GULF STATES UTILITIES COMPANY

REACODE NOT ROLL DOWN SAN WAS

April 30, 1991 RBG- 34,917 File Nos. G9.5, G9.25.1.5

U.S. Nuclear Regulatory Commission Document Control Desk Washington, D.C. 20555

Gentlemen:

River Bend Station - Unit 1 Docket No. 50-458

Enclosed is the Annual Radiological Environmental Operating Report for 1990. This report is submitted in accordance with Subsection 6.9.1.7 of Appendix A (Technical Specifications) to River Bend Station License Number NPF-47.

Sincerely,

for W. H. Odell

Manager - Oversight

Hongland

River Bend Nuclear Group

ME/MAH/pj

Enclosure

cc: Mr. Robert D. Martin, Regional Administrator U.S. Nuclear Regulatory Cummission 611 Ryan Plaza Drive, Suite 1000 Arlington, TX 76011

NRC Resident Inspector P.O. Box 1051 St. Francisville, IA /0775

9105070087 901231 PDR ADOCK 05000458 R

660168

TE25

RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

RIVER BEND STATION

FOR THE OPERATING PERIOD

January 1, 1990 - December 31, 1990

Compiled by:

McGehee Reed

Rad. Environmental Analyst

Edited by:

Michael A. Harrington

Supvr. - Environmental Services

Reviewed by:

Edwin M. Cargi

Director - Radiological Programs

Approved by:

Philip D. Graham

Philip & Tholon

Plant Manager

Abstract

During 1990, a land use census and radiological environmental monitoring were conducted in the vicinity of River Bend Station (RBS). As part of the monitoring program, the RBS Environmental Services Group participated in an interlaboratory comparison program with 97.4 percent of analytical results within control limits. The land use census revealed 4 salient changes in receptor locations since 1989, and the census was expanded to add meat animal receptor locations within the 8 km range. Seventeen monitoring exceptions occurred out of a total effort of 1754 samples collected and 2339 subsequent analyses performed. Fourteen of these exceptions involved Technical Specification requirements, although none had significant impact on program Although well below the required detection limits, slightly elevated (relative to baseline data) levels of Cesium-137 were sporadically measured in both indicator and control media; these concentrations were presumably attributable to the 1986 incident at Chernobyl, Russia. The only measurable increases in radionuclide activity or levels of radiation attributable to plant operation, in the vicinity of RBS during 1990, appear to have been expected low levels in the liquid discharge line and traces of airborne I-131 due to small amounts of failed fuel in the boiler-reactor. The levels of activity measured in airborns media and in the liquid discharge were below the required LLDs and hence substantially below Technical Specification reporting levels. Thus the 1990 Radiological Environmental Monitoring Program substantiated the adequacy of source control and effluent monitoring at River Bend Station.

TABLE OF CONTENTS

			Page
1.0	INTROD	OUCTION	1
2.0	RADIOL	OGIAL ENVIRONMENTAL MONITORING PROGRAM (REMP)	- 4
	2,1 2,2 2,3 2,4 2,5	Land Use Census for 1990	4 5 12
3.0	INTERF	PRETATION OF REMP RESULTS	15
	3.1 3.2 3.3	Comparison of Operational and Baseline REMP Results	20
	APPENI	DICES	
	Α,	Listings of 1990 REMP Results	
	B.	Summary of Preoperational REMP (Baseline) Results	

LIST OF FIGURES

			Page
Figure	1.	Far-field Radiological Environmental Monitoring Locations	2
Figure	2.	Near-field Radiological Environmental Monitoring Locations	3
		LIST OF TABLES	
			Page
Table '		Radiological Environmental Monitoring Program	6
Table 2	2.	Results of Land Use Census	11
Table 3	1.	USEPA Intercomparison (Cross-check) Program Participation Results for 1990	13
Table 4		Monitoring Program Exceptions in 1990	14
Table !		Radiological Environmental Monitoring Program Summary	16
Table (5.	Summary Comparison of Liquid Effluent Quantities/Concentrations and REMP Discharge Line Monitoring Results	23

1.0 INTRODUCTION

This Annual Radiological Environmental Operating Report for the period of January 1 through December 31, 1990, is submitted in accordance with Technical Specification 6.9.1.7 of Appendix A to River Bend Station License Number NPF-47.

River Bend Station (RBS) is a 936 MWe General Electric boiling water reactor located in West Feliciana Parish, Louisiana, 4.1 km southeast of St. Francisville (Figure 1). Waste heat from RBS is dissipated via a system using four mechanical draft cooling towers which draw makeup water from the Mississippi River, 3.3 (air) km to the west. Blowdown from the normal cooling tower system dilutes low-level liquid radioactive waste and is discharged to the Mississippi River through a 4.4-km buried pipe located downstream of the intake structure (Fig. 2). Gaseous radioactive effluents are released through the main plant exhaust duct, the fuel building exhaust duct, and the radwaste building exhaust duct.

The area within a 16-km radius of RBS includes substantial portions of West Feliciana, East Feliciana, and Pointe Coupee parishes, as well as small portions of East and West Baton Rouge parishes. Most of the land in this area is devoted, in about equal proportions, to forests and agriculture (pasture, various crops). Wetlands, streams/lakes, and urban/improved lands comprise the remainder of the immediate vicinity of the plant. Besides St. Francisville, (4.1 km northwest), human population centers near RBS are New Roads (10 km southwest) and Jackson (12 km northeast). Industrial facilities in the immediate vicinity of RBS are Lambert Redi-Mix Company (1.8-km north-northeast); James River Corporation Paper Mill (5 km south); Big Cajun No. 2 Power Station (5 km southwest); and the Corps of Engineers concrete casting yard (5 km west).

The area within an 80-km radius of RBS contains all or portions of 19 Louisiana parishes and five Mississippi counties. This area has generally the same makeup as that of the immediate vicinity of RBS, although wetlands, agricultural lands, and urban/improved lands are relatively more extensive (at the expense of forested lands) in the southwestern and southeastern quadrants. Baton Rouge, centered at about 38 km southeast, is the only large city in the general vicinity of RBS.

During 1990, radiological environmental monitoring in the vicinity of RBS was performed by the Gulf States Utilities Company (GSU) Environmental Services Group with support from the Plant Staff Radiological Programs Section in maintaining/calibrating air samplers and in reading/annealing thermoluminescence dosimeters.

2.0 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)

2.1 Purpose/Bases

The Radiological Environmental Monitoring Program (REMP) was established to provide representative measurements of radiation and of radioactive materials, resulting from RBS operation, in those exposure pathways and for those radionuclides that lead to the highest potential exposures of members of the public. The REMP implements Section IV.B.2 of Appendix I of 10CFR50 and thereby supplements the radioactive effluent monitoring program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and the modeling of the environmental exposure pathways.

The REMP applies the concepts of indicator vs. control and preoperational vs. operational intercomparisons to verify the adequacy of source controls and resultant human radiation doses. In addition to 10CFR50, Appendix I, the program is based on guidance provided in the Nuclear Regulatory Commission's Radiological Branch Technical Position, Revision 1, November 1979, as well as NRC Regulatory Guides 4.1 and 4.15.

2.2 Environmental Radiation Exposure Pathways

Elements of the REMP monitor indications of the impacts of gaseous (airborne) and liquid effluents released from River Bend Station. The specific methods used in monitoring the pathways by which these effluents could lead to human exposure, based on existing demographic information, are:

HUMAN EXPOSURE PATHWAYS

(A)	Airborne Pathway	Monitoring Media
	Immersion Dose (external)	Air Samples (Particulates and Radioiodines)
	Ingestion Dose (internal)	Vegetation/Food Crop Samples Air Samples
(B)	Direct Exposure Pathway	Monitoring Media
	External Dose	Thermoluminescence Dosimetry (TLD) Area Monitors

(C) Waterborne Pathway

Ingestion Dose (internal)

Immersion Dose (external)

Monitoring Media

Surface Water Samples Groundwater Sample Drinking Water Samples Fish/Invertebrate Samples Shoreline Sediment Samples

Surface Water Samples Shoreline Sediment Samples

Site-related dispersion characteristics, demography, hydrology, land use, anticipated source terms, and the exposure pathways outlined above were considered in the selection of the sample media, sampling and analysis frequencies, sampling/measurement locations, and types of analyses. These criteria were used to establish both the preoperational and operational phases of the REMP.

The program that evolved during the preoperational (baseline) monitoring phase incorporates all of the elements in the RBS rechnical Specifications (3/4.12.1, 3/4.12.2, 3/4.12.3) plus special study criteria, and is illustrated in Table 1 and Figures 1 and 2.

2.3 Land Use Census for 1990

The annual land use census was conducted during the 1990 growing season in accordance with RBS Technical Specification 3/4.12.2. Table 2 summarizes the results and notes changes in nearest receptor locations within 8 km from those identified in the Radiological Environmental Operating Report for 1989.

The 1990 census identified residences within 8 km of the RBS reactor containment in all sectors except L (SW) and M (WSW). The nearest resident in sector M (WSW) was beyond 8 km in 1990 versus 4.3 km in 1989, and the nearest resident in sector P (WNW) was at 3.7 km in 1990 versus 4.1 km in 1989. In sector E (E), the garden identified in 1989 was discontinued, and in sector H (SSE) a new garden was established for 1990. The gardens identified in sectors P (WNW) and Q (NW) are the onsite gardens established in the sectors with the highest calculated annual average ground level D/Q. These gardens are REMP indicator locations for broadleaf vegetation (Table 1, Fig. 2).

No dairy animals were found within 8 km of RBS during the 1990 census. Historically, there had never been enough dairy sites to accommodate the minimum RBS Technical Specification requirements for analysis of milk (3 locations within 5 km), so monitoring of broadleaf vegetation has been performed from the outset.

GSU began a survey of meat animals within the 8 km radius of RBS during the 1990 census. This initial survey identified beef herds in all sectors except L (SW).

TABLE 1

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (Page 1 of 5)

and/or Sample	ENI	KO S	HT-8	P	at !	WE	3
TREATON 4: 30/45 30/40/REAC (A.76)	25.7	1.154	EVE	Size	BLCS.	10	
	200	8356	354	20.80	OTTAC:	A35	

Airborne Particulates and Radiologines Sample Point Description, Distance, and Direction

Samples from 9 locations:

INDICATOR STATIONS

AAl. River Bend Training Center; 1.7 km N.

Sampling and Type and Frequency Collection Frequency of Analyses

Continuous air sampler with filter collection weekly or as required by dust loading, which-ever is more frequent.

Thermoluminescence

dosimeters (TLDs); deployment/retrieval monthly and quarterly. (3)

Charcoal cartridge: analysis weekly for radiolodine. Farticulate filter: analysis weekly for gross beta and gamma isotopic activity (3) following filter changes.
Composite particulate
filters: analysis
quarterly for gamma
isotopic activity.

ARI. River Bend Station North Access Road across from plant entrance; 0.8 km NNW.

AP1. Near River Bend Station Onsite Garden #1; 0.9 km WNW.

AQS2. St. Prancis Substation on US Hwy. (Bus.) 61 in St. Francisville; 5.8 km NW (nearest community location).

CONTROL AND SPECIAL INTEREST STATIONS (1)

ALC. Parlange Power Center in Oscar, 20 km SW (Control).

ABI. River Bend Station cooling tower yard; 0.5 km NNE. (2)

AKS. River Bend Station Fiver Access Road; 2.8 km SSW. (2)

AGS. GSU Service Center compound in Zachary; 17 km SE. (2)

AHS. Roof of GSU Office Building, "North Blvd., Baton Rouge; 40 km SSE. (2)

Direct Radiation

Measurements from

INDICATOR STATIONS

TA1. River Bend Training Center; 1.7 km N.

TA2. GSU Utility pole \$246 at Jct. of La. Hwy. 10 and West Feliciana Parish Road (WF) 2 in Elm Park; 8 km N.

TBI. River Bend Station cooling tower yard; 0.5 km NNE.

TB2. Stub pole at Jct. La. Hwy. 965 and Audubon Lane (WF 17); 5 km NNE.

TC1. Stub pole a' Jct. US Hwy. 61 and Old Highway 61; 1.7 km NE.

TC2. Stub pole along La. Hwy. 966, 0.6 km S. of Jot. La. Hwys. 966 and 965; 7 km NE.

TD1. Stub pole along Wf 7, 150 m 5. of Jct. WF 7 and US Hwy. 61; 1.6 km ENE.

Gamma dose monthly and quarterly. (3)

6

TABLE 1

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (Page 2 of 5)

Married		Sec. 23		
Exposi	UE:49	-F148.Tc1	DMEZ	
_mod/	15.85	Games	1-0	
~ MARAMA	Millian I	67.59(88),871	At 100	

Direct Radiation (continued)

Sample Point Description, Distance, and Direction

TD2. Stub pole along La. Hwy. 966, 4 km s. of Jct. La. Hwys. 966 and 965; 6.3 km ENE.

TE1. Stub pole along WF 7. 1 km 5. of Jot. WF 7 and US Hwy. 61; 1.3 km E.

TE2. Gravel Power Center on La. Hwy. 68, 2 km N. of Jot. La. Hwys. 68 and 964; 10 km E.

TF1. Stub pole along WF 7, 1.6 km 5. of Jot. WF 7 and US Hwy. 61; 1.3 km ESE.

TF2. Or La. Hwy. 954, 0.6 km N. of Jct. La. 954 and US Hwy. 61; 6 km ESE.

TG1. Stub pole along WF 7, 2 km S. of Jct. WF 7 and US Hwy. 61; 1.6 km SE.

TG2. Telephone pole at gate to Marathon Tank Farm on US Hwy. 61 near Delombre; 7.5 km SE.

TBI. Stub pole at Illinois Central Gulf RR crossing of WF 7 (near Grants Bayou); 1.7 km SSE.

TH2. First telephone pole on La. Hwy. 964 N. of entrance to James River Corporation paper mill; 5.5 km SSE.

TJ1. Stub pole near River Bend Station gate \$23 on La. Hwy. 965; 1.5 km S.

TJ2. Large tree along River Road, 100 m N, of James River Corporation intake structure; 5.8 km S.

TK1. GSU utility pole #L10175 on La. Hwy. 965, 20 m S. of RBS River Access Road; 0.9 km SSW.

TK2. Stub pole at Jct. La. Hwys. 414 and 415; 8 km SSW.

TL1. Second utility pole on La. Bwy. 965 S. of former ICG RR crossing; 1.0 km SW.

TL2. Second utility pole along La. Hwy. 415 E. of Louisiana and Arkansas RR crossing (near Patin's Dike); 9.5 km SW.

TM1. First utility pole on La. Hwy. 965 N. of former ICG RR crossing; 0.9 km WSW.

TM2. Utility pole along La. Hwy. 981, about 3 km S. of Jot. La. Hwys. 981 and 10; 4.2 km WSW.

TN1. Utility pole along La. Hwy. 965, between RBS gates #13 and #14, 0.9 km W.

TN2. Utility pole with electrical meter near west bank ferry landing (La. Hwy. 10); 6 km W.

Sampling and Collection Frequency

Thermoluminescence dosimeters (TLDs); deployment/retrieval monthly and quarterly. (3) Type and Frequency of Analyses

Gamma dose monthly and quarterly. (3)

.

