

PERRY NUCLEAR POWER PLANT

10 CENTER ROAD PERRY, OHIO 44081 (216) 259-3737 Mail Address: PO. BOX 97 PERRY, OHIO 44081 Robert A. Stratman VICE PRESIDENT - NUCLEAR

April 22, 1994 PY-CEI/NRR-1786L

U.S. Nuclear Regulatory Commission Document Control Desk Washington, D.C. 20555

> Perry Nuclear Power Plant Docket No. 50-440 Annual Environmental Operating Report

Gentlemen:

We are hereby submitting the Annual Environmental Operating Report for the Perry Nuclear Power Plant, Unit 1, for the period of January 1, 1993 through December 31, 1993. This includes both the radiological environmental operating report, to meet the requirements of the PNPP Technical Specification, Section 6.9.1.6, and the non-radiological environmental operating report, to meet the requirements of Section 5.4.1 of the Environmental Protection Plan, Appendix B of the PNPP Operating License.

If you have questions or require additional information, please contact Louise Barton, at (216) 280-5512.

Very truly yours,

Yout of thatma

RAS: 1kb

Attachment

cc: USNRC, Region III NRC Resident Inspector Office NRC Project Manager

250042

JE25 /

## ANNUAL ENVIRONMENTAL OPERATING HEPORT FOR PERRY NUCLEAR POWER PLANT

January 1, 1993 to December 31, 1993

Prepared by:

Environmental Monitoring Element
Perry Nuclear Power Plant
Cleveland Electric Illuminating Company
Perry, Ohio

April, 1994

# **Table of Contents**

| RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM AND USE CENSUS CLAM/MUSSEL MONITORING HERBICIDE USE SPECIAL REPORTS |      |     |   |    |      |   |   |     |   | * *  |    |   | 1 2 2 3 3 |
|-------------------------------------------------------------------------------------------------------------------|------|-----|---|----|------|---|---|-----|---|------|----|---|-----------|
| RADIOLOGICAL ENVIRONMENTAL MONITORING                                                                             |      |     |   |    |      |   |   |     |   |      |    |   | 5         |
| NTRODUCTION                                                                                                       |      |     |   |    |      |   |   |     |   |      |    |   | 6         |
| BACKGROUND RADIATION                                                                                              |      |     |   |    |      |   |   |     |   |      |    |   | 7         |
| SAMPLING LOCATIONS                                                                                                |      |     |   |    |      |   |   |     |   |      |    |   | 8         |
| SAMPLE ANALYSIS.                                                                                                  |      |     |   |    |      |   |   |     |   |      |    | ^ | 13        |
| 1993 SAMPLING PROGRAM.                                                                                            |      |     |   |    |      |   |   |     |   |      |    |   | 14        |
| Atmospheric Monitoring                                                                                            |      |     |   |    |      |   |   |     |   |      |    |   | 16        |
| Terrestrial Monitoring                                                                                            |      |     |   |    |      |   |   |     |   |      |    |   | 18        |
| Aquatic Monitoring                                                                                                |      |     |   |    |      |   |   |     |   |      |    |   | 20        |
| Direct Radiation Monitoring                                                                                       |      |     |   |    |      |   |   |     |   | -801 | į. |   | 22        |
| NTERLABORATORY COMPARISON PROGRAM                                                                                 |      |     |   |    |      |   |   |     |   |      |    |   |           |
| CONCLUSION                                                                                                        |      |     |   |    | 4    |   |   | . 4 | 4 |      |    |   | 27        |
|                                                                                                                   |      |     |   |    |      |   |   |     |   |      |    |   |           |
| LAND USE CENSUS                                                                                                   |      |     |   |    |      |   |   |     |   |      |    |   |           |
| NTRODUCTION                                                                                                       |      |     |   |    |      |   |   |     |   |      |    |   |           |
| DISCUSSION AND RESULTS                                                                                            |      |     | 3 |    |      | , |   |     | , |      |    |   | 30        |
|                                                                                                                   |      |     |   |    |      |   |   |     |   |      |    |   |           |
| CLAM/MUSSEL MONITORING                                                                                            |      |     |   |    |      |   |   |     |   |      |    |   |           |
| NTRODUCTION                                                                                                       |      |     |   |    |      |   |   |     |   |      |    |   | 36        |
| CORBICULA PROGRAM                                                                                                 |      |     |   |    |      |   |   |     |   |      |    |   | 36        |
| DREISSENA PROGRAM                                                                                                 | *    |     | 9 | *  |      |   |   |     |   |      | ×  | * | 37        |
| HERBICIDE USAGE                                                                                                   |      |     | ķ |    |      | Ř |   |     |   |      |    |   | 41        |
| SPECIAL REPORTS                                                                                                   |      |     |   |    |      |   |   |     |   |      |    |   | 12        |
| NONCOMPLIANCES                                                                                                    |      |     |   |    |      |   |   |     |   |      |    |   | 44        |
| UNREVIEWED ENVIRONMENTAL QUESTIONS                                                                                |      |     |   |    |      |   |   |     |   |      |    |   | 44        |
|                                                                                                                   |      |     |   |    |      |   |   |     |   |      |    |   |           |
| NONROUTINE REPORTS                                                                                                | . 4. | 9 9 | 7 | 7. | š. 4 | 4 | * | 9 9 | - |      | 4. | - | M-M       |

| APPENDIX | A: 1993 RADIOLOGICAL | ENVIRONMENTAL | MONITORING |    |
|----------|----------------------|---------------|------------|----|
| PROGRAM  | DATA SUMMARY         |               |            | 45 |
| APPENDIX | B: 1993 RADIOLOGICAL | ENVIRONMENTAL | MONITORING |    |
| PROGRAM  | DATA                 |               |            | 47 |

## **EXECUTIVE SUMMARY**

The Annual Environmental Operating Report details the results of Environmental Monitoring Programs conducted at the Perry Nuclear Power Plant (PNPP) from January 1 through December 31, 1993. This report meets all of the requirements in the PNPP Technical Specifications 6.9.1.6 and Appendix B of the PNPP Operating License (the Environmental Protection Plan, or EPP). Report topics include Radiological Environmental Monitoring, Land Use Census, Clam/Mussel Monitoring, Herbicide Use, and Special Reports. The operation of the PNPP did not result in any significant environmental impact in 1993.

#### RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

The Radiological Environmental Monitoring Program (REMP) was established in 1981 to monitor the radiological conditions in the environment around PNPP. The REMP is conducted in accordance with PNPP Technical Specification 3.4.12. This program includes the collection and analysis of environmental samples and an evaluation of results.

Radiation levels and radioactivity are monitored within a 22 mile radius around PNPP. The environment around PNPP has been monitored for twelve years. The REMP was established at PNPP six years before the plant became operational. This preoperational program was established to provide data on background radiation and radioactivity normally present in the area. PNPP has continued to monitor the environment during plant operation by collecting and analyzing samples of air, precipitation, milk, fish, produce, soil, grass, water and sediment as well as by measuring radiation directly.

REMP samples are collected from both indicator and control locations. Indicator locations are those which would be most likely to display effects caused by plant operation. They are relatively close to the plant, in the predominant wind direction. Control locations are those which should be unaffected by plant operation. Typically, they are a greater distance from the plant, in the least prevalent wind direction. Data obtained from the indicator locations are compared with data from the control locations and with the concentrations present in the environment before PNPP became operational. This comparison allows naturally occurring background radiation to be taken into account when evaluating any radiological impact PNPP may have had on the environment.

Over 1100 radiological environmental samples were collected in 1993 and over 2100 analyses for radioactivity were performed. The results of the REMP indicate the adequacy of the control of the release of radioactivity in effluents from PNPP. These results also indicate that PNPP complies with all applicable federal regulations. Results are divided into four sections: atmospheric monitoring, terrestrial monitoring, aquatic monitoring and direct radiation monitoring.

- o Samples of air and precipitation are collected to monitor the atmosphere. The 1993 results are similar to those observed in preoperational and previous operational programs. Only normal background environmental radioactivity was detected and only at normal concentrations.
- o Terrestrial monitoring includes analysis of milk, produce, vegetation, and soil samples. The results of the sample analyses indicate concentrations of radioactivity similar to previous years. For example, the average concentration of cesium-137 in soil was 298.67 pCi/kg in 1993, which is at the low end of the range of 208.5 to 1104.05 pCi/kg observed over the past ten years. The results of the analyses of the other terrestrial samples also indicate concentrations of radioactivity similar to previous years, and indicate no build-up of radioactivity attributable to the operation of PNPP.
- Aquatic monitoring includes the collection and analysis of water, fish, and shoreline sediments. The 1993 analysis results for water and fish sample results indicate normal background concentrations of radionuclides. In addition to routine environmental background monitoring, sediment samples are used to document and track very slight contamination found in a small stream to the east of the plant site (see 1992 Annual Environmental Operating Report for information). This has had no significant radiological impact on the surrounding environment.
- o Direct radiation measurements averaged 53.46 mrem/91 days at indicator locations and 55.90 mrem/91 days at control locations, showing that, in 1993, radiation in the area of PNPP was similar to radiation at locations greater than 10 miles away from the Plant.

The 1993 operation of PNPP caused no significant increase in the concentrations of radionuclides in the environment and no significant change in the quality of the environment.

#### LAND USE CENSUS

In order to estimate radiation dose attributable to the operation of PNPP, the potential pathways through which public exposure can occur must be known. To identify these exposure pathways, an Annual Land Use Census is performed as part of the REMP. During the census, PNPP personnel travel every public road within a five mile radius of the plant to locate key components of the radiological exposure pathways.

#### CLAM/MUSSEL MONITORING

Clam and mussel shells can clog plant piping and components that use raw water. For this reason, sampling for these benthic macroinvertibrates has been conducted in Lake Erie in the vicinity of PNPP since 1971, specifically for *Corbicula* (Asiatic clams) since 1981, and for *Dreissena* (zebra mussels) since 1989.

Since no *Corbicula* have ever been found at PNPP, routine *Corbicula* monitoring provides data to determine whether this pest species has arrived in the vicinity of PNPP. The zebra mussel program includes both monitoring and control and is directed at minimizing the mussel's impact on plant operation. As in past years, this program has successfully prevented the zebra mussel from causing any operational problems at PNPP in 1993.

#### HERBICIDE USE

Because the PNPP site has several special habitat areas, the use of herbicides is closely monitored. This ensures compliance with Ohio Environmental Protection Agency requirements and protects the site's natural areas. Herbicide use is restricted to specific areas and has not had a negative impact on the environment around the plant.

#### SPECIAL REPORTS

Significant environmental events, noncompliance with environmental regulations, and changes in plant design or operation that affect the environment are reported to regulatory agencies as they occur. These special reports are also compiled annually in this report.

# RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

#### INTRODUCTION

The radiological environmental monitoring program (REMP) was established at PNPP for several reasons. First, it verifies the adequacy of plant design and operation to control radioactive materials and limit effluent releases; second, it assesses the radiological impact, if any, that the plant has on the surrounding environment; third, it ensures compliance with regulatory guidelines. The REMP is conducted in accordance with the PNPP Operating License, Appendix A, Technical Specifications. The Environmental Technical Specifications, or REMP requirements, were established by the Nuclear Regulatory Commission (NRC).

A wide variety of samples are collected as part of the PNPP REMP. The selection of sample types, sampling locations, and sample collection frequency are based on many things. Potential pathways for the transfer of radionuclides through the environment to humans, sample availability, local meteorology, population characteristics, land use and Nuclear Regulatory Commission requirements are all considered.

To ensure that the REMP data is meaningful and useful, detailed sampling methods and procedures are followed. This guarantees that samples are collected in the same manner and from the same locations each time. All samples are packaged on site, then shipped to a vendor radiological laboratory for analyses. The vendor laboratory analyzes the samples and reports results to the PNPP Environmental Monitoring Element, the Lake County General Health District, and the State of Ohio Department of Health.

The REMP began in 1981 with 24 direct radiation monitoring locations, four sediment locations, and two fish sampling locations. In 1982, collections of air, water, milk, food products, and feed/silage were started. The program was augmented in 1985 to include precipitation and soil. Although these last three media were not required by the NRC, they were incorporated into the program to expand its scope and provide additional data useful for analyzing environmental impacts of plant operation. This year, feed/silage sampling was dropped from the program based on the baseline of data established during the past ten years.

#### UNITS OF MEASURE

Some of the units of measure used in this report require some explanation.

#### Activity

Activity is the number of atoms in a material that decay per unit of time. Each time an atom decays, radiation is emitted. The curie (Ci) is the unit used to describe the activity of a material and indicates the rate at which the atoms are decaying. One curie of activity indicates the decay of 37 billion atoms per second.

Smaller units of the curie are often used in this report. Two common units are the microcurie ( $\mu$ Ci), one millionth of a curie, and the picocurie (pCi), one trillionth of a curie. The mass, or weight, of radioactive material which would result in one curie of activity depends on the disintegration rate. For example, one gram of radium-226 is one curie of activity, but it would require about 1.5 million grams of natural uranium to equal one curie since radium-226 is more radioactive than natural uranium.

#### Dose

Biological damage due to alpha, beta, gamma and neutron radiation may result from the ionization caused by these radiations. Some types of radiation, especially alpha particles which cause dense local ionization, can result in up to 20 times the amount of Liological damage for the same energy imparted as do gamma or X rays. Therefore, a quality factor must be applied to account for the different ionizing capabilities of various types of ionizing

radiation. When the quality factor is multiplied by the absorbed dose, the result is the dose equivalent, which is an estimate of the possible biological damage resulting from exposure to any type of ionizing radiation. The dose equivalent is measured in rem (roentgen equivalent man). In terms of environmental radiation, the rem is a large unit. Therefore, a smaller unit, the millirem (mrem) is often used. One millirem is equal to 1/1000 of a rem.

#### BACKGROUND RADIATION

Background radiation includes the decay of radioactive elements in the earth's crust, a steady stream of high-energy particles from space called cosmic radiation, naturally-occurring radioactive isotopes in the human body like potassium-40, medical procedures, man-made phosphate fertilizers (phosphates and uranium are often found together in nature), and even household items like televisions. In the United States, a person's average annual exposure from background radiation is 360 mrem, as the Background Radiation Chart (Figure 1) shows.



Figure 1: Background Radiation Chart

Many radionuclides are present in the environment due to sources such as cosmic radiation and fallout from nuclear weapons testing. These radionuclides are expected to be present in many of the environmental samples collected in the vicinity of PNPP. Some of the radionuclides normally present include:

- tritium, present as a result of the interaction of cosmic radiation in the upper atmosphere.
- o beryllium-7, present as a result of the interaction of cosmic radiation with the upper atmosphere.
- o potassium-40, a naturally occurring radionuclide normally found in humans and

throughout the environment, and

o fallout radionuclides from nuclear weapons testing, including tritium, cesium-137, strontium-89, and strontium-90. These radionuclides may also be released in minute amounts from nuclear facilities.

Beryllium-7 and potassium-40 are especially common in REMP samples. Since they are naturally occurring and are expected to be present, positive results for these radionuclides are not discussed in the section on 1993 Sampling Program results. However, the data on these radionuclides is included in Appendix B: 1993 REMP Data.

#### SAMPLING LOCATIONS

REMP samples are collected at numerous locations, both onsite and up to 22 miles away from the plant. Sampling locations are divided into two general categories: indicator and control. Indicator locations are those which would be most likely to display effects caused by plant operation. They are relatively close to the plant, in the predominant wind direction. Control locations are those which should be unaffected by plant operation. Typically, they are a greater distance from the plant, in the least prevalent wind direction. Data obtained from the indicator locations are compared with data from the control locations. This comparison allows naturally occurring background radiation to be taken into account when evaluating any radiological impact PNPP may have had on the environment. Table 1 and Figures 2, 3 and 4 identify the PNPP REMP sampling locations.

