporarily support power 
demand up to the rated output of the energy storage system, which may be greater than the 
rated output of the power conversion system generator. 
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The offsite power system can be configured to meet the specific needs of the customer, but it 
only functions to supply power to offsite loads and to disconnect the offsite loads from the 
electric power system.  The electric power system is designed such that all onsite loads are met 
by onsite power sources. 
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 Building and auxiliary systems 

2.10.1 Summary description 

The Aurora reactor and most of the associated systems described in this chapter are housed in a 
single A-frame structure (shown schematically in Figure 2-28) with two floors that occupies less 
than 5,000 square feet of land area.  The simplicity and the small size of the Aurora and its 
associated systems enable this compact site footprint.  Some components, such as the air-cooled 
coolers (or radiators) for the power conversion system (see Section 2.8), the energy storage and 
offsite power systems (see Section 2.9) are located outside of the building.  Other auxiliary 
systems, described in this section, are located in and around the building.   

The building system (see Section 2.10.2) is designed to house the Aurora reactor and associated 
systems. 

The fire protection system (see Section 2.10.3) is designed to prevent fires and protect from 
damage by fire.  It is configured as described in the Fire Protection Program, described in 
Chapter 21, “Fire Protection Program description,” and submitted under Part VII. 

Other auxiliary systems are described in Section 2.10.4. 

 

Figure 2-28:  Building system 

 

  



Copyright © 2020 Oklo Inc., all rights reserved  196 

II.02 Description and analysis of SSCs

OkloPower-2020-PartII-NP, Rev. 0 

2.10.2 Building system 

2.10.2.1 Introduction to the building system 

The building system consists of a single building that functions to house the Aurora reactor and 
most of the associated systems.  It has a very small footprint of less than 5,000 square feet and 
is designed to support the flexible siting approach described in Chapter 1, “Site envelope and 
boundary.”  The primary function of the building is to locate the reactor module in a 
configuration that ensures proper cooling can be maintained.  It also serves to protect the 
reactor and associated systems, and to provide a habitable environment for personnel. 

2.10.2.2 Bases of the building system 
2.10.2.2.1 Design basis of the building system 

The design basis for the building system, a subsystem of the building and auxiliary systems 
(BAS), is as follows: 

DB.BAS.01  The building system provides for the emplacement of the reactor module in a 
configuration that supports passive cooling of the module shell. 

2.10.2.2.2 Performance bases of the building system 

The building system is designed to meet all of the following performance bases: 

• The building system could provide two passive physical barriers to fission product
release.

• The building system houses and protects the reactor system and most of the associated
systems.

• The building system provides a habitable environment for personnel.

• The building supports solar panels for supplemental power generation.

2.10.2.3 Description of the building system 

The building is a single A-frame structure.  As shown in cutaway views in Figure 2-29 and 
Figure 2-30, it consists of three main areas: 

• Atrium

• Power conversion system area

• Reactor area

These areas encompass two elevations.  The atrium contains multiple rooms on both the ground 
floor and the basement, and is normally occupied.  The power conversion system area is on the 
ground floor, and contains both the power conversion system, and the instrumentation and 
control cabinets, or enclosures (see Section 2.7).  It is not normally occupied but entered 
regularly for routine maintenance.  Further information on access authorization, 
authentication, and control is included in the Physical Security Plan, described in Chapter 18, 
“Security plans,” and submitted under Part VII.  The reactor area in the basement and is 
typically not occupied during normal operation. 
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Figure 2-29:  Side view cutaway of building 

{

}
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Figure 2-30:  Top view cutaway of building, showing ground floor and basement 

The power conversion system area has a secure door that opens to the rear of the building, and 
is used for moving large components into and out of the building.  It also contains a crane, 
mounted from the beams of the A-frame, that is used for lifting heavier components.  A 
removable floor above the reactor module emplacement allows for the raising and lowering of 
reactor components by crane from the power conversion system area to the reactor area in the 
basement.  The door, the crane, and the removable floor are only used during construction and 
maintenance, and are otherwise locked in place to prevent their use during normal operation. 

The reactor module is emplaced in the basement of the building, as shown in Figure 2-31.  The 
reactor module emplacement is designed to rigidly support the reactor module at the top of the 
module shell, such that the module equipment housing is located above the basement floor-
level, and the module shell extends below floor-level.  The module shell is not in direct contact 
with the emplacement except for at the rigid mounting, it has an air gap between the shell and 
the concrete cylinder that surrounds it.  This gap, known as the reactor cavity, supports passive 
cooling of the reactor module through natural convection of air, as described in Chapter 5.1.  

{

}
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Figure 2-31:  Reactor module emplacement 
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2.10.2.4 Materials of the building system 

The Aurora building is mostly of standard steel and concrete construction.  The materials for 
the construction of the Aurora plant are non-combustible materials in accordance with the Fire 
Protection Program.   

The exterior walls of the building and certain interior walls serve as rated fire barriers as part 
of the fire protection system (see Section 2.10.3).  The boundaries that separate fire areas within 
the building are constructed of rated concrete or glass barriers, with the appropriate fire rated 
doors between areas.  External walls are steel and concrete. 

2.10.2.5 Design evaluation of the building system 
2.10.2.5.1 Passive convective cooling from the module shell 

As described in the safety analysis in Chapter 5.1, the Aurora reactor does not rely on active 
cooling during the decay heat phase following shutdown during the maximum credible 
accident.  The reactor passively conducts heat between the systems within the reactor module 
(the reactor core system, reflector system, shielding system, enclosure system, and heat 
exchanger system), distributing heat throughout the substantial thermal mass presented by the 
module.  The heat is then removed from the module via natural convection at the surface of the 
module shell.  The safety analysis shows that this passive heat removal is sufficient to maintain 
acceptable fuel temperatures and meet the top-level safety goal of the Aurora in the event of the 
maximum credible accident. 

The building system provides the proper emplacement of the reactor module to ensure that 
natural convection can remove sufficient heat from the surface of the module shell.  Design 
commitments are made for the building system to ensure that the reactor emplacement 
supports passive cooling of the module shell (DC.BAS.01.A). 
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2.10.2.6 Summary of the building system 

 

  

Design basis: 

DB.BAS.01  The building system provides for the emplacement of the reactor 
module in a configuration that supports passive cooling of the module 
shell. 

Design evaluation summary:  

This section describes the building system, which primarily functions to support the 
reactor module in a configuration that supports passive cooling of the module 
shell.  The transient analysis in Chapter 5 shows that, when configured as designed, 
the reactor module has sufficient passive cooling due to natural convection on the 
surface of the module shell to maintain fuel temperatures below their required limits 
during the decay heat phase of the maximum credible accident (without active 
cooling).  A design commitment is made to ensure proper as-built configuration of the 
building system prior to operation and the appropriate programmatic controls are in 
place to verify it. 

Design commitments and programmatic controls: 

DC.BAS.01.A The critical components of the reactor module, as identified in the 
appropriate procedure, are installed in the reactor module 
emplacement as described in the design documents referenced by the 
procedure.   

POT.BAS.01.A (see Chapter 14) 
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2.10.3 Fire protection system 

2.10.3.1 Introduction to fire protection system 

The fire protection system consists of the barriers, systems, and equipment that function to 
prevent fires, and protect from damage by fire, as described in the Fire Protection 
Program.  The fire protection system utilizes commercially-available equipment and does not 
have unique design characteristics. 

2.10.3.2 Bases of the fire protection system 
2.10.3.2.1 Design bases of the fire protection system 

The design bases for the fire protection system, a subsystem of the building and auxiliary 
systems (BAS), are as follows:  

DB.BAS.02 The fire protection system ensures that a single credible fire will not prevent 
achieving a safe state. 

DB.BAS.03 The fire protection system provides the equipment to detects fires and to control 
and extinguish them promptly. 

2.10.3.2.2 Performance bases of the fire protection system 

The fire protection system is designed to meet the following performance bases: 

• The fire protection system provides the means to manually extinguish fires in each fire
area.

2.10.3.3 Description of the fire protection system 

As described in Section 2.10.2, the exterior walls of the building system, and certain interior 
walls, are rated fire barriers.  These rated fire barriers function to enclose separate fire areas 
and ensure that a single credible fire cannot spread from one fire area to another.  By 
preventing the spread of fires from one fire area to another, the fire barriers ensure than a 
single fire cannot prevent the reactor from reaching a safe state, as described in the Fire 
Hazards Analysis. 

In addition to the rated fire barriers, the Fire Protection Program, through the Fire Hazards 
Analysis requires for the installation of equipment to detect, control, and extinguish 
fires.  Specifically, the fire protection system components include detectors, manual pull 
stations, fire extinguishers, and standpipes for fire department connection.   

Administrative controls required by the Fire Protection Program are handled under a proposed 
license condition, in Part VI, “Proposed license conditions.” 

2.10.3.4 Materials of the fire protection system 

As described in Section 2.10.2.4, the building is constructed using non-combustible materials in 
accordance with the Fire Hazards Analysis.  The fire barriers are rated concrete or glass 
barriers. 
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2.10.3.5 Design evaluation of the fire protection system 
2.10.3.5.1 Rated fire barriers 

As described in Chapter 6, “Fire protection,” and Chapter 21, the Aurora is designed to 
minimize both the probability of occurrence and the consequences of a fire.  One of the key 
design aspects that minimizes the consequences of a fire is the use of rated fire barriers to 
create distinct fire areas that prevent the spread of fire within the building.  The Fire Hazards 
Analysis describes the required barriers.  Design commitments (DC.BAS.02A and B) are taken 
to ensure that the fire barriers properly separate components and cabling as described in the 
Fire Hazards Analysis, and that openings and penetrations in the fire barriers are properly 
protected to ensure the functionality of the barrier. 

A further design commitment (DC.BAS.02.C) is taken to ensure the adequacy of the Fire 
Hazards Analysis, and the fire protection system via a safe state analysis.  A final safe state 
analysis depends on the detailed design of electrical systems, and therefore a commitment is 
made to conduct the final safe state analysis on the Aurora plant once final design drawings, 
including detailed drawings of the electrical systems, are available.  

2.10.3.5.2 Other fire protection system components 

The Fire Protection Program, contained in the Fire Hazards Analysis, and the required fire 
protection system components, are informed by a detailed analysis of regulations, guidance 
documents, and standards.  The appropriate commitments (DC.BAS.03.A-B) are taken to install 
and test these components. 
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2.10.3.6 Summary of the fire protection system 

Design basis: 

DB.BAS.02  The fire protection system ensures that a single credible fire will not prevent 
achieving a safe state. 

Design evaluation summary: 

The Fire Hazards Analysis describes how a single credible fire cannot prevent 
achieving a safe state.  The Fire Hazards Analysis refers to a Safe State Analysis 
report that shows the preliminary results of the analysis, which must be updated for 
the final Aurora design.  As described in this section, rated fire barriers are a critical 
component of the fire protection system for maintaining the ability to achieve a safe 
state.  Design commitments are taken to ensure these barriers are in place and 
configured properly, and a design commitment is made to conduct the final Safe State 
Analysis after completion of the final design.  

Design commitments and programmatic controls: 

DC.BAS.02.A Components and cabling that could adversely impact an automatic
reactor trip and initiate a loss of heat sink will be separated from each 
other by fire barriers. 

POT.BAS.02.A (see Chapter 14) 

DC.BAS.02.B Openings and penetrations through fire barriers are protected by
components (e.g. fire doors, fire dampers, or penetration seals) having 
fire resistance equivalent to those of the barrier. 

POT.BAS.02.B 

DC.BAS.02.C A safe state analysis will be completed on the final Aurora design, and
will show the final design to meet the acceptance criteria as defined in 
the safe state analysis report. 

ITAAC.SD.02 (Part VI) 
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Design basis: 

DB.BAS.03 The fire protection system provides the equipment to detects fires and 
to control and extinguish them promptly. 

Design evaluation summary: 

This section describes the fire protection system, which in addition to rated fire 
barriers includes equipment for the detection and extinguishing of fires.  Design 
commitments are taken to ensure that this equipment is in place and tested and the 
appropriate programmatic controls are in place to verify it. 

Design commitments and programmatic controls: 

DC.BAS.03.A Manual pull stations or individual fire detectors provide fire detection
capability and can be used to initiate fire alarms. 

POT.BAS.03.A (see Chapter 14) 

DC.BAS.03.B The fire protection system provides for manual fire fighting
capabilities in each fire area. 

POT.BAS.03.B 
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2.10.4 Other auxiliary systems 

The Aurora contains additional systems that are required by relevant operating program but 
are not directly tied to the safety analysis in Chapter 5.1, and therefore do not correspond to 
specific design bases.  These systems are described briefly in this section.  The full descriptions 
of the required systems are contained in the respective program document; several operating 
programs are submitted under Part VII.  

The Emergency Plan, as described in Chapter 9, “Emergency plans,” and submitted under Part 
VII, require specific systems that provide the capability to identify an emergency, to monitor the 
emergency, and to appropriately to the emergency.  An ITAAC (ITAAC.EP.01) is taken to 
ensure that the required preoperational testing is completed to verify that the installed systems 
meet the requirements described in the Emergency Plan.  Administrative controls required by 
the Emergency Plan are handled under a proposed license condition, in Part VI.  

Access to the building is controlled using the physical security system, as described by the 
Physical Security Plan (see Chapter 18 and Part VII).  Security measures for each area of the 
building are commensurate with the size and other characteristics of the Aurora plant.  These 
measures include an access control system, intrusion detection system, and the appropriate 
monitoring and communications equipment to evaluate and respond to potential security 
incidents.  An ITAAC (ITAAC.PS.01) is taken to ensure that the required preoperational testing 
is completed to verify that the installed physical security system meets the requirements 
described in the Physical Security Plan.  Administrative controls required by the Physical 
Security Plan are handled under a proposed license condition, in Part VI.  

Radiation monitoring is accomplished via the radiation monitoring system, as described in the 
Radiation Protection Program (see Chapter 20 and Part VII).  This equipment is used to ensure 
that occupational limits from 10 CFR Part 20, “Standards for protection against radiation,” are 
met. An ITAAC (ITAAC.RP.01) is taken to ensure that the required preoperational testing is 
completed to verify that the installed systems meet the requirements described in the Radiation 
Protection Program.  Administrative controls required by the Radiation Protection Program are 
handled under a proposed license condition, in Part VI.  
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RADIOACTIVE MATERIALS PRODUCED IN OPERATION 

Purpose 

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(3) requires the following: 

The kinds and quantities of radioactive materials expected to be produced in the 
operation and the means for controlling and limiting radioactive effluents and 
radiation exposures within the limits set forth in part 20 of this chapter 

The purpose of this chapter is to provide an overview of the radioactive materials that are 
expected to be produced during the operation of the Aurora reactor and how radioactive 
effluents and exposures are controlled.  This chapter includes a description of radioactive 
sources and a summary of the activation analyses of airborne effluents to show that limits set in 
10 CFR Part 20, “Standards for protection against radiation,” are met through plant design 
features and engineered protective systems. 

This chapter is informed by several guidance documents, including: 

• NUREG-0800, “Standard review plan for the review of safety analysis reports for
nuclear power plants:  LWR [light water reactor] edition,” Revision 4, issued September
2013, Chapter 12.2, “Radiation Sources”

• Regulatory Guide (RG) 1.206, “Combined License Applications for Nuclear Power
Plants,” Revision 0, issued June 2007, Part I, “Standard format and content of combined
license applications,” Chapter C.I.12 “Radiation Protection”

• NEI 07-03A, “Generic FSAR [final safety analysis report] template guidance for
radiation protection program description,” Revision 0, issued May 2009

Introduction

Activation of materials in the Aurora reactor is dominated by the radiation field generated by 
fission events in the core during full power operations.  The types and quantities of radioactive 
materials produced during full power operation bound what is generated during other operating 
modes such as shutdown and maintenance.  In these other modes, the only radioactive material 
produced comes from the secondary activation of materials by other already-activated materials, 
which have a much lower source strength than that of the full-power fission source. 

Because full power operation bounds all other operating modes, the types and quantities of 
radioactive materials produced by the Aurora can be conservatively overestimated by assuming: 
(1) that the reactor operates at full power for its entire lifetime, and (2) that all materials have
been irradiated for the duration of the reactor lifetime without any replacement or purging.  All
results presented in this chapter come from analyses that make these assumptions, and
therefore conservatively bound activation levels.  Radiation precautions and shielding design
source terms are based on these conservative activation levels.  The Radiation Protection
Program and shielding system design descriptions are further discussed in Chapter 20,
“Radiation protection program description” and Chapter 2, “Description and analysis of
structures, systems, and components,” respectively.
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The Serpent Monte Carlo code is used to determine activated quantities of materials, material 
source strengths, and flux profiles.  Steady-state calculations determine the neutron flux 
distributions, and depletion calculations provide the quantities of activated materials produced 
in these fluxes during the operating lifetime.  Although activation levels vary depending on 
distance from the core, time of irradiation, and shielding, all materials that fall within that core 
radiation field are discussed to provide a comprehensive understanding of the management of 
those materials. 

Where possible, materials are deliberately selected to help mitigate activation and secondary 
radiation effects, thereby reducing exposure and dose rates.  For example, the absorber material 
in the shielding system is almost entirely composed of boron carbide.  This reduces secondary 
radiation effects compared to other potential shielding materials because no secondary gamma 
radiation is produced upon neutron absorption in boron-10. 

Design features 

The Aurora reactor has been designed to optimize reactivity and minimize the escape of 
radiation from the core.  This is accomplished by the reflector system that immediately 
surrounds the active core, and the shielding system that surrounds the reflector system.  As a 
result, the neutron and gamma flux are significantly reduced as the distance from the core 
increases. 

Controlling sources of radiation 

The Aurora reactor has been deliberately designed to minimize, to the extent possible, the 
amount of radioactive materials produced during operation.  Radioactive materials that are 
produced during the operation of the Aurora plant include radioactive fluids and structural 
material. 

3.3.1 Fluids 

Potential radioactive fluids and radioactive airborne effluents produced inside the reactor 
module include fission products, backfill gas, the power conversion system working fluid, heat 
pipe working fluid, and the sodium thermal bond inside the reactor cells. 

3.3.1.1 Fission products 

The Aurora fuel, which is metal uranium-zirconium alloy (U-10Zr), is operated at very low 
burnups, and therefore generates few fission products.  At this low burnup there is not 
significant fission product release from the fuel matrix, as described in Chapter 2.  The minimal 
amounts of fission products that are released from the fuel matrix are contained and isolated in 
the gas plenum volume of each reactor cell.   

The Aurora is not expected to operate with any damaged reactor cells, which prevents fission 
product release to the interior of the capsule or the module shell, keeping both the capsule and 
the module shell radiologically clean.  This minimizes the possibility of releasing even the small 
quantity of fission products that leave the fuel matrix. 
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3.3.1.2 Reactor enclosures backfill gas 

Argon is used to backfill the reactor enclosures and each reactor cell gas plenum.  The total 
volume of the reactor enclosure backfill is small, as most of the space within the enclosures is 
occupied.  The total volume of the reactor cell backfill is also small as the plenum volume in 
each cell is small. 

The Aurora operates at near atmospheric pressure, such that the driving force for the enclosure 
backfill to escape the enclosures is minimal.  In addition, the reactor cells are sealed, such that 
the reactor cell backfill would only escape into the capsule if a reactor cell fails.  Nevertheless, 
in this evaluation, it is conservatively assumed that the entire activated inventory of argon is 
released simultaneously into the powerhouse basement, the smallest room that can be occupied 
by personnel.  This provides a conservative bounding analysis of all possible leak rates of 
backfill gas, and reflects conditions that could only occur in a major accident, rather than during 
normal operations.  Additionally, it is assumed that the entire inventory of backfill gas is 
irradiated for the duration of the 20 year reactor lifetime without any leaks or replacement, in 
order to estimate the maximum activation of the fluid. 

This unlikely release of radionuclides produced from the activation of argon is then 
conservatively compared to the occupational limits set in 10 CFR Part 20, Appendix B, “Annual 
limits on intake (ALIs) and derived air concentrations (DACs) of radionuclides for occupational 
exposure; effluent concentrations; concentrations for release to sewerage.”  This comparison is 
conservative because the occupational limits assume exposure for 2000 hours per year, and the 
major release analyzed would result in only transitory exposure.  

Despite these major conservatisms, all radionuclide quantities for the backfill gas are below the 
occupational limits set in Appendix B to 10 CFR Part 20, except Ar-41 and H-3.  Meeting 
10 CFR Part 20 for what would be considered a major event at the Aurora is not required, since 
this type of release is not expected during normal operations.  Table 3-1 compares the 
concentrations of all nuclides present in the activated argon to the regulatory limit 
concentrations for occupational inhalation.  Section 3.3.1.6 explains further precautions taken 
for airborne effluent control. 
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Table 3-1:  Argon backfill gas activated radionuclide concentrations 

{

}
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3.3.1.3  Power conversion system working fluid 

The power conversion system uses supercritical carbon dioxide (sCO2) as the working fluid.  The 
sCO2 flows through the heat exchanger system, removes heat from the heat pipes of the reactor 
cells, and transports it to the power conversion system.  It is the only material that enters and 
exits the reactor module during normal operation, and is the only potential source of secondary 
activation to components outside the reactor module.  Therefore, in addition to evaluating leaks, 
the sCO2 must be evaluated for secondary activation of other components.  Both of these factors 
can be minimized by limiting the activation of the sCO2. 

3.3.1.3.1 Activation of sCO2 

The activation of sCO2 is limited by both the shielding system, and the spatial distance from the 
reactor core.  As described in Chapter 2, the heat exchanger shield portion of the shielding 
system shields the heat exchangers from direct exposure to the radiation field generated by the 
reactor core system.  Additionally, since the heat exchanger system is located at a distance of 
several meters from the active core, the spatial separation further reduces the radiation field 
experienced by the heat exchanger system.  Due to these features, the activation of sCO2 fluid 
while it is in the heat exchanger system is minimal. 

The total activation of the power conversion system working fluid is determined using the total 
power conversion system inventory of 5,000 kg of sCO2.  The main contributing activation 
product in the fluid is nitrogen-16.  However, to ensure that the source strengths are 
maintained to levels as low as reasonably achievable, all activation products in the fluid are 
considered. 

Fission and corrosion product activities are not a concern for the power conversion system 
working fluid.  Due to the low burnup of the fuel, fission products are expected to stay almost 
entirely within the fuel matrix, inside the reactor cell can.  As a result, there is no direct path 
for these fission products to interact with the sCO2.  As described in Chapter 2, sCO2 is 
compatible with stainless steel at temperatures up to 550°C, which is a conservative upper 
bound on the temperatures inside the heat exchanger system.  Therefore, corrosion, and the 
resulting circulation of activated corrosion products in the working fluid, is not a 
concern.  Because fission and corrosion products are not expected in the power conversion 
system working fluid, the activated nuclides in the sCO2 are limited to activation products. 

3.3.1.3.2 Evaluation of sCO2 leaks 

As with the argon backfill gas, the evaluation of an sCO2 release assumes that the entire 
inventory is released simultaneously into the volume of the powerhouse basement, the smallest 
room that can be occupied by personnel.  This simultaneous release of the entire inventory is 
used to bound all potential leak rates and is not expected during the entire lifetime of the 
plant.  Additionally, it is assumed that the entire inventory of sCO2 is irradiated for the 
duration of the reactor lifetime without any leaks or replacement, in order to estimate the 
maximum activation of the fluid.  Activation values used were those calculated at the end of the 
20-year operating lifetime. 

This unlikely release of radionuclides produced from the activation of the sCO2 is then 
conservatively compared to the occupational limits set in Appendix B to 10 CFR Part 20.  This 
comparison is conservative because the occupational limits assume exposure for 2000 hours per 
year, and the major release analyzed would result in only transitory exposure.  
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Despite these major conservatisms, all radionuclides created during the irradiation of the sCO2 
are below the occupational values established in Appendix B to 10 CFR Part 20.   

Table 3-2 compares the concentrations of all nuclides present in the activated sCO2 to the 
regulatory limit concentrations for occupational inhalation.  Every radionuclide generated is 
orders of magnitude below the applicable occupational limits.   

Table 3-2:  sCO2 radionuclide concentrations 

3.3.1.3.3 Evaluation of secondary activation by sCO2 

Analysis of the secondary activation from the sCO2 is not performed as part of this 
chapter. Because the activation of the sCO2 is small, further activation by the sCO2 is expected 
to be negligible. 

3.3.1.4 Heat pipe working fluid 

Potassium is used for the working fluid in the heat pipes and is solid until operation has begun 
and operating temperatures melt the potassium; eventually a working vapor is formed that is 
used to carry the heat inside the heat pipe via evaporation and condensation in the sealed heat 
pipe volume.  For details on the how the heat pipe and its materials operate see Chapter 2.   

The potassium is sealed inside the heat pipes to facilitate heat pipe operation, and the heat 
pipes are designed to remain sealed for their entire operating lifetime.  Heat pipes remain 
installed in the core except in rare cases of unexpected maintenance.  If a heat pipe has failed 
and must be removed from its installed location, that single heat pipe will be removed and 
replaced.  The specifics for the entire inventory of the heat pipe working fluid, including types, 
quantity, and specific activity, can be found in Table 3-3. 

No further activation analysis is presented in this chapter because the heat pipe working fluid 
cannot exit the reactor module and be a hazard to onsite personnel. 

{

}
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3.3.1.5 Thermal bond 

A sodium bond is used between the fuel ingot and the heat pipe in the reactor cell, as described 
in Chapter 2.  The sodium bond is solid during cold shutdown and maintenance modes and is 
therefore easy to control.  During full power operation, the sodium melts to become a liquid, but 
remains in the reactor module.  The expected quantities and activities for the bond sodium are 
shown in Table 3-3. 

No further activation analysis is presented in this chapter because the sodium bond cannot exit 
the reactor module or become a hazard to onsite personnel. 

3.3.1.6 Aurora powerhouse atmospheres 

The source of airborne activity in the Aurora powerhouse is primarily due to the minimal 
possible leakage of the reactor module backfill gas or power conversion system working fluid 
into the powerhouse volumes.  The Aurora facility is equipped with two independent ventilation 
systems.  Each system functions for a single floor and is outfitted with radiological filters for 
removing activated byproducts in the air.  Despite the actual presence of these systems, 
material activation concentrations conservatively assume full releases of the entire inventories 
of backfill gas and power conversion system working fluid into the stagnant air of these 
volumes, with no ventilation or filtration operating.  In practice, ventilation systems will 
constantly be circulating facility air and removing radionuclides from the air before 
concentrations reach the levels analyzed.  

Table 3-3:  Possible effluent types, quantities, and activities 

3.3.2 Fuel 

The neutron and gamma source strengths from the fuel are determined for fuel with a uranium 
enrichment of 19.75% operating at 4 MWth for 20 effective full power years.  The solid fuel is 
enclosed by the reactor cell can walls and is adequately shielded during the lifetime of the plant. 

3.3.3 Structural and other materials 

Other materials that become activated when exposed to the core radiation field include the 
following:  reflectors, shielding, control drums, stainless steel cell cans, heat pipe walls, 
enclosures, and the reactor core base plate.  All reactor core components are permanently 
located in the capsule which is located inside the module shell, and both the capsule and the 
module shell are sealed during normal operations, preventing access.  Therefore, structural 

{

}
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materials and other materials are easily shielded and isolated to protect personnel and the 
public from any exposure that would originate from these materials during normal operations. 

The module equipment housing is located on top of the module shell lid, and acts as an 
extension of the module shell.  It contains the control drum drive shafts and drive motors, and 
the shutdown rod drive lines and withdrawal motors, among other components.  This equipment 
can only be accessed during a mode when the reactor is shut down.  The module equipment 
housing is protected from the core radiation field with adequate shielding, described in 
Chapter 2, to keep all limits within 10 CFR Part 20. 

 Off-normal events 

No postulated off-normal events introduce additional material into the reactor module for 
potential activation.  The maximum credible accident analyzed in Chapter 5.1, “Transient 
analysis,” results in no release of fission products.  Compared to the 20 years of full power 
operation assumed for the activation analyses, the duration of any potential transient will have 
a negligible effect on the end-of-life activation of materials.  Accordingly, no special 
considerations for off-nominal events must be taken when accounting for the activated 
materials produced during operation. 

 Maintenance and decommissioning  

All activation analyses in this chapter assume 20 years of full power operation and assume that 
all materials have been irradiated for the full duration without replacement or purging, to 
conservatively bound the activation analyses.  Therefore, the source strengths in this chapter 
are bounding for any maintenance or decommissioning activities.  
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 PRINCIPAL DESIGN CRITERIA 

 Purpose  

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(4) has requirements for 
the design of the facility including the following: 

(i) The principal design criteria for the facility.  Appendix A to part 50 of this 
chapter, "General Design Criteria for Nuclear Power Plants," establishes 
minimum requirements for the principal design criteria for water-cooled nuclear 
power plants similar in design and location to plants for which construction 
permits have previously been issued by the Commission and provides guidance to 
applicants in establishing principal design criteria for other types of nuclear 
power units; 

(ii) The design bases and the relation of the design bases to the principal design 
criteria; 

(iii) Information relative to materials of construction, arrangement, and 
dimensions, sufficient to provide reasonable assurance that the design will 
conform to the design bases with adequate margin for safety. 

The purpose of this chapter is to provide the principal design criteria (PDC) for the facility, the 
design bases and the relation of the design bases to the PDC, and information sufficient to 
provide reasonable assurance that the design will conform to the design bases with adequate 
margin for safety. 

 Methodology 

4.1.1 Background 

As described in 10 CFR 52.79(a)(4)(i), Appendix A, “General design criteria for nuclear power 
plants,” to 10 CFR Part 50, establishes minimum requirements for PDC for light water reactors 
(LWRs).  These general design criteria (GDC) are prescriptive and technology-specific, explicitly 
specifying the minimum requirements for LWRs.  Section 52.79(a)(4) to 10 CFR states that the 
GDC provide, “guidance to applicants in establishing principal design criteria for other types of 
nuclear power units,” but does not supply specifics.   

Due to the technology-specific nature of the GDC and unclear means of applying them to non-
LWR designs, Regulatory Guide (RG) 1.232, “Guidance for developing principal design criteria 
for non-light-water-reactors,” Revision 0, was issued in April 2018 in an effort to provide 
guidance in “modifying and supplementing the GDC to develop PDC for any non-LWR 
designs.”  RG 1.232 provides a new set of design criteria, termed advanced reactor design 
criteria (ARDC), that could serve the same purpose for non-LWRs as the GDC serve for 
LWRs.  Essentially, each GDC was taken and the technology-specific terminology was modified 
to make it potentially more broadly applicable.  However, while some of the language changed, 
many of the assumptions around the basic system design remained.  The concepts outlined in 
the ARDC, like the GDC, are specific and based on large reactors requiring active safety 
systems.   
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4.1.2 Aurora approach 

The approach presented here to meet the intent of 10 CFR 52.79(a)(4) is to utilize the safety 
case of the Aurora to develop the PDC.  Rather than starting with design criteria that were 
developed for a different technology (e.g., GDC), and then defining the design bases that satisfy 
each of those design criteria for the Aurora, the methodology used to develop the Aurora’s PDC 
is the converse.  The principal design criteria development process provides a way to double-
check, from a fundamental safety function perspective, that the design bases are adequate and 
encompassing. 

The design bases for the Aurora were developed through an iterative process between design of 
systems and subsequent safety analysis of those systems.  As the design of the Aurora evolved, 
the safety analysis advanced to continue confirming the design assumptions.  As a result, design 
bases were developed to describe the various Aurora systems.  Therefore, design bases are the 
characteristics of a system that ensure the safe operation of the Aurora reactor.       

To provide reasonable assurance that the design will conform to the design bases with adequate 
margin for safety, design commitments and associated programmatic controls are taken for each 
design basis.  Programmatic controls are used to verify that design commitments are met, and 
therefore that design bases are satisfied.  These controls include preoperational tests (POTs), 
inspections, tests, and analysis acceptance criteria (ITAAC), startup tests (SUTs), and the 
Technical Specifications (TS).  These programmatic controls are contained in the license 
application in the following ways: 

• The POTs are conducted as the first phase of the initial testing program (ITP), which 
can be found in Chapter 14, “Preoperational testing and initial operations”.  These tests 
must be completed, and a summary report created, to satisfy an ITAAC.  The ITAAC are 
found in Part VI, “Proposed license conditions.”   

• The SUTs are conducted during and after initial fuel loading.  These are conducted as 
the second phase of the ITP and are found in Chapter 14.  Collectively, the POTs and the 
SUTs are used to verify that the system is built and functions as described. 

• The TS provide the operating limits for the reactor.  These are found in Part IV, 
“Technical Specifications.”  The TS are used to ensure that the reactor never reaches a 
more challenging condition than that analyzed in the safety analysis. 

Next, the design bases are grouped together under a PDC to encapsulate the goal for those 
design bases and custom PDC are proposed.  This methodology is shown in Figure 4-1.  Section 
4.2 describes the PDC for the Aurora and the design bases that contribute to each. 
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Figure 4-1:  Relationship of principal design criteria to the design bases 

 Principal design criteria 

The PDC for the Aurora closely parallel the fundamental safety functions, as discussed by IAEA 
Safety Standard, Specific Safety Requirements, No. SSR-2/1, Revision 1, “Safety of Nuclear 
Power Plants: Design.”  The IAEA Safety Standard, Specific Safety Requirements, No. SSR-2/1, 
Revision 1, “Safety of Nuclear Power Plants: Design,” in addition to outlining the safety 
principles that were adapted for the Aurora, contains a discussion of the fundamental safety 
functions applicable to any nuclear reactor that must be met to satisfy these safety principles.  
The fundamental safety functions are very high-level, which explains their wide applicability.  
The three fundamental safety functions are adapted into the following: 

1. Control of reactivity, 

2. Removal of heat, and 

3. Confinement of radioactive material. 
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Additionally, the Aurora PDC are consistent with the U.S. Nuclear Regulatory Commission 
(NRC) safety goals,9 which are the following: 

• Individual members of the public should be provided a level of protection from the 
consequences of nuclear power plant operation such that individuals bear no significant 
additional risk to life and health. 

• Societal risks to life and health from nuclear power plant operation should be 
comparable to or less  than the risks of generating electricity by viable competing 
technologies and not be a significant addition to other societal risks. 

The Aurora PDC are consistent with the Aurora safety goal, which is to control the release of 
radionuclides to minimize the risk to the public and the environment.  The safety analysis in 
Chapter 5 demonstrates that despite challenges to normal operation, the structures, systems, 
and components that are designed to respond to these challenges (either actively, passively, or 
inherently) are able to uphold the safety goal.   

The PDC defined for the Aurora are listed in Table 4-1, along with the source of the language 
for the PDC.  

Table 4-1:  Principal design criteria for the Aurora 

PDC Title Source 
1 Confinement Custom 
2 Reactivity control Custom 
3 Heat removal Custom 
4 Fire protection ARDC 

4.2.1 PDC 1: Confinement 

PDC 1 is unique to the Aurora, and is presented below: 

Structures, systems, and components responsible for maintaining confinement of 
radionuclides for the Aurora will perform their required functions during off-
nominal events up to and including the maximum credible accident, or will 
minimize the severity of the challenges to those functions. 

PDC 1 relates to the control of radionuclides.  Specifically, since the fuel matrix is the primary 
confinement feature in the Aurora, the application of Appendix B quality assurance regarding 
fuel will ensure that the fuel is manufactured, shipped, stored, etc. in a quality assured manner 
in all stages.   

  

                                                 
9 51 FR 284044, August 4, 1986 
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Table 4-2:  Design basis and design commitment for PDC 1 

Design basis 
reference 
number Design basis description 

Design commitments 
and programmatic 
controls 

DB.RXS.01 The reactor core system uses metal fuel with well 
characterized properties. 

DC.RXS.01.A 

Confinement of radionuclides in the Aurora occurs through inherent properties of the fuel 
material.10  The two contributing factors to the confinement function that are related to the fuel 
are (1) the quantity of the material and (2) the metal form.  These are further discussed as 
follows: 

1. Because of the small size and power output of the Aurora, the small amount of fuel mass 
limits the amount of radionuclides present throughout the life of the reactor, which 
limits the amount of radionuclides present.  Further, after a 20-year lifetime, the Aurora 
fuel has a burnup of less than 1 atom per cent (at.%).  This small burnup means that 
very few radionuclides are generated in the fuel matrix during normal operation, which 
serves at all times to minimize the risk posed by challenges to the safety goal of the 
reactor. 

2. The Aurora fuel is metal, in the form of a binary uranium-zirconium alloy, which has 
shown excellent performance to significantly higher burnups than the Aurora.  Metal 
fuel, like other metals, is a relatively nonporous solid with a regular crystal lattice.  As a 
result, and as shown in extensive data from decades of operation, the vast majority of 
fission products are retained within the fuel matrix at burnups less than 1%.   

4.2.2 PDC 2: Reactivity control 

PDC 2 is unique to the Aurora, and is presented below: 

Structures, systems, and components responsible for maintaining reactivity 
control of the Aurora will perform their required functions during off-nominal 
events up to and including the maximum credible accident, or will minimize the 
severity of the challenges to those functions. 

PDC 2 relates to maintaining control of reactivity for the Aurora during off-nominal 
events.  The design bases relating to PDC 2 are described in Table 4-3, together with a list of 
the design commitments and programmatic controls that verify these design bases are met.   

  

                                                 
10 The Aurora also includes several structural barriers, including the reactor cell cans, the capsule, the module 
shell, the building basement, and the building first floor.  However, the integrity of the fuel and the reactor cell 
cans is not challenged during even the maximum credible accident, and as such, discussion of the other 
structural barriers is not presented. 
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Table 4-3:  Design bases, commitments, and programmatic controls associated with PDC 2 

Design basis 
reference number Design basis description 

Design commitments and 
programmatic controls 

Reactor system 
DB.RXS.03 The reactor core system has inherently negative reactivity 

feedback. 
DC.RXS.03.A 
SUT.RXS.03 

Control drum system 
DB.CDS.01 The control drum system is designed to limit both the rate 

and magnitude of reactivity insertion that the system can 
achieve so as to minimize the effect of an unintended 
reactivity insertion. 

DC.CDS.01.A 
POT.CDS.01.A 
DC.CDS.01.B 
SUT.CDS.01.B 
DC.CDS.01.C 
POT.CDS.01.C 

Shutdown rod system 
DB.SRS.01 The shutdown rod system provides sufficient negative 

reactivity to achieve cold shutdown with insertion of one 
rod. 

DC.SRS.01.A 
SUT.SRS.01.A1 
SUT.SRS.01.A2 

DB.SRS.02 The shutdown rod system fully inserts the shutdown rods 
within a sufficient time after receiving a trip signal to 
prevent damage to the reactor. 

DC.SRS.02.A 
POT.SRS.02.A 
SUT.SRS.02.A 
TS.LCO.01 

Instrumentation and control system 
DB.ICS.01 The reactor trip system monitors reactor process variables 

and sends a reactor trip signal when a process variable 
exceeds a limit setpoint. 

DC.ICS.01.A 
POT.ICS.01.A1 
POT.ICS.01.A2 
SUT.ICS.01.A1 
DC.ICS.01.B 
POT.ICS.01.B1 
POT.ICS.01.B2 
DC.ICS.01.C 
POT.ICS.01.C1 
POT.ICS.01.C2 
SUT.ICS.01.C 
DC.ICS.01.D 
POT.ICS.01.D 
TS.LCO.02 

DB.ICS.02 The reactor trip system sends a reactor trip signal to the 
shutdown rod system within a sufficient time of exceeding a 
limit to prevent damage to the reactor. 

DC.ICS.02.A 
POT.ICS.02.A 
TS.LCO.02 

DB.ICS.03 The reactor trip system provides the means for a reactor trip 
signal to be sent manually. 

DC.ICS.03.A 
POT.ICS.03.A 
TS.LCO.02 

DB.ICS.04 The reactor trip system requires deliberate action to reverse 
a reactor trip signal and return the system to normal 
operation. 

DC.ICS.04.A 
POT.ICS.04.A 
TS.LCO.02 
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DB.ICS.05 The reactor trip system is protected against unauthorized 
configuration changes. 

DC.ICS.05.A 
POT.ICS.05.A 
DC.ICS.05.B 
POT.ICS.05.B 
DC.ICS.05.C 
POT.ICS.05.C 
DC.ICS.05.D 
POT.ICS.05.D 

DB.ICS.06 The reactor trip system is fail-safe. DC.ICS.06.A 
POT.ICS.06.A 
DC.ICS.06.B 
POT.ICS.06.B 
DC.ICS.06.C 
POT.ICS.06.C 
DC.ICS.06.D 
POT.ICS.06.D 

The importance of reactivity control is that it is the means to control the generation of heat in 
the reactor.  Imbalances between the heat generation and the heat removal in the reactor core 
lead to changes in core temperatures.  As such, one means of limiting fuel temperature during 
off-nominal events is by the control the reactivity of the reactor. 

Reactivity is controlled in the Aurora through three distinct means: (1) the shutdown rods, (2) 
the control drums, and (3) the inherent characteristics of the reactor.  These are further 
discussed as follows: 

• Only a single rod must insert fully in order for the neutron chain reaction to be shut 
down and the core made subcritical, which is the required function of the shutdown rod 
system.  As the core of the Aurora operates at near atmospheric pressure, there is no 
significant driving force that opposes rod insertion.  Since the Aurora operates with a 
very low power density, it is relatively insensitive to any potential delay time that might 
elapse between the start of a transient until full rod insertion is achieved.  As a result of 
this design, the shutdown rod system robustly provides its required function by inserting 
at least one out of three redundant shutdown rods in the safety analysis. 

• The control drums are responsible only for compensating for slow reactivity changes due 
to fuel depletion during normal operations, and are not credited in the safety 
analysis.  The control drums appear in the safety analysis (i.e., in the transient 
overpower) solely to describe the challenge they present in the case of their malfunction.  
As such, they provide no required functions. 

• Inherent characteristics of reactivity control are a backstop to mitigate undesired off-
nominal behavior.  They are not considered passive means because “failure” of these 
characteristics is nonphysical.  A degradation of inherent characteristics is possible, but 
complete failure cannot occur.  In the Aurora, changes in reactor power are inherently 
controlled and limited through two means: (1) the physical core configuration, and (2) 
the large negative temperature coefficient of reactivity.  The physical core configuration 
is the most reactive configuration during normal operations; any disruptions to the 
physical configuration of the core would lead the fuel to be in a less reactive state.  The 
Aurora has an inherently large negative temperature coefficient of reactivity.  This is 
primarily due to the large thermal expansion of the metal core materials during a heat 
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up.  The negative temperature coefficient of reactivity is conservatively modeled in the 
safety analysis by assuming the reactor power stays constant when heat removal by the 
secondary system is lost. 

4.2.3 PDC 3: Heat removal 

PDC 3 is unique to the Aurora, and is presented below: 

Structures, systems, and components responsible for removing heat from the fuel 
of the Aurora will perform their required functions during off-nominal events up 
to and including the maximum credible accident, or will minimize the severity of 
the challenges to those functions. 

PDC 3 relates to maintaining heat removal capability from the fuel in the Aurora’s reactor core 
system during off-nominal events.  The design bases relating to PDC 3 are described in Table 
4-4, together with a list of the design commitments and programmatic controls that verify these 
design bases are met.   

Table 4-4:  Design bases, commitments, and programmatic controls associated with PDC 3 

Design basis 
reference number Design basis description 

Design commitments and 
programmatic controls 

Reactor system 
DB.RXS.02 The reactor core system is operated at steady state thermal 

power limits that prevent damage to the system during 
transients. 

DC.RXS.02.A 

DB.RXS.04 The reactor core system provides a pathway to conduct 
heat from the fuel to the surrounding systems and 
ultimately to reject it to the environment. 

DC.RXS.04.A 
SUT.RXS.04.A 
DC.RXS.04.B 
SUT.RXS.04.B 

DB.RXS.05 The reflector system provides a pathway to conduct heat 
from the reactor core system to the surrounding systems 
and ultimately to reject it to the environment. 

DC.RXS.05.A 
POT.RXS.05.A 

DB.RXS.06 The shielding system provides a pathway to conduct heat 
from the reactor core system and reflector system to the 
surrounding systems and ultimately to reject it to the 
environment. 

DC.RXS.06.A 
POT.RXS.06.A 
SUT.RXS.06.A1 
SUT.RXS.06.A2 

Reactor enclosure system 
DB.RES.01 The reactor enclosure system provides a pathway to 

conduct heat away from the systems inside it and to reject 
it to the environment. 

DC.RES.01.A 
POT.RES.01.A1 
POT.RES.01.A2 
SUT.RES.01.A 

Heat exchanger system 
DB.HXS.01 The heat exchanger system provides a pathway to conduct 

heat from the heat pipes of the reactor core system to the 
surrounding systems and ultimately to reject it to the 
environment. 

DC.HXS.01.A 
SUT.HXS.01.A 

Building system 



 

Copyright © 2020 Oklo Inc., all rights reserved  230 

II.04 Principal design criteria 

OkloPower-2020-PartII-NP, Rev. 0 

DB.BAS.01 The building system provides for the emplacement of the 
reactor module in a configuration that supports passive 
cooling of the module shell. 

DC.BAS.01.A 
POT.BAS.01.A 

Fuel temperatures can be limited if sufficient heat is removed from the reactor.  In the Aurora, 
heat removal is controlled by three distinct means: (1) normal operation of the secondary system 
(i.e., the power conversion system), (2) conduction throughout the reactor materials, and (3) 
passive heat rejection to the environment.  These are further discussed as follows: 

• Since the maximum credible accident from the safety analysis involves a failure in the 
power conversion system, heat removal via the power conversion system is accordingly 
not included in this discussion on required functions. 

• Because the fuel is the heat generation source, the first order heat removal function 
during a heatup is to cool the fuel.  It is important to note that the Aurora operates at a 
very low power density,11 which serves to limit the amount of heat generated in the fuel, 
both at power and in decay heat, that must be dissipated to surrounding materials when 
normal cooling via the secondary system is decreased or lost.  The physical effect of 
interest is conducting the heat from the metal fuel to other reactor components, most of 
which are also metal.  Specifically, the sensible thermal mass of the reactor is what 
initially drives the temperature response of the fuel following off-normal events.  
Conduction through the reactor occurs through the heat pipes and inherent heat 
transfer parameters.  Thermal contact between adjacent bodies, as well as the heat 
pipes, ensure effective heat transfer throughout the entire reactor module. 