TABLE 1

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (Page 3 of 5)

	(Page	e 3 of 5)	
Exposure Pathway and/or Sample	Sample Point Description, Distance, and Direction	Sampling and Collection Frequency	Type and Frequency of Abalyses
Direct Radiation	TP1. Near River Bend Station oneite Garden #1; 0.9 km WNW.	Thermoluminescence domimeters (TLDs); deployment/retrieval monthly and quarterly. (3)	Gamma dose monthly and quarterly. (3)
	TP2. Stub pole about 1.5 km N. of former 100 RR treatle on Tunion Street, western outskirts of St. Francisville; 7.3 km WNW.		
	TQ1. GSU property sign along La. Hwy. 965 about 1 km N of RBS North Access Road; 1.4 km NW.	*	
	TQ2. GSU pole at Jct. of North Commerce and American Beauty Streets, St. Francisville; 6.9 km	NW.	
	TR1. RBS North Access Road across plant entrance; 0.8 km SNV.	from	
	TR2. Tree along north side of WF: acock Road, about 1.8 km E. of Jo and US Hwy, 61; 8 km NNW.	2. punt " t. WF 2	
	CONTROL AND SPECIAL INTEREST STAT	IONS (1)	
	TAC. Telephone pole along US Hwy. about 200 m N. of Hamilton Station Water Tower, near Wakefield; 18 km		
	TEC. Stub pole at Jot. of La. Hwy. 955 and Midway Road, 4.5 km N. of Jot. Le. Hwys. 955 and 964; 16 km E. (2)		
	TLC. Parlange Power Center in Oncar: 20 km SW.		
	TCS. Utility pole at gate to East Louisiana State Hospital in Jackson 12.3 km ME.		
	TGS. GSU Service Center compound : Zachary; 17 km SE.	in "	
	THS. Roof of GSU Office Building, North Blvd., Baton Rouge; 40 km SSE.		
	TKS. RBS River Access Road; 2.8 km SSV. (2)		
	TLS. Utility pole near false River Academy sign at edge of New Roads; 9.9 km SH.		
	TQS1. Behind Pentecostal Church (opposite West Feliciana Hospital) near Jct. US Hwy. 61 and Ferdinand Street; 4 km NW.		
	TQS2. St. Francis Substation on US Hwy. (Business) 61 in St. Franc ville; 5.8 km NW.	is-	
	TQS3. Utility pole at Louisiana State Penitentiary dairy, near Angola; 35 km NV. (2)		
	TRS. Stub pole at Jot. of WF 2 and US Hwy. 51, near Bains (West Felicians High School); 9.2 km NNW. (2)		

TABLE 1

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (Page 4 of 5)

Exposure Fathway and/or sample

Waterborne

Ingestion

Sample Point Description, Distance, and Direction.

SURFACE WATER (4)

SWU. Mississippi River about 4 km upstream from the RBS liquid discharge, near La. Hwy. 10 ferry crossing.

SWD. Mississippi River about 4 km downstream from RBS liquid discharge, near paper mill.

DL. RBS liquid discharge line line at blowdown control structure along River Access Road.

DRINKING WATER (6)

Nearest downstream water Rearest downstream water supply: IH-10 bridge in Baton Rouge, 52.9 km down-stream from RBS liquid dis-charge; Feople's water Ser-vice Company in Donaldsonville, 138 river km downstream from RBS liquid discharge.

GROUNDWATER

WD. Upland Terrace Aquifer well downgradient from plant, about 470 m SW.

WU. Upland Terrace Aguifer well upgradient from plant, about 470 m NNE (control).

SHORELINE SEDIMENT

East shore of Mississippi River about 4 km down-stream from plant, near paper

SEDU. East shore of Missis-sippi River about 4 km up-stream from plant, near La. Hwy. 10 ferry. (2)

FISH AND INVERTEBRATES

FD. One sample of each of three commercially and/or rec-reationally important species from downstream area influenced by RES liquid discharge. (7)

FU. One sample of each of three commercially and/ or rec-reationally important species from upstream area not influen-ced by RBS light discharge (control).

PRODUCE (B)

GI/GZ. Two samples of each of three different kinds of leafy vegetables from onsite gardens near the site boundary in areas of highest calculated average ground-level D/Q; 1 km WNW and 1.1 km NW.

One sample of each of three different kinds of leafy vegetables from La. State Penitentiary at Angola; 35 km NW (control).

Sampling and Collection Frequency

Weekly grabs composited over monthly and quarterly periods.

Hourly grabs composited monthly and quarterly.

Weekly grabs composited over monthly and quarterly periods.

Quarterly grab.

Semiannual grab.

Semiannually or seasonally when available.

Monthly during growing seanon.

Gamma isotopic and 1-131 analyses monthly.

Monthly composite: gamma isotopic, tritium (3) and gross beta analysis (5). Quarterly composite: tritium analysis.

Type and Frequency of Analyses

Monthly composite:

gamma isotopic, tritium (3) and gross bets analysis (5). Quarterly composite: tritium analysis.

Grose beta, gamma isotopic and tritium analyses quarterly. (5)

Gamma isotopic analysis semiannually.

Gamma isotopic analysis on edib's fortine dec-

TABLE 1

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (Page 5 of 5)

NOTES:

- (1) For purposes of data summary, comparisons, and discussion, the sampling locations designated as "Special Interest" are treated as indicator stations if they are within 16 km of RBS and control stations if they are beyond 16 km.
- (2) Sample/measurement location not required by RBS Technical Specifications (not identified in ODCM).
- (3) Sampling and/or analysis frequency greater than required by RBS Technical Specifications and ODCM.
- (4) The upstream (control) sample is taken at a distance beyond influence of the plant discharge. The downstream (indicator) sample is taken in an area beyond but near the mixing zone.
- (5) Gross beta analysis not required by RBS Technical Specifications and ODCM.
- (6) Drinking water sampling/analyses not required by RBS Technical Specifications and ODCM. (No drinking water pathway exists due to extreme distance to nearest intake). The upstream surface water sampling location (SWU) is used as a "control" for drinking water analyses comparisons.
- (7) Preferred species are river shrimp (Macrotracium ohione), blue catfish (Ictalurus furcatus), and freshwater drum (Aplodinotus grunniens); if these are unavailable, other edible species may be substituted.
- (8) No irrigation pathway exists due to the extreme distance of nearest domestic water intake (see Note 6); leafy vegetables are sampled and analyzed because of limited availability of milk samples.

TABLE 2
RESULTS OF LAND USE CENS.

Sector	Nearest Realdence	Range (km)	Nearest Garden	Range (kg)	Nearest Dairy	Range (km.	Nearest F	(km)
A (N)	Jones	1.8	Jones	1.8			Davis	1.9
B (NNE)	Dreher	1.6	Harvey	1.8		4.	Harvey	1.8
C (NE)	Magee	1.5	Magee	1.5			Daniel, H.	1.7
D (ENE)	Lambert	1.4	Daniel, E.I.	1.6			imbert	1.6
E (E)	Bickham	2.2	_2				Daniel, E.I.	1.2
F (ESE)	Shelton	3.4	Eisworth	3.6			Baniel, E.I.	1.2
G (SE)	Mills	6.6	Mills	6.6			Biokham	0.5
H (SSE)	Koffman	1.7	Koffman ³	1.7			Daniel, E.I.	3.9
J (8)	Bliss	1.8	Blisc	1.8			Daniel, E.I.	3.5
K (SSW)	Guillory	7.4	Guillory	7.4			Daniel, E.I.	3.5
I. (Sw)								
H (WSW)	2						Langois	5.0
N (N)	Lacost	6.1					Langois	5.0
P (WNW)	Dietrich4	3.7	GSU #1	1.0		4.5	Hardovin	7.4
Q (NW)	Rimmer	1.3	GSU #2	1.1			Cavin	1.3
R (NNW)	Young ⁵	1.7	Tionroe	3.0			Klein	2.4

¹ The initial survey for meat animal location was performed in 1990.

The 1989 receptor location was discontinued for 1990.

³ There was no receptor location listed for 1989.

⁴ The 1990 receptor location was nearer than the receptor location listed in 1989.

⁵ The 1990 receptor location was farther than the receptor location listed in 1989.

2.4 Interlaboratory Comparison Program Results for 1990

The Environmental Services Croup participated in the U.S. Environmental Protection Agency (USEPA) Laboratory Intercomparison Program during 1990 in accordance the RBS Technical Specification 3/4.12.3. RBS results (Table 3) were within the warning limits for the normalized range (precision) for all analyses, and within the USEPA "known" value (accuracy) for all but two analyses, namely, the gross beta in water for 9/21/90 and the total potassium in milk for 4/27/90. The discrepancies for the gross beta in water for 9/21/90 and for potassium in milk for 4/27/90 are discussed below. The USEPA discontinued the cross-check media for "food" in 1989, and although milk sampling and analysis is not required of RBS at this time, the results for the cross-check media for "milk" are included as a gauge for the "food" sample analyses (i.e., vegetation and fish) performed by RBS.

2.5 Program Exceptions

Certain samples and analyses were inadvertently omitted or unavoidably altered during the 1990 operating period, out of a total effort of 1754 samples collected and 2339 subsequent analyses performed. These exceptions and the reasons for the omissions/alterations are delineated in Table 4 in accordance with Technical Specification requirements. Corrective actions and impacts on program quality are discussed below.

Brief storm-related power outages impacted one indicator air sampler (AA1) in January, five indicator and special interest air samplers (AA1, AB1, AR1, AKS, and AP1) in June, and one control air sampler (ALC) in August. From 3 percent to 20 percent of each of the expected sample volumes was lost due to the power outages. A fractured (cause unknown) electrical service pole which supports the weatherhead and breaker box for the AKS air sampler necessitated disconnection of power, further impacting AKS during November and December. The time taken to replace the electrical service to AKS, a sampling location not required by RBS Technical Specifications, resulted in the loss of approximately 83 percent of the expected sample volume for AKS over a 5 week period. Thes losses are not deemed to have had a significant impact on program quality, esperally since the plant was shut down for a refueling outage from October to December, 1990.

Limited variety in the crops due to a hard freeze during the winter months at the state penitentiary (GQC) and both site gardens resulted in failure to obtain 3 out of 36 required control samples and 3 out of 72 required indicator samples of broadleaf vegetation during 1990. This did not significantly impact program quality. One of the samples obtained from the control location (GQC) in June did not satisfy the LLD requirements due to its low mass.

One USEPA cross-check analysis for gross beta in water, dated 9/21/90, was outside the control limits for accuracy. The sample activity reported by RBS had been calculated using an incorrect factor for salt density attenuation of beta counting efficiency. When the activity of the gross beta sample was recalculated with the correct salt density factor, the result was well within the limits for accuracy. One USEPA cross-check analysis for total potassium was outside the control limits for accuracy. The mass for potassium reported by RBS had been converted from K-40 activity using the incorrect conversion factor (1.19 instead of 1.133).

TABLE 3

USEPA INTERCOMPARISON (CROSS-CHECK) PROGRAM PARTICIPATION RESULTS

SAMPLE TYPE(units)_ Participants)	DATE	ANALYSIS	USEPA "KNOWN" VALUE®	RBS YALUE	RBS N-DEVb	RBS N-RANGE ^C	AVERAGE RESULT
AIR FILTER	3/30/90	Beta	31,00±5,80	33.67	+0.92	0.354	32.19±3.65
(pCi/filter)	3/30/90	Cs-137	10.00+5.80	12.00	+0.69	0.000	11.56+2.05
Short-reserve	8/31/90	Beta	62.00+5.80	69.33	12.54	0.354	64.66±6.77
	8/31/90	Cs-137	20.00±5.80	23.00	+1.04	0.354	22.70±3.51
MILK®	4/27/90	1-131	99.00+11.60	100.67	+0.29	0.354	98,49±8,13
	4/27/90	0s-137	24.00+5.80	24.33	+0.12	0.473	24.65±3.03
	4/27/90	K (nat)	1550.00±90.30	(1647,00)f	(+2,15)	(0,409)	1548.38±117.33
WAYER	1/26/90	Beta	12.00+5.80	14.00	-0.69	9,000	12,81±2.2
(pCi/liter)	2/09/90	Co=60	15.00.5.80	15.00	+0.00	0.236	15.0.12.28
	2/09/90	Zn-65	139.00+16.20	149.00	+1.24	0.338	179,93(9.60
	2/09/90	Ru=106	139.00+16.20	134.33	-0.58	0.464	60:14.22
	2/09/90	Ba-133	74.00±8.10	74.33	+0.08	0.169	9 6 . 21
	2/09/90	Cn-134	18.00+5.80	17.67	-0.12	0.11	17.00 2.14
	2/09/90	Cs-137	18.00±5 80	19.33	+0.46	0.1	7 7 7 40
	2/23/90	H=3	4976±575	4844	-0.46	0.150	491. 540.99
	4/17/90	Beta	52.00±5.80	51.00	-0.35	0.945	42.6616.39
	4/17/90	Cs-134	15.0015.80	13.67	-0.46	0.11	14.4411,77
	4/17/90	Cs-137	15.00±5.80	15.67	+0.12	0.1.8	15.5011.88
	5/11/90	Beta	15.00±6.80	15.00	+0.00	0.236	16.16±3.85
	6/08/90	Co-60	24.00+5.80	25.67	+0.58	0.115	5.12±2.69
	8/08/90	Zn-65	148.00±17.40	159.67	+1.35	0.118	'49.18 <u>+</u> 12.30
	6/08/90	Ru-106	210.00±24.30	195.00	-1.24	0 - 647	201.01:17.01
	6/08/90	Ba-133	99.00±11.60	102 00	+0.52	0.000	96.33±8.16
	6/08/90	Cs-134	24.00±5.80	5 .0	+0.00	0,000	23.26±2.10
	6/05/50	Cs-137	25.0015.80	6. 17	+0.58	0.118	26.21±2.61
	6/22/90	B-3	2933±141.4	2847.67	-0.41	0.206	2966.80±285.64
	8/10/90	1-131	.00±6.90	36.67	~0.67	0.295	40.26±4.10
	9/1/90	Beta	10.00±5.80	(13,00)f	(+1.04)	(0.236)	10.91±2.25
	10/05/90	Co-60	20.00±5.80	22.00	+0.69	0.000	20.53±2.53
	10/05/90	Zn-65	115.00±13.90	126.00	+1.59	0.345	116.25±9.89
	10/05/90	Ru-106	151.00±17.40	147.00	-0.46	0.158	140.39115.33
	10/05/90	Ba-133	110.00±12.70	111.67	+0.26	0.107	107,73±9,22
	10/05/90	Cs-134	12.00±5.80	11.67	~0.12	0.118	11.89±2.09
	10/05/90	Ca-137	12.00±5.80	13.67	+0.55	0.118	13.11±2.17
	10/19/90	H-3	7203,00±833,50	7403.67	+0.48	0.480	7125.08±671.93
	10/30/90	Beta	53.00±5.80	53.33	+0.12	0.945	50.78±6.32
	10/30/90	Cn-134	7.00±5.80	7.00	+0.00	0.000	7.49±1.44
	10/30/90	Ca-137	5.00±5.40	4.67	-0.12	0.118	5.94±1.55
NOTES:							

OIED!

- (a) USEPA "known" values are listed with a range reflecting control (3 sigma) limits.
- (b) The normalized deviation from the "known" value is computed by USEPA from the deviation and the standard error of the mean; +2.000 is the warning limit and +3.000 is the control limit.
- (c) The normalized range is computed by USEPA from the mean range, the control limit, and the standard error of the range; +2.000 is the warning limit and +3.000 is the control limit.
- (d) The grand average of all participants' results (excluding outliers) is listed with the experimental (calculated) sigma for all laboratories.
- (e) USEPA discontinued the cross-check media "Food" for 1989. Although milk sampling and analysis by RBS is not performed, the cross-check samples of milk were analyzed, and the data included as a gauge of the "food" sample (i.e. vegetation, fish) analyses performed by RBS. The units for the nuclides I-131 and Cs-137 are pCi/liter, and for the element K is mg/liter.
- (f) The results reported to USEPA were calculated with incorrect correction/conversion factors. The appropriate values are reported here with the values for "normalized deviation from the known value" and for "normalized range" calculated by RBS personnel.

TABLE 4

MONITORING PROGRAM EXCEPTIONS

Sample Type	Period	Location	Exception/Reason
Air Particulates and Radioiodines	1/02 - 1/09/90 1/09 - 1/16/90	AA1	About 20% of normal weekly sample volume not collected due to power outage.
n	5/29 ~ 6/04/90	AA1, AE1*, AR1, AK5*, AP1	About 5% of normal weekly sample volumes not collected due to power outage.
	6/04 - 6/11/90	AA1, AB1*, AR1, AKS*, AP1	About 4% of normal weekly sample volumes not collected due to power outage.
	7/30 - 8/06/90	ALC	About 3% of normal weekly sample volume not collected due to power failure.
	8/20 - 8/27/90	ALC	About 16% of normal weekly sample volume not collected due to power failure.
*	11/12 - 11/19/90	AKS*	About 58% of normal weekly sample volume not collected due to power outage (electic service torn loose from the step-down transformer on the utility pole).
	11/19 - 12/20/90	AKS*	None of normal weekly sample volume was collected due to power outage (electric service had to be re-strung from the transformer),
Broadleaf Vegetation	January	GQC	Only one (1) of three (3) samples obtained due to limited availability caused by hard freeze.
	January	G = 2	Only two (2) of three (3) samples obtained due to limited availability caused by hard freeze.
	March	GQC	Only two (2) of three (3' samples obtained due to limited availibility.
	March	G=1	Only one (1) of three (3) samples obtained due to limited availability.
	June	GQC	One (1) sample of three (3) analyzed failed the LLD requirement.
Fish and Invertebrates	Spring/Summer 1990	ΡU	Only two (2) of three (3) samples obtained due to limited availability.
Water, Gross Beta	April	CWS	Results varied by more than 10% on a split sample.
USEPA Cross-check, Gross Beta in Water	9/21/90	N/A	Results calculated using incorrect sait density factor for attenuation of beta counting efficiency; correct activity was obtained when correct factor used in calculation.
Water	10/17 - 10/24/90	CMS	About 58% of hourly composite ali- quots not obtained due to power outage.
Direct Radiation (TLD)	June	TKS*	The recorded high net normalized gamma dose, possibly due to severe moisture damage and corrosion observed in microscopic examination of the dosimeter's phosphor elements.