Many REMP samples are collected in addition to those required by the PNPP Operating License. In some cases (precipitation and soil, for example), the media is not required to be collected at all. In other cases (air sampling and direct radiation monitoring, for example), the PNPP REMP includes more locations than are required. The Operating License requirements for each sample type are discussed in more detail below; sample types and locations that are required by the Operating License are shown in BOLD in Table 1.

Table 1: REMP Sampling Locations

| #  | Description            | Miles | Direction | Media(1)               |
|----|------------------------|-------|-----------|------------------------|
| 1  | Redbird                | 3.4   | ENE       | AIR, TLD               |
| 2  | Site boundary          | 0.7   | Ε         | TLD                    |
| 3  | Meteorological tower   | 1.0   | SE        | AIR, TLD, PR, SOIL     |
| 4  | Site boundary          | 0.7   | S         | AIR, TLD, PR, SOIL     |
| 5  | Quincy Substation      | 0.6   | SW        | AIR, TLD               |
| 6  | Concord Service Center | 11.0  | SSW       | AIR, TLD, PR, SOIL, VG |
| 7  | Site boundary          | 0.6   | NE        | AIR, TLD, PR, SOIL, VG |
| 8  | Site boundary          | 0.8   | E         | TLD                    |
| 9  | Site boundary          | 0.7   | ESE       | TLD, SOIL              |
| 10 | Parmly Rd              | 0.8   | SSE       | TLD                    |
| 11 | Parmly Rd              | 0.6   | SSW       | TLD                    |
| 12 | Site boundary          | 0.6   | WSW       | TLD, PR, SOIL          |
| 13 | Madison-on-the-Lake    | 4.7   | ENE       | TLD                    |
| 14 | Hubbard Rd             | 4.9   | E         | TLD                    |
| 15 | Eagle St Substation    | 5.1   | ESE       | TLD                    |
| 16 | Dayton Rd              | 5.0   | SE        | TLD                    |
| 17 | Chadwick Rd            | 5.2   | SSE       | TLD                    |
| 18 | Blair Rd               | 5.0   | S         | TLD                    |
| 19 | Lane Rd                | 5.3   | SSW       | TLD                    |
|    |                        |       |           |                        |

| 20  | Nursery Rd                       | 5.3  | SW        | TLD                    |  |
|-----|----------------------------------|------|-----------|------------------------|--|
| 21  | Hardy Rd                         | 5.1  | WSW       | TLD                    |  |
| 22  | Main St                          | 6.9  | SW        | TLD                    |  |
| 23  | High St                          | 7.9  | WSW       | TLD                    |  |
| 24  | St. Clair Ave                    | 15.1 | SW        | TLD                    |  |
| 25  | Offshore at PNPP Discharge       | 0.6  | NNW       | SEDIMENT, FISH         |  |
| 26  | Offshore of Redbird              | 4.2  | ENE       | SEDIMENT               |  |
| 27  | Offshore of Fairport Harbor      | 7.9  | WSW       | SEDIMENT               |  |
| 28  | CEI Ashtabula Plant Intake       | 22.0 | ENE       | WATER                  |  |
| 29  | River Rd                         | 4.3  | SSE       | TLD                    |  |
| 30  | Lane Rd                          | 4.8  | SSW       | TLD                    |  |
| 32  | Offshore of Mentor               | 15.8 | WSW       | SEDIMENT, FISH         |  |
| 34  | PNPP Intake                      | 0.7  | NW        | WATER                  |  |
| 35  | Site boundary                    | 0.6  | E         | AIR, TLD, PR, SOIL, VG |  |
| 36  | Lake County Water Plant          | 3.9  | WSW       | TLD, WATER             |  |
| 39  | Goldings Farm Stand              | 1.8  | SSW       | FOOD PRODUCTS          |  |
| 41  | Clark Rd                         | 1.1  | SW        | TLD                    |  |
| 42  | Parmly Rd                        | 0.8  | S         | TLD                    |  |
| 43  | Parmly Rd                        | 1.0  | SSE       | TLD                    |  |
| 44  | Parmly Rd                        | 1.0  | SSE       | VG                     |  |
| 45  | Clark Rd                         | 0.9  | SSW       | TLD                    |  |
| 47  | Zoldak milk farm                 | 6.5  | E         | MILK                   |  |
| 51  | Rettger milk farm                | 9.6  | S         | MILK                   |  |
| 53  | Neff Perkins Company             | 0.5  | WSW       | TLD                    |  |
| 54  | Hale Rd School                   | 4.6  | SW        | TLD                    |  |
| 55  | Center Rd                        | 2.5  | S         | TLD                    |  |
| 56  | Madison High School              | 4.0  | ESE       | TLD                    |  |
| 58  | Antioch Rd                       | 0.8  | ENE       | TLD                    |  |
| 59  | Lake shoreline at Green Rd       | 4.0  | ENE       | WATER                  |  |
| 60  | Lake shoreline at Perry Park     | 1.0  | WSW       | WATER                  |  |
| 61  | Keller milk farm                 | 7.4  | SE        | MILK                   |  |
| 62  | Shreve farm                      | 1.2  | ENE       | FOOD PRODUCTS          |  |
| 63  | Minor stream mouth               | 0.08 | NNE       | SEDIMENT               |  |
| 64  | Northwest Drain mouth            | 0.09 | NW        | SEDIMENT               |  |
| 65  | Major Stream mouth               | 0.18 | W         | SEDIMENT               |  |
| 67  | Sabo Farm                        | 2.9  | E         | FOOD PRODUCTS          |  |
| 69  | Rhoades Farm                     | 18.7 | SSW       | MILK                   |  |
| 70  | H&H Farm Stand                   | 16.2 | SSW       | FOOD PRODUCTS          |  |
| 71  | Aosley Farm                      | 7.9  | SE        | MILK                   |  |
| 72  | Sasu Farms                       | 2.4  | SW        | FOOD PRODUCTS          |  |
| 73  | West Market                      | 2.4  | SW        | FOOD PRODUCTS          |  |
| 74  | Wayman Farms                     | 4.8  | E         | FOOD PRODUCTS          |  |
| 75  | Old Orchard                      | 15.7 | E         | FOOD PRODUCTS          |  |
| 76  | Minor Stream Lower Pool          | 0.08 | NNE       | SEDIMENT               |  |
| 77  | Orosz Farm                       | 1.2  | E         | FOOD PRODUCTS          |  |
| 78  | Gerlica Farm                     | 1.5  | ENE       | FOOD PRODUCTS          |  |
| 79  | Townline Rd                      | 2.3  | ESE       | FOOD PRODUCTS          |  |
|     |                                  |      |           |                        |  |
| (1) | AIR = Air lodine and Particulate |      | VG = Vege | tation                 |  |

(1) AIR = Air Iodine and Particulate VG = Vegetation PR = Precipitation

TLD = Thermoluminescent Dosimeters



70

FOOD PRODUCTS

FOOD PRODUCTS

E



VG = VEGETATION

AIR = AIR IODINE & PARTICULATE

| STATION NO. | MEDIA         | DIRECTION |
|-------------|---------------|-----------|
| 1 1         | AIR, TLD      | ENE       |
| 13          | TLD           | ENE       |
| 14          | TLD           | E         |
| 15          | TLD           | ESE       |
| 16          | TLD           | SE        |
| 17          | TLD           | SSE       |
| 18          | TLD           | S         |
| 19          | TLD           | SSW       |
| 20          | TLD           | SW        |
| 21          | TLD           | WSW       |
| 22          | TLD           | SW        |
| 23          | TLD           | WSW       |
| 26          | SEDIMENT      | ENE       |
| 27          | SEDIMENT      | WSW       |
| 29          | TLD           | SSE       |
| 30          | TLD           | SSW       |
| 36          | WATER, TLD    | WSW       |
| 47          | MILK          | E         |
| 54          | TLD           | SW        |
| 55          | TLD           | S         |
| 56          | TLD           | ESE       |
| 59          | WATER         | ENE       |
| 61          | MILK          | SE        |
| 67          | FOOD PRODUCTS | E         |
| 71          | MILK          | SE        |
| 72          | FOOD PRODUCTS | SW        |
| 73          | FOOD PRODUCTS | SW        |
| 74          | FOOD PRODUCTS | E         |
| 79          | FOOD PRODUCTS | ESE       |

AIR = AIR IODINE & PARTICULATE

TLD = THERMOLUMINESCENT DOSIMETER

Figure 3: REMP sampling locations between two and eight miles from the plant site.



Figure 4: REMP sampling locations within two miles of the plant site.

| STATION N | O. MEDIA               | DIRECTION |
|-----------|------------------------|-----------|
| 2         | TLD                    | E         |
| 3         | AIR, TLD, PR, SOIL     | SE        |
| 4         | AIR, TLD, PR, SOIL     | S         |
| 5         | AIR, TLD               | SW        |
| 7         | AIR, TLD, PR, SOIL, VG | NE        |
| 8         | TLD                    | E         |
| 9         | TLD, SOIL              | ESE       |
| 10        | TLD                    | SSE       |
| 11        | TLD                    | SSW       |
| 12        | TLD, PR, SOIL          | WSW       |
| 25        | SEDIMENT, FISH         | NNW       |
| 34        | WATER                  | NW        |
| 35        | AIR, TLD, PR, SOIL, VG | E         |
| 39        | FOOD PRODUCTS          | SSW       |
| 41        | TLD                    | SW        |
| 42        | TLD                    | S         |
| 43        | TLD                    | SSE       |
| 44        | VG                     | SSE       |
| 45        | TLD                    | SSW       |
| 53        | TLD                    | WSW       |
| 58        | TLD                    | ENE       |
| 60        | WATER                  | WSW       |
| 62        | FOOD PRODUCTS          | ENE       |
| 63        | SEDIMENT               | NNE       |
| 64        | SEDIMENT               | NW        |
| 65        | SEDIMENT               | W         |
| 76        | SEDIMENT               | NNE       |
| 77        | FOOD PRODUCTS          | E         |
| 78        | FOOD PRODUCTS          | ENE       |
|           |                        |           |

KEY:

AIR = AIR IODINE & PARTICULATE

TLD = THERMOLUMINESCENT DOSIMETER

PR = PRECIPITATION

VG = VEGETATION

#### SAMPLE ANALYSIS

When environmental samples are analyzed for radioactivity, several types of measurements are performed to provide information about the types of radiation and radionuclides present. The major analyses that are performed are discussed below.

Gross beta analysis measures the total amount of beta emitting radioactivity present in a sample. Beta radiation may be released by many different radionuclides. Since beta decay gives a continuous energy spectrum rather than the discreet lines or "peaks" associated with gamma radiation, identification of specific beta emitting nuclides is much more difficult. Therefore, gross beta analysis only indicates whether the sample contains normal or abnormal concentrations of beta emitting radioactivity; it does not identify specific radionuclides. Gross beta analysis primarily acts as a tool to identify samples that may require further analysis.

Gamma spectral analysis provides more specific information than does gross beta analysis. Gamma spectral analysis identifies each radionuclide present in the sample that emits gamma radiation, and the amount of radioactivity associated with each. No two radionuclides emit the same energy gamma rays. Therefore, each radionuclide has a very specific "finger-print" that allows for accurate identification.

lodine analysis measures the amount of radioiodine present in a sample. Some media (e.g. air sample charcoal cartridges), are analyzed directly. In other media (e.g. milk), iodine is extracted by chemical separation.

Tritium analysis indicates whether a sample contains the radionuclide tritium (H-3) and the amount of radioactivity present as a result. Tritium is a natural or man-made isotope of hydrogen that emits low energy beta particles.

Gamma doses received by thermoluminescent dosimeters (TLD) while in the field are determined by a special laboratory procedure. Thermoluminescence is a process by which ionizing radiation interacts with the sensitive material in the TLD, the phosphor. Energy is trapped in the TLD material and can be stored for months or years. This provides an excellent method to measure the dose received over long periods of time. The amount of energy that was stored in the TLD as a result of interaction with radiation is removed and measured by a controlled heating process in a calibrated reading system. As the TLD is heated, the phosphor releases the stored energy as light. The amount of light is directly proportional to the amount of radiation to which the TLD was exposed. The reading process zeroes the TLD and prepares it for reuse.

Table 2 provides a list of the type(s) and frequency of analyses performed on environmental samples collected for the PNPP REMP in 1993.

| SAMPLE TYPE            | FREQUENCY           | ANALYSES<br>PERFORMED        |
|------------------------|---------------------|------------------------------|
| Atmospheric Monitoring |                     |                              |
| Airborne Particulates  | Weekiy<br>Quarterly | Gross Beta<br>Gamma Spectral |
| Airborne Radioiodine   | Weekly              | lodine-131                   |
| Precipitation          | Monthly             | Gross Beta                   |
|                        |                     | Gamma Spectral<br>Tritium    |

| Tamanishal    | Mankarina  |
|---------------|------------|
| 1611622111/41 | Monitoring |

| Milk                         | Monthly/Bimonthly | Gamma Spectral<br>lodine-131 |
|------------------------------|-------------------|------------------------------|
|                              | Quarterly         | Strontium                    |
| Food Products                | Monthly           | Gamma Spectral               |
| Vegetation                   | Monthly           | Gamma Spectral               |
| Soil                         | Quarterly         | Gamma Spectral<br>Strontium  |
| Aquatic Monitoring           |                   |                              |
| Waller                       | Monthly           | Gross Beta                   |
|                              |                   | Gamma Spectral               |
|                              | Quarterly         | Tritium                      |
|                              |                   | Strontium                    |
| Fish                         | Biannually        | Gamma Spectral               |
| Sedimant                     | Biannually        | Gamma Spectral<br>Strontium  |
| Direct Radiation Monitoring  |                   |                              |
| Thermoniminescent Dosimeters | Quarterly         | Gamma Dose                   |
|                              | Annually          | Gamma Dose                   |

Table 2: Analyses performed on REMP samples.

Samples often contain radioactivity that is below the lower limit of detection (LLD). The LLD is the smallest amount of activity that will show a positive result for which there can be confidence that radioactivity is present. When a measurement is reported as less than the LLD, it means that the radioactivity is so low it cannot be accurately measured with a high degree of confidence. The NRC, as part of the PNPP Operating License, has established values for the lower limit of detection for REMP sample analysis. The vendor laboratory was able to comply with those values in 1993. The NRC also requires special reporting if sample analysis results exceed set limits. No values exceeded these reporting levels in 1993.

#### 1993 SAMPLING PROGRAM

The contribution of radionuclides from the operation of PNPP is assessed by comparing results from the 1993 program with preoperational data (i.e., data from before 1986), operational data from previous years, and control location data. The results for each sample type are discussed below and compared to historical data to determine if there are any observable trends. All results are expressed as concentration. Refer to Appendix B: 1993 Radiological Environmental Monitoring Program Data, for more detailed results.

#### Program Changes

There were several changes to the program in 1993. These changes include the addition and deletion of sample locations as follows:

| January | Water sampling location #68, at the Ohio-American Water Company, was dropped from the program due to difficulty obtaining samples. Equipment contiguration resulted in unreliability. Location #28, at the CEI Ashtabula plant, was added to the program as a replacement. |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| June    | Milk sampling location #69 was dropped from the program. The farmer moved out of the area.                                                                                                                                                                                 |
| July    | Location #77 was added to the program for food product samples.                                                                                                                                                                                                            |

August Locations #78 and #79 were added to the program for food product samples. These locations were identified in the 1993 Land Use Census.

November Locations #29 and #30 were added as TLD locations. It was noted during a Quality Assurance audit of the REMP that the TLDs in in the SSE and SSW sectors (#17 and #19, respectively) were not located the proper distance from the plant, based on requirements of the PNPP Operating License. The two new locations are within the required distance.

As noted earlier, feed/silage was dropped from the program this year based on having established a baseline of data since 1982.

#### Missed Samples

On occasion, samples cannot be collected. This can be due to a variety of events, including equipment malfunction, animal husbandry practices, lost shipments, or vandalism. Table 3 provides a list of missed samples, the sample location, and the reason the sample was missed.

