CONTAINMENT SYSTEMS

3/4.6.3 CONTAINMENT ISOLATION VALVES

LIMITING CONDITION FOR OPERATION

3.6.3 The containment isolation valves shall be OPERABLE.*

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION:

With one or more of the containment isolation valve(s) inoperable, maintain at least one isolation valve OPERABLE in each affected penetration that is open and:

- a. Restore the inoperable valve(s) to OPERABLE status within 4 hours,
- Isolate each affected penetration within 4 hours by use of at least one deactivated automatic valve secured in the isolation position, or
- Isolate each affected penetration within 4 hours by use of at least one closed manual valve or blind flange, or
- d. Be in at least HCT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.
- e. The provisions of Specification 3.0.4 are not applicable provided that the affected penetration is isolated in accordance with ACTION b or c above, and provided that the associated system, if applicable, is declared inoperable and the appropriate ACTION statements for that system are performed.

SURVEILLANCE REQUIREMENTS

4.6.3.1 The containment isolation valves shall be demonstrated OPERABLE prior to returning the valve to service after maintenance, repair or replacement work is performed on the valve or its associated actuator, control or power circuit by performance of a cycling test, and verification of isolation time.

^{*}Isolation valves associated with the containment hydrogen monitors may be opened on an intermittent basis under administrative control.

3/4.6.3 CONTAINMENT ISOLATION VALVES

LIMITING CONDITION FOR OPERATION

3.6-3 The containment isolation valves shall be OPERABLE.

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION:

With one or more of the containment isolation valve(s) inoperable, maintain at least one isolation valve OPERABLE in each affected penetration that is open and:

- Restore the inoperable valve(s) to OPERABLE status within 4 hours,
- b. Isolate each affected penetration within 4 hours by use of at least one deactivated automatic valve secured in the isolation position, or
- c. Isolate each affected penetration within 4 hours by use of at least one closed manual valve or blind flange, or
- d. Be in at least HOT STANDBY within the next 5 hours and in COLD SHUTDOWN within the following 30 hours.
- e. The provisions of Specification 3.0.4 are not applicable provided that the affected penetration is isolated in accordance with ACTION b or c above, and provided that the associated system, if applicable, is declared inoperable and the appropriate ACTION statements for that system are performed.

SURVEILLANCE REQUIREMENTS

4.6.3.1 The containment isolation valves shall be demonstrated DPERABLE prior to returning the valve to service after maintenance, repair or replacement work is performed on the valve or its associated actuator, control or power circuit by performance of a cycling test, and verification of isolation time.

* BOLATION VOLVES ASSOCIATED WITH THE CONTAINMENT HYDROGEN MONITORS MAY BE OPENED ON AN INTERMITTENT BASIS WHOLE ADMINISTRATIVE CONTROL.

ENCLOSURE 4

VOGTLE ELECTRIC GENERATING PLANT
TECHNICAL SPECIFICATION CHANGE
OPENING OF CONTAINMENT ISOLATION VALVES TO FACILITATE
CALIBRATION OF THE CONTAINMENT HYDROGEN MONITORS

MARK-UP OF AFFECTED FSAR PAGES

VEGP-FSAR-16

TABLE 16.3-4 (SHEET 8 OF 15)

Valve Number		Valve Closure Time(s)
Remote Manual	(continued)	
HV-1978	ACCW Supply	N/A
HV-1979	ACCW Supply	N/A
HV-1974	ACCW Return	N/A
HV-1975	ACCW Return	N/A
HV-8835	Safety injection to cold leg	N/A
HV-8802B	Safety injection to hot leg	N/A
HV-8802A	Safety injection to hot leg	N/A
HV-9002B	Containment spray emergency sump suction	
HV-9002A	Containment spray emergency sump suction	n N/A
HV-8103D	Reactor coolant pump seal water supply	N/A
HV-8103B	Reactor coolant pump seal water supply	N/A
HV-8103C	Reactor coolant pump seal water supply	N/A
HV-8103A	Reactor coolant pump seal water supply	N/A
HV-8840	RHR pump discharge to hot leg	N/A
HV-8809A	RHR loop into cold leg	N/A
HV-8809B	RHR loop into cold leg	N/A
HV-8701A	RHR suction from hot leg	N/A
HV-8702A	RHR suction from hot leg	N/A
HV-5278 (b)	Chemical addition	N/A
HV-5279		N/A
HV-2791A(1)		N/A

VEGF-FSAR-16

TABLE 16.3-4 (SHEET 9 OF 15)

-Valve Number	Function	Valve Closure Time(s)
Remote Manua	(continued)	
HV-2790A(1)	Containment H2 monitor suction	N/A
HV-2790B(1)	Containment H2 monitor suction	N/A
HV-2793A(1)	Containment H2 monitor discharge	N/A
HV-2792B(1)	Containment H2 monitor suction	N/A
HV-2791B(i)	Containment H2 monitor suction	N/A
HV-2792A (1)	Containment H2 monitor suction	N/A
HV-2793B(;)	Containment H2 monitor discharge	N/A
HV-5194	Auxiliary feedwater	N/A
HV-5197	Auxiliary feedwater	N/A
HV-5195	Auxiliary feedwater	N/A
HV-5196	Auxiliary feedwater	N/A
HV-9556A	Steam generator secondary side sample	N/A
HV-9556B	Steam generator secondary side sample	N/A
HV-9555A	Steam generator secondary side sample	N/A
HV-9555B	Steam generator secondary side sample	N/A
HV-9554A	Steam generator secondary side sample	N/A
HV-9554E	Steam generator secondary side sample	N/A
HV-9553A	Steam generator secondary side sample	N/A
HV-9553B	Steam gene ator secondary side sample	N/A
HV-3009	Main steam to auxiliary feedwater pump driver	N/A

VEGP-FSAR-16

TABLE 16.3-4 (SHEET 15 OF 15)

- a. See FSAR Section 6.2.4 for discussion of the containment isolation system.
- b. Air supply valves closed and enclosed in lockable boxes to provide sealed, closed barrier.
- c. Locked closed.
- d. These valves are included for table completeness. The requirements of Technical Specification 3/4.6.3 do not apply; instead the requirements of Technical Specification 4.5.2.e.1 apply. Valve stroke times where specified will be tested pursuant to specification 4.0.5.
- e. These valves are included for table completeness. The requirements of Technical Specification 3/4.6.3 do not apply; instead the requirements of Technical Specification 4.7.4 apply. Valve stroke times where specified will be tested pursuant to specification 4.0.5.
- f. These valves are included for table completeness. The requirements of Technical specification 3/4.6.3 do not apply; instead the requirements of Technical Specification 4.6.2.1 apply. Valve storks times where specified will be tested pursuant to specification 4.0.5.
- g. These valves are included for table completeness. The requirements of Technical Specification 3/4.6.3 do not apply; instead the requirements of Technical Specification 3/4.7.1.5 and 3/4.3.2 apply to the main steam isolation and bypass valves and main feedwater isolation valves, respectively.
- h. These valves are included for table completeness. The requirements of Technical Specification 3/4.6.3 do not apply; instead the requirements of Technical Specification 3/4.7.1.2 apply. Valve stroke times where specified will be tested pursuant to specification 4.0.5.
- I. THESE VALVES MAY BE OPENED ON AN INTERMITTENT BASIS UNDER ADMINISTRATIVE CONTROL.