^{*}Sample/measurement is not required by RBS Technical Specifications (not identified in ODCM).

3.0 INTERPRETATION OF REMP RESULTS

3.1 Summary of Operational REMP Results

Monitoring results for the exposure pathways are itemized in Appendix A and summarized in Table 5, from which measured activities of the naturally-occurring daughters of uranium and thorium are excluded. For purposes of data summary, comparison, and discussion, the sampling locations designated "Special Interest" in Table 1 are treated as indicator stations if they are within 16 km of RBS and control stations if they are beyond 16 km.

- 3.1.1 <u>Airborne Exposure Pathway</u> Measurements of radioiodine and other gamma-emitters were all below their respective LLDs · that is, "undetectable" at the required analytical sensitivities. During the two week period from 5/21/90 to 6/4/90, traces of radioiodine and noble gasses were mc_ured at three downwind air sample stations, due to the presence of a small amount of failed fuel in the reactor. The releases resulting from this failed fuel were minimized by operational controls (e.g., repairing minor steam leaks), after which no further measurements of radioiodine and noble gasses were observed at any of the air rampling stations. This fuel was removed during the refueling outage in the 4th goal er of 1990. Gross beta activities averaged 0.025 pCi/m³ at indicator locations and 0.02. pCi/m³ at control locations.
- 3.1.2 <u>Direct Exposure Pathway</u> The monthly average gamma of anter for indicator and control locations were 4.20 and 4.35 milling of all repetitively. Quarterly exposures averaged 12.39 mR total at indicator locations and 12.90 mR total at control locations.
- 3.1.3 <u>Waterborne Exposure Pathway</u> No gamma-emitters were measured in surface water or in drinking water at levels approaching the Technical Specification LLDs. The gamma emitters Mn-54, Go-58, Ze-59, Co-60, Nb-95, Zr-95, Cs-134 & 137, and Ba-140 were measured in a few monthly composite samples from the discharge line DL at concentrations between 0.9 and 56 picocuries per liter. Gross beta activities in surface water averaged 40.4 pCi/l in the discharge line DL and from 3 to 17 pCi/l at all other stations. Tritium (H-3) activities in surface water averaged 20450 pCi/l in the discharge line DL and were below detection limits at all other locations. Gross beta activities averaged 4.7 and 6.0 pCi/l in the downgradient WD (indicator) and upgradient WD (control) groundwater, respectively. Besides naturally-occurring gamma emitters, Cs-137 was measured in Mississippi River shoreline sediment above (75 pCi/kilogram dry) and below (10 pCi/kg dry) the RBS liquid discharge outfall. As in the case of the airborne Cs-137 activity, these slightly elevated levels (relative to baseline conditions) are probably attributable to the 1986 incident at Chernobyl, Russia.

TABLE 5

PADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY (Page 1 of 4)

River Bend Station Docke: Number: 50-458
West Feliciana Parish, Louisiana Reporting Period: 1/1/90 -12/31/90

Medium / Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection ¹ (LLD)	All Indicator Stations Mean (f) ² Range		tith Highest Mean Mean (f) ² Range	Control Locations Hean (f) ² Range	Number of Nonroutine Reported Results
Air Particulate (pCi/m ³)	Gross Beta (468)	0.01	0.025 (308/312) 0.018 - 0.032		0.026 (52/52) 0.021 - 0.032	0.020 (156/156)	0
	Be-73 (468)	NONE REQUIRED	0.121 (282/312) 0.057 - 0.244	AR1 0.8 km NNW	0.137 (45/52) 0.077 - 0.249	0.008-0.028 0.111 (125/150)	0
	K-40 ³ (465)	NONE REQUIRED	0.58 (309/312) 0.235 - 2.270	AKS 2.8 km SSV	0.649 (48/52) 0.253 - 2.270	0.057-0.222 0.52 (153/156)	0
	Cn=104 (468)	0.05	ALL (LLD			0.212-0.858 ALL <lld< td=""><td>0</td></lld<>	0
	Cs=137 (468)	0.06	0.012 (4/312) 0.009 - 0.015	AR L 0.5 km NNW	0.015 (1/52) single value	0.013 (1/52) single value	0
Air Radiojodine (pCi/m ³)	1=131 (468)	0.07	0.020 (5/312) 0.016 - 0.031	AR1 0.8 km NNW	0.024 (2/52) 0.016 ~ 0.031	ALL (LLD	0
Direct (TLD) ⁴ (mR Total)	Gasma Monthly		4.20 (456/456) 2.39 ~ 11.17	TM2 4.2 km WSW	4.96 (12/12) 4.06 - 6.03	4.35(72/72) 3.24 - 5.54	0
	(456) Gamma Quarterly (176)		12.39 (152/152) 7.81 - 17.37	4.2 km WSW	14.49(4/4) 13.52 - 15.49	12.90(24/24) 10.31-15.98	0
Surface Water (pC1/liter)	H+3 (12)	3000	20452 (4/8) 5705 - 35450	DL	20452 (4/4) 5705- 35450	ALL (LLD	0
	Mn-54 (36)	15	8.05 (12/24) 1.19 - 24.8	DL.	8.05 (12/12) 1.19 - 24.8	ALL CLUD	0
	Co-56 (36)	15	3.68 (11/24) 1.01 - 10.7	DL	3.63 (11/12) 1.01 - 10.7	ALL KLLD	0
	Po-59 (36)	30	4.70 (6/24) 1.77 - 8.44	DL	4.70 (6/12) 1.77 - 8.44	ALL - LLD	0
	Co+60 (36)	15	19.4 (12/24) 2.85 = 55.5	DL	19.4 (12/12) 2.85 - 55.5	ALL *LLD	0
	Zn×65 (36)	30	All (LLD)			ALL CLLD	0
	Nb-95 (36)	15	3.36 (2/24) 2.56 - 4.16	DL	3.36 (2/36) 2.56 = 4.16	AUT (PTD	0
	Zr+95 (36)	30	1.03 (1/24) (single value)	DL	1.03 (1/12) single value	ALL - (LLD	0
	(36)	15	ALL <lld< td=""><td></td><td></td><td>ALL <lld< td=""><td>0</td></lld<></td></lld<>			ALL <lld< td=""><td>0</td></lld<>	0
	Cs-134 (36)	1.5	1.16 (2/24) 0.91 - 1.41	DL	1.16 (2/12) 0.91 - 1.41	ALL <lld< td=""><td>0</td></lld<>	0
	Cs-137 (36)	18	1.04 (2/24) 0.92 - 1.16	SWU 4 km upstream	1.14 (1/12) single value	1.14 (1/12) single value	0
	Ba-140 (36)	60	1.46 (1/24) (single value)	DI.	1.46 (1/12) single value	ALL <lld< td=""><td>0</td></lld<>	0

TABLE 5

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY (Page 2 of 4)

River Bend Station Docket Number: 50-458
West Feliciana Parish, Louisiana Reporting Period: 1/1/90 -12/31/90

Medium or athway Sampled (Unit of Massurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection (LLD)	All Indicator Stations Mean (f) ² Range		with Highest 1 Mean Mean (f) ² Range	Control Locations Mean (f) ² Range	Number of Nonroutine Reported Results
Surface Water (pCi/liter)	La-140 (36)	15	ALL <lld< td=""><td></td><td></td><td>ALL (LLD</td><td>0</td></lld<>			ALL (LLD	0
(continued)	Gross Beta (36)	4	24.96(24/24) 3.36 - 49.87	DL	40.39 (12/12) 20.69 - 49.99	9.75 (12/12) 5.00 - 14.32	0
Groundwater (pCi/liter)	H×3	3000	ALL <lld< td=""><td></td><td></td><td>ALL <lld< td=""><td>0</td></lld<></td></lld<>			ALL <lld< td=""><td>0</td></lld<>	0
	Hn-54 (8)	15	ALL <lld< td=""><td></td><td></td><td>ALL «LLD</td><td>0</td></lld<>			ALL «LLD	0
	Co-55 (8)	15	ALL CELD			ALL <lld< td=""><td>0</td></lld<>	0
	Fe-59 (8)	30	- ALL <lld< td=""><td></td><td></td><td>ALL <lld< td=""><td>0</td></lld<></td></lld<>			ALL <lld< td=""><td>0</td></lld<>	0
	Co~60 (8)	15	ALL KLLD			ALL <lld< td=""><td>0</td></lld<>	0
	Zn-65 (8)	30	ALL <lld< td=""><td></td><td></td><td>ALL (LLD</td><td>0</td></lld<>			ALL (LLD	0
	Nb-95 (8)	35	ALL (LLD			ALL <lld< td=""><td>0</td></lld<>	0
	Zr-95	30	ALL KLLD			ALL (LLD	0
	I=131 (8)	15	ALL <lld< td=""><td></td><td></td><td>ALL (LLD</td><td>0</td></lld<>			ALL (LLD	0
	Ca-134 (8)	15	ALL +LLD			ALL CLLD	0
	Cs=137 (5)	1.8	ALL <lld< td=""><td></td><td></td><td>ALL (LLD</td><td>0</td></lld<>			ALL (LLD	0
	8a-140 (8)	60	ALL < LLD			ALL <lld< td=""><td>0</td></lld<>	0
	La-140 (8)	15	ALL <lld< td=""><td></td><td></td><td>ALL <lld< td=""><td>0</td></lld<></td></lld<>			ALL <lld< td=""><td>0</td></lld<>	0
	Gross Beta	1	4.73 (4/5) 3.02 - 5.73	WU 470 m NN	6.03 (3/5) 5.25 ~ 6.89	6.03 (3/5) 5.25 - 6.89	0
Drinking Water! (pCi/liter)	H+3 (4)	3000	ALL <lld< td=""><td></td><td></td><td>ALI (LLD</td><td>0</td></lld<>			ALI (LLD	0
	Mn=54 (12)	15	ALL <lld< td=""><td></td><td></td><td>ALL (LLD</td><td>0</td></lld<>			ALL (LLD	0
	Co~58 (12)	15	ALL <lld< td=""><td></td><td></td><td>ALL (LLD</td><td>0</td></lld<>			ALL (LLD	0
	Fe-59 (12)	30	ALL <lld< td=""><td></td><td></td><td>ALL <lld< td=""><td>0</td></lld<></td></lld<>			ALL <lld< td=""><td>0</td></lld<>	0

TABLE 5

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY (Page 3 of 4)

River Bend Station West Feliciana Parish, Louisiana

Docket Number: 50-458 Reporting Period: 1/1/90 -12/31/90

Medium or athway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection ¹ (LLD)	All Indicator Stations Hean (f) ² Range	Location w Annual Name Dist./Dir.	ith Highest Mean Mean (f) ² Range	Control Locations Mean (f) ² Range	Number of Nonroutine Reported Results
Orinking Water ⁵ (pCi/liter)	Co-60 (12)	15	1.60 (1/12) (single value)		1.60 (1/12) (single value)	ALL - LLD	0
(continued)	Zn-65 (12)	30	ALL <lld< td=""><td>138 km downstream</td><td></td><td>ALL < LLD</td><td>0</td></lld<>	138 km downstream		ALL < LLD	0
	Nb-95 (12)	15	ALL <lld< td=""><td></td><td></td><td>ALL <lld< td=""><td>0</td></lld<></td></lld<>			ALL <lld< td=""><td>0</td></lld<>	0
	Zr-95 (12)	30	ALL CLLD			ALL (LLD	0
	1-101	15	ALL SLLD			ALL «LLD	0
	Ca-134 (12)	15	ALL <lld< td=""><td></td><td></td><td>ALL +LLD</td><td>0</td></lld<>			ALL +LLD	0
	Cs-137 (12)	18	0.61 (1/12) (single value)	SWU 4 km	1.14 (1/12) (mingle value)	1.14 (1/12) single value	0
	Ba-140 (12)	60	ALL ALLD	upstream		ALL (LLD	0
	La-140 (12)	16	TI, (ITD			ALL (LLD	0
	Gross Beta	*	9.47 (12/12) 4.53 - 14.36	SWU 4 km upatraam	8.75 (12/12) 5.00 - 14.32	8.75 (12/12) 5.00 - 14.32	,
Shoreline Sediment ⁶ (pCi/kg dry)	Be+73	NONE EQUIRED		SEDU i em	408 (1/2) (single value)	408 (1/2) single value	N/A
(pc1/kg dry)	K-40 ³	NONE REQUIRED	14115 (2/2) 13706 - 14524	SEDD 4 km	14115 (2/2) 13706 - 14524	10567 (2/2) 4773-16361	N/A
	('e+134 (4)	150	ALL < LLD	downstream		ALL (LLD	0
	Cs-137 (4)	150	10.0 (1/2) (Ringle value)	SEDU 4 km upstroam	74.6 (1/2) (single value)	74.6 (1/2) single value	0
Fish/ Invertebrates (pCi/kg wet)	K-40 ³	NONE REQUIRED	3181 (8/8) 2837 - 4081	Fü 4 km	3181 (8/8) 2637 - 4081	2949 (5/5) 1977 - 3506	0
(por/ag mec)	Mn-54 (13)	130	ALL CLED	downstream		ALL (LLD	0
	Co+58 (13)	130	ALL CLLD			ALL (LLD	0
	Fe-59 (13)	260	ALL <lld< td=""><td></td><td></td><td>ALL <lld< td=""><td>0</td></lld<></td></lld<>			ALL <lld< td=""><td>0</td></lld<>	0
	Co+60 (13)	130	ALL <lld< td=""><td>YU 4 km</td><td>7.49 (1/5) (single value)</td><td>7.49 (1/5) single value</td><td>0</td></lld<>	YU 4 km	7.49 (1/5) (single value)	7.49 (1/5) single value	0
	Zn-65 (13)	260	ALL (LLD	upstream		ALL VLED	0

TABLE 5

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY (Page 4 of 4)

River Bend Station West Feliciana Parish, Louisiana

Docket Number: 50-458 Reporting Period: 1/1/90 -12/31/90

Medium or Pathway Sampled (Unit of Measurement)		Lower Limit of Detection ¹ (LLD)	All Indicator Stations Mean (f) ² Range	Location a Annual Name Dist./Dir.	Mean (1) ² Range	Control Locations Mean (f) ² Range	Number of Nonroutine Reported Results	
Fish/ Invertebrates	Cs-134 (13)	130	ALL <lld< td=""><td></td><td></td><td>ALL <lld< td=""><td>0</td></lld<></td></lld<>			ALL <lld< td=""><td>0</td></lld<>	0	
(pCi/kg wet) (continued)	Cs-137 (13)	160	7,07 (1/8) (single value)	FD 4 km downstream	7.07 (1/8) (single value)	1.67 (1/5) single value	0	
Broadleaf Yegetation (pCi/kg wet)	Be-7 ³ (98)	NONE REQUIRED	310 (44/69) 71 - 2040	GQC 35 km NW	587 (21/29) 56 - 2292	547 (21/29) 56 - 2292	N/A	
	K-40 ³ (98)	NONE REQUIRED	3503 (69/69) 1616 - 5794	GQC 35 km NW	4374 (29/29) 1926 - 8267	4374 (29/29) 1926 - 8287	N/A	
	1-131 (98)	60	ALL <lld< td=""><td></td><td></td><td>ALL <lld< td=""><td>0</td></lld<></td></lld<>			ALL <lld< td=""><td>0</td></lld<>	0	
	Cs+134 (98)	60	ALL <ldd< td=""><td></td><td></td><td>ALL <lld< td=""><td>0</td></lld<></td></ldd<>			ALL <lld< td=""><td>0</td></lld<>	0	
	Cs~137 (98)	80	20.0 (5/69) 15.8 - 27.6	G1 1 km WNW	20.0 (5/34) 15.8 - 27.6	11.6 (1/29) single value	0	
	B6x = 140 (95)	NONE REQUIRED	47.2 (1/69) (single value)	G1 1 km NNN	47.2 (1/34) (single value)	NONE MEASURED	0	

NOTES:

- 1. Lower Limit of Detection (LLD) as defined in RBS Technical Specifications (NUREG-1172).
- 4 Mean and range based on detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses. (f)
- 5. Specific activities found for certain common and readily distinguished, naturally occurring nuclides are included to provide perspective. It should also be noted that other gamma emitting, naturally occurring nuclides (e.g., primordial series) are often detected but not reported because of the complexities and uncertainties of specific identification.