Table 3: Missed REMP samples, 1993

| MEDIA      | LOCATION<br>NO. | DATE     | REASON MISSED              |
|------------|-----------------|----------|----------------------------|
| Milk       | 47, 61          | 1/11     | Drying period for goats(1) |
| Milk       | 47, 61          | 2/8      | Drying period for goats(1) |
| Milk       | 47, 61          | 3/9      | Drying period for goats(1) |
| Milk       | 69              | 4/26     | Sample not provided        |
| Milk       | 69              | 5/10     | Sample not provided        |
| Milk       | 47              | 10/18    | Goat unable to produce     |
| Milk       | 47              | 11/8     | Drying period for goats(1) |
| Milk       | 47, 61          | 12/6     | Drying period for goats(1) |
| Lake water | 59, 60          | 2/23     | Lake ice covered           |
| Lake water | 59, 60          | 3/31     | Lake ice covered           |
| TLD        | 54              | 1st Qtr. | Lost in field(2)           |
| TLD        | 56              | 2nd Qtr. | Lost in field(2)           |
| TLD(3)     | 1               | 3rd Qtr. | Lost in field(2)           |
| TLD        | 23              | 4th Qtr. | Lost in field(2)           |
| TLD(3)(4)  | 1. 56           | Annual   | Lost in field(2)           |

- The drying period for goats is an annual occurrence. Goats, unlike cows, cannot produce milk all year.
- (2) Missing TLDs can be the result of vandalism. At locations where vandalism has been identified as a recurring problem, the TLD is relocated. Loss of the TLD's listed above was unusual; they were not relocated as a result of this single event.
- (3) Location #1 second quarter and annual TLDs were determined to be missing in early August. They were replaced on 8/19, resulting in a 50 day sample period for the third quarter and 140 day sample period for the annual.
- (4) Location 56 annual TLD was replaced on 7/14, resulting in a 176 day sample period.

In addition to the missed samples listed in the table, grass samples were not collected for the months of January to April and November to December due to lack of growth and snow cover. A major construction project at location #44 prevented any sample collection there in 1993. If the completed project results in permanent loss of the grassy area, the location will

be dropped from the program in 1994.

Similarly, food product samples were available only during the months of July through October. Every effort was made to collect samples from the locations nearest the plant in areas of high predicted deposition. For the first three months of the growing season, this required visiting over 30 produce growers. The PNPP Operating License requires collection of three types of food products from each of two indicator locations and similar food products from a control location. These requirements were met only during the peak of the harvest season in August and September. In 1994, contracts with the two local produce growers nearest the plant in areas of high predicted deposition will be established in order to facilitate consistent sample collection. A contract will also be established with a control location.

Events may also occur which prevent a sample from being collected in the normal way, or prevent a complete sample from being collected. The following is a discussion of these events for 1993.

- On February 6, 1993, Painesville City Power, which provides electrical service for the air sampler at location #7, had a power outage for approximately two hours, disrupting service to the sampling equipment.
  - The air sample pump at location #1 was found not running at 1100 on March 10, 1993, due to a motor seizure. Based on timer and gas meter readings, the seizure occurred shortly prior to sample collection at 1100 that day. It was repaired and recalibrated, and restarted that day from at 1600.
  - From July 14 to 15, the air sample pump at location 35 was out of service for approximately 24 hours due to a power outage caused by road construction in the area.
- WATER On March 30, the power supply to the water sample pump at location #28 was found to be disconnected; a grab sample was collected in lieu of the composite sample. This sampler is located in the intake pumphouse at the Ashtabula CEI plant; the power was most likely disconnected inadvertently by a worker in the area.
  - In August, the automatic sampler at location #36 did not collect a sufficient volume of water for a sample; a grab sample was collected on August 26 in lieu of the composite sample. It was later determined (see below) that the sampler had a faulty solenoid valve.
  - In October, the automatic samplers at locations #28 and #36 did not collect a sufficient volume of water for a sample. The intake hose at location #28 was severed, and the timer at location #36 was diagnosed to have a failed solenoid valve. Grab samples were collected on October 28 in lieu of the composite samples.
  - In November, the automatic sampler at location #36 was found empty; a grab sample was collected on November 30 in lieu of the composite sample. Although the faulty solenoid valve had been replaced, water plant personnel had inadvertently disposed of the sample.

## Atmospheric Monitoring

AIR

Air sampling is conducted to detect any increase in the concentration of airborne radionuclides. Five locations (four indicator and one control), are required by the PNPP Operating License. Air sampling pumps are used to draw continuous samples at a rate of approximately one cubic foot per minute, which is roughly the same rate as human respiration. The air is

drawn through glass fiber filters, to collect particulates, and charcoal cartridges, to trap iodine. The samples are collected on a weekly basis, 52 weeks a year, from each of seven air sampling stations. Six of the locations are within four miles of the plant site; the seventh is used as a control location and is eleven miles from PNPP.

Air samples are analyzed for gross beta, iodine, and by garama spectral analysis (quarterly). A total of 364 of each type of air sample (particulate and iodine) was collected in 1993.

Gross beta activity was detected in all air samples and ranged from 8.00 - 36.00 pCi/m³. The annual average concentration of gross beta was 19.54 pCi/m³ at the indicator locations and 19.63 pCi/m³ at the control location. Historically, the concentration of gross beta in air has been essentially identical at indicator and control locations, as shown in Figure 5.



Figure 5: Annual average concentration of gross beta in air.

Except for naturally occurring beryllium-7, no radionuclide was identified in the gamma spectral analysis above the LLD lodine-131 was not detected in any sample above the LLD of 0.05 pCi/m³.

#### PRECIPITATION

Precipitation provides a mechanism to sample for radionuclide deposition from the atmosphere. Precipitation in the form of rain, snow, sleet or hall provides a surface on which airborne radionuclides can be deposited. Although not required by the PNPP Operating License, samples are collected from six locations using passive collection containers. Containers are removed monthly or when full, strained to remove debris, and shipped to the laboratory for analysis. There are five indicator locations and one control location, which is located eleven miles from PNPP.

Precipitation samples are analyzed for tritium, gross beta, and by gamma spectral analysis. A total of 72 precipitation samples were collected in 1993. Tritium was not detected above the LLD of 1500 pCi/l in any of the samples. The results of gamma spectral analysis were all below LLDs as well.

Gross beta activity was detected in all samples and ranged from 0.80 pCi/l to 66.40 pCi/l. The annual average concentration of gross beta was 7.00 pCi/l at the indicator locations and 4.97 pCi/l at the control locations. The annual average concentrations were within the range of previous years (from 2.71 pCi/l to 11.79 pCi/l).

## **Terrestrial Monitoring**

Collecting and analyzing samples of milk, food products and vegetation provides data to assess the buildup of radionuclides that may be ingested by humans. The data from soil samples provides information on the deposition of radionuclides from the atmosphere. Neither vegetation nor soil samples are required by the PNPP Operating License.

#### MILK

Samples of milk are collected once each month from November through April, and twice each month from April through October. Sampling is increased during the summer because animals are usually outside on pasture and not on stored feed. The PNPP REMP is required to include four milk locations (three within eight kilometers of the plant, and one control). If there are no milk locations that are within this distance, food product sampling must be performed. None of the milk locations included in the 1993 REMP fall within the distance required by the Operating License; food product sampling (discussed below) was performed. Milk was collected from the available locations even though they did not meet the Operating License requirements. If new locations that meet the Operating License requirements are identified in the future, they will be added to the program.

Milk samples are analyzed for iodine, strontium (quarterly), and by gamma spectral analysis. A total of 70 milk samples were collected in 1993, Iodine was not detected above the LLD of 1 pCi/l in any of the samples. Strontium-90 activity was detected in all of the eighteen samples analyzed and ranged from 1.30 - 5.70 pCi/l. The annual average concentration of Sr-90 was 3.38 pCi/l at the indicator locations and 2.55 pCi/l at the control locations. The annual average concentration was similar to those measured in previous years which have ranged from 0.96 pCi/l to 3.5 pCi/l.

The concentrations of all radionuclides except naturally occurring potassium-40 were below LLDs in all samples collected. The results for potassium-40 were similar at indicator and control locations, as expected.

#### FOOD PRODUCTS

Food products can provide a direct pathway to humans by ingestion. They can absorb radionuclides from atmospheric deposition from airborne sources or irrigation water drawn from a lake or pond receiving airborne or liquid effluents. Also, radionuclides in the soil may be absorbed by the roots of the plants and become incorporated into the edible portions. Because the current milk sampling locations do not meet the requirements of the Operating License, the PNPP REMP is required to include two indicator food product locations and one control location. Food products are collected monthly during the growing season from several farms in the vicinity of PNPP. The control location for food products is 16.2 miles from PNPP.

A total of forty food product samples were collected in 1993 and analyzed by gamma spectral analysis. Eight food products were collected, including several varieties of cabbage, broccoli, cauliflower, dill, basil, and turnip greens. Beryllium-7 and potassium-40, naturally occurring radionuclides, were found in several samples, as expected. No other radionuclides were detected above the LLDs.

#### VEGETATION

Vegetation (grass) is collected monthly during the growing season from four locations (three indicator and one control). Grass is clipped from open areas using standard lawn trimming equipment. The control location for vegetation is eleven miles away. A total of eighteen grass samples were collected in 1993 and analyzed by gamma spectral analysis. Two naturally occurring radionuclides were detected: beryllium-7 and potassium-40.

Cesium-137 was detected in three of the samples and ranged from 25.30 - 30.80 pCi/kg. The annual average concentration of cesium-137 was 27.37 pCi/kg at the indicator locations; none was detected at the control location. In 1992, none was detected at indicator locations; the annual average concentration was 17.90 pCi/kg at the control location. Historically, cesium-137 was found in preoperational samples collected in 1985. Since then, it has not been detected at both indicator and control locations in the same year.

#### SOIL

Soil samples are collected quarterly from seven locations (six locations and one control). The control location is eleven miles away. Only the top inch of soil is sampled in an effort to identify possible trends in the local environmental radionuclide concentrations.

Fourteen soil samples were collecte: in 1993 and analyzed by gamma spectral analysis and for strontium. Two naturally occurring radionuclides, potassium-40 and Radium-226 were detected in the samples, as expected. Cesium-137 activity was detected in twelve samples and ranged from 66.00 - 508.00 pCi/kg. The annual average concentration of cesium-137 was 316.70 pCi/kg at the indicator locations and 208.50 pCi/kg at the control location. For all sample sites, the annual average concentrations were similar to those measured in previous years (Figure 6). The downward trend apparent in the figure represents the decrease in cesium-137 deposition since atmospheric weapons testing in the 1960's and '70's.

Strontium-90 activity was detected in eleven samples and ranged from 13.00 - 46.20 pCi/kg. The annual average concentration of Sr-90 was 34.19 pCi/kg at indicator locations; none was detected at the control location.

The difference between indicator and control location results is not surprising since the presence of radionuclides in soil is so dependent on site-specific factors such as soil type and drainage. These factors determine the ability of the soil to attract ions. In this case, the soil type at the indicator locations is primarily sand (sand consists primarily of quartz grains that range in size from 0.05 millimeters to 2 millimeters in diameter). At the control location, the soil type is silty loam (silty loam consists of a mixture of silt, clay and sand; the most predominant grain size is less than 0.05 millimeters). Drainage in sandy soil is generally very good; the silty loam is somewhat poorly drained.



Figure 6: Annual average concentration of cesium-137 in soil

## **Aquatic Monitoring**

Radionuclides may be present in Lake Erie from many sources including atmospheric deposition, run-off/soil erosion, and releases of radioactivity in liquid effluents from hospitals, universities or other industrial facilities. These sources provide two forms of potential radiation exposure, external and internal. External exposure can occur from contact with water or shoreline sediments. Internal exposure can occur from ingestion of radionuclides, either directly from drinking the water, or as a result of the transfer of radionuclides through the aquatic food chain to the eventual consumption of aquatic organisms, such as fish. To monitor these pathways, PNPP samples water, shoreline sediments, and fish.

#### WATER

Water is sampled from five locations along Lake Erie in the vicinity of the PNPP as required by the PNPP Operating License. Samples from three locations are collected using composite sample pumps. The pumps are designed to collect water at regular intervals and composite it in a sample container. The containers are removed monthly and the samples shipped to the laboratory for analysis. Samples from two locations are collected weekly and combined. Each month the combined sample is shipped for analysis.

Fifty-six water samples were collected and analyzed for gross beta activity and by gamma spectral analysis in 1993. From these, three monthly samples were composited into quarterly samples and analyzed for tritium, and one sample was analyzed each quarter for strontium.

Gross beta activity was detected in all samples collected and ranged from 1.80 - 4.00 pCi/l. The annual average concentration of gross beta was 2.47 pCi/l at the indicator locations and 2.82 pCi/l at the control location. For all sample locations, the annual average concentrations were similar to those measured in previous years (Figure 7).



Figure 7: Annual average concentration of gross beta in water

The significant difference between pre-1988 data and post-1988 data has been attributed to a change in vendor laboratories in 1987/1988. A comprehensive explanation is provided in the 1987 Annual Environmental Operating Report.

No radionuclides were detected by gamma spectral analysis above the LLD. Tritium was detected in four samples and ranged from 193.00 - 233.00 pCi/l. The annual average concentration of tritium was 211.00 pCi/l at the indicator locations; none was detected at the control location. These results are well within the range fo those measured in previous years which have ranged from below the lower limit of detection to 2,200 pCi/l.

Strontium-90 activity was detected in thirteen samples and ranged from 0.50 - 1.80 pCi/l. The annual average concentration of strontium-90 was 0.68 pCi/l at the indicator locations and 1.03 pCi/l at the control location. For all sample locations, the annual average concenatrations were similar to those measured in previous years.

#### SEDIMENT

Sampling lake bottom sediments can provide an indication of the accumulation of undissolved radionuclides which may lead to internal exposure to humans through the ingestion of fish, through resuspension into drinking water, or as an external radiation source from shoreline exposure to fisherman and swimmers. Although only one location is required by the PNPP Operating License, sediment is sampled twice each year from eight locations, two of which are also fish sampling locations. Sediment samples from offshore are collected using a hand dredge. Near shore and stream bed samples are collected using a scoop.

Sixteen sediment samples were collected in 1993 and analyzed for strontium and by gamma spectrometry. Strontium-90 activity was detected in thirteen samples and ranged from 5.50 - 34.70 pCi/kg. The annual average concenatration was 13.44 pCi/kg at the indicator locations and 23.15 pCi/kg at the control location. These concentrations fall well within the range of those measured in previous years (<LLD to 1,030 pCi/kg).

The predominant radionuclide detected by gamma spectral analysis was potassium-40, which is naturally occurring. Potassium-40 has been detected in all samples since the program began in 1981. Cesium-137 was detected in eight samples and ranged from 68.00 - 757.00 pCi/kg. The annual average concentration was 161.50 pCi/kg at the indicator locations and 560.50 pCi/kg at the control location. These are within the range of concentrations measured in previous years (Figure 8).



Figure 8: Annual average concentration of cesium-137 in sediment

The changes in cesium-137 concentration from year to year may be related to the movement of sediment on the lake bottom. Wave action and currents can cause significant sediment movement between sample collections. For this reason, it is unlikely the same bed of sediment is sampled at each collection. This would contribute to inconsistent data, as the Figure demonstrates.

Cobalt-60 was detected at one location in 1993. Positive results for cobalt-60 were expected at this location; it was identified during an investigation in 1992 and added to the REMP (See the 1992 Annual Environmental Monitoring Report for more information). In 1994, this location will be deleted from the REMP but will be monitored and tracked per the requirements of 10CFR50.75(g), the decommissioning rule. In 1993, the concentration ranged from 96.00 - 230.00 pCi/kg.

#### FISH

Fish are analyzed primarily to quantify the dietary radionuclide intake by humans, and secondarily to serve as indicators of radioactivity in the aquatic ecosystem. Fish are collected from two locations, twice each year as required by the Operating License. Important sport and commercial species are targeted, and only the fillets are sent to the laboratory for analysis. A scientific collecting permit is obtained annually from the Ohio Department of Natural Resources for fish sampling.