• As the heat generated by the fuel is distributed throughout the reactor, some of this 
decay heat is rejected to the surrounding environment through natural convection to the 
air in the reactor cavity surrounding the reactor module.  Because of the characteristics 
of the Aurora (e.g., low power density, high thermal conductivity, high heat capacity), 
this heat rejection rate need not be large to have a very beneficial effect on limiting 
temperatures during a heatup event. 

4.2.4 PDC 4: Fire protection 

PDC 4 for the Aurora is similar to GDC 3 and ARDC 3 and is quoted below: 

Structures, systems, and components shall be designed and located to minimize 
the probability and effect of fires and explosions.  Noncombustible and fire-
resistant materials shall be used wherever practical throughout the unit.  Fire 
detection and fighting systems of appropriate capacity and capability shall be 
provided and designed to minimize the adverse effects of fires on structures, 
systems, and components.  Firefighting systems shall be designed to ensure that 
their rupture or inadvertent operation does not significantly impair the safety 
capability of these structures, systems, and components. 

                                                 
11 The Aurora operates at a low power density that is one to two orders of magnitude smaller than a light water 
reactor, up to three orders of magnitude lower than a liquid sodium cooled fast reactors, and lower than other 
reactors that rely primarily on conduction for decay heat removal such as high temperature gas reactors. 



 

Copyright © 2020 Oklo Inc., all rights reserved  231 

II.04 Principal design criteria 

OkloPower-2020-PartII-NP, Rev. 0 

PDC 4 relates to protection from fires and explosions.  The design bases relating to PDC 4 are 
described in Table 4-5, together with a list of the design commitments and programmatic 
controls that verify these design bases are met.  

Table 4-5:  Design bases, commitments, and programmatic controls associated with PDC 4 

Design basis 
reference 
number Design basis description 

Design commitments 
and programmatic 
controls 

DB.BAS.02 The fire protection system ensures that a single credible fire 
will not prevent achieving a safe state. 

DC.BAS.02.A 
POT.BAS.02.A 
DC.BAS.02.B 
POT.BAS.02.B 
DC.BAS.02.C 
ITAAC.SD.02 

DB.BAS.03 The fire protection system detects, controls and 
extinguishes promptly those fires that do occur. 

DC.BAS.03.A 
POT.BAS.03.A 
DC.BAS.03.B 
POT.BAS.03.B 

Since fires can cause inadvertent action of equipment, the Aurora is designed with fire 
protection in mind.  Specifically, the Fire Hazards Analysis takes into account two items, which 
are (1) that a single credible fire will not prevent the reactor from being shutdown (i.e., 
achieving a safe state), and (2) that programmatic controls are implemented onsite to limit the 
consequences of a fire.  These are further discussed as follows: 

• The Fire Hazards Analysis performed for the Aurora is largely deterministic.  It takes 
advantage of the simple facility design and implements fire barriers to separate 
important equipment into independent fire areas.  This physical separation ensures that 
even if a fire were to occur, it would not propagate to other components.  Fire protection 
is taken account during the design phase of the Aurora, resulting in redundancy of 
equipment through the various fire areas. 

The Fire Protection Program, which is included as part of the Fire Hazards Analysis, contains 
requirements for the facility for certain equipment and administrative controls.  These 
requirements are such, that if a fire were to occur, it can be detected and mitigated as needed. 

4.2.5 Conclusion 

The development of the principal design criteria was able to be deeply iterative with the design 
of the Aurora as it evolved under the safety principles to meet the Aurora safety and operational 
goals, and as design bases were codified through the safety analysis.  This ability to be deeply 
iterative and responsive in design for safety is largely enabled through the Oklo digital twin 
capabilities for the Aurora as a small, tightly coupled design.  The final principal design criteria 
for the Aurora with the design bases which ensure those criteria are met still follow closely to 
the systems highlighted in the qualitative tree presented to the NRC in early 2019, shown in 
Figure 4-2. 
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Figure 4-2:  Top-level fundamental safety functions and the identified supporting safety functions for the Aurora 
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 TRANSIENT ANALYSIS 

 Purpose 

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(5) requires the following: 

An analysis and evaluation of the design and performance of structures, systems, 
and components with the objective of assessing the risk to public health and 
safety resulting from operation of the facility and including determination of the 
margins of safety during normal operations and transient conditions anticipated 
during the life of the facility, and the adequacy of structures, systems, and 
components provided for the prevention of accidents and the mitigation of the 
consequences of accidents. Analysis and evaluation of ECCS cooling performance 
and the need for high-point vents following postulated loss-of-coolant accidents 
shall be performed in accordance with the requirements of §§ 50.46 and 50.46a of 
this chapter. 

It is important to note that 10 CFR 50.46, “Acceptance criteria for emergency core cooling 
systems for light-water nuclear power reactors,” and 10 CFR 50.46a, “Acceptance criteria for 
reactor coolant system venting systems,” do not apply to the Aurora because the Aurora is not a 
light water reactor (LWR) and does not have the relevant systems.  Further information on the 
applicability of 10 CFR 50.46 and 10 CFR 50.46a is in Part V, “Non-applicabilities and 
requested exemptions.” 

The description and analysis of structures, systems, and components (SSCs) for the Aurora is 
included in Chapter 2, “Description and analysis of structures, systems, and 
components.”  Further, Chapter 2 provides the relevant Aurora SSC design bases, which are the 
characteristics of a system that ensure the safe operation of the reactor. 

The purpose of this chapter is to document the methodology to transient analysis.  These 
analyses consider a spectrum of events, ultimately showing how these events are bounded by a 
maximum credible accident (MCA).  The results demonstrate an adequate plant response to 
challenging conditions, conformance with applicable regulations concerning SSC performance 
and postulated radiological consequences, and show that adequate protection of the public is 
expected during the plant lifecycle.   

The transient analysis approach for the Aurora as outlined in this chapter is deterministic, 
drawing on analyses traditionally used in reactor licensing.  It begins by considering the full 
range of potential challenges to safe reactor operation that might arise due to internal off-
nominal events at various operating states, as informed by prior reactor experience and refined 
by considering the unique aspects of the Aurora design.  These challenges are then grouped 
together based on their phenomenology, and the relative severity of their safety challenge is 
considered.  Ultimately, the most challenging event deemed credible is identified and is 
considered the MCA. 

Although deterministic, this approach to analyzing reactor safety was not performed by 
neglecting or minimizing probabilistic risk insights.  To the contrary, physical and logical 
insights used in probabilistic risk assessment were used to focus deterministic analysis on those 
events which are physically possible and credible.  The safety conclusions reached via the 
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deterministic approach are consistent with those obtained from the probabilistic risk 
assessment, as described in Chapter 24, “Probabilistic risk assessment summary.” 
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Introduction 

5.1.1 Background on maximum credible accident 

The maximum credible accident has been a central feature of regulations from the earliest days 
and has influence in many of the methodologies in safety analysis today.  It is useful to examine 
the fundamental concept instead of rote application of the LWR-specific outcomes of this 
methodology over decades, in order to consider accident selection for the Aurora.  U.S. Nuclear 
Regulatory Commission (NRC) historians have described the origin of the MCA as follows [33]: 

Using their collective experience with evaluating earlier reactors, both the 
committee and the staff agreed that determining the maximum credible accident 
was the logical starting point…  After fixing the maximum credible accident, the 
regulators assumed they could establish and appraise appropriate engineered 
design safeguards in conjunction with the site evaluation. 

The term “maximum credible accident” acquired popularity around 1960, although the original 
Reactor Safeguard Committee had instituted a "worst case" accident scenario in the late 1940s.  
The worst case scenario was challenging for LWRs, since it would mean that most sites would 
have to be located hundreds of miles away from populated areas.  On the other hand, assuming 
the analysis was correct, and the reactor could maintain safety in the worst credible case, any 
site could be acceptable. 

The regulator decided that an accident was in the MCA category if it was caused by the one 
single equipment failure or operational error that would result in the most hazardous release of 
fission products; no other postulated credible accident could exceed those consequences.  For 
LWRs, , the regulator postulated the MCA as the complete rupture of a major or large pipe 
resulting in complete loss of coolant, with consequent expansion of the coolant as flashing 
steam, meltdown of the fuel, and partial release of the fission product inventory to the 
containment atmosphere.  This accident assumed a breach of the fuel cladding and reactor 
coolant boundary.  This MCA for a light water resulted in core melt. 

However, NUREG-0800, “Standard review plan for the review of safety analysis reports for 
nuclear power plants: LWR edition,” Section 15.0.3, “Design basis accident radiological 
consequences of analyses for advanced light water reactors,” issued March 2007, states the 
following: 

Although the loss-of-coolant (LOCA) is typically the maximum credible accident 
associated with the light-water reactor design, the applicant should consider 
other accident sequences of greater radiological consequence for the specific 
reactor designs selected by the applicants or for reasonably foreseeable future 
reactor designs… 

It is clear that the intent is to provide reasonable assurance that the greatest potential 
radiological consequences of any credible event have been identified.  The regulation does not 
require consideration of a core meltdown, stating only that meltdowns have “generally been 
assumed.”  When it incorporated the same text into design-oriented regulations (e.g., 
10 CFR 50.34(a) and 10 CFR 52.79(a)), NRC stated that, “accident source terms and dose 
calculations currently primarily influence plant design requirements rather than siting,” 
implicitly acknowledging the designer’s ability to provide features that prevent or mitigate 
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accidents12.   The NRC Commission’s “Policy Statement on the Regulation of Advanced 
Reactors”13 also states that, “…the Commission expects that advanced reactors will provide 
enhanced margins of safety and/or use simplified, inherent, passive, or other innovative means 
to accomplish their safety and security functions.”  Thus, it is reasonable to infer that the NRC 
would acknowledge that advanced reactors may be designed such that the probability of 
accidents yielding significant release of radioactivity is so remote that such accidents are not 
credible.   

Although the LWR guidance is not applicable to the Aurora, it is useful to note that this 
approach is expanded in NUREG-0800 and Regulatory Guide (RG) 1.206, “Combined license 
applications for nuclear power plants”, Revision 0, issued June 2007, and Revision 1, issued 
October 2018.  The applicant is expected to determine bounding events for each category and 
type of event, resulting in a comprehensive analysis that down-selects from numerous possible 
events to a conservative number of limiting ones.  As a result, a consistent through-line of 
regulatory expectations for transient analysis can be seen: a wide-range of safety challenges to 
the reactor should be considered to ensure that the safety response space of the system is well 
understood, and those credible events that most challenge the safety response should be 
characterized and presented to ensure acceptable safety performance is achieved by the design. 

This is the general approach taken for the transient analysis of the Aurora design as presented 
in this chapter. 

5.1.2 Design overview 

Three important overarching characteristics of the Aurora should be kept in mind when 
evaluating its safety performance.  The Aurora is a small reactor with all of the following 
characteristics:  

• Small power density

• Low decay heat generation

• Small inventory of radionuclides

The specific system design features that provide these overarching characteristics will be briefly 
reviewed in this chapter; more detailed on the Aurora systems is in Chapter 2. 

The Aurora is a small fast reactor that produces 4 megawatts thermal (MWth), using binary U-
Zr metal fuel alloy (UZr).  It uses alkali metal heat pipes, rather than a flowing coolant, to 
transport the heat generated by the fuel to the heat exchanger.  The heat exchanger then 
transfers the heat to the supercritical carbon dioxide secondary system, which is the power 
conversion system.  The fuel is shaped as an annular cylinder, with a heat pipe located in the 
annulus, and enclosed by a hexagonal steel can to form a reactor cell.  Each reactor cell is 
somewhat analogous to a fuel assembly typically encountered for LWRs or sodium fast reactors, 
except that only a single fuel element is present in a single cell, whereas for an assembly, many 
fuel pins are bundled together into a single unit.  The reactor cell also contains upper and lower 

12 61 FR 65157, December 11, 1996 

13 73 FR 60612, October 14, 2008 
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axial reflectors immediately above and below the fuel, and the heat pipe used to transport heat 
from the fuel to the secondary system.  Figure 5-1 shows the design of a reactor cell. 

Figure 5-1:  Cross-sectional views of a reactor cell 
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The reactor cells are arranged in a hexagonal lattice and surrounded by radial reflector 
material.  A steel enclosure, referred to as the capsule, surrounds the radial reflector.  The 
capsule is placed into another steel enclosure referred to as the module shell, and shielding 
material is placed in between the capsule and the module shell.  The reactor core is dry, 
meaning no liquids are present outside the reactor cells.  Only an argon backfill is present in 
the free space inside both the capsule and the module.  Figure 5-2 shows a radial view of this 
arrangement. 

Figure 5-2: Radial view of the reactor core layout and surrounding structures 

The fast spectrum system has strong neutron leakage characteristics.  Thermal expansion of the 
fuel leads to enhanced leakage in overpower and overtemperature transients, providing strong 
resistance to undesired power and temperature increases.  Additionally, being a fast reactor, the 
reactivity swing over life from fuel depletion is relatively small.  Subsequently, the necessary 
excess reactivity that must be provided by control drums is also small. 

The design uses rotating control drums located outside the core in the reflector region to 
compensate for reactivity loss over the core lifetime due to fuel depletion.  These rotate at a very 
slow nominal average speed of approximately 0.03 deg/day.  The design also includes three 
shutdown rods located above the core that are used solely to shut the reactor down.  The rods 
are fully withdrawn during normal operations. The three shutdown rods are redundant; just 
one rod is needed to shut the reactor down at any temperature condition. 

{

}
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The heat pipes operate passively and are designed to move heat from the fuel to the heat 
exchanger system inside the capsule, which then transfers the heat to the secondary system.  
The reactor operates at a very low power density; there is a very small amount of heat produced 
per unit mass or volume of the core.  This, combined with the thermal mass of the core and 
surrounding materials, as well as the relatively high thermal conductivity of the steel and 
metallic fuel, allows for effective radial and axial conduction of heat away from the fuel.   

The core produces 4 MWth, which is far smaller than any commercial reactor in the U.S., and 
smaller even than some research reactors.  The lower power of the core also leads to low decay 
heat production.  For reference, 30 seconds after shutdown, the reactor is generating 153 kW of 
decay heat, 30 minutes after shutdown, the reactor is producing 65 kW of decay heat, one day 
after shutdown the reactor is producing 21 kW of decay heat, and 1 month after shutdown, the 
reactor is producing 7 kW of decay heat.  This is generated in a core that contains nearly 29 tons 
of fuel, steel, and zirconium, and more than 60 tons of additional shielding, insulation, and 
structural steel in the module.   

For comparison, one fuel assembly at Diablo Canyon produces approximately 4 times as much 
power as the entire Aurora core, and contains approximately 0.5 tons of fuel, cladding, and 
structural material (or about 0.6 tons when the assembly is immersed in water and the water 
mass is included). 

The low total power of the reactor also leads to low burnup of fuel at the end of its design 
lifetime, which is 1 atom per cent (at.%) or less depending on core location.14  This corresponds 
to a relatively small inventory of fission products that are contained in a relatively large mass of 
fuel.  The fuel has demonstrated minimal release of fission products into the space surrounding 
the fuel below 1 at.% burnup, so the fuel matrix itself contains the vast majority of fission 
products generated.  For context, the fission product inventory in the Aurora core after 20 years 
is less than 0.5% of the inventory generated in a 3,000 MWth pressurized water reactor (PWR) 
core halfway through one cycle.  

Additionally, the reactor does not have any systems that are significantly pressurized.  The heat 
pipes operate at a slight vacuum , the core region has a slight 
backfill of argon gas and operates at ambient pressure, and the fuel plenum is at only a slightly 
elevated pressure at the end of the core lifetime. 

Altogether, these characteristics lead to a system with inherent reactivity controls and inherent 
and passive heat transport, all within multiple barriers at non-pressurized conditions in the 
core. 

14 This burnup is equivalent to a peak burnup of approximately 10 MWd/kg. 

{ }
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Principles 

5.2.1 Safety principles 

The safety principles of the Aurora are derived from IAEA Safety Standard, Specific Safety 
Requirements (SSR) 2/1, “Safety of nuclear power plants: design,” Revision 1, issued February 
2016.  In order to ensure that nuclear power plants are operated, and activities are conducted so 
as to attain the highest standards of safety that can reasonably be achieved, the IAEA standard 
recommends that all of the following measures be taken into account: 

• Control the radiation exposure of people and radioactive releases to the environment in
operational states

• Restrict the likelihood of events that might lead to a loss of control over a nuclear reactor
core, nuclear chain reaction, radioactive source, spent nuclear fuel, radioactive waste or
any other source of radiation at a nuclear power plant

• Mitigate the consequences of such events if they were to occur

Therefore, the safety principles of the Aurora are the following: 

• Provide power with minimal risk to the public health and safety and the environment

• Restrict the likelihood and consequence of abnormal events by inherent, physical
characteristics

5.2.2 Defense-in-depth principles 

An important consideration during the design of a nuclear power plant is defense-in-
depth.  This concept is applied to ensure that independent layers of provisions are available so 
that if a failure were to occur, it would be detected and compensated for or corrected 
appropriately.  Defense-in-depth is considered throughout the Aurora design, including all of 
the following: 

• Small thermal power and low burnup of fuel results in limited available source term.

• Inherent reactivity feedback ensures reactor power is controlled during overpower or
overtemperature events.

• Multiple barriers result in complicated success paths for fission product release.

• Robust passive design ensures adequate heat removal during off-nominal events.

• Arrangement of high-conductivity components ensures high thermal capacity.

• Atmospheric operation limits driving forces for release.

These are design implementations of defense-in-depth principles.  Defense-in-depth was also 
applied to the analytical basis of the maximum credible accident, by incorporating risk insight 
from the PRA (Chapter 24) to add further conservatism to an already conservative event 
analysis methodology described further in this chapter. 
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Safety and operational goals 

The safety and defense-in-depth principles describe the underlying safe design philosophy that 
drove the design of the Aurora.  The safety goal provides a high-level target for evaluating the 
safe design and operation of the reactor, as guided by these principles. 

The safety goal of the Aurora is to control the release of radionuclides to minimize the risk to 
the public and the environment.  This goal is achieved by maintaining fuel integrity, which is 
the primary contributor to radionuclide release.  Fuel integrity is maintained by ensuring the   
fuel stays below a safety limit of 1200 C, the temperature at which fuel melting occurs.  

For investment protection and defense-in-depth purposes, the Aurora is operated with 
significant margin below the safety limit.  This margin ensures that the system is not damaged 
during normal operations or off-normal events.  The primary operational challenge is damage to 
the reactor cell cans; therefore, an operational goal is specified to maintain reactor cell can 
integrity.  Cell can integrity is maintained by limiting the total time at temperatures greater 
than 720 C, a conservatively defined temperature where fuel-steel eutectic formation may 
begin, as described in Section 5.3.2. 

Because the operational limit is substantially lower than the safety limit, the safety analysis 
modeling can be evaluated against the operational limit, and, if the operational limit is not 
exceeded, both the operational and safety goals are satisfied.  The safety and operational goals, 
along with associated limits, are summarized in Table 5-1 and described in more detail in the 
following sections. 

Table 5-1:  Safety and operational goals and metrics for the Aurora 

Type Goal Limit 
Safety Control release of radionuclides by maintaining fuel integrity Tfuel < 1200 C 
Operational Maintain reactor cell can integrity by keeping fuel-steel 

temperatures within time-temperature limits 
Tfuel < 720* C 

*Onset of eutectic formation is conservatively defined to begin at 720, but is
very slow if it occurs at all at these temperatures, and no cliff-edge effects
occur

5.3.1 Safety goal: control release of radionuclides 

The risk to the public and the environment is minimized by controlling dose.  Dose is 
determined by the total amount of radionuclides released and the atmospheric dispersion 
parameters.  Because the latter is influenced by conditions external to the Aurora, the safety 
goal of the Aurora is to control the release of radionuclides by maintaining fuel integrity. 

The fuel matrix is the first barrier to the release of fission products.  At low burnups (< 1 at.%), 
the vast majority of fission gases are retained within the fuel matrix.  At higher burnups, pores 
created by fission gases begin to interconnect and provide release pathways into the plenum.  
This is discussed further in Chapter 2.  The safety limit is set such that the fuel temperature 
remains below the melting (solidus) temperature of 1200 C.  Fuel melt is to be avoided in the 
Aurora because the fuel significantly loses its capability to retain fission products upon melting.  
Because the melting (solidus) temperature is more than 400 C higher than the onset of eutectic 
formation, this safety limit is always bounded by the operational limit. 
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5.3.2 Operational goal: maintain reactor cell can integrity 

As described in the previous section, preventing fuel melt ensures the retention of the vast 
majority of fission products within the fuel matrix.  The small amount of fission products that 
are not retained within the fuel matrix, primarily fission gases and volatile fission products that 
escape into the plenum, are retained by the reactor cell cans.  Because the quantity of 
radionuclides is so much smaller, preventing the release of these fission products is 
substantially less consequential than maintaining fuel integrity. 

The integrity of reactor cell cans may be challenged by mechanical, thermal, and irradiation 
effects.  The reliability of a barrier to the release of radioactive materials “depends on the 
inherent strength of the materials relative to the potentially applied loading” [34].  It is worth 
noting that the thickness of the cell cans is more than four times thicker than the cladding used 
in Mark-I, II, and III EBR-II fuel pins [35]. 

The similarity of the fuel and cell can thermal expansion and compliance of the fuel lead to 
negligible fuel-can mechanical interaction [27].  The main mechanisms for cell can rupture are 
related to plastic strain, which in a high burnup metal fuel system is due to an increase in gas 
pressure, not to fuel/metal mechanical interaction [34].  Contrary to fast reactors designed to 
achieve high burnup, plenum gas pressurization in the Aurora does not significantly stress the 
cell can, as pressure is expected to be less than 100 kPa. 

Fluences in the cell cans are on the order of 1022 n/cm2 (E > 0.1 MeV), and displacement damage 
is estimated at less than 15 dpa [36].  For comparison, in EBR-II, several hundred stainless-
steel 316 (SS316)-clad U-10Zr fuel pins were irradiated beyond 1023 n/cm2 (E > 0.1 MeV), and 
many pins were exposed to fast fluences greater than 1.5 × 1023 n/cm2 without failure [35].  At 
the low fluences seen in the Aurora reactor, typical irradiation-induced effects, including 
neutron-induced swelling, are not expected to significantly degrade the performance of the cell 
cans [37]. 

The combination of thick cell can, low plenum gas pressurization, and limited irradiation effects 
ensure that mechanical failure does not occur.  Therefore, the operational limit of interest for 
reactor cell can integrity is eutectic formation at the fuel-steel interface. 

Eutectic effects between steel and fuel have been analyzed at length, primarily during the 
Integral Fast Reactor program.  Effects caused by fuel-steel chemical interaction occur at 
elevated temperatures where interdiffusion occurs between the uranium component of the fuel 
and the stainless steel and begins to form a lower melting point eutectic.  Depending on the 
local burnup and fuel positioning, the fuel may or may not swell enough to contact the reactor 
cell can.  The present analysis conservatively assumes contact between the fuel and the reactor 
cell cans. 

The defined operational limit accounts for the temperatures reached at the fuel-steel interface, 
as well as the time at those temperatures.  The operational goal is satisfied if the cumulative 
eutectic formation does not breach the cell can.   

A correlation developed by Argonne National Laboratory (ANL) conservatively shows that this 
process may begin at 720 C but progresses slowly at low temperatures.  Operation at 720 C does 
not result in a cliff-edge effect, but for practical purposes, if the fuel-steel temperature remains 
below 720 C at all points during the event, no fuel-steel chemical interaction occurs, and the 
operational goal is satisfied.  More detail on fuel-steel chemical interaction is provided in 
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Chapter 2.  As described, eutectic may not form at 720 C in the Aurora design, and eutectic 
formation of interest may only exist if temperatures exceed 830 C for extended periods of time, 
but 720 C was defined as a conservative operating limit.     
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Analysis approach 

The approach to safety analysis for the Aurora seeks to show how the safety and defense-in-
depth principles are upheld by confirming the safety goal is satisfied during off-nominal events.  
The approach follows an event evaluation process that ensures a wide variety of possible 
challenges are considered, while ultimately focusing the analysis on the events of highest 
importance.  It accomplishes this by applying a methodology to consider the range of potential 
challenges posed by possible events, grouping these events together into event categories based 
on similar phenomenology of challenge, identifying which events in a category are bounding, 
and focusing analysis on these bounding events to ultimately designate a single MCA.  More 
formally, the event evaluation process applies the following steps to achieve both a wide-ranging 
yet ultimately focused analysis of the safety of the Aurora: 

1. Perform a literature review to understand the historical context and past challenges
considered for fission reactor systems, both those that have operated and those
proposed.  In the context of these past events considered, determine which events are
applicable and credible for the Aurora, and what, if any, new events specific to the
Aurora could exist.

2. Group these applicable and credible events together into event categories based on
similar phenomenology of challenge to safety and identify the bounding events in each
category that challenge safety.  Review this set of bounding events to determine whether
the bounding event in one category is also bounded by the bounding event in another
category, to develop a final set of overarching bounding events.

3. Focus the safety analysis on this final set of bounding events, ultimately identifying the
event that most challenges safety based on the single worst failure of an active
component or worst single cause of common cause failures, which is then designated the
MCA.

4. Show that the safety goal is satisfied for the MCA.

In essence, the event evaluation process funnels a large number of events and progressively 
screens, bounds, and analyzes events until reaching a single bounding event, which is 
designated as the MCA.  Figure 5-3 presents a visual representation of this funnel. 



Copyright © 2020 Oklo Inc., all rights reserved  250 

II.05 Transient analysis

OkloPower-2020-PartII-NP, Rev. 0 

Figure 5-3:  Visual representation of the event evaluation process 

Step 1 in the event evaluation process is discussed in Section 5.5.1 of this chapter, where the 
historically-considered events from key references are presented and evaluated for applicability 
and credibility, and events unique to the Aurora are also discussed.  The possible and credible 
events for the Aurora are then grouped together in step 2 into event categories based on similar 
challenge phenomenology, and bounding events are identified for each category and across 
categories, in Section 5.5.2.  A detailed discussion focusing on the computational modeling and 
simulation of the identified bounding events, step 3, is then presented in Section 5.6.  This 
discussion includes a description of the simulation model used and an evaluation of the results 
of the safety simulations to show satisfaction of the safety goal for the MCA (step 4).  The 
Aurora design bases, which are system characteristics that ensure safe operation, are described 
as part of this analysis (these descriptions are repeated from their introduction in Chapter 2).  
Finally, the analysis is summarized in the context of the fundamental safety functions of a 
nuclear reactor. 
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Initiating event selection 

5.5.1 Initial event identification and applicability and credibility review 

The event evaluation process begins with an evaluation of operating experience and literature 
as well as utilizing phenomenological event categorization, as in NUREG 0800, in order to 
determine applicability and credibility, and ultimately to identify the maximum credible 
accident (MCA).  Credibility in this sense is deterministic although risk insights are useful for 
adding defense-in-depth.  This approach avoids excessive reliance on a PRA without significant 
operational data.  Credibility is based on whether something is physically, fundamentally, or 
mechanistically possible.  Credibility is also determined through the lens of the MCA.  The 
historical basis for the MCA as described in 5.1.1 is to analyze any plausible single failure as 
well as any single initiating event to cause a common set of failures, even if extreme.  Oklo has 
utilized PRA insight to add further defense-in-depth to this very conservative MCA analysis, as 
described in these sections.   

While the Aurora is the first commercial reactor of its type, much insight can be gained by 
considering the safety challenges that have been analyzed and encountered by previous 
reactors.  Accordingly, the development of the possible initiating events for the Aurora began 
with a systematic review of relevant operating experience and literature describing the history 
of reactor accident evaluations, including all of the following types of resources: 

• Generic events to all nuclear reactors

• Metal-fueled fast reactor events and operating experience

• Light water reactor events

• Compact reactor operating experience and analytical methods

• Review expert opinion on similar conceptual designs

Of course, not all resources had the same relevance: the discussion presented here will focus on 
those sources that were deemed most useful in ultimately developing the list of possible 
initiating events for the Aurora.  Two reactor categories stood out in their usefulness, whether 
in terms of technological similarity to the Aurora or their depth of analysis history and 
regulatory experience: metal-fueled fast spectrum reactors, and LWRs. 

5.5.1.1 Metal-fueled fast spectrum reactors: the General Electric PRISM 

The first category of reactor that has notable correspondence to the Aurora is that of metal 
fueled fast spectrum reactors.  In this reactor category, focus is presently placed on the PRISM 
sodium-cooled fast reactor from General Electric (GE).  Its development began in the 1980s as 
part of the Advanced Liquid Metal Reactor program funded by the U.S. Department of Energy.  
In 1987, GE developed what was known as a Preliminary Safety Information Document (PSID), 
which contained both a detailed system description as well as an accident analysis [38].  This 
document, submitted to the NRC in the late 1980s, is publicly available and is a useful resource 
for evaluating the transient analysis of a reactor that possesses similarities in terms of core 
(including fuel) materials and operating spectrum to the Aurora.  

The PRISM PSID accident analysis grouped initiating events into the following categories: 
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• Reactivity insertion

• Undercooling

• Local faults

• Sodium spills

• Fuel handling and storage accidents

• Other

The events considered by the PRISM PSID in each of these categories are subsequently 
reviewed, and their applicability and credibility for the Aurora design are evaluated. 

5.5.1.1.1 Reactivity insertion 

Only one event is considered in the reactivity insertion category in the PRISM PSID: an 
uncontrolled single rod withdrawal at power.  The PRISM reactor uses control rods to manage 
reactivity letdown compensation with fuel depletion, and thus the control rods are present in 
the core during power operations.  The analyzed event has a single control rod (of the highest 
reactivity worth) withdrawing at the nominal rod movement speed at the beginning-of-cycle 
core configuration, starting with the reactor at 100% nominal power.  The reactor response is to 
trip once 115% power is reached, at which point the other control rods (besides the 
malfunctioning rod) are inserted into the core and normal shutdown cooling commences. 

The Aurora does not use rods for fuel depletion reactivity compensation, instead incorporating 
slow-moving control drums for this purpose.  The Aurora uses shutdown rods, which are 
positioned fully withdrawn from the core during normal operation, to achieve reactor 
shutdown.  Thus, because a rod removal event cannot cause a reactivity insertion at full power, 
the corresponding event for the Aurora is a control drum rotation malfunction.  Conservatively, 
the control drum rotation malfunction event has been analyzed with the rotation speed of the 
drum  at the maximum speed that the motors are capable of rotating, higher than necessary for 
properly compensating for fuel depletion.  Chapter 2 discusses these design features in more 
detail. 

Given that the control drums, even at maximum rotation speed, add far less reactivity per 
second to the Aurora core than the control rods of the PRISM reactor, the reactor power of the 
response of the Aurora is much more benign.  The very low nominal reactivity worth that must 
be added per second on average is due to the very low power density, and thus very slow fuel 
depletion rate, of the Aurora. 

5.5.1.1.2 Undercooling 

In the undercooling event category, again only one event is analyzed for PRISM: loss of normal 
shutdown cooling.  In this event, while the reactor is shut down and only decay heat is 
generated, the nominal heat removal pathway through the intermediate heat transport system 
is lost, and decay heat removal is subsequently accomplished only by the reactor vessel 
auxiliary cooling system (RVACS).  The RVACS is a natural-circulation system where air from 
the environment is routed down through flow channels directly next to the reactor vessel, 
removing heat directly from the vessel wall and exhausting back to the environment. 



Copyright © 2020 Oklo Inc., all rights reserved  253 

II.05 Transient analysis

OkloPower-2020-PartII-NP, Rev. 0 

This event proceeds similarly in the Aurora.  If the nominal heat removal pathway through the 
power conversion system is lost, decay heat removal occurs off the surface of the module shell, 
which is the outermost surface of the structures that surround the Aurora core.  The key 
difference for the Aurora compared with PRISM is that a specially designed RVACS cooling 
system is not necessary to remove the small amount of decay heat being generated; instead, the 
mere presence of some residual heat rejection due to natural convection off the module shell 
surface is sufficient. 

5.5.1.1.3 Local faults 

The local faults considered in the PRISM PSID are sub-categorized into: (1) Increased heat 
generation local faults, and (2) Reduced heat removal local faults.  These local fault sub-
categories mirror those presented in the PSID for the global faults discussed in 5.5.1.1.1 and 
5.5.1.1.2.  The specific local faults that are described in the increased heat generation sub-
category are enrichment error (placing an assembly with a higher enrichment than desired into 
a wrong loading location, leading to greater heat generation than expected) and oversized fuel.  
The reduced heat removal local faults include flow blockages, as well as fuel element bond 
defects. 

The Aurora core utilizes fuel with the same enrichment in every position: as such, an 
enrichment error due to fuel misloading is not possible.  Oversized fuel in the Aurora is 
minimized by the quality assurance program applied to the fuel fabrication; nonetheless, the 
response to oversized fuel would be more benign due to the lower power densities in the Aurora 
relative to PRISM.  Flow blockages due to foreign object intrusion are not possible in a heat pipe 
cooled reactor, since each heat pipe is a self-enclosed unit of working fluid evaporation and 
condensation that is significantly phenomenologically distinct from a large primary coolant 
system, and each heat pipe is tested before installation.  Fuel element bond defects are also 
limited for the Aurora, since the fuel is large and the gaps that are occupied by the bond sodium 
are also large, helping to ensure effective bond distribution all around the fuel. 

5.5.1.1.4 Sodium spills 

The single event considered in PRISM’s sodium spills category is a leak from the PRISM’s 
primary sodium cold trap.  The sodium cold trap contains 1,000 gallons (approximately 4,000 
liters) of irradiated liquid sodium, which during this event is entirely released to the floor of the 
enclosing vault that holds the trap.  Catch pans serve to help limit the initiation of sodium fires.  
The resulting dose at the site boundary is then calculated due to both sodium activation as well 
as a minor amount of circulating fission products and transuranics present. 

The Aurora does not contain a sodium cold trap as it does not incorporate large volumes of 
flowing sodium requiring cleanup.  The only sodium present in the Aurora is a relatively small 
volume of sodium used as a thermal bond in each reactor cell, on the order of a few liters per 
cell.  This results in a much smaller total sodium inventory, as well as an inventory that is 
segmented into volumes enclosed by individual barriers.  In addition, the reactor cells are 
located inside an inert environment of the capsule and module shell enclosures, providing 
additional barriers that provide protection from exposing the bond sodium to reactive 
materials.  All of these design features of the Aurora serve to significantly differentiate the 
response of the Aurora to a reactor cell can sodium leak from that of the PRISM reactor’s 
sodium cold trap spill event and render sodium spills not applicable and credible. 
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5.5.1.1.5 Fuel handling and storage accidents 

For the PRISM fuel handling and storage accidents, the only event analysis presented is for a 
cover gas release from a fuel transfer cask.  The PRISM reactor uses a sealed, shielded, 
passively-cooled cask to serve as the transport container for spent fuel following its removal 
from the reactor vessel.  During a fuel removal operation, the transfer cask is sealed first to the 
reactor vessel fuel transfer port (to receive used fuel from the reactor vessel), and then 
subsequently to the adapter port at the fuel cycle facility (the PRISM plant design includes an 
onsite fuel processing facility).  The analyzed event includes a failure of a total of five fuel pins 
located in one of the three fuel assemblies present in the cask, with these five failed pins 
releasing their fission gas and volatile fission product inventory to the transfer gas volume, as a 
result of the increased temperatures these pins experience due to the limited passive heat 
removal provided by the cask.  This initial pin failure is then coupled with a failure of the 
transfer cask’s gate valves to seal, resulting in a slight leakage of radioisotopes from the cask’s 
inner volume to the room where the transfer cask is located. 

The Aurora does not refuel since the initial fuel load is designed to last the entire operating life 
of the core.  Fuel handling during initial loading does not pose any safety challenge associated 
with radionuclide release since no radionuclides are present before operation commences.  
Defueling at end of life will be accomplished via a transfer machine similar in concept to that of 
PRISM.  

5.5.1.1.6 Other 

In the “Other” category, the only event presented is a postulated cover gas release accident, 
which consists of the non-mechanistic failure of a pipe or valve that leads into the reactor 
vessel.  The equilibrium concentration of noble gas fission products from two failed fuel pins 
that are assumed present in the reactor vessel cover gas is then released, as well as the noble 
gas fission products released from a single additional pin which is assumed to fail non-
mechanistically at the time of the cover gas release. 

Since the Aurora is not a sodium-cooled fast reactor, instead using heat pipes as the mechanism 
for removing heat from the fuel and transferring the heat to the secondary system, it does not 
possess a cover gas volume where fission gases from possible fuel pin failures would collect.  The 
Aurora has several barriers to fission gas release:  

• The fuel itself, which operates at a low enough burnup that most fission gases are
retained in the fuel matrix.

• The reactor cell can, which is much thicker and sturdier than the very thin cladding that
surrounds the PRISM fuel.

• The capsule, which is a stainless-steel container that encloses the reactor and reflector
cells, shielding materials, and the heat exchanger system.

• The module shell, which is a stainless-steel container that encloses the capsule and
additional shielding materials.

As a result, no single barrier failure would result in a release of radioactive material for the 
Aurora. 
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5.5.1.2 Light water reactors 

The second category of reactors with a useful and relevant depth of safety analysis experience is 
that of large LWRs.  While many of the characteristics of LWRs are significantly different from 
those present in the Aurora, the extensive operating and regulatory experience gained with 
LWRs, together with the fact that LWRs and the Aurora are both nuclear fission systems, 
means that much can still be learned about reactor safety challenges to the Aurora by reviewing 
some of the more relevant events considered for large LWRs.   

An excellent reference for the transient events considered in large LWR safety analysis is 
Chapter 15, “Transient and accident analysis,” of NUREG-0800.  NUREG-0800 presents a 
selection of events that LWRs are expected to analyze as part of their FSAR.  NUREG-0800 
groups events that challenge the safety of LWRs into the following seven categories based on 
the type of challenge they present to the plant: 

1. Increase in heat removal by the secondary system 

2. Decrease in heat removal by the secondary system 

3. Decrease in reactor coolant system (RCS) flow rate 

4. Reactivity and power distribution anomalies 

5. Increase in reactor coolant inventory 

6. Decrease in reactor coolant inventory 

7. Radioactive release from a subsystem or component 

Some of these categories are more relevant to the Aurora than others: for example, since both 
the Aurora and LWRs are fission chain reacting systems, the safety challenges associated with 
reactivity and power distribution anomalies in LWRs can be considered to determine whether 
the Aurora will be challenged by similar phenomena.  Some categories, however, are of less 
direct relevance to the Aurora, namely those that deal with an increase or decrease in the 
reactor coolant inventory: since the Aurora is cooled by an array of sealed, independent heat 
pipes, it is not susceptible to changes in the primary system reactor coolant inventory; indeed, 
the very concept of a singular ‘primary system’ is not applicable.  In the following sections, the 
events in the more relevant categories are reviewed to illustrate the types of challenges 
typically considered for LWR safety analysis that have relevance to the Aurora.  Events for 
PWRs are discussed since these reactors, like the Aurora, have a secondary system with a 
turbine for generating useful work from heat energy; in contrast, in boiling water reactors 
(BWRs), the primary coolant system directly turns the turbine to generate electricity. 

5.5.1.2.1 Increase in heat removal by the secondary system 

Events that fall into the “increase in heat removal by the secondary system” for PWRs (as 
presented in NUREG-0800) include any of the following: 

• Decrease in feedwater temperature 

• Increase in feedwater flow 
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• Increase in steam flow

• Inadvertent opening of a steam generator relief or safety valve

• Steam system piping failure

5.5.1.2.1.1 PWR event description 

The decrease in feedwater temperature event for a PWR typically occurs when a feedwater 
heater is bypassed or inoperable, such that the feedwater returned to the steam generator is at 
a lower temperature than expected.  The increase in feedwater flow event can be caused by the 
full opening of a feedwater control valve due to a control system malfunction or operator error.  
The decrease in feedwater temperature event typically bounds the increase in feedwater flow 
event in terms of the amount of increased heat removal by the secondary system from the 
primary system.   

An increase in steam flow event can be caused by excessive turbine loading from an operator, or 
a malfunction in the steam dump control or turbine speed control.  The effect of these 
secondary-side events on the primary system is to cause fluid of lower temperature to enter the 
reactor core than expected, causing a reactivity insertion and associated power increase due to 
the negative net temperature reactivity coefficient these designs operate with. 

The inadvertent opening of a steam generator relief or safety valve causes a depressurization in 
the secondary system, which causes a short-lived increase in heat removal from the primary 
coolant system.  A steam system piping failure also similarly causes a short-term increase in 
heat removal from the primary coolant system, but to a greater degree than in the inadvertent 
opening of a steam generator relief or safety valve.  In contrast to the first three “increase in 
heat removal by the secondary system” events, these events have a short period of highly 
increased heat removal, followed by a reduced amount of heat removal over a longer timeframe.  
However, the initial high heat removal time period dominates the event response of the PWR 
system, hence why these events are placed in the “increase in heat removal by the secondary 
system” category. 

5.5.1.2.1.2 Aurora analysis 

The Aurora does possess a secondary system for heat removal, though it is very different from 
those present for PWRs.  However, while the Aurora may thus experience events in the 
“increase in heat removal by the secondary system” category, the impact of these events on the 
safety of the Aurora is markedly different that the impact for PWRs.  This is due to the 
difference in operating neutron spectrum between the two designs, as well as the difference in 
how heat is removed from the fuel. 

In a PWR, the primary coolant (high pressure water) serves two roles:  (1) to remove heat from 
the fuel (via convective heat removal off the fuel cladding surface), and (2) to moderate (slow 
down) the neutrons created by the fission chain reaction in the nuclear fuel.  As the moderator 
density increases, its effectiveness at slowing down neutrons also increases, resulting in more 
thermal neutrons and increasing the number of fissions that result from these thermal neutrons 
reentering the fuel and getting absorbed.  The increase in fissions means more heat is generated 
by the fuel; the reactor power increases as a result of the moderator temperature decreasing; 
the reactor thus possesses a negative moderator temperature coefficient of reactivity.  The 
increase in power with reduced coolant temperature drives the transient response of the system 
to the event; while the lower temperature of the primary system coolant does very briefly 
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increase the amount of heat removal from the fuel, this increased heat removal is outweighed by 
the increased power produced by the fuel due to the increased neutron moderation.  As such, the 
temperature of the fuel increases during this event, and a challenge to safety exists for the 
PWR. 

However, the Aurora operates in a fast neutron spectrum: neutrons born in fission slow down 
only slightly before causing fission in the fuel.  This is due to the absence of moderating 
material in the Aurora core: unlike an LWR, which has an abundance of light (low atomic mass) 
elements present in its core, mainly in the form of hydrogen in water, the Aurora core is chiefly 
composed of metals, including the U-10Zr fuel, the stainless-steel structural materials, and the 
sodium bond.  Additionally, the Aurora has no primary coolant system: instead, a series of heat 
pipes (one per reactor cell) passively transfers heat from the fuel to the heat exchanger system 
via evaporation and condensation of a working fluid sealed inside each heat pipe.  The working 
fluid in the heat pipe is almost entirely vapor, save for a very small amount of liquid in the 
porous metal wick located in the inside of the heat pipe.  As the very low density heat pipe 
working fluid does not significantly affect neutrons present in the system, the increase in 
evaporation and condensation rates that are caused by an increase in heat removal by the 
secondary system essentially have no effect on the reactor power. 

As a result, the primary effect of an increase in heat removal by the secondary system is to 
remove more heat from the fuel than is being generated by fission, which causes a reduction in 
fuel temperature.  A reduction in fuel temperature is an improved state for the safety of the 
system; it is not safety-challenging, in contrast to the response for PWR systems15. 

In summary, for the Aurora, events involving an increase in heat removal by the secondary 
system are not challenging for the safety of the system, which stands in contrast to the events 
considered for PWRs. 

5.5.1.2.2 Decrease in heat removal by the secondary system 

Events that fall into the “decrease in heat removal by the secondary system” for PWRs in 
NUREG-0800 include any of the following: 

• Loss of external load with and without loss of nonemergency alternating current (AC)
power

• Turbine trip

• Loss of condenser vacuum

• Main steam isolation valve closure

• Steam pressure regulator failure

• Loss of normal feedwater flow

15 While a reduction in fuel temperature in the Aurora will subsequently introduce positive reactivity, the 
reactor must ultimately stabilize at the same average temperature as before the transient, since it was at this 
initial average temperature that the system was operating at steady-state with keff = 1. 
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• Feedwater system pipe break inside and outside containment

5.5.1.2.2.1 PWR event description 

In the loss of external load event, a postulated electrical disturbance significantly reduces the 
load placed on the generator.  Immediate fast closure of turbine control values results, which 
causes a reduction in steam flow, in turn resulting in higher secondary-side temperatures and 
thus higher primary coolant temperatures.  Two versions of this event are considered: one with 
nonemergency offsite AC power available, and one with a loss of offsite nonemergency AC 
power.  If AC power is available, the station auxiliary systems (in particular, the reactor coolant 
pumps) can continue to operate; if nonemergency AC power is lost, the reactor coolant pumps 
will trip, resulting in a primary coolant system flow coastdown in parallel with the turbine trip. 

A PWR turbine trip leads to a similar situation as a loss of external load with continued AC 
power, except that turbine stop valves are closed instead of turbine control valves; the turbine 
stop valves close more quickly than turbine control valves, which causes a more bounding 
transient.  The loss of condenser vacuum is an event that can cause a turbine trip.  If steam 
dump to the condenser is not included in the pure turbine trip analysis, then the loss of 
condenser vacuum event is equivalent to the turbine trip event analysis.  The closure of main 
steam isolation valves also causes a turbine trip and is bounded by the turbine trip analysis, as 
is the failure of a steam pressure regulator. 