3.1.4 Ingestion Exposure Pathway - Specific activities for radioiodine were below the required LLD in the ingestion pathway monitoring media during 1990. In addition to naturally-occurring gamma emitters, Cs-137 was measured in both broadleaf vegeta-tion and fish from the indicator locations, and in fish from the contro' location. The Cs-137 averaged 20.0 pCi/kg wet (<LLD) in vegetation from ite garden in Sector P (G1), a single measurement of 7.07 pCi/kg wet was a downstream fish, and a single measurement of 1.67 pCi/kg wet noted in fish. These slightly elevated Cs-137 activities, which are two orders of ade below those that would be "reportable" if due to RBS releases, are pobably attributable to the Chernobyl incident.

3.2 Comparison of Operational and Baseline REMP Results

Radioiodine and other gamma emitters in the airborre exposure pathway were not measured at levels above the required LLDs during 199%. Gross beta activities on air particulate filters averaged $0.025~\rm pCi/m^3$ at indicator and $0.020~\rm pCi/m^3$ at control locations in 1990, compared to $0.03~\rm pCi/m^3$ at both indicator and control locations during the preoperational phase of the REMP (Appendix B).

In the direct exposure pathway, the 1990 net average readings for monthly and quarterly TLDs from both indicator and control locations were slightly lower than the corresponding values for the baseline period. Thus far, no appreciable differences have been observed in TLD exposures between indicator and control locations or between the same locations from one year to the next.

In the waterborne exposure pathway, average activities analyzed for required gamma-emitting nuclides were measured below the RBS Technical Specification LLDs during 1990 as had been the case during the preoperational phase (Appendix B). Gross beta and tritium levels in water are compared below:

W	ATERBORNE AVERA Pre- OPERALIONAL	GE GROSS B	RTA (pC1/1) 1987	1988	1959	1990
Surface Water, Upstream (4 km) RBS Discharge Line Surface Water, Downstream (4 km) Drinking Water (Donaldsonville) Upgredient Groundwater Downgradient Groundwater	7.80 N/A 8,10 6.80 6.00 4.00	5.76 10.10 5.69 5.66 2.25 2.61	8.93 21.76 8.59 10.40 2.22 1.95	9.30 32.38 8.66 8.24 2.45 2.20	7,79 32,05 7,41 6,23 3,61 3,44	9.75 40.39 9.52 9.47 6.03 4.73
	WATERBORNE AVER	AGE TRITIU	M (pCi/1)			
	operational	1986	1987	1988	1989	1990
Surface Water, Upstream (4 km) RBS Discharge Line Surface Water, Downstream (4 km) Drinking Water (Donaldsonville) Upgradient Groundwater Bowngradient Groundwater	<3000 N/A <3000 <3000 <3000 <3000	<452 1023 <464 <462 <446 <448	<444 1140 <604 <593 <601 <600	<588 2272 <592 <586 <780 <779	<554 3469 <354 <557 <881 <872	<209 20452 <209 <210 <211 <207

3.1.4 <u>Ingestion Exposure Pathway</u> - Specific activities for radioiodine were below the required LLD in the ingestion pathway monitoring media during 1990. In addition to naturally-occurring gamma emitters, Cs-137 was measured in both broadleaf vegetation and fish from the indicator locations, and in fish from the control location. The Cs-137 averaged 20.0 pCi/kg wet (<LLD) in vegetation from the onsite garden in Sector P (G1), a single measurement of 7.07 pCi/kg wet was noted in a downstream fish, and a single measurement of 1.67 pCi/kg wet noted in upstream fish. These slightly elevated Cs-137 activities, which are two orders of magnitude below those that would be "reportable" if due to RBS releases, are probably attributable to the Chernobyl incident.

3.2 Comparison of Operational and Baseline REMP Results

Radioiodine and other gamma emitters in the airborne exposure pathway were not measured at levels above the required LLDs during 1990. Gross beta activities on air particulate filters averaged $0.025~\mathrm{pCi/m^3}$ at indicator and $0.020~\mathrm{pCi/m^3}$ at control locations in 1990, compared to $0.03~\mathrm{pCi/m^3}$ at both indicator and control locations during the preoperational phase of the REMP (Appendix B).

In the direct exposure pathway, the 1990 net average readings for monthly and quarterly TLDs from both indicator and control locations were slightly lower than the corresponding values for the baseline period. Thus far, no appreciable differerences have been observed in TLD exposures between indicator and control locations or between the same locations from one year to the next.

In the waterborne exposure pathway, average activities analyzed for required gamma-emitting nuclides were measured below the RBS Technical Specification LLDs during 1990 as had been the case during the preoperational phase (Appendix B). Gross beta and tritium levels in water are compared below:

	ATERBORNE AVERA	CE GROSS BI	CTA (DC1/1)			
	Pre-	THE PERSON AND	ern (hearte)			
	operational	1986	1957	1788	1989	1990
Surface Water, Upstream (4 km) RBS Discharge Line Surface Water, Downstream (4 km) Drinking Water (Donaldsonville) Upgradient Groundwater Downgradient Groundwater	7.80 N/A 8.10 6.80 6.00 4.00	5.76 10.10 5.69 5.66 2.25 2.61	8.53 21.76 8.59 10.40 2.22 1.95	7 10 32,38 5.46 5.74 2.45 2,20	7.79 32.05 7.41 8.23 3.61 3.44	9.75 40.39 9.52 9.47 6.03 4.73
	WATERBORNE AVE	RAGE TRITIU	H (pCi/1)			
	operational	1986	1987	1988	1989	1990
Surface Water, Upstream (4 km) RBS Discharge Line Surface Water, Downstream (4 km) Drinking Water (Donaldsonville) Upgradient Groundwater Downgradient Groundwater	<3000 N/A <3000 <3000 <3000 <3000	4452 1023 4459 4462 4446 4448	<444 1140 <604 <593 <601 <600	<588 2272 <592 \586 <780 <779	<554 3469 <554 <357 <881 <872	<209 20452 <209 <210 <211 <207

Gross beta activities in the discharge line and surface water samples averaged slightly higher in 1989 and 1990 than in previous years, yet the levels remained well below reporting levels established in the RBS Technical Specifications. These activities seemingly reflect (at least in part) a slight general increase in levels of beta-emitting materials in the Mississippi River. As observed in previous years, the annual average gross beta activity for the control location (SWU) was higher than that for the indicator location (SWD).

Tritium activities in the discharge line increased on average, reflecting the releases already noted in the 1990 Semiannual Radioactive Effluent Release Reports (see also Table 6). In the RBS boiler-reactor, tritium is produced by ternary fission of the reactor fuel (235U), although only a small fraction of that tritium would diffuse through the fuel's cladding. Tritium is also produced by neutron reactions with certain isotopes of boron, deuterium and lithium when present in the boiler (e.g. as control rod material - boron). The observed tritium increase in the liquid discharge is attributable to the small amounts of failed fuel (i.e. defects in a very small percentage of the fuel cladding - also responsible for the airborne radioiodine), allowing that tritium produced by ternary fission to migrate into the boiler water. The tritium activity observed during 1990 increased beginning in May and continued through November, tapering off with the removal of the failed fuel (see Appendix A, page A-12). Smaller increases of tritium in the liquid discharge would result from more efficient radioactive wastewater treatment and reuse (e g., as boiler makeup). The particulates (metals and salts) are removed in this treatment leaving the tritium behind as water (e.g., [3H-O-1H]). When this water is reused as boiler makeup, tritium builds up in the water.

It should be noted that Discharge Line monitoring results are based on composites of hourly aliquots of equal volume, rather than on flow-weighted hourly grabs. While it may be argued that the long-term averages are fairly representative, it can be seen that the sampling requirement would be truly representative only if RBS liquid discharges were continuous and at a constant rate, which is not the case (see also the discussion of liquid effluents under Section 3.3 below). RBS changed to flow-weighted composite sampling of the discharge line in 1991 to accomodate NPDES permit requirements for biomonitoring. This change should have a beneficial impact on the comparisons made for predicted releases versus REMP measurements in Table 6.

In the ingestion exposure pathway, no gamma emitting nuclides were measured above LLDs during 1990, and there appear to have been no increases in radionuclide concentrations attributable to RBS operation in food/forage media over baseline levels (Appendix B). Slight increases in Cs-137 levels in some fish and broadleaf vegetation samples, presumably related to residues of the Chernobyl accident fall-out, were discussed in Section 3.1.4 (above). Naturally-occurring K-40 was measured at an average of 3503 pCl/kg in indicator vegetation and at an average of 4374 pCi/kg in control vegetation in 1990, roughly the same levels encountered prior to

RBS operation (Appendix B). Another natural nuclide, Be-7, averaged 310 and 547 pCi/kg in indicator and control vegetation samples, respectively, during 1990. Although presumably present, Be-7 was not quantified during the preoperational phase for comparison.

3.3 Comparison of REMP Results with Operating Controls

The only measurable increases in concentrations of radionuclides or levels of radiation, attributable to plant operation, in the vicinity of RBS during 1990 appear to have been the expected low levels in the liquid Discharge Line. The indicator vs. control comparisons for airborne gross beta activity (Section 3.1.1; Table 5 and Appendix A) corroborate the reports of limited or no releases of particulates or radioiodine in 1990. The 1990 TLD data (Section 3.1.2; Table 5 and Appendix A) showed no appreciable differences in direct radiation exposures between indicator and control locations. Excerpted liquid effluent data from the two Semiannual Radioactive Effluent Release Reports are listed in Table 6 along with the corresponding Discharge Line analytical data for those nuclides which were measured by the REMP during 1990. These nuclide activities were well below the NRC reporting levels, but are listed here for comparison to substantiate the adequacy of source control and effluent monitoring at River Bend Station.

TABLE 6

SUMMARY COMPARISON OF LIQUID EFFLUENT QUANTITIES/ACTIVITIES* AND REMP DISCHARGE LINE MONITORING RESULTS

Quantities Released	1st Otr. 1990	2nd Qtr. 1990	3rd Qtr. 1990	4th Qtr. 1990	Total 1990
Liters, effl.	2.93E+06	3.65E+06	5.22E+06	4.92E+06	1.67E+07
Liters, dil.	1.14E+09	1.51E+09	1.31E+09	1.08E+09	5.04E+09
H-3, Curies	4.31E+00	1.84E+01	4.01E+01	2.07E+01	8.35E+01
Cr-51, Curies	4.76E-02	8.09E-02	1.55E-01	8.21E-02	3.66E-01
Mn-54, Curies	1.34E-02	1.39E-02	1.09E-02	8.03E-03	4.62E-02
Co-58, Curies	9.76E-03	7.07E-03	3.97E-03	2.71E-03	2.35E-02
Fe-59, Curies	8.05E-03	4.50E-03	4.24E-03	3.18E-03	2.00E-02
CO-60, Curies	2.87E-02	3.01E-02	3.26E-02	2.21E-02	1.14E-01
Nb-95, Curies	3.36E-04	3.91E-04	1.39E-03	1.10E-03	3.22E-03
Zr-95, Curies	6.92E-05	1.69E-04	1.01E-03	7.77E-04	2.03E-03
Ba-140, Curies			1.96E-04	2.87E-04	2.42E-04

Measured Nuclide	Predicted 1st Qtr. 1990	(Extrapola 2nd Qtr. 1990	ted) Speci 3rd Qtr. 1990	fic Activi 4th Qtr. 1990	ties (pCi Mean 1990	/1) 1990 REMP Mean (Range) pCi/1		
H-3	3771	12516	30489	19080	16374	21156 (3575-60410) ^b 20452 (5705-35450) ^o		
Cr-51	41.6	53.4	118	75.7	72.2	68.5 (12.1-195)		
Mn-54	11.1	9.18	8.29	7,65	9.06	8.05 (1.19+24.8)		
Co-58	8.53	4.67	3.02	2.50	4.68	3.68 (1.01-10.7)		
Fe-59	7.04	2.97	3.22	2.93	4.04	4.70 (1.77-8.44)		
Co-60	25.1	19.9	24.8	20.4	22.6	19.4 (2.85-55.5)		
Nb-95	0.29	0.26	1.06	1.01	0.66	3,36 (2.56-4.16)		
Zr-95	0.06	0.11	0.77	0.72	0.42	1.03(single value)		
Ba-140			0.15	0.26	0.21	1.46(single value)		

Effluent quantities and nuclide activities excerpted from the two 1990 Semiannual Radioactive Effluent Release Reports already submitted.

b Results from monthly composites. C Results from quarterly composites.

APPENDIX A

Listings of 1990 REMP Results

The following tables list individual analytical results and direct measurements of radiation (TLD exposures) recorded by the Radiological Environmental Monitoring Program (REMP) during 1990. Activities measured for certain common and readily distinguished, naturally occurring nuclides are included to provide perspective. It should be noted that other gamma emitting, naturally occurring nuclides (e.g., primordial series) were often detected but are not listed because of the complexities and uncertainties of specific identifications.

RIVER BEND STATION
RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

Air Particulate Filter Gross Beta Activity (E-2 pCi/m3) - 1990

WEEK ENDING	ΑΛ1		DICATOR AR1	LOC TO	ONS AP1	AQS2	CONT ALC	ROL LOC	ATIONS AGS
01/08/90 01/15/90 01/22/90 01/29/90 02/05/90 02/12/90 02/26/90 03/05/90 03/12/90 03/12/90 03/19/90 03/26/90 04/02/90 04/09/90 04/16/90 04/23/90 04/30/90 05/14/90 05/21/90 05/21/90 05/21/90 06/04/90 06/14/90 06/18/90 07/02/90 07/02/90 07/02/90 07/03/90 07/16/90 07/23/90 07/30/90 08/20/90 08/20/90 08/20/90 09/17/90 09/17/90 09/17/90 09/17/90 09/17/90 09/17/90 10/08/90 10/08/90 10/15/90 11/12/90	2.19 2.90 1.47 1.85 1.42 1.76 1.83 1.42 1.76 1.62 1.70 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.9	1.89 2.86 1.73 1.00 1.943 1.884 1.88	1.79 1.79 1.41 1.82 1.85 1.90 1.88 1.85 1.90 1.88 1.85	1.81 2.57 1.47 1.2.57 1.47 1.2.16 1.33 1.42 1.33 1.42 1.33 1.42 1.33 1.43 1.43 1.43 1.43 1.43 1.43 1.43	2.08 2.78 1.70 4.66 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1	1.96 1.478 1.893 1.770 1.816 1.977 1.65 1.400 1.400 1.400 1.424 1.400 1.	2.02 1.77 1.56 1.59 2.18 1.31	1.87 3.24 1.69 1.82 1.76 1.79 1.92 1.83 1.79 1.92 1.88 1.89 2.38 1.89 2.38 1.89 2.38 1.77 2.57 4.00 2.55 4.00 2.55 4.00 2.68 2.77 2.88 2.88 2.88 2.88 2.88 2.88 2.8	1.68 2.489 1.649 1.649 1.699 2.083 1.290 1.290 2.185 1.290 1.290 2.185 2.218 1.210 2.210 2.218 1.210 2.00 2.0

NOTE: Activities shown are values actually measured; * denotes that samples not available at location AKS due to prolonged power outage.