Twenty-five fish samples were collected in 1993 and analyzed by gamma spectral analysis. Eleven species of fish were represented, including walleye, freshwater drum, catfish, smallmouth bass, carp, white sucker, white perch, yellow perch, red horse, lake trout and rockbass. As expected, naturally occurring potassium-40 was found in all samples. Cesium-137 was detected in three samples and ranged from 13.60 - 20.90 pCi/kg. The annual average concentration of cesium-137 was 20.90 at the indicator location and 14.65 at the control location. These values are within the range of those measured in previous years which range from <LLD to 73.0 pCi/kg. No other radionuclides were detected above the LLD.

## **Direct Radiation Monitoring**

#### THERMOLUMINESCENT DOSIMETERS

Environmental radiation is measured directly at thirty-seven locations around the PNPP site (the REMP is required to include 28 locations, two of which are control locations). The locations are positioned in two rings around the plant as well as at the site boundary. The inner ring is within a one mile radius of the plant site; the outer ring is four to five miles from the plant. Control locations are over ten miles from the plant in the two least prevalent wind directions. Each location is equipped with three thermoluminescent desimeters (TLDs). Two are changed quarterly and one is changed annually.

A total of 310 thermoluminescent dosimeters (TLDs) were collected and analyzed in 1993. This includes 275 collected on a quarterly basis, and 35 collected annually. In 1993, the annual average dose for all indicator locations was 53.46 mR, and for all control locations was 55.90 mR. Figure 9 shows historical TLD data.

The TLD results are higher prior to 1988 due to a change in vendor laboratory services. A comprehensive explanation of the difference is provided in the 1988 Annual Environmental Operating Report.

It was noted during a Quality Assurrance audit of the REMP that the results for annual and duplicate quarterly TLDs had not been included in past annual reports. All TLD results have

been included in this report; it is summarized in Appendix A. Complete data can be found in Appendix B.



Figure 9: Average dose per quarier

#### INTERLABORATORY COMPARISON PROGRAM

The purpose of the Interlaboratory Cross-Check comparison program is to provide an independent check on the vendor laboratory's analytical procedures and to point out any possible problems. Samples with a known concentration of specific radionuclides are provided to the vendor laboratory. The vendor laboratory measures and reports the concentration of specified radionuclides. The known values (EPA values) are then compared to the vendor results. Results consistently outside established acceptance criteria indicates a need to check instruments or procedures.

In 1993, the vendor laboratory analyzed sixteen samples of milk, water, or air filters, performing 62 analyses, for this program. Four (6.4%) results were outside the acceptable range. The results of this program are shown in Table 4. Results are expressed in pCi/I for liquid samples, pCi/filter for filter samples, and mg/I for potassium results. Results shown in BOLD were outside the control limits and discussed in the footnotes below.

Table 4: 1993 EPA Cross-Check Intercomparison Program results.

| DATE | SAMPLE<br>TYPE | ANALYSIS       | VENDOR RESULT | EPA VALUE    | ACCEPTABLE<br>RANGE      |  |
|------|----------------|----------------|---------------|--------------|--------------------------|--|
| Jan. | Water          | Sr-89<br>Sr-90 | 15.0<br>10.3  | 15.0<br>10.0 | 6.3 - 23.7<br>1.3 - 18.7 |  |
| Jan. | Water          | Pu-239         | 17.5          | 20.0         | 16.5 - 23.5              |  |
| Jan. | Water          | Alpha          | 17.1          | 34.0         | 18.4 - 49.6(1)           |  |
|      |                | Beta           | 46.7          | 44.0         | 35.3 - 52.7              |  |
| Feb. | Water          | 1-131          | 106.0         | 100.0        | 82.7 - 117.3             |  |
| Feb. | Water          | Uranium        | 7.2           | 7.6          | 2.4 - 12.8               |  |
| Mar. | Water          | Ra-226         | 9.3           | 9.8          | 72-12.4                  |  |
|      |                | Ra-228         | 20.8          | 18.5         | 10 - 26.5                |  |
| Apr. | Water A        | Alpha          | 88.3          | 95.0         | 136.6                    |  |
|      |                | Ra-226         | 25.4          | 24.9         | 9 3 - 31.3               |  |
|      |                | Ra-228         | 17.4          | 19.0         | 7 - 27.3                 |  |
|      |                | Uranium        | 27.8          | 28.9         | 23.7 - 34.1              |  |
|      |                |                |               |              |                          |  |

|      | 11/ P      |           | 444.9  |        |                  |
|------|------------|-----------|--------|--------|------------------|
|      | Water B    | Beta      | 141.7  | 177.0  | 130.2 - 223.8    |
|      |            | Sr-89     | 28.7   | 41.0   | 32.3 - 49.7(2)   |
|      |            | Sr-90     | 28.0   | 29.0   | 20.3 - 37.7      |
|      |            | Co-60     | 41.3   | 39.0   | 30.3 - 47.7      |
|      |            | Cs-134    | 24.7   | 27.0   | 18.3 - 35.7      |
|      |            | Cs-137    | 30.0   | 32.0   | 23.3 - 40.7      |
| Jun. | Water      | H-3       | 9613.3 | 9844.0 | 8136.8 - 11551.2 |
|      |            | Co-60     | 17.3   | 15.0   | 6.3 - 23.7       |
|      |            | Zn-65     | 114.0  | 103.0  | 85.7 - 120.3     |
|      |            | Ru-106    | 108.0  | 119.0  | 98.2 - 139.8     |
|      |            | Cs-134    | 5.7    | 5.0    | 0.0 - 13.7       |
|      |            | Cs-137    | 6.0    | 5.0    | 0.0 - 13.7       |
|      |            | Ba-133    | 101.7  | 99.0   | 81.7 - 116.3     |
| Jul. | Water      | Sr-89     | 28.3   | 34.0   | 25.3 - 42.7      |
|      |            | Sr-90     | 25.0   | 25.0   | 16.3 - 33.7      |
|      |            | Alpha     | 15.0   | 15.0   | 6.3 - 23.7       |
|      |            | Beta      | 41.3   | 43.0   | 31.0 - 55.0      |
| Muy. | Water      | Uranium   | 24.9   | 25.3   | 20.1 - 30.5      |
|      | Air filter | Alpha     | 17.0   | 19.0   | 10.3 - 27.7      |
|      |            | Beta      | 47.3   | 47.0   | 38.3 - 55.7      |
|      |            | Sr-90     | 19.3   | 19.0   | 10.3 - 27.7      |
|      |            | Cs-137    | 10.0   | 9.0    | 0.3 - 17.7       |
| Sep. | Water      | Ra-226    | 15.9   | 14.9   | 11.1 - 18.7      |
|      |            | Ra-228    | 21.0   | 20.4   | 11.6 - 29.2      |
|      | Milk       | 1-131     | 125.3  | 120.0  | 99.2 - 140.8     |
|      |            | Sr-89     | 19.3   | 30.0   | 21.3 - 38.7(3)   |
|      |            | Sr-90     | 22.0   | 25.0   | 16.3 - 33.7      |
|      |            | Cs-137    | 49.0   | 49.0   | 40.3 - 57.7      |
|      |            | K         | 1616.7 | 1679.0 | 1533.3 - 1824.7  |
| Oct. | Water      | 1-131     | 116.7  | 117.0  | 96.2 - 137.8     |
|      |            | Gr. Alpha | 39.7   | 40.0   | 22.7 - 57.3      |
|      |            | Ra-226    | 10.6   | 9.9    | 7.3 - 12.5       |
|      |            | Ra-228    | 13.2   | 12.5   | 7.1 - 17.9       |
|      |            | Uranium   | 15.3   | 15.1   | 9.9 - 20.3       |
|      |            | Beta      | 52.0   | 58.0   | 40.7 - 75.3      |
|      |            | Sr-89     | 11.3   | 15.0   | 6.3 - 23.7       |
|      |            | Sr-90     | 11.0   | 10.0   | 1.3 - 18.7       |
|      |            | Co-60     | 10.7   | 10.0   | 1.3 - 18.7       |
|      |            | Cs-134    | 10.0   | 12.0   | 3.3 - 20.7       |
|      |            | Cs-137    | 12.3   | 10.0   | 1.3 - 18.7       |
|      |            | Alpha     | 18.3   | 20.0   | 11.3 - 28.7      |
|      |            | Beta      | 13.7   | 15.0   | 6.3 - 23.7       |
| Nov. | Water      | H-3       | 7310.0 | 7398.0 | 6114.1 - 8681.9  |
|      |            | Ba-133    | 75.7   | 79.0   | 65.1 - 92.9      |
|      |            | Co-60     | 30.7   | 30.0   | 21.3 - 38.7      |
|      |            | Cs-134    | 51.3   | 59.0   | 50.3 - 67.7      |
|      |            | Cs-137    | 41.7   | 40.0   | 31.3 - 48.7      |
|      |            | Ru-106    | 163.3  | 201.0  | 166.3 - 235.7(4) |
|      |            | Zn-65     | 157.0  | 150.0  | 124.0 - 176.0    |
|      |            |           |        | 10010  | 12.10            |

- (1) Gross alpha analysis was repeated with similar results. An investigation of possible causes for the deviation from the EPA was conducted by the vendor laboratory; no cause was discovered. An analysis specifically for the radionuclide used in spiking (thorium-230) was performed in triplicate. Results of 15.5 pCi/L, 13.4 pCi/L, and 14.8 pCi/L were obtained. It should be noted that 66% of all participants failed this test with the grand average of 17.1pCi/L. No further investigation was conducted. It should be noted that on the next gross alpha check, the vendor lab reported results that were exactly the known value.
- (2) No cause for the low strontium-89 was found. The analyst was observed performing this procedure with no noted discrepancies. The vendor will continue to monitor this procedure in the future.
- (3) There is no apparent cause of the low strontium-89 results. The analyst has been observed performing this procedure with no discrepancies noted. No further action is planned.
- (4) The cause of the low Ru-106 is not known. It should be noted that the grand average of all participants in this analysis was 175.3 pCi/l, with 54% of all participants outside of limits.

In addition to their participation in the EPA Interlaboratory Comparison Program, the vendor laboratory participates in an International Intercompanison of Environmental Dosimeters and conducts an internal crosscheck program for dosimeters. Table 5 shows the results of the International Intercomparison program for 1993; Table 6 shows the results of the internal crosscheck program.

Table 5: 1993 International Intercomparison of Environmental Dosimeters

| DATE | SAMPLE<br>TYPE | VENDOR RESULT        | KNOWN VALUE          | ACCEPTABLE<br>RANGE                       |
|------|----------------|----------------------|----------------------|-------------------------------------------|
| Aug. | TLD-1          | 25.7<br>22.7<br>62.7 | 27.0<br>25.9<br>72.7 | 16.2 - 36.6<br>15.6 - 34.4<br>49.5 - 90.1 |
| Aug. | TLD-2          | 26.0<br>24.1<br>69.2 | 27.0<br>25.9<br>72.7 | 16.2 - 36.6<br>15.6 - 34.4<br>49.5 - 90.1 |

Table 6: 1993 Vendor Internal crosscheck program for dosimeters

| DATE | SAMPLE<br>TYPE | VENDOR RESULT | KNOWN VALUE |
|------|----------------|---------------|-------------|
| Mar. | TLD            | 10.0          | 10.2        |
|      |                | 25.5          | 25.5        |
|      |                | 42.7          | 45.9        |

The vendor laboratory routinely monitors it's own quality by analyzing "spiked" samples (samples with a known quantity of radioactive material present in them). Table 7 shows the results of this program for 1993.

Table 7: 1993 Vendor laboratory "spiked" sample results

| DATE | SAMPLE     | TYPE      | VINDOR RESULT | EPA RESULT | ACCEPTABLE<br>RANGE |
|------|------------|-----------|---------------|------------|---------------------|
| Jan. | Milk       | Sr-89     | 6.7           | 8.7        | 0.0 - 18.7          |
|      |            | Sr-90     | 20.0          | 19.2       | 9.2 - 29.2          |
|      |            | Cs-134    | 17.1          | 21.3       | 11.3 - 31.3         |
|      |            | Cs-137    | 21.4          | 23.8       | 13.8 - 33.8         |
| Feb. | Milk       | 1-131     | 72.5          | 71.5       | 57.2 - 85.8         |
|      | Vegetation | I-131     | 994.5         | 953.7      | 763.0 - 1144.4      |
|      | Charcoal   | 1-131     | 95.2          | 95.4       | 76.3 - 114.5        |
| Apr. | Water      | Gr. alpha | 10.4          | 10.4       | 0.4 - 20.4          |
|      |            | Gr. beta  | 22.0          | 20.6       | 10.6 - 30.6         |
|      |            | Sr-89     | 18.2          | 22.2       | 12.2 - 32.2         |
|      |            | Sr-90     | 20.1          | 17.0       | 7.0 - 27.0          |
|      |            | H-3       | 5464.0        | 5428.0     | 4342.4 - 6513.6     |
|      |            | I-131     | 149.8         | 145.0      | 116.0 - 174.0       |
|      |            | Co-60     | 24.8          | 21.5       | 11.5 - 31.5         |
|      |            | Cs-134    | 26.4          | 26.4       | 16.4 - 36.4         |
|      |            | Cs-137    | 33.9          | 31.7       | 21.7 - 41.7         |
|      | Milk       | 1-131     | 139.8         | 145.0      | 116.0 - 174.0       |
|      |            | Cs-134    | 48.8          | 52.8       | 42.8 - 62.8         |
|      |            | Cs-137    | 65.2          | 63.4       | 53.4 - 73.4         |
| May  | Fish       | Cs-137    | 68.2          | 67.6       | 57.6 - 77.6         |
| Jun. | Water      | Th-230    | 4.2           | 4.5        | 2.7 - 6.3           |
|      |            | Alpha     | 8.9           | 12.9       | 7.7 - 18.1          |
|      |            | Beta      | 22.0          | 31.9       | 19.1 - 44.7         |
| Aug. | Water      | Fe-55     | 1684.0        | 1420.0     | 1136.0 - 1704.0     |
|      |            | Sr-90     | 32.2          | 30.4       | 24.3 - 36.5         |
|      |            | H-3       | 9910.0        | 10430.0    | 8344.0 - 12516.0    |
|      |            | Co-60     | 247.0         | 247.7      | 222.9 - 272.5       |
|      |            | Cs-134    | 141.6         | 141.1      | 127.0 - 155.2       |
|      |            | Cs-137    | 283.5         | 247.2      | 222.5 - 271.9(1)    |
|      | Milk       | Sr-89     | 29.1          | 35.4       | 25.4 - 45.4         |
|      |            | Sr-90     | 18.3          | 19.2       | 9.2 - 29.2          |
|      | Fish       | Cs-134    | 68.8          | 75.3       | 65.3 - 85.3         |
|      |            | Cs-137    | 203.6         | 198.1      | 178.3 - 217.9       |
|      | Sediment   | Cs-134    | 74.1          | 71.0       | 61.0 - 81.0         |
|      |            | Cs-137    | 212.4         | 197.8      | 178.0 - 217.6       |
| Sep. | Water      | 1-131     | 39.0          | 42.1       | 30.1 - 54.1         |
|      |            | Sr-89     | 21.9          | 28.8       | 18.8 - 38.8         |
|      |            | Sr-90     | 19.5          | 19.0       | 9.0 - 29.0          |
|      |            | 1-129     | 18.1          | 18.6       | 6.6 - 30.6          |
|      | Milk       | 1-131     | 44.5          | 42.1       | 30.1 - 54.1         |
|      | Charcoal   | 1-131     | 90.3          | 84.3       | 67.4 - 101.2        |
|      | Vegetation | 1-131     | 193.2         | 170.2      | 136.2 - 204.2       |
| Oct. | Water      | H-3       | 16900.0       | 17380.0    | 13904.0 - 20856.0   |
|      |            | Co-60     | 19.3          | 18.3       | 8.3 - 28.3          |
|      |            | Cs-134    | 31.5          | 33.5       | 23.5 - 43.5         |

|      | 0-407  | 44.4 | 40.0 | 33.2 - 53.2  |
|------|--------|------|------|--------------|
|      | Cs-137 | 44.4 | 43.2 | 33.2 - 33.2  |
|      | 1-131  | 95.2 | 88.9 | 71.1 - 106.7 |
| Milk | I-131  | 49.7 | 44.5 | 32.5 - 56.5  |
|      | Cs-134 | 30.8 | 33.0 | 23.0 - 43.0  |
|      | Cs-137 | 43.4 | 43.2 | 33.2 - 53.2  |

(1) The cause of the high Cs-137 data is unknown. All data was reviewed; no errors were found in the calculations. The employee was observed performing this analysis and no deviations from the procedure were observed. The employee's results have been good in the past; no further action is planned.