A loss of normal feedwater flow may come from a number of possible sources, including pump 
failures, valve malfunctions, or loss of offsite power.  Loss of feedwater flow decreases the 
amount of heat removed from the secondary system, which results in a reduction of heat 
removal from the primary coolant system. 

A feedwater system pipe break results in a loss of secondary coolant inventory, and depending 
on the size of the break, may result in either a reactor coolant system cooldown (due to the 
energy discharged by the break) or a reactor coolant system heatup.  For the case where the 
primary system experiences cooldown, this event is equivalent to the “steam system piping 
failure” considered in Section 5.5.1.2.1, so only the case where the break causes a reactor 
coolant system heatup is analyzed in the “decrease in heat removal by the secondary system” 
category.  This event is challenging for PWRs, since in addition to the reduction in feedwater 
flow (which causes temperatures in both the secondary and primary systems to rise), the fluid 
inventory in the secondary system also drops, meaning that the system is not available for 
decay heat removal. 

5.5.1.2.2.2 Aurora analysis 

The initiating event of loss of external load is applicable to the Aurora, as the Aurora’s 
secondary system includes a turbine attached to a generator for the production of 
electricity.  However, the phenomenology following the initial event would differ: the Aurora’s 
secondary system moves to a turbine bypass heat removal mode if external load decreases.  In 
the turbine bypass mode, heat removed from the heat pipes by the heat exchanger system is 
rejected to the ultimate heat sink without passing through the turbine.  Additionally, since the 
Aurora removes heat from the fuel via passive-acting heat pipes and not a primary coolant 
system, no primary pump coastdown would occur, and furthermore, the Aurora does not rely on 
offsite AC power at all.  The turbine bypass valves employed by the Aurora are the same 
whether the turbine trip occurs due to a loss of external load or another reason, so there is no 
differentiation made in the Aurora’s safety analysis between a loss of external load event and a 
turbine trip event. 
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The Aurora’s secondary system rejects its waste heat to the outside environment via an air-
cooled radiator or cooler, also known as the ultimate heat sink (UHS).  A malfunction in this 
radiator will result in a reduced amount of heat rejected from the secondary system to the 
outdoor air, and as temperatures rise in the secondary system in response to this reduction in 
heat rejection, a reduced amount of heat will be removed from the heat exchanger system that 
is coupled to the heat pipes, and as such a reduced amount of heat will be removed from the 
reactor system.  A similar situation will occur if the flow rate of the secondary system fluid 
decreases due to a malfunction of the pump. 

These events will be bounded by a pipe break event in the secondary system, both in terms of 
the speed at which heat removal decreases, and in terms of the thermal mass present in the 
system that is available to receive the heat generated in the core.  In contrast to the event 
categorization employed for PWRs, in the Aurora, any secondary system pipe break (regardless 
of size) is considered a decrease in heat removal by the secondary system.  This is because, as 
discussed in Section 5.5.1.2.1.2, the phenomenology of a large secondary system pipe break for a 
PWR leads to a short-time increase in heat removal that dominates the transient response due 
to the negative moderator temperature coefficient.  For any pipe break in the Aurora, this short-
time increase in heat removal only serves to reduce fuel temperature slightly prior to the 
decrease in heat removal dominating the transient response.  Secondary system pipe break 
events are best described for the Aurora as a decrease in heat removal by the secondary system, 
as it is this decrease in heat removal that dominates the transient response. 

5.5.1.2.3 Decrease in reactor coolant system flow rate 

The events that cause a decrease in the reactor coolant system flow rate in PWRs are separated 
into the following categories in NUREG-0800: 

• Partial loss of reactor coolant flow

• Complete loss of reactor coolant flow

• Reactor coolant pump rotor seizure

• Reactor coolant pump shaft break

5.5.1.2.3.1 PWR event description 

A partial loss of reactor coolant flow may be caused by a mechanical or electrical failure in a 
reactor coolant pump motor, a disruption of electrical power to the motor, or a motor trip caused 
by electrical anomalies in this motor power supply.  A complete loss of reactor coolant flow 
necessarily requires a disruption to all reactor coolant pumps and may be caused by a 
simultaneous loss of electrical power to all pump motors.  For the partial loss of reactor coolant 
flow, analysis is performed with and without the effects of a loss of offsite power, which is 
considered a potential consequence of the event due to the disruption of the electrical grid that 
results from the event.  The primary impact of this loss of offsite power is the coastdown of the 
other, operating reactor coolant pumps once the loss of offsite power occurs following the initial 
partial loss of reactor coolant flow.  In the complete loss of reactor coolant flow event, the 
coastdown of all reactor coolant pumps occurs simultaneously.  Thus, the primary difference 
between the partial loss of reactor coolant flow event (with subsequent loss of offsite power) and 
the complete loss of reactor coolant flow event is the timing of the pump coastdowns. 
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The reactor coolant pump rotor seizure and shaft break events are considered more severe than 
the complete loss of reactor coolant flow event, even though the seizure and shaft break only 
affect a single reactor coolant pump.  This is because the coolant flow through the loop of the 
affected pump is significantly and immediately reduced, relative to the more gradual coastdown 
seen for pump motor disruption events.  The rotor seizure event causes a greater initial 
reduction in coolant flow than the shaft break event, but the shaft break event permits a 
greater reverse flow through the affected loop later in the transient.  In both cases, the 
immediate flow reduction results in significantly increased primary coolant temperatures 
relative to the partial and complete loss of flow events. 

5.5.1.2.3.2 Aurora analysis 

The Aurora does not use a forced circulation coolant loop to remove heat from its nuclear fuel.  A 
series of self-contained, passively-acting, independent heat pipes serves as the heat transfer 
pathway for removing the heat generated in the fuel.  These heat pipes move heat very 
efficiently and can be described as “thermal superconductors.” As such, the phenomenology of 
heat removal is very different.  There are no concerns with flow reversal, pump coastdowns, and 
the complex interactions that occur as a result in PWR systems, as in the Aurora each heat pipe 
automatically matches the applied heat flux in its evaporator region to the removed heat flux in 
its condenser region. 

For the Aurora, the category of “decrease of reactor coolant system flow rate” cannot thus retain 
the same nomenclature.  Instead, the idea must be generalized somewhat, as the effect of 
interest is that heat removal from the fuel by the most direct method is being reduced.  The 
designation of “decrease of heat removal by the heat pipes” is used instead.   

In practice, such an event might occur for the Aurora is if a heat pipe wall were to fail; if the 
heat pipe ceases to be a sealed volume inside which the working fluid can evaporate and 
condense, it is no longer able to efficiently move heat in this way.  The failure of a heat pipe wall 
is expected to be very rare, since the heat pipe’s interior volume operates at low pressure (sub-
atmospheric).  Additionally, since each heat pipe is independent, a global reduction in the 
ability of all heat pipes to move heat is not considered credible.  Cascade failures have been 
shown in Oklo analysis not to be credible, as the heat pipes in the cells that surround the failed 
heat pipe can accommodate removing the additional heat without any issue.  As such, the only 
reasonable event in the decrease in heat removal by the heat pipes event category is a local 
fault where a single heat pipe experiences an enclosure failure. 

5.5.1.2.4 Reactivity and power distribution anomalies 

Events considered as part of the reactivity and power distribution anomalies category in 
NUREG-0800 for PWRs include the following: 

• Uncontrolled control rod assembly bank withdrawal from a subcritical or low power
startup condition

• Uncontrolled control rod assembly bank withdrawal at power

• Control rod misoperation (system malfunction or operator error)

• Startup of an inactive loop or recirculation loop at an incorrect temperature

• Inadvertent decrease in boron concentration in the reactor coolant system
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• Inadvertent loading and operation of a fuel assembly in an improper position

• Spectrum of rod ejection accidents

5.5.1.2.4.1 PWR event analysis 

PWRs use a combination of dissolved boric acid in the reactor coolant (also known as chemical 
shim) and occasional control rod assembly bank movements to manage reactivity letdown with 
fuel depletion.  Accordingly, most of the events in the “reactivity and power distribution 
anomalies” category feature occasions where these control methods remove more reactivity than 
is desired. 

The uncontrolled control rod assembly bank withdrawal from a subcritical or low power startup 
condition occurs when two rod banks with the maximum combined worth are withdrawn at the 
same time at the maximum withdrawal rate of the rod drive system while the reactor is critical 
and operating at very low power (relative power fraction of 10-9).  The reactor coolant system is 
assumed operating, but no steam generation is occurring on the secondary side since essentially 
no sensible heat is being added to the reactor coolant at such a low power.  No loss of offsite 
power associated with the event is assumed to occur, since the plant is not providing power to 
the grid under this condition. 

The uncontrolled control rod assembly bank withdrawal at power event similarly involves a 
removal of the two control rod banks with the combined maximum reactivity worth resulting in 
a positive reactivity insertion, but with some key differences from the low-power case.  The 
largest difference is that, at power, the peak fuel temperature is much higher than the low-
power case.  Accordingly, temperatures in the reactor coolant are also greater.  Additionally, 
steam is generated in the secondary system by the heat transfer from the reactor coolant at 
power.  These differences result in a very high sensitivity of the transient response to the rate of 
reactivity insertion, the assumed magnitude of the reactivity feedback coefficients, and the 
operating power at the time of the event, due to the interplay between the heat generation in 
the poorly-conducting oxide fuel, the heat removal from the fuel cladding via convection of the 
flowing primary system coolant, and heat removal from the reactor coolant by the secondary 
system.  The safety metric for the evaluation of these events is typically the minimum departure 
from nucleate boiling ratio (minimum DNBR, or MDNBR), which describes how close the 
coolant on the surface of the fuel rods is to reaching the condition where heat transfer from this 
surface rapidly decreases, which in turn further causes significant increases in cladding and 
fuel temperature leading to fuel failure and radioactive material release.  This makes reaching 
a departure from nuclear boiling a cliff edge effect where significant damage occurs when a 
DNBR of one is reached. 

5.5.1.2.4.2 Aurora analysis 

In contrast, the Aurora does not incorporate a flowing convective liquid as the primary heat 
removal mechanism from its fuel.  As such, the significant cliff edge effect associated with the 
DNBR is not applicable.  For the Aurora, fuel temperature is generally the safety metric of 
interest.  The phenomena associated with fuel temperature changes is much simpler than for 
calculating MDNBR.  No complicated turbulence or boiling models are required; instead, the 
safety response of the Aurora can be characterized by a simple heat balance driven by fission or 
decay heat generation in the fuel, and heat conduction away from the fuel.  This simpler 
phenomenology also leads to a more linear response in terms of the sensitivity of the safety 
metric to the input conditions applied or assumed.  The most limiting inputs can generally be 
determined by inspection: larger reactivity insertion rates at the highest operating power are 
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the most limiting events in the reactivity anomalies category for the Aurora.  This is in contrast 
to the need to search over all possible combinations of initial operating power, reactivity 
insertion rate, and reactivity coefficient magnitude to determine the most limiting response in a 
PWR.  

The Aurora does not incorporate control rods or chemical shim for reactivity letdown with fuel 
depletion, instead using three slowly rotating control drums for this purpose.  The Aurora 
incorporates three shutdown rods that are inserted to achieve reactor shutdown.  The shutdown 
rods are fully withdrawn and suspended above the core during normal operation.  Only a single 
rod is required to achieve shutdown at any temperature condition.  The shutdown rods are 
withdrawn, and the control drums are rotated to manage the rise to full operating temperature. 

As a result, applicable events for at-power uncontrolled reactivity insertions in the Aurora 
involve malfunctions in the rotation of the control drums.  The fission heat generation rate is 
the key driver of the system response and strongly influences the fuel temperature, which is the 
primary safety metric of interest.  The fuel temperature is highest at full operating power.  
Therefore, low power events are bounded by full power events. 

Control rod mis-operation events in PWRs involve one or more rods moving or displaced from 
normal or allowed control bank positions; this can involve events such as dropped rods and rods 
left behind when inserting or withdrawing banks.  The Aurora only has three shutdown rods, 
and rod withdrawal actions are only taken to perform reactor startup.  Each rod is withdrawn 
individually during startup.  If a rod gets left behind, the startup process cannot be completed.  
If a rod moves too far in a step during startup removal steps, the reactor temperature will 
increase more for that step than originally planned, but since this may only occur during reactor 
startup from zero power at cold temperatures, and due to the waiting period and the small 
maximum withdrawal step size, this reactor temperature increase is not challenging.  
Conversely, a single dropped rod simply results in a reactor shutdown for the Aurora. 

The other events considered for PWRs have no analogs for the Aurora.  The startup of a reactor 
coolant loop at an incorrect temperature cannot be analogized to the series of passively-acting 
heat pipes that operate as thermal superconductors to remove heat from the fuel.  The Aurora 
does not use chemical shim for reactivity letdown management, so there is no analog to an 
inadvertent decrease in the boron concentration in the reactor coolant system of a PWR.  The 
Aurora operates with all reactor cells at the same enrichment, so an inadvertent loading and 
operation of a fuel assembly in an improper position cannot occur.  And finally, the Aurora does 
not use control rods for reactivity holddown and does not possess a high-pressure in-core 
environment, so there is no analog to the range of rod ejection accidents considered for PWRs. 

5.5.1.2.5 Increase in reactor coolant inventory, decrease in reactor coolant inventory, and radioactive 
release from a subsystem or component 

The last three event categories presented in NUREG-0800 are: (1) increase in reactor coolant 
inventory; (2) decrease in reactor coolant inventory; and (3) radioactive release from a 
subsystem or component.  The first two event categories have no events that are relevant for the 
Aurora.  The Aurora has no reactor coolant system, and as such is not susceptible to increases 
or decreases in reactor coolant inventory. 

Events included in the “radioactive release from a subsystem or component” category include 
releases of effluents from either gaseous or liquid waste management systems, releases of 
effluents from storage tanks, and fuel handling accidents. 
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The Aurora has no gaseous or liquid waste management systems.  Indeed, the only circulating 
fluids present for the Aurora are the power conversion system working fluid and the air in the 
building.  The activation of these fluids is minimal: the entire activity of the secondary system, 
or the building air, is well below the limits of 10 CFR Part 20, “Standards for protection against 
radiation” (see Chapter 3, “Radioactive materials to be produced in operation”).  As such, none 
of these events are relevant for the Aurora. 

The Aurora does not perform refueling operations during its operating lifetime.  The fuel loaded 
at the beginning of life is designed to last the life of the core.  Accordingly, fuel handling 
accidents like those analyzed for LWRs, where a single assembly is assumed to drop such that 
the cladding of every fuel pin is breached and the radiological inventory present in the gap of 
each pin is subsequently released, are not directly applicable.  For final defueling, reactor cells 
are removed from the core independently, and multiple concurrent failures would have to occur 
for significant radionuclide release to occur for the Aurora during defueling: the fuel itself 
(where the majority of radionuclides are retained), the reactor cell can, and the defueling 
machine would all need to be compromised for this to occur, which is not credible. 

5.5.2 Identified Aurora applicable and credible events 

As a result of the first step of the event evaluation process, which included both a broad 
examination of events that challenged reactor safety for past and proposed reactors as well as a 
consideration of the unique aspects of the Aurora, the following set of event categories was 
developed.  Each Aurora event category groups applicable and credible events together based on 
a similar phenomenological challenge.  These event categories are analogous to those presented 
in NUREG-0800, adjusted for the unique design features of the Aurora.  The Aurora event 
categories are shown in Table 5-2, where they are compared to their analogs from NUREG-0800 

Table 5-2:  Comparison of NUREG-0800 event categories to those identified for the Aurora 

NUREG-0800 group Aurora group 
1. Increase in heat removal by the secondary system 1. Increase in heat removal by the secondary system
2. Decrease in heat removal by the secondary system 2. Decrease in heat removal by the secondary system
3. Decrease in reactor coolant system flow rate 3. Decrease in heat removal by the heat pipes
4. Reactivity and power distribution anomalies 4. Reactivity anomalies
5. Increase in reactor coolant inventory - 
6. Decrease in reactor coolant inventory - 
7. Radioactive release from a subsystem or component - 

As step 2 in the Aurora event evaluation process, the applicable and credible events that were 
identified for the Aurora in each category are discussed in the subsequent sections, bounding 
events for each category are identified, and bounding events across categories are identified for 
further, detailed analysis. 

5.5.2.1 Increase in heat removal by the secondary system 

The applicable and credible events identified for the “increase in heat removal by the secondary 
system” category are shown in Table 5-3.  Note that for the Aurora, the terms “secondary 
system” and “power conversion system” are synonymous. 

Table 5-3:  Events identified for the ‘increase in heat removal by the secondary system’ category 

Initial event System response Result 
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UHS fan controller 
overspeed failure 

UHS rejects more heat than desired 
Secondary system cold leg temperature decreases 
Fuel temperature decreases 
Power increases 

Safety not challenged 
Bounded by fan controller underspeed 
failure 

UHS controller fails 
to adjust for lower 
ambient air 
temperature 

UHS rejects more heat than desired 
Secondary system cold leg temperature decreases 
Fuel temperature decreases 
Power increases 

Safety not challenged, similar to UHS 
fan controller overspeed failure 
Bounded by controller failure to adjust 
for higher ambient air temperature 

Since the Aurora’s secondary system does not possess standalone heaters to reheat the cold leg 
return fluid to the heat exchanger, the only possible means of removing too much heat from the 
secondary system’s working fluid is related to the UHS heat exchanger (the radiator) 
experiencing a malfunction.  This malfunction can, broadly, take one of two forms:  (1) a 
controller failure that causes an overspeed in the air cooling fan that drives the ambient air 
through the UHS heat exchanger, thereby removing more heat than necessary; or (2) a 
controller failure that fails to adjust the fan speed to accommodate a decrease in ambient air 
temperature.  While the conditions that might cause the overcooling event are different, the 
location of the failure is the same, and so is the result: more heat is removed from the secondary 
system cold leg than desired. 

As discussed in Section 5.5.1.2.1.2, overcooling events are not challenging for the safety of the 
Aurora, due to the operating neutron spectrum and the use of heat pipes to remove the heat 
generated by the fuel and transfer it to the heat exchanger system, which in turn transfers it to 
the secondary system working fluid.  The primary challenge associated with overcooling events 
in LWRs is the positive reactivity insertion caused by the entrance of cooler primary system 
coolant into the core; this positive reactivity insertion occurs because the coolant also serves as 
the neutron moderator material in the core.  This injection of lower temperature primary 
coolant causes a power increase in the fuel, which can lead to a reduced DNBR.  This is because 
the coolant gets closer to reaching the point of departure of nuclear boiling, a cliff edge effect 
where significant fuel and cladding damage can result. 

In the Aurora, no moderating material is present, and no large volume of primary system 
working fluid exists in the core.  As additional heat is removed in an overcooling event, the fuel 
temperature initially decreases.  Although there will be power oscillations due to the decrease in 
temperature, the temperature will not increase enough to be of concern.  This is also true in the 
case of localized overcooling in the core.  Since fuel temperature is itself the primary metric of 
interest for safety evaluations, the safety of the system is not challenged due to this 
temperature decrease.  This remains true for all power operating conditions. 

As such, overcooling events are less challenging than events in the ‘decrease of heat removal by 
the secondary system’ category.  Focus is subsequently placed on the analysis of events in this 
bounding undercooling category for the Aurora. 

Note that secondary system large pipe break events are not included in the ‘increase of heat 
removal by the secondary system’ category for the Aurora, since, for the spectral and heat 
removal reasons mentioned above, the short time period of overcooling is not challenging for the 
system, and instead the longer-term loss of heat removal drives the transient response.  
Accordingly, these events are placed into the ‘decrease of heat removal by the secondary system’ 
category. 
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5.5.2.2 Decrease in heat removal by the secondary system 

The applicable and credible events identified for the “decrease in heat removal by the secondary 
system” category are shown in Table 5-4. 

Table 5-4:  Events identified for the ‘decrease in heat removal by the secondary system’ event category 

Initial event System response Result 
Turbine trip Turbine bypass valve closes 

Heat rejected from secondary system through 
UHS at a reduced rate 
Fuel temperature initially increases, causing 
power to decrease.  Fuel temperature returns to 
nominal while steady-state power is reduced to 
match new heat rejection rate. 

Brief period of fuel temperature 
increase.  Bounded by extended 
period of temperature increase 
associated with pipe break. 

Pump trip Flow coastdown slowly reduces heat removal 
Secondary system working fluid temperature 
increases 
Fuel temperature increases 
Power decreases 
Pump can be restarted in 30min or less, restoring 
cooling 

Temperature heatup in the fuel 
bounded by heatup from secondary 
system pipe break, which is both 
more rapid and has a much longer 
recovery time 

Ultimate heat sink 
malfunction 

UHS rejects less heat than desired 
Secondary system cold leg temperature increases 
Fuel temperature increases 
Power decreases 

Temperature heatup in the fuel 
bounded by heatup from secondary 
system pipe break, which is both 
more rapid and has a much longer 
recovery time 

Safety valve 
actuation 

Secondary system inventory decreases 
Heat removal by heat exchanger system from 
heat pipes is reduced 
Fuel temperature increases 
Power decreases 

Similar to but bounded by small 
secondary system pipe break, which 
will cause a larger reduction in 
inventory and has a much longer 
recovery time 

Pipe break Secondary system inventory decreases 
Heat removal by secondary heat exchanger from 
heat pipes is briefly increased, but subsequently 
significantly reduced 
Fuel temperature briefly decreases, then 
increases 
Power briefly increases, then decreases 

Can occur for various pipe and break 
sizes.  Brief period of fuel temperature 
decrease followed by longer period of 
fuel temperature increase.  Bounding 
fuel temperatures obtained during this 
event for this category. 

Events that cause a decrease in heat removal from the heat pipes by the secondary system 
bound the fuel temperature increase from the events discussed in the “increase in heat removal 
by the secondary system” category.  Reduced heat removal by the secondary system may occur 
due to the system taking the proper actions in response to external factors, such as loss of 
external load causing a turbine trip, or due to a malfunction or failure in the secondary system 
such as a pipe break. 

While many different possible events may drive this reduction in heat removal by the 
secondary, they ultimately only differ in terms of the magnitude of the heat removal reduction 
that occurs, the time period that elapses to reach this full reduction in heat removal, and the 
duration of the reduction in heat removal.  For example, for a representative configuration, 
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following a turbine trip the heat removed by the secondary system drops quickly to about 75% of 
the full power value for the short time required to reset the turbine.  The time required to reset 
the turbine is typically about 30 minutes given the small size of the turbomachinery.  Minor 
pump malfunctions, such as an erroneous pump trip, allow for quick recovery back to the 
nominal operating condition, also approximately 30 minutes.  For a pipe break, cooling will 
decrease to approximately zero of the full power value in a very short period of time, and the 
repair of the system could take an extended period of time, on the order of hours or days 
depending on the size of the break. 

As such, the bounding event for this category is one where all cooling capability is lost nearly 
instantaneously, and quick recovery is not possible.  The assumption of instantaneous and total 
loss of cooling is a very conservative assumption which does not allow for the coastdown of loss 
of cooling which is more realistic.  These outcomes are characteristic of significant failures, such 
as a large break in the cold leg or hot leg piping of the secondary system.  These are not 
analogous to small or large breaks in the primary system, which are of concern in light water 
reactors.  Thus, the large pipe break is the bounding event for the “decrease in heat removal by 
the secondary system” category.  This event is also referred to as a loss of heat sink.  For 
conservatism, the small period of initial increase in heat removal following a pipe break is 
neglected in the analysis of the event. 

5.5.2.3 Decrease in heat removal by the heat pipes 

Only one event is identified as applicable and credible in the “decrease in heat removal by the 
heat pipes” category, as shown in Table 5-5. 

Table 5-5:  Events identified for the 'decrease in heat removal by the heat pipes' category 

Initial event System response Result 
Single heat pipe fails 
due to 
manufacturing 
defect 

Fuel temperature in failed location increases Fuel temperature increase bounded 
by the bounding event in the 
'decrease in heat removal by the 
secondary system' event category 

The core of the Aurora is not convectively cooled by a large volume of coolant circulating in a 
forced flow loop: instead, it is cooled by an array of heat pipes, with one heat pipe cooling each 
reactor cell.  As such, no credible failure would challenge the heat removal capability of all heat 
pipes simultaneously; this multifold redundancy is one of the principal reasons for the selection 
of heat pipes as the mechanism for removing heat from the fuel.  A realistic failure is then 
limited to the failure of a single heat pipe.  The most credible failure mechanism is due to a weld 
failure that was not detected during initial manufacturing and testing as part of the quality 
assurance program applied to the heat pipes.  This weld failure could cause the sub-atmospheric 
sealed interior volume of the heat pipe to be significantly exposed to the external atmosphere, 
resulting in a degradation in heat pipe performance, potentially including total loss of function. 

Since this is a local failure limited to a single reactor cell, which provides about 1% of the heat 
transport from the reactor core, the consequences of this event are bounded by that of the 
limiting, global event in the “decrease in heat removal by the secondary system category”, the 
large secondary system pipe break. 

5.5.2.4 Reactivity anomalies 

The events identified in the “reactivity anomalies” category are shown in Table 5-6. 
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Table 5-6:  Events identified for the 'reactivity anomalies' event category 

Initial event System response Result 
Drum control failure 
resulting in a positive 
reactivity insertion 

Reactor power increases 
Fuel temperature increases 
Negative fuel temperature feedback coefficient 
reduces reactor power back to steady-state level 

Maximum physically possible rotation 
speed at full power results in 
bounding fuel temperatures obtained 
during this event for this category. 

Drum control failure 
resulting in a negative 
reactivity insertion 

Reactor power decreases 
Fuel temperature decreases 
Negative fuel temperature reactivity coefficient 
increases reactor power back to steady-state level 

Fuel temperatures observed in this 
event are bounded by those in the 
positive reactivity insertion drum 
control failure event. 

Rod withdrawal 
malfunction during low-
temperature startup 

Reactor power increases 
Fuel temperature increases 
Negative fuel temperature feedback coefficient 
reduces reactor back to zero power 

Fuel temperatures observed in this 
event are bounded by those in the 
positive reactivity insertion drum 
control failure event, since this rod 
withdrawal event may only occur 
during startup from low temperatures. 

The Aurora uses slow-rotating control drums to manage the reactivity letdown associated with 
fuel depletion.  The control drums are the only method by which, during power operations, 
reactivity may be inserted into the core.  Three shutdown rods are fully withdrawn during 
normal operation and positioned above the core and are inserted to shut down the reactor; 
insertion of only one out of three rods is needed to accomplish reactor shutdown under any 
operating condition. 

The cylindrical control drums span the axial length of the core, providing a uniform axial profile 
for neutron absorption and precluding the creation of axial flux shape distortions associated 
with using rods for reactivity letdown.  The interior volume of each drum cylinder is divided in 
two via an axial dividing plate, such that half of the drum consists of boron carbide absorber 
material and half consists of zirconium reflector material.  Rotating the absorber half into the 
core introduces additional negative reactivity into the system; rotating the absorber half out of 
the core introduces positive reactivity.  The critical configuration of the reactor has the drum 
absorbers rotated partially inward towards the core at the beginning of life.  All three drums are 
rotated simultaneously over life to remove their absorbers from the core and introduce positive 
reactivity that compensates for the reactivity decrease associated with fuel depletion. 

Accordingly, the drums are the system by which positive or negative reactivity may be added 
during power operations, and as such, are the mechanism by which this positive or negative 
reactivity may be added in an undesirable way in the case of a failure of the control 
system.  Undesirable reactivity additions at power may be of either positive reactivity or 
negative reactivity: if the control system erroneously sends a signal to rotate the drum absorber 
inward, then negative reactivity is added to the system.  Conversely, if the control system 
erroneously sends a signal to rotate the drum absorber outward faster than necessary to 
compensate for fuel depletion, positive reactivity is added to the system. 

The nominal outward rotation of the drum absorbers is designed to accommodate the reactivity 
letdown due to fuel depletion, and since the Aurora experiences only a few hundred pcm 
decrease in reactivity over its 20 year operating life with a very linear profile.  This corresponds 
to a very slow nominal average drum rotation rate of .  The drum 
rotation motors are attached to transmissions that are geared to provide this slow rate on 
average (by applying slightly larger steps at discrete intervals), but are also designed to allow 

{ }
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faster rates that are used for initial startup.  The transmission is geared such that the 
maximum rate for drum insertion is 0.01 deg/sec, which is still very slow.  At this rate, rotating 
the entire drum absorber 180 degrees out of the core starting from a position of full absorber 
insertion takes 5 hours. 

The spectrum of reactivity anomalies that might be encountered in the Aurora while at power is 
therefore differentiated only by the rotation speed and direction of an undesired drum 
rotation.  Faster drum rotation speeds, up to the mechanical maximum of 0.01 deg/sec in either 
direction, result in faster rates of either positive or negative reactivity insertion, depending on 
the direction of rotation.  Adding negative reactivity via drum absorber insertion results in 
reduced fuel temperatures, and consequently a less challenging state.  Thus, negative reactivity 
insertion events are bounded by positive reactivity insertion events.  The most bounding 
positive reactivity insertion event occurs when all three drums rotate absorbers-outward at 
their mechanically limited maximum rate of 0.01 deg/sec with the reactor at full power and at 
the nominal operating temperature.  This event results in the highest fuel temperatures 
encountered in the reactivity anomaly event category, and as such it is the bounding event in 
this category.  Since the positive reactivity insertion event results in a reactor power increase, 
which then causes the fuel temperature increase, it is also referred to as a transient overpower. 

The only unique reactivity anomaly event for the Aurora that cannot occur during full power 
operation is a shutdown rod withdrawal malfunction, which may occur during startup from low 
temperatures and zero power.  The shutdown rods are positioned outside the core while 
operating at full power, and the control drums are used to startup the reactor at hot 
temperatures.  However, since this event can only occur at low temperatures and zero power, 
and the maximum possible worth a single rod may add during withdrawal is limited by the 
maximum withdrawal step size, the potential fuel temperature increase associated with a rod 
withdrawal malfunction is not challenging when compared to the transient overpower event, 
which occurs at full operating temperature and full power.  Thus, the transient overpower 
remains the bounding event in the ‘reactivity anomalies’ category. 

Note that, unlike the similar category presented in NUREG-0800, events where power 
distribution anomalies occur are not included in the reactivity anomalies category for the 
Aurora.  Significant power distribution anomalies are precluded by the Aurora’s design and 
operating characteristics, including the small size of the Aurora core, its operation in the fast 
spectrum, and the very long mean free path of neutrons in the core.  The Aurora shuts down if a 
single shutdown rod is inserted into the core, meaning that no power distribution anomaly 
results.  As a result of these characteristics and the low reactivity worth of its drums, 
significant radial power asymmetries cannot be caused by the spurious rotation of a single 
control drum. 

5.5.3 Summary of bounding events 

All events in the increase in heat removal by the secondary system category are bounded by the 
events in the decrease in heat removal by the secondary system category.  Additionally, the 
single event in the decrease in heat removal by the heat pipes category is bounded by the 
bounding event in the decrease in heat removal by the secondary system category.  The 
bounding event in the decrease in heat removal by the secondary system category was identified 
as a large break in the secondary system piping.  This event, also referred to as a loss of heat 
sink event, is the bounding event that covers all the event categories involving events initiated 
by heat balance irregularities. 



Copyright © 2020 Oklo Inc., all rights reserved  269 

II.05 Transient analysis

OkloPower-2020-PartII-NP, Rev. 0 

The remaining event category, reactivity anomalies, includes events that are initiated by 
reactivity insertions (either positive or negative).  The bounding event in this event category 
was identified as a drum rotation malfunction involving the outward rotation of the absorber of 
all three drums at the very slow but maximum possible speed allowable by the control drum 
motor and gearing at full power, resulting in a positive reactivity insertion.  This bounding 
event is referred to as a transient overpower event. 

Accordingly, the two overarching bounding events identified for the Aurora in step 2 of the 
event evaluation process are the transient overpower event (from the reactivity anomalies event 
category), and the loss of heat sink event (from the decrease in heat removal by the secondary 
system event category).  Detailed analysis of these events in presented in Section 5.6, as part of 
step 3 in the Aurora event evaluation process. 
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Safety analysis 

5.6.1 Bounding events summary 

The prior sections identified two transients as the most extreme, or bounding, and credible 
internal events: the transient overpower event, and the loss of heat sink.  These two events then 
may represent the MCA as the maximum credible accident.  These events would be considered 
beyond design basis in traditional analysis.  But to be holistic, defense-in-depth was added by 
considering insights from risk analysis.  Insights from the PRA, described in Chapter 24, 
illuminated that the failure of one shutdown rod insertion has probability on the order of 10-6, 
and the probability of failure of two shutdown rods has a probability on the order of 10-12.  The 
order of magnitude of failure of one shutdown rod merited analysis in the MCA.  Although the 
reactor reaches a safe state even with the failure of two shutdown rods, for defense-in-depth, 
analysis of the two transients also included the failure to insert one shutdown rod. 

Therefore, the two internal transients analyzed in the internal event safety analysis are: 

1. The transient overpower (TOP), where all three control drums spuriously rotate their
absorbers outward at the maximum speed and insert positive reactivity, in conjunction with
a failure to insert one of three shutdown rods.

2. The loss of heat sink (LOHS), where a failure of the power conversion system (PCS) occurs
in conjunction with a failure of flow bypass to the radiator, and a failure to insert one of
three shutdown rods.

A brief overview of how these events proceed is presented in Section 5.6.1.1 and Section 5.6.1.2.  
These summary descriptions focus on the expected physical response of the system (by active, 
passive, or inherent means) to the initiating events, and as such, conservative assumptions or 
modeling approaches are not discussed in these short presentations.  The conservative models 
developed to analyze these initiating events are presented in Section 5.6.2, and the design bases 
that describe the characteristics of the system that ensure the safe operation of the reactor 
during these events are also presented.  The detailed results generated using these conservative 
models are presented in Section 5.6.3 and Section 5.6.4, the overall MCA is identified in Section 
5.6.6, and the results are compared to fundamental safety functions discussed in Sections 
5.6.11, 5.6.12, and 5.6.13, fulfilling steps 3 and 4 in the Aurora event evaluation process. 

It is important to note that, as described in the results presented in Section 5.6.3 and Section 
5.6.4, there are no credible bounding events that result in a release of radioactive material.  
Therefore, no analysis of a radiological release is described. 

5.6.1.1 Transient overpower 

The phenomenology of events that occur during the TOP follow the below order: 

1. All three control drums begin to spuriously rotate their absorbers outward, inserting
positive reactivity too quickly relative to reactivity letdown with fuel depletion,
introducing an undesired positive reactivity insertion.  The drums are assumed to rotate
at the maximum speed.

2. Power increases in response to the reactivity insertion, which leads to higher
temperatures in the core.
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3. The fuel expands in response to heating up, introducing negative reactivity into the
system via increased neutron leakage from the core.

4. An overtemperature condition is detected by thermocouples in the reactor trip system,
sending a reactor trip signal to the shutdown rod system,

5. Two of three rods insert into the core, adding significant negative reactivity to shut the
reactor down.  Only one rod is needed to achieve this, but one failure is assumed in line
with the MCA methodology with defense-in-depth.

6. Heat generation drops rapidly and becomes dominated by decay heat generation within
seconds.

7. Heat is conducted through the fuel, reflectors, and steel, both radially and axially out of
the core.  As both the heat pipes and PCS continue to operate, decay heat generation can
easily be managed, and heat is removed from the fuel effectively.  Peak fuel temperature
drops below steady-state operating conditions.

8. Significant margin is maintained below safety and operational limits, and no material or
structural damage occurs.

5.6.1.2 Loss of heat sink 

The phenomenology of events that occur during the LOHS follow the below order: 

1. Heat is no longer removed through the PCS by any means, causing the system to heat
up.

2. As the reactor heats up, the fuel expands which introduces negative reactivity, slowing
the reaction down and thereby reducing the rate of increase of core temperature.

3. An overtemperature condition is detected by thermocouples in the reactor trip system,
sending a reactor trip signal to the shutdown rod system.

4. Two of three rods insert into the core, adding significant negative reactivity to shut the
reactor down.  Only one rod is needed to achieve this, but one failure is assumed.

5. Heat generation drops rapidly and becomes dominated by decay heat generation within
seconds.

6. Heat is conducted through the fuel, reflectors, and steel, both radially and axially out of
the core.  Heat pipes distribute heat throughout the system, including the shielding and
structural materials surrounding the core.  Fuel temperatures drop below steady-state
operating conditions.

7. Decay heat generation in the fuel continues to exceed passive heat removal via
conduction from the fuel to the outer surfaces of the shell and ultimately to the air in the
reactor cavity.  Fuel temperatures increase during this period.

8. This period ends when passive heat removal exceeds decay heat generation.  Afterwards,
fuel temperatures decrease.
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9. Significant margin is maintained below safety and operational limits, and no material or
structural damage occurs.

5.6.2 Model description 

The models, parameters, and assumptions used in the transient analysis are described in this 
section.  Throughout the safety analysis process, an emphasis has been placed on selecting 
conservative and bounding parameters.  Each of the analysis assumptions and conservatisms 
are addressed in detail in this section, and a summary is shown in Table 5-7.   

The computational analysis is conducted using ANSYS Mechanical.  Each simulation is 
initialized from nominal steady-state conditions and starts with the initiating event.  Some of 
the input parameters for the ANSYS calculation are generated using other computer codes; the 
particular code used to generate an input parameter is noted when discussing that input 
parameter in the sections that follow.  Additional information on the usage of codes in this 
analysis process can be found in Section 5.6.9. 

Table 5-7:  Summary of assumptions in safety analysis and reason for conservatism 

Topic Assumption Conservatism 
Power Highest power reactor cell 

in ring 
Maximizes internal heat generation 

Heat pipe temperature All heat pipes set to highest 
power cell 

Overpredicts initial temperatures 

Heat transfer from shell h = 7 W/m2-K, T = 225 C Underpredicts passive heat transfer to 
ultimate heat sink 

No radiative heat transfer Underpredicts passive heat transfer to 
ultimate heat sink 

Decay heat Decay heat during timestep 
assumes initial value 

Overpredicts decay heat generation 
throughout analysis 

Reactivity feedback No negative reactivity 
feedback effects 

Overpredicts rate of power increase 
during TOP 

Overpower heat generation Power during timestep 
assumes end value 

Overpredicts fission heat generation 
throughout active phase 

Power conversion system Instantaneous stop of 
rotating components 

Underpredicts heat removal by PCS 
associated with flow coastdown 

Shutdown rod insertion delay 10-second delay from trip
setpoint to reactor trip

Overpredicts fission heat generation 
prior to trip 

Fuel thermal conductivity 30% decrement due to 
burnup 

Overpredicts thermal gradients in fuel 

Cell-to-cell contact 
conductance 

100 W/m2-K assumes only 
radiative heat transfer 

Overpredicts thermal gradients in 
module 

5.6.2.1 Model overview and design bases 

The simulation model seeks to describe the structures of the reactor module.  Time-dependent 
heat generation, conduction, and removal are the physical phenomena included in the finite-
element heat transfer analysis of these structures.  The transient response of the Aurora to the 
two bounding initiating events can be accurately described by these phenomena with this 
geometry.  Heat generation occurs in the fuel due to either fission reactions (while at power) or 
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radioactive decay (after reactor trip).  Conduction is the means by which heat generated in the 
fuel is transferred to other core structures: note that the heat pipes may be effectively modeled 
as thermal superconductors, that is, as solid conduction volumes with a very high equivalent 
thermal conductivity.  More description of equivalent thermal conductivity is provided in 
5.6.2.12.2.  Heat removal occurs either via the heat exchanger system or by passive heat 
rejection via convection off the surface of the module.  The reactor system and its components 
are described in Chapter 2. 

Certain model parameters may be important to ensuring safety, and those parameters are 
codified as design bases.  Design bases are used to ensure that the as-built Aurora design 
reflects the modeled parameters.  The nomenclature surrounding the design bases are 
introduced in the gray box below, and the specific design bases related to each assumption and 
input are referenced in similar boxes in the relevant sub-sections that follow. 
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5.6.2.2 Geometrical simplification 

A simplified geometry is used to conduct the safety analysis.  The module is reduced based on 
symmetry in order to decrease computational requirements.  One-sixth of the reactor module is 
included in the model, with a zero heat flux boundary condition set on the boundaries that lie on 

Introduction to design bases, design commitments, and programmatic controls 

Design bases are the characteristics of a system or sub-system that ensure the safe operation 
of the Aurora reactor.  Each design basis has one or more design commitments, which are the 
specific commitments made to ensure the design basis is met.  Each design commitment has 
one or more programmatic controls that are used to verify that the commitment is met.  See 
Chapter 2 for more details. 

The central importance of the design bases is reflected in this chapter, as key modeling 
assumptions and inputs are directly connected to the design bases (and the resulting design 
commitments).  This is done to ensure that the assumptions and inputs modeled accurately 
describe the as-built Aurora reactor.  In each of the following sections about inputs and 
assumptions, the related design bases, design commitments, and programmatic controls are 
referenced.  The description and analysis of structures, systems, and components section 
(Chapter 2) contains the full description of design bases and design commitments.  The 
programmatic controls are described in more detail in the appropriate sections noted below. 

The following abbreviations are used in the summaries: 

• Design basis (DB)

• Design commitment (DC)

• Preoperational test (POT) (see Chapter 14)

• Startup test (SUT) (see Chapter 14)

• Inspections, tests, and analysis acceptance criteria (ITAAC) (see Part VI)

• Technical specification (TS) (see Part IV)

For example: a design basis (DB) for the shutdown rod system (SRS), the resulting design 
commitment (DC), and the required programmatic controls, would be listed as follows in the 
summary box: 

DB.SRS.01  The shutdown rod system provides sufficient negative reactivity to achieve 
cold shutdown with insertion of one rod. 

DC.SRS.01.A The worth of each shutdown rod will be greater than 1400 pcm, where
1400 pcm is greater than the total of: the reactivity worth associated 
with the temperature decrease from hot full power conditions to cold 
zero power conditions, and an additional margin of 500 pcm. 

SUT.SRS.01.A1 and A2 (see Chapter 14) 
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the lines of symmetry.  The location of the shutdown rod that would normally appear in this 
geometry was replaced with a reactor cell to conservatively overpredict the heat generation 
present in this reduced geometry.  The geometry of the model is shown in Figure 5-4, Figure 
5-5, and Figure 5-6.

Figure 5-4:  Isometric view (left) and zoomed isometric view (right) of the geometry modeled in ANSYS 

{

}
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Figure 5-5:  Side view of geometry modeled in ANSYS 

{

}
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Figure 5-6:  Top-down radial slice at core midplane of geometry modeled in ANSYS 

Design bases are taken for each of the major systems in the reactor module to ensure that the 
as-built geometry corresponds to the as-designed geometry.  These systems include the reactor 
system (referred to as RXS in the design basis summary boxes), heat exchanger system (HXS) 
and reactor enclosure system (RES).  The appropriate design commitments and related 
programmatic controls are taken to ensure that this is properly verified.  As a result, the 
simplified geometry modeled here can be considered representative of the as-built design.  As 
described in the uncertainties (Section 5.6.7), the contact conductance between bodies is of low 
significance to the analysis.  As a result, the primary design commitment taken for each design 
basis is to ensure that each component of the system is installed in the appropriate location.  In 
addition, a design commitment is taken to ensure via a startup test that conduction and 
subsequent convection from the module shell can sufficiently cool the reactor core system as 
described in Section 5.6.2.5. 

{

}
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DB.RXS.04 The reactor core system provides a pathway to conduct heat from the fuel to 
the surrounding systems and ultimately to reject it to the environment. 

DC.RXS.04.A The critical components of the reactor core system, as identified in the
appropriate procedure, are installed as described in the design 
documents referenced by the procedure. 

SUT.RXS.04.A (see Chapter 14) 

DC.RXS.04.B The reactor core system can be cooled by conduction through the
surrounding systems (reflector system, shielding system, heat 
exchanger system, and reactor enclosure system) and subsequent 
convection from the module shell after shutdown. 

SUT.RXS.04.B 

DB.RXS.05 The reflector system provides a pathway to conduct heat from the reactor core 
system to the surrounding systems and ultimately to reject it to the 
environment. 

DC.RXS.05.A The critical components of the reflector system, as identified in the
appropriate procedure, are installed as described in the design 
documents referenced by the procedure. 

POT.RXS.05.A (see Chapter 14) 

DB.RXS.06 The shielding system provides a conduction pathway to conduct heat from the 
reactor core system and reflector system to the surrounding systems and 
ultimately to reject it to the environment. 

DC.RXS.06.A The critical components of the shielding system, as identified in the
appropriate procedure, are installed as described in the design 
documents referenced by the procedure. 

POT.RXS.06.A (see Chapter 14) 

SUT.RXS.06.A1 and A2 
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5.6.2.3 Power assumptions 

The radial power distribution, calculated by Serpent, is used to define the peaking factors 
applied to each reactor cell in the ANSYS model.  Power is input as a volumetric heat 
generation rate within the fuel component of each reactor cell and accounts for the axial power 
shape.  Steady-state heat generation rates are axially discretized in ANSYS using a cosine-
shaped axial power profile, which is conservative (overpredicting the actual per-reactor cell 
power by approximately 2%) compared to the expected axial power peaking distribution as 
calculated by Serpent, as shown in Figure 5-7.  The heat generation rate within each reactor cell 
is assumed to equal the highest-power reactor cell in its ring, which overpredicts the total heat 
generation in the model.  This is shown in Figure 5-8.  For the loss of heat sink event, the 
reactor power is taken as 102% of the rated power, which is a common assumption in NUREG-
0800. 

DB.RES.01  The reactor enclosure system provides a pathway to conduct heat away from 
the systems inside it and to reject it to the environment. 

DC.RES.01.A The critical components of the reactor enclosure system, as identified
in the appropriate procedure, are installed as described in the design 
documents referenced by the procedure. 

POT.RES.01.A1 and A2 (see Chapter 14) 

SUT.RES.01.A 

DB.HXS.01 The heat exchanger system provides a pathway to conduct heat from the heat 
pipes of the reactor core system to the surrounding systems and ultimately to 
reject it to the environment. 

DC.HXS.01.A The critical components of the heat exchanger system, as identified in
the appropriate procedure, are installed as described in the design 
documents referenced by the procedure. 