Air Particulate Filter Beryllium-7 Activity (E-2 pCi/m3) by Location - 1990

WEEK ENDING	_AA1AB1	INDICATOR AP1	LOCATIO	NS AP1	AQS2	CONT	ROL LOC	
01/08/90 01/15/90 01/22/90 01/22/90 02/05/90 02/12/90 02/26/90 03/05/90 03/12/90 03/12/90 03/19/90 03/26/90 04/02/90 04/02/90 04/09/90 04/30/90 05/07/90 05/21/90 05/21/90 05/21/90 06/14/90 06/14/90 06/14/90 06/14/90 07/02/90 07/02/90 07/02/90 07/02/90 07/02/90 07/16/90 07/23/90 07/30/90 08/06/90 08/13/90 08/27/90 09/16/90 09/17/90 09/17/90 09/17/90 09/17/90 09/17/90	18.90 12.90 9.10 16.80 9.66 13.50 12.30 13.50 15.76 14.40 14.10 12.80 12.30 10.50 16.00 10.50 16.00 10.50 16.00 11.50 9.90 11.50 9.90 11.70 9.09 12.90 16.20 11.50 12.80 13.00 11.60 13.80 18.30 11.50 12.60 13.00 11.60 13.80 18.30 11.50 12.60 13.00 11.60 13.80 18.30 11.50 12.60 13.00 11.60 13.80 18.30 11.50 12.50 11.50 12.50 11.50 12.50 11.50 12.50 11.50 12.50 11.50 12.50 11.30 14.80 9.12 10.20 11.30 14.80 9.76 16.90 7.65 17.20 10.00 11.30 14.80 8.63 11.70 18.30 12.70 18.30 12.70 18.30 12.70 11.60 12.80 15.20 12.50 11.60 12.80 15.20 12.50 11.60 12.80	13.10 11.00 9.23 7.95 11.60 11.50 11.50 17.90 24.90 13.70 11.60 12.20 13.20 16.10 11.60 12.20 13.20 16.10 11.60 12.20 11.60 11.60 11.60 12.20 11.60 11	16.50 1 12.60 1 11.30 1 11.30 1 15.50 1 17.20 1 121.00 1 13.20 1 10.80 1 11.10 1 12.10 1 12.10 1 13.20 1 11.10 1 12.10 1 13.20 1 11.10 1 11.20 1 11.10 1 11.20 1 11.10 1 11.20 1 11.10 1 11.20 1 11.10 1 11.20 1 11.20 1 11.20 1 11.20 1 11.20 1 12.70 1 13.20 1 15.70 1 15.70 1 16.50 1 17.70 1 18.34 8 19.70 1 18.34 8 19.76 6 19.70 1 18.34 8 19.70 1 18.34 8 19.70 1 18.34 8 19.70 1 18.34 8 19.70 1 18.34 8 19.70 1 18.34 8 19.70 1 18.34 8 19.70 1 18.30	1.30 1 7.51 1.20 1 1.30 1	11.70 9.11 8.50 12.50 8.50 7.62 12.10 13.80 10.00	7.04 11.00 11.20 8.26 13.90 15.20 14.40 10.10 9.51 6.64 13.90 11.10 6.60 13.50 6.64 13.50 6.64 13.50 10.50 10.50 10.60 8.48 9.72 11.90 14.40 10.70 9.72 14.10 10.70 9.72 14.10 10.90 11.90	12.90 14.40 11.20 13.10 9.29 12.30 11.10 12.40 11.20 18.60 19.20 8.02 14.70 16.90 7.58 15.50 7.92 17.00 9.72 10.60 8.97 10.40	10.20 7.75 11.30 8.29 12.50 12.70 6.56 13.90 11.60 15.70 11.70 14.70 8.03 9.71 17.80 16.90 15.30 8.42 10.90 10.10 7.67 8.52 10.90 10.10 7.12 10.10 8.50 10.10 7.12 10.10 11.50 9.21 10.30 11.50
12/26/90 01/02/91	14,90 11,50 11,60				7.36 6.36	7.47	9.95	9.44

NOTE: Activities shown are values actually measured; * denotes that samples not available at location AKS due to prolonged power outage.

Air Particulate Filter Cesium-134 Activity (E-2 pCi/m3) by Location - 1990

WEEK ENDING	_AA1_	AB1	IND	CATOR LO	CATION AP1	_AQS2	CONTR ALC	OL LOCA	TION AGS
	AA1 <2.59 <1.77 <1.85 <1.48 <1.77 <1.63 <1.77 <1.63 <1.77 <1.63 <1.77 <1.63 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.66 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.7	AB1 <1.93 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.69 <1.67 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <1.69 <				A082 <1.66 <1.44 <1.31 <1.61 <1.62 <1.77 <1.55 <0.98 <1.32 <1.43 <1.43 <1.43 <1.43 <1.43 <1.44 <1.43 <1.44 <1.43 <1.44 <1.43 <1.44 <1.44 <1.44 <1.44 <1.44 <1.44 <1.44 <1.44 <1.44 <1.44 <1.48 <1.44 <1.46 <1.47 <1.46 <1.47 <1.46 <1.47 <1.46 <1.47 <1.46 <1.47 <1.46 <1.47 <1.46 <1.47 <1.46 <1.47 <1.46 <1.47 <1.46 <1.47 <1.46 <1.47 <1.46 <1.47 <1.46 <1.47 <1.46 <1.47 <1.46 <1.47 <1.48 <1.47 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <1.48 <			
12/03/90 12/10/90 12/17/90 12/26/90 01/02/91	<1.89 <1.56 <1.55 <1.71 <1.83	<2.14 <1,71 <1.92 <1.24 <1.59	<1.89 <1.46 <1.59 <1.79 <1.77	* * * <1.59 <1.68	<1.60 <1.67 <1.46 <0.95 <1.56	<1.78 <1.41 <1.49 <1.22 <1.49	<2,70 <1.69 <1.88 <1.20 <1.48	<2.50 <1.30 <1.75 <1.44 <1.66	<2.55 <1.55 <1.49 <1.25 <1.74

NOTE: Activities indicated are minimum detectable activities (MDAs) under the particular conditions of analyses (i.e., Cs-134 may or may not have been present, but if so, there cannot have been more than the amounts shown), or they are values actually measured; * denotes that samples were not available at location AKS due to prolonged power outage.

Air Particulate Filter Cesium-137 Activity (E-2 pCi/m3) by Location - 1990

NOTE: Activities indicated are minimum detectible activities (MDAs) under the particular conditions of analyses (i.e., Cs-137 may or may not have been present, but if so, there cannot have been more than the amounts shown), or they are values actually measured: * denotes that samples were not available at location AKS due to prolonged power outage.

Charcoal Cartridge Potassium-40 Activity (E-2 pCi/m3) by Location - 1990

WEEK ENDING	_AA1_			LOCATIO AKS		AQS2	CONTROL LOCATION	
01/08/90 01/15/90 01/22/90 01/29/90 02/05/90 02/12/90 02/26/90 03/05/90 03/12/90 03/12/90 03/19/90 03/26/90 04/02/90 04/09/90 04/16/90 04/23/90 05/07/90 05/14/90 05/21/90 05/21/90 06/11/90 06/11/90 06/18/90 07/02/90 07/02/90 07/02/90 07/02/90 07/03/90 08/06/90 08/13/90 08/27/90 09/11/90 09/17/90 09/17/90 09/17/90 09/17/90 10/08/90 10/01/90 10/01/90 10/01/90 10/01/90 11/01/90	66.20 89.70 59.60 41.50 73.39 64.40 60.30 52.30 58.00 69.40 57.30 63.10 63.10 63.10 63.10 63.10 63.80 62.50 102.00 74.80 70.20 54.90 66.90 69.50 83.20 80.60 73.20 83.40 93.30 73.50 83.40 93.30 73.50 84.40 65.60 65.60 65.60 65.60 65.60 65.60 66.60 67.30 6	66.80 57.70 66.50 58.80 81.10 56.40 50.50 67.80 37.80 67.30 54.00 65.80 77.00 55.80 72.90 54.40 60.50 44.80 92.20 62.70 73.50 70.30 84.70 97.40 69.40 60.00 66.50 40.00 66.50 40.00 66.50 40.00 67.80 67	62.60 59.00 47.30 56.40 51.70 68.90 48.60 52.90 23.30 51.00 38.30 55.80 55.80 55.80 56.70 73.90 80.20 76.00 82.30 98.90 73.00 64.60 67.20 67.30 67.20 67	82.60 82.10 63.20 65.10 56.50 39.90 60.10 227.00 42.20 49.30 31.00 75.70 52.10 41.20 50.50 47.10 40.80 67.40 59.80 70.00 66.60 89.20 97.30 82.60 67.40 71.60 74.90 71.60 76.30 72.50 89.80 73.70 83.30 62.00 63.00 39.90 99.20 64.80 99.20 64.80 99.20 65.40 40.80 67.40 71.60 72.50 89.80 73.70 89.80 73.70 89.80 73.70 89.80 73.70 89.80 73.70 89.80 73.70 89.80 73.70 89.80 73.70 89.80 73.70 89.80 73.70 89.80 73.70 89.80 73.70 89.80 73.70 89.80 73.70 89.20 64.80 99.20 64.80 99.20 64.80 99.20 64.80 99.20 64.80 99.30 82.60 63.00 64.80 99.30 84.80 85.40 86.40 87.40	41.20 44.50 50.00 57.90 49.30 43.50 53.10 32.70 61.10 49.50 37.90 67.10 56.00 23.80 39.50 45.20 37.60 72.60 66.60 70.10 56.50 89.20 66.30 53.00 66.10 55.70 53.60 53.00 67.70 53.50 48.00 48.00 48.00 48.00 48.00 46.80 29.20 40.00 30.70 30	56.40 41.60 54.60 45.30 40.90 50.70 37.20 58.30 40.40 66.20 58.20 53.70 45.20 53.10 57.40 79.00 58.30 69.90 58.30 69.90 58.30 69.90 60.80 60.30 41.60 43.80 60.30 40.40 60.30 40.40 60.30 40.40 60.30 40.40 60.30 40.40 60.30 40.40 60.30 40.40 60.30 40.40 60.30 60	58.10 47.90 39. 42.50 36.30 49. 53.10 75.50 46. 38.40 43.10 54. 54.40 54.80 47. 46.90 38.20 45. 35.20 65.50 47. 42.00 36.10 59. 39.90 50.50 48. 57.50 62.10 70. 54.10 52.80 70. 61.30 54.50 65. 68.30 63.10 54. 65.90 85.80 79. 70.10 45.80 59. 72.40 49.90 64. 57.70 51.40 59. 58.00 44.30 81. 81.90 51.90 51. 67.10 54.40 64. 50.80 \$9. 85.40 58.80 57. 68.60 46.70 56. 52.30 57.40 67. 73.00 55.20 47. 46.50 30.20 74. 49.80 72.10 62. 54.80 57.10 62. 53.10 44.80 59. 65.40 58.80 59. 65.40 55.20 47. 66.00 76.20 33. 51.70 43.70 29. 28.10 53.30 38. 36.50 33.30 50.	80 80 70 80 40 50

NOTE: Activities shown are values actually measured; * denotes that samples were not available at location AKS due to prolonged power outage.

Charcoal Cartridge Iodine-131 Activity (E-2 pCi/m3) + 1990

WEEK ENDING	_AA1_	_AB1_	IND.	CATOR LO	CATION AP1	AQS2	CONTI	ROL LOCA'	TION AGS
ENDING 01/08/90 01/15/90 01/22/90 01/29/90 02/05/90 02/12/90 02/26/90 03/05/90 03/15/90 03/15/90 04/62/90 04/09/90 04/16/90 05/21/90 05/21/90 05/21/90 05/21/90 05/21/90 05/21/90 05/21/90 05/21/90 06/11/90 06/11/90 06/11/90 07/02/90 07/02/90 07/02/90 07/03/90 07/03/90 07/03/90 07/03/90 07/03/90 07/03/90 07/03/90 07/03/90 07/16/90 07/16/90 07/16/90 07/16/90 07/16/90 07/16/90 07/16/90 07/16/90 07/16/90 07/16/90 07/16/90 07/16/90 07/16/90 07/16/90 07/16/90 07/16/90 08/20/90 08/20/90 09/17/90 09/17/90 09/17/90 09/17/90 10/08/90 10/15/90 10/22/90	<2.99 <2.24 <1.86 <1.96 <1.79 <2.23 <1.62 <1.87 <1.62 <1.88 <1.89 <1.88 <1.89 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80 <1.80	<pre><2.09 <1.82 <1.79 <1.42 <1.62 <1.70 <1.62 <1.62 <1.61 <1.70 <1.62 <1.63 <1.76 <1.64 <1.67 <1.77 <1.86 <1.77 <1.86 <1.77 <1.86 <1.77 <1.86 <1.77 <1.87 <1.87 <1.88 <1.73 <1.88 <</pre>	AR1 <2.04 <1.87 <1.82 <1.78 <2.00 <1.92 <1.48 <2.15 <1.76 <1.83 <1.86 <1.76 <1.82 <1.66 <1.76 <1.83 <1.86 <1.76 <1.92 <1.86 <1.76 <1.92 <1.86 <1.76 <1.92 <1.86 <1.76 <1.92 <1.64 <1.92 <1.64 <1.92 <1.64 <1.53 <1.53 <1.56 <1.56	AKS_ <2.55 <1.96 <2.32 <1.99 <1.75 <2.19 <2.884 <1.97 <1.87 <1.87 <1.64 <1.73 <1.88 <1.79 <1.64 <1.79 <1.64 <1.79 <1.64 <1.79 <1.64 <1.79 <1.65 <1.79 <1.66 <1.79 <1.66 <1.79 <1.66 <1.79 <1.66 <1.79 <1.66 <1.79 <1.66 <1.79 <1.66 <1.79 <1.66 <1.79 <1.66 <1.79 <1.66 <1.79 <1.66 <1.79 <1.66 <1.79 <1.66 <1.79 <1.66 <1.79 <1.66 <1.79 <1.66 <1.79 <1.66 <1.79 <1.66 <1.79 <1.66 <1.79 <1.66	AP1 <1.83 <1.44 <1.85 <1.34 <1.58 <1.51 <1.66 <1.73 <1.66 <1.73 <1.66 <1.73 <1.66 <1.73 <1.66 <1.73 <1.66 <1.73 <1.66 <1.73 <1.66 <1.73 <1.66 <1.73 <1.66 <1.73 <1.66 <1.73 <1.66 <1.73 <1.66 <1.73 <1.66 <1.73 <1.66 <1.73 <1.66 <1.73 <1.66 <1.73 <1.66 <1.73 <1.66 <1.73 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <1.67 <	<1.96 <1.529 <1.75 <1.68 <1.75 <1.68 <1.75 <1.65 <1.64 <1.64 <1.64 <1.64 <1.67 <1.64 <1.72 <1.73 <1.73 <1.73 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75	**ALC** *1.88 *1.33 *1.71 *1.38 *1.26 *1.94 *1.60 *1.50 *1.50 *1.50 *1.50 *1.58 *1.47 *1.58 *1.48 *1.49 *1.58 *1.48 *1.49 *1.59 *1.59 *1.59 *1.59 *1.59 *1.59 *1.59 *1.59 *1.59 *1.59 *1.59 *1.59 *1.59 *1.59 *1.59 *1.59 *1.59 *1.59 *1.50 *1.50 *1.62 *1.70 *1.50	AHS <2.04 <1.69 <1.69 <1.62 <1.69 <1.62 <1.69 <1.62 <1.69 <1.76 <1.48 <1.69 <1.55 <1.42 <1.60 <1.48 <1.44 <1.72 <1.60 <1.48 <1.45 <1.45 <1.45 <1.45 <1.45 <1.45 <1.45 <1.55 <1.60 <1.55 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <1.60 <	405 <2.12 <1.82 <1.89 <1.77 <1.77 <1.77 <1.77 <1.77 <1.77 <1.70 <1.77 <1.76 <1.77 <1.76 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.75 <1.7
10/22/90 10/29/90 11/05/90 11/12/90 11/19/90 11/27/90 12/03/90 12/10/90 12/17/90 12/26/90 01/02/91	<1.08 <1.24 <1.14 <1.50 <1.65 <1.58 <2.33 <1.76 <1.58 <1.58 <1.69	<1.83 <1.90 <1.85 <1.79 <1.80 <1.69 <2.24 <1.58 <1.83 <1.59	<1.56 <1.65 <1.59 <1.71 <1.80 <1.85 <2.25 <1.76 <1.70 <1.19 <1.72	<1.64 <1.76 <1.69 <1.61 <2.90 * * * * * *1.97 <1.75	<1.36 <1.44 <1.37 <1.15 <1.58 <1.39 <1.89 <1.35 <1.66 <1.13 <1.40	<1.54 <1.56 <1.69 <1.50 <1.60 <1.44 <1.91 <1.67 <1.43 <1.13 <1.42	<1.71 <1.70 <1.28 <2.06 <1.49 <1.35 <3.41 <1.93 <1.88 <1.65 <1.94	<1.63 <1.62 <1.51 <1.37 <1.75 <1.20 <3.10 <1.75 <2.02 <1.37 <1.74	<1.18 <1.17 <1.38 <1.70 <1.72 <1.08 <3.53 <1.66 <2.00 <1.24 <1.63

NOTE: Activities shown are values actually measured, whereas those indicated as "(" are minimum detectable activities (MDAs) under the particular conditions of analysis) of nuclides for which analyses are required by RBS Technical Specifications (that is, I-i31 may or may not have been present, but if so, there (annot have been more present than the amounts noted); * denotes that samples were not available at location AKS due to prolonged power outage.