#### CONCLUSION

No unusual radionuclide concentrations or exposure levels were detected during 1993. Atmospheric monitoring results were consistent with past results. The prevalent radionuclide in air was beryllium-7, which is naturally occurring.

Naturally occurring potassium-40 was detected in all terrestrial samples, as expected. Strontium-90 was detected in milk and soil; cesium-137 was detected in grass and soil. The concentrations were similar to those measured in previous years.

There was no significant change in radionuclide concentrations at indicator locations for aquatic samples in 1993. Strontium-90 was detected in water and sediment. Cesium-137 was detected in sediment and fish. Results were within the range of past data.

Finally, direct radiation measurements are relatively consistent with past data.



# LAND USE CENSUS

#### INTRODUCTION

Each year a land use census is conducted to identify the locations of the nearest milk animal, garden (of greater than 500 ft²), and residence in each of the meteorological sectors. The Land Use Census is required by the PNPP Technical Specifications, Section 3/4.12.2. The information gathered during the Land Use Census is used for off-site dose assessment and to update sampling locations for the Radiological Environmental Monitoring Program.

The Land Use Census is conducted by traveling all roads within a five-mile radius of the plant site, and recording and mapping the location of the nearest resident, milk animal, and vegetable garden in each of the meteorological sectors around the plant that are over land. The 1993 Census was conducted on July 14 and 15. The location of the nearest residences, vegetable gardens (larger than 500 square feet), and milk producing animals were recorded in addition to agricultural growers in the area, recreation areas, and public drinking water supplies.

The information has been tabulated below; all locations are plotted on the map in Figure 1. Note that the W, WNW, NW, N, and NNE sectors extend over Lake Erie and therefore were not included in the survey.

#### DISCUSSION AND RESULTS

There were no changes in nearest residences or in milk producing animals within five miles of the plant. The following changes in nearest gardens were recorded in the 1993 census:

- ENE Sector A new garden was identified at 4591 Lockwood Road.
- o SE Sector A new garden was identified at 4551 Middle Ridge Road.
- o WSW Sector A new garden was identified at 3422 Parmly Road.

Table 1 lists the nearest residence by sector. The residence with the highest X/Q (highest dispersion factor and therefore highest possible calculated dose) is located at 3121 Center Road, in the south sector, approximately 0.9 miles from the plant. This is the same residence identified in the 1992 Land Use Survey.

Table 1: Nearest residence by sector

| Sector | Location<br>Address | Miles<br>from PNPP | X/Q Value<br>(Sec/m³) | Map<br>Locator |
|--------|---------------------|--------------------|-----------------------|----------------|
| NE     | 4385 Lockwood Rd    | 0.8                | 2.17E-6               | 2              |
| ENE    | 4602 Lockwood Rd    | 1.0                | 1.13E-6               | 5              |
| E      | 2684 Antioch Fld    | 1.1                | 6.67E-7               | 17             |
| ESE    | 2774 Antioch Rd     | 1.2                | 4.44E-7               | 25             |
| SE     | 4495 N. Ridge Rd    | 1.2                | 3.89E-7               | 32             |
| SSE    | 3119 Parmly Rd      | 0.9                | 1.89E-6               | 34             |
| S      | 3121 Center Rd      | 0.9                | 2.25E-6               | 37             |
| SSW    | 3850 Clark Rd       | 0.9                | 1.11E-6               | 41             |
| SW     | 3440 Clark Rd       | 1.2                | 4.98E-7               | 45             |
| WSW    | 2815 Perry Park     | 1.0                | 1.72E-6               | 49             |

This year there were no milk animals within a five mile radius of the plant. There have been no milk animals since 1991.

Table 2 lists the nearest gardens that occupy at least 500 square feet. The location with the highest D/Q (highest calculated deposition) value was 3121 Center Road in the south sector. This is the same garden identified in the 1992 Land Use Survey. Three new gardens were identified in the survey this year. They are at 4591 Lockwood Road, 4551 Middle Ridge Road, and 3422 Parmly Road.

Table 2: Nearest garden by sector

| Sector | Location<br>Address  | Miles<br>from PNPP | D/Q Value<br>per m <sub>2</sub> | Map<br>Locator |
|--------|----------------------|--------------------|---------------------------------|----------------|
| NE     | 4398 Lockwood Rd     | 0.8                | 1.09E-8                         | 3              |
| ENE*   | 4591 Lockwood Rd     | 1.0                | 8.16E-9                         | 4              |
| E      | 2684 Antioch Rd      | 1.1                | 5.29E-9                         | 17             |
| ESE    | 2774 Antioch Rd      | 1.2                | 3.41E-9                         | 25             |
| SE*    | 4551 Middle Ridge Rd | 1.7                | 1.58E-9                         | 33             |
| SSE    | 3119 Parmly Rd       | 0.9                | 1.23E-8                         | 34             |
| S      | 3121 Center Rd       | 0.9                | 1.31E-8                         | 37             |
| SSW    | 3735 N. Ridge Rd     | 1.6                | 1.32E-9                         | 42             |
| SW     | 3440 Clark Rd        | 1.2                | 2.24E-9                         | 45             |
| WSW*   | 3422 Parmly Rd       | 0.9                | 6.51E-9                         | 50             |

<sup>\*</sup> Indicates a new location for 1993.

Produce growers are listed in Table 3; recreational areas and drinking water facilities are listed in Table 4. These were compiled to provide information for use in emergency planning.

Table 3: Produce growers within the vicinity of PNPP

| Sector    | Name and Address of Facility                                 | Miles      | Мар     |
|-----------|--------------------------------------------------------------|------------|---------|
|           |                                                              | from PNPP  | Locator |
| ENE       | Shreve Farm, 2431 Antioch Rd                                 | 1.2        | 6       |
| ENE       | Resident, 4762 Lockwood Rd                                   | 1.4        | 7       |
| ENE       | Gerlica Farm, 4860 Lockwood Rd                               | 1.5        | 8       |
| ENE       | Rainbow Farms, Townline Rd                                   | 1.9        | 9       |
| ENE*      | Ruland Farm, 2210 Townline                                   | 2.0        | 10      |
| ENE       | Twins Creek Farm, 2299 Haines Rd                             | 3.2        | 14      |
| E         | Orosz Farm, 2674 Antioch Rd                                  | 1.2        | 18      |
| E         | Sabo Farm, 5674 N. Ridge Rd                                  | 2.9        | 19      |
| E*        | Resident, 6325 Middle Ridge Rd                               | 3.9        | 20      |
| E         | Woodworth Farm, Middle Ridge Rd                              | 4.6        | 21      |
| E         | Wayman Farm, Across from 2605<br>Hubbard Rd                  | 4.8        | 22      |
| E         | Hub Ridge Market, Rt. 528 & Middle Ridge                     | 4.8        | 24      |
| ESE       | Secor Nursery, N. Ridge Rd                                   | 1.8        | 26      |
| ESE       | Resident, 5674 Middle Ridge Rd                               | 3.2        | 27      |
| ESE*      | Resident, 5936 Middle Ridge Rd                               | 3.3        | 28      |
| ESE       | Resident, 6030 Middle Ridge Rd                               | 3.9        | 29      |
| ESE       | Resident, 5964 S. Ridge Rd                                   | 4.1        | 30      |
| ESE       | Hart's Acres, Rt 528                                         | 5.0        | 31      |
| SSE       | Leekala Farm, 4830 Davis Rd                                  | 3.0        | 35      |
| SSE       | Peg's Produce, Rt 84                                         | 3.2        | 36      |
| S*        | Resident, 4030 Middle Ridge Rd                               | 1.5        | 38      |
| S         | Brookside Farm, Middle Ridge Rd                              | 1.7        | 39      |
| SSW       | Champion Nursery, North Ridge Rd                             | 1.8        | 43      |
| SSW<br>SW | Golding Farm, North Ridge Rd<br>Perry Park Rd                | 1.7<br>1.5 | 44      |
| SW        | Resident, 3191 N. Ridge Rd                                   | 2.4        | 45      |
| sw<br>sw  | West Orchard & Fruit Market, N. Ridge Rd<br>Perry Park/Clark | 2.7<br>1.6 | 46      |
| sw        | Garden Center, Corner Narrows Rd<br>& North Ridge Rd         | 3.6        | 47      |
|           |                                                              |            |         |

<sup>\*</sup> Indicates a new location for 1993.

Table 4: Recreational areas & public drinking water facilities

| Sector | Name and Address of Facility                                      | Miles<br>from PNPP | Map<br>Locator |
|--------|-------------------------------------------------------------------|--------------------|----------------|
| NE     | North Perry Pk, Lockwood Rd                                       | 0.7                | 1              |
| ENE    | N. Townline Pk, Townline Rd                                       | 2.3                | 11             |
| ENE    | Lake Metro Pk, Lockwood Rd                                        | 1.7                | 12             |
| ENE    | Chapel Cove Pk, Chapel Rd                                         | 3.2                | 13             |
| ENE    | Tuttle Pk, Tuttle Park Rd                                         | 3.7                | 15             |
| ENE    | Madison C.C., Chapel/Green Rd                                     | 4.0                | 16             |
| E      | Madison Village Water Plant,<br>2934 Hubbard Rd                   | 4.8                | 23             |
| S      | Lake County YMCA Outdoor Center, 4540 River Rd                    | 4.6                | 40             |
| SW     | Fairway Pines Golf Course, Corner of<br>Blase Nemeth and Bacon Rd | 4.8                | 48             |
| wsw    | Perry Township Pk, Perry Park Rd                                  | 1.1                | 51             |
| WSW    | Camp Roosevelt, Perry Park Rd                                     | 1.4                | 52             |
| WSW    | Lake County Water Treatment Plant,<br>Bacon Rd                    | 3.9                | 53             |

# LAND USE CENSUS MAP





Figure 1: 1993 Land Use Census Map

# CLAM/MUSSEL MONITORING

# INTRODUCTION

Sampling for benthic macroinvertebrates has been conducted in Lake Erie in the vicinity of the Perry Nuclear Power Plant (PNPP) since 1971. The clam/mussel program currently focuses on two species: Corbicula fluminea (Asiatic clam) and Dreissena polymorpha (zebra mussel).

# CORBICULA PROGRAM

The initial monitoring program specifically for *Corbicula* was developed by NUS Corporation for PNPP in response to an NRC bulletin and concerns of the Atomic Safety and Licensing Board. The current monitoring program was developed in conjunction with Aquatic Systems Corporation and incorporated into the Environmental Protection Plan (Operating License Appendix B) in July, 1988 by License Amendment 15. The program consists of periodic sampling of areas at both the PNPP and Eastlake Power Plants. Its purpose is to detect *Corbicula*, should it appear in the study area.

No Corbicula have ever been found in any sample collected from PNPP or from Lake Erie in the vicinity of PNPP. Two Corbicula were found in a sample collected from the Eastlake plant in June, 1987. No Corbicula have been found in any other sample collected since that time. A more detailed program history can be found in the 1986 and 1987 PNPP Annual Environmental Operating Reports.

## Monitoring

Samples were collected quarterly in 1993 from in-plant locations at PNPP shown in Figure 1, and semiannually from the vicinity of the Eastlake Power Plant at locations shown in Figure 2. Sample collection dates are listed in Table 1.

Table 1 - 1993 Corbicula Sampling Dates and Locations

| Date                                                 | Sample Location                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1/7<br>4/1<br>6/22<br>7/9<br>9/17<br>10/14<br>Weekly | Service water (SW) and Emergency Service Water (ESW) forebays SW and ESW forebays and trash baskets Lake Erie in the vicinity of the Eastlake Plant SW and ESW forebays and trash baskets Lake Erie in the vicinity of the Eastlake Plant SW and ESW forebays and trash baskets Inspections of PNPP property shoreline, weather permitting |

All samples were collected by Ponar hand dredge, hand scoop, or scraper. They were examined for bivalve shells and fragments, which were then identified to the lowest possible taxon.

In addition to sample collections, plant components that use raw water are inspected whenever open for maintenance or repair. Also, active communications were maintained with other agencies involved in benthic macroinvertebrate monitoring on Lake Erie. Several publications developed and distributed specifically for the purpose of providing information on bivalves are used as resources.

## Results

No Corbicula were found in any sample collected during the 1993 monitoring program. All bivalves collected are listed in Table 2.

Table 2 - Bivalves Collected During the 1993 Corbicula Monitoring Program

|                       | PNPP | EASTLAKE |
|-----------------------|------|----------|
| Dreissena polymorpha  | X    | X        |
| Dreissena bugensis    | X    |          |
| Pisidium caeseratinum | X    |          |
| Pisidium compressum   | X    | X        |
| Sphaerium striatinum  | X    | X        |
| Sphaerium transversum | X    |          |
| Unionidae             |      | X        |
| Pisidium ferrungneum  | X    |          |
| Pisidium spp.         | X    | X        |
| Sphaerium corneum     | X    |          |
| Sphaerium spp.        | X    |          |

### Conclusions

The collection in June 1987 was the first indication that *Corbicula* are slowly spreading into the Central Basin of Lake Erie. However, it has not been demonstrated that the presence of these clams is creating any operational problems at the Eastlake Power Plant or at PNPP.

# DREISSENA PROGRAM

Zebra mussels were first discovered at PNPP in September 1988. The initial collection of 19 mussels was made as part of the *Corbicula* monitoring program. The *Dreissena* program began in 1989 with monitoring and testing. The current control program was designed and implemented in 1990.

## Monitoring

In addition to visually inspecting plant raw water systems when they are opened for maintenance or repair, monitoring methods include the use of commercial divers, artificial substrates, sidestream monitors, and plankton nets.

Commercial divers monitor mussel infestation when they are inspecting forebays, basins, and the intake and discharge structures. They have also been used to take underwater videotapes of the water basins and intake tunnel. Artificial substrates include concrete blocks suspended by rope into the plant service water basin. The substrate is removed weekly for inspection for settlement.

Sidestream monitors are flow-through containers that receive water diverted from plant systems. PNPP used them in three in-plant locations during the mussel season, May through October. They are fitted with slides and inspected weekly for veliger settlement. Vertical tows with a plankton net are used to obtain weekly samples of incoming service water that are subsequently examined for veligers.

Results of the veliger monitoring program for 1993 are shown in Table 3. Samples were collected from the service water basin using vertical tows with an 80 micron mesh plankton net.

### Treatment

Chemicals used for mussel control in 1993 included chlorine and a commercial molluscicide. The system provides chlorine to plant service water, emergency service water, and circulating water systems. Sodium sulfite is added to plant discharge water to dechlorinate it before discharge to Lake Erie.









**EMERGENCY SERVICE WATER** PUMP HOUSE

• - Sample Location

Figure 1: PNPP in-plant sampling locations.



Figure 2: Lake Erie sampling locations in the vicinity of the Eastlake Plant.