SUT.HXS.01.A (see Chapter 14) 
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Figure 5-7:  Axial power profile used in ANSYS compared to axial power profile calculated by Serpent 

Figure 5-8:  Radial power profile used in ANSYS (right) compared to the power distribution generated by Serpent 
(left) 

A design basis is taken to operate the reactor at thermal powers below 4 MWth.  As previously 
discussed, the limiting operating state is the full power operating state.  Accordingly, the model 
assumes the reactor is operating at this maximum steady-state power prior to the initiating 
event. 

{

}

{

}
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5.6.2.4 Steady-state temperature 

Transient analysis is initialized from steady-state temperature distributions, which are 
calculated using ANSYS Mechanical as described in Section 5.6.9.1.  Steady-state heat removal 
from the fuel is modeled by fixing the temperature of the heat pipe vapor cores and wicks in 
each reactor cell to 538 C.  This temperature corresponds to the peak power described in Section 
5.6.2.3.  Setting the heat pipe vapor cores and wicks of each reactor cell to this temperature is 
conservative, as it slightly overpredicts the initial temperatures throughout the module. 

5.6.2.5 Passive heat removal 

The ultimate heat sink during the LOHS is passive heat removal to the air in the reactor cavity 
that surrounds the reactor module.  Heat transfer is modeled on the sides of the module shell 
using convective boundary conditions.  Convective heat removal is conservatively neglected on 
the bottom of the shell.  The heat transfer coefficient was determined to be 7 W/m2-K, and this 
value is used in the LOHS analysis.  The ambient air temperature in the analysis is 225 C.   

Radiative heat transfer is conservatively neglected in the model; if it were included, this would 
increase the amount of heat transfer appearing in the simulation off the surface of the shell, 
resulting in reduced peak fuel temperatures.  Based on the temperatures of the reactor module, 
it is expected that radiative heat transfer would be responsible for as much as and likely more 
heat removal than convective heat transfer. 

A design basis is taken for the reactor module emplacement in the site building system, a 
subsystem of the building and auxiliary systems (BAS).  The design basis ensures that the air 
flow area is consistent with the calculations mentioned above, and therefore that the assumed 
heat transfer coefficient for the model is indeed conservative.  As described in Section 5.6.2.2, a 
design commitment is also made to verify effectiveness of the passive heat removal during 
startup testing. 

 

DB.RXS.02 The reactor core system is operated at steady state thermal power levels that 
prevent damage to the system during transients. 

DC.RXS.02.A The power level of the reactor system is limited to 4 MWth. 

License condition (see Part VI) 

See also DC.ICS.01.A through D 

DB.BAS.01  The building system provides for the emplacement of the reactor module in a 
configuration that supports passive cooling of the module shell. 

DC.BAS.01.A The critical components of the reactor module, as identified in the 
appropriate procedure, are installed in the reactor module 
emplacement as described in the design documents referenced by the 
procedure.   

POT.BAS.01.A (see Chapter 14) 
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5.6.2.6 Decay heat 

The time-dependent fractional power curve from decay heat following reactor trip is generated 
by Serpent at discrete time points.  The values used in ANSYS Mechanical at each timestep 
assume the decay heat generation from the beginning of the timestep is constant over the entire 
timestep.  This assumption is conservative, as decay heat generation is overpredicted for any 
given timestep throughout the transient since the decay heat is not actually constant for the full 
timestep and is instead continuously decreasing with time.  This decay heat curve applied in 
ANSYS bounds the curve generated by Serpent, as shown in Figure 5-9.  Further, because the 
decay heat curve describes the fractional power, and the initial steady-state power (P0) is set to 
the maximum allowable thermal power (see Section 5.6.2.3), the modeled decay heat generation 
represents the maximum decay heat generation expected in any transient. 

 

Figure 5-9:  Decay heat curve used in safety analysis (ANSYS) vs. curve generated by Serpent 

5.6.2.7 Reactivity effects 

For the TOP, the reactivity insertion is determined based on the maximum rate and magnitude 
of rotation allowed by the control drum system.  This assumption is conservative, as the 
maximum rotation rate is several orders of magnitude larger than the actual speed of insertion 
during reactivity letdown.  The six-group point kinetics equations are used to calculate power 
changes during the active phase of the transient.  An in-house tool is used to obtain this 
solution and is described in Section 5.6.9.3.  The calculated power increase from positive 
reactivity insertion does not include reactivity feedback effects, which is conservative provided 
that the net temperature coefficient of reactivity is negative.   

The reactivity insertion by the control drums is modeled as all three drums rotating their 
absorbers out of the core at their maximum mechanically-possible rate of 0.01 deg/sec.  A design 
basis for the control drum system (CDS) is taken to ensure that the modeled insertion rate and 
magnitude reflect the largest the control drum system can achieve.  In addition to limiting the 
reactivity insertion, a commitment is made to use stepper motors to prevent spurious drum 
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rotation.  Therefore, not only is the TOP event conservatively analyzed, it is also protected 
against in multiple ways. 

 

Inherent reactivity feedback effects are not included in the TOP analysis presented in this 
chapter.  However, it is important to note that the Aurora has strongly negative reactivity 
coefficients, dominated by the strongly negative fuel temperature coefficient of reactivity.  
Neglecting negative reactivity feedback is conservative, as inherent negative reactivity feedback 
effects would put the Aurora into a less challenged state than that modeled.  A design basis is 
taken for the reactor core system to ensure that the power coefficient of reactivity is negative, 
ensuring that neglecting the feedback is conservative. 

 

The time-dependent, normalized power used during the active phase of the TOP assumes the 
normalized power from the end of each timestep for the duration of the timestep.  This 
conservatively overpredicts the amount of heat generated throughout each timestep and is 
shown in Figure 5-10. 

DB.CDS.01  The control drum system is designed to limit both the rate and magnitude of 
reactivity insertion that the system can achieve so as to minimize the effect of 
an unintended reactivity insertion. 

DC.CDS.01.A The maximum rotation speed of the drums is limited to 1×10-2 deg/sec. 

 POT.CDS.01.A (See Chapter 14) 

DC.CDS.01.B The total reactivity worth of the drums is less than 700 pcm at all 
operating conditions. 

SUT.CDS.01.B 

DC.CDS.01.C The control drum actuators use stepper motors to eliminate the 
possibility of unintentional rotation. 

POT.CDS.01.C 

DB.RXS.03 The reactor core system has inherently negative reactivity feedback. 

DC.RXS.03.A The net power coefficient of reactivity of the reactor core system is 
negative. 

SUT.RXS.03.A (see Chapter 14) 
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Figure 5-10:  Fractional power curve used during active phase of TOP (ANSYS) vs. curve generated by point 
kinetics equations 

5.6.2.8 Shutdown rod insertion 

During both the TOP and LOHS, one of three shutdown rods is assumed to fail to insert.  This is 
an unlikely event, as the shutdown rods are located directly above the active core in a protected 
sheath, and a substantial gap exists surrounding the rod to ensure a clear path to insertion.  It 
is important to note that only one of three shutdown rods is needed to shut down the reactor at 
any temperature condition.  Though it is unlikely for one of three not to insert (probability on 
order of 10-6), and more unlikely for two of three (probability on order of 10-12), either of which 
still resulting in a safe state, this consideration is in line with the MCA methodology to consider 
any one single failure or group of failures caused by a single event, while considering risk 
insight and defense-in-depth by considering one rod drop failure as of probability worthwhile to 
account for in the analysis.  Although no event including TOP and LOHS is expected to 
simultaneously cause any shutdown rod failure, this extra failure was taken as a risk-informed, 
defense-in-depth interpretation of the MCA methodology. 

A design basis is taken to ensure that even in the case of two stuck rods, the remaining rod 
provides sufficient negative reactivity to shut down the reactor. 
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5.6.2.9 Power conversion system 

During the LOHS, the PCS is assumed to fail instantaneously.  This is a conservative 
assumption, as the instantaneous stop of rotating components and heat removal by the PCS 
presents the most limiting heat transfer conditions; as discussed in Section 5.5.2.2, fuel 
temperatures reach their bounding values when no PCS flow coastdown is applied and the 
entirety of heat removal comes from the passive heat removal off the outer surface of the 
module shell. 

During the TOP, the PCS continues to operate at the nominal system parameters; this is 
modeled with a fixed heat removal boundary condition in ANSYS while the reactor is at full 
power.  This is conservative, as the capability of the PCS to reject additional heat above the 
nominal full-power rate is neglected.  The PCS continues to remove decay heat post-shutdown 
in the normal shutdown cooling mode. 

5.6.2.10 Reactor trip system 

During both the TOP and LOHS, a reactor trip is assumed to be initiated when specific limits 
are exceeded.  The reactor trip system sends a reactor trip signal to the shutdown rod system 
when a limit is exceeded.  The only trip setpoint explicitly modeled in the safety analysis 
presented in this chapter is the fuel over-temperature setpoint of 655 C.  Once the fuel 
temperature exceeds this value in the model, the simulation switches from full-power heat 
generation to decay heat generation (after the applicable rod insertion delay has been applied, 
as described in Section 5.6.2.11).  More detail surrounding the reactor trip system, including the 
full list of reactor trip setpoints and information on how these parameters are measured, can be 
found in Chapter 2. 

A design basis is taken to ensure that all setpoints are configured correctly.  This ensures that 
the assumption of a reactor trip is representative of actual system behavior. 

DB.SRS.01  The shutdown rod system provides sufficient negative reactivity to achieve 
cold shutdown with insertion of one rod. 

DC.SRS.01.A The worth of each shutdown rod will be greater than 1400 pcm, where
1400 pcm is greater than the total of: the reactivity worth associated 
with the temperature decrease from hot full power conditions to cold 
zero power conditions, and an additional margin of 500 pcm. 

SUT.SRS.01.A1 and A2 (see Chapter 14) 
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5.6.2.11 Shutdown rod insertion delay 

During both the LOHS and TOP, a 10 second delay is assumed to occur from exceeding a trip 
setpoint (described in Section 5.6.2.10) to reactor shutdown.  This is a conservative assumption, 
as the detection, signal processing, shutdown rod release, and shutdown rod insertion are 
cumulatively analyzed to occur in less than 10 seconds.   

Design bases for both the reactor trip system and the shutdown rod system are taken to ensure 
that this assumption is conservative.  Design commitments are made to limit the detection and 
signaling time to 6 seconds and the shutdown rod insertion time to 2 seconds, such that the 
cumulative time from exceeding a setpoint limit to rods being fully inserted into the core is less 
than 8 seconds, which includes a conservative margin to the 10 second assumed value. 

DB.ICS.01 The reactor trip system monitors reactor process variables and sends a reactor 
trip signal when a process variable exceeds a limit setpoint. 

DC.ICS.01.A  The reactor trip system sensors are installed in the correct locations. 

POT.ICS.01.A1 and A2 (see Chapter 14) 

SUT.ICS.01.A1 

DC.ICS.01.B The reactor trip system process limit monitors are connected to the 
correct locations, and are configured with the correct sensor scaling 
information and limit setpoints. 

POT.ICS.01.B1 and B2 

TS.LCO.02 (see Part IV) 

DC.ICS.01.C The reactor trip system sensors are connected to the correct process 
limit monitors. 

POT.ICS.01.C1 and C2 

SUT.ICS.01.C 

DC.ICS.01.D The reactor trip system process limit monitors send a fault signal 
when a process variable exceeds a limit. 

POT.ICS.01.D 

TS.LCO.02 
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5.6.2.12 Material properties 

The majority of materials present in the reactor module are well-characterized metals, 
primarily SS316L, SS304, and zirconium.  For these materials, standard temperature-
dependent material properties are used.  SS316L and SS304 temperature-dependent properties 
are taken from [39].  Temperature-dependent zirconium density, thermal conductivity, and 
specific heat capacity are taken from [40], [41], and [24], respectively.  For other materials, 
including fuel and heat pipe vapor core, additional description is provided in this section. 

5.6.2.12.1 Fuel 

U-10Zr is a well characterized material up to significantly high burnups, with significant 
operational experience during the Integral Fast Reactor program.  Material properties, namely 
density, thermal conductivity, and specific heat capacity, are modeled with temperature 
dependence from [42] and [43], [44], and [24], respectively; additional effects due to burnup are 
described below. 

Thermal conductivity is known to decrease with burnup as fission gases create voids in the fuel 
matrix.  A decrement of 30% is applied to the thermal conductivity throughout the analysis (i.e., 
the assumed thermal conductivity is 70% of its nominal value) [24].  This decrement is 
conservative as it accounts for greater burnup effects than the Aurora fuel is analyzed to 
experience.   

The density of the fuel decreases with burnup as the fuel swells; however, the mass is largely 
unchanged and is the factor of interest during the transient.  The heat capacity does not change 
significantly with burnup and is accordingly not decremented in the model. 

DB.ICS.02 The reactor trip system sends a reactor trip signal to the shutdown rod system 
within a sufficient time of exceeding a limit to prevent damage to the reactor. 

DC.ICS.02.A The reactor trip system detects the exceedance of a limit setpoint and 
sends a reactor trip signal within 6 s. 

POT.ICS.02.A (see Chapter 14) 

TS.LCO.02 (see Part IV) 

DB.SRS.02 The shutdown rod system fully inserts the shutdown rods within a sufficient 
time after receiving a trip signal to prevent damage to the reactor. 

DC.SRS.02.A The shutdown rod system fully inserts shutdown rods within 4 seconds 
of receiving a trip signal. 

POT.SRS.02.A (see Chapter 14) 

SUT.SRS.02.A  

TS.LCO.01 (see Part IV) 
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A design basis is taken for the reactor core system to ensure that the fuel is of the material, 
with associated properties, assumed in this safety analysis.  

5.6.2.12.2 Heat pipe vapor core 

The heat pipe vapor core occupies the region inside of the wick and contains low pressure vapor.  
The equivalent thermal conductivity of heat pipes was calculated using heat pipe performance 
correlations, which show it to be 34,000,000 W/m-K and generally between 10,000,000 to 
100,000,000 W/m-K in the range of operating conditions expected.  The vapor core is modeled in 
ANSYS as a solid body with a high thermal conductivity (conservatively set to 1,000,000 W/m-
K), low specific heat (1 J/kg-K), and low density (0.016 kg/m3).  This simplification drastically 
reduces computational requirements (no complicated evaporation, condensation, or turbulence 
effects need be simulated) while accurately capturing the thermal behavior of heat pipes.  Note 
that the results of the ANSYS analyses are not especially sensitive to the absolute value used 
for the heat pipes’ thermal conductivity; since this thermal conductivity is exceptionally high, 
the temperature change in the vapor core from the evaporator region to the condenser region is 
still minimal. 

5.6.2.13 Contact conductance 

Contact conductance between bodies are previously analyzed and considered in the analysis.  
Perfect contact conductance is specified between the bodies inside each reactor cell, as the 
sodium bond ensures effective thermal contact throughout this volume.  An exceptionally low 
contact conductance of 100 W/m2-K is applied to adjacent cells within the capsule, which 
accounts for radiative heat transfer alone and neglects conduction effects of bodies in contact.  
Contact conductance between bodies in contact horizontally is assumed to be 1000 W/m2-K, and 
bodies in contact vertically have a contact conductance of 4000 W/m2-K.  Each of these values 
overpredicts the expected thermal resistance between the active core and the ultimate heat sink 
in the reactor cavity.   

As described in Section 5.6.2.2, the geometry of the system is verified through the appropriate 
design commitments and programmatic controls. 

DB.RXS.01 The reactor core system uses metal fuel with well characterized properties. 

DC.RXS.01.A The fuel in the reactor system is procured according to
10 CFR Part 50 Appendix B, with a critical characteristic of thermal 
conductivity. 

(see Oklo QAPD) 
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5.6.3 Transient overpower results 

As described in 5.6.1, the transient overpower event assumes a maximum reactivity insertion of 
all three control drums at the maximum speed, 0.01 deg/s, coincident with a failure of one of 
three shutdown rods to insert.  The active phase begins with the initiation of drum rotation, at 
t=0 s.  The reactor trip system detects an overtemperature setpoint when the fuel reaches 
655 C, and following a 10-second delay, two shutdown rods insert, shutting down the reactor, 
ending the active phase.  As the PCS continues to operate, decay heat is removed from the fuel, 
called the cooldown phase. 

The transient overpower event can thus be described by two phases: 

1. Active phase, where power increases from steady-state until the reactor is tripped.

2. Cooldown phase, where decay heat is removed by the PCS.

5.6.3.1 Active phase 

The active phase begins with the initiation of the drum rotation, at t=0 s.  The overtemperature 
trip setpoint of 655 C is reached at t=36s.  As described in 5.6.2.11, a 10-second delay is 
assumed between exceeding the overtemperature trip setpoint until the reactor is tripped at 
t=46s.  Heat removal by the PCS continues throughout the active phase. 

The response of the peak fuel temperature to the transient overpower is benign: the rate of 
temperature increase is slow and relatively linear, occurring at an average rate of +0.45 C/s.  
The final peak fuel temperature reached during the active phase (before shutdown rods insert 
and the reactor trips) is 660 C, a total increase of only 20 C above the nominal peak 
temperature of 640 C. 
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Figure 5-11:  Peak fuel temperature during active phase of transient overpower 
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Figure 5-12:  Active phase of transient overpower.  Temperature distributions at steady state (left) and end of 
active phase (right) 

Figure 5-13:  Active phase of transient overpower.  Temperature distribution at steady state (left) and end of 
active phase (right) 

During the active phase, peak fuel temperatures increase as fission heat generation exceeds 
heat removal to the PCS.  This can be seen in Figure 5-12 and Figure 5-13, as areas 
surrounding the fuel heat up.  Note that in these two figures, a nonuniform temperature scale is 
used to highlight the temperature gradient in the range of interest.  This nonuniform 
temperature scale is consistent across all the two-dimensional temperature gradient plots 
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presented in this chapter.  The overall temperature distribution maintains a similar relative 
shape throughout the active phase of the event.  

5.6.3.2 Cooldown phase 

After the reactor is tripped, the PCS continues to cool the fuel following the cessation of fission 
heat generation.  Upon reactor trip occurring and fission heat generation ceasing, peak fuel 
temperature decreases rapidly as the heat generation in the fuel transitions to being driven by 
radioactive decay.  The peak fuel temperature decreases from its maximum value of 660 C at 
the end of the active phase to approximately 596 C in only 60 s, for an average rate of decrease 
of 1.1 C/s.  As decay heat generation continues to be removed by the PCS, the peak fuel 
temperature more slowly approaches the nominal heat exchanger steady-state temperature 
value: the peak fuel temperature ultimately reaches a value of 558 C one hour after shutdown. 

Figure 5-14:  Peak fuel temperature during cooldown phase of transient overpower 
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Figure 5-15:  Cooldown phase of transient overpower.  Temperature distributions at end of the active phase (left) 
and one hour after reactor trip (right) 

Figure 5-16:  Cooldown phase of transient overpower.  Temperature distributions at end of the active phase (left) 
and one hour after reactor trip (right) 

During the cooldown phase, the peak fuel temperature decreases quickly as the PCS continues 
to remove heat from the fuel effectively.  This can be seen in Figure 5-15 and Figure 5-16, as the 
fuel and surrounding structures cool down quickly.  Temperatures throughout the system 
decrease to below steady-state values within minutes. 

{

}

{

}



Copyright © 2020 Oklo Inc., all rights reserved  294 

II.05 Transient analysis

OkloPower-2020-PartII-NP, Rev. 0 

5.6.3.3 Conclusion 

The peak temperature reached during the event is 660 C.  Substantial margin is maintained 
below the operational limit, and both the safety and operational goals are satisfied. 

5.6.4 Loss of heat sink results 

As described in 5.6.1, the loss of heat sink event assumes a complete failure of the PCS 
coincident with a failure of one of three shutdown rods to insert.  The reactor trip system detects 
an overtemperature setpoint when the fuel reaches 655 C, and, following a 10-second delay, two 
shutdown rods insert, shutting down the reactor.  Following a trip, decay heat continues to 
produce heat.  Heat in the module is removed only through passive, convective air flow in the 
reactor cavity surrounding the shell. 

The LOHS event can be captured by four phases: 

1. Full-power heatup, where temperature increases from steady state until the reactor is
tripped.

2. Initial heat redistribution, from reactor trip until t=252s.

3. Decay-driven heatup, from t=252s until t=6.6h.

4. Residual heat rejection cooldown, after t=6.6h.

5.6.4.1 Full-power heatup 

The full-power heatup begins with the complete failure of the PCS, and fission heat is generated 
at its nominal, steady-state values.  In reality, temperature feedbacks would reduce core power; 
for these simulations, these feedback effects are conservatively neglected.  The overtemperature 
trip setpoint of 655 C is reached at t=20s.  As described in Section 5.6.2.11, a 10-second delay is 
assumed between exceeding the overtemperature trip setpoint until the reactor is tripped.  Once 
the reactor is tripped, the initial heat redistribution phase begins. 
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Figure 5-17:  Peak fuel temperature during full-power heatup phase of loss of heat sink 
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Figure 5-18:  Full-power heatup phase of loss of heat sink.  Temperature distributions at steady state (left) and 
reactor trip (right) 

Figure 5-19:  Full-power heatup phase of loss of heat sink.  Temperature distributions at steady state (left) and 
reactor trip (right) 

{

}

{

}



Copyright © 2020 Oklo Inc., all rights reserved  297 

II.05 Transient analysis

OkloPower-2020-PartII-NP, Rev. 0 

5.6.4.2 Initial heat redistribution 

During the initial heat redistribution phase, peak temperatures in the fuel decrease quickly as 
heat distributes to nearby bodies.  Heat is conducted through the fuel, reflectors, and steel, both 
radially and axially out of the core.  Heat is further distributed throughout the system, 
including the shielding and structural materials surrounding the core.  Because of the tightly 
coupled and highly conductive materials surrounding the fuel, the majority of this 
redistribution occurs within the first 60 seconds and continues until t=252 seconds, when the 
peak fuel temperature reaches a local minimum of approximately 600 C. 

Figure 5-20:  Peak fuel temperature during initial heat redistribution phase of loss of heat sink 
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Figure 5-21:  Initial heat distribution phase of loss of heat sink.  Temperature distributions at reactor trip (left) 
and end of initial heat redistribution phase (right) 

Figure 5-22:  Initial heat redistribution phase of loss of heat sink.  Temperature distributions at reactor trip (left) 
and end of initial heat redistribution phase (right) 

During the initial heat redistribution phase, localized steady-state peak fuel temperatures begin 
to decrease as heat is conducted to surrounding structures.  This is visible in the temperature 
distribution plots in Figure 5-21 and Figure 5-22.  As the fuel areas cool down, surrounding 
areas, including the heat pipes and heat exchanger, heat up.  Outer structures remain largely 
unchanged during this phase because of the larger heat transfer distance. 
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5.6.4.3 Decay-driven heatup 

Following the initial heat redistribution phase, the peak fuel temperature begins to increase as 
decay heat generation in the fuel exceeds heat removal.  This phase continues until t=6.6 hours, 
when a peak fuel temperature of 662 C is reached.  This increase in peak fuel temperature 
occurs somewhat asymptotically, increasing relatively quickly during the first 3 hours, then 
much more slowly until the peak fuel temperature is reached.  This behavior is driven by the 
shape of the decay heat generation curve, which follows that of an exponential decrease (since 
radioactive decay is causing the heat generation).   

Figure 5-23: Peak fuel temperature during decay-driven heatup phase of loss of heat sink 
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Figure 5-24:  Decay-driven heatup phase of loss of heat sink.  Temperature distributions at end of the initial heat 
redistribution phase (left) and end of decay-driven heatup phase (right) 

Figure 5-25:  Decay-driven heatup phase of loss of heat sink.  Temperature distributions at end of the initial heat 
redistribution phase (left) and end of decay-driven heatup phase (right) 

During the decay-driven heatup phase, peak fuel temperature increases to its local maximum as 
decay heat generation exceeds passive heat removal via conduction from the fuel to the outer 
surfaces of the shell and ultimately via convection to the air in the reactor cavity.  This is visible 
in the temperature distribution plots in Figure 5-24 and Figure 5-25.  Structures in close 
thermal contact to the fuel increase in temperature.   
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5.6.4.4 Residual heat rejection cooldown 

Following the decay-driven heatup phase, the residual heat rejection cooldown phase continues 
indefinitely.  Passive, convective heat removal from the shell to the air surrounding the shell 
exceeds the heat generated by decay heat, and peak fuel temperatures decrease 
monotonically.  After 24 hours, the peak fuel temperature is 620 C, decreasing from the peak of 
662 C at 6.6 hours with an average cooldown rate of -2.4 C/hr during this period.  After 72 
hours, the peak fuel temperature has decreased to 521 C, giving an average cooldown rate 
of -2.1 C/hr for the time period from 24 to 72 hours.  After 7 days, the peak fuel temperature has 
decreased to 418 C, which corresponds to an average cooldown rate of -1.1 C/hr during the time 
period from 72 hours (3 days) to 7 days after shutdown.  This result reflects the continued 
decrease in decay heat generation coupled with the continued heat transfer from the fuel to the 
outer core structures such as the heat exchanger and radial reflectors, where that heat is 
progressively removed by convection to the surrounding air. 

Figure 5-26: Peak fuel temperature during residual heat rejection cooldown phase of loss of heat sink 
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Figure 5-27:  Residual heat rejection cooldown phase of loss of heat sink.  Temperature distributions at end of 
decay-driven heatup (left) and one day after trip (right)  

Figure 5-28:  Residual heat rejection cooldown phase of loss of heat sink.  Temperature distributions at end of 
decay-driven heatup (left) and one day after trip (right) 

During the residual heat rejection cooldown phase, peak fuel temperature decreases 
monotonically from its maximum as passive heat removal to the building air exceeds decay heat 
generation.  As shown in Figure 5-27 and Figure 5-28, temperatures throughout the module 
decrease, most notably in the fuel and nearby structures.  Peak fuel temperature is less than its 
steady-state value at t=17 hours after reactor trip. 
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5.6.4.5 Conclusion 

The peak temperature reached following reactor trip is 662 C.  Substantial margin is 
maintained below the operational limit, and both the safety and operational goals are satisfied. 

5.6.5 End state 

The end state of the safety analysis is when the analysis reaches the following conditions: 

• The core is in a subcritical, shutdown state. 

• Peak temperature in the core is less than the peak steady-state temperature and is 
decreasing. 

The end state represents a successful shutdown of the reactor.  Therefore, the safety analysis is 
performed until the end state is reached.  If the safety and operational limits are maintained 
throughout the transient and the end state is reached, then the safety and operational goals are 
satisfied.  It is important to note that no human actions are necessary to achieve the end state.  
As shown in Section 5.6.3 and Section 5.6.4, the insertion of shutdown rods ensures that the end 
state is reached following the most challenging failures of two systems, coincident with a failure 
to insert one of three shutdown rods. 

5.6.6 Maximum credible accident determination 

The results of the TOP and LOHS events are shown in previous sections.  Each of these events 
assumes a single equipment failure that would result in the most challenged state, coincident 
with a failure of one of three shutdown rods to insert.  These postulated events are consistent 
with the MCA definition with defense-in-depth, as described in Section 5.1.1. 

During the LOHS event, peak fuel temperatures are higher than during the transient 
overpower.  This is due to the failure of the PCS, as well as bypass and decay heat removal via 
the radiators, and reliance on passive cooling to the air outside of the shell, in comparison to 
active cooling occurring via the PCS during the TOP.  Further, temperatures that exceed 
steady-state temperatures are experienced for over 17 hours during the LOHS, while 
temperatures return to steady-state values within minutes during the TOP.  Therefore, the loss 
of heat sink event is considered the more challenging event and is designated as the MCA. 

5.6.7 Uncertainties 

Uncertainties in the accident analysis are addressed through both of the following items: 

1. Conservative assumptions and models, discussed in Section 5.6.2 

2. Sensitivity analyses on parameters related to safety and operational limits 

Sensitivity analyses have been conducted on several parameters of interest.  Parameters that 
have significant impact on the results were analyzed further, and conservative values are 
ultimately assumed for the results presented here, as described in Section 5.6.2.  Of the 
parameters of interest, the following are most impactful:   

• Heat transfer coefficient on the outer surface of the shell 
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• Air temperature on the outer surface of the shell.

The following parameters are not found to significantly impact the results: 

• Shutdown rod insertion delay, as the cumulative energy produced during the seconds of
delay is insignificant in comparison to the decay heat generated during the hours
following a trip

• Cell-to-cell contact conductance, as the heat pipes provide effective and independent
heat transfer pathways to large heat sinks

• Contact conductance between other bodies, due to the redundant, independent heat
transfer pathways throughout the module and the low power density

5.6.8 Required human actions 

None. 

5.6.9 Computer codes used 

Several computer codes are used as part of the transient analysis presented in this chapter.  
The analyzed models presented here were built and simulated using ANSYS Mechanical.  The 
power and decay heat parameters used in the analysis were generated using Serpent.  The 
power increase curve due to drum rotation in the transient overpower was generated using an  
in-house point kinetics solver.  Oklo performed commercial grade dedication of these codes for 
use in safety analysis. 

5.6.9.1 ANSYS Mechanical 

ANSYS offers a comprehensive software suite spanning a broad range of engineering 
simulation.  ANSYS Mechanical is used to evaluate steady-state and transient temperature 
evolution in the Aurora. 

ANSYS Mechanical is a finite element analysis (FEA) tool for structural analysis, thermal 
analysis, and coupled-physics capabilities, including thermal-structural analysis.  ANSYS 
Mechanical provides a complete set of finite element behavior, material models, and equation 
solvers for a wide range of mechanical design problems. 

For the safety analysis, steady-state heat generation rates are used in ANSYS Mechanical as 
axially discretized, volumetric heat generation rates in each reactor cell.  Heat generation in the 
fuel, along with the boundary conditions described in Section 5.6.2, are used to initialize the 
steady-state temperature distribution throughout the module.  The spatial power generation 
distribution is kept constant throughout the transient; the time-dependent, normalized power 
curves in the TOP and LOHS are applied as scaling factors on this steady-state heat generation 
distribution to model the time evolution of the total heat generation. 

The time-dependent, normalized power following shutdown is calculated using Serpent.  In 
ANSYS Mechanical, for each timestep, the normalized power assumes the power from the 
beginning of the timestep, which conservatively overpredicts decay heat throughout the event, 
shown in Figure 5-9. 
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The time-dependent, normalized power during the active phase of the TOP is calculated using 
the six-group point kinetics equations in the in-house Oklo point kinetics solver.  In ANSYS 
Mechanical, for each timestep, the normalized power assumes the power from the end of the 
timestep, which conservatively overpredicts heat throughout the active phase of the event. 

While the ANSYS suite offers a wide range of engineering simulation capabilities, the model 
used in the safety analysis is three-dimensional conduction with temperature-dependent 
material properties. 

5.6.9.2 Serpent 

Serpent is a three-dimensional, continuous-energy Monte Carlo reactor physics burnup 
calculation code specifically designed for reactor analysis applications.  The standard output 
includes effective and infinite multiplication factors, point-kinetic parameters, effective delayed 
neutron fractions, and precursor group decay constants. 

For safety analysis, the steady-state initial radial power distribution (the power generated in 
every reactor cell in the core) is calculated by Serpent.  These radial heat generation rates are 
used to determine the heat generation rates in any particular cell at various axial levels by 
further applying a cosine-shaped axial power distribution to the total cell power.  The axially 
discretized heat generation rates are then used to initialize steady-state temperatures in 
ANSYS Mechanical. 

Serpent’s fuel depletion calculation capability is used to estimate decay heat generation rates 
following shutdown, which are used as time-dependent heat generation rates in ANSYS 
Mechanical.  The core-wide heat generation rate is calculated at hundreds of timesteps and 
normalized to nominal power.  The values used in the safety analysis consistently overpredict 
the values generated by Serpent; a conservative assumption described in Section 5.6.2.6. 

Serpent is also used to calculate control drum reactivity worths and point kinetics parameters, 
which are input into the in-house Oklo point kinetics solver (described in Section 5.6.9.3) to 
solve for the reactor power increase that results from the transient overpower. 

5.6.9.3 Point kinetics equation solver 

The point kinetics equation solver, developed in-house by Oklo, is used to solve the six-group 
point kinetics equations for the reactor power changes that result from the positive reactivity 
worth added by the drum rotation in the transient overpower bounding event.  The drum 
worths input into the point kinetics solver are calculated by Serpent.  Serpent is also used to 
calculate the input point kinetics parameters such as mean neutron generation time and the 
six-delayed-group decay constants and β fractions (which sum to β-effective).  

5.6.10 Summary 

This safety analysis approach and accompanying methods are based on NRC regulation and 
guidance, adapted where necessary for a non-LWR design.  The design of the Aurora has several 
key characteristics that ensure a robust and safe response to a wide range of events: 

• Small thermal power, several orders of magnitude smaller than a large LWR 

• Low burnup fuel, which results in limited fission product inventory 
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• Metal fuel, which has high thermal conductivity and low heat capacity, meaning stored 
heat is manageable, and heat can be removed effectively 

• Heat pipes, which provide redundant, independent heat transfer pathways and ensure 
fuel can be cooled 

• Solid-state arrangement of high thermal conductivity components, which provides 
effective heat transfer throughout the module 

• Low power density, which allows decay heat to be removed effectively by passive means 

The results of the safety analysis demonstrate a significant margin to the safety and operational 
limits during two bounding events, thereby ensuring that the Aurora safety goal is met.  During 
the transient overpower event, the three control drums are assumed to introduce positive 
reactivity at their maximum rate.  During the loss of heat sink event, a complete failure of the 
power conversion system is assumed to occur coincident with the failure of a shutdown rod to 
insert.  In both of these events, the reactor is shut down, no material or structural damage 
occurs, and no radioactive material is released.  The loss of heat sink event results in higher 
peak fuel temperatures than the transient overpower event, and as such, is designated the 
MCA. 

The safety analysis includes substantial conservatisms that, combined with sensitivity analyses 
on key parameters, provide confidence in the results and conclusions.  Design commitments and 
programmatic controls will be used to validate and protect the assumptions made in the safety 
analysis.  Altogether, the safety analysis shows that the safety goal of the Aurora, to control the 
release of radionuclides to minimize the risk to the public and the environment, is achieved. 
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5.6.11 Control of reactivity 

The underlying importance of reactivity control is that it is the means to control the generation 
of heat in the reactor.  Imbalances between the heat generation and the heat removal in the 
reactor core lead to changes in core temperatures.  As such, one means of limiting peak fuel 
temperature during the MCA is to control the reactivity of the core. 

Reactivity is controlled in the Aurora through three distinct means: the shutdown rods, the 
control drums, and the inherent characteristics of the reactor.  The control drums are solely 
responsible for compensating for slow reactivity changes due to fuel depletion and are not relied 
upon for any safety function during the transient overpower and loss of heat sink bounding 
events; they appear only in the transient overpower event solely to describe the challenge they 
present due to their malfunction.  As such, they provide no required safety functions and are not 
further discussed in this section. 

The shutdown rods, as their name implies, are the primary mechanism for achieving shutdown 
of the neutron chain reaction.  The inherent characteristics of the reactor, primarily consisting 
of reactivity feedback coefficients of temperature, also serve to mitigate and control both 
planned and unplanned changes in core reactivity. 

5.6.11.1 Shutdown rods 

Only a single rod must insert fully in order for the neutron chain reaction to be shut down and 
the core made subcritical; this is the safety function of the shutdown rod system.  The full stroke 
length of each rod is protected by a stainless-steel sheath that separates the rod from the 
surrounding reactor cells.  As the core of the Aurora operates at near atmospheric pressure, 
there is no significant driving force that opposes rod insertion.  Since the Aurora operates with a 
very low power density, it is relatively insensitive to any potential delay time that might elapse 
between the start of a transient until full rod insertion is achieved.  As a result of this design, 
the shutdown rod system robustly provides its required safety function by inserting two out of 
three shutdown rods during the MCA. 

5.6.11.2 Inherent characteristics 

Inherent characteristics of reactivity control are a backstop to mitigate undesired transient 
behavior.  They are not considered passive means because “failure” of these characteristics is 
nonphysical.  A degradation of inherent characteristics is possible, but complete failure cannot 
occur.  In the Aurora, changes in reactor power are inherently controlled and limited through 
two means: the physical core configuration, and the large negative temperature coefficient of 
reactivity.  The Aurora is configured in such a way that it is in the most reactive configuration 
during normal operations.  Any disruptions to the physical configuration of the core would lead 
the fuel to be in a less reactive state.  The Aurora has an inherently large negative temperature 
coefficient of reactivity, due primarily to the large thermal expansion that the metal core 
materials, particularly the fuel, experience as their temperature increases.  The negative 
temperature coefficient of reactivity is conservatively modeled in the MCA by assuming the 
reactor power stays constant when heat removal by the secondary system is lost. 

5.6.12 Heat removal 

Another means of limiting peak fuel temperatures is by removing heat from the reactor module.  
In the Aurora, heat removal is controlled by three distinct means: normal operation of the 
secondary system, thermal dissipation throughout the reactor materials, and residual heat 
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rejection to the surrounding environment.  Because the identified MCA involves a failure in the 
power conversion system piping, heat removal via this system is accordingly not included in this 
discussion on required safety functions. 

Since the fuel is the heat generation source, the first order heat removal function during the 
MCA is to cool the fuel.  The physical effect of interest is the conduction of heat from the metal 
fuel to other reactor components, the vast majority of which are also metal.  Specifically, the 
sensible thermal mass of the reactor module is what initially drives the temperature response of 
the fuel following off-normal events.  In other words, what is important for the Aurora’s heat 
removal function is the amount of thermal mass readily available for the fuel to dissipate heat 
through, relative to the amount of heat generated.  The amount of heat to be dissipated is 
limited by the low power density of the Aurora.  Passive heat dissipation through the Aurora 
occurs through the heat pipes and inherent heat transfer parameters. 

While the total decay heat of the Aurora is small relative to the sensible thermal mass 
available, it is indeed nonzero.  As such, over longer time horizons, passive heat rejection from 
the reactor module to the surrounding environment must be considered to accurately capture 
the temperature response of the system.  This residual heat rejection may be very small, but it 
is important to capture, as otherwise the system can only heat up over time. 

5.6.12.1 Thermal dissipation 

The Aurora operates at a low power density, significantly lower than that of commercial LWRs, 
generally one to two orders of magnitude smaller.  It operates at a lower power density than 
liquid sodium cooled fast reactors, up to three orders of magnitude lower.  The Aurora even 
operates at a lower power density than other reactors that rely primarily on conduction for 
decay heat removal such as high temperature gas reactors.  The low power density of the 
Aurora thus serves to limit the amount of heat present in the fuel that must be dissipated to 
surrounding materials when normal cooling via the secondary system is decreased or lost. 

Conduction is the dominant inherent contributor to heat dissipation from the fuel to other 
reactor components.  For conduction to be an effective means of dissipating the heat from the 
fuel to other reactor core components, several physical parameters can be controlled.  The fuel, 
and other core components, will be manufactured and assembled in such a way that an 
acceptable thermal contact will be established between the components to allow for good 
conduction capabilities. 

Passive heat dissipation is accomplished by transferring heat from the fuel to cooler materials 
in the core; thermal contact between adjacent bodies, as well as the heat pipes, ensure effective 
heat transfer throughout the entire reactor module. 

The net result of these passive and inherent characteristics of the Aurora reactor core is to 
provide a large thermal sink available for accepting heat from the fuel in scenarios where the 
nominal cooling pathway (from the fuel to the heat pipes and then to the secondary side 
working fluid) is hindered.  This sink is both large relative to the heat generation (due to the 
Aurora’s low power density), and available, since the materials of construction are either 
inherently very conductive (metals) or designed to present exceptionally small thermal 
resistance (heat pipes).  This large thermal sink serves to limit the peak temperatures 
encountered in the fuel during the MCA. 
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5.6.12.2 Residual heat rejection 

As the heat generated by the fuel is distributed throughout the core, some of this residual heat 
is rejected to the surrounding environment through natural convection to the air in the reactor 
cavity surrounding the module.  Because of the characteristics of the Aurora core discussed in 
previous sections, namely its low power density, high thermal conductivity and high heat 
capacity, this heat rejection rate need not be large to have a very beneficial effect on limiting 
peak temperatures during the MCA. 

5.6.13 Confinement 

Confinement of radionuclides in the Aurora occurs through inherent properties of the fuel 
material and several structural barriers, including the reactor cell cans, the capsule, the module 
shell, the building basement, and the building first floor.  However, the integrity of the fuel and 
the reactor cell cans is not challenged during the MCA, and as such, discussion of the other 
structural barriers is not presented here. 

5.6.13.1 Fuel 

The two contributing factors to the confinement safety function that are related to the fuel are 
the quantity of the material and the metal form. 

5.6.13.1.1 Quantity of material 

Because of the small size and power output of the Aurora, in comparison to a large LWR, the 
small amount of fuel mass limits the amount of radionuclides present throughout the life of the 
reactor, which limits the release scenario.  Further, after a 20-year lifetime, the Aurora fuel has 
a burnup of less than 1 atom %.  This small burnup means that very few radionuclides are 
generated in the fuel matrix during normal operation, which serves at all times to minimize the 
risk posed by challenges to the safety goal of the reactor, including during the MCA. 

5.6.13.1.2 Metal form 

The Aurora fuel is metal, in the form of a U-10Zr alloy, which has shown excellent performance 
to significantly higher burnups than the Aurora.  Specifically, metal fuel used in the 
Experimental Breeder Reactor-II (EBR-II) was generally operated to a burnup of four atom% in 
the early years of operation, and later up to 10-15 atom%.  Metal fuel, like other metals, is a 
relatively nonporous solid with a regular crystal lattice.  As a result, the vast majority of fission 
products are retained within the fuel matrix.  At approximately 1 atom% burnup, the voids 
caused by gaseous fission products within the fuel begin to interconnect and release fission 
gases and volatile elements from the fuel matrix and into the plenum.  Nonetheless, the fission 
products that reach the plenum are a small fraction of the overall fission products.  The safety 
limit is maintained during the MCA, and so the fuel performs its containment required safety 
function. 

5.6.13.2 Reactor cell cans 

The reactor cell can encloses the fuel and serves as its outer container.  It is made of stainless 
steel and is designed to be leak-tight.  Thus, it serves a mechanical function to physically 
separate the fuel material from objects exterior to the reactor cell itself.  During normal 
operations, it serves as the sealed structural barrier that contains radionuclides generated 
during fuel depletion that are not retained within the fuel matrix; however, most radionuclides 
are expected to be retained in the fuel itself due to the low burnup of the Aurora fuel.  The 
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operational goal of maintaining reactor cell can integrity is satisfied during the MCA, such that 
the reactor cell cans perform their containment required safety function. 

5.6.14 Summary 

The required safety functions described in this chapter summarize the key design features of 
the Aurora reactor that ensure safety of the reactor.  Chapter 2 describes the design bases and 
resulting design commitments that are taken to ensure that these required safety functions can 
be relied on.  This chapter further describes how those design commitments are incorporated 
into the safety analysis to ensure that the as-modeled system is representative of the as-
designed system.  Finally, programmatic controls are put in place to demonstrate that the 
characteristics of the as-built system provide the required safety functions. 

The remaining nonrequired safety functions shown in Figure 4-2 also contribute to the safety of 
the reactor and provide additional defense-in-depth.  Note too that other design bases are 
present (such as those for the control drums), not to provide the required safety functions, but to 
minimize the severity of the challenges that the required safety functions respond to. 
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 FIRE PROTECTION 

 Purpose 

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(6) requires, “A description 
and analysis of the fire protection design features for the reactor necessary to comply with 
10 CFR part 50, Appendix A, GDC 3, and § 50.48 of this chapter,” passing the requirement to 
10 CFR 50.48, “Fire protection.”  Specifically, 10 CFR 50.48(a)(1)-(3) applies and requires the 
following: 

(1) Each holder of an operating license issued under this part or a combined 
license issued under part 52 of this chapter must have a fire protection plan that 
satisfies Criterion 3 of Appendix A to this part.  This fire protection plan must: 

(i) Describe the overall fire protection program for the facility; 

(ii) Identify the various positions within the licensee's organization that are 
responsible for the program; 

(iii) State the authorities that are delegated to each of these positions to 
implement those responsibilities; and 

(iv) Outline the plans for fire protection, fire detection and suppression 
capability, and limitation of fire damage. 

(2) The plan must also describe specific features necessary to implement the 
program described in paragraph (a)(1) of this section such as— 

(i) Administrative controls and personnel requirements for fire prevention 
and manual fire suppression activities; 

(ii) Automatic and manually operated fire detection and suppression systems; 
and 

(iii) The means to limit fire damage to structures, systems, or components 
important to safety so that the capability to shut down the plant safely is 
ensured. 

(3) The licensee shall retain the fire protection plan and each change to the plan 
as a record until the Commission terminates the reactor license.  The licensee 
shall retain each superseded revision of the procedures for 3 years from the date 
it was superseded. 

The remainder of 10 CFR 50.48 is not discussed in this application because it does not apply.  
Section 50.48(a)(4) of 10 CFR does not apply to combined license applications.  Paragraph b of 
10 CFR 50.48 does not apply to new plants and therefore to this application.  Paragraph c of 
10 CFR 50.48 is not utilized in this application.  Paragraphs d and e of 10 CFR 50.48 are 
reserved.  Paragraph e of 10 CFR 50.48 does not apply to this application. 
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Section 50.48 to 10 CFR refers to Criterion 3, “Fire protection,” of Appendix A, “General design 
criteria for nuclear power plants,” to 10 CFR Part 50.  Appendix A to 10 CFR Part 50 does not 
apply to the Aurora, because the Aurora is not a light-water reactor.  Instead, the parallel 
advanced reactor design criteria (ARDC) 3, “Fire protection,” from Regulatory Guide (RG) 1.232, 
“Guidance for developing principal design criteria for non-light-water-reactors,” Revision 0, 
issued April 2018, is used and is replicated as follows: 

Structures, systems, and components important to safety shall be designed and 
located to minimize, consistent with other safety requirements, the probability 
and effect of fires and explosions.  Noncombustible and fire- resistant materials 
shall be used wherever practical throughout the unit, particularly in locations 
with structures, systems, or components important to safety.  Fire detection and 
fighting systems of appropriate capacity and capability shall be provided and 
designed to minimize the adverse effects of fires on structures, systems, and 
components important to safety.  Firefighting systems shall be designed to 
ensure that their rupture or inadvertent operation does not significantly impair 
the safety capability of these structures, systems, and components.  