Charcoal Cartridge Cesium-137 Activity (E-2 pCi/m3) by Location - 1990

WEEK ENDING	AA1 AB1	INDICATOR AR1	LOCATIONS AKS AP1	AQS2	CONTROL LOCATIONS ALC ARS AGS
01/08/90 01/15/90 01/22/90 01/29/90 02/05/90 02/12/90 02/26/90 03/05/90 03/12/90 03/12/90 03/12/90 03/12/90 04/02/90 04/02/90 04/09/90 04/16/90 04/23/90 05/07/90 05/07/90 05/14/90 05/21/90 05/29/90 06/04/90 06/11/90 06/18/90 07/02/90 07/02/90 07/03/90 07/03/90 07/30/90 08/06/90 08/06/90 08/13/90			1.33		
08/20/90 08/27/90 09/04/90 09/10/90 09/17/90 09/17/90 10/01/90 10/08/90 10/15/90 10/22/90 11/05/90 11/12/90 11/12/90 11/19/90 12/10/90 12/17/90 12/26/90 01/02/91	1.01	•,		0,90	1.31

NOTE: Activities shown are values actually measured; * denotes that samples were not available at location AKS due to prolonged power outage.

Normalized Gamma-Ray Exposure Summary (mR) Quarterly Thermoluminescence Dosimeter Results for 1990

INDICATOR STATION	1ST QIR	2ND QTR	3RD QTR	4TH QTR
TA1 TA2 TB1 TB2 TC1 TC2 TCS TD1 TD2 TE1 TE2 TF1 TF2 TG1 TG2 TH1 TH2 TJ1 TJ2 TK1 TK2 TK1	11.24 12.55 11.78 11.71 12.08 6.55 10.21 11.82 11.68 11.65 10.55 10.67 11.55 12.29 10.81 9.53 11.01 10.91 9.88 10.74 12.15 10.44 10.84 9.95 11.25 9.29 13.85 11.55 9.68 12.46 10.91 10.77 10.91 10.77 10.01 11.98 10.77 10.91 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.84 10.85 11.25 1	13.42 14.41 12.73 15.10 13.32 11.11 10.75 14.51 11.94 12.04 10.85 12.83 13.52 13.03 11.84 10.45 12.14 11.15 11.40 12.53 13.72 11.34 13.42 10.85 14.41 10.95 13.52 13.52 13.52 13.52 13.52 13.52 13.62	15.97 15.39 13.76 17.37 13.91 13.23 12.22 14.00 13.61 14.90 11.83 14.50 14.50 16.68 14.10 11.83 13.20 13.61 14.30 12.47 14.30 11.73 13.91 11.73 13.91 11.73 15.49 14.50 12.47 14.30 11.73 15.49 14.50 12.47 14.30 11.73 15.49 14.50 12.64 9.70 13.61 13.42 15.18 12.64 9.70 13.61 14.20	12.56 14.13 13.44 13.93 12.95 11.68 10.41 13.15 11.78 12.37 9.53 12.76 13.74 15.50 12.88 11.00 10.37 11.49 10.26 11.49 13.25 10.85 12.46 10.60 13.20 10.16 15.10 12.17 10.21 12.95 12.46 12.95 10.60 13.17 10.07 9.01 15.69 14.14
COMTROL STATION				
TAC TEC TGS THS TLC TQS3	12.58 11.48 11.21 13.45 10.31 11.51	12.81 12.53 12.83 14.01 10.75 12.01	14.50 15.49 14.50 15.98 11.63 14.79	13.85 12.69 13.37 14.33 11.33

Normalized Gamma-Ray Exposure Summary (mR)
Monthly Thermoluminescence Dosimeter Results for 1990

INDI- CATOR STATION	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
TA1 TA2 TB1 TB2 TC1 TC2 TCS TD1 TC2 TCS TD1 TD2 TE1 TE2 TF1 TF2 TG1 TG2 TH1 TH2 TJ1 TK1 TK2 TK1 TL2 TK1 TK2 TK1	3.87 4.63 4.28 4.28 4.39 3.32 4.57 3.84 4.07 4.01 3.86 4.22 4.64 4.46 3.57 3.89 3.60 3.96 4.31 3.77 4.21 3.48 4.65 3.96 4.54 3.65 4.21 4.66 3.52 3.65 4.21 4.08 4.21 4.66 3.52 3.63 4.22	3.71 4.73 4.25 4.23 4.20 3.73 3.80 3.73 3.68 3.95 3.95 3.95 3.95 3.95 3.95 3.95 3.95	3.85 4.02 4.17 4.05 4.23 3.08 3.26 3.83 3.47 3.77 3.14 3.61 4.26 3.89 3.77 3.35 3.52 3.65 3.24 3.67 2.83 4.00 3.11 4.40 4.11 3.00 3.67 3.80 3.47 3.80 3.47 3.80 3.47 3.80 3.47	3.71 3.99 3.85 4.31 3.92 3.45 3.34 3.71 3.88 3.50 3.13 3.81 4.20 4.43 3.88 3.09 3.24 3.61 3.24 3.40 3.99 3.81 4.12 3.03 3.99 3.30 4.10 3.61 3.67 3.67 3.67 3.67 3.35 3.88	3.84 3.94 4.03 3.80 3.26 3.65 4.00 3.65 3.80 3.67 3.80 3.60 3.60 3.60 3.55 3.50 3.50 3.50 3.50 3.50 3.50 3.5	4.78 4.78 4.67 5.06 4.78 3.72 3.56 5.34 4.88 4.78 4.66 3.75 4.69 3.56 4.68 4.13 4.66 3.56 4.68 4.13 4.66 3.56 4.69 3.56 4.69 3.56 4.69 3.56 4.69 3.56 4.69 3.56 4.69 3.56 4.78 4.66 3.75 4.69 4.66 3.75 4.69 3.75 4.69 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78	4.65 4.29 4.02 4.77 5.06 5.06 4.69 4.02 4.97 4.58 4.03 4.67 3.71 4.67 3.61 5.06 4.48 4.76 4.36 4.36 4.46 4.76 4.36 4.44	5.26 4.23 3.68 4.75	4.50	5.17 5.76 5.48 5.26 5.38 4.56 5.38 4.76 5.46 5.46 5.46 6.56 4.77 5.46 6.36 4.76 5.46 6.37 6.36 6.37	5.01 5.27 4.83 4.82 4.92 3.91 3.73 5.09 4.92 3.91 4.66 5.18 4.92 4.06 4.09 4.41 3.42 4.21 4.25 5.28 3.93 4.63 4.74 4.74 4.74 4.73	4.21 4.36 4.64 3.93 4.32 3.52 4.32 3.52 4.00 3.21 4.55 4.00 3.83 3.44 3.46 3.46 3.46 3.46 3.46 3.72 4.55 4.62 2.39 4.62 2.39 3.73 3.73 3.78 4.29 2.59 3.37 3.67
CONTROL STATION												
TAC TEC TGS THS TLC TQS3	4.18 4.22 4.87 4.54 3.68 4.14	4.23		3.35 3.88 4.20 3.24	4.06	4.88 4.55 5.30 4.23	4.75 4.66 4.76 4.00	4.49 4.74 5.36 4.09	4.83 4.72 4.94 3.72	5.36 5.54 5.25 3.99	4.36 5.00 5.37 4.15	3.87 4.07 4.87 3.57

Gross Beta Activitics (pCi/liter) in Water Samples - 1990

	1	NDICATOR	LOCATIONS		CON	TROL LOCA	TIONS
SAMPLING PERIOD	SWD	DH	DL	WD	SWU	WU	BLANK ¹
JAN FEB MAR APR MAY JUN JUL AUG SEP GCT	8.46 6.02 5.95 6.64 13.73 12.07 17.05 10.13 10.11 11.08	6.17 6.06 4.83 8.17 11.78 12.44 13.02 14.36 11.21	35.64 20.69 35.34 41.20 67.42 49.09 49.16 34.00 38.09 49.97	<2.46 5.73 4.83 5.36	10.80 5.00 5.95 6.87 13.70 11.11 14.32 11.08 9.63 13.57	<2.42 6.89 5.95 5.25	<2.22 <2.14 3.63 <2.06 4.78 4.24 3.54 4.07 4.46 4.78
NOV DEC	9,66 3,36	10.55	34.32 29.77	3.02	9.08 5.90	<2.80	4,94 <2,22

NOTE: Distilled, desonized well water (laboratory reagent water).

Samples from SWD, DW, and SWU are composites of weekly grabs; samples from DL are composites of hourly grabs, samples from WD and WU are quarterly grabs.

Activities shown are values actually measured, whereas those indicated as "(" are minimum detectable activities (MDAs) under the particular conditions of analysis (that is, gross beta activity may or may not have been present, but if so, there cannot have been more present than the amounts listed).

Tritium Activities (pCi/liter) in Monthly Water Samples - 1990

ONS	LOCATIONS		SAMPLING	
MD	DL	<u>DW</u>		PERIOD
3 <173	4243	<17.6	JAN <175	JAN
1 <174	3981	<178	FEB <178	FEB
0 <176	7900	<184	MAR <178	MAR
7 <181	5597	<182	APR <181	APR
7 <198	10617	<198	MAY <198	MAY
0 <170	17300	<170	JUN <170	JUN
8 <207	21008	<210	JUL <209	JUL
6 <190	28884	×188	AUG <188	AUG
0 <191	60410	<193	SEP <191	SEP
8 <186	50728	<187	OCT <187	OCT
6 <189	39626	<183	NOV <188	NOV
5 <184	3575	<184	DEC <184	DEC
7 <198 0 <170 8 <207 6 <190 0 <191 8 <186 6 <189	10617 17300 21008 28884 60410 50728 39626	<198 <170 <210 <188 <193 <187 <183	MAY <198 JUN <170 JUL <209 AUG <188 SEP <191 OCT <187 NOV <188	MAY JUN JUL AUG SEP OCT NOV

Tritium Activities (pCi/liter) in Quarterly Water Samples - 1990

SAMPLING PERIOD	IN	DICATOR	LOCATION	3	CONTROL LOCATIONS			
	SWD	DW	DL	WD	SWU	WU	BLANK ¹	
QTR1 QTR2 QTR3 QTR4	<180 <205 <192 <179	<180 <203 <192 <180	5705 10294 35450 30360	<176 <170 <191 <184	<188 <205 <194 <180	<179 <170 <189 <184	<179 <207 <186 <177	

NOTE: IDistilled, deionized well water (laboratory reagent water).

Samples from SWD, DW, and SWU are composites of weekly grabs; samples from DL are composites of hourly grabs; samples from WD and MU are monthly grabs (none obtained at WU in April; the license requirement for sampling is quarterly).

Activities shown are values actually measured, whereas those indicated as "c" are minimum detectable activities (MDAs) under the particular conditions of analysis (that is, tritium may or may not have been present, but if so, there cannot have been more present than the amounts listed).

Gamma-Emitting Nuclide Activity (pCi/liter) in Vater by Location - 1990

BERYLLIUM-7

		INDICATOR	CONTROL LOCATIONS			
PERIOD .	SWD	DE	DL.	<u>KD</u>	SWU	WU
DEC				14.90		

POTASSIUM-40

Service Control Control	INDICATO	ete autolia meninententela	CONTROL LOCATIONS		
SWD	DW	DL.	MD	SWU	WU
15.50	15.00	28.30		11.00	
19.10 15.00	22.10 12.00	17.50 31.30		12.10 18.90	12.50
18.10 15.00	13.80	27.00 33.30	9.27	20.00 17.50	18.40
14.70 12.80	10.30 19.10	36.40 30.80	1.70	17.90 18.20	18.00
19.20 13.90	17.50 13.30	23.10 33.00		19.90 12.00	13.30
	15.50 19.10 15.00 13.20 18.10 15.00 14.70 12.80 19.20	SWD DW 15.50 15.00 19.10 22.10 15.00 12.00 13.20 18.10 13.80 15.00 18.40 14.70 10.30 12.80 19.10 19.20 17.50	SWD DW DL 15.50 15.00 28.30 16.60 16.60 19.10 22.10 17.50 15.00 12.00 31.30 13.20 24.10 18.10 13.80 27.00 15.00 18.40 33.30 14.70 10.30 36.40 12.80 19.10 30.80 26.00 23.10	15.50	SWD DW DL WD SWU 15.50 15.00 28.30 11.00 19.10 22.10 17.50 12.10 15.00 12.00 31.30 18.90 13.20 24.10 15.20 18.10 13.80 27.00 9.27 20.00 15.00 18.40 33.30 17.50 14.70 10.30 36.40 1.70 17.90 12.80 19.10 30.80 18.20 19.20 17.50 23.10 19.90

CHROMIUM-51

		INDICATO	CONTROL LOCATIONS			
PFRIOD	SWD	DW	DL	MD	SWU	WU
JAN FEB MAR APR MAY JUN TUL AUG SEP CT NOV DEC			23,20 24,00 70,00 13,10 60,40 44,80 63,10 62,70 185,00 195,48 12,10			

NOTE: Activities shown are values actually measured, whereas those indicated as "(" are minimum detectable activities under the particular conditions of analysis of nuclides for which analyses are required by RBS Technical Specifications (that is, the nuclides may or may not have been present, but if so, there cannot have been more present than the amounts listed)

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

Gamma-Emitting Nuclide Activity (pCi/liter) in Water by Location -1990

MANGANESE-54

		6174	HC-AGARADE			
		INDICATOR	LOCATIONS		CONTROL LO	CATIONS
PERIOD	SWD	DW	DL	WD	SWU	WU
JAN FEB MAR APR JUN JUL AUG SEP OCT NOV DEC	<1.81 <2.28 <1.73 <1.862 <1.78 <1.660 <1.75 <2.40 <1.72 <1.71	<1.78 <2.43 <1.81 <1.69 <1.72 <1.72 <1.74 <1.72 <1.79 <0.95	6.60 4.250 13.880 24.802 4.991 11.675 1.19	<2.34 <1.65 <1.61	<1.71 <2.12 <1.74 <1.56 <1.82 <1.74 <1.71 <1.71 <1.61 <0.82 <1.81 <0.91	<2.17 <1.76 <1.76
			COBALT-58			
		INDICATOR	CONTROL LO	CATIONS		
PERIOD	SWD	DW	DL	WD	SWU	WU
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	<1.98 <2.37 <1.654 <1.83 <1.95 <1.85 <1.75 <1.865 <1.753 <2.655 <1.915	<2.03 <2.34 <1.870 <1.72 <1.91 <1.98 <1.96 <2.06 <1.93 <1.97 <1.22	1.01 1.74 10.753 9.587 1.957 1.957 1.873 <1.98	<2.12 <1.52 <1.98	<1.96 <2.44 <1.95 <1.72 <1.98 <1.89 <2.16 <1.95 <2.16 <1.95 <2.02 <0.96 <2.18 <1.20	<2.13 <1.79 <2.08 <1.96
			IRON-59			
		INDICATO	R LOCATIONS	3	CONTROL L	OCATIONS
PERIOD	SWD	DW	DL	WD	SWU	WU
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	<3.91 <5.62 <4.29 <4.23 <4.76 <4.28 <6.62 <4.28	<3.97 <5.88 <4.43 <4.37 <4.02 <5.04 <4.78 <4.47 <4.40 <3.35	<5.01 <7.285244 6.5456 <4.5450773 <4.5454	<3.93 <3.43 <3.91 <4.81	<4.07 <6.10 <4,46 <3.89 <5.18 <4.41 <4.68 <4.69 <4.45 <1.98 <4.67 <3.17	<4.12 <3.55 <4.80 <5.14

NOTE: Activities shown are values actually measured, whereas those indicated as "<" are minimum detectable activities (MDAs) under the particular conditions of analysis of nuclides for which analyses are required by RBS Technical Specifications (that is, the nuclides may or may not have been present, but if so, there cannot have been more present than the amounts listed).