Table 3 - Results of the 1993 Perry Nuclear Power Plant veliger sampling program.

| Date | #/liter | Temp (F |
|------|---------|---------|
| 5/20 | <1.0    | 53      |
| 5/27 | 0.0     | 58      |
| 6/3  | <1.0    | 59      |
| 6/10 | 0.0     | 61      |
| 6/17 | 0.0     | 63      |
| 6/24 | 0.0     | 61      |
| 7/1  | 0.0     | 53      |
| 7/8  | 14.1    | 72      |
| 7/15 | 39.1    | 77      |
| 7/22 | 38.1    | 74      |
| 7/29 | 18.1    | 77      |
| 8/5  | 13.0    | 73      |
| 8/12 | 1.3     | 73      |
| 8/20 | 77.0    | 74      |
| 8/26 | 46.3    | 75      |
| 9/2  | 24.2    | 66      |
| 9/9  | 1.5     | 71      |
| 9/16 | 4.5     | 67      |
| 9/24 | 0.0     | 64      |
| 9/30 | 1.3     | 60      |
| 10/8 | 0.0     | 57      |

The use of commercial molluscicides requires approval of the Ohio Environmental Protection Agency (EPA). The chemical selected for use at Perry Nuclear Power Plant in 1993 was didecyl dimethyl ammonium chloride. A treatment was applied on Sept. 2, 1993 near the end of the settlement period. The active ingredients were detoxified by adsorption onto bentonite clay prior to discharge into Lake Erie.

### Results

The effectiveness of the intermittent chlorination treatment has been determined in several ways. First, seven visual inspections of raw water system components were conducted in 1993. In addition, settlement monitors were inspected weekly for new settlement. No live settlement has been found in any plant component or in the settlement monitors to date.

The effectiveness of the application of the commercial molluscicide was measured by observing mortality of mussels placed in a flow-through container placed in plant service water and subjected to the chemical treatment. Two to three weeks after the treatment, divers inspected the service water basins and intake tunnel. Mortality observed both in the flow-through containers and in the system was 100%. To date, PNPP has had no problems related to zebra mussels.

### Conclusions

Perry Nuclear Power Plant has taken the approach that the best method for avoiding problems with zebra mussels is early detection followed by preventative treatment of plant water systems. The current program of monitoring and chemical treatments will be continued to minimize the possibility that PNPP will experience problems due to zebra mussels in the future.

# HERBICIDE USAGE

Because the PNPP site is home to several special habitat areas, like that for the spotted turtle, herbicides are used sparingly on site. An application must be made to the PNPP Environmental Monitoring Element prior to spraying to ensure that only approved chemicals are being used, and only in approved areas.

Table 1 provides a compilation of herbicide usage at the PNPP for 1993. All usage was in compliance with Ohio Environmental Protection Agency regulations. No adverse environmental impacts as a result of this usage were noted during weekly site environmental inspections. Surflan AS and Round Up were used in equal portions to make up the total quantity except where noted.

Table 1 - Herbicide Usage

| Date<br>Applied | Location                     | Total<br>Acres | Gallons |
|-----------------|------------------------------|----------------|---------|
| 5/21            | E-field and outer perimeter  | 3.86           | 7.72    |
| 6/14            | Unit 1 gravelled areas       | 5.30           | 10.60   |
| 6/16            | Parmly Rd. pipe laydown area | 12.78          | 25.56   |

# SPECIAL REPORTS

# NONCOMPLIANCES

# NPDES Permit Noncompliances

The National Pollutant Discharge Elimination System, or NPDES permit, is issued by the Ohio Environmental Protection Agency (OEPA). It establishes monitoring requirements and limits for discharges from the plant. It also specifies the locations from which the plant is allowed to discharge. There were two notifications made to the OEPA in 1993.

On March 26, 1993, a 30-inch diameter pipe carrying plant service water ruptured, resulting in a discharge of approximately 700,000 gallons to the ground. The discharge was stopped by shutting down the service water system. This event was reported to the Ohio Environmental Protection Agency by phone on March 26, 1993, and was followed with a confirmation letter on March 31, 1992 (PY-CEI/OEPA-0176L).

On April 8, 1993, approximately 35 gallons of oil were discharged through the plant site storm drain system to a small, unnamed stream on the east side of the site. The oil was contained behind a skimmer wall; it did not enter Lake Erie. Clean up activities were completed by April 9, 1993. This event was reported to the OEPA by phone on April 8, 1993 and was followed with a confirmation letter on April 12, 1993 (PY-CEI/OEPA-0178L).

# **EPP Noncompliances**

The Environmental Protection Plan, or EPP, is a part of the PNPP Operating License. It requires non-radiological environmental monitoring programs and reporting. There were no EPP noncompliances in 1993.

# UNREVIEWED ENVIRONMENTAL QUESTIONS

All proposed changes in plant design or operation, as well as tests or experiments conducted during 1993 were reviewed for potential environmental impact in accordance with the EPP and administrative quality assurance procedures. The reviews ensured that no changes were performed which could cause an adverse environmental impact. Therefore, there were no potentially significant unreviewed environmental questions in 1993.

# NONROUTINE REPORTS

There were no nonroutine reports in 1993.

APPENDIX A: 1993 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM DATA SUMMARY

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

Name of Facility: PERRY NUCLEAR POWER PLANT Docket no. : 50-440/50-441

Reporting period : 9300 Location of Facility : Lake County Ohio

|                                      | Control Locations Mean (1) (Range)      | 19.63<br>(0052/0052)<br>9.00-33.00  |
|--------------------------------------|-----------------------------------------|-------------------------------------|
| Location with Highest<br>Annual Mean | Mean (1)<br>(Range)                     | 19.96<br>(0052/0052)<br>10.00-34.00 |
|                                      | Direct                                  | SW 00.6                             |
|                                      | Indicator Locations<br>Mean (1) (Range) | 19.54<br>(0312/0312)<br>8.00-36.00  |
| A11                                  | (Indicator & Control) Mean (1) (Range)  | (0364/0364)<br>8.00-36.00           |
|                                      | Limit<br>(LLD)                          |                                     |
| Type and                             | Tot. (n)  <br> Analysis  <br> Performed | 9.8ETA<br>3.64TA                    |
|                                      | um<br>ement                             | B-03 PCI/CU.M                       |

1 - The ratio of positive results to the number of samples analyzed for the parameter of interest. LLD - Lower Limit of Detection.

Name of Facility: PERRY NUCLEAR POWER PLANT Docket no.: 50-440/50-441

| Type and | Lower                                   | All<br>Locations                                           | A11                                                                                                                          | Location with Highest<br>Annual Mean |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|-----------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analysis | Limit                                   | (Indicator & Control)                                      | Indicator Locations                                                                                                          | IDist.                               | Mean (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Control Locations<br>  Mean (1) (Range)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| *        |                                         | LLD                                                        |                                                                                                                              |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                                         |                                                            |                                                                                                                              |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | Tot. (n)  <br> Analysis  <br> Performed | Tot. (n)   Lower<br> Analysis   Limit<br> Performed  (LLD) | Tot. (n)   Lower   Locations<br> Analysis   Limit   (Indicator & Control)<br> Performed  (LLD)   Mean (1) (Range)<br>  I-131 | Tot. (n)   Lower   Locations   All   | Type and   All   Ann   Tot. (n)   Lower   Locations   All     All     Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   All   Ann   Ann   All   Ann   Ann   All   Ann   An | Type and   All   Annual Mean   Tot. (n)   Lower   Locations   All   Annual Mean   An |

<sup>1</sup> - The ratio of positive results to the number of samples analyzed for the parameter of interest. LLD - Lower Limit of Detection.

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

Name of Facility: PERRY NUCLEAR POWER PLANT Docket no. : 50-440/50-441

Location of Facility : Lake County Ohio

Reporting period : 9300

| Highest                      | Bange)                                        | (0004/0004) (0004/0004)<br>53.00-93.00 (54.00-96.00 |      |      |        |          |  |
|------------------------------|-----------------------------------------------|-----------------------------------------------------|------|------|--------|----------|--|
| Location with<br>Annual Mean | st.  <br>rect                                 | \$ 00.71                                            |      |      |        |          |  |
|                              | Indicator Locations<br>Mean (1) (Range)       | 63.58<br>(0024/0024)<br>45.00-93.00                 |      |      |        |          |  |
| A11                          | (Indicator & Control) +<br>Mean (1) (Range) + | 63.96<br>(0028/0028)<br>45.00-96.00                 | CLLD | OTT  | TLD    | LLD      |  |
|                              | Limit<br>(LLD)                                |                                                     |      |      | .005   | 900.     |  |
| Type and                     | Analysis  <br> Performed                      | BE-7                                                | 28 1 | 28 1 | CS-134 | CS-137 1 |  |
|                              | um                                            | APTG<br>E-03 PCI/CU.M                               |      |      |        |          |  |

1 - The ratio of positive results to the number of samples analyzed for the parameter of interest. LLD - Lower Limit of Detection.

# RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

PAGE: 001

Docket no. : 50-440/50-441 Name of Facility: PERRY NUCLEAR POWER PLANT

Location of Facility : Lake County Ohio Re

Reporting period : 9300

| 300 000 000                          | Control Locations  <br>  Mean (1) (Range)                |       |
|--------------------------------------|----------------------------------------------------------|-------|
| Location with Highest<br>Annual Mean | Mean (1)<br>(Range)                                      |       |
| Locat                                | Dist.                                                    |       |
|                                      | Indicator Locations   Dist.<br>Mean (1) (Range)   Direct |       |
| A11                                  | (Indicator & Control)    <br>  Mean (1) (Range)          |       |
|                                      | Limit (Lib)                                              |       |
| Type and                             | Analysis  <br> Performed                                 | E     |
| 2 de 1                               | ant                                                      | PCI/L |

<sup>1 -</sup> The ratio of positive results to the number of samples analyzed for the parameter of interest. LLD - Lower Limit of Detection.

# RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

PAGE: 001

Name of Facility: PERRY NUCLEAR POWER PLANT Docket no. : 50-440/50-441

|               |                                      | Control Locations  <br>  Mean (1) (Range) | 0.00.00.00.00.00.00.00.00.00.00.00.00.0 |
|---------------|--------------------------------------|-------------------------------------------|-----------------------------------------|
|               | Location with Highest<br>Annual Mean | 100                                       | 9.68<br>(0012/0012)<br>1.60-66.40       |
|               |                                      | Direct                                    | NSW 00.6                                |
|               | 100                                  | Locations<br>(Range)                      | (0060/0060)<br>0.80-66.40               |
|               | All                                  | (Indicator & Control)<br>Mean (1) (Range) | 6.66<br>(0072/0072)<br>0.80-66.40       |
| J             |                                      | Limit<br>(LLD)                            |                                         |
| Precipitation | Type and                             | Analysis  <br> Performed                  | G-BETA<br>72                            |
|               |                                      | Measurement                               | PCI/L<br>PCI/L                          |

<sup>1 -</sup> The ratio of positive results to the number of samples analyzed for the parameter of interest. LLD - Lower Limit of Detection.

Name of Facility: PERRY NUCLEAR POWER PLANT Docket no.: 50-440/50-441

| Pr              | ecipitati                | on    |                                                               |                                                |      |                                                        |                                        |
|-----------------|--------------------------|-------|---------------------------------------------------------------|------------------------------------------------|------|--------------------------------------------------------|----------------------------------------|
| Medium<br>i and | <br>                     | Limit | All<br>Locations<br>(Indicator & Control)<br>Mean (1) (Range) | All<br>Indicator Locations<br>Mean (1) (Range) | I An | tion with Highest<br>nnual Mean<br>Mean (1)<br>(Range) | All Control Locations Mean (1) (Range) |
| PRG<br>PCI/L    | BA-140 72                |       | LLD                                                           | -                                              | -    | <br>                                                   | -                                      |
|                 | CO-58  <br>  72          |       | LLD                                                           |                                                |      |                                                        |                                        |
|                 | 1 CO-60 1<br>1 72 1      |       | ttb                                                           |                                                |      |                                                        |                                        |
|                 | CS-134   72              |       | FFD                                                           |                                                |      |                                                        |                                        |
|                 | CS-137   72   1          |       | LLD                                                           |                                                |      |                                                        |                                        |
|                 | FE-59  <br>  72  <br>  1 |       | LLD                                                           |                                                |      |                                                        |                                        |
|                 | LA-140   72              |       | LLD                                                           |                                                |      |                                                        |                                        |
|                 |                          |       |                                                               |                                                | +    |                                                        |                                        |

<sup>1</sup> - The ratio of positive results to the number of samples analyzed for the parameter of interest. LLD - Lower Limit of Detection.

P24001

# RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

PAGE: 002

Name of Facility: PERRY NUCLEAR POWER PLANT Docket no.: 50-440/50-441

| *PI          | recipitation | on .              |                                                               |                                                |        |                               |                       |
|--------------|--------------|-------------------|---------------------------------------------------------------|------------------------------------------------|--------|-------------------------------|-----------------------|
| Medium       | <br>         | Lower             | All<br>Locations<br>(Indicator & Control)<br>Mean (1) (Range) | All<br>Indicator Locations<br>Mean (1) (Range) | iDist. | ion with Highes nual Mean (1) | All Control Locations |
| PRG<br>PCI/L | MN-54 1      |                   | LLD                                                           | - Control (Manage)                             | in i   | (Range)                       | Mean (1) (Range)      |
|              | NB-95   72   |                   | LLD                                                           |                                                |        |                               |                       |
|              | ZN-65   72   |                   | LLD                                                           |                                                | - 1    |                               |                       |
|              | ZR-95<br>72  |                   | LLD                                                           |                                                |        |                               |                       |
|              |              |                   |                                                               |                                                |        |                               |                       |
|              |              | de des des des de |                                                               |                                                |        |                               |                       |
|              | -            |                   |                                                               |                                                |        |                               |                       |
|              |              |                   |                                                               |                                                | 1      |                               |                       |

<sup>1</sup> - The ratio of positive results to the number of samples analyzed for the parameter of interest. LLD - Lower Limit of Detection.

# RADIOLOGICAL ENVIRONMENTAL MONITGRING PROGRAM SUNMARY

PAGE: 001

Docket no. : 50-440/50-441 Name of Facility: PERRY NUCLEAR POWER PLANT

Location of Facility : Lake County Ohio

Reporting period : 9300

|                                         |                                      | Control Locations Mean (1) (Range)        |               |
|-----------------------------------------|--------------------------------------|-------------------------------------------|---------------|
|                                         | Location with Highest<br>Annual Mean | Mean (1)<br>(Range)                       |               |
| *********                               | Locati                               | Dist.                                     |               |
| *************************************** |                                      | Indicator Locations<br>Mean (1) (Range)   |               |
|                                         | A11                                  | (Indicator & Control)<br>Mean (1) (Range) | LALD.         |
| ***********                             |                                      | 717-                                      |               |
| F                                       | Type and                             | Analysis  <br> Performed                  | 1-131         |
| 4.11K                                   | 3                                    | ent                                       | MLKI<br>PCI/L |

<sup>1 -</sup> The ratio of positive results to the number of samples analyzed for the parameter of interest. LLD - Lower Limit of Detection.

Name of Pacility: PERRY NUCLEAR POWER PLANT Docket no. : 50-440/50-441

| Dower   Locations   Locations   Locations   Dower   Locations   Location |     |              |                                           |                                  | 4 7 7 7           | an milk to the about the         |                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|-------------------------------------------|----------------------------------|-------------------|----------------------------------|-----------------------------------------|
| (Indicator & Control)   Indicator Locations   Dist.   Mean (1)   Mean (1)   (Range)   Direct   (Range)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3   |              | All                                       |                                  |                   | ual Mean                         | N 13                                    |
| 3.38 71 (0005/0005)<br>1.30-5.70 SE 3.50-5.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 335 | imit<br>Libi | (Indicator & Control)<br>Mean (1) (Range) |                                  |                   | Mean (1)<br>(Range)              | Control Locations<br>  Mean (1) (Range) |
| 3.38<br>(0012/0012)<br>1.30-5.70<br>(0005/0005)<br>1.30-5.70<br>(0005/0005)<br>3.50-5.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |              |                                           | ,                                |                   |                                  | .,                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |              | 3.11<br>(0018/0018)<br>1.30-5.70          | 3.38<br>(0012/0012)<br>1.30-5.70 | 10                | 4.58<br>(0005/0005)<br>3.50-5.70 | 2.55<br>(0006/0006)<br>1.90-3.70        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |              |                                           |                                  |                   |                                  |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |              |                                           |                                  |                   |                                  |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | -            |                                           |                                  |                   |                                  |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |              |                                           |                                  |                   |                                  |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |              |                                           |                                  | in deed artis, of |                                  |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |              |                                           |                                  |                   |                                  |                                         |

1 - The ratio of positive results to the number of samples analyzed for the parameter of interest. LLD - Lower Limit of Detection.