The purpose of this section is to describe how the requirements of 10 CFR 50.48(a)(1)-(3) and 
ARDC-3 to RG 1.232 are met. 

 Fire protection plan 

In accordance with 10 CFR 50.48, each operating nuclear power plant must have a fire 
protection plan.  The plan should establish the fire protection policy for the protection of 
structures, systems, and components at each plant and the procedures, equipment, and 
personnel required to implement the program at the plant site.  The primary objectives of the 
Aurora Fire Protection Program (FPP) are to minimize both the probability of occurrence and 
the consequences of fire.  To meet these objectives, the FPP is designed to provide reasonable 
assurance, through defense-in-depth, that a fire will not prevent the performance of necessary 
safe plant shutdown functions, and thereby will not increase the risk of radioactive releases to 
the environment.  

For the Aurora, the structures, systems, and components of interest for protection against a fire 
are in the reactor module and in the control logic cabinetry.  To support transients, the reactor 
trip system is also of interest for protection.  It is important to highlight several design features 
of the Aurora that are conducive to inherently meeting the fire protection requirements, 
including: 

• The reactor enclosures are filled with an inert gas, limiting potential for ignition, 

• The only fluid circulating in the plant is carbon dioxide, which is traditionally used as a 
fire suppressant, 

• Systems that may pose a fire threat are physically separated, and 

• The site does not have a traditional switchyard, which is typically a comparatively high 
fire risk. 

The Aurora FPP utilizes the concept of defense-in-depth in fire areas, with the following three 
objectives: 
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• Prevent fires from starting, 

• Detect rapidly, control, and extinguish promptly those fires that do occur, and 

• Provide protection for structures, systems, and components important to achieving a 
safe plant state. 
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 EARTHQUAKE CRITERIA 

 Purpose 

The purpose of this chapter is to meet Title 10 of the Code of Federal Regulations (10 CFR) 
Section 52.79(a)(19), which requires “information necessary to demonstrate that the plant 
complies with the earthquake engineering criteria in 10 CFR Part 50, Appendix S.”  Specifically, 
compliance with 10 CFR Part 50, Appendix S (IV)(a) is described in this chapter.  Information 
regarding compliance with 10 CFR 100.23, “Geologic and seismic siting criteria,” as referenced 
by 10 CFR Part 50, Appendix S (IV)(b)-(c) is discussed in Chapter 1, “Site envelope and 
boundary.” 
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 Seismic analysis 

This section determines an extreme earthquake event that can be appropriately bounding for 
the U.S. and analyzes the Aurora against that event, in order to meet the underlying intent of 
10 CFR Part 50 Appendix S (IV)(a)(1). 

7.1.1 Overview of seismic analysis 

7.1.1.1 Background 

Seismic events have traditionally been considered the most bounding events for metal-fueled 
fast reactors, primarily due to the possibility of large positive reactivity insertions caused by 
control rod motion relative to the core lattice or reactor coolant sloshing.  Reactivity challenges 
typically associated with seismic events are not of concern for the Aurora.  These challenges 
typically include sloshing coolant, or oscillating control rods.  Since the Aurora does not utilize a 
reactor coolant, there are no reactivity concerns associated with sloshing of the 
coolant.  Additionally, since the Aurora does not operate with control rods, oscillation of rods is 
not of concern.  The shutdown rods used in the Aurora are fully withdrawn a significant 
distance from the core during normal operation and would not pose a risk in the same manner 
as control rods which are inserted during normal operation.  The other reactivity system is 
situated in the same structure as the reactor such that any oscillations would affect both the 
system and the reactor similarly or would place the reactor in a less reactive configuration. 

The following design features of the Aurora ensure its resilience to earthquakes: 

• A single powerhouse building eliminates concerns of differential displacement relative to 
connected structures in a seismic event. 

• The rigidity of the reactor module results in minimal increased spectral acceleration. 

• Passive decay heat removal is sufficient following reactor shutdown. 

• No reactivity oscillations are possible from reactor coolant sloshing since heat pipes 
comprise the primary cooling pathway or from rod oscillations since the rods remain 
removed from the core during operations. 

7.1.1.2 Analysis methodology 

This seismic methodology considers an extreme earthquake to ensure the safety of the facility in 
a broad range of locations in the U.S. and is as follows: 

1. Determine and describe the appropriately bounding earthquake for the U.S. 

2. Determine the relevant structures, systems, or components (SSCs) that are potentially 
vulnerable to a seismic event and that require further analysis. 

3. Analyze the relevant SSCs to determine impact of the appropriately bounding 
earthquake for the U.S. 

4. Summarize the results of the seismic analyses to determine if the overall safety of the 
facility is impacted. 
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7.1.2 Description of a bounding earthquake magnitude 

The purpose of this section is to describe the earthquake magnitude that adequately bounds the 
U.S. for the Aurora.  The first step was to determine an appropriately bounding peak ground 
acceleration (PGA), which involved examining the ground motion response spectra (GMRS) of 
the existing U.S. operating nuclear fleet and accounting for other locations by the criteria in 
American Society of Civil Engineers (ASCE) 7.  This examination resulted in a bounding PGA of 
1.75 g, conservatively far greater than the specified maximum site-independent PGA of 1 g 
described in Regulatory Guide (RG) 1.60, “Design Response Spectra for Seismic Design of 
Nuclear Power Plants”, Revision 2, July 2014.  Next, the bounding PGA was used in accordance 
with RG 1.60, to determine the appropriate spectral acceleration for the relevant components in 
the seismic analysis for the Aurora.  Further information on this methodology is discussed in 
Appendix 7-A, "Determination of bounding earthquake,” of this chapter. 

7.1.3 Determination of relevant components 

The purpose of this section is to determine which structures, systems, or components (SSCs) are 
potentially vulnerable during a seismic event.  The primary consideration is whether a seismic 
event can result in an accident which would cause radioactive releases to exceed key regulatory 
limits.  In accordance with the maximum credible accident (MCA), it was also considered if a 
seismic event could present a single cause for an accident with consequences which would 
exceed the consequences of the hypothesized MCA, presented in Chapter 5.1. 

7.1.3.1 Progression of events 

Following an extreme earthquake, the reactor trip system would receive a signal to release the 
shutdown rods.  The reactor trip system monitors key reactor parameters, and, when 
appropriate, sends a reactor trip signal to the shutdown rod system, resulting in the insertion of 
the shutdown rods into the reactor core. 

Shutdown is achieved by the shutdown rod system, which consists of three shutdown 
rods.  Shutdown rods are composed of boron carbide powder within a stainless-steel 
cylinder.  The rods are suspended above the core by electromagnets and insert via gravity drop 
when the electromagnets are de-energized, which introduces significant negative reactivity and 
consequently shuts the reactor down.  It is important to note that only one shutdown rod is 
needed to ensure the reactor is in a sub-critical state, even at room temperature, and that no 
motor is required to allow for the rods to drop.  As described in Chapter 2, “Description and 
analysis of structures, systems, and components,” each shutdown rod travels vertically within a 
shutdown rod sleeve, which provides an unobstructed path for the rod to fully insert into the 
active core.  The gap between the active portion of the shutdown rod and the walls of the sleeve, 
known as the channel, is 0.797 cm, which is sufficiently large to accommodate deformation of 
the sleeve without obstructing insertion of the rod. 

Following a normal reactor shutdown, decay heat would be removed by the secondary 
system.  In the event of an extreme earthquake, the secondary system is conservatively 
assumed to be inoperable.  Decay heat rejection occurs through passive means to the air and 
structures in the powerhouse.  These assumptions are consistent with the MCA analyzed and 
described in Chapter 5.1. 
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7.1.3.2 Characteristics of an extreme earthquake 

The two characteristics, which could be associated with an extreme earthquake, that are 
considered for purposes of the seismic analysis are the resulting force from the ground 
acceleration and the potential collapse of structures.  Specifically, analysis of the resulting force 
from the ground acceleration on the reactor module is of interest.  Since the reactor module is 
densely packed of nearly all metal components,16 a structural analysis of the reactor module is 
an appropriate indicator of the integrity of the internals.  The complement to this analysis is the 
powerhouse collapse analysis to also analyze the structural integrity of the reactor module, 
specifically the module equipment housing. 

7.1.3.3 Results of determination of relevant components 

The relevant features of interest in the seismic analysis are the following: 

• Ability for the shutdown rods to insert into the reactor 

• Protection to the shutdown rod equipment, provided by the reactor module 

• Integrity of the reactor module and internals 

Ultimately, these three features can be analyzed through an evaluation of the reactor module 
integrity.  If the reactor module does not reach structurally-challenging limits, then the reactor 
is shut down, and decay heat is passively rejected to the air and surrounding structures.  These 
results would not exceed the consequences of the MCA. 

7.1.4 Analysis assumptions and methodology 

For purposes of this deterministic seismic analysis, this section is broken up into two 
subsections:  (1) analysis of a large ground acceleration, and (2) analysis of a powerhouse 
collapse.  The goal of the large ground acceleration analysis is to confirm that the reactor 
module integrity remains intact, which assures integrity of the internals.  The goal of the 
powerhouse collapse is to analyze the reactor module integrity, specifically those portions that 
protect the shutdown rod equipment.  If the reactor module integrity is upheld after an extreme 
ground acceleration and a full powerhouse building collapse, the safety of the reactor is 
unchallenged. 

7.1.4.1 Ground acceleration analysis 

The purpose of the ground acceleration analysis is to evaluate the structural effects on the 
reactor module, following a hypothetical extreme ground acceleration, as a result of a large 
earthquake.  This analysis assumes a large earthquake occurs nearby the Aurora that disables 
heat removal by the secondary system and results in an automatic reactor trip.  Therefore, this 
analysis focuses on showing that the structural limits of the reactor module are unchallenged. 

7.1.4.1.1 Ground acceleration analysis assumptions 

The ground acceleration analysis utilizes the response curve analysis based on the 
conservatively high PGA, as described in Appendix A, "External hazards evaluation.”  This 
curve is then used as the basis for a modal analysis of the reactor module.  The reactor module 

                                                 
16 Further information of the reactor module components is located in Chapter 2. 
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is modeled as a single body, which is appropriate because of the similarity of materials present 
in the reactor module shell and internal components, as well as the rigidity of the internal 
components within the module.  The shell model is determined to be an effective assumption 
because the width of the walls are less than 1/10 the diameter of the module.  The total mass of 
the module, including the module shell and internal components, is 92.9 MT.  The mass of the 
reactor module internals is accounted for by appropriately adjusting the mass density of the 
shell. 

The reactor module is assumed to be rigidly mounted at the support flange.  The location of the 
flange is essentially exactly at the foundation elevation of the building structure, such that no 
significant amplification of seismic accelerations is assumed.  The analysis assumes a close 
coupling of the reactor module and the ground.  The module is conservatively assumed to have 
the damping value of 5%, the smallest damping value outlined in RG 1.60.  This assumption is 
conservative because there are site specific conditions that would dampen, or extremely reduce, 
the resulting forces from a ground acceleration on the reactor module.  Therefore, soil structure 
interactions that result in additional damping are bound by this analysis.  

The module shell is made of stainless-steel 304, and the mass of internal components is 
considered by adjusting the mass density of the body.  Material properties used in the analysis 
assume a temperature of the module shell of 300 C, which is conservatively high in comparison 
to the temperatures expected during operation.  As material properties, namely the elastic 
modulus and yield strength, degrade with increased temperature, the assumption of 
temperature is conservative and bounding.  Properties used in the analysis are summarized in 
Table 7-1 [17]. 

Table 7-1:  Material properties at 300 C 

Property Value 

Mass, internals (kg) 81168 
Volume, shell (m3) 1.512 
Density, shell (kg/m3) 7794 
Density, total (kg/m3) 61494 
Elastic modulus (GPa) 176 
Poisson's ratio 0.31 
Yield strength (MPa) 129 

A three-dimensional finite element model is analyzed using modal and response spectrum 
analyses in ANSYS Mechanical.  The reactor module is modeled with a refined mesh to 
adequately capture localized failure modes. 

The response spectrum analysis considers two horizontal directional response and one vertical 
response.  The horizontal response spectrum is based on the bounding spectrum defined in 
Section 7.1.2.  The vertical response spectrum is conservatively assumed to be equal to the 
horizontal response spectrum.  The three orthogonal responses are combined using the square-
root-sum-of-the-squares method.  Based on the results of the modal analysis, 300 modes are 
considered in the evaluation, resulting in 100 percent modal mass participation. 
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7.1.4.1.2 Ground acceleration results 

The first step was to determine the dominant modes of the reactor module so the corresponding 
spectral acceleration could be applied.  The dominant modes and associated frequencies are 
given in Table 7-2.  Due to the simplicity of the model, most of the participating modal mass, 
greater than 67%, is within the first two mode shapes.  The 18.8 Hz mode shapes correspond to 
cantilever, or flexural, mode shapes applicable to the reactor module.  Higher mode shapes are 
primarily circumferential in nature. 

Table 7-2:  Dominant modes and associated frequencies of modal analysis 

Mode Frequency (Hz) 

1 18.8 
2 18.8 
3 21.5 
4 21.5 
5 26.8 
6 26.8 
7 29.5 
8 29.5 
9 39.8 

10 39.8 

The two parameters of interest for the reactor module for the large ground acceleration analysis 
were the peak equivalent (von Mises) stress and horizontal displacement of the reactor module.  
The stresses in the reactor module were analyzed to assure that the reactor module did not 
reach material limits that could result in failure and to evaluate any concerns related to 
deflection of the module sufficient to distort internals so that the shutdown rods could not 
drop.  The von Mises stress in the module is shown in Figure 7-1.  The maximum stress in the 
shell is 40.6 MPa, which is substantially lower than the conservative yield strength of 129 MPa.  
The horizontal displacement of the module is shown in Figure 7-2.  The maximum horizontal 
displacement, taken at the lowest tip of the module which experiences the greatest 
displacement, is 2.1 mm.  Since the gap in the shutdown rod sleeve is approximately 7.9mm, a 
2.1 mm maximum displacement of the entire module would not compromise the ability for the 
shutdown rods to drop. 
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Figure 7-1:  Equivalent (von Mises) stress under extreme earthquake 

 

Figure 7-2:  Horizontal displacement under extreme earthquake 

This analysis concludes that the reactor module experiences mechanical loads within its 
material limits, confirming that the integrity of the module is maintained, and also that the 
shutdown rod sleeve integrity will not be compromised due to deflection. 
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7.1.4.2 Aurora powerhouse collapse analysis 

The purpose of the Aurora powerhouse collapse analysis is to evaluate the structural effects on 
the module equipment housing following a hypothetical complete collapse of the 
powerhouse.  This analysis assumes a full powerhouse collapse in order to bound all external 
hazards that could pose a challenge to the powerhouse.  This analysis assumes a full 
powerhouse collapse disables the secondary system since the secondary system is located on the 
first floor of the powerhouse, directly underneath the powerhouse roof.  The result of the 
secondary system being disabled is an automatic reactor trip, if not already triggered by 
another secondary failure.  Therefore, this analysis focused on the ability of the reactor to be 
shut down by the shutdown rods, following an automatic reactor trip signal.  To maintain 
shutdown functionality, the integrity of the reactor module must be upheld.  Specifically, the 
subcomponent of the reactor module analyzed is the module equipment housing, which 
functions to protect equipment such as the shutdown rods.  The goal of this analysis is to 
demonstrate the integrity of the module equipment housing through an impact analysis of the 
heavy powerhouse components. 

7.1.4.2.1 Powerhouse collapse analysis assumptions 

 

Figure 7-3:  Aurora powerhouse 

The Aurora powerhouse is an A-frame, as shown in Figure 7-3, which has a relatively small 
footprint of less than 5,000 sq. ft.  The module equipment housing is a reactor module 
component and is located in the basement of the powerhouse as shown in Figure 7-4.  One of the 
functions of the module equipment housing is to protect the shutdown rod equipment, which is 
the function of interest to this analysis.  The module equipment housing, which is made of 
stainless-steel 304, is assumed to have an ultimate tensile strength of 517 MPa [17].  The 
considerations analyzed the impacts from a collapsed roof, crane, and floor to assess the 
deformation and penetration damage on the module equipment housing following a powerhouse 
building collapse. 
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Figure 7-4:  Module equipment housing location 

The powerhouse includes several heavy components that could cause damage to the module 
equipment housing upon collapse.  The falling objects considered were the heavy objects in the 
powerhouse that had a line of sight to the module equipment housing.  These included the roof, 
the crane, and the floor, with the following general assumptions: 

• The roof falling objects included several A-frame roof beams, which are arranged in a
triangle formation and are supported at the base and top of the A-frame, and of
standard steel roof construction.

• The crane falling object included a single girder crane type, which is underhung, and
supported by a standard I-beam girder.

{

}
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• The floor falling object included the first floor of the powerhouse, which is located
directly above the module equipment housing, and was conservatively assumed to be
thick concrete.

These falling objects can be seen in Figure 7-5.  

Figure 7-5:  Schematic of falling objects considered 

The frame roof beams have the following characteristics: 

• W14 x 30 steel member

• 50 foot maximum length

• 42 foot maximum drop height

The crane beam has the following characteristics: 

• W18 x 119 or S24 x 106 steel member17

• 25 foot maximum length

• 17 foot maximum drop height

17 Assumed to govern the crane portion because it is the heaviest section. 

{

}
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The floor section has the following characteristics: 

• 10 ton maximum weight

• 1.5 foot maximum drop height

• 15 foot by 10 foot smallest panel size

The most conservative assumptions were used, which include the following: 

• The falling object (roof, crane, floor) has direct line of sight to the module equipment
housing from the maximum height

• No protection of the module equipment housing is taken credit for, including the
powerhouse structure, floor, or ground

• Full force of impact from the falling object, from maximum height, is assumed

• All impact loads scenarios are conservatively assumed to be from rigid sources

• All gravitation potential energy is conservatively assumed to be converted to an
equivalent kinetic energy for impact load scenarios

• Impact load scenario sources are assumed to strike the module equipment housing in a
way which produces conservative results (i.e. smallest cross-sectional area assumed as
impact area but edges or sharp ends in geometry are not assumed since this would be
overly conservative)

BC-TOP-9A, Revision 2, “Topical Report - Design of structures for missile impact,” issued 
September 1974, is used to calculate the minimum module equipment housing thickness, 
following an impact from the falling objects. 

7.1.4.2.2 Powerhouse collapse results 

The first step was to determine which falling object to analyze to obtain maximum impact to the 
module equipment housing.  From these falling objects, the roof (i.e., roof beams) were 
determined to cause the maximum impact damage to the module equipment housing and were 
used in this analysis. 

Hand calculations are used using two different missile impact evaluation methods from BC-
TOP-9A.  Potential energies are determined for each missile scenario and then the Ballistic 
Research Laboratory (BRL) formula (i.e., equation 2-7 from BC-TOP-9A) and the Stanford 
Research Institute (SRI) formula (i.e., equation C-12 from BC-TOP-9A) are used to calculate the 
required module equipment housing thickness.  The BRL formula presented a larger thickness 
that the SRI formula and governed the analysis. 

Even following such an extreme collapse scenario, the thickness of the module equipment 
housing was found to be great enough such that no penetration was experienced from the falling 
roof beam.  Therefore, the powerhouse collapse analysis found that the thickness of the module 
equipment housing was sufficient to withstand impact from falling objects due to a full building 
collapse.  
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7.1.5 Review of results 

The purpose of the seismic analysis is to assure that the safe state of the reactor is not 
challenged by an extreme earthquake.  The extreme earthquake is developed to sufficiently 
bound the U.S. for the Aurora in Appendix 7-A, "Determination of bounding earthquake,” to this 
chapter.  The seismic analysis examines the effects of a resulting force from the extreme ground 
acceleration and the effects from a building collapse.  The seismic analysis demonstrates the 
robust design of the Aurora in its ability to maintain the integrity of the reactor module, 
ultimately concluding that the overall safe state of the reactor is not challenged by extreme 
seismic events.  No SSCs are uniquely compromised by even a very conservatively large PGA 
and resultant response spectrum, and seismic does not present a safety challenge worse than 
the MCA analyzed.  Because no SSCs need to be specifically designed to withstand a large 
seismic event, they are not further seismically classified and do not have required seismic 
testing. 
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 Operating basis earthquake 

7.2.1 Determination of operating basis earthquake 

The purpose of this section is to determine the operating basis earthquake (OBE) in accordance 
with 10 CFR Part 50 Appendix S (IV)(a)(2).  The operating basis earthquake (OBE) is set to one-
third of the horizontal ground acceleration of the SSE, which in this analysis is interpreted as 
the bounding earthquake used; therefore, the requirements of Paragraph (a)(2)(i)(B)(I) are 
satisfied without explicit response or design analyses, in accordance with Paragraph (a)(2)(i)(A) 
of Appendix S to 10 CFR Part 50.  The resulting OBE is 0.58 g PGA. 

7.2.2 Required plant shutdown 

The purpose of this section is to meet 10 CFR Part 50 Appendix S (IV)(a)(3): 

If vibratory ground motion exceeding that of the Operating Basis Earthquake 
Ground Motion or if significant plant damage occurs, the licensee must shut 
down the nuclear power plant. If systems, structures, or components necessary 
for the safe shutdown of the nuclear power plant are not available after the 
occurrence of the Operating Basis Earthquake Ground Motion, the licensee must 
consult with the Commission and must propose a plan for the timely, safe 
shutdown of the nuclear power plant. Prior to resuming operations, the licensee 
must demonstrate to the Commission that no functional damage has occurred to 
those features necessary for continued operation without undue risk to the 
health and safety of the public and the licensing basis is maintained 

After a seismic event that registers near or exceeds the OBE, operating procedures provide 
guidance on evaluating possible structural impacts to the facility.  If the seismic event exceeds 
the operating basis earthquake, the reactor is shut down prior to any inspections of structural 
impacts. 
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 Seismic instrumentation  

The purpose of this section is to meet to 10 CFR Part 50 Appendix S (IV)(a)(4): 

Suitable instrumentation must be provided so that the seismic response of nuclear 
power plant features important to safety can be evaluated promptly after an earthquake. 

Seismic data is monitored based on onsite seismic instrumentation and is accessible to Onsite 
Monitors.  Seismic instrumentation is expected to include triaxial acceleration sensor units 
connected to a time-history analyzer in order to determine the magnitude and duration of the 
ground acceleration.   
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APPENDIX 7-A:  DETERMINATION OF BOUNDING EARTHQUAKE 
Part of the seismic analysis for the Aurora is to determine an appropriately bounding extreme 
earthquake for the U.S.  The purpose of this appendix is to define that appropriately bounding 
extreme earthquake for the U.S. through a set of conservative seismic design parameters. 

The methodology presented here is novel but based on key concepts from guidance, as well as 
applying abundantly conservative margins, which are possible because of the simplicity of the 
Oklo Aurora design.  According to Regulatory Guide (RG) 1.60, “Design Response Spectra for 
Seismic Design of Nuclear Power Plants”, Revision 2, July 2014, the determination of seismic 
design response spectra can be done in a site-independent manner.  This begins by the 
determination of a peak ground acceleration and scaling response spectra.  In RG 1.60, this 
maximum ground acceleration is given as 1 g.  However, for defense-in-depth to ensure a truly 
bounding response spectra, and to enable use of data across the United States available from 
USGS and ASCE, this was compared with a range of site-specific Ground Motion Response 
Spectra (GMRS) from existing plants in areas with significant seismic considerations.  Nuclear 
power plants collect site-specific seismic data with a frequency of seismic events with a risk 
target of once every 10,000 years.  This data is only available for locations with sited nuclear 
power plants, and there is no readily-available seismic data for the entire U.S. at this fidelity.  
There is readily-available data for the majority of the U.S. from the American Society of Civil 
Engineers (ASCE) Standard, ASCE 7, issued in 2010, which corresponds to a risk target of 
structural collapse of 1% in 50 years.  Since the risk targets between the nuclear power plants 
data and the ASCE 7 data are not the same, this appendix describes how the ASCE 7 data may 
be scaled to adequately encompass the U.S. at the same risk target as the data currently being 
collected by nuclear power plants.  Further discussion on what conclusions may be drawn from 
these analyses is provided at the conclusion. 

7-A.1:  Seismic data

7-A.1.1:  Seismic data from U.S. operating plants

After the March 2011 Fukushima Earthquake event, the U.S. Nuclear Regulatory Commission 
(NRC) issued a demand for information from all U.S. operating nuclear plants to re-evaluate 
their respective plants using the latest seismic hazard and regulatory guidance.  As part of their 
responses, all plants provided site-specific GMRS to the NRC for screening purposes.  GMRS 
are defined as a performance-based seismic ground motion that is developed in accordance with 
RG 1.208, issued March 2007, “A performance-based approach to define the site-specific 
earthquake ground motion.” 

7-A.1.2:  Seismic data from American Society of Civil Engineers

ASCE 7 is a standard which guides development and use of an array of site-specific data to 
provide minimum load requirements for the design of buildings and other structures that are 
subject to building code requirements.  Of those types of data, ASCE 7 provides detailed seismic 
maps and seismic data based on data from the USGS for a given site, including peak ground 
acceleration.   

All data taken from ASCE 7 were used assuming the highest risk category, Risk Category IV, 
and the least damping soil type, i.e. the “hard rock” soil type. 
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7-A.2:  Comparing the GMRS to ASCE 7

The first step in comparing the GMRS and ASCE 7 is to  directly compare the data provided by 
each in a range of specific sites.  This is done by examining the 10 operating plants with the 
highest associated seismicity, the locations of which are approximated with the Structural 
Engineers Association of California (SEAOC) interface,18 and are shown in Figure 7A - 1. 

18 “Approximate locations” as used in this analysis are within 25 miles of the operating nuclear power plant.  
The SEAOC is available as a web interface through www.seismicmaps.org and links to United States Geologic 
Survey seismic data. 

http://www.seismicmaps.org/
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Figure 7A - 1: Map of the operating plants with the 10 highest GMRS 

For these 10 operating nuclear power plants, ASCE 7 peak ground acceleration and peak 
spectral acceleration design values are also obtained; the parameters assume a Risk Category 
IV building structure and either Site Class B (rock) or Site Class D (stiff soil).  Comparisons 
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between the PGA and peak spectral acceleration values derived from the GMRS and ASCE 7 
are shown in Table 7A - 1.  The mean ratio of GMRS PGA to ASCE 7 PGA is 3.46 and the mean 
ratio of GMRS peak spectral acceleration to ASCE 7 peak spectral acceleration is 2.64.  As can 
be seen by the range of ratios, GMRS PGA and ASCE PGA do not have a linear relationship, 
and the GMRS takes into account a design factor as described in RG 1.208.  However, of note is 
that the maximum GMRS PGA of any plant is the Diablo Canyon plant, at 0.80 g.  This is to be 
expected, because Diablo Canyon is located very near a large fault, in one of the most 
seismically active regions in the entire U.S. 

Table 7A - 1: Comparison of ASCE 7 and GMRS seismic parameters 

Selected 
plants 

Approximate 
location 

ASCE 
7 PGA 

(g) 
ASCE 7 

Ss (g) 

ASCE 
7 

Ss/PGA 

GMRS 
PGA 
(g) 

GMRS 
Peak 

Sa (g) 

GMRS 
PGA/ASCE 

7 PGA 

GMRS 
Sa/ 

GMRS 
PGA 

Columbia Pasco, WA 0.17 0.39 2.35 0.25 1.45 1.51 5.80 

Vogtle Augusta, GA 0.15 0.29 1.95 0.44 1.09 2.95 2.48 

Callaway Jefferson City, MO 0.10 0.20 2.08 0.50 1.15 5.21 2.30 

Pilgrim Plymouth, MA 0.10 0.19 1.89 0.50 1.18 5.10 2.36 

North 
Anna 

Richmond, VA 0.10 0.19 1.82 0.57 1.26 5.59 2.21 

Diablo 
Canyon 

San Luis Obispo, CA 0.46 1.15 2.49 0.80 2.00 1.73 2.50 

Seabrook Portsmouth, NH 0.15 0.27 1.75 0.50 1.05 3.25 2.10 

Indian 
Point 

New York City, NY 0.17 0.28 1.66 0.40 0.85 2.40 2.13 

Oconee Greenville, SC 0.14 0.28 1.97 0.40 0.85 2.82 2.13 

Peach 
Bottom 

Lancaster, PA 0.10 0.18 1.83 0.40 0.97 4.00 2.43 

Average             3.46 2.64 

7-A.3:  Seismic parameters for representative sites 

The next step of this analysis is to estimate seismic parameters for U.S. locations where there 
are currently no sited operating plants.   Nine sites are selected to conservatively evaluate the 
U.S., based on a wide range of locations.  These sites included Alaska, Puerto Rico, St. Thomas, 
and Hawaii, as shown in Figure 7A - 2.  The assumed ASCE 7 site condition for these sites was 
Class C (very dense soil and soft rock).  The ASCE 7 PGA for these sites ranged from 0.27 g to 
0.5 g and are shown in Table 7A - 2. 
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Figure 7A - 2: Representative U.S. sites 

For estimating the GMRS-equivalent seismic values for the nine U.S. sites, the ASCE 7 PGA 
values are multiplied by the average scale factors derived in Table 7A - 1.  The estimated 
GMRS-equivalent  PGA for each site is found by applying a factor of 3.46 to the ASCE 7 
estimated PGA.   Similarly, for estimating peak spectral acceleration for each site, a factor of 
2.64 is applied.  As can be seen in Table 7A - 2, the maximum GMRS-equivalent PGA is found to 
be 1.73 g and the GMRS-equivalent peak spectral acceleration is found to be 4.55 g. 

Table 7A - 2: Seismic parameters for representative U.S. sites 

     Scaled values 

Representative 
location 

ASCE 7 
PGA (g) 

ASCE 7  
Ss (g) 

PGA ratio 
(GMRS PGA 

/ASCE 7 
PGA) 

Sa ratio 
(GMRS Sa 

/GMRS PGA) 

Calculated 
GMRS PGA (g) 
(ASCE 7 PGA * 

PGA ratio) 

Calculated 
GMRS Peak Sa 
(g) (Calculated 
GMRS PGA *Sa 

ratio) 
Fairbanks, AK 0.4 0.99 3.45 2.64 1.38 3.64 

Anchorage, AK 0.5 1.5 3.45 2.64 1.73 4.55 

Seward, AK 0.5 1.5 3.45 2.64 1.73 4.55 

San Juan,  
Puerto Rico 

0.41 0.99 3.45 2.64 1.41 3.73 
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Mayaguez,  
Puerto Rico 

0.47 1.24 3.45 2.64 1.62 4.28 

Charlotte Amalie, 
St. Thomas 

0.49 1.23 3.45 2.64 1.69 4.46 

St. Thomas,  
St. Thomas 

0.49 1.24 3.45 2.64 1.69 4.46 

Honolulu, Hawaii 0.27 0.58 3.45 2.64 0.93 2.46 

Maui, Hawaii 0.37 1.03 3.45 2.64 1.28 3.37 

7-A.4:  Results 

Since this analysis found that most U.S. sites fall below a GMRS-equivalent PGA of 1.73 g, the 
bounding earthquake PGA value is set to 1.75 g.  This far exceeds the guidance in RG 1.60 
regarding a maximum ground acceleration, i.e. PGA, of 1 g.  Next the methodology in RG 1.60, 
“Design Response Spectra for Seismic Design of Nuclear Power Plants,” Revision 2, July 2014, is 
applied to develop a design response spectrum to approximate the appropriate spectral 
accelerations of relevant components.  This design response spectrum used in the seismic 
analyses is given in Table 7A - 3. 

Table 7A - 3: Design response spectrum used in seismic analysis 

Frequency 
(Hz) Spectral acceleration (g) 

0.10 0.11 
0.25 0.70 
0.50 1.23 
1.00 2.63 
1.50 3.50 
2.50 5.48 
9.00 4.57 

33.00 1.75 
100.00 1.75 

This spectrum is then used in the modal analysis in a conservative manner as compared with 
guidance in RG 1.60 by assuming that this spectrum could be applied in both horizontal 
dimensions as well as the vertical dimension, by using the root mean of squares method as 
described.   
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 UNRESOLVED AND GENERIC SAFETY ISSUES 

 Purpose 

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(20) requires the following: 

Proposed technical resolutions of those Unresolved Safety Issues and medium- 
and high-priority generic safety issues which are identified in the version of 
NUREG-0933 current on the date up to 6 months before the docket date of the 
application and which are technically relevant to the design; 

The related regulatory guidance, NUREG-0933, “Resolution of generic safety issues,” issued 
December 2011, contains a database of over 200 generic safety issues and is available online. 

The purpose of this section is to describe the process used to determine if any generic safety 
issues, as identified in NUREG-0933, apply to the Aurora and to disposition any that do. 

 Review of NUREG-0933 

A spreadsheet, “Generic issues dataset,”19 from NUREG-0933 contains a complete set of the 
issues, titles, categorizations, and facility types.  The spreadsheet was downloaded on February 
27, 2020, which is within 6 months of the submission of the license application.  The key header 
rows that allow the issues to be filtered and sorted are as follows: 

• Facility types:  assumed to specify the applicability of the issues to different facilities 
(e.g., light water reactors, pressurized water reactors, boiling water reactors, new 
reactors) 

• Status/priority ranking:  assumed to describe whether the issue has been resolved and 
its priority (which must be medium or high to necessitate consideration) 

This allows the issues to be filtered down to only the ones that have not been stated as 
“resolved” and are deemed applicable to “new reactors” and “non light power reactors.” 

NUREG-0933, Appendix G, “Generic issues program current and historical procedures,” further 
describes the prioritization of these issues as either high, medium, low, or drop.  Only the high 
and medium generic safety issues require consideration for this application under 10 CFR 
52.79(a)(20).  Since the licensing issues are not medium or high priority and not directly related 
to protecting public health and safety or the environment, they are not considered for this 
application. 

Issue 89, highlighted in orange, appears to be the only generic issue with a priority of medium 
or high that is applicable to new reactors and is further described in Table 8-1. 

  

                                                 
19 Available for download at https://www.nrc.gov/sr0933/. 

https://www.nrc.gov/sr0933/
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Table 8-1:  Overview of generic issue 89 

Issue title Historical background Description of safety significance 
89: Stiff Pipe 
Clamps 

This issue was identified following a staff 
evaluation of allegations that improper 
consideration of "stiff" pipe clamps in Class 
1 piping systems could result in unsafe 
plant operation. 

Type 1 seismic-induced pipe breaks, 
resulting in LOCA and/or reactor 
transients; and  

 

Type 2 pipe breaks in Class 1 piping, 
resulting from dynamic loads following 
LOCAs and transients. 

Since there are no pipe clamps in the Aurora design, this generic issue does not apply. 

The most updated version of NUREG-0933 has been considered, prior to submitting this 
combined license application.  There are no unresolved or medium- and high-priority generic 
safety issues that are technically relevant to the Aurora design.  
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 EMERGENCY PLANNING 

 Purpose  

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(21) requires, “emergency 
plans complying with the requirements of § 50.47 of this chapter, and 10 CFR part 50, Appendix 
E.”  The objective of the Emergency Plan is to provide a basis for action, to identify personnel 
and material resources, and to designate areas of responsibility for coping with any emergency 
at the Aurora Idaho National Laboratory (INL) site.  The level of emergency preparedness 
provided in this plan is commensurate with the potential consequences to public health, safety, 
the common defense, and security at the Aurora INL site.  The Emergency Plan is submitted as 
a separate document in Part VII, “Enclosures.” 

 Background 

Due to Oklo’s unique market demands for a relatively small power source, the Aurora reactor 
has similar power level and quantities of nuclear material to a nonpower reactor.  Although 
nonpower reactors vary in size, they are typically on the order of 10 Megawatts thermal (MWth) 
or less20, which is two orders of magnitude less than a commercial power reactor.  Similarly, the 
amount of nuclear material in the Aurora reactor is at least an order of magnitude less than a 
large light water reactor as shown in Table 9-1.  This substantial reduction in radioactive 
material is one key to the inherent safety of the Aurora because it limits the maximum possible 
radionuclide release, in addition to the inherent safety characteristics shown in Chapter 2 and 
Chapter 5.1.   

Table 9-1:  Comparison of current large light water reactor to Aurora 

  Current large light water reactors  Aurora 
Power output (MWth) 1600-4400 <5 
Refueling cycle (years) 1.5-2 None 
Radionuclide inventory (metric tons) 100-150   <5 
System pressure (atm) 150 Near atmospheric 
Hydrogen explosion risk Yes No 
Cooling Loop with low thermal inertia Passive heat pipes 
Electric power dependence  Relies on offsite power or 

emergency diesel generation 
No safety-related electric 
power dependence 

Negative reactivity coefficient Yes Yes 

 Guidance 

In the development of the Emergency Plan and the size of the emergency planning zone (EPZ), 
Oklo has taken the following guidance into consideration:  

                                                 
20 Nonpower reactors vary in power level from 0.000005 MWth to 20 MWth.  Roughly 94% of nonpower reactors 
are licensed at or below 5 MWth according to the NRC in the publicly available dataset, “Operating U.S. 
Nuclear Research and Test Reactors - Regulated by the NRC.”  This data set was last updated on July 1, 2016. 
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• NUREG-0654, Revision 2, “Criteria for Preparation and Evaluation of Radiological 
Emergency Response Plans and Preparedness in Support of Nuclear Power Plants,” 
issued December 2019 

• NUREG-0396, Revision 0, “Planning Basis for the Development of State and Local 
Government Radiological Emergency Response Plans in Support of Light Water Nuclear 
Power Plants,” issued December 1978 

• DG-1350, “Performance-Based Emergency Preparedness for Small Modular Reactors, 
Non-Light-Water Reactors, and Non-Power Production and Utilization Facilities” 

• ANSI/ANS-15.16-2015, “Emergency Planning for Research Reactors” 

As specified in NUREG-0654, this Emergency Plan provides for the following: 

• Suitable measures are taken to protect any people located within the EPZ. 

• Responsibilities during an emergency are assigned to properly trained personnel. 

• Emergency action levels (EALs) are defined such that events can be appropriately 
classified assisting in fast and accurate decision making during an emergency. 

• Sufficient equipment and data are available to personnel with emergency 
responsibilities to assess the appropriate EAL. 

• Sufficient training, equipment, and procedures are in place to detect and mitigate the 
consequences of an onsite emergency. 

As specified in DG-1350, this Emergency Plan provides for the following: 

• The EPZ boundary provides public protection from dose levels above a 1 rem total 
effective dose equivalent threshold. 

As specified in ANSI/ANS-15.16, this Emergency Plan provides for the following: 

• The EAL radiological thresholds are in line with the limitations established for 
nonpower reactors. 

• The general structure of this emergency plan comes from ANSI/ANS-15.16. 

This Emergency Plan provides information regarding emergency preparedness and response 
planning for the Aurora reactor by the Materials and Fuels Complex site at the Aurora INL 
site.  The provided information addresses organizational responsibilities, capabilities, actions, 
and guidelines for collaborating with community response organizations during an onsite 
emergency.  Oklo Power LLC (Oklo Power) will be working closely with the Idaho Department 
of Energy (DOE-ID) for emergency support services as per the Site Use Permit. 
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 Emergency planning zone 

9.3.1 Background for emergency planning zones 

As part of emergency planning, an EPZ must be identified.  Postulated radioactive releases from 
credible accidents provide the basis for determining the size of the EPZ.  NUREG-0654 defines 
an EPZ as “the areas for which planning is needed to assure that prompt and effective actions 
can be taken to protect the public in the event of an accident.”  NUREG-0654, authored by a 
task force comprised of representatives from the Federal Emergency Management Agency and 
the Nuclear Regulatory Commission, includes the following language: 

The primary objective of radiological emergency planning is to provide dose 
savings for a spectrum of radiological incidents that have the potential to 
produce offsite doses in excess of the current Federal protective action guides 
(PAGs). 

The Environmental Protection Agency (EPA) determines the PAGs, which are the basis for 
emergency response.  The precedent, set by all currently licensed reactors, bases the plume 
exposure pathway EPZ size to the distance which a radioactive plume could result in possible 
dose to the public in excess of the PAGs.  The PAGs dose level concerns for determining the EPZ 
has been the precedent for determining radiological harm to the public since 1979 when the 
U.S. Nuclear Regulatory Commission (NRC) incorporated NUREG-0396 guidance through a 
policy statement21.  In NUREG-0396, the combined NRC EPA task force concluded that “the 
objective of emergency response plans should be to provide dose savings for a spectrum of 
accidents that could produce offsite doses in excess of the PAGs.”  The early phase limits for the 
public taking protective actions is 1-5 rem projected dose over four days as given in the PAG 
Manual, “Protective Action Guides and Planning Guidance for Radiological Incidents,” 
published January 2017.  As the basis in NRC emergency planning guidance is for the size of 
the EPZ to be based on the PAGs, an offsite emergency preparedness plan needs to exist if there 
is a possibility of an accident which would result in a 1 rem projected dose22 to a member of the 
public. 

The Emergency Plan provides sufficient planning to ensure appropriate preparation for 
responding to credible events through onsite emergency event planning.  There are two types of 
EPZs considered:  (1) the plume exposure pathway and (2) the ingestion exposure pathway 
EPZ.  The plume exposure pathway EPZ is primarily concerned with limiting the radiation 
exposure to the public and the inhalation of airborne radioactive contamination.  The primary 
concern of the ingestion exposure pathway EPZ is the ingestion of food and drink which has 
been contaminated by radioactivity. 

9.3.2 Emergency planning zone boundary and goal 

For the Aurora, the plume exposure and ingestion exposure pathway comprise the same EPZ, 
which is limited to the exterior boundary of the Aurora powerhouse.  As there is no radiological 
release associated with the maximum credible accident (MCA), the PAGs are met through an 
                                                 
21 The NRC’s policy statement incorporating NUREG-0396 was released October 23, 1979 in 44 FR 61123. 

22 As stated in the PAG Manual “Projected dose is the sum of the effective does from external radiation exposure 
(e.g. groundshine and plume submersion) and the committed effective dose from inhaled radioactive material.” 
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EPZ limited to the Aurora powerhouse.  The MCA is discussed in Chapter 5.1, “Transient 
analysis.” 

The lower limit of the PAGs, 1 rem projected over 4 days, provide the EPZ boundary goal for the 
Emergency Plan.  Due to the small size of the EPZ, there is no offsite emergency planning 
necessary and emergency planning is limited to onsite only.  Therefore, the Emergency Plan for 
the Aurora contains only one emergency class, a Notification of Unusual Events, and describes 
onsite emergency response only. 

9.3.3 Emergency Plan description 

In accordance with 10 CFR 50.47, “ Emergency plans,” and Appendix E, “Emergency planning 
and preparedness for production and utilization facilities,” to 10 CFR Part 50, the Emergency 
Plan includes the following:  

• Description of the overall emergency planning for the facility 

• Identification of the various positions and their authorities within the organization that 
are responsible for the program 

• Description of the emergency classification system 

• Description of the onsite emergency response, including, activation of the organization, 
response to the emergency, and onsite evacuations 

• Description of the emergency facility and equipment 

• Description of the recovery actions needed to be taken following an emergency 

• Description of the administrative controls for the maintenance of the Emergency Plan 
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 EMERGENCY PLANNING WITH STATE AND LOCAL 
GOVERNMENTS 

Purpose 

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(22) requires that: 

(i) All emergency plan certifications that have been obtained from the State and local
governmental agencies with emergency planning responsibilities must state that:

(A) The proposed emergency plans are practicable;

(B) These agencies are committed to participating in any further development of
the plans, including any required field demonstrations; and

(C) These agencies are committed to executing their responsibilities under the
plans in the event of an emergency;

(ii) If certifications cannot be obtained after sustained, good faith efforts by the
applicant, then the application must contain information, including a utility plan,
sufficient to show that the proposed plans provide reasonable assurance that adequate
protective measures can and will be taken in the event of a radiological emergency at the
site.

The purpose of this section is to show compliance with 10 CFR 52.79(a)(22). 

Evaluation 

Because the Aurora EPZ is limited to the powerhouse building itself, the Emergency Plan, as 
submitted and described in Part VII, “Enclosures,” has been generalized for applicability across 
the U.S. and is generally not specific to any one State or locality. 

It is important to develop and maintain strong relationships with State and local governmental 
agencies, including security, medical, ambulance, and fire services.  For the Aurora Idaho 
National Laboratory (INL) site, emergency response is augmented by the national laboratory 
and does not necessitate any further relationships with the state or local governments.  Intent 
of this relationship is documented in the Site Use Permit (NO. DE-NE700105). 

1. The Site Use Permit between the U.S. Department of Energy (DOE) and Oklo requires a
memorandum of agreement (MOA) to address access and control procedures to the
Aurora powerhouse.  The MOA will define items such as badging and access controls,
emergency response procedures, security, and any activities that may require
coordination with DOE.