RADIOLUGICAL ENVIRONMENTAL MONITORING PROGRAM

Gamma-Exitting Nuclide Activity (pGi/liter) in Water by Location -1990

COBALT-60

			OBALI-60			
		INDICATOR	LOCATIONS		CONTROL LO	CATIONS
PERIOD	SWD	DW	DL	WD	SWU	VU
JAN FEB MAR	\$1.89 \$1.80 \$1.80	\$2:94 \$1:68	19:57	<2.57	<2.00 \$2.02 \$1.76	<2.84
MAX JUN JUL	<1.82 <1.93 <1.83	<1.71 <1.93 <1.83	55.50 6.14 9.01	<1.76	<1.91 <2.04 <1.81	<1.84
AUG SEP OCT	<1.76 <1.76 <2.70	×1.75 ×1.99 ×1.64	11:50	<1.87	<1,89 <0.88 <1,94	<2.49
DEC	<1.76	₹1.65 ₹1.77 ₹0.99	2.85	<1.71	<0.61	<1.83
			Z1NC-65			
		INDICATOR	CONTROL L	OCATIONS		
PERIOD	SWD	DW	DL	WD	SWU	WU
JAN PEB M'	<4.12 <5.53 <1.78 <3.84	<4.09 <5.24 <4.09 <3.63	×4.31 ×5.22 ×7.90 ×4.53	<4.99	<4.13 <4.85 <3.94 <3.53	<5.23
	<3.63 <3.74	<3.63 <3.55	<5.98 <4.09 <4.01	<3.57	\$3.67 \$4.40	<3.62
SEL OCT NOV	×3,40 ×3,48 ×5,46	<4.08 <4.08 <3.47	<4.33 <4.55 <5.42	<3.52	<3,96 <3,74 <2,03 <3	<4.15
DEC	₹3.75	<3.83 <2.16	<3.82	<3.86	<1.92	<3.96
			NIOBIUM-95			
		INDICATO	R LOCATION	S	CONTROL	LOCATIONS
PERIOD	SEN	DW	DL	WD	SVU	<u>WU</u>
JAN FEB MAR APR	<2.31 <3.39 <2.27 <2.08	¥2.39 ¥3.57 ¥2.33	<2.43 <3.46 <3.52 <2.13	<2.51	<2.31 <3.49 <2.59 <2.04	<2.15
MAY JUN	<2.31 <2.22	<2.54 <2.28	\$3.52 \$2.29	<1.75	<2.81 <2.39	⊀1,91
SEA SEA TOT	<2.51 <2.15 <2.15 <2.27	<2.70 <2.49 <2.54 <2.51	<2.77 <2.85 2.56 4.16	<2.49	<2.62 <2.22 <2.44 <1.12	<2.47
NOV DEC	<2.81 <2.59	<2.68 <2.09	<3.02 <2.49	<3.10	<2.57 <1.91	<2.77

NOTE: Activities shown are values actually measured, whereas those indicated as "(" are minimum detectable activities (MDAs) under the particular conditions of analysis of nuclides for which analyses are required by RDS Technical Specifications (that is, the nuclides may or may not have been present, but if so, there cannot have been more present than the amounts listed).

Gamma-Emitting Nuclide Activity (pCi/liter) in Water by Location -1990

ZIRCONIUM-95

		6.1	MODINI CIR-AD			
		INDICATOR	LOCATIONS		CONTROL L	OCATIONS
PERIOD	SWD	<u>DW</u>	DL	WD	SWU	WU
JAN FEB MAR APR JUN JUL AUG SEP OCT NOV DEC	<pre></pre>	74805516486333 VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	<3.66 <5.47 <4.98 <43.683 <44.038 <41.038 <41.038 <43.45	<3.37 <2.95 <3.47		<3,44 <3,18 <3,61
			ODINE-131			. comes com
	-		LOCATION			LOCATIONS
PERIOD	SWD	DW	DL.	WD	SWU	<u>VU</u>
JAN PEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	<pre><2.17 <23.97 <41.854 <11.10 <42.750 <42.554 <11.24223334 <42.750 <42.3334 <4.70</pre>	<4.14 <4.81 <3.11 <3.166 <7.26 <5.69 <6.15 <5.10 <4.08 <13.60	<pre><2.31 <23.78 <1.39 <1.39 <24.4629 <24.4629 <24.54 <26.34 <26.34 </pre>	<0.75 <0.69 <10.90 <6.17	<2.36 <4.42 <2.05 <1.66 <8.08 <2.01 <1.97 <3.01 <1.97 <3.01 <1.01 <1.20	<0.77 <0.68 <11.70 <6.40
			CESTUM-134			
			R LOCATION		CONTROL	LOCATIONS
PERIOD	SWD	DW	DL	WD	SWU	MI
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	<1.73 <2.25686 <1.656663 <1.65663 <1.65663 <1.756 <1.736 <1.756 <1.756 <1.756	<1.54 <2.0567 <1.555680 <1.55680 <1.57680 <1.57680 <1.57680 <1.57680 <1.57680 <1.57680 <1.57680 <1.57680 <1.57680	<1.70 <23.40 <33.81 <23.834 <21.666 <41.865 <41.866 <41.891 <1.58	<2.08 <1.58 <1.65	<1.79 <2.164680 <1.5680 <1.5680 <1.5630 <1.5630 <1.22 <1.82 <1.82	<2.20 <1.69 <1.64 <1.76

Activities shown are values actually measured, whereas those indicated as "c" are NOTE: minimum detectable activities (MDAs) under the particular conditions of analysis of nuclides for which analyses are required by RBS Technical Specifications (that is, the nuclides may or may not have been present, but if so, there cannot have been more than the amounts noted).

Gamma-Emitting Nuclide Activity (pCi/liter) in Water by Location -1990

CESTUM-137

			CESTOM-191			
		INDICATO	R LOCATION	S	CONTROL L	OCATIONS
PERIOD	SWD	DW	DL.	MD	SWU	WU
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	<1.8248 <1.7848 <1.785875648 <1.56481 <1.56481 <1.7867	<1.558 <2.3802 <1.5565 <1.5665 <1.6645 <1.6661 <1.93	<pre><1.72 <1.59 <2.594 <2.583 <1.80 <1.83 <1.91 <2.10 <1.10 <1.16 <1.81</pre>	<2.20 <1.60 <1.62 <1.89	<1.84 <2.84 <1.850 <1.884 <1.77 <1.77 <1.77 <1.79 <1.73 <1.96	<2.28 <1.80 <1.82 <1.84
			BARIUM-140 R LOCATION		CONTROL I	DOMETONS
PERIOD	SVD	DW	DL	WD	SWU	WU
AN					<14.50	3536
MUR MUR AND	<13.30 <23.80 <11.30 <11.30 <10.30	<18,40 <30,40 <15,90 <14,90 <22,30	<12.90 <23.70 <20.10 1.46	<8.40	<2.58	<2.29
AN THE	<19.30 218.30	<15.70 <27.50	<25.26 <14.60 <27.80	<7.21	£34.3H	<7.24
ATIC SET OCT	<15.70 <14.30 <23.20	<17.30 <15.90 <21.10	517.50	<19.30	<18.06 <14.80 <7.57	<19.80
DEC	<23.70 <23.70 <19.90	<34.90	<27.60 <22.50 <19.50	<27.00	~ 10,30	<23.50
		L	ANTHANUM-14	0		
			R LOCATION		CONTROL L	OCATIONS
PERIOD	SWD	DW	DL	WD	SWU	YU
JAN FEB MAR APR	<6.17 <11.10 <5.11 <4.53 <6.17	<6.82 <14.30 <6.93 <5.38 <8.38	<4.88 <10.20 <6.29 <3.78	<4.09	<6.50 <11.80 <6.84 <4.71	<2.42
JON	<6.37		<5.71 <10.50	<2.66	<0.43 <6.77 <9.58	<2.92
AUG SEP OCT	<5.80 <5.86 <11.20	<11.00 <6.24 <6.75 <7.87	\$7.67 \$7.67 \$10.70	<6.59	\$6.93 \$6.47 \$3.48	<7.39
DEC	<8.23	<14.70	<8.26 <6.74	<11.46	<7.68 <12.10	<9.93

NCTE: Activities shown are values actually measured, whereas those indicated as "c" are minimum detectable activities (MDAs) under the particular conditions of analysis of nuclides for which analyses are required by RBS Technical Specifications (that is, the nuclides may or may not have been present, but if so, there cannot have been more than the amounts noted).

Gamma-Emitting Nuclides in Sediment (pCi/kg dry) by Location - 1990

BERYLLIUH-7

DOWNSTREAM UPSTREAM

PERIOD

POTASSIUM-40

DOWNSTREAS DESTREAM

2.800	NAME.		EUROMES!	ALCHARDSON .	AGVES SESSION			reserve on	designation and the second	
MAY					408.00			06.00	16361. 4773.	
				CESTUM	+134			CESION-	137	
EER	100		DONN	STREAM	UPSTREAM		DOWN	STREAM	UPSTRE	AM
MAY				9.77 7.70	×17.10 ×15.80			10.00	74. 117.	60 10
Garmin	na-Emitt	ing No	ıclide	s in l	Fish (pC	i/kg wet)	by L	ocation	n - 19	90
					POTAS	STUM-40				
PERIOD	81.	#2 D	DVNSTRE £3	拉	£5.	£l	8.2	UPSTREA #3	#.4	45.
PEB MAH JUL DEC	4081 2837 3315	3018	3002	3405 5336	2448	3231		3508	3202 2827	1977
					MANGA	NESE-54				
		<u>u</u>	OWNSTRE					UPSTREA		
PERIOD	81	42	13	2.5	#.D	£1.	42	4.3	8.5	£1.
PEB MAR JUL DEC	<25.4 <20.4 <15.6	<19.1		(6,65 (34,4	<3.62	<14.9		<4.45	(6.17 (32.3	<3.38
						tON = 5.9				
PEK10D	£ì	PZ D	ORNSTRE E3	MA EA	<u>#5</u>	8.1	42	UPSTREA #3	ži Rá	43
PEB MAR JUL DEC	<62.8 <46.6 <67.8	(47.0	<40.3	<22.5 <118	<17.3	<66.5		<16.1		(16.6
					cor	SALT-58				
PERIOD	81	#2 D	OWNSTRE E3	Ah 24	#.5	47	12	UPSTREA EJ	H #4	8.5
PEB	(25.2									
HAR JUL DEC	<20.6 <23.3	<20.4	<19.0	<18.3 <39.9	¢6,35	422.1		<5.22	<6.18 <38.5	<4.58
NOTE:	Activitie	es shown	are va	lues act	ually mea	sured, where	as tho	se indic	ated as	"\" ar

minimum detectable activities (MDAs) under the particular conditions of analysis of nuclides for which analyses are required by RBS Technical Specifications (that is, the nuclides may or may not have been present, but if so, there cannot have been more present than the amounts listed).

Gamma-Emitting Nuclides in Fish (pCi/kg wet) by Location - 1990

		DOWNSTRE	AM CC	DBALT-60		UPSTREAM		
PERLOD	走上	£2 £3	£4 £5	11	12	4.3	2.5	8.5
PEB MAR JUL DEC	<29.8 <23.9 <17.9	<22.3 <23.0	<8.28 <40.8 <4.12	7.49		<5.10 <	6.25 32.7	(3.94
				ZINC-65				
PERIOD	<63.4	DOWNSTRE #2 #3	6H 84 85	KINC-65 EL <38.4	12	UPSTREAD #3	1.1	83
JUL DEC	<48.8 <40.1	46.0	<18.7 <80.1 <9.89	<38.4		(13.5 ;	14.9 68.1	(9.26
		DOMESTIC .	CI CI	SIUM-134		I I I I I I I I I I I I I I I I I I I		
PERIOD FEB	0.000			83.		UPRTREAM #3	2.5.	
JUL DEC	<18.3 <15.1	<15.9	<5.50 <36.0 <2.84	(13.5		<3.62 (4.40 25.5	x2.64
		DONNETRE	AH CI	ISIUM-137		UPSTREAM		
PERIOD FEB	(25.1	AZ A3	#A #.G	8.1	8.4	1.3		
MAR JUL DEC	<22.2 <14.8	7.07	<6.74 <33.2 <2.99	<18.7		1.67	5.04 28.1	-(2,97

NOTE: Activities shown are values actually measured, whereas those indicated as "" are minimum detectable activities (MDAs) under the particular conditions of analysis of nuclides for which analyses are required by RBS Technical Specifications (that is, the nuclides may or may not have been present, but if so, there cannot have been more present than the amounts listed.

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

Gamma-Emitting Nuclide Activity (pCi/kg wet) in Broadleaf Vegetation by Location - 1980

BERYLLIUM-7

			INDICATOR	LOCATIONS			CONT	ROL LOCATI	088
	R	BS GARDEN	81		S GARDEN	42	ANGOL	A PENITENT	LARY
PERLOP	41	#2	43	81	8.2	#3	41.	#2	8.5
JAN FEB MAR APR	211 145 184 264	297 296	470 196		126	303 154	2292 602 218	2665	
MAY JUN JUL AUG SEP	115 734 257 110	140 749 230 2040	444 156 253	256 330 297	445 236 1494 191 206	128 155 282	191 204 164 56 130	377 165 1060 360 389	221 256 782 438 653
OCT NOV DEC	196 505	115	120 153	164	77 107	91 139 71		157	113

POTASSIUM-40

			INDICATOR	LOCATIONS			CONT	ROL LOCAT	IONS
	E	BS GARDEN	.E1	B	BS_GARDEN	.12		A PENITEN	
PERIOD	#1	#2	#3	#1.	#2	#3 :	43.		#3.
JAN	4970	4468	2691	4226	4923		4279		
FEB	4184	4616	4756	4761	3607	4763	4856	2575	
MAR	4612			3485	4352	3635	5080		
APR	4461	4218	4483	3880	4529	3875	5427		
MAY	1820	1645	1966	2937	4023	4716	5766	5750	8267
JUN	2226	2073	2100	4945	4893	3950	3133	5632	7762
JUL	3910	1645	3372	5229	5099	5176	4202	4674	5544
AUG	4000	2155	3292	4149	2487	3362	3778	5595	3802
REP	2801	2114	2112	3152	4270	5203	2750	6864	2909
OCT	37.04	1539	1616	2782	4928	2997	4056	3284	3853
NOV	1775	1854	2939	3249	3290	5011	1926	2474	2543
DEC	3091	2567	1552	2591	3435	2521	2629	3175	3375

BARIUM-140

			INDICATOR	LOCATIONS			CONTI	OL LOCAT	ONS
	В	DS GARDEN	41		BS GARDEN			PENLTER	
PERIOD	#1	42	#3	\$1	#2	163	- A	#2	43
OCT			47.2						

NOTE: Sampling requirement for vegetation is one sample of each of three different types from each location per month. Due to lack of availability, only one control sample was obtained in January, March, and April, and only two control samples obtained in February. Likewise, only one sample from G1 was obtained during March and only two samples from G2 were taken in January.

Activities shown are values actually measured.