P24001

### RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

PAGE: 001

Name of Facility: PERRY NUCLEAR POWER PLANT Docket no.: 50-440/50-441

| iMi            | lk           |                |                                           |                                           |                    |                                           |                                           |
|----------------|--------------|----------------|-------------------------------------------|-------------------------------------------|--------------------|-------------------------------------------|-------------------------------------------|
| Medium         | <br>         | Lower<br>Limit | All<br>Locations<br>(Indicator & Control) | All<br>Indicator Locations                | An<br>++<br> Dist. | ion with Highest<br>nual Mean<br>Mean (1) | All Control Locations                     |
| Measurement    | Performed    | (LLD)          | Mean (1) (Range)                          | Mean (1) (Range)                          | Direct             | (Range)                                   | Mean (1) (Range) (                        |
| MLKG<br> PCI/L | BA-140 I     | 60             | LLD                                       |                                           |                    |                                           |                                           |
|                | CS-134   70  | 15             | PPD                                       |                                           |                    |                                           |                                           |
|                | CS-137       | 18             | LLD                                       |                                           |                    |                                           |                                           |
|                | K-40<br>70   |                | 1482.00<br>(0070/0070)<br>1060.00-1990.00 | 1550.64<br>(0047/0047)<br>1060.00-1990.00 | 61<br>07.41<br>SE  | 1782.00<br>(0015/0015)<br>1510.00-1990.00 | 1341.74<br>(0023/0023)<br>1080.00-1610.00 |
|                | LA-140<br>70 | 15             | LLD                                       |                                           |                    |                                           | -                                         |
|                |              |                |                                           |                                           |                    |                                           |                                           |
|                |              |                |                                           |                                           |                    |                                           |                                           |
|                |              |                |                                           |                                           |                    |                                           |                                           |

<sup>1 -</sup> The ratio of positive results to the number of samples analyzed for the parameter of interest. LLD - Lower Limit of Detection.

| Food Products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                 | rmed (LLD)   Mean (1) (Range)         | 52<br>040)<br>4.00                     | CO-58   LLD LLD | CO-60   LLD | CS-134   60   LLD | CS-137   80   LLD | I-131   60   LLD | K-40   3632.60   1532.00-6943.00   153    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------|----------------------------------------|-----------------|-------------|-------------------|-------------------|------------------|-------------------------------------------|
| A second |                                   | r Locations                           | 379.52<br>(0006/0032)<br>16.70-884.00  |                 |             |                   |                   |                  | 3873.41<br>(0032/0032)<br>(32.00-6943.00  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100                               | Dist.<br>Direct                       | 77<br>01.2                             |                 |             |                   |                   |                  | 77   01.2                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ation with Highest<br>Annual Mean | 6-11                                  | 800.00<br>(0002/0006)<br>716.00-884.00 |                 |             |                   |                   |                  | 5594.83<br>(0006/0006)<br>4078.00-6316.00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | Control Locations<br>Mean (1) (Range) | 0.00 (0008)                            |                 |             |                   |                   |                  | 2669.38<br>(0008/0008)<br>1694.00-3665.00 |

1 - The ratio of positive results to the number of samples analyzed for the parameter of interest. LLD - LOWer Limit of Detection.

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

Name of Facility: PERRY NUCLEAR POWER PLANT Docket no. : 50-440/50-441

Reporting period : 9300 Location of Facility : Lake County Ohio

|             |                                   | Control Locations (Mean (1) (Range)           | 2732.67<br>(2006/2006)<br>730.09-5268.00  |     |     |        | 0.00-0000)                          | ter de per | 6723.50<br>(0006/0006)<br>3352.00-13720.00 |
|-------------|-----------------------------------|-----------------------------------------------|-------------------------------------------|-----|-----|--------|-------------------------------------|------------|--------------------------------------------|
|             | ation with Highest<br>Innual Mean | an (1)                                        | 3161.50<br>(0006/0006)<br>1670.00-4980.00 |     |     |        | 28.40<br>(0002/0006)<br>26.00-30.80 | ,          | 8595.17<br>(0006/0006)<br>4015.00-15400.00 |
|             | Locat                             | Dist.                                         | 7<br>00.6                                 |     |     |        | 7<br>00.61<br>NE                    |            | NE 00.6                                    |
|             | A.                                | r Locations<br>1) (Range)                     | 2613.67<br>(0012/0012)<br>651.00-4980.00  |     |     |        | (0003/0012)<br>25.30-30.80          |            | 6680.67<br>(0012/0012)<br>3315.00-15400.00 |
|             | 7.5                               | (Indicator & Control)  <br>  Mean (1) (Range) | 2653,33<br>(0018/0018)<br>651,00-5268,00  | LLD | TTD | 077    | (0003/0018)                         | 077        | 6694.94<br>(0018/0018)<br>3315.00-15400.00 |
| *********** |                                   | Limit<br>(LLD)                                |                                           |     |     | 9      | 08                                  | 09         |                                            |
| irass       | Type and Tot. (n)                 | Analysis                                      | 00                                        | 18  | 81  | CS-134 | CS-137                              | (D)        | ж<br>Он<br>Ф                               |
| do          | Medium                            | Measurement                                   | D. M.                                     |     |     |        | and the said of                     |            |                                            |

1 - The ratio of positive results to the number of samples analyzed for the parameter of interest.

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

Name of Pacility: PERRY NUCLEAR POWER PLANT Docket no. : 50-440/50-441

|          | Control Locations<br>Mean (1) (Range)     |                     |      |        | 208.50<br>(0002/0002)<br>200.00-217.00 | 14865.00<br>(0002/0002)<br>00   14290.00-15440.00 | 2307.50<br>(0002/0002)<br>00   2094.00-2521.00 |
|----------|-------------------------------------------|---------------------|------|--------|----------------------------------------|---------------------------------------------------|------------------------------------------------|
| N N      | Mean (1)<br>(Range)                       |                     |      |        | 429.00<br>(0002/0002)<br>350.00-508.00 | 14290,00-15440.                                   | 2307.50<br>(0002/0002)<br>2094.00-2521.0       |
| Location | Direct                                    |                     |      |        | 9<br>00.71<br>ESE                      | 11.0 <br>  SSW                                    | SSW 116                                        |
|          | Indicator Locations<br>Mean (1) (Range)   |                     |      |        | 316.70<br>(0010/0012)<br>66.00-508.00  | 10101.17<br>(0012/0012)<br>4280.00-13151.00       | 1330.75<br>(3012/0012)<br>1084.00-1520.00      |
| , A11    | [Indicator & Control]<br>Mean (1) (Range) | CIT                 | TTD  | TPD    | 298.67<br>(0012/0014)<br>66.00-508.00  | 10781.71<br>(0014/0014)<br>4280.00-15440.00       | 1470.29<br>(0014/0014)<br>1084.00-2521.00      |
|          | Limit (LLD)                               |                     |      |        |                                        |                                                   |                                                |
| Type and | Tot. (n)<br> Analysis  <br> Performed     | 20-58               | 15 1 | CS-134 | CS-137                                 | K-40                                              | RA-226                                         |
|          | um<br>ement                               | SOIL<br>PCI/KG(DRY) |      |        |                                        |                                                   |                                                |

1 - The ratio of positive results to the number of samples analyzed for the parameter of interest. LLD - Lower Limit of Detection.

# RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

50-440/50-441 Docket no. : Name of Facility: PERRY NUCLEAR POWER PLANT

Reporting period : 9300 Location of Facility : Lake County Ohio

|                                      | Control Locations Mean (1) (Range)            |                            | 00.00                               |
|--------------------------------------|-----------------------------------------------|----------------------------|-------------------------------------|
| Location with Highest<br>Annual Mean | Mean (1)<br>(Range)                           |                            | 41.25<br>(0002/0002)<br>36.30-46.20 |
| Location                             | Direct                                        |                            | 12.5<br>WSW 000.6                   |
|                                      | BU C                                          |                            | 34.19<br>(0011/0012)<br>13.00-46.20 |
| A11                                  | (Indicator & Control)  <br>  Mean (1) (Range) | 11.0                       | 34.19<br>13.00-46.20                |
|                                      | Limit                                         |                            |                                     |
| Type and                             | lysis<br>forme                                | SR-89                      | SS N-90                             |
| 8                                    | 1.2                                           | STRONTIUM<br>  PC1/KG(DRY) |                                     |

1 - The ratio of positive results to the number of samples analyzed for the parameter of interest. LLD - Lower Limit of Detection.

P24001

## RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

PAGE: 201

Name of Facility: PERRY NUCLEAR POWER PLANT Docket no. : 50-440/50-441

| Wat               | ter                                                    |       |                                                               |                                                |                  |                                                    |                                        |
|-------------------|--------------------------------------------------------|-------|---------------------------------------------------------------|------------------------------------------------|------------------|----------------------------------------------------|----------------------------------------|
| <br>Medium<br>and | Type and  <br> Tot. (n)  <br> Analysis  <br> Performed | Limit | All<br>Locations<br>(Indicator & Control)<br>Mean (1) (Range) | All<br>Indicator Locations<br>Mean (1) (Range) | 1 Ann            | on with Highest<br>ual Mean<br>Mean (1)<br>(Range) | All Control Locations Mean (1) (Range) |
| WTRB<br>PCI/L     | G-BETA                                                 |       | 2.54<br>(CO56/OO56)<br>1.80-4.00                              | 2.47<br>(0044/0044)<br>1.80-4.00               | 28   22.01   ENE | 2.82<br>(0012/0012)<br>1.90-3.50                   | 2.82<br>(0012/0012)<br>1.90-3.50       |

<sup>1 -</sup> The ratio of positive results to the number of samples analyzed for the parameter of interest. LLD - Lower Limit of Detection.

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

Docket no. : 50-440/50-441 Name of Pacility: PERRY NUCLEAR POWER PLANT

| Location with Highest<br>Annual Mean | ist.   Mean (<br>irect   (Range        |               |       |     |        |        |     |        |  |
|--------------------------------------|----------------------------------------|---------------|-------|-----|--------|--------|-----|--------|--|
| er er                                | [Range]                                |               |       |     |        |        |     |        |  |
| A C                                  | (Indicator & Control) Mean (1) (Range) | CTD           | רנים  | LED | Libo   | Tro    | Q77 | 0      |  |
|                                      | 12                                     | 0.9           | NO.   | 10  | 22     | 80     | 30  | 172    |  |
| Type and                             | Analysis                               | BA-140        | 00-58 | 95  | CS-134 | CS-137 | E   | LA-140 |  |
| W.                                   | and<br>  Measurement                   | WTRG<br>PCI/L |       |     |        |        |     |        |  |

1 - The ratio of positive results to the number of samples analyzed for the parameter of interest.

# RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

PAGE: 002

50-440/50-441 Name of Facility: PERRY NUCLEAR POWER PLANT Docket no. :

Location of Facility : Lake County Ohio Repo

Reporting period : 9300

| Medium Tot (n) and Analysis Measurement   Performed wTRG   MN-54 | in the | 211                                         |                                           | Locati | Location with Highest<br>Annual Mean |                                    |
|------------------------------------------------------------------|--------|---------------------------------------------|-------------------------------------------|--------|--------------------------------------|------------------------------------|
| 3 M2                                                             |        | (Indicator & Control)<br>  Mean (1) (Range) | Indicator Locations<br>  Mean (1) (Range) | Dist.  | Mean (1)<br>(Range)                  | Control Locations Mean (1) (Range) |
|                                                                  | 15     | ДТТ                                         |                                           |        |                                      |                                    |
| NB-95                                                            | NO per | LLD                                         |                                           |        |                                      | ,                                  |
| ZN-65<br>  S6                                                    | 0      | PTD                                         |                                           |        |                                      |                                    |
| 2R-95                                                            | 30     | 0777                                        | ,                                         |        |                                      |                                    |
|                                                                  |        |                                             |                                           |        |                                      |                                    |
|                                                                  |        |                                             |                                           |        |                                      |                                    |
|                                                                  |        |                                             |                                           |        |                                      |                                    |
| att. 1860 att                                                    |        |                                             |                                           |        |                                      |                                    |

<sup>1 -</sup> The ratio of positive results to the number of samples analyzed for the parameter of interest.

Name of Facility: PERRY NUCLEAR POWER PLANT Docket no. : 50-440/50-441

|                               |                                              |                                                      |                                        | 4                                                   |                                        |                                              |
|-------------------------------|----------------------------------------------|------------------------------------------------------|----------------------------------------|-----------------------------------------------------|----------------------------------------|----------------------------------------------|
| Medium   Tot.<br>  and   Anal | and ( (n)   Lower lysis   Limit formed (LLD) | All Locations (Indicator & Control) Mean (1) (Range) |                                        | 1 Annu                                              | Mean (1) (Range)                       | All<br>Control Locations<br>Mean (1) (Range) |
| TRITIUM H3                    |                                              | 211.00<br>(0004/0020)<br>193.00-233.00               | 211.00<br>(C004/0016)<br>193.00-233.00 | 1 34 1 00.71 NW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 224.00<br>(0001/0004)<br>224.00-224.00 | 0.00<br>(0000/0004)<br>0.00-0.00             |

<sup>1</sup> - The ratio of positive results to the number of samples analyzed for the parameter of interest. LLD - Lower Limit of Detection.

P24001

## RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

PAGE: 001

Name of Facility: PERRY NUCLEAR POWER PLANT Docket no. : 50-440/50-441

| Wa                 | ter                              |       |                                                               |                                                |     |                                                      | +                                          |
|--------------------|----------------------------------|-------|---------------------------------------------------------------|------------------------------------------------|-----|------------------------------------------------------|--------------------------------------------|
| Medium<br>  and    | Type and<br>Tot. (n)<br>Analysis | Limit | All<br>Locations<br>(Indicator & Control)<br>Mean (1) (Range) | All<br>Indicator Locations<br>Mean (1) (Range) | Ans | ion with Highest<br>nual Mean<br>Mean (1)<br>(Range) | All   Control Locations   Mean (1) (Range) |
| STRONTIUM<br>PCI/L | I SR-89<br>I 20                  |       | LLD                                                           |                                                |     |                                                      | -                                          |
|                    | SR-90                            |       | 0.76<br>(0013/0020)<br>0.50-1.80                              | 0.68<br>(0010/0016)<br>0.50-0.90               | 28  | 1.03<br>(0003/0004)<br>0.60-1.80                     | 1.03 (0003/0004) 0.60-1.80                 |
|                    | l                                |       |                                                               |                                                | ++  |                                                      |                                            |

<sup>1 -</sup> The ratio of positive results to the number of samples analyzed for the parameter of interest. LLD - Lower Limit of Detection.

## RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

PAGE: 001

Name of Facility: PERRY NUCLEAR POWER PLANT Docket no. : 50-440/50-441

| Se                       | diment     |                                                               |                                                |                                    |                                                    |                                              |                               |
|--------------------------|------------|---------------------------------------------------------------|------------------------------------------------|------------------------------------|----------------------------------------------------|----------------------------------------------|-------------------------------|
|                          |            | All<br>Locations<br>(Indicator & Control)<br>Mean (1) (Range) | All<br>Indicator Locations<br>Mean (1) (Range) | 1 Ann                              | on with Highest<br>ual Mean<br>Mean (1)<br>(Range) | All<br>Control Locations<br>Mean (1) (Range) |                               |
| STRONTIUM<br>PCI/KG(DRY) | SR-89 1    |                                                               | LLD                                            |                                    |                                                    |                                              | - 1                           |
|                          | SR-90 16 1 |                                                               | 14.93<br>(0013/0016)<br>5.50-34.70             | 13.44<br>(0011/0014)<br>5.50-28.80 | 32   15.8   WSW                                    | 23.15<br>(0002/0002)<br>11.60-34.70          | 23.15 (0002/0002) 11.60-34.70 |
|                          |            |                                                               |                                                |                                    |                                                    |                                              |                               |

<sup>1</sup> - The ratio of positive results to the number of samples analyzed for the parameter of interest. LLD - Lower Limit of Detection.