2. The Site Use Permit also defines a Site Services Agreement which will describe which, if
any, services Oklo expects or desires the DOE or its contractors to provide or supply.
This Site Services Agreement will describe the service and the cost structure for such
services.  Examples of these services include, but are not limited to, security, emergency
response, transportation, power, sanitation, and roads maintenance.
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Oklo Power will continue to work closely with INL in establishing joint emergency response 
plans and operations. 
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 PROTOTYPE OPERATIONAL CONDITIONS 

 Purpose 

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(24) requires that 
paragraph e of 10 CFR 50.43, “Additional standards and provisions affecting class 103 licenses 
and certifications for commercial power,” be met and requires that applicants demonstrate their 
safety features through either prototype testing or sufficient analysis, testing and 
experimentation for designs that differ significantly from pre-1997 light water reactor designs 
or use passive safety means to accomplish safety functions.  Section 50.43(e) to 10 CFR states 
the following: 

Applications for a design certification, combined license, manufacturing license, 
operating license, or standard design approval that propose nuclear reactor 
designs which differ significantly from light-water reactor designs that were 
licensed before 1997.  Or use simplified, inherent, passive, or other innovative 
means to accomplish their safety functions will be approved only if: 

(1)(i) The performance of each safety feature of the design has been 
demonstrated through either analysis, appropriate test programs, experience, 
or a combination thereof; 

(ii) Interdependent effects among the safety features of the design are 
acceptable, as demonstrated by analysis, appropriate test programs, 
experience, or a combination thereof; and 

(iii) Sufficient data exist on the safety features of the design to assess the 
analytical tools used for safety analyses over a sufficient range of normal 
operating conditions, transient conditions, and specified accident sequences, 
including equilibrium core conditions; or 

(2) There has been acceptable testing of a prototype plant over a sufficient 
range of normal operating conditions, transient conditions, and specified 
accident sequences, including equilibrium core conditions.  If a prototype 
plant is used to comply with the testing requirements, then the NRC may 
impose additional requirements on siting, safety features, or operational 
conditions for the prototype plant to protect the public and the plant staff 
from the possible consequences of accidents during the testing period. 

The purpose of this section is to explain how the Aurora design meets the requirements of 
10 CFR 50.43(e). 

 Evaluation 

The safety of the Aurora design is based largely on analysis that utilizes operational experience 
data.  Therefore, a prototype reactor, under 10 CFR 50.43(e)(2), is not intended to be 
constructed; instead, compliance is shown with 10 CFR 50.43(e)(1).  The Aurora reactor and 
associated systems are described in Chapter 2 “Description and analysis of structures, systems, 
and components.”  The safety analysis that corresponds to those systems is in Chapter 5.1, 
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“Transient analysis.”  Subsequent testing is expected as part of preoperational and startup 
testing and is detailed in Chapter 14, “Preoperational testing and initial operations.” 
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 QUALITY ASSURANCE PLAN DESCRIPTION 

Purpose 

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(25) requires that the final 
safety analysis report includes: 

“A description of the quality assurance program, applied to the design, and to be applied 
to the fabrication, construction, and testing, of the structures, systems, and components 
of the facility.  Appendix B to 10 CFR part 50 sets forth the requirements for quality 
assurance programs for nuclear power plants.  The description of the quality assurance 
program for a nuclear power plant must include a discussion of how the applicable 
requirements of Appendix B to 10 CFR part 50 have been and will be satisfied, including 
a discussion of how the quality assurance program will be implemented” 

Overview 

Oklo has separately previously submitted its Quality Assurance Plan Description (QAPD) to the 
NRC as a topical report.  This QAPD is for the design and construction scope.  Once the SER is 
issued for this QAPD scope, which is anticipated in the near term, the modifications to the 
QAPD for the operations scope will be submitted as a topical report revision.
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 ORGANIZATIONAL STRUCTURE FOR OPERATIONS 

 Purpose 

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(26) requires that “the 
applicant’s organizational structure, allocations or responsibilities and authorities, and 
personnel qualifications requirements for operation” be provided. 

This chapter describes the organizational structure of Oklo Power LLC (Oklo Power) 
management, its plant operations, the associated functions and responsibilities, and the 
personnel qualifications requirements for operation.  Oklo Power expects to act as both the 
owner and operator of its plants.  As the Aurora is expected to operate nearly automatically, 
many of the operational roles of traditional reactors are unnecessary.  Onsite personnel do not 
perform any credited operator actions. 

 Organizational structure for operations overview 

13.1.1 Commitment to the community 

The first priority of each member of the Oklo Power staff throughout the life of a unit is 
improving the lives of the community.  Safety is a core aspect of this goal.  Decision-making for 
onsite activities is performed in a conservative manner with expectations of this core 
value.  Chains of command and lines of communication are clearly and unambiguously 
established to promote effective operations. 

13.1.2 Management structure 

At all times, Oklo Power Management is responsible for the overall operations of the 
plant.  Oklo Power Management oversees the site and ensures that its priorities are 
maintained.  The Director of Reactor Operations is responsible for overseeing the operations of 
Oklo Power’s nuclear power plants. 

Oklo Power Management is supported by the Plant Organization, led by the Plant 
Manager.  The Plant Manager is responsible for overseeing the operations of a specific 
plant.  During normal operation, the site is staffed with two onsite personnel: a Primary Site 
Monitor and a Secondary Site Monitor, jointly referred to as Onsite Monitors.  Oklo Power does 
not have any licensed operators through 10 CFR Part 55, “Operators’ licenses.” 

The Plant Organization is supported by the Technical Support Organization, which includes 
Startup Operators, Radiation Protection Personnel, and Technicians.  The Technical Support 
Organization is expected to include additional technical support, including engineering support, 
that is not described in detail in this section.  Unless otherwise specified, personnel in the 
Technical Support Organization are not expected to be present onsite. 

Oklo Power expects to hire several contractors and vendors to perform activities during the life 
of the plant, primarily during site preparation and maintenance.  During off-normal operation, 
including site preparation, construction, startup, and maintenance, additional personnel may be 
present onsite.  Depending on the situation, onsite personnel may include Site Preparation 
Personnel, Startup Operators, Radiation Protection Personnel, and Technicians. 
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13.1.3 Qualification 

While reasonable levels of qualification and education are expected for each role, an individual’s 
ability to successfully complete the Training Program and satisfy all job performance 
requirements are the determining factors for appointment to a position. 

13.1.4 Delegation of responsibilities 

It is important to note that specific responsibilities may be delegated from one Oklo Power 
employee to another Oklo Power employee.  In these cases, the delegating employee is 
responsible for properly training the designated employee to complete the task(s) required, and 
the delegating employee maintains ultimate responsibility for ensuring that the task(s) are 
completed. 

13.1.5 Management 

At all times, Oklo Power Management is responsible for the overall operations of the plants and 
oversees the sites and ensures that the priorities are maintained.  The organizational chart is 
shown in Figure 13-1. 

 

Figure 13-1:  Management organizational chart 

13.1.5.1 Chief Executive Officer 

The Chief Executive Officer (CEO) is responsible for all aspects of operating reactors.  The CEO 
is also responsible to provide technical and administrative support activities to Oklo Power, and 
responsible for contractors and vendors.  The CEO directs Oklo Power Management in the 
fulfillment of their responsibilities. 

13.1.5.2 Director of Reactor Operations 

The Director of Reactor Operations is responsible for all matters related to the operations of the 
power plants, and reports to the CEO.  The Director of Reactor Operations is responsible for 
several operational programs, including the following duties: 

• Implement and maintain the Training Program 

• Oversee and maintain the Fitness-for-Duty (FFD) Program 
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• Oversee and maintain the Initial Test Program and approve associated administrative
and technical procedures

• Oversee and approve the development and implementation of the Radiation Protection
Program, as well as approving exceeding administrative control levels for external dose

• Own the Fire Protection Program

• Oversee and approve the development and implementation of the Physical Security Plan

• Update the Emergency Plan and maintain agreements with the Community Emergency
Response Organizations

During emergencies, the Director of Reactor Operations serves as the Headquarters Emergency 
Coordinator and supports the emergency response, as per the Emergency Plan. 

13.1.5.3 Director of Licensing and Engineering 

The Director of Licensing and Engineering is responsible for all matters related to regulatory 
and licensing activities, as well as design and engineering analysis of operating reactors.  The 
Director of Licensing and Engineering reports to the CEO. 

13.1.5.4 Director of Supply Chain, Policies, and Procedures 

The Director of Supply Chain, Policies, and Procedures is responsible for all matters regarding 
supply chain and Oklo Power policies and procedures.  The Director of Supply Chain, Policies, 
and Procedures reports to the CEO. 

13.1.6 Plant Organization 

Oklo Power Management is supported by the Plant Organization, led by the Plant 
Manager.  The Plant Manager is responsible for overseeing the operations of a specific 
plant.  During normal operation, the site is staffed with two onsite personnel: a Primary Site 
Monitor and a Secondary Site Monitor, jointly referred to as Onsite Monitors.  Oklo Power does 
not have any licensed operators through 10 CFR Part 55, “Operators’ licenses.”  The 
organizational chart is shown in Figure 13-2. 

Figure 13-2: Plant Organization organizational chart 
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13.1.6.1 Plant Manager 

The Plant Manager is responsible for the overall operations of the plant.  The responsibilities of 
the Plant Manager include managing site preparation, construction, startup, Initial Test 
Program, normal operation, and maintenance.  The Plant Manager is not expected to be onsite 
at all times.  The Plant Manager reports to the Director of Reactor Operations. 

Several additional responsibilities lie with the Plant Manager, including the following: 

• Witness and determine Inspection, Testing, Analyses, and Acceptance Criteria (ITAAC) 

• Assign shifts to Onsite Monitors and Startup Operators 

• Ensure onsite personnel, including Oklo Power employees, contractors, and vendors, 
have sufficient training, qualifications, and certifications 

• Communicate at least monthly with each Onsite Monitor to ensure psychological health 

• Perform necessary duties as per the Radiation Protection Program 

• Perform necessary duties as per the Emergency Plan 

• Perform necessary duties as per the Physical Security Plan 

• Perform necessary duties as per the Fire Protection Program 

Additional responsibilities during emergencies, including decisions regarding and oversight of 
recovery and re-entry modes and management of shift changes lie with the Plant Manager and 
are described in the Emergency Plan. 

The Plant Manager is expected to have a bachelor’s level degree. 

13.1.6.2 Onsite Monitors 

During normal operation, the site is staffed with two onsite personnel: a Primary Site Monitor 
and a Secondary Site Monitor, jointly referred to as Onsite Monitors.  The Onsite Monitors 
report to the Plant Manager. 

Onsite Monitors do not have any credited operator actions.  The control logic of the Aurora 
ensures that the reactor trips when necessary.  Onsite Monitors have the ability to manually 
initiate a reactor trip and may be instructed to do so by the Plant Manager. 

During normal operation, the responsibilities for Onsite Monitors include the following: 

• Monitor key parameters during normal operation 

• Ensure the reactor is operating within the technical specifications 

• Perform rounds to ensure proper operation of equipment 

• Perform necessary duties as per the Radiation Protection Program 

• Occupy the Monitoring Room and perform duties as per the Physical Security Plan 
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During emergencies, the Primary Site Monitor begins to act as the Onsite Emergency 
Coordinator and the Secondary Site Monitor begins to act as the Onsite Emergency 
Supporter.  The Onsite Monitors carry out the necessary actions as dictated by the Emergency 
Plan. 

Individuals assigned to Onsite Monitor roles are expected to have a high-school diploma or have 
successfully completed a General Equivalency Development (GED) test. 

13.1.6.3 Oncall Monitor 

During normal operations, Oncall Monitor(s) are available to support the Plant Organization if 
determined by the Plant Manager or Onsite Monitors.  Oncall Monitors are a subset of the 
Onsite Monitors that are not on shift at the time but are expected to be fit for duty and able to 
respond in the case of an emergency, as per the Emergency Plan.  Oncall Monitors report to the 
Plant Manager. 

13.1.7 Technical Support Organization 

The Plant Organization is supported by the Technical Support Organization, which includes 
Startup Operators, Radiation Protection Personnel, and Technicians.  The Technical Support 
Organization is expected to include additional technical support, including engineering support, 
that is not described in this chapter.  Unless otherwise specified, personnel in the Technical 
Support Organization are not expected to be present onsite. 

13.1.7.1 Startup Operators 

Startup Operators are responsible for the startup of the reactor and for performing startup tests 
within the Initial Test Program.  Startup Operators are expected to be onsite the first time the 
reactor is started up but will likely not be onsite during normal operations.  Startup Operators 
report to the Director of Reactor Operations. 

Responsibilities during initial reactor startup for Startup Operators include the following: 

• Perform startup tests within ITP 

• Initiate reactor startup 

• Perform reactivity changes 

• Monitor and control key unit parameters  

Startup Operators are expected to have a high-school diploma or have successfully completed a 
GED test. 

13.1.7.2 Radiation Protection Personnel 

Radiation Protection Personnel are responsible for overseeing and executing the Radiation 
Protection Program.  Radiation Protection Personnel are led by a Certified Health Physicist 
(CHP).  The leader of the Radiation Protection Personnel reports to the Director of Reactor 
Operations.  Radiation Protection Personnel are not expected to be present onsite during normal 
operations but are expected to be present during maintenance and decommissioning. 
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As requested during an emergency under the Emergency Plan, a CHP may be dispatched from 
Oklo Power headquarters to the site to ensure appropriate protections are in place in the case of 
a radiological emergency. 

Radiation Protection Personnel are expected to have a high-school diploma or have successfully 
completed a GED test. 

13.1.7.3 Instrumentation and Control Technician 

Instrumentation and Control (I&C) Technicians are responsible for servicing I&C equipment 
during site preparation, construction, and maintenance; calibrating I&C equipment; and 
performing preoperational testing as directed by the Plant Manager.  I&C Technicians report to 
the Plant Manager. 

I&C Technicians are expected to have a high-school diploma or have successfully completed a 
GED test. 

13.1.7.4 Mechanical Technician 

Mechanical Technicians are responsible for servicing mechanical equipment during site 
preparation, construction, and maintenance, and performing preoperational testing as directed 
by the Plant Manager.  Mechanical Technicians report to the Plant Manager. 

Mechanical Technicians are expected to have a high-school diploma or have successfully 
completed a GED test. 

13.1.7.5 Electrical Technician 

Electrical Technicians are responsible for servicing electrical equipment during site 
preparation, construction, and maintenance, and performing preoperational testing as directed 
by the Plant Manager.  Electrical Technicians report to the Plant Manager. 

Electrical Technicians are expected to have a high-school diploma or have successfully 
completed a GED test. 

13.1.8 Contractors and vendors 

Oklo Power expects to hire several contractors and vendors to perform activities during the life 
of the plant, primarily during site preparation, maintenance, and the Initial Test 
Program.  While many of these individuals are not employed full-time by Oklo Power, 
individuals may be subject to Oklo Power’s Fitness-for-Duty Program, described in Chapter 
23.  Similarly, as contractors and vendors are not subject to the Oklo Power Training Program, 
described in Chapter 17, onsite personnel may be subject to training to ensure safe practices 
while onsite.  The training and qualification requirements are determined by the Plant 
Manager prior to access to the plant. 

13.1.8.1 Site Preparation Personnel 

Site Preparation Personnel are responsible for preparing the site and powerhouse and 
installation of structures, systems, and components.  Site Preparation Personnel report to the 
Plant Manager. 
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13.1.8.2 Fitness-for-Duty Personnel 

Fitness-for-Duty Personnel are responsible for supporting the implementation of the FFD 
Program described in Chapter 23; responsibilities may include collecting specimens for drug and 
alcohol testing, performing drug and alcohol testing, performing behavioral observation, and 
providing input to a determination of fitness.  FFD Personnel report to the Director of Reactor 
Operations. 
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 PREOPERATIONAL TESTING AND INITIAL OPERATIONS 

 Purpose 

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(28) requires the following 
to be submitted, “Plans for preoperational testing and initial operations.”  The purpose of this 
chapter is to describe the Initial Test Program (ITP) for the Aurora and to meet the 
requirements of 10 CFR 52.79(a)(28). 

 Introduction 

The Aurora is significantly smaller in size, complexity, and thermal power than existing light 
water reactors (LWRs).  Compared to a typical LWR ITP, the Aurora ITP will require 
participation of fewer personnel, as described in Section 14.3, and will take less time, as 
described in Section 14.4.  Although the Aurora has significantly reduced complexity, it does 
include design features that have not been previously reviewed by the U.S. Nuclear Regulatory 
Commission (NRC) that necessitate first-of-a-kind (FOAK) tests. 

14.1.1 Effects of reduced complexity 

Most of the Aurora structures, systems, and components (SSCs) are fabricated, assembled, and 
tested offsite.  This ITP focuses on testing that is conducted onsite, after the SSCs are delivered 
and installed.  Because there are few SSCs to test, the Aurora ITP requires the participation of 
a small group of personnel and can be accomplished in a matter of months.  The Aurora ITP is 
similar to a factory acceptance test for a piece of industrial equipment.  

14.1.2 First-of-a-kind testing 

First-of-a-kind tests for the Aurora are tests that verify new or unique design features, which 
have corresponding design bases in Chapter 2, “Description and analysis of structures, systems, 
and components,” and are being reviewed by the NRC for the first time.  The new or unique 
design features in the Aurora include passive decay heat removal and a metal fuel operated in 
the fast spectrum.  The ITP tests that are FOAK tests are indicated along with the test 
identifier in Table 14-11 and in Section 14.10.4.   

Despite differences between the Aurora design and a typical LWR, the objectives, methods, and 
acceptance criteria of most of the preoperational and startup tests are similar.   

14.1.3 Guidance reviewed 

The following regulatory guides (RGs) were reviewed and informed the content of this ITP: 

• RG 1.20, “Comprehensive vibration assessment program for reactor internals during 
preoperational and initial startup testing,” Revision 4, issued June 2013 

• RG 1.68, “Initial test program for water-cooled nuclear power plants,” Revision 4, issued 
June 2013 
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• RG 1.68.2, “Initial startup test program to demonstrate remote shutdown capability for 
water cooled nuclear power plants,” Revision 2, issued April 2010 

• RG 1.69, “Concrete radiation shields and generic shield testing for nuclear power 
plants,” Revision 1, issued May 2009 

• RG 1.118, “Periodic testing of electric power and protection systems,” Revision 3, issued 
April 1995 

• RG 1.206, “Combined license applications for nuclear power plants,” issued June 2007 

• RG 8.38, “Control of access to high and very high radiation areas in nuclear power 
plants,” Revision 1, issued May 2006 

• NUREG-0554, “Single-failure-proof cranes for nuclear power plants,” published May 
1979 

• NUREG-0612, “Control of heavy loads at nuclear power plants:  resolution of generic 
technical activity A 36,” issued July 1980 

• NUREG-1537 “Guidelines for Preparing and Reviewing Applications for the Licensing of 
Non-Power Reactors: Format and Content,” issued February 1996 

 Summary of ITP and objectives 

The purpose of this section is to describe the ITP that will be performed during initial startup of 
the plant.  The objective of the ITP is to demonstrate that the plant has been constructed as 
designed and that the individual systems and the overall plant function as expected based on 
the plant design.  

The major phases of the ITP are the following: 

• Preoperational testing 

• Startup plan, which includes: 

o Initial fuel loading and pre-criticality testing 

o Initial criticality testing 

o Low-power testing 

o Power-ascension testing 
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14.2.1 Preoperational testing objectives 

Preoperational tests are performed before initial fuel loading.  The main objective of these tests 
is to demonstrate that individual SSCs are installed and function correctly based on the design 
bases, described in Chapter 2.23  objectives of the preoperational tests are as follows: 

• Document the as-installed location, condition, and configuration of SSCs and
demonstrate that the as-installed SSCs meet the expectations of the design

• Demonstrate that engineered protection features and other SSCs function as expected
based on the design

• Generate initial test and operating data for components and systems for future reference
and to validate analytical models

• Demonstrate readiness for fuel loading and startup testing

Additional preoperational testing24 will be performed in parallel with the ITP, to verify that all 
systems, even those that do not have design bases in Chapter 2, are ready for operation.  This 
additional testing is not part of the ITP and is not further described.   

Preoperational tests are performed in a specific order to prevent relying on an SSC before that 
SSC has been tested.  After the performance of individual components have been demonstrated, 
components are integrated, and the performance of the integrated systems are 
tested.  Completion of the preoperational tests and the relevant ITAAC indicates that initial 
fuel loading can begin, pending the NRC 10 CFR 52.103(g) finding. 

14.2.2 Startup plan objectives 

The startup plan begins after ITAAC have been successfully completed and the 
10 CFR 52.103(g) NRC finding has been made.  The objectives of the startup plan are the 
following: 

• Load fuel safely

• Finish reactor assembly

• Perform a series of tests to verify design commitments to ensure the design bases are
met

23 Design bases are the characteristics of a system that ensure the safe operation of the Aurora reactor.  Most 
major systems in the reactor have at least one design basis, but some systems do not have any design bases.  
Each design basis has one or more design commitments, which are the specific commitments made to ensure 
that the design basis is met.  Each design commitment has one or more preoperational tests or startup tests 
that are used to verify that the commitment is met.  The Physical Security Plan, Emergency Plan, and 
Radiation Protection Plan do not have specific design bases but have preoperational tests to ensure the 
associated components are installed and function correctly. 

24 For example, the power conversion system is not required for safe operation of the Aurora and testing of the 
power conversion system is not included in the ITP. 
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The design commitments verified during startup testing determine that SSCs are installed and 
function correctly and determine important operating characteristics of the reactor.  After 
reactor assembly is completed, subcritical tests, initial criticality, and low-power tests are 
performed.  Measurements of important reactor operating characteristics are compared to 
predicted values to ensure the behavior of the reactor is well understood.  The final test is power 
ascension to full-rated power.  

Additional startup testing will be performed in parallel with the ITP, to verify that all systems, 
even those that do not have design bases in Chapter 2, are ready for operation.  This additional 
testing is not part of the ITP and is not further described.  

 Organization and staffing for the ITP 

Oklo Power will be both the owner and the operator of its plants.  Oklo Power Management is 
responsible for the plant at all times.25  Oklo Power Management is supported by the Plant 
Organization.  During the ITP, the Plant Organization is led by the Plant Manager and 
supported by the Technical Support Organization, other employees, contractors, and  
vendors.  ITP personnel refers to those individuals that are onsite during the ITP; these 
individuals are not expected to be present onsite during normal operations.  The Plant Manager 
is also ultimately responsible for ensuring ITP personnel are adequately trained. 

14.3.1 ITP personnel 

14.3.1.1 Plant Manager 

The Plant Manager is the leader of the Plant Organization, responsible for the normal operation 
of a specific plant, and reports to the Director of Reactor Operations.  The Plant Manager is 
responsible for managing the ITP, including the following responsibilities: 

• Coordinating between construction activities and the ITP 

• Managing, supervising, and scheduling the onsite ITP personnel 

• Developing and implementing a detailed ITP schedule 

• Implementing and supervising the approved administrative and technical procedures 
associated with the ITP 

• Confirming that personnel and visitors onsite during the ITP have adequate training, 
qualifications, and certifications 

• Witnessing important tests and inspections 

• Managing vendor support and contracts associated with the ITP 

                                                 
25 The organizational structure of Oklo Power is described in Chapter 13, “Organizational structure for 
operations,” and the relevant portions are summarized in this section.   
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• Coordinating with utility companies, as a consumer, to establish utility services to the 
plan 

• Coordinating with utility companies as a provider of electricity and process heat 

• Coordinating with external organizations to schedule inspections or site visits 

• Performing initial review of test results and forwarding results to the correct Oklo 
Power employee for evaluation and final review 

• Providing periodic progress updates to the Director of Reactor Operations that identify 
overall progress and potential challenges 

• Acting as the initial point of contact between ITP personnel and those personnel not 
already involved in the ITP 

• Involving Oklo Power personnel in preoperational and startup activities, when practical, 
to provide the personnel with relevant experience and knowledge 

14.3.1.2 Technical Support Organization 

The Technical Support Organization includes Startup Operators, Radiation Protection 
Personnel, and Technicians.  Members of the Technical Support Organization personnel will be 
onsite during the relevant parts of the ITP. 

Startup Operators are responsible for the startup of the reactor and report to the Director of 
Reactor Operations.  Radiation Protection Personnel are responsible for overseeing the 
Radiation Protection Program26 and report to the leader of the Radiation Protection 
Personnel.  The leader of the Radiation Protection Personnel reports to the Director of Reactor 
Operations.  Technicians provide electrical, mechanical, instrumentation, and control support 
during the ITP and report to the Plant Manager.  

The Technical Support Organization personnel are responsible for the following duties: 

• Implementing technical procedures related to the ITP 

• Documenting and reporting the results of procedures 

• Complying with administrative procedures 

14.3.1.3 Other employees 

Other employees involved may include Oklo Inc. or Oklo Power employees such as engineers 
that are intimately familiar with the Aurora system but are not part of reactor operations 
group.  These employees may provide ITP support from onsite or offsite.  The Plant Manager is 
the initial point of contact to request additional support from other employees not already 
involved in the ITP.   

                                                 
26 The Radiation Protection Program is submitted under Part VII, “Enclosures.” 
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The administrative and technical procedures associated with the preoperational and startup 
phases of the ITP are developed and reviewed by Oklo Power personnel from the licensing and 
engineering group, the reactor operations group, and the supply chain, policies, and procedures 
group.  Personnel who designed or are responsible for the satisfactory performance of a system 
or design feature cannot also be solely responsible for formulating or conducting the test 
activities associated with the system or design feature.  The administrative and technical 
procedures associated with the preoperational and startup phases of the ITP are approved by 
the Director of Reactor Operations.  The Director of Reactor Operations is responsible for 
overseeing and maintaining the ITP.  

14.3.1.4 Contractors and vendors 

Oklo Power may hire contractors to perform activities and may hire vendors to provide goods 
and services during the ITP.  The onsite activities of contractors and vendors are scheduled by 
the Plant Manager.  While these individuals are not full-time employees at Oklo Power, these 
individuals are supervised by the Plant Manager while onsite.  

14.3.2 ITP training and qualification 

Personnel onsite for the ITP must be qualified and trained to ensure that the personnel are 
prepared to safely participate in the ITP.  ITP personnel includes employees, contractors, and 
vendors.  Visitors also require training before being allowed onsite during the ITP.  The Plant 
Manager is responsible to confirming that ITP personnel, including contractors and vendors, 
have adequate training, qualifications, and certifications.  

14.3.2.1 Training and qualification for employees 

The training program for plant personnel is described in Chapter 17, “Training Program 
description.”  The Training Program includes qualification verification, medical evaluation, 
general training, job-specific training, certifications, retraining, and documentation and records 
requirements.  Participation in the Training Program is mandatory for plant personnel.  

Employees that are not required to participate in the Training Program may be required to 
complete part or all of the Training Program before participating in ITP activities onsite.  The 
training and qualification requirements depend on the onsite activities to be performed by the 
personnel and the expected conditions of the facility while the personnel are onsite.  The 
training and qualification requirements are determined by the Plant Manager.   

At the discretion of the Plant Manager, an employee that does not meet the training 
requirements may be escorted while onsite by an employee that does meet the training and 
qualification requirements.  

14.3.2.2 Training and qualification for contractors and vendors 

The training and qualification requirements for contractors and vendors depend on the onsite 
activities to be performed by the personnel, the type of access needed by the personnel, and the 
conditions of the facility while the personnel are onsite.  The Plant Manager is responsible for 
coordinating with the contractor or vendor to arrange a work schedule that does not result in 
additional training or qualification requirements as a result of conditions changing at the 
facility.  



 

Copyright © 2020 Oklo Inc., all rights reserved  383 

II.14 Preoperational testing and initial operations 

OkloPower-2020-PartII-NP, Rev. 0 

The training and qualification requirements for contractors and vendors is determined by the 
Plant Manager and should be established before the personnel arrive onsite.  Training and 
qualification activities should be performed before personnel arrive onsite, with the possible 
exception of site-specific training.  Documentation of training and qualification records should 
be submitted to and approved by the Plant Manager before the personnel arrive onsite.   

At the discretion of the Plant Manager, a contractor or vendor that does not meet the training 
requirements may be escorted while onsite by an employee that does meet the training and 
qualification requirements.  

14.3.2.3 Training and qualification for visitors 

Visitors are not expected to participate in onsite ITP activities.  The training and qualification 
requirements for visitors depends on the conditions of the facility while the visitors are 
onsite.  The Plant Manager is responsible for coordinating with the visitor to schedule visits.  
The training and qualification requirements for visitors is determined by the Plant Manager but 
will include site-specific training.  Documentation of training and qualification records should 
be submitted to and approved by the Plant Manager before the visitor arrives onsite.  Visitor 
access will be restricted at the discretion of the Plant Manager.  

At the discretion of the Plant Manager, a visitor that does not meet the training requirements 
may be escorted while onsite by an employee that does meet the training and qualification 
requirements. 

 Test procedures 

Most SSCs are fabricated, assembled, tested offsite, and delivered onsite.  Consequently, the 
procedures developed for the preoperational and startup tests are similar to a factory 
acceptance test for a piece of industrial equipment.  

Preoperational and startup tests are performed using test procedures.  For each test, the test 
procedure specifies the following items: 

• Objectives for performing the test 

• Prerequisites that must be completed before starting the test 

• Equipment, materials, and personnel required to perform the test 

• Special precautions required to protect the safety of personnel or equipment 

• Initial conditions under which the test is to be started 

• Instructions describing how the test is to be performed, including planned modifications 
to other SSCs 

• Specification of the required data to be collected 

• Data analysis methods, if appropriate 

• Criteria for evaluating test results 
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The objectives and acceptance criteria for each test are based on the design commitment that is 
being verified.  Most design commitments are verified by a preoperational test or startup 
test.  Some design commitments are verified by multiple tests to be performed at different 
stages of the ITP.  The Emergency Plan, Physical Security Plan, and Radiation Protection Plan 
do not have specific design bases but have preoperational tests to ensure the associated 
components are installed and function correctly.27  Each test is referenced by a unique test 
identifier that is cross-referenced in Chapter 2.  Test descriptions that include the objective, 
prerequisites, methods, and acceptance criteria are provided in Section 14.9 and Section 14.10. 

14.4.1 Individual test procedure generation 

Test procedures are developed, reviewed, and approved by personnel with appropriate technical 
backgrounds and experience.  Test procedures are typically written assuming personnel from 
the Plant Organization or the Technical Support Organization will be performing the test. 

Test procedures are reviewed and revised as needed between personnel in the three Oklo Power 
groups.  A finished test procedure must be approved by an Oklo Power employee from the 
licensing and engineering group, the reactor operations group, and the supply chain, policies, 
and procedures group.  The approved procedure is then reviewed by the Director of Reactor 
Operations for final approval.  

14.4.2 Conduct of the test program 

The Plant Manager is responsible for managing the conduct and schedule of the ITP.  All 
personnel onsite are responsible for understanding and following appropriate safety 
practices.  The Plant Manager organizes the schedule of tests such that the safety of personnel 
or equipment does not depend on untested components or systems and to minimize plant 
modifications needed to perform tests.  Before the start of each shift, the onsite personnel meet 
to assess progress from the previous shift, assign goals for the upcoming shift, address any 
concerns, and handoff information between shifts.  

It is the responsibility of the ITP personnel to adhere to approved test procedures and to report 
deviations to the Plant Manager.  Oklo Power employees are responsible for ensuring 
contractors or vendors adhere to approved test procedures.   

14.4.2.1 Safety and authority to stop work 

Oklo Power is responsible for providing a safe work environment.  Oklo Power provides for a 
safe work environment through proper education, training, use of protective equipment, and by 
following safety rules, regulations, standards, and laws.  Every person onsite is responsible for 
understanding and practicing appropriate safety procedures. 

At any time during the ITP, all onsite Oklo Power employees, contractors, vendors, and visitors 
have the right and responsibility to stop work when they encounter an unsafe condition.  The 
affected personnel will stop work, address the situation and, if the affected personnel are in 
agreement that the unsafe condition has been resolved, work will resume.  If the affected 
employees cannot agree on a resolution to the condition, the Plant Manager has authority to 

                                                 
27 These plans are submitted under Part VII and are also described in Chapter 9, “Emergency planning,” 
Chapter 18, “Security plans,” and Chapter 20, “Radiation Protection Program description.” 
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make a final determination.  In the event a person still believes the condition is unsafe, he or 
she will be assigned to another job with no retribution.  No retribution will follow a stop work 
action initiated in good faith even if the stop work action is deemed unnecessary.  Stop work 
actions should be discussed and documented at the following shift change meeting.  

14.4.2.2 Individual tests 

The Plant Manager assigns one or more personnel to perform an individual test and provides a 
copy of the approved test procedure for their review.  The personnel responsible for performing 
the test determine the status of the prerequisites, equipment, and materials that are necessary 
to perform the test.  Before starting the test, any plant modifications necessary to perform the 
test are discussed with the Plant Manager and may result in additional personnel being 
assigned to assist with the task.  Before approving the start of a test, the Plant Manager 
determines if the prerequisites, special precautions, and initial conditions are satisfied and that 
the required equipment, materials, and personnel are available.   

After the test is complete, test results and data are provided to the Plant Manager as described 
in Section 14.4.3.  The Plant Manager performs an initial review of the test results and then 
forwards the data and results to the correct personnel for review, as described in Section 14.4.3. 

14.4.2.3 Modifications to approved test procedures 

Oklo Power personnel, contractors, and vendors must adhere to approved test procedures.  In 
the event that it is impossible or impractical to adhere to an approved test procedure, the 
procedure must be modified, and the modification must be approved before continuing the 
test.  Minor modifications to the instructions describing how the test is to be performed can be 
approved by the Plant Manager.  Any approved modification to a test procedure must be 
reported to the Director of Reactor Operations.   

Modifications that are more substantial than minor modifications to test instructions must be 
reviewed by personnel with appropriate technical backgrounds and experience, and then 
approved by an Oklo Power employee from the licensing and engineering group and the reactor 
operations group.  The modified procedure is then reviewed by the Director of Reactor 
Operations for final approval. 

14.4.2.4 Modifications and maintenance during the ITP 

Temporary plant modifications or maintenance that affect previously tested SSCs may be 
required during the ITP.  The test procedures are designed, and the test schedule is arranged, 
to minimize temporary plant modifications and maintenance.  Modifications and maintenance 
are performed or supervised by Oklo Power personnel.  Testing may be performed and 
documented to maintain the validity of previously performed tests.   

14.4.2.4.1 Planned temporary modifications 

Procedures for temporarily modifying SSCs, restoring the SSCs to the original condition, and 
testing to confirm the operation of the modified SSCs are documented in the test 
procedure.  The scope of post-modification testing for planned temporary plant modifications is 
determined, reviewed, and documented by personnel with appropriate technical backgrounds 
and experience in the process of generating and reviewing the test procedure.  Planned 
temporary modifications that are performed according to the test procedure do not invalidate 
previously performed tests.   
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14.4.2.4.2 Unplanned temporary modifications 

Unplanned temporary modifications to previously tested SSCs may be necessary.  Procedures 
for modifying the components, restoring the components to the original condition, and testing to 
confirm the operation of the modified components are discussed, reviewed, and 
documented.  The scope of post-modification testing for unplanned modifications is reviewed 
and approved by one or more Oklo Power personnel with appropriate technical backgrounds and 
experience.  If the modification invalidates a previously completed test, then that test is 
performed again.  Procedures for unplanned temporary modifications that affect previously 
performed tests can be approved by the Plant Manager or the Director of Reactor Operations. 

14.4.2.4.3 Planned and unplanned maintenance 

Maintenance activities may affect previously tested SSCs.  Planned maintenance is included in 
the ITP schedule by the Plant Manager.  Planned maintenance is performed according to a 
procedure that documents the necessary testing to confirm the operation of the affected 
components.  The scope of post-maintenance testing is determined, reviewed, and documented 
in the process of generating and reviewing the maintenance procedure.  Planned maintenance 
that is performed according to the maintenance procedure does not invalidate previously 
performed tests.   

Unscheduled maintenance is added to the ITP schedule, as necessary, by the Plant 
Manager.  Unscheduled maintenance on an SSC that is performed according to a planned 
maintenance procedure does not invalidate tests previously performed on the affected SSC.  
Unplanned maintenance activities do not have an existing maintenance procedure.  If an 
unplanned maintenance activity affects a previously tested SSC, the scope of post-maintenance 
testing is determined, reviewed, and documented by Oklo Power employees with appropriate 
technical backgrounds and experience.  Procedures for unplanned maintenance that affect 
previously performed tests can be approved by the Plant Manager or the Director of Reactor 
Operations. 

14.4.2.5 Completion of and transition between test program phases 

The Plant Manager coordinates between construction and ITP activities.  Construction is 
defined in 10 CFR 51.4, “Definitions,” and includes driving of piles, subsurface preparation, 
placement of backfill, concrete, or permanent retaining walls within an excavation, installation 
of foundations, or in-place assembly, erection, fabrication, or testing, which are for the following 
items for the Aurora: 

• SSCs whose failure could prevent safety-related SSCs from fulfilling their safety-related 
function 

• SSCs necessary to comply with 10 CFR Part 73, “Physical protection of plants and 
materials” 

• SSCs necessary to comply with 10 CFR Part 50.48, “Fire protection” 

• SSCs necessary to comply with 10 CFR Part 50.47, “Emergency plans,” and 
10 CFR Part 50, Appendix E, “Emergency planning and preparedness for production and 
utilization facilities” 

The Plant Manager reports to the Director of Reactor operations when all construction is 
complete.  Construction should be complete to the degree that outstanding construction items 
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could not be expected to affect the validity of test results of the ITP.  The Director of Reactor 
Operations must approve the start of the ITP to allow the ITP to proceed under the direction of 
the Plant Manager.  

Preoperational tests can be performed prior to the completion of construction with the approval 
of the Plant Manager and the Director of Reactor Operations.  Construction and construction 
related inspections and tests associated with the SSC being tested must be completed prior to 
performing preoperational tests on the SSC.  Test evaluation reports for preoperational tests 
are submitted to the Director of Reactor Operations as the evaluation reports are 
completed.  After the completion of all of the preoperational tests, the ITP continues to startup 
testing after the NRC makes the 10 CFR 52.103(g) finding.  

After the NRC 10 CFR 52.103(g) finding, the ITP continues with startup testing, beginning with 
fuel loading.  Test evaluation reports are submitted to the Director of Reactor Operations as the 
reports are completed.  After fuel loading, the ITP proceeds under the direction of the Plant 
Manager with the exception that the Director of Reactor Operations must approve the start of 
initial criticality testing and the start of power-ascension testing.  

14.4.3 Review and evaluation of test results 

After the completion of a preoperational or startup test, the test results and test data are 
provided to the Plant Manager.  The Plant Manager, or delegated employee with appropriate 
technical background and experience, performs an initial review of the test results.  As part of 
the initial review, a test evaluation report is started.  The test evaluation report is used to track 
the review and evaluation of the test results within the organization.  The test evaluation 
reports include the following items: 

• Test procedure 

• Identity of the test result evaluators 

• Location where test results and test data are stored 

• Comparison of applicable test data with the related acceptance criteria 

• Justifications for acceptance of SSCs that do not conform with the acceptance criteria, if 
applicable 

• Conclusions about the SSC adequacy or deficiency 

• A pass or fail indication for the test 

After initiating the test evaluation report and performing the initial review, the Plant Manager 
forwards the test results, data, and report to the correct personnel, as indicated in the test 
procedure, for evaluation.  For some tests, the Plant Manager is allowed to evaluate the results, 
determine if the test passed or failed, complete the test evaluation report, and send the test 
evaluation report to the Director of Reactor Operations.  For most tests, one or more Oklo Power 
personnel are required to evaluate the test results, determine that the test passed or failed, 
complete the test evaluation report, and send the test report to the Plant Manager and the 
Director of Reactor Operations.   
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If a test passes, the ITP proceeds under the direction of the Plant Manager.  If a test fails, the 
Oklo Power personnel that evaluated and reviewed the results discuss the failure with the 
Plant Manager and Director of Reactor Operations, as appropriate.  Oklo Power personnel with 
appropriate technical backgrounds and experience are assigned to develop a plan to address the 
test failure.  The plan to address the test failure must be approved by the Director of Reactor 
Operations.  After the cause of the test failure has been addressed, the SSC is retested, and the 
results of the test are reevaluated.  ITP tests that list another ITP test as a prerequisite cannot 
be started until the prerequisite test is evaluated as passing.   

14.4.4 Test records 

ITP test procedures, test results, test data, and reports are retained as part of the plant’s 
historic record in accordance with the Oklo Quality Assurance Program.  Test results, test data, 
and test evaluation reports are retained regardless of whether the test was evaluated as passing 
or failing.   

After the completion of the preoperational testing, a preoperational test report is generated that 
is a summary of the individual preoperational test evaluation reports.  After the completion of 
the startup testing, a startup report is generated that is a summary of the individual startup 
test reports.   

 Utilization of reactor operating and testing experiences 

The Aurora is a compact fast reactor that produces 4 megawatts thermal and has many design 
features that make it significantly different than water cooled power reactors.  Despite the 
design differences, previous operating and testing experience from other reactors is relevant to 
the Aurora ITP.  The Aurora design includes design features which have not been previously 
reviewed by the NRC that necessitate FOAK tests, as described in Section 14.1.2.  The FOAK 
tests will only be performed on the first Aurora and will not be repeated after experience is 
gained testing and operating the first Aurora.  First-plant-only tests are described in 
Section 14.5.2. 

14.5.1 Information reviewed and effect on the ITP 

RG 1.68 provides ITP guidance specifically for water-cooled nuclear power plants.  The Aurora 
is not water-cooled but RG 1.68, and the regulatory guides and standards referenced in RG 1.68, 
were reviewed.  Despite the fundamental design differences between the Aurora and an LWR, 
many of the preoperational tests, startup tests, and guidance were relevant to the Aurora.  The 
guidance documents referenced by RG 1.68 that were relevant to the Aurora are listed in 
Section 14.1.3.  The relevant operating and testing experience from these documents was used 
to inform preoperational and startup tests to be completed under the scope of the ITP and also 
the Oklo Power tests that will be completed in parallel with the ITP. 

A literature search was preformed to find published operating and testing experience for 
reactors with similar characteristics to the Aurora.  Research and test reactors with similar 
thermal power, similar fuel type, or other design similarities to the Aurora were 
identified.  EBR-II reports were reviewed to identify tests or inform the ITP [1][2].  Documents 
describing the assembly and startup of the Massachusetts Institute of Technology Reactor 
(MITR) were reviewed to identify tests or inform the ITP [47][48].  Experience from the MITR 
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and EBR-II startup tests will also be used in the generation of the Aurora startup test 
procedures. 

14.5.2 First-plant-only tests 

The Aurora includes design features which have not been previously reviewed by the NRC and 
necessitate FOAK tests.  FOAK tests are performed during the ITP to verify new or unique 
design features.  Following the successful completion of these tests in the first plant, these 
FOAK tests are not required for following plants.  Table 14-1 provides a list of the FOAK tests 
with the test identifier and the table in which the test abstract is provided.   

Table 14-1:  List of first-plant-only tests 

Test objective Test identifier Reference to abstract 
Verify the net power coefficient of reactivity of the reactor core system 
is negative. 

SUT.RXS.03.A 
(FOAK) Section 14.10.4 

Verify the reactor can be cooled passively by conduction through the 
surrounding systems to the environment. 

SUT.RXS.04.B 
(FOAK) Section 14.10.4 

   

 Trial use of plant operating and emergency procedures 

To the extent practical, plant operating, emergency, and surveillance test procedures will be 
developed and reviewed prior to the ITP.  During the preoperational portion of the ITP, these 
procedures will be tested, and corrections and updates will be made to the procedures, as 
needed.  These procedures will be reused for subsequent plant installations.  Relevant training 
will be performed with onsite personnel prior to beginning the startup portion of the ITP. 

As the Aurora is expected to operate nearly automatically, many of the operational roles of 
traditional reactors are unnecessary for the Aurora.  During normal operation, the site is staffed 
with two Onsite Monitors.  During normal operations, the Onsite Monitors do not perform any 
credited operator actions.  The plant operating, emergency, and surveillance test procedures 
will be used to train Onsite Monitors during the startup portion of the ITP, as needed.  Onsite 
Monitors will be included, as appropriate, during portions of the startup activities to provide the 
personnel with hands-on experience and knowledge. 

 Startup plan 

The startup plan for the Aurora is described in this section and the startup test abstracts are 
provided in Section 14.10.  Startup test abstracts are only provided for tests that are used to 
confirm design commitments made in Chapter 2. 

The startup tests ensure that the operating characteristics of the reactor are well understood 
and validate the predicted behavior of the reactor.  Measurements of selected parameters are 
compared to calculated values to verify the design commitments made in Chapter 2.  The 
acceptance criteria for the startup tests ensures that the reactor is functioning within the 
bounds for which it was designed and analyzed.  
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The startup plan starts after the finding under 10 CFR 52.103(g) is made.  The startup plan 
follows these general steps: 

1. Fuel is loaded. 

2. Pre-critical test is performed to verify the as-installed reactor core system. 

3. Reactor assembly and verification testing is completed. 

4. Pre-critical tests are performed to determine the worth of shutdown rods and control 
drums. 

5. Final reactor assembly and associated verification tests are completed. 

6. Initial criticality and low-power testing are performed to determine important reactor 
parameters for comparison to predicted performance and acceptance criteria. 

7. Power-ascension to full power is completed. 

A list of the startup tests to be performed during the ITP is provided in Table 14-11.  

Pre-critical testing, initial criticality, low-power testing, and power ascension will be conducted 
on a one-shift basis so that transfer of information between personnel from shift-to-shift is not 
needed.  Engineers intimately familiar with the Aurora will oversee the startup activities. 

14.7.1 Fuel loading 

Initial fuel loading is conducted cautiously to prevent inadvertent criticality.  Predictions of core 
reactivity are prepared in advance to aid in evaluating the measured responses to specified fuel 
loading increments.  Neutron count-rate and reactor period reactor trips are configured and 
tested before starting initial fuel loading.  Neutron flux is continuously monitored during fuel 
loading to monitor the subcritical multiplication factor.  Each reactor cell is inspected before 
being loaded into the reactor.   

14.7.2 Pre-critical testing and final reactor assembly 

Pre-critical tests begin after fuel loading.  Pre-critical testing includes verification of core 
assembly, additional reactor assembly, subcritical multiplication tests, and final core 
assembly.  Test abstracts for these tests are shown in Sections 14.10.1, 14.10.2, and 14.10.3.   

Pre-critical tests are conducted cautiously to prevent inadvertent criticality.  Neutron flux is 
continuously monitored to measure the subcritical multiplication factor.  Automatic reactor 
trips are configured to prevent inadvertent criticality.   