Gamma-Emitting Nuclide Activity (pCi/kg wet) in Broadleaf Vegetation by Location - 1990

IODINE-131

		INDIGATOR LOCATIONS							CONTROL LOCATIONS		
		BS GARDEN	LL	B	DS GARDEN	.42	ANGOL	A PENITEN	T.LABY		
PERIOD	. 31	#2	#3	#1	#2	23	81.	#2	#.3		
JAN FEB SIAR APR MAY JUN JUL AUG SEP OCT NOV DEC	425.5 426.2 429.3 430.4 422.0 428.6 422.2 427.8 419.9 423.5 429.5 429.5	<24.6 <29.0 <32.0 <27.6 <24.7 <23.3 <22.5 <24.6 <21.1 <20.5 <23.6	<34.2 <31.3 <26.0 <25.8 <26.8 <22.1 <28.6 <22.6 <22.6 <22.6	<28.0 <23.8 <23.7 <25.6 <26.1 <28.0 <31.5 <21.3 <18.9 <17.8	(26.6 (23.3 (30.4 (22.3 (25.9 (24.6 (27.2 (20.4 (26.2 (31.8 (17.5	<26.8 <26.0 <27.0 <31.8 <26.0 <25.3 <24.4 <22.1 <18.2 <17.9 <15.2	<pre><39.5 <29.2 <28.6 <23.8 <22.8 <30.5 <26.2 <32.1 <21.2 <22.7 <24.1 <23.6</pre>	<26.0 <25.4 <33.2 <29.5 <30.1 <26.8 <26.7 <21.6	<25.1 (61.0 (20.2 (31.2 (25.4 (26.4 (26.5 (16.9		

CESIUM-134

	T. I	BS GARDE-	INDICATO		BS CARDEN	. 12		ROL LOCAT	
PERLOD	#1	82	#3	#1	#2	43	#1	82	8.3
JAN FEB MAR APE MAY JUN FOL AUG SEP OCT NOV DEC	(30.7 (22.5 (35.6 (29.6 (26.3 (23.4 (29.6 (20.9 (22.1 (20.7 (23.7)	<26.8 <30.5 <39.1 <23.7 <221.9 <22.0 <23.2 <22.1 <22.8 <28.4	<39.3 <30.0 <33.5 <26.5 <24.1 <20.7 <26.4 <24.9 <24.0 <25.9 <24.5	<pre><34.6 <23.9 <29.6 <29.2 <26.9 <27.5 <27.8 <34.1 <20.4 <21.7 <20.5 <19.4</pre>	<28.0 <27.0 <33.5 <27.6 <30.5 <28.3 <26.3 <24.2 <25.9 <30.2 <30.2 <30.2 <30.5	<28.1 <26.9 <28.5 <29.1 <27.1 <23.4 <21.5 <19.2 <15.4 <17.5	<pre><q3.5 <16.8="" <19.7="" <21.5="" <22.0="" <23.0="" <24.8<="" <25.8="" <28.7="" <29.4="" <34.6="" pre=""></q3.5></pre>	<pre><42.5 <27.1 <24.8 <21.6 <19.1 <30.3 <26.6 <30.3 <15.2</pre>	<23.7 (26.6 (9.71 (26.0 (20.9 (29.6 (19.4

CESIUM-137

		BS GARDEN	INDICATOR		BS GARDEN	12		ROL LOCAT	
PERIOD	#1	#2	#3	#1	#2	#5	#1	#2	#3
JAN FEB MAR APR MAY JUN JUN JUN AUG SXP OCT NGV DEC	(34.1 (31.6 (35.4 (34.1 (32.9 19.4 27.6 20.7 (26.1 (31.0 (28.2 (27.2	<pre><29.3 <35.8 <37.7 <33.4 <29.8 <30.3 <32.4 <29.0 <24.7 <24.1 <27.9</pre>	<pre><42.1 <33.0 <32.9 <34.3 15.8 <24.9 <34.4 <27.7 16.6 <27.6 <22.9</pre>	<pre></pre>	<pre><31.7 <24.5 <39.6 <20.6 <28.1 <27.7 <32.9 <27.6 <28.3 <33.4 <21.6 <19.0</pre>	<24.6 <33.0 <35.7 <26.1 <31.4 <25.3 <23.2 <25.3 <19.7 <21.2 <19.1	<pre><43.3 <36.8 <30.7 <24.2 <28.6 <25.3 <25.1 <27.2 <25.9 <28.9 <28.2</pre>	<51.1 <31.5 28.7 <34.0 11.6 <32.2 40.9 <31.0 <24.3	<25.7 <32.1 <11.8 <24.3 <28.0 <28.0 <31.2 <22.1

NOTE: Sampling requirement for vegetation is one sample of each of three different types from each location per month. Due to lack of availability, only one control sample was obtained in January, March, and April, and only two control samples obtained in February. Likewise, only one sample from G1 was obtained during March and only two samples from G2 were taken in January.

Activities shown are value actually measured, whereas those indicated as "c" are minimum detectable activities (MDAs) under the particular conditions of analysis of nuclides for which analyses are required by RBS Technical Specifications (that is, the nuclides may or may not have been present, but it so, there cannot have been more present than the amounts listed.

RIVER BEND STATION RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT FOR 1990

APPENDIX B

Summary of Preoperational REMF (Baseline) Results

Table B.1 summarizes the results of preoperational radiological environmental monitoring from January, 1983, through October, 1985. Further details are available in the respective annual reports (1983, 1984, and 1985).

TABLE B.1

PREOPERATIONAL RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY (Page 1 of 4)

River Bend Station Docket Number: 50-458
West Feliciana Parish, Louisiana Reporting Period: 1/1/83 -10/31/85

Medium or Pathway Sampled (Unit of Measuremest)		Lower Limit of Detection ¹ (LLD)	All Indicator Stations Mean (f) ² Range		ith Highest Mean Mean(f) ² Range	Control locations Muan (f) ² Range	Number of Nonroutine Reported Results
Air Particulate (pCi/p³)	Cross Bets (1086)	0.01	0.03 (753/759) 0.01 + 0.09	AQS2 5.8 km NW	0.03(146/158) 0.0 - 0.09	0.03 (326/327) 0.01 = 0.08	N/A
	Ca-134 (95)	0.05	ALL <lld< td=""><td></td><td></td><td>ALL < LLD</td><td>N/A</td></lld<>			ALL < LLD	N/A
	Cs-137 (95)	0.06	ALL- <lld< td=""><td></td><td></td><td>ALL ~LLD</td><td>N/A</td></lld<>			ALL ~LLD	N/A
Air Radioiodine (pCi/m ³)	1-131 (1086)	0.07	ALL (LLD			ALL «LLD	N/A
Direct (TLD) (mR Total)	Gamma Monthly (1214)		6 8 (1018/1064) 3.7 - 19.3		7.8 (27/28) 3.2 - 16.2	6.7(139/150) 0 = 27.8	N/A
	Gamma Quarterly (472)		19.0 ³ (404/418) 6.8 - 32.1	1.6 km SE	27.5 ³ (11/11) 12.2 - 27.6	18.9 ³ (5 6.5 - 2	N/A
Surface Water	H=3 (24)	2000	ALL <lld< td=""><td></td><td></td><td>ALL LD</td><td>N/A</td></lld<>			ALL LD	N/A
(pCi/liter)	tin~54 (66)	16	ALI .LD</td <td></td> <td></td> <td>ALL <lld< td=""><td>N/A</td></lld<></td>			ALL <lld< td=""><td>N/A</td></lld<>	N/A
	Co+56 (65)	15	ALL «LLD			ALL (LLD	N/A
	fe~59 (68)	30	KLL TELD			ALL <lld< td=""><td>N/A</td></lld<>	N/A
	Co-60 (65)	15	AL. (LLD			ALL <eld< td=""><td>N/A</td></eld<>	N/A
	2n=65 (68)	30	ALL CLLD			ALL CLLD	N/A
	Nb-95 (68)	15	ALL +ULD			ALL <lid< td=""><td>N/A</td></lid<>	N/A
	Zr+95 (68)	30	ALL (LLD			ALL KLLD	N/A
	1-131 (68)	15	ALL <lld< td=""><td></td><td></td><td>ALL (LLD</td><td>N/A</td></lld<>			ALL (LLD	N/A
	Cs-134 (68)	15	ALL «LLD			ALL <lld< td=""><td>N/A</td></lld<>	N/A
	Cs-137 (68)	18	ALL < LLD			ALL (LLD	N/A
	8a-140 (68)	60	ALL <lld< td=""><td></td><td></td><td>ALL <lld< td=""><td>N/A</td></lld<></td></lld<>			ALL <lld< td=""><td>N/A</td></lld<>	N/A
	La-140 (65)	15	ALL <lld< td=""><td></td><td></td><td>ALL <lld< td=""><td>N/A</td></lld<></td></lld<>			ALL <lld< td=""><td>N/A</td></lld<>	N/A
	Gross Bet (52)	a 4	8.1 (23/26) 4 + 12	SWD 4 km downstream	8.1 (23/26)	7.8 (24/26 5 - 13	N/A

TABLE B. 1

PREOPERATIONAL RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY (Page 2 of 4)

River Bend Station Docket Number: 50-458
West Feliciana Parish, Louisiana Reporting Period: 1/1/83 -10/31/85

Medium or athway Sampled (Unit of Measurement)		Lower Limit of Detection ¹ (LLD)	All Indicator Stations Hean (f) ² Range	Annua l	ith Highest Mean Mean(f) ² Range	Control Locations Mean (f) ² Range	Number of Nonroutine Reported Results
Groundwater ⁴ (pCi/liter)	H=3 (24)	2000	ALL <1.LD			ALL CLLD	N/A
	Mn-54 (22)	15	ALL SLLD			ALL +LLD	N/A
	Co=58 (22)	18	ALL (LLD			ALL +LLD	N/A
	Fe=59 (22)	30	ALL *LLD			. ALJ. «LLD	N/A
	Co-60 (22)	15	ALL CLLD			WIT CITE	N/A
	2n-65 (22)	30	ALL «LLD			ALL CLLD	N/A
	Nb-95 (22)	15	ALL CLLD			ALL <lld< td=""><td>K/A</td></lld<>	K/A
	2r-95 (22)	30	ALL <lld< td=""><td></td><td></td><td>ALL < LLD</td><td>N/A</td></lld<>			ALL < LLD	N/A
	I-131 (22)	15	ALL (LLD			ALL SILD	N/A
	Co-134 (22)	1.5	ALL CLED			ALL YELD	N/A
	Ds-137 (22)	18	ALL + LLD			ALL KLED	N/A
	Ba-140 (22)	60	ALL CLLD			ALL <lld< td=""><td>N/A</td></lld<>	N/A
	La-140 (22)	1.5	ALL «LLD			ALL SLLD	N/A
	Gross Beta	4	4 (5/12) 2 = 8	470 m SW	4 (5/12)	6 (2/3) 3 - 9	N/A
Drinking Water	H-3 (18-)	2000	ALL CLLD			ALL < LLD	N/A
(pCi/liter)	Mn~54 (40)	15	ALL «LLD			ALL <lld< td=""><td>N/A</td></lld<>	N/A
	Co-58 (40)	15	ALL < LLD			ALL <lld< td=""><td>N/A</td></lld<>	N/A
	Fe-59 (40)	30	ALL <lld< td=""><td></td><td></td><td>ALL (LLD</td><td>N/A</td></lld<>			ALL (LLD	N/A
	Co-60 (40)	15	ALL (LLD			ALL <lld< td=""><td>N/A</td></lld<>	N/A
	Zn=65 (40)	30	ALL CLLD			ALL <lld< td=""><td>N/A</td></lld<>	N/A
	Nb-95 (40)	15	ALL CLLD			ALL «LLD	

TABLE B. 1

PREOPERATIONAL RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY (Page 3 of 4)

River Bend Station West Feliciana Parish, Louisiana

Docket Number: 50-458 Reporting Period: 1/1/83 -10/31/85

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection ¹ (LLD)	All Indicator Stations Mean (f) ² Eange		with Highest 1 Mean Mean(f) ² Range	Control Locations Mean (f) ² Range	Number of Nonroutine Reported Results
Drinking Water ⁵	2r-95 (40)	30	ALL CLLD			ALL <lld< td=""><td>N/A</td></lld<>	N/A
(pCi/liter) (continued)	(40)	15	ALL (LLD		122	ALL ×LLD	N/A
	Cs~134 (40)	1.5	ALL <lld< td=""><td></td><td></td><td>ALL < LLD</td><td>N/A</td></lld<>			ALL < LLD	N/A
	Cu-137 (40)	18	ALL CLLD			ALL < LLD	N/A
	Ba-140 (40)	60	ALL <lld< td=""><td></td><td></td><td>ALL < LLD</td><td>N/A</td></lld<>			ALL < LLD	N/A
	La-140 (40)	15	ALL CLLD			ALL «LLD	N/A
	Gross Beta (54)	4	6.8 (28/26)	Donaldson- ville 135 km downstream	6.8 (28/28)	7.8 (24/26) 5 - 13	N/A
Shoreline Sediment	K-40 ⁶ (2)	NONE REQUIRED	13.7E3 (2/2) (11.4-15.9)E3	SED 4 km downstream	13.7E3 (2/2) 11.4-15.9)E3	NOY REQUIRED	N/A
(pCi/kg dry)	Cs=134 (4)	150	ALL <lld< td=""><td></td><td></td><td>ALL «LLD</td><td>N/A</td></lld<>			ALL «LLD	N/A
	Cs=137	180	ALL < LLD			ALL «LLD	N/A
Hilk (mg//liter)	K-40 ⁶ (18)	NONE	1313 (8/9) 1179 - 1475	MF2 6 km ESE	1313 (8/9) 1179 - 1475	1318 (7/9) 1196 - 1409	N/A
(pCi/liter)	1-131 (81)	. 1	ALL <lld< td=""><td></td><td></td><td>ALL <lld<sup>7</lld<sup></td><td>N/A</td></lld<>			ALL <lld<sup>7</lld<sup>	N/A
	Cs-134 (82)	16	ALL < LLD			ALL «LLD ⁷	N/A
	Ca-137 (82)	16	ALL <lld< td=""><td></td><td></td><td>ALL <lld7< td=""><td>N/A</td></lld7<></td></lld<>			ALL <lld7< td=""><td>N/A</td></lld7<>	N/A
	Ba-140 (82)	60	ALL (LLD			ALL <lld7< td=""><td>N/A</td></lld7<>	N/A
	Lu-140 (82)	15	ALL <lld< td=""><td></td><td></td><td>ALL «LLD7</td><td>N/A</td></lld<>			ALL «LLD7	N/A
Fish/ Invertebrates	K-40 ⁶	NONE REQUIRED	9037 (2/2) 6320 = 11754	FD 4 km downstream	9037 (2/2) 6320 - 11754	7840 (4/4) 4177 ~ 11436	N/A
(pCi/kg wet)	Mn-54 (15)	130	ALL (LLD	TOWNS C. COM		ALL (LLD	N/A

TABLE B. 1

PREOPERATIONAL RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY (Page 4 of 4)

River Bend Station West Feliciana Parish, Louisiana Docket Number: 50-458 Reporting Period: 1/1/83 -10/31/85

Medium or Pathway Sampled (Unit of Measurement)		Lower Limit of Detection ¹ (LLD)	All Indicator Stations Hean (f) ² Range			Control Locations Mean (f) ² Range	Number of Nonroutine Reported Results
fish/ Invertebrates	Co-58 (15)	130	ALL CLLD			ALL (LLD	N/A
(continued)	Pe-59 (15)	260	ALL <lld<sup>8</lld<sup>			ALL «LLD®	N/A
	Co-60 (15)	130	ALL <lld< td=""><td></td><td></td><td>ALL KLLD</td><td>N/A</td></lld<>			ALL KLLD	N/A
	Zn-65 (15)	260	ALL <lld< td=""><td></td><td></td><td>ALL VISD</td><td>N/A</td></lld<>			ALL VISD	N/A
	Ce=134 (15)	130	ALL <lld< td=""><td></td><td></td><td>ALL (LLD</td><td>N/A</td></lld<>			ALL (LLD	N/A
	Cs-137 (15)	150	ALL (LLD			ALL «LLD	N/A
Broadleaf Vegetation	K-40 ⁶	NONE REQUIRED	3368 (6/10) 1398 - 5389	02 1.1 km NW	3368 (6/10) 1398 - 5389	3768 single value	N/A
(pCi/kg wet)	1-131 (75)	60	ALL (LLD7			ALL <lld< td=""><td>N/A</td></lld<>	N/A
	CB=134 (76)	60	ALL < LDD			ALL <lld< td=""><td>N/A</td></lld<>	N/A
	Cs-137 (76)	60	97 (4/43) 59 - 129	G1 1 km WNN	97 (4743) 59 = 120	ALL <lld< td=""><td>N/A</td></lld<>	N/A

SOTES.

- 1. Lower Limit of Detection (LLD) as defined in RBS Technical Specifications (NUREG-1172).
- Mean and range based on detectable measurements orly. Fraction of detectable measurements at specified locations is indicated in parentheses. (f)
- For each of the TLD locations in 1985, a value equal to 1/3 of its 4th Quarter gamma dose is used to simulate a "quarterly" measurement for October, 1985.
- Beginning in January, 1985, groundwater was sampled from one upgradient (WU control) and one downgradient (WD - indicator) well; previously groundwater was sampled from construction dewatering wells.
- The upstream surface water sampling location (SWU) is used as a "control" for drinking water comparisons.
- 6. The values for K-40 were derived from the (then) incipient in house analytical program.
- The values listed for the control location for milk ware derived from the (then) incipient in-house analytical program. Training of personnel in calibration and analytical methods delayed sample preparation and counting. As a result, the required LLDs were not met in 2 out of 8 L-131 analyses; 1 out of 9 Cs-134 analyses; 1 out of 9 Cs-137 analyses; 2 out of 9 Ba-140 analyses; and 4 out of 9 La-140 analyses. Similarly, the required LLD for L-131 in broadleaf vegetation was not met in 1 out of 11 analyses. (See discussion of Program Exceptions in Preoperational Radiological Environmental Monitoring Report for 1985.)
- 5. The LLD for one downstream fish sample (catfish, analyzed in-house) was 265 pCi/kg (wet). The LLD for one upstream fish sample (largemouth bass, analyzed in-house) was 263 pCi/kg (wet).