After fuel loading is complete, a startup test is performed to inspect the assembly of the core to 
ensure components have been installed correctly.  After verification of the core assembly, 
assembly of the reactor continues with installation of shielding components and reactor 
enclosure components.  Startup tests are completed to verify the installation of each system is 
correct, as shown in Section 14.10.1.  The final reactor assembly is not completed until after 
subcritical measurements of shutdown rod worth and control drum worth are completed.  
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Subcritical multiplication measurements are performed to determine important reactor 
parameters for comparison against predicted performance and acceptance criteria.  Reactor 
parameters that are determined during pre-critical testing include cold-core integral shutdown 
rod worth and cold-core integral control drum worth, as shown in the abstracts in 
Section 14.10.2.  Determination of these parameters allow an improved calculation of excess 
core reactivity.  If necessary, the excess reactivity is adjusted by adjusting the absorber cells 
located in the center of the core.  If adjustments to the absorber cells are made, the pre-critical 
testing shown in Section 14.10.2 is repeated.  Some of these measurements may be performed 
again after initial power ascension activities are completed.   

Final reactor assembly includes installation of heat exchanger components, shielding 
components, instrumentation components, and reactor enclosure components.  Startup tests are 
completed to verify the installation of each system is correct, as shown in Section 14.10.3.  After 
final reactor assembly and any associated tests are completed and evaluated as passing, the 
startup plan continues with initial criticality.  

14.7.3 Initial criticality 

Initial criticality is approached cautiously to achieve criticality in a safe and controlled 
manner.  Neutron flux is continuously monitored during the approach to criticality.  The reactor 
achieves initial criticality with the absorber portion of the three control drums turned into the 
core and by slowly withdrawing the three shutdown rods from the core.  The initial approach to 
criticality is performed using the same methods and procedure that will be used for subsequent 
cold startups, but with additional hold points and slower removal of the shutdown 
rods.  Because there are not any design commitments that are verified during the initial 
criticality, there are not any startup tests to be completed during the initial criticality.  Should 
finer control motion be desired, the drums can be placed in a partial absorber in position so 
drum control can be used as well. 

The following items are necessary to be completed before starting the approach to initial 
criticality: 

• Critical shutdown rod positions have been predicted

• Control drums are rotated to the minimum reactivity position

• Shutdown rods are fully inserted into the core

• Nuclear instruments are calibrated

• Neutron count-rate and reactor period automatic trip limits are conservatively set

• A neutron count rate of at least 0.5 counts/sec should register on the startup channels
before startup begins, and the signal to noise ratio must be known to be greater than 2

14.7.4 Low-power testing 

After initial criticality, low-power testing is performed to test additional aspects of the Aurora 
design that could not be tested previously.  Low-power testing abstracts are provided in 
Section 14.10.4.  Low-power test abstracts are only provided for tests that are used to confirm 
design commitments made in Chapter 2.  Low-power testing is conducted cautiously.  Neutron 
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flux is continuously monitored, and the neutron count-rate and reactor period automatic trip 
limits are conservatively set. 

Low-power testing is performed for the following reasons: 

• Verify the negative reactivity coefficient of the reactor core

• Verify the ability of the reactor to passively conduct heat to the surrounding
environment starting from nominal operating temperature

• Measure the reactivity worth of the shutdown rods at operating temperature

• Verify shutdown rod insertion time at elevated core temperature

• Verify adequate overlap of source and intermediate range neutron instrumentation

• Measure neutron flux distribution

• Measure neutron and gamma radiation dose rates in the facility

14.7.5 Power-ascension testing 

Power-ascension testing is performed after the results of the low-power testing have been 
completed and evaluated as passing.  The completion of the low-power startup tests completes 
the programmatic controls used to verify the design commitments described in 
Chapter 2.  Because there are not any design commitments that are verified during power 
ascension, there are not any startup tests associated with power-ascension testing.  

The purpose of power-ascension testing is to achieve full power in a safe and controlled manner, 
confirm that the plant operates in accordance with the design at normal steady state conditions, 
and confirm the functionality of the automatic control system.  In addition, the dynamic 
behavior of the plant during and following anticipated transients will be determined, to the 
extent practical.  During power-ascension, power is increased gradually with specific tests being 
performed at power levels of approximately 10 percent, 25 percent, 50 percent, 75 percent, and 
100 percent.  Measured values are compared to predicted responses to validate the analytical 
models. 
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 Test program schedule 

The construction and construction related tests should be completed before starting the 
ITP.  The first phase of the ITP is preoperational testing, including the analysis and review of 
test results and is expected to take between 1 month and 3 months.  Based on this schedule, 
most ITAAC will be completed within 225 days before the scheduled loading of 
fuel.  Preoperational tests can be performed prior to the completion of construction, in 
accordance with the ITP.  Following the completion of preoperational testing, the second phase 
of the ITP may start and is the startup program.  Startup testing, beginning with loading fuel 
and including the analysis and review of test results, is expected to take between 1 month and 3 
months.  
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 Preoperational test abstracts 

As described in Section 14.2.1, the preoperational tests are based on the design commitments 
made to ensure the design bases of the Aurora reactor are met.  The following tables list the 
preoperational test objectives, including test identifiers that cross-reference with Chapter 2: 

• Table 14-2 – List of building and auxiliary system (BAS) preoperational tests 

• Table 14-3 – List of control drum system (CDS) preoperational tests 

• Table 14-4 – List of reactor enclosure system (RES) preoperational tests 

• Table 14-5 – List of reactor system (RXS) preoperational tests 

• Table 14-6 – List of shutdown rod system (SRS) preoperational tests 

• Table 14-7 – List of instrumentation and control system (ICS) preoperational tests 

• Table 14-8 – List of physical security (PS) preoperational tests 

• Table 14-9 – List of radiation protection (RP) preoperational tests 

• Table 14-10 – List of emergency plan (EP) preoperational tests 

The individual preoperational tests are divided into the following groups that are generally 
based on common prerequisite dependencies and similar testing activities: 

• Section 14.9.1 – Instrumentation and control system installation test group 

• Section 14.9.2 – Instrumentation and control system configuration test group 

• Section 14.9.3 – Reactor trip system functionality test group (1 of 2) 

• Section 14.9.4 – Reactor trip system functionality test group (2 of 2) 

• Section 14.9.5 – Fixed reactor component installation test group 

• Section 14.9.6 – Pre-fuel loading reactor component installation test group 

• Section 14.9.7 – Reactor ICS and SRS installation and functionality test group 

• Section 14.9.8 – Control drum system actuator functionality test group 

• Section 14.9.9 – Fire detection and suppression test group 

• Sections 14.9.10, 14.9.11, and 14.9.12 – Physical security test group 

• Section 14.9.13 – Radiation protection test group 

• Section 14.9.14 – Emergency plan test group 
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Test abstracts that describe test frequency, purpose, objectives, methods, and acceptance 
criteria are included in each group of tests.  Test abstracts were generated based on the design 
commitments, knowledge of the SSCs, and knowledge of assembly requirements.  These test 
abstracts will be used as the basis for generating test procedures. 

Individual tests appear in order in each group of tests, but that order does not necessarily 
determine the order in which the tests need to be performed and does not preclude tests from 
being performed in parallel.  The prerequisites included with each group of tests determine 
when a test can be performed relative to other tests and facility status.   

Table 14-2:  List of building and auxiliary system preoperational tests and objectives 

Test identifier Design basis Objective 
POT.BAS.01.A DB.BAS.01  Verify the construction of the reactor emplacement against design documents 

referenced by the test procedure.  
POT.BAS.02.A DB.BAS.02 Verify the critical components and cabling, as identified by the test procedure, 

are installed in the correct locations, according to design documents referenced 
by the test procedure.  

POT.BAS.02.B DB.BAS.02 Verify that openings and penetrations through fire barriers are protected 
according to design documents referenced by the test procedure. 

POT.BAS.03.A DB.BAS.03 Verify the functionality of manual fire pull-stations and individual fire detectors.  
POT.BAS.03.B DB.BAS.03 Verify the fire protection system provides for manual fire fighting capabilities in 

each fire area. 

 

Table 14-3:  List of control drum system preoperational tests and objectives 

Test identifier Design basis Objective 
POT.CDS.01.A DB.CDS.01 Verify the maximum angular rate of rotation of each control drum.  
POT.CDS.01.C DB.CDS.01 Verify that stepper motors are used as the control drum system actuators. 

 

Table 14-4:  List of reactor enclosure system preoperational tests and objectives 

Test identifier Design basis Objective 
POT.RES.01.A1 DB.RES.01 Verify the critical components of the as-installed reactor enclosure system, 

including the module shell and capsule, are installed correctly.  
POT.RES.01.A2 DB.RES.01 Verify the critical components of the as-installed reactor enclosure system, 

including the capsule lid and module lid, are installed correctly. 

 

Table 14-5:  List of reactor system preoperational tests and objectives 

Test identifier Design basis Objective 
POT.RXS.05.A DB.RXS.05 Verify the critical components of the as-installed reflector system are installed 

correctly.  
POT.RXS.06.A DB.RXS.06 Verify the critical components of the as-installed shielding system are installed 

correctly.  
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Table 14-6:  List of shutdown rod system preoperational tests and objectives 

Test identifier Design basis Objective 
POT.SRS.02.A DB.SRS.02 Verify the shutdown rods release and insert within the allowed time. 

Table 14-7:  List of instrumentation and control system preoperational tests and objectives 

Test identifier Design basis Objective 
POT.ICS.01.A1 DB.ICS.01 Verify each flux detector is installed in the correct location in the reactor core. 
POT.ICS.01.A2 DB.ICS.01 Verify each control drum absolute position sensor is installed in the correct 

location. 
POT.ICS.01.B1 DB.ICS.01 Verify each process limit monitor is connected in the correct location in the 

junction box. 
POT.ICS.01.B2 DB.ICS.01 Verify the process limit monitors are configured with the correct scaling 

information and limit setpoints. 
POT.ICS.01.C1 DB.ICS.01 Verify each flux detector is connected in the correct location in the junction box. 
POT.ICS.01.C2 DB.ICS.01 Verify each control drum absolute position sensor is connected in the correct 

location in the junction box. 
POT.ICS.01.D DB.ICS.01 Verify that each reactor trip system process limit monitor sends a fault signal 

when the measured value exceeds a limit. 
POT.ICS.02.A DB.ICS.02 Verify the time between the exceedance of a limit setpoint and the reactor trip 

signal is less than the specified time. 
POT.ICS.03.A DB.ICS.03 Verify the functionality of each of the manual reactor trip buttons installed in the 

facility. 
POT.ICS.04.A DB.ICS.04 Verify that a reactor trip signal causes the reactor trip system to latch in the 

tripped state and that a deliberate action must be performed to reset the 
system from the tripped state. 

POT.ICS.05.A DB.ICS.05 Verify the reactor trip system does not use any digital computers or custom 
software. 

POT.ICS.05.B DB.ICS.05 Verify the reactor trip system is isolated from computer networks. 

POT.ICS.05.C DB.ICS.06 Verify the control cabinets and instrumentation cabinets are installed in an 
access-controlled area. 

POT.ICS.05.D DB.ICS.05 Verify the process limit monitors are configured to require a password before 
limit setpoints, scaling information, or other configuration can be changed. 

POT.ICS.06.A DB.ICS.06 Verify that loss of AC power to each control cabinet activates a time-delay relay 
that results in a reactor trip after the expiration of the time-delay if power is not 
restored.  

POT.ICS.06.B DB.ICS.06 Verify that loss of DC power to the reactor trip circuit or to the aggregation logic 
in the control cabinet causes a reactor trip signal. 

POT.ICS.06.C DB.ICS.06 Verify that disconnecting a sensor from a process limit monitor causes the 
process limit monitor to send a fault signal. 

POT.ICS.06.D DB.ICS.06 Verify the redundant reactor trip system components, including the control and 
instrumentation cabinets, are installed in the correct locations, according to 
design documents referenced by the test procedure. 
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Table 14-8:  List of physical security preoperational tests and objectives 

Test identifier Objective 
POT.PS.01 Verify that access control points are established to control personnel access into the protected 

area and detect prohibited items.  This capability remains operable from an uninterruptible power 
supply in the event of the loss of normal power. 

POT.PS.02 Verify that an access control system with numbered picture badges is installed for use by 
individuals who are authorized to access the protected area without escort. 

POT.PS.03 Verify that emergency exits through the protected area perimeter are locked, alarmed, and 
equipped with a crash bar to allow for emergency egress.  

POT.PS.04 Verify that penetrations through the protected area barrier are secured and monitored as per the 
relevant implementing procedure of the Physical Security Plan. 

POT.PS.05 Verify the protected area is locked and alarmed with active intrusion detection systems that 
annunciate in the alarm station upon intrusion into the protected area.  This capability remains 
operable from an uninterruptible power supply in the event of the loss of normal power. 

POT.PS.06 Verify that the intrusion detection system is capable of detection and surveillance of unauthorized 
penetration or activities in the protected area independent of the presence or absence of natural 
light, and this capability remains operable from an uninterruptible power supply in the event of 
the loss of normal power. 

POT.PS.07 Verify that security alarm devices are tamper indicating and self-checking. 
POT.PS.08 Verify that alarm annunciation indicates the type of alarm and location. 
POT.PS.09 Verify that equipment exists to record onsite security alarm annunciation, including the location 

of the alarm, date, time, alarm circuit, type of alarm, false alarm, alarm check, and tamper 
indication.  This capability remains operable from an uninterruptible power supply in the event of 
the loss of normal power. 

POT.PS.10 Verify that alarm station is located inside the protected area and the interior of the alarm station 
is not visible to persons outside the protected area. 

POT.PS.11 Verify that the intrusion detection and assessment system provides visual displays and audible 
annunciation of alarms to the alarm station, and concurrently transmits visual display and alarm 
data to Headquarters and the appropriate Community Emergency Response Organization(s).  
This capability remains operable from an uninterruptible power supply in the event of the loss of 
normal power. 

POT.PS.12 Verify that security alarm annunciation and surveillance video data is displayed in the alarm 
station and is transmitted to Headquarters and the appropriate Community Emergency Response 
Organization(s), and that the video image recording with real time playback capability enables 
assessment of activities before and after each alarm annunciation.  This capability remains 
operable from an uninterruptible power supply in the event of the loss of normal power. 

Table 14-9:  List of radiation protection preoperational tests and objectives 

Test identifier Objective 
POT.RP.01 Verify that all radiation monitoring equipment required by the Radiation Protection Program 

implementing procedures is functional and installed in the correct locations. 
POT.RP.02 Verify that the Monitoring Room displays the readings from the relevant radiation monitoring 

equipment as required by the Radiation Protection Program implementing procedures. 
POT.RP.03 Verify that appropriate signage is posted to indicate radiation areas as required by the 

Radiation Protection Program implementing procedures. 
POT.RP.04 Verify that a secure check source storage cabinet is installed as required by the Radiation 

Protection Program implementing procedures. 
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Table 14-10:  List of emergency plan preoperational tests and objectives 

Test identifier Objective 
POT.EP.01 Verify that sufficient data to identify the current Emergency Action Level, including the PCS 

pressure, core temperature, core power, and basement radiation levels, are accessible in the 
Monitoring Room, and are transmitted to Headquarters and to the relevant Community 
Emergency Response Organization(s).  This capability remains operable in the event of the loss 
of normal power. 

POT.EP.02 Verify that the Monitoring Room has redundant communication methods capable of continuous 
communication with Headquarters, the appropriate Community Emergency Response 
Organization(s), and the NRC. 

POT.EP.03 Verify the Monitoring Room is sufficiently sized for six occupants. 
POT.EP.04 Verify that portable radiation detectors are accessible and functional for screening personnel for 

contamination and for assessing the source of unusual radiation levels. 

 

14.9.1 Instrumentation and control system installation test group 

Frequency These tests are required to be performed once per reactor.  
Purpose Completion of the following tests verifies that the tested components are installed correctly. 

Prerequisites Installation of each component must be completed prior to inspecting or testing the component. 
Test identifier POT.ICS.06.D 

objective Verify the redundant reactor trip system components, including the control and instrumentation 
cabinets, are installed in the correct locations, according to design documents referenced by the 
test procedure. 

method Visual inspection to identify the component, visual identification of the installed location, and 
comparison to referenced design documents.  

acceptance 
criteria 

Redundant reactor trip system logic is installed in separate fire areas to prevent fire-induced 
failure of the reactor trip system. 

Test identifier POT.BAS.02.A 
objective Verify the critical components and cabling, as identified by the test procedure, are installed in the 

correct locations, according to design documents referenced by the test procedure.  
method Visual inspection and measurements of the critical components and cabling, and comparison to 

referenced design documents.  
acceptance 

criteria 
Components and cabling that could adversely impact an automatic reactor trip and initiate a loss 
of heat sink will be separated from each other by fire barriers. 

Test identifier POT.BAS.02.B 
objective Verify that openings and penetrations through fire barriers are protected according to design 

documents referenced by the test procedure. 
method Visual inspection and measurements of the components installed to protect fire barrier openings 

and penetrations, and comparison to referenced design documents.  
acceptance 

criteria 
Openings and penetrations through fire barriers are protected by components (e.g. fire doors, fire 
dampers, or penetration seals) having fire resistance equivalent to those of the barrier. 

Test identifier POT.ICS.05.C 
objective Verify the control cabinets and instrumentation cabinets are installed in an access-controlled area. 
method Confirmation that access-control features are in place to protect the control and instrumentation 

cabinets from unauthorized access.  
acceptance 

criteria 
The process limit monitors are installed in an access-controlled area to prevent changes to limit 
setpoints, scaling information, or other configuration by unauthorized personnel. 
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14.9.2 Instrumentation and control system configuration test group 

Frequency These tests are required to be performed once per reactor.  
Purpose Completion of these tests verifies the tested instrumentation and control system components are 

installed and/or configured correctly.  
Prerequisites 1. POT.ICS.06.D, POT.BAS.02.A, POT.BAS.02.B, and POT.ICS.05.C test results must be evaluated 

as passing before starting these tests.  
2. POT.ICS.05.D test results must be evaluated as passing before performing POT.ICS.05.A, 
POT.ICS.05.B, and POT.ICS.01.B2. 

Test identifier POT.ICS.05.D 
objective Verify the process limit monitors are configured to require a password before limit setpoints, 

scaling information, or other configuration can be changed. 
method Confirmation by attempted access to configuration menus on each process limit monitor without 

entering the device password. 
acceptance 

criteria 
The process limit monitors are password protected to prevent changes to limit setpoints, scaling 
information, or other configuration by unauthorized personnel. 

Test identifier POT.ICS.05.A 
objective Verify the reactor trip system does not use any digital computers or custom software. 
method Confirmation by visual inspection that the reactor trip system is installed according to design 

documents referenced by the test procedure.  Confirmation that the firmware on each process 
limit monitor matches the firmware installed by the manufacturer, as recorded during the 
procurement quality assurance process.  

acceptance 
criteria 

The reactor trip system does not use any digital computers or custom software.  

Test identifier POT.ICS.05.B 
objective Verify the reactor trip system is isolated from computer networks. 
method Confirmation by visual inspection that the reactor trip system is installed according to design 

documents referenced by the test procedure.   
acceptance 

criteria 
The reactor trip system is isolated from computer networks to prevent changes to limit setpoints, 
scaling information, or other configuration by unauthorized personnel. 

Test identifier POT.ICS.01.B2 
objective Verify the process limit monitors are configured with the correct scaling information and limit 

setpoints.  
method Confirmation by visual inspection that the scaling information and limit setpoints on each process 

limit monitor in the reactor trip system match the values in design documents referenced by the 
test procedure. 

acceptance 
criteria 

The reactor trip system process limit monitors are connected to the correct locations, and are 
configured with the correct sensor scaling information and limit setpoints. 
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14.9.3 Reactor trip system functionality test group (1 of 2) 

Frequency These tests are required to be performed once per reactor. 
Purpose Completion of these tests verifies the tested reactor trip system components function correctly. 

Prerequisites 1. POT.ICS.01.B2 test results must be evaluated as passing before starting these tests. 
2. Installation of each component must be completed prior to inspecting or testing the
component.

Test identifier POT.ICS.03.A 
objective Verify the functionality of each of the manual reactor trip buttons installed in the facility. 
method Confirmation by two persons that actuation of each manual reactor trip button results in the 

shutdown rod electromagnets de-energizing. 
acceptance 

criteria 
Manual reactor trip buttons send a reactor trip signal when pushed. 

Test identifier POT.ICS.04.A 
objective Verify that a reactor trip signal causes the reactor trip system to latch in the tripped state and 

that a deliberate action must be performed to reset the system from the tripped state. 
method Confirmation by visual inspection that the reactor trip system maintains the tripped state until the 

reset control is used to reset the system to the not-tripped state. 
acceptance 

criteria 
A reactor trip signal causes the reactor trip system to latch in the tripped state.  After the 
condition that caused the reactor trip has been resolved, a control must be toggled to reset the 
trip system from the tripped state. 

Test identifier POT.ICS.01.D 
objective Verify that each reactor trip system process limit monitor sends a fault signal when the measured 

value exceeds a limit. 
method Use a sensor simulator to source a known value into each of the sensor inputs.  Simulate values 

above and below the limit setpoints, as applicable, and verify the over-limit and/or under-limit 
fault status was correctly received at each control cabinet.  

acceptance 
criteria 

The reactor trip system process limit monitors send a fault signal when a process variable 
exceeds a limit. 

Test identifier POT.ICS.02.A 
objective Verify the time between the exceedance of a limit setpoint and the reactor trip signal is less than 

the specified time. 
method Simultaneously measure the analog process variable associated with the limit setpoint and the 

voltage to the shutdown rod electromagnets to determine the time between the process variable 
exceeding the limit setpoint and the de-energization of the shutdown rod electromagnets.  Repeat 
the test three times. 

acceptance 
criteria 

The reactor trip system detects the exceedance of a limit setpoint and sends a reactor trip signal 
within 6 seconds. 
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14.9.4 Reactor trip system functionality test group (2 of 2) 

Frequency These tests are required to be performed once per reactor. 
Purpose Completion of these tests verifies the tested reactor trip system components function correctly. 

Prerequisites 1. POT.ICS.01.B2 test results must be evaluated as passing before starting these tests.
2. Installation of each component must be completed prior to inspecting or testing the
component.

Test identifier POT.ICS.06.C 
objective Verify that disconnecting a sensor from a process limit monitor causes the process limit 

monitor to send a fault signal. 
method Use a sensor simulator to source a known value inside the process variable operational limits 

into each of the sensor inputs.  Verify the process limit monitor is not sending a fault signal.  
Disconnect the simulated sensor and verify the process limit monitor sends a fault signal. 

acceptance 
criteria 

Detection of a disconnected sensor causes the associated process limit monitor to send a fault 
signal. 

Test identifier POT.ICS.06.A 
objective Verify that loss of AC power to each control cabinet activates a time-delay relay that results in 

a reactor trip after the expiration of the time-delay if power is not restored.  
method With the reactor trip system in the not-tripped state, disconnect the control cabinet from 

facility power.  Confirm by visual inspection that the reactor trip system tripped after the 
expiration of the time-delay.  Perform this test on each control cabinet individually. 

acceptance 
criteria 

Loss of AC power to one or both control cabinets activates a time-delay that results in a 
reactor trip signal if power is not restored within five minutes. 

Test identifier POT.ICS.06.B 
objective Verify that loss of DC power to the reactor trip circuit or to the aggregation logic in the control 

cabinet causes a reactor trip signal. 
method With the reactor trip system in the not-tripped state, disconnect the DC power to the reactor 

trip circuit and aggregation logic in one control cabinet, and confirm by visual inspection that 
the reactor trip system tripped.  Perform this test on each control cabinet individually, and with 
both cabinets simultaneously. 

acceptance 
criteria 

Loss of DC power to the reactor trip circuit or the aggregation logic in one or both control 
cabinets causes a reactor trip signal. 
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14.9.5 Fixed reactor component installation test group 

Frequency These tests are required to be performed once per reactor. 
Purpose Completion of the following tests verifies that the tested components are installed correctly. 

Prerequisites 1. Installation of each component must be completed prior to inspecting or testing the 
component. 
2. POT.BAS.01.A test results must be evaluated as passing before starting POT.RES.01.A1.

Test identifier POT.BAS.01.A 
objective Verify the construction of the reactor emplacement against design documents referenced by the 

test procedure. 
method The as-built dimensions of the reactor cavity are measured and compared to design documents 

referenced by the test procedure. 
acceptance 

criteria 
The critical components of the reactor module, as identified in the appropriate procedure, are 
installed in the reactor module emplacement as described in the design documents referenced by 
the procedure. 

Test identifier POT.RES.01.A1 
objective Verify the critical components of the as-installed reactor enclosure system, including the module 

shell and capsule, are installed correctly. 
method Identification of critical components, measurement of critical dimensions, and comparison to 

design documents referenced by the procedure. 
acceptance 

criteria 
The critical components of the reactor enclosure system, as identified in the appropriate 
procedure, are installed as described in the design documents referenced by the procedure. 

Test identifier POT.RXS.06.A 
objective Verify the critical components of the as-installed shielding system are installed correctly. 
method Identification of critical components, measurement of critical dimensions, and comparison to 

design documents referenced by the procedure. 
acceptance 

criteria 
The critical components of the shielding system, as identified in the appropriate procedure, are 
installed as described in the design documents referenced by the procedure. 

Test identifier POT.RXS.05.A 
objective Verify the critical components of the as-installed reflector system are installed correctly. 
method Identification of critical components, measurement of critical dimensions, and comparison to 

design documents referenced by the procedure. 
acceptance 

criteria 
The critical components of the reflector system, as identified in the appropriate procedure, are 
installed as described in the design documents referenced by the procedure. 
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14.9.6 Pre-fuel loading reactor component installation test group 

Frequency These tests are required to be performed once per reactor, except for POT.RES.01.A2.  
POT.RES.01.A2 is repeated as SUT.RES.01.A during startup testing. 

Purpose Completion of the following tests verifies that the tested components are installed and/or 
function correctly. 

Prerequisites 1. POT.RES.01.A1, POT.RXS.06.A, and POT.RXS.05.A test results must be evaluated as passing 
before starting these tests. 
2. POT.ICS.01.A1 test results must be evaluated as passing before starting POT.RES.01.A2. 

Test identifier POT.ICS.01.A1 
objective Verify each flux detector is installed in the correct location in the reactor core. 
method Visual identification of the neutron flux detector prior to installation, visual confirmation that the 

detector cable is correctly labeled, visual identification of the installation location in the reactor, 
comparison to design documents referenced by the procedure, and confirmation with another 
person followed by installation of the flux detector into the identified position in the reactor.  

acceptance 
criteria 

The reactor trip system sensors are installed in the correct locations. 

Test identifier POT.RES.01.A2 
objective Verify the critical components of the as-installed reactor enclosure system, including the capsule 

lid and module lid, are installed correctly. 
method Identification of critical components, measurement of critical dimensions, and comparison to 

design documents referenced by the procedure.  
acceptance 

criteria 
The critical components of the reactor enclosure system, as identified in the appropriate 
procedure, are installed as described in the design documents referenced by the procedure. 
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14.9.7 Reactor ICS and SRS installation and functionality test group 

Frequency These tests are required to be performed once per reactor, except for POT.SRS.02.A, which is 
repeated as SUT.SRS.02.A during startup testing. 

Purpose   Completion of these tests verifies the tested components are installed and/or function 
correctly. 

Prerequisites 1. Installation of each component must be completed prior to inspecting or testing the 
component. 
2. POT.ICS.01.A2 test results must be evaluated as passing before starting POT.ICS.01.C2. 

Test identifier POT.ICS.01.A2 
objective Verify each control drum absolute position sensor is installed in the correct location.  
method Visual confirmation that the sensors installed at each location are correct according to design 

documents referenced by the procedure.  Visual confirmation that the cable connected to each 
sensor is correctly labeled according to design documents referenced by the test procedure.  

acceptance 
criteria 

The reactor trip system sensors are installed in the correct locations. 

Test identifier POT.ICS.01.B1 
objective Verify each process limit monitor is connected in the correct location in the junction box. 
method Use a sensor simulator to source a known value into each sensor input in the junction box.  

Use the known simulated value to identify the process limit monitor connected to the sensor 
input.  Verify the correct limit monitor is connected to each input according to design 
documents referenced by the test procedure. 

acceptance 
criteria 

The reactor trip system process limit monitors are connected to the correct locations, and are 
configured with the correct sensor scaling information and limit setpoints. 

Test identifier POT.ICS.01.C1 
objective Verify each flux detector is connected in the correct location in the junction box. 
method Visual inspection of the label on the termination end of the sensor cable and the labeling in the 

junction box, comparison to design documents referenced by the test procedure, and 
confirmation by a second person. 

acceptance 
criteria 

The reactor trip system sensors are connected to the correct process limit monitors. 

Test identifier POT.ICS.01.C2 
objective Verify each control drum absolute position sensor is connected in the correct location in the 

junction box. 
method Visual inspection of the label on the termination end of the sensor cable and the labeling in the 

junction box, comparison to design documents referenced by the test procedure, and 
confirmation by a second person. 

acceptance 
criteria 

The reactor trip system sensors are connected to the correct process limit monitors. 

Test identifier POT.SRS.02.A 
objective Verify the shutdown rods release and insert within the allowed time.  
method Simultaneously record the reactor trip signal and the position of each shutdown rod.  With the 

shutdown rods fully withdrawn, initiate a reactor trip and measure the time required for each 
rod to fully insert.  

acceptance 
criteria 

The shutdown rod system fully inserts shutdown rods within 4 seconds of receiving a trip 
signal. 
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14.9.8 Control drum system actuator functionality test group 

Frequency These tests are required to be performed once per reactor.  
Purpose Completion of these tests verifies that the tested components are installed and/or function 

correctly. 
Prerequisites 1. Installation of each component must be completed prior to inspecting or testing the 

component. 
2. The control drum absolute position instrumentation is calibrated before starting 
POT.CDS.01.A. 

Test identifier POT.CDS.01.A 
objective Verify the maximum angular rate of rotation of each control drum.  
method Command each drum at the maximum control speed to an angular position in the direction of 

increasing reactivity.  Measure the time required for the drum to rotate to the commanded 
position.  Repeat the test using each control cabinet to provide the command signal.  

acceptance 
criteria 

The maximum rotation speed of the drums is limited to 1×10-2 deg/sec. 

Test identifier POT.CDS.01.C 
objective Verify that stepper motors are used as the control drum system actuators. 
method Visual inspection of the control drum stepper motors. 

acceptance 
criteria 

The control drum actuators use stepper motors to eliminate the possibility of a hot-short 
induced unintentional rotation. 

14.9.9 Fire detection and suppression test group 

Frequency These tests are required to be performed once per reactor.  
Purpose Completion of these tests verifies that the tested components are installed and/or function 

correctly. 
Prerequisites Installation of each component must be completed prior to inspecting or testing the 

component. 
Test identifier POT.BAS.03.A 

objective Verify the functionality of manual fire pull-stations and individual fire detectors.  
method Manually actuate each of the pull-stations and each fire detector and verify the response 

according to design documents referenced by the test procedure. 
acceptance 

criteria 
Manual pull stations or individual fire detectors provide fire detection capability and can be 
used to initiate fire alarms. 

Test identifier POT.BAS.03.B 
objective Verify the fire protection system provides for manual fire fighting capabilities in each fire area. 
method Confirmation by visual inspection that the fire fighting equipment is installed according to 

design documents referenced by the test procedure.   
acceptance 

criteria 
The fire protection system provides for manual fire fighting capabilities in each fire area. 
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14.9.10 Physical security test group (1 of 3) 

Frequency These tests are required to be performed once per reactor. 
Purpose Completion of these tests verifies that the physical security components are installed and 

function correctly. 
Prerequisites Installation of each component must be completed prior to inspecting or testing the 

component. 
Test identifier POT.PS.01 

objective Verify that access control points are established to control personnel access into the protected 
area and detect prohibited items.  This capability remains operable from an uninterruptible 
power supply in the event of the loss of normal power. 

method Test, inspection, or a combination of tests and inspections of the installed systems will be 
performed. 

acceptance 
criteria 

The access control points control personnel access into the protected area, detect prohibited 
items, and remain operable in the event of loss of normal power. 

Test identifier POT.PS.02 
objective Verify that an access control system with numbered picture badges is installed for use by 

individuals who are authorized to access the protected area without escort. 
method Test, inspection, or a combination of tests and inspections of the installed system will be 

performed. 
acceptance 

criteria 
The access control system includes numbered picture badges and can identify and authorize 
protected area access only to those personnel with unescorted access authorization. 

Test identifier POT.PS.03 
objective Verify that emergency exits through the protected area perimeter are locked, alarmed, and 

equipped with a crash bar to allow for emergency egress.  
method Test, inspection, or a combination of tests and inspections of the emergency exits through the 

protected area boundaries will be performed 
acceptance 

criteria 
Emergency exits through the protected area perimeter are locked and secured by locking 
devices that allow prompt egress during an emergency and opening the emergency exit 
actuates an alarm in the alarm station.  This capability remains operable in the event of the 
loss of normal power. 

Test identifier POT.PS.04 
objective Verify that penetrations through the protected area barrier are secured and monitored as per 

the relevant implementing procedure of the Physical Security Plan. 
method Inspections will be performed of penetrations through the protected area barrier. 

acceptance 
criteria 

Penetrations through the protected area barrier are secured and monitored. 

Test identifier POT.PS.05 
objective Verify the protected area is locked and alarmed with active intrusion detection systems that 

annunciate in the alarm station upon intrusion into the protected area.  This capability remains 
operable from an uninterruptible power supply in the event of the loss of normal power. 

method An inspection of the as-built protected area and alarm stations are performed. 
acceptance 

criteria 
Protected areas are alarmed with active intrusion detection systems and intrusion is detected 
and annunciated in the alarm station. 
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14.9.11 Physical security test group (2 of 3) 

Frequency These tests are required to be performed once per reactor. 
Purpose Completion of these tests verifies that the physical security components are installed and 

function correctly. 
Prerequisites Installation of each component must be completed prior to inspecting or testing the 

component. 
Test identifier POT.PS.06 

objective Verify that the intrusion detection system is capable of detection and surveillance of 
unauthorized penetration or activities in the protected area (PA) independent of the presence 
or absence of natural light, and this capability remains operable from an uninterruptible power 
supply in the event of the loss of normal power. 

method Testing of detection and surveillance capability in the PA will be performed.  
acceptance 

criteria 
The intrusion detection system is capable of detection and surveillance of unauthorized 
penetration or activities in the PA in the presence or absence of natural light and in the event 
of loss of normal power. 

Test identifier POT.PS.07 
objective Verify that security alarm devices are tamper indicating and self-checking. 
method Confirmation by visual inspection that the security alarm devices and associated transmission 

lines are installed according to documents referenced by the test procedure. 
acceptance 

criteria 
The security alarm devices are tamper indicating and self-checking. 

Test identifier POT.PS.08 
objective Verify that alarm annunciation indicates the type of alarm and location. 
method Functional testing of the security alarm devices to verify alarm annunciation indicates the type 

and location of the alarm. 
acceptance 

criteria 
The alarm annunciation indicates the type of alarm and location. 

Test identifier POT.PS.09 
objective Verify that equipment exists to record onsite security alarm annunciation, including the 

location of the alarm, date, time, alarm circuit, type of alarm, false alarm, alarm check, and 
tamper indication.  This capability remains operable from an uninterruptible power supply in 
the event of the loss of normal power. 

method Test, inspection, or a combination of tests and inspections of the installed system will be 
performed. 

acceptance 
criteria 

Equipment to record onsite security alarm annunciation details is functional and remains so in 
the event of loss of normal power. 

Test identifier POT.PS.10 
objective Verify that alarm station is located inside the protected area and the interior of the alarm 

station is not visible to persons outside the protected area. 
method Inspection of the alarm station will be performed. 

acceptance 
criteria 

The alarm station is located inside the protected area and the interior of the alarm station is 
not visible from the perimeter of the protected area. 
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14.9.12 Physical security test group (3 of 3) 

Frequency These tests are required to be performed once per reactor. 
Purpose Completion of these tests verifies that the physical security components are installed and 

function correctly. 
Prerequisites Installation of each component must be completed prior to inspecting or testing the 

component. 
Test identifier POT.PS.11 

objective Verify that the intrusion detection and assessment system provides visual displays and audible 
annunciation of alarms to the alarm station, and concurrently transmits visual display and 
alarm data to Headquarters and the appropriate Community Emergency Response 
Organization(s) (CEROs).  This capability remains operable from an uninterruptible power 
supply in the event of the loss of normal power. 

method Test, inspection, or a combination of tests and inspections of the installed system will be 
performed. 

acceptance 
criteria 

The intrusion detection and assessment system provides visual displays and audible 
annunciation to the alarm station and transmits visual and alarm data to Headquarters and the 
appropriate CERO(s), even in the event of loss of normal power. 

Test identifier POT.PS.12 
objective Verify that security alarm annunciation and surveillance video data is displayed in the alarm 

station and is transmitted to Headquarters and the appropriate Community Emergency 
Response Organization(s) (CEROs), and that the video image recording with real time playback 
capability enables assessment of activities before and after each alarm annunciation.  This 
capability remains operable from an uninterruptible power supply in the event of the loss of 
normal power. 

method Test, inspection, or a combination of test and inspections of the installed systems will be 
performed. 

acceptance 
criteria 

Security alarm annunciation and surveillance video data is displayed in the alarm station and at 
Headquarters and the appropriate CEROs, and the video image recording with real time 
playback capability enables assessment of activities before and after each alarm annunciation. 
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14.9.13 Radiation protection test group 

Frequency These tests are required to be performed once per reactor. 
Purpose Completion of these tests verifies that the radiation protection components are installed and 

function correctly. 
Prerequisites Installation of each component must be completed prior to inspecting or testing the 

component. 
Test identifier POT.RP.01 

objective Verify that all radiation monitoring equipment required by the Radiation Protection Program 
implementing procedures is functional and installed in the correct locations. 

method Test, inspection, or a combination of tests and inspections of the installed systems will be 
performed. 

acceptance 
criteria 

Each radiation monitor listed in the appropriate implementing procedure is installed in the 
correct location and tested to verify functionality. 

Test identifier POT.RP.02 
objective Verify that the Monitoring Room displays the readings from the relevant radiation monitoring 

equipment as required by the Radiation Protection Program implementing procedures. 

method Test, inspection, or a combination of tests and inspections of the installed systems will be 
performed. 

acceptance 
criteria 

The Monitoring Room displays the readings from the radiation monitoring equipment. 

Test identifier POT.RP.03 
objective Verify that appropriate signage is posted to indicate radiation areas as required by the 

Radiation Protection Program implementing procedures. 
method Inspection of the installed signage will be performed.  

acceptance 
criteria 

Appropriate radiation area signage is posted. 

Test identifier POT.RP.04 
objective Verify that a secure check source storage cabinet is installed as required by the Radiation 

Protection Program implementing procedures. 
method Inspection of the installed check source storage cabinet will be performed. 

acceptance 
criteria 

A secure check source storage cabinet is installed.  
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14.9.14 Emergency plan test group 

Frequency These tests are required to be performed once per reactor. 
Purpose Completion of these tests verifies that the emergency plan components are installed and 

function correctly. 
Prerequisites Installation of each component must be completed prior to inspecting or testing the 

component. 
Test identifier POT.EP.01 

objective Verify that sufficient data to identify the current Emergency Action Level (EAL), including the 
PCS pressure, core temperature, core power, and basement radiation levels, are accessible in 
the Monitoring Room, and are transmitted to Headquarters and to the relevant Community 
Emergency Response Organization(s) (CEROs).  This capability remains operable in the event 
of the loss of normal power. 

method Test, inspection, or a combination of tests and inspections of the installed display systems will 
be performed. 

acceptance 
criteria 

Data sufficient to determine the EAL is displayed in the Monitoring Room, and is transmitted to 
Headquarters and to the relevant CEROs, and this capability remains operable in the event of 
loss of normal power. 

Test identifier POT.EP.02 
objective Verify that the Monitoring Room has redundant communication methods capable of continuous 

communication with Headquarters, the appropriate Community Emergency Response 
Organization(s), and the NRC. 

method Test, inspection, or a combination of tests and inspections of the installed communication 
systems will be performed. 

acceptance 
criteria 

The Monitoring Room has redundant communication methods capable of continuous 
communication with all appropriate offsite parties, and they remain operable in the event of 
loss of normal power. 

Test identifier POT.EP.03 
objective Verify the Monitoring Room is sufficiently sized for six occupants. 
method Inspect the Monitoring Room. 

acceptance 
criteria 

The size of the Monitoring Room is as specified in the design of the Aurora powerhouse. 

Test identifier POT.EP.04 
objective Verify that portable radiation detectors are accessible and functional for screening personnel 

for contamination and for assessing the source of unusual radiation levels. 
method Test, inspection, or a combination of tests and inspections of the portable radiation detector 

systems will be performed. 
acceptance 

criteria 
The required portable radiation detectors are accessible and functional. 
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 Startup test abstracts 

As described in Section 14.2.2, the startup tests are based on the design commitments made to 
ensure the design bases of the Aurora reactor are met.  A list of the startup test objectives, 
including test identifiers and design bases that cross-reference with Chapter 2, is shown in 
Table 14-11.   

The individual startup tests are divided into the following groups generally based on common 
prerequisite dependencies and similar testing activities: 

• Post-fuel loading reactor component installation test group (Section 14.10.1)

• Pre-critical cold-core subcritical multiplication test group (Section 14.10.2)

• Heat exchanger installation and final reactor assembly test group (Section 14.10.3)

• Low-power test group (Section 14.10.4)

Test abstracts that describe test frequency, purpose, objectives, methods, and acceptance 
criteria are included in each group of tests.  Test abstracts were generated based on the design 
commitments, knowledge of the SSCs, and knowledge of assembly requirements.  These test 
abstracts will be used as the basis for generating test procedures. 

Individual tests appear in order in each group of tests, but that order does not necessarily 
determine the order in which the tests need to be performed.  The prerequisites included with 
each group of tests determine when a test can be performed relative to other tests and facility 
status. 
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Table 14-11:  List of startup tests and objectives 

Test identifier Design basis Objective 
SUT.CDS.01.B DB.CDS.01 Determine the integral control drum worth of each control drum with a cold core. 

SUT.HXS.01.A DB.HXS.01 Verify the critical components of the as-installed heat exchanger system are 
installed correctly. 

SUT.ICS.01.A DB.ICS.01 Verify each thermocouple is installed in the correct location. 
SUT.ICS.01.C DB.ICS.01 Verify each thermocouple is terminated in the correct location in the junction box. 
SUT.RES.01.A DB.RES.01 Verify the critical components of the as-installed reactor enclosure system, 

including the capsule lid and module lid, are installed correctly. 
SUT.RXS.03.A 
(FOAK) 

DB.RXS.03 Verify the net power coefficient of reactivity of the reactor core system is negative.  

SUT.RXS.04.A DB.RXS.04 Verify the critical components of the as-installed reactor core system, including the 
fuel, are installed correctly. 

SUT.RXS.04.B 
(FOAK) 

DB.RXS.04 Verify the reactor can be cooled passively by conduction through the surrounding 
systems to the environment. 

SUT.RXS.06.A1 DB.RXS.06 Verify the critical components of the as-installed shielding system, including the 
heat exchanger shield, are installed correctly. 

SUT.RXS.06.A2 DB.RXS.06 Verify the critical components of the as-installed shielding system, including the 
top shield, are installed correctly. 

SUT.SRS.01.A1 DB.SRS.01 Determine the integral shutdown rod worth of each shutdown rod with a cold core. 
SUT.SRS.01.A2 DB.SRS.01 Determine total shutdown rod worth of individual shutdown rods with the core at 

operating temperature. 
SUT.SRS.02.A DB.SRS.02 Verify the shutdown rods release and insert into the core within the allowed time 

with the core at operational temperature. 
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14.10.1 Post-fuel loading reactor component installation test group 

Frequency These tests are required to be performed once per reactor. 
Purpose Completion of these tests verifies that the tested components are installed and/or function 

correctly. 
Prerequisites 1. SUT.RXS.04.A may be performed in parallel with fuel loading.

2. SUT.RXS.04.A test results must be evaluated as passing before starting SUT.RXS.06.A1.
Test identifier SUT.RXS.04.A 

objective Verify the critical components of the as-installed reactor core system, including the fuel, are 
installed correctly. 

method Identification of critical components, measurement of critical dimensions, and comparison to 
design documents referenced by the procedure. 

acceptance 
criteria 

The critical components of the reactor core system, as identified in the appropriate procedure, 
are installed as described in the design documents referenced by the procedure. 

Test identifier SUT.RXS.06.A1 
objective Verify the critical components of the as-installed shielding system, including the heat 

exchanger shield, are installed correctly. 
method Identification of critical components, measurement of critical dimensions, and comparison to 

design documents referenced by the procedure. 
acceptance 

criteria 
The critical components of the shielding system, as identified in the appropriate procedure, are 
installed as described in the design documents referenced by the procedure. 



Copyright © 2020 Oklo Inc., all rights reserved  414 

II.14 Preoperational testing and initial operations

OkloPower-2020-PartII-NP, Rev. 0 

14.10.2 Pre-critical cold-core subcritical multiplication test group 

Frequency These tests are required to be performed once per reactor.  These tests must be repeated 
after adjustments are made to reconfigurable reflector cells, shutdown rods are replaced, fixed 
reflectors are replaced, or reactor cells are replaced. 

Purpose Completion of these tests provide measurements of the reactivity worth of the control drums 
and the shutdown rods with a cold core. 

Prerequisites 1. Neutron flux instrumentation, neutron flux limits, and reactor period limits are functional 
and can automatically trip a reactor shutdown.  
2. The reactor core is loaded with fuel and the layout of the reactor core has been verified.
3. Area radiation monitors are operational.
4. The background neutron source term has been quantified.
5. The neutron source is installed in the reactor.

Test identifier SUT.CDS.01.B 
objective Determine the integral control drum worth of each control drum with a cold core. 
method Subcritical multiplication test with each control drum rotated at angular increments from the 

minimum reactivity position to the maximum reactivity position. 
acceptance 

criteria 
The total reactivity worth of the drums is less than 700 pcm at all operating conditions. 

Test identifier SUT.SRS.01.A1 
objective Determine the integral shutdown rod worth of each shutdown rod with a cold core. 
method Subcritical multiplication test with each rod incrementally removed from the core. 

acceptance 
criteria 

The worth of each shutdown rod will be greater than 1400 pcm, where 1400 pcm is greater 
than the total of: the reactivity worth associated with the temperature decrease from hot full 
power conditions to cold zero power conditions, and an additional margin of 500 pcm. 
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14.10.3 Heat exchanger installation and final reactor assembly test group 

Frequency These tests are required to be performed once per reactor. 
Purpose Completion of these tests verifies that the tested components are installed and/or function 

correctly. 
Prerequisites 1. SUT.ICS.01.A may be completed before installing the heat exchangers in the core.

2. Installation of each component must be completed prior to inspecting or testing the
component.

Test identifier SUT.ICS.01.A 
objective Verify each thermocouple is installed in the correct location. 
method Visual inspection of the label on junction end of the thermocouple, visual identification of the 

installed location, and comparison to design documents referenced by the test procedure. 
acceptance 

criteria 
The reactor trip system sensors are installed in the correct locations. 

Test identifier SUT.HXS.01.A 
objective Verify the critical components of the as-installed heat exchanger system are installed correctly. 
method Identification of critical components, measurement of critical dimensions, and comparison to 

design documents referenced by the test procedure. 
acceptance 

criteria 
The critical components of the heat exchanger system, as identified in the appropriate 
procedure, are installed as described in the design documents referenced by the procedure. 

Test identifier SUT.RXS.06.A2 
objective Verify the critical components of the as-installed shielding system, including the top shield, are 

installed correctly. 
method Identification of critical components, measurement of critical dimensions, and comparison to 

design documents referenced by the test procedure. 
acceptance 

criteria 
The critical components of the shielding system, as identified in the appropriate procedure, are 
installed as described in the design documents referenced by the procedure. 

Test identifier SUT.RES.01.A 
objective Verify the critical components of the as-installed reactor enclosure system, including the 

capsule lid and module lid, are installed correctly. 
method Identification of critical components, measurement of critical dimensions, and comparison to 

design documents referenced by the procedure. 
acceptance 

criteria 
The critical components of the reactor enclosure system, as identified in the appropriate 
procedure, are installed as described in the design documents referenced by the procedure. 

Test identifier SUT.ICS.01.C 
objective Verify each thermocouple is terminated in the correct location in the junction box. 
method Visual inspection of the label on the termination end of the sensor cable, visual inspection of 

the labeling in the junction box, comparison to approved design documents, and confirmation 
with another person. 

acceptance 
criteria 

The reactor trip system sensors are connected to the correct process limit monitors. 
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14.10.4 Low-power test group 

Frequency The tests identified as FOAK are performed once for the Aurora design.  SUT.SRS.01.A2 is 
required to be performed once per reactor and must be repeated after adjustments are made 
to reconfigurable reflector cells, shutdown rods are replaced, fixed reflectors are replaced, or 
reactor cells are replaced.  SUT.SRS.02.A is required to be performed once per reactor and 
must be repeated after a shutdown rod or a shutdown rod sleeve is replaced. 

Purpose These tests measure the reactivity worth of the shutdown rods with the core at operating 
temperature.  In addition, the following tests verify the negative temperature coefficient of 
reactivity, the ability of the reactor to passively dissipate decay heat, and the shutdown rod 
drop time. 

Prerequisites Before SUT.SRS.01.A2 is performed, temporary modifications must be made to the 
instrumentation and control system to allow one shutdown rod to be inserted independently 
from the other shutdown rods. 

Test identifier SUT.RXS.03.A (FOAK) 
objective Verify the net power coefficient of reactivity of the reactor core system is negative. 
method The reactor is operated at a low power with minimal cooling from the power conversion 

system.  Nuclear heating increases the temperature of the core and causes the reactor to go 
sub-critical. 

acceptance 
criteria 

The net power coefficient of reactivity of the reactor core system is negative. 

Test identifier SUT.RXS.04.B (FOAK) 
objective Verify the reactor can be cooled passively by conduction through the surrounding systems to 

the environment. 
method The reactor is operated at low power with minimal cooling from the power conversion system 

to achieve nominal operating temperature.  The power conversion system is disabled, the 
reactor is shut down, and the thermal performance of the reactor is monitored. 

acceptance 
criteria 

The reactor core system can be cooled by conduction through the surrounding systems 
(reflector system, shielding system, heat exchanger system, and reactor enclosure system) 
and subsequent convection from the module shell after shutdown. 

Test identifier SUT.SRS.02.A 
objective Verify the shutdown rods release and insert into the core within the allowed time with the core 

at operational temperature. 
method Simultaneously record the reactor trip signal and the position of each shutdown rod.  Initiate a 

reactor trip with the shutdown rods fully withdrawn and measure the time required for each 
rod to fully insert into the core. 

acceptance 
criteria 

The shutdown rod system fully inserts shutdown rods within 4 seconds of receiving a trip 
signal. 

Test identifier SUT.SRS.01.A2 
objective Determine total shutdown rod worth of individual shutdown rods with the core at operating 

temperature. 
method Step insertion of each shutdown rod starting with a critical core at nominal operating 

temperature. 
acceptance 

criteria 
The worth of each shutdown rod will be greater than 1400 pcm, where 1400 pcm is greater 
than the total of: the reactivity worth associated with the temperature decrease from hot full 
power conditions to cold zero power conditions, and an additional margin of 500 pcm. 
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 OPERATIONAL PLANS 

Purpose 

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(29) requires that 
applicants provide the following: 

(i) Plans for conduct of normal operations, including maintenance, surveillance, and
periodic testing of structures, systems, and components;

(ii) Plans for coping with emergencies, other than the plans required by § 52.79(a)(21)

The purpose of this section is to provide an overview of the operational programs applicable to 
the Aurora reactor and serve as a summary of the locations of the programs in this application 
and their implementation milestones.  The operational plans that do not have a regulatory 
requirement for implementation will be implemented as per the proposed license conditions in 
Part VI, “Proposed license conditions.” 

Evaluation 

Table 15-1 lists the operational programs that are applicable to the Aurora design. 
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Table 15-1:  Operational programs 

Operational program 
Program source 

(required by) 
FSAR 

chapter 
Implementation 

Milestone Requirement 
Fire Protection Program 10 CFR 50.48 21 Prior to receipt of fuel 

onsite 
License condition 

Radiation Protection Program 10 CFR 20.1101 20 Prior to initial receipt of 
byproduct or source for 
portions that relate to 
handling of byproduct 
or source; Prior to 
receipt of fuel onsite 
for full program 
implementation 

License condition 

Training Program 10 CFR 50.120 17 At least 3 months prior 
to the first test being 
conducted for the 
Initial Test Program 

License condition 

Emergency Plan 10 CFR 50.47; 
10 CFR Part 50, 
Appendix E 

9 Prior to receipt of fuel 
onsite 

License condition 

Physical Security Plan 10 CFR 73.55 18 Prior to receipt of fuel 
onsite 

License condition 

Quality assurance program - 
Operation 

10 CFR Part 50, 
Appendix B 

12 30 days prior to the 
scheduled date for the 
initial loading of fuel 

10 CFR 50.54(a)(1) 

Initial Test Program 10 CFR 52.79(a)(28) 14 
Preoperational test 
program 

14 Prior to the first 
preoperational test for 
the Initial Test Program 

License condition 

Startup test program 14 Prior to the first startup 
plan test for the Initial 
Test Program 

License condition 

Fitness-for-Duty Program 10 CFR 52.79(a)44 23 At least 3 months prior 
to the start 
construction activities, 
as defined in 10 CFR 
51.4 

License condition 
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 TECHNICAL QUALIFICATIONS OF THE APPLICANT 

Purpose 

Title 10 of the Code of Federal Regulations Section 52.79(a)(32) requires that the technical 
qualifications of the applicant be provided. 

Oklo Inc. (Oklo) is the designer of the Aurora plant.  Oklo Power LLC (Oklo Power) is a 
subsidiary of Oklo and will be the applicant, owner and operator of the plant applied for in this 
application.  Oklo and Oklo Power utilize subcontractors for site preparation activities, as well 
as engineering consultant firms to support the design and application efforts.  These partners 
are listed and the partnerships are described in 16.1.3. 

Evaluation 

16.1.1 Oklo Inc. 

Oklo Inc. (Oklo) is a privately-funded fission technology developer.  Oklo was founded in 2013 
and a majority of its employees have technical degrees. 

Oklo qualifications include its sources of funding, testimonies, industry leadership roles, 
partnerships, awards, and ability to prepare and submit a combined operating license 
application.   

Oklo is funded entirely by private investors.  In 2014 and 2015, the company completed 
fundraising rounds. 

 The chair of the Oklo board of 
directors is Sam Altman.  Sam Altman has experience which includes serving as the CEO of 
OpenAI, and president of Y Combinator, leading it to a combined portfolio value of 
approximately $100 billion.  Oklo’s other institutional investors have over $3 billion in assets 
under management, and Oklo has raised funds from high net worth individuals, including 
founders and executives of leading technology companies, such as LinkedIn and Facebook. 

Oklo’s CEO, Jacob DeWitte, has testified before the House of Representatives’ Committee on 
Science, Space, and Technology (2017), the Senate’s Committee on Energy and Natural 
Resources (2016), and spoke at the White House Summit on Nuclear Energy (2015).  He serves 
as the Chair of the Fast Reactor Working Group, the largest and most diverse advanced reactor 
technology group, and on the Nuclear Energy Institute Board of Directors.  Oklo’s COO, 
Caroline Cochran, served on the Department of Energy’s Nuclear Energy Advisory Committee 
from 2018-2019, and serves on the Karnfull Advisory Board, a Swedish company providing 
100% carbon-free nuclear power options to consumers.  Oklo serves on the University of 
Michigan Department of Nuclear Engineering Advisory Board, and on the Technology Inclusive 
Contents of Applications Project (TICAP), among other committee support and involvement . 

Oklo has won the following awards: the top MIT team at the MIT Clean Energy Prize (2013), 
the winner of the energy track at the MIT 100k (2013), finalist at MassChallenge (2013), and 
winner of the MassChallenge Gold Award (2013).  Oklo was also invested in by the selective 

{

}
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investor and accelerator, Y Combinator (2014).  Oklo was awarded the Trailblazer Award by the 
Nuclear Industry Council in 2020. 

Oklo has had three Gateway for Accelerated Innovation in Nuclear (GAIN) vouchers awarded to 
the national labs for Oklo projects, totaling over $1.6 million in value to the national labs, 
including $300,000 in cost share from Oklo to these projects.  The vouchers provide access to 
technical expertise at Department of Energy laboratories including Argonne National 
Laboratory, Idaho National Laboratory, and Sandia National Laboratory.  These awards 
demonstrate a recognition of Oklo’s qualifications and serve as a means of leveraging the 
technical qualifications of the laboratory system. 

In 2016, Oklo began paid pre-application work with the NRC and was assigned a project 
manager.  There have been an array of activities, reports, planning, and meetings with the 
assigned NRC staff core team in this time. 

In 2017, Oklo signed a Memorandum of Understanding (MOU) with the U.S. Department of 
Energy to support the demonstration of Oklo’s advanced fission technology in the early 2020s. 
Key highlights of the MOU include DOE making fuel resources available for an Oklo reactor, 
DOE providing site access and data for potential locations for an Oklo reactor, and Oklo 
licensing and demonstrating its first reactor. 

Oklo was selected for a Site Use Permit in 2019 through the process established by INL in 2018.  
Oklo was also awarded fuel material by INL through a competitive process in 2019. 

16.1.2 Oklo Power LLC 

Oklo Power is the applicant for this license and the operating subsidiary of Oklo for operations 
of the Aurora plant being applied for.  Oklo Power is wholly owned by Oklo.  More information 
regarding the financial and business relationship between the entities is discussed in Part I, 
“Financial Qualifications.” 

16.1.3 Other contractors and participants 

Under the direction of Oklo, a number of highly qualified organizations have provided design 
and analysis in support of the Aurora reactor.  Each organization has specific responsibilities to 
Oklo as defined in various contracts and agreements.  The major contributors are identified in 
this section. 

{
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 TRAINING PROGRAM DESCRIPTION 

 Purpose 

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(33) requires that a 
description of the training program required by 10 CFR 50.120, “Training and qualification of 
nuclear plant personnel,” and its implementation be provided. 

The purpose of this chapter is to describe the Training Program, as required by 10 CFR 
50.120.  The Training Program will be implemented in accordance with Chapter 15, 
“Operational plans,” and Part VI, “Proposed license conditions.”  Oklo Power LLC (Oklo Power) 
is seeking an exemption from the requirement in 10 CFR 50.120(b)(1) to establish, implement, 
and maintain its Training Program at least 18 months prior to initial fuel load.  The relevant 
exemption is included in Part V, “Non-applicabilities and requested exemptions.” 

 Training Program description 

Although the function of nuclear plant personnel is very different in the Aurora plant than any 
prior nuclear plant, and most of this function would not be considered under the regulatory 
purview, an overview of the training program is described here.  A systematic approach to the 
training process is used to establish and maintain the Training Program. 

As the Aurora is expected to operate nearly automatically, many of the operational roles of 
traditional reactors are unnecessary.  It is important to note that onsite personnel do not 
perform any credited operator actions. 

Because there is minimal operating experience for commercial reactors with similar operating 
structures, the Training Program is informed by ANSI/ANS-15.4-2016, “Selection and Training 
of Personnel for Research Reactors.”  For some roles, the Training Program is informed by 
NEI 06-13A, Revision 2, “Template for an Industry Training Program Description.” 

As described in Chapter 13, “Organizational structure for operations,” Oklo Power is not 
licensing any reactor operators through 10 CFR Part 55, “Operators’ License.”  Individuals who 
are properly qualified and trained for duty will receive certification through Oklo Power. 

In accordance with 10 CFR 50.120, the Training Program includes the following: 

• Description of qualification, which ensures that personnel have the appropriate 
background to qualify for training 

• Description of medical evaluation, which ensures that personnel have adequate physical 
and mental health to perform the required duties 

• Description of general training, which ensures that personnel have general training on 
the site, operations, safety, and Oklo Power policies and procedures 

• Description of specific training, which ensures that personnel have the job-specific 
training to perform the required duties 



 

Copyright © 2020 Oklo Inc., all rights reserved  431 

II.17 Training Program description 

OkloPower-2020-PartII-NP, Rev. 0 

• Description of certification, which ensures that personnel have demonstrated 
satisfactory levels of qualification, medical status, and comprehension of training 
materials 

• Description of retraining, which ensures that personnel have received training within an 
appropriate timeframe 

• Methods to ensure the Training Program is properly reviewed and maintained 

• Methods to ensure documentation is retained for certified personnel 
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 SECURITY PLANS 

Purpose 

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(35) requires the following: 

(i) A physical security plan, describing how the applicant will meet the
requirements of 10 CFR part 73 (and 10 CFR part 11, if applicable, including the
identification and description of jobs as required by § 11.11(a) of this chapter, at
the proposed facility).  The plan must list tests, inspections, audits, and other
means to be used to demonstrate compliance with the requirements of 10 CFR
parts 11 and 73, if applicable;

(ii) A description of the implementation of the physical security plan;

Additionally, 10 CFR 52.79(a)(36) requires the following: 

(i) A safeguards contingency plan in accordance with the criteria set forth in
Appendix C to 10 CFR part 73.  The safeguards contingency plan shall include
plans for dealing with threats, thefts, and radiological sabotage, as defined in
part 73 of this chapter, relating to the special nuclear material and nuclear
facilities licensed under this chapter and in the applicant's possession and
control.  Each application for this type of license shall include the information
contained in the applicant's safeguards contingency plan.   (Implementing
procedures required for this plan need not be submitted for approval.)

(ii) A training and qualification plan in accordance with the criteria set forth in
Appendix B to 10 CFR part 73.

(iii) A cyber security plan in accordance with the criteria set forth in § 73.54 of
this chapter;

(iv) A description of the implementation of the safeguards contingency plan,
training and qualification plan, and cyber security plan; and

(v) Each applicant who prepares a physical security plan, a safeguards
contingency plan, a training and qualification plan, or a cyber security plan, shall
protect the plans and other related Safeguards Information against unauthorized
disclosure in accordance with the requirements of § 73.21 of this chapter.

The objective of the Physical Security Plan (PSP) is to establish the programmatic elements 
necessary to maintain physical security throughout the life of the Aurora.  The level of security 
required through the PSP is commensurate with the size of the Aurora and the correspondingly 
small potential impact to public health.  The PSP is submitted as a separate document in Part 
VII, “Enclosures.” 

Contingency measures are executed through the PSP implementing procedures and training 
and qualification of personnel with security roles is executed through the Training 
Program.  The Training Program is submitted as a separate document in Part VII. 
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Background 

Due to the unique market demands for a relatively small power source, the Aurora reactor has 
similar power level and quantities of nuclear material to a nonpower reactor.  The amount of 
nuclear material in the Aurora reactor is at least an order of magnitude less than a large light 
water reactor (LWR) as shown in Table 18-1.   

Table 18-1:  Comparison of current large light water reactor to Aurora 

Current large LWRs Aurora 
Power output (MWth) 1600-4400 <5 
Refueling cycle (years) 1.5-2 None 
Radionuclide inventory (metric tons) 100-150 <5 
System pressure (atm) 150 Near atmospheric 
Hydrogen explosion risk Yes No 

Cooling Loop with low thermal inertia Completely passive thermal 
superconductors 

Electric power dependence  Relies on offsite power or 
emergency diesel generation 

No safety-related electric 
power dependence 

Negative reactivity coefficient Yes Yes 

The information presented in the PSP is largely dependent on the design and largely 
independent of site-specific characteristics.  

This PSP provides information regarding the Aurora reactor by the Materials and Fuels 
Complex (MFC) site at Idaho National Laboratory (INL), referred to as the Aurora INL 
site.  

Category of material used 

Target set identification 

{

}

{

}

{
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Physical Security Plan description 

In accordance with the relevant portions of 10 CFR 73.55, the PSP includes the following: 

• Description of the overall protective strategy for the facility

• Identification of the various positions and their authorities within the organization that
are responsible for the PSP

• Description of the detection and assessment systems used

• Description of access controls present on the site and the access control systems used

• Description of the access authorization process for unescorted and escorted access

• Description of the response to a security threat and the relationship to emergency
preparedness

• Description of the administrative controls for the maintenance of the PSP

}
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 INCORPORATION OF OPERATIONAL INSIGHTS 

 Purpose 

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(37) requires that the 
information necessary to demonstrate how operating experience insights have been 
incorporated into the plant design be provided. 

The purpose of this section is to explain how the requirements of 10 CFR 52.79(a)(37) are met. 

 Discussion 

Throughout its design process, Oklo Inc. (Oklo) has considered the operating experience of past 
reactors and incorporated the successful aspects of those reactors.  Consideration of operating 
experience insights includes searching over multiple reactor designs, including: 

• Generic operating experience that affects all nuclear reactors 

• Metal fueled fast reactor operating experience 

• Compact reactor operating experience and analytical methods 

• Light water reactor operating experience. 

For example, Oklo’s decision to use metal fuel was driven largely by the successful operating 
experience of Experimental Breeder Reactor II (EBR-II), including its demonstration of inherent 
safety and the ability to shut down the reactor passively.  The operating experience of EBR-II 
and other metal fueled fast reactors provided an opportunity to iterate on metal fuel design, 
informing material composition, geometry, and operating limits [25].  The improvements that 
developed from this experience resulted in substantial gains in performance and reliability over 
time.  The fuel design directly incorporates the insights gained from this experience. 

More broadly, past operating experience is incorporated throughout the Aurora, which was 
designed with simplicity, inherent safety, and ease of operation in mind.  As a result, the 
Aurora utilizes a vastly different and simpler control scheme than past reactors. 
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 RADIATION PROTECTION PROGRAM 

 Purpose 

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(39) requires, “A 
description of the radiation protection program required by § 20.1101 of this chapter and its 
implementation,” passing the requirements to 10 CFR 20.1101, “Radiation protection 
programs,” which states: 

(a) Each licensee shall develop, document, and implement a radiation protection 
program commensurate with the scope and extent of licensed activities and 
sufficient to ensure compliance with the provisions of this part.  (See § 
20.2102 for recordkeeping requirements relating to these programs.) 

(b) The licensee shall use, to the extent practical, procedures, and engineering 
controls based upon sound radiation protection principles to achieve 
occupational doses and doses to members of the public that are as low as is 
reasonably achievable (ALARA). 

(c) The licensee shall periodically (at least annually) review the radiation 
protection program content and implementation. 

(d) To implement the ALARA requirements of § 20.1101 (b), and 
notwithstanding the requirements in § 20.1301 of this part, a constraint on 
air emissions of radioactive material to the environment, excluding Radon-
222 and its daughters, shall be established by licensees other than those 
subject to § 50.34a, such that the individual member of the public likely to 
receive the highest dose will not be expected to receive a total effective dose 
equivalent in excess of 10 mrem (0.1 mSv) per year from these emissions. If a 
licensee subject to this requirement exceeds this dose constraint, the licensee 
shall report the exceedance as provided in § 20.2203 and promptly take 
appropriate corrective action to ensure against recurrence. 

The implementation of the Radiation Protection Program is done by acknowledging and 
incorporating provisions in 10 CFR Part 20, “Standards for protection against radiation,” into 
the development of procedures and engineering controls that ensure occupational doses and 
doses to members of the public are ALARA and within the exposure limits set in 
10 CFR Part 20. 

The following guidance was reviewed in the development of the Radiation Protection Program: 

• Regulatory Guide 1.206, “Combined license applications for nuclear power plants,” 
issued in June 2007 

• NEI 07-03A, Revision 0, “Generic FSAR [final safety analysis report] template guidance 
for radiation protection program description,” issued in May 2009 

• NEI 07-08A, Revision 0, “Generic FSAR template guidance for ensuring that 
occupational radiation exposures are as low as is reasonably achievable (ALARA), issued 
in October 2009  
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The purpose of this chapter is to describe the Radiation Protection Program, as required by 
10 CFR 20.1101. 

 Radiation Protection Program description 

In accordance with 10 CFR 20.1101, the Radiation Protection Program includes the following: 

• Descriptions of possible sources of radiation exposure 

• Commitment from management to maintain occupational and public doses ALARA 

• Description of practices, procedures, and operational methodology to accomplish ALARA 
goals 

• The organization and responsibilities of various personnel and their training 
requirements 

• Description of the work control program authorizing work in radiation areas and the 
associated radiological controls 

• Description of occupational dose monitoring including personnel dosimetry 

• Description of public dose monitoring including environmental dosimeters 

• Explanation of expected actions for license termination 

• Explanation of design features, equipment, and procedures used to minimize 
contamination 

• Description of fixed, portable, and other instrumentation used for surveying and 
monitoring for radiation in the facility and associated documentation 

• Explanation of access controls used for restricted areas 

• Description of the implementation of respiratory protection and controls 

• Description of receipt, labeling, and storage of radioactive material 

• Compliance to record and report keeping as outlined in 10 CFR Part 20 
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 FIRE PROTECTION PROGRAM DESCRIPTION 

 Purpose 

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(40) requires, “A 
description of the fire protection program required by § 50.48 of this chapter and its 
implementation,” passing the requirement to 10 CFR 50.48, “Fire protection.”  Specifically, 
10 CFR 50.48(a)(1)-(3) apply and requires the following: 

(1) Each holder of an operating license issued under this part or a combined 
license issued under part 52 of this chapter must have a fire protection plan that 
satisfies Criterion 3 of Appendix A to this part.  This fire protection plan must: 

(i) Describe the overall fire protection program for the facility; 

(ii) Identify the various positions within the licensee's organization that are 
responsible for the program; 

(iii) State the authorities that are delegated to each of these positions to 
implement those responsibilities; and 

(iv) Outline the plans for fire protection, fire detection and suppression 
capability, and limitation of fire damage. 

(2) The plan must also describe specific features necessary to implement the 
program described in paragraph (a)(1) of this section such as— 

(i) Administrative controls and personnel requirements for fire prevention 
and manual fire suppression activities; 

(ii) Automatic and manually operated fire detection and suppression systems; 
and 

(iii) The means to limit fire damage to structures, systems, or components 
important to safety so that the capability to shut down the plant safely is 
ensured. 

(3) The licensee shall retain the fire protection plan and each change to the plan 
as a record until the Commission terminates the reactor license.  The licensee 
shall retain each superseded revision of the procedures for 3 years from the date 
it was superseded. 

The remainder of 10 CFR 50.48 is not discussed in this application because it does not apply.  
Section 50.48(a)(4) of 10 CFR does not apply to combined license applications.  Paragraph b of 
10 CFR 50.48 does not apply to new plants and therefore this application.  Paragraph c of 
10 CFR 50.48 is not utilized in this application.  Paragraphs d and e of 10 CFR 50.48 are 
reserved.  Paragraph e of 10 CFR 50.48 does not apply to this application. 

Section 50.48 of 10 CFR refers to Criterion 3, “Fire protection,” of Appendix A, “General design 
criteria for nuclear power plants,” of 10 CFR Part 50.  Appendix A to 10 CFR Part 50 does not 
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apply to the Aurora, because it does not apply to nonlight water reactors.  Instead, the parallel 
advanced reactor design criteria 3, “Fire protection,” from Regulatory Guide 1.232, “Guidance 
for developing principal design criteria for non-light-water-reactors,” Revision 0, issued April 
2018, is used and is replicated as follows: 

Structures, systems, and components important to safety shall be designed and 
located to minimize, consistent with other safety requirements, the probability 
and effect of fires and explosions.  Noncombustible and fire- resistant materials 
shall be used wherever practical throughout the unit, particularly in locations 
with structures, systems, or components important to safety.  Fire detection and 
fighting systems of appropriate capacity and capability shall be provided and 
designed to minimize the adverse effects of fires on structures, systems, and 
components important to safety.  Firefighting systems shall be designed to 
ensure that their rupture or inadvertent operation does not significantly impair 
the safety capability of these structures, systems, and components.  

The purpose of this section is to describe the Aurora Fire Protection Program (FPP), as required 
by 10 CFR 50.48. 

 Fire Protection Program description 

In accordance with 10 CFR 50.48, the Aurora FPP includes the following: 

• Description the overall FPP for the facility. 

• Identification of the various positions and their authorities within Oklo Power LLC 
(Oklo Power)’s organization that are responsible for the program. 

• Description of the administrative controls and personnel requirements for fire protection 
and manual fire suppression activities. 

• Description of the automatic and manually operated fire detection and suppression 
systems. 

• Description of the means to limit fire damage to structures, systems, and components to 
ensure the ability to achieve a safe plant state. 

The FPP is documented and maintained in an overall Fire Hazard Analysis, which contains the 
following: 

• Evaluation of the potential in-situ and transient fire hazards. 

• Determination of the effects of a fire in any location in the plant including the impact on 
the ability to achieve a safe state and minimizing the risk of radioactive release to the 
environment. 

• Determination of the appropriate measures for fire prevention, fire detection, fire 
suppression, and fire containment for each area containing structures, systems, and 
components necessary for achieving a safe state. 
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 CRITICALITY ACCIDENTS 

Purpose 

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(43) requires information 
be provided demonstrating compliance with the requirements for criticality accidents as 
prescribed in 10 CFR 50.68, “Criticality accident requirements.”  The requirements within 
10 CFR 50.68 were established for light water reactors (LWRs).  In contrast to LWRs, the 
Aurora reactor is very small, requiring roughly about 5% of the total fuel of an LWR, and has 
few auxiliary systems to maintain criticality over plant life.  These design features are 
fundamental to the minimization of concerns related to criticality accidents. 

The objective of this section is to meet the requirements of 10 CFR 50.68, specifically of 
10 CFR 50.68(b)28.  This section provides a description of how nuclear fuel is handled for the 
Aurora plant, to ensure that criticality accidents are prevented, as well as a relevant description 
of the facility.  This section also provides results of bounding analyses that show that criticality 
accidents are not credible at the Aurora facility. 

Handling of special nuclear material 

Fuel handled during initial loading at the beginning of core life is expected to be used for the 
duration of the plant operating period, removing the need for refueling events.  By removing the 
need for refueling, the probability of reaching criticality outside normal operating conditions is 
greatly minimized. 

Moving and handling of fuel during core life is not anticipated and is not considered normal 
operations.  In the event that fuel would need to be moved during core life, the reactor cells 
would be handled using a fuel handling tool and only a single reactor cell would be handled at a 
time.  The removed reactor cell would be immediately placed in a storage cask and promptly 
removed from the site.  Storage of fuel onsite, outside of the reactor, is not anticipated during 
plant life. 

Lastly, fuel is handled during decommissioning, when all reactor cells are individually removed 
from the core and placed in storage casks.  These casks would subsequently be transported 
offsite.  

28 Compliance with 10 CFR 70.24, “Criticality accident requirements,” is not sought in lieu of 10 CFR 50.68. 
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Facility description 

The entire core inventory can be stored in storage casks adjacent to each other in the basement 
of the powerhouse while reasonably maintaining criticality below requirements of paragraph b 
to 10 CFR 50.68.  The quantity of nuclear fuel onsite cannot reach criticality outside of the 
reactor module.  Therefore, the storage casks do not require fuel loading patterns or zones to 
ensure safe storage.  In addition, the design of the storage casks include neutron absorbing 
materials, further impeding the probability of reaching inadvertent criticality. 
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Criticality analyses 

The Aurora reactor is designed and constructed such that its most reactive state is the fully 
assembled core configuration at the beginning of core life.  The reactor module is designed to 
incorporate reflectors to maximize and optimize fission for the fuel configuration over the core 
lifetime.  Any disruption or change to this configuration results in a less reactive state. 

The criticality analyses presented below assume that the reactor cells are placed in the original 
core configuration outside of the reactor module in a room with concrete floors, ceilings, and 
walls, modeled after the basement of the Aurora powerhouse.  These analyses were done using 
Serpent Monte Carlo simulations that were run at room temperature using ENDF-VIII.0 cross 
section libraries. 

The two most conservative cases are presented below.  Both cases assume all of the reactor cells 
are adjacent to each other, are confined in a single room, are outside of their storage casks, do 
not have absorbers, and do not have reflectors.  In other words, all of the reactor cells are 
analyzed in their normal in-reactor configuration, minus any other material. 

22.3.1 Case 1 

For the first case, the reactor cells were modeled in the same configuration as they are loaded in 
the core, in the center of an empty room, without any other components (e.g., reactor enclosures, 
shutdown rods, absorbers, reflectors).  

  The simulation geometry is depicted in Figure 
22-1 and Figure 22-2.  The room was assumed to be filled with dry air.  The purpose of modeling
this configuration was to analyze the possibility of criticality without any intervening materials
or procedures that diminish reactivity levels.

This simulation yielded multiplication factors well below 0.95, maintaining subcriticality as 
required by 10 CFR 50.68.  Results for this case are shown in Table 22-1.  

Table 22-1:  Case 1, multiplication factors 

95/95 confidence interval 

Multiplication factor 
Relative 

error Min Max 

Analog k-eff 7.92629E-01 0.00031 7.92147E-01 7.9311E-01 
Implicit k-eff 7.92610E-01 0.00021 7.92284E-01 7.9294E-01 
Collision k-eff 7.92851E-01 0.00020 7.92540E-01 7.9316E-01 
Absorption k-eff 7.92610E-01 0.00021 7.92284E-01 7.9294E-01 

{

}
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Figure 22-1:  Case 1, X-Y geometry for Aurora criticality accident analysis 

{

}
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Figure 22-2:  Case 1, axial geometry for Aurora criticality accident analysis 

22.3.2 Case 2 

The second case that was analyzed, like case 1, has all the reactor cells arranged in their 
original operating configuration, but placed in a smaller room.  

  The reactor cells were 
placed in the center of a room filled with dry air, without casks, shutdown rods, absorbers, or 
reflectors.  The simulation geometry is depicted in Figure 22-3 and Figure 22-4.  Like case 1, 
this simulation was done to show that even with the maximum amount of fuel from the core, 
stored in a single room in a tight configuration, subcriticality is still maintained. 

This simulation also yielded multiplication factors below 0.95, as shown in Table 22-2.  The 
multiplication factors are closer to criticality than in case 1 due to the increased reflection from 
the concrete resulting from the close proximity of the walls to the fuel.  However, even with the 
increase in neutron reflection, this case still shows that tightly stored reactor cells without any 
criticality mitigating features, do not reach criticality and maintain the limits provided in the 
regulations. 

Table 22-2:  Case 2, multiplication factors 

95/95 confidence interval 

Multiplication factor 
Relative 

error Min Max 

Analog k-eff 8.97983E-01 0.00029 8.97473E-01 8.9849E-01 
Implicit k-eff 8.97803E-01 0.00020 8.97451E-01 8.9815E-01 
Collision k-eff 8.97774E-01 0.00022 8.97387E-01 8.9816E-01 
Absorption k-eff 8.97803E-01 0.00020 8.97451E-01 8.9815E-01 

{

}

{

}
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Figure 22-3:  Case 2, X-Y geometry for Aurora criticality accident analysis 

{

}
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Figure 22-4:  Case 2, axial geometry for Aurora criticality accident analysis 

{

}
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Conclusion 

These analyses used extreme scenarios that would bound all fuel storage configurations and 
fuel handling situations.  Storing all the reactor cells in a room, in a tight configuration, without 
reactivity limiting materials or procedures, resulted in multiplication factors that are well below 
the regulatory limits set in 10 CFR 50.68.  The reason this is possible in the Aurora reactor is 
because criticality is achieved by secondary design features that optimize and preserve neutron 
population, not simply due to enrichment levels and fuel quantities alone. 

No reactor cells are planned to be stored outside of the reactor at any time during the plant 
lifetime.  The analyses provided in this section used extreme assumptions to show that 
criticality accidents are prevented by the nature of the design of the Aurora facility not to reflect 
what would be standard procedure at the facility. 
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 FITNESS-FOR-DUTY PROGRAM DESCRIPTION 

 Purpose 

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(44) requires that a 
description of the fitness-for-duty program required by 10 CFR Part 26, “Fitness for duty 
programs,” and its implementation be provided. 

The purpose of this section is to describe the Oklo Power LLC (Oklo Power) Fitness-for-Duty 
(FFD) Program.  The Oklo Power FFD Program will be implemented in accordance with 
Chapter 15, “Operational plans,” and Part VI, “Proposed license conditions.”  The relevant 
requested exemptions related to FFD are included in Part V, “Non-applicabilities and requested 
exemptions.” 

 Fitness-for-Duty Program description 

The Oklo Power FFD Program applies to onsite personnel who are responsible for activities that 
directly impact the safety or security of the plant.  The FFD Program will establish, implement, 
and maintain written policies and procedures to ensure that the overall goals of the FFD 
Program are clearly communicated to all employees who are subject to the FFD 
Program.  Consistent with 10 CFR 26.23, “Performance objectives,” the overall goals of the FFD 
Program are the following: 

1. Provide reasonable assurance that individuals are trustworthy and reliable as 
demonstrated by the avoidance of substance abuse. 

2. Provide reasonable assurance that individuals are not under the influence of any 
substance, legal or illegal, or mentally or physically impaired from any cause, which in 
any way adversely affects their ability to safely and competently perform their duties. 

3. Provide reasonable measures for the early detection of individuals who are not fit to 
perform the duties that require them to be subject to the FFD Program. 

4. Provide reasonable assurance that the Aurora site is free from the presence and effects 
of illegal drugs and alcohol. 

5. Provide reasonable assurance that the effects of fatigue and degraded alertness on 
individuals’ abilities to safely and competently perform their duties are managed 
commensurate with maintaining public health and safety. 

The FFD Program includes the following: 

• Description of the FFD Program policies and procedures 

• Description of the activities that are applicable to the FFD Program during each 
expected phase of operation 

• Description of drug and alcohol testing procedures and cutoff levels 

• Description of behavioral observation 
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• Methods to ensure the FFD Program is properly reviewed and maintained 

• Methods to ensure documentation and records are retained  
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 PROBABILISTIC RISK ASSESSMENT SUMMARY 

 Purpose 

Title 10 of the Code of Federal Regulations (10 CFR) Section 52.79(a)(46) requires “A description 
of the plant-specific probabilistic risk assessment (PRA) and its results.”  The purpose of this 
chapter is to provide a description of a PRA for the Aurora and its results. 

The PRA summarized in this chapter considers internal initiating events over all operating 
conditions.  External events are excluded from the PRA because they are treated in a 
deterministic manner, as described in Chapter 1, “Site envelope and boundary.”  Hazards 
associated with accidents resulting from purposeful human-induced security threats (e.g., 
sabotage, terrorism) and risks associated with accidental radiological exposures to onsite 
personnel are explicitly excluded from the PRA. 

 Definitions 

challenge condition:  A phenomenon that could potentially pose damage to the Aurora 
facility. 

event family:  A method of grouping events according to a common challenge condition. 

event tree:  A graphical representation of the possible sequence of events that might occur 
following an initiating event. 

initiating event:  A failure that causes a challenge condition and starts the chain of events 
represented in an event tree. 

shutdown:  A full insertion of one or more of the three shutdown rods.  The reactor is 
subcritical and only decay heat generation occurs following a shutdown of the Aurora. 

shutdown failure frequency (SFF):  The estimated frequency of occurrence (per reactor-
year) of a failure to achieve shutdown. 

shutdown PRA:  The mature PRA developed for the Aurora that incorporates a metric of 
shutdown failure frequency and focuses on characterizing the potential challenges to successful 
shutdown. 

 Introduction 

Probabilistic risk assessment has been used as a tool throughout the development of the Aurora 
to ensure the creation of a safe and robust system.  Initially, PRA techniques were used to help 
identify the range of possible off-nominal initiating events that historically have challenged 
nuclear reactors.  With this range of historic events in mind, and with the goal of providing 
small-scale, safe, and reliable power to potential customers, the Aurora design was developed. 

The design characteristics of the Aurora feature passive system operation and inherent means, 
including: 
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1. The Aurora is approximately 1000 times smaller than currently operating nuclear power 
plants, with a substantially smaller overall radionuclide inventory, thereby placing an 
upper bound on the potential dose consequences of an off-nominal event. 

2. The Aurora never reaches burnups higher than 1 atom percent, minimizing material 
degradation challenges and retaining most fission products in the fuel matrix. 

3. The Aurora uses metal fuel, which has inherent safety characteristics such as high 
thermal conductivity, negative reactivity feedback with thermal expansion, and has a 
robust response to temperature changes, without concerns of cracking or 
pulverizing.  These inherent safety characteristics limit undesired power increases and 
any associated fuel damage. 

4. The Aurora operates in a fast neutron spectrum, which results in a linear and very small 
reactivity letdown with burnup, which in turn allows control mechanism reactivity 
worths to be correspondingly small. 

5. The Aurora is cooled by heat pipes, which operate passively and do not rely on 
electricity; therefore, the Aurora is not challenged by a station blackout, and loss-of-
coolant accidents are not possible. 

6. The Aurora reactor operates at near-atmospheric pressure, eliminating challenges posed 
by having high pressures in the reactor. 

7. The inherent thermal characteristics of the Aurora, including its small power level, the 
excess thermal mass and heat capacity in the materials in and surrounding the core, and 
the presence of passive heat removal via natural convection from the outer surface of the 
reactor module allow for easy decay heat removal post-shutdown. 

8. The Aurora has redundant means of achieving shutdown, and the primary means of 
shutdown is through a fail-safe, gravity driven shutdown rod system whose rods are 
positioned external to the core during normal operation.  This eliminates challenges 
associated with rod ejections, rod insertion motor malfunctions, or reactivity insertions 
due to rod oscillations. 

9. The Aurora instrumentation and controls system is designed to be both redundant and 
fail safe, increasing the probability of a successful rod insertion. 

Early PRA of the Aurora included identification of the range of possible off-nominal initiating 
events that might challenge the reactor, and estimated system responses to these 
events.  Adjustments to the design were made in response to the identified events, to eliminate 
or reduce the severity of the challenge they posed.  Later, dynamic PRA was performed to 
evaluate the key passive and inherent features of the Aurora design. 

Given the inherent thermal characteristics of the Aurora, once the reactor is shut down by the 
insertion of at least a single shutdown rod, no further challenge to safety exists.  As a result, the 
mature PRA developed for the Aurora and summarized in this chapter focused on identifying, 
characterizing, and quantifying challenges to successful insertion of a single shutdown rod.  As 
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such, this PRA is referred to as a “shutdown PRA.”  This terminology echoes the historic 
labeling of PRAs according to the metric of interest.29   

For the Aurora shutdown PRA, the metric of interest is the SFF, because the Aurora has been 
designed to reduce or eliminate the probability and consequences of radioactive material 
release.  Using dose as the metric of interest for the Aurora would result in a large set of event 
sequences with no dose outcome, and a small set of events where small releases occur at 
exceptionally low frequencies.30  As a result, the SFF is a more useful metric and is used for the 
shutdown PRA. 

 Shutdown PRA methodology 

The shutdown PRA considers all challenge conditions initiated through the failure of a 
structure, system, or component (SSC) due to internal causes.  By modeling the event sequences 
that could occur due to the failure of an internal SSC, the shutdown PRA provides insight into 
which SSCs are most important for ensuring that the shutdown rods are inserted into the core, 
and that no radiological release occurs. 

The methodology used to ensure all relevant initiating events are included in the PRA is as 
follows:  

6. Identify all potential internal hazards historically considered for nuclear reactors, as 
well as those unique to the Aurora design, over all operating states. 

7. Screen internal events that are not applicable to the Aurora out of the PRA. 

8. Group the internal events into event families based on a common challenge condition. 

9. Determine the failure modes for each relevant SSC in the Aurora. 

10. Define a set of quantitative criteria for the frequencies and consequences associated with 
the end states of the internal event sequences. 

11. Quantify the event sequences using event trees with conservative event frequencies that 
take uncertainties into consideration. 

12. Evaluate whether any end state meets the pre-determined screening criteria. 

                                                 
29 For example, Level 1 PRAs developed for light water reactors focus on describing events that contribute to the 
core damage frequency (CDF) of those systems. 

30 Recent efforts to provide guidance for non-LWR advanced reactor PRAs have focused on dose as the metric of 
interest (which has historically been labeled a Level 3 PRA).  However, for the design reasons mentioned above, 
this metric is not useful for the Aurora. 



 

Copyright © 2020 Oklo Inc., all rights reserved  472 

II.24 Probabilistic risk assessment summary 

OkloPower-2020-PartII-NP, Rev. 0 

 Shutdown PRA results 

The shutdown PRA identified three event families, each based on a shared challenge condition, 
related to the operation of the Aurora.  The identified event families for the shutdown PRA 
include the following: 

1. Internal events that challenge core cooling 

2. Internal events that challenge the heat sink 

3. Internal events that are driven by a positive reactivity insertion 

The events identified as part of these event families cover the full range of plant operating 
states and internal failures that create a challenge condition for the reactor.  Examples of 
initiating events that fall into each of these event categories are briefly described in the 
following paragraphs. 

Internal events that challenge core cooling revolve around failures of the heat pipes to transfer 
heat from the fuel in the Aurora core to the heat exchanger system.  Due to the many-fold 
redundancy of heat pipes in the Aurora core, events in this family are localized events. 

Internal events that challenge the heat sink are those that impact the ability of the Aurora 
secondary system to remove heat from the heat pipes via the heat exchanger system.  Example 
events include a trip of the secondary system pump, a controller failure on the ultimate heat 
sink heat exchanger, or a break in the secondary system piping. 

Internal events that are driven by a positive reactivity insertion almost entirely consist of 
malfunctions associated with the rotation of the control drums as they compensate for reactivity 
letdown with burnup.  If the control drums rotate too quickly relative to fuel depletion, a 
positive reactivity insertion results.  This positive reactivity insertion may not always pose a 
challenge condition to the reactor (e.g., if the excess drum rotation rate is very small).  The only 
other source of a positive reactivity insertion challenge condition is the removal of the shutdown 
rods in too large of a step during reactor startup. 

Given that the shutdown PRA revolves around evaluating whether a single shutdown rod 
inserts successfully, the event trees that result for each of the initiating events over all event 
families have a consistent form:  an initiating event occurs, and either at least one shutdown 
rod successfully fully inserts, or no rods successfully fully insert.  The frequency of the initiating 
event for the event tree is unique to each initiating event, as is the conditional probability that a 
single rod successfully fully inserts.  As such, while a large set of event sequences were 
evaluated as part of the shutdown PRA, the event trees associated with these event sequences 
can be represented by the structure shown in Figure 24-1.   
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Figure 24-1:  Basic event tree structure for the shutdown PRA 

Table 24-1 shows the cumulative shutdown failure frequency of each event family.  The highest 
cumulative shutdown failure frequency for any event family is 1.74 × 10-11, for the “internal 
events that challenge core cooling” event family.  Since the other two event families have 
estimated shutdown failure frequencies that are orders of magnitude lower, the cumulative 
shutdown failure frequency over all event families is still 1.74 × 10-11.  The quantitative results 
of the shutdown PRA demonstrate the robustness of the Aurora design.   

The failure of a single shutdown rod insertion was found to have a probability on the order of 10-

6, and the probability of failure of two shutdown rods has a probability on the order of 10-12.  
Probabilities less likely than 10-7 are not historically considered (per NUREG 1860), however, 
since the probability for one shutdown rod insertion failure is within that probability, this 
insight was used to add the failure of one shutdown rod to the safety analysis as described in 
Section 5.6. 

Table 24-1:  SFF per reactor-year for the identified event families 

Event family SFF (1/reactor-year) 
Internal events that challenge core cooling 1.74E-11 
Internal events that challenge the heat sink 2.02E-18 
Internal events driven by a positive reactivity insertion 2.36E-13 

 Conclusion 

As the Aurora is not challenged by decay heat generation and removal following shutdown, the 
mature PRA developed for the Aurora seeks to evaluate the challenges that exist to achieving 
successful shutdown, using the metric of SFF to quantify risk.  The shutdown PRA found that 
the total shutdown failure frequency summed over all event families is 1.74 × 10-11.  As a result, 
no credible events were identified that resulted in a radiological release, supporting the 
deterministic safety analysis presented in Chapter 5, “Transient analysis.” 
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