Name of Facility: PERRY NUCLEAR POWER PLANT Docket no. : 50-440/50-441

| 1                                     |                                          |                                         |                    |                                       |        |                                        |                                              | - har best best |               |
|---------------------------------------|------------------------------------------|-----------------------------------------|--------------------|---------------------------------------|--------|----------------------------------------|----------------------------------------------|-----------------|---------------|
| · · · · · · · · · · · · · · · · · · · | en e | Control Locations<br>Mean (1) (Range)   |                    | (0000/0002)                           |        | 560.50<br>(0902/0002)<br>364.00-757.00 | 15236.50<br>(0002/0002)<br>14899.00-15574.00 |                 |               |
|                                       | Location with Highest<br>Annual Mean     | Mean (1)<br>(Range)                     |                    | (0002/0002)<br>96.00-230.00           |        | 560.50<br>(0002/0002)<br>364.00-757.00 | 16000.50<br>(0002/0002)<br>14729.00-17272.00 |                 |               |
|                                       |                                          | Dist.                                   |                    | 76 H                                  |        | 32<br>15.8                             | 27<br>07.91<br>WSW                           |                 |               |
|                                       |                                          | Indicator Locations<br>Mean (1) (Range) |                    | 163.00<br>(0002/0014)<br>96.00-230.00 |        | 161.50<br>(0006/0014)<br>68.00-294.00  | 10419.29<br>(0014/0014)<br>3181.00-17272.00  |                 |               |
|                                       | All                                      | (Indicator & Control) Mean (1) (Range)  | TPD                | 163.00<br>(8002/0016)<br>96.00-230.00 | QTT    | 261.25<br>(0008/0016)<br>68.00-757.00  | 11021.44<br>(0016/0016)<br>3181.00-17272.00  |                 |               |
|                                       |                                          | Limit (LLD)                             |                    |                                       | 150    | 081                                    |                                              |                 |               |
| diment                                | Type and                                 | - 00 hr                                 | CO-58<br>16        | 09-00                                 | CS-134 | CS-137                                 | 6.4<br>6.4<br>6.4                            |                 |               |
| Septiment                             |                                          | d<br>rement                             | SED<br>PCI/KG(DRY) |                                       |        |                                        |                                              |                 | THE RES. INC. |

1 - The ratio of positive results to the number of samples analyzed for the parameter of interest.

# RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

PAGE: 001

50-440/50-441 Docket no. : Name of Pacility: PERRY NUCLEAR POWER PLANT

|                                           | Control Locations<br>Mean (1) (Range)                  |                                           |             |         | 14.65 (0002/0012)                   |       | 2618.25<br>(0012/0012)<br>2125.00-3251.00 |             |
|-------------------------------------------|--------------------------------------------------------|-------------------------------------------|-------------|---------|-------------------------------------|-------|-------------------------------------------|-------------|
| ition with Highest                        | Mean (1)<br>(Range)                                    |                                           |             |         | 20.90<br>(0001/0013)<br>20.90-20.90 |       | 2618.25<br>(0012/0012)<br>2125.00-3251.00 |             |
| Locati                                    | Dist.                                                  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 1           |         | 25<br>00.6                          |       | 32<br>15.81<br>WSW                        | 1           |
|                                           | All<br>Indicator Locations<br>Mean (1) (Range)         |                                           |             |         | 20,90<br>(0001/0013)<br>20,90-20,90 |       | 2593.08<br>(0013/0013)<br>1800.00-3220.00 |             |
| · ·                                       | Locations<br>(Indicator & Control)<br>Mean (1) (Range) | QTT                                       | 0777        | TTD TTD | 16.73<br>(0003/0025)<br>13.60-20.90 | QT7   | 2605.16<br>(0025/0025)<br>1800.00-3251.00 | QTI         |
|                                           | Limit<br>(LLD)                                         | 130                                       | 130         | 130     | 150                                 | 260   |                                           | 130         |
| S. C. | Tot. (n)<br>Analysis<br>Performed                      | CO-58<br>25                               | CO-60<br>25 | CS-134  | CS-137                              | FE-59 | K-40                                      | MN-54<br>25 |
| 4                                         | Medium<br>and<br>asurement                             | PCI/KG(WET)                               |             |         |                                     |       |                                           |             |

1 - The ratio of positive results to the number of samples analyzed for the parameter of interest. LbD - Lower Vimit of Detection.

P24001

## RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

Name of Facility: PERRY NUCLEAR POWER PLANT Docket no. : 50-440/50-441

PAGE: 002

| Fi                 | sh                                                   | h   |                                                               |                                                |    |                                                            |                                        |
|--------------------|------------------------------------------------------|-----|---------------------------------------------------------------|------------------------------------------------|----|------------------------------------------------------------|----------------------------------------|
| Medium<br>and      | Type and  <br> Tot. (n)   Lower<br> Analysis   Limit |     | All<br>Locations<br>(Indicator & Control)<br>Mean (1) (Range) | All<br>Indicator Locations<br>Mean (1) (Range) | Ar | tion with Highest<br>nnual Mean<br>  Mean (1)<br>  (Range) | All Control Locations Mean (1) (Range) |
| PSH<br>PCI/KG(WET) | ZN-65<br>25                                          | 260 | LLD                                                           |                                                |    |                                                            |                                        |

 $<sup>{\</sup>tt l}$  - The ratio of positive results to the number of samples analyzed for the parameter of interest.  ${\tt LLD}$  - Lower Limit of Detection.

Name of Facility: PERRY NUCLEAR POWER PLANT Docket no. : 50-440/50-441

Location of Facility : Lake County Ohio Reporting period : 9300

| Di                | rect_Badi;                       | ation |                                                      |                                                |               |                                                    |                                          |
|-------------------|----------------------------------|-------|------------------------------------------------------|------------------------------------------------|---------------|----------------------------------------------------|------------------------------------------|
| Medium<br>  and   | Type and<br>Tot. (n)<br>Analysis | Limit | All Locations (Indicator & Control) Mean (1) (Range) | All<br>Indicator Locations<br>Mean (1) (Range) | 1 Ann         | on with Highest<br>ual Mean<br>Mean (1)<br>(Range) | All Control Locations   Mean (1) (Range) |
| TLD<br>MR/STD.QTR | DIRECT 137                       |       | 17.51<br>(0137/0137)<br>11.50-28.00                  | 17.49<br>(0129/0129)<br>11.50-28.00            | 18 1 05.0   S | 25.93<br>(0004/0004)<br>23.40-28.00                | 17.88<br>(0008/0008)<br>14.80-20.50      |

<sup>1 -</sup> The ratio of positive results to the number of samples analyzed for the parameter of interest. LLD - Lower Limit of Detection.

# RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM SUMMARY

PAGE: 001

50-440/50-441 Docket no. : Name of Pacility: PERRY NUCLEAR POWER PLANT

Location of Facility : Lan. County Chio Reporting period : 9300

| *                                     |                                      |                                        |                                     |
|---------------------------------------|--------------------------------------|----------------------------------------|-------------------------------------|
|                                       |                                      | rol Loc                                | 0.0                                 |
| · · · · · · · · · · · · · · · · · · · | Location with Highest<br>Annual Mean | 0 0                                    | 22.50<br>(0004/0004)<br>19.80-24.60 |
| **********                            |                                      | Direct                                 | 8 4 5 0<br>8 4 5 0                  |
|                                       |                                      | or Locations<br>(1) (Range)            | 14.74<br>(0130/0130)<br>9.40-24.60  |
|                                       | A11                                  | (Indicator & Control) Mean (1) (Range) | 14.77<br>10138/01381<br>9.40-24.60  |
| iation.                               |                                      | Limit (LLib)                           |                                     |
| Darrect Badjation                     | Type and                             | Tot. (n)<br> Analysis  <br> Performed  | DIRECT                              |
| PARTITION DE                          |                                      | Medium<br>and<br>asurement             | AR STD. OTB                         |

1 - The ratio of positive results to the number of samples analyzed for the parameter of interest. LLD - Lower Limit of Detection.

Name of Pacility: PERRY NUCLEAR POWER PLANT Docket no. : 50-440/50-441

Location of Facility : Lake County Ohio Reporting period : 9300

|                   |                                                               | Control Locations   Mean [1] (Range)   | \$5.10-56.70<br>\$5.10-56.70        |
|-------------------|---------------------------------------------------------------|----------------------------------------|-------------------------------------|
|                   | Location with Highest Annual Mean t.   Mean (1) ect   (Range) |                                        | 84.50<br>(0001/0001)<br>84.50-84.50 |
|                   |                                                               | Dist.  <br> Direct                     | 0.18<br>0.25<br>0.20                |
|                   | rr<br>rr<br>K                                                 | r Locations<br>1) (Range)              | 53.46<br>(0033/0033)<br>39.90-84.50 |
|                   | All                                                           | (Indicator & Control) Mean (1) (Range) | 39, 90-84, 50                       |
| ation             |                                                               | Limit<br>(Lin)                         |                                     |
| Digrect_Badiation | Type and                                                      | Analysis                               | JE 35 T                             |
| C                 | N N                                                           | ent                                    |                                     |

<sup>1 -</sup> The ratio of positive results to the number of samples analyzed for the parameter of interest. LLD - Lower Limit of Detection.

APPENDIX B: 1993 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM DATA



G-BETA AIR REPORT SAMPLE FREQUENCY IS: WEEKLY RESULTS IN E-03 PCI/CU.M. +/- 2 SIGMA

| ION LOCATIONS | -4,00 019.00+/-4.00<br>-5.00 034.00+/-5.00<br>-5.00 024.00+/-4.00<br>-5.00 017.00+/-4.00 | -5.00 024.00+/-5.00<br>-5.00 022.00+/-4.00<br>-5.00 024.00+/-5.00<br>-4.00 026.00+/-3.00 | -5.00 030.00+/-5.00<br>-6.00 027.00+/-5.00<br>-5.00 025.00+/-5.00<br>-5.00 023.00+/-5.00<br>-5.00 011.00+/-4.00 | -5.00 016.00*/-4.00<br>-4.00 012.00*/-3.00<br>-4.00 012.00*/-3.00<br>-4.00 015.00*/-3.00 | -4.00 017.00+/-4.00<br>-4.00 016.00+/-4.00<br>-4.00 010.00+/-3.00<br>-4.00 011.00+/-3.00 | -4.00 011.00+/-3.00<br>-4.00 013.00+/-3.00<br>-4.00 016.00+/-3.00<br>-4.00 018.00+/-4.00 | -4.00 019.00+/-4.00<br>-4.00 018.00+/-4.00<br>-4.00 010.00+/-3.00<br>-4.00 016.00+/-4.00 | 4 00 010 000 4 00    |
|---------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------|
| STATIC<br>04  | .00+/-4.00 020.00+/<br>.00+/-5.00 035.00+/<br>.00+/-5.00 024.00+/<br>.00+/-5.00 023.00+/ | .00+/-5.00 024.00+/-<br>.00+/-5.00 015.00+/-<br>.00+/-4.00 023.00+/-                     | .00+/-5.00 026.00+/<br>.00+/-5.00 027.00+/<br>.00+/-5.00 020.00+/<br>.00+/-4.00 020.00+/                        | .00+/-5.99 016.90+/<br>.00+/-4.00 016.00+/<br>.00+/-4.00 014.00+/<br>.00+/-4.00 017.90+/ | .00+/-4.00 014.00+/<br>.00+/-4.00 016.00+/<br>.00+/-4.00 009.00+/<br>.00+/-4.00 012.00+/ | .00+/-4.00 010.00+/<br>.00+/-5.00 013.00+/<br>.00+/-4.00 017.00+/<br>.00+/-4.00 019.00+/ | .00+/-4.00 016.00+/<br>.00+/-4.00 016.00+/<br>.00+/-4.00 013.00+/<br>.00+/-4.00 015.00+/ | , on a to one , 1 on |
| 01 03         | 018.00+/-4.00 019<br>029.00+/-4.00 029<br>022.00+/-4.00 022<br>022.00+/-4.00 018         | 024.00+/-5.00 021<br>022.00+/-4.00 020<br>022.00+/-4.00 024<br>025.00+/-3.00 024         | 027.00+/-5.00 025<br>021.00+/-5.00 025<br>022.00+/-4.00 024<br>019.00+/-4.00 015<br>009.00+/-4.00 011           | 012.00+/-4.00 012<br>013.00+/-4.00 012<br>013.00+/-4.00 013<br>018.00+/-4.00 016         | 017,00+/-4.00 020<br>917,00+/-4.00 016<br>010,00+/-4.00 009<br>013.00+/-4.00 012         | 010.00+/-4.00 011<br>013.00+/-4.00 010<br>013.00+/-3.00 019<br>018.00+/-4.00 015         | 017.00+/-4.00 018<br>017.00+/-4.00 017<br>015.00+/-4.00 013<br>016.00+/-4.00             | 100 00 1 1 00        |
| COLLECTION    | JAN 921230 TO 930106<br>930106 TO 930113<br>930113 TO 930120<br>930120 TO 930127         | EB 930127 TO 930203<br>930203 TO 930210<br>930210 TO 930217                              | MAR 930224 TO 930303<br>930303 TO 930310<br>930317 TO 930317<br>930324 TO 930331                                | PR 930331 TO 930407<br>930407 TO 930414<br>930414 TO 930421<br>930421 TO 930428          | MAY 930428 TO 930505<br>930505 TO 930512<br>930512 TO 930519<br>930519 TO 930526         | JUN 930526 TO 930602<br>930602 TO 930609<br>930609 TO 930616<br>930616 TO 930623         | 307.07 TO 930707<br>930707 TO 930714<br>930721 TO 930728                                 | ACBOTO OF OCTORO     |

CLEVELAND ELECTRIC ILL AINATING CO. - PNPP. REMP TRACKING SYSTEM

PAGE: 002 DATE: 21-FEB-94

# G-BETA AIR REPORT SAMPLE PREQUENCY IS : WEEKLY RESULTS IN E-03 PCI/CU.M. +/- 2 SIGMA

|                   |      | .00+/-4.00                           | .00+/-5.00<br>.00+/-4.00<br>.00+/-4.00<br>.00+/-4.00                                                  | .00+/-4.00<br>.00+/-5.00<br>.00+/-5.00                                           | .00+/-4.00<br>.00+/-5.00<br>.00+/-5.00                                           | .00+/-5.00<br>.00+/-4.00<br>.00+/-5.00<br>.00+/-5.00                                                 |
|-------------------|------|--------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| STATION LOCATIONS | 4 05 | 036.00+/-5.00 032                    | 028.00+/-5.00 027<br>018.00+/-4.00 017<br>021.00+/-4.00 025<br>015.00+/-4.00 017<br>014.00+/-4.00 014 | 015.00+/-4.00 018<br>027.00+/-4.00 023<br>030.00+/-5.00 025<br>026.00+/-4.00 028 | 012.00+/-4.00 020<br>023.00+/-5.00 020<br>029.00+/-5.00 032<br>024.00+/-5.00 025 | 024.00+/-4.00 022<br>027.00+/-3.00 027<br>022.00+/-5.00 021<br>018.00+/-5.00 016                     |
|                   | 03 0 | 029.00+/-4.00                        | 024.00+/-4.00<br>019.00+/-4.00<br>022.00+/-4.00<br>017.00+/-4.00                                      | 015.90+/-4.00<br>027.00+/-5.00<br>024.00+/-5.00<br>027.00+/-4.00                 | 009.00+/-4.00<br>022.00+/-5.00<br>029.00+/-5.00<br>026.00+/-5.00                 | 026.00+/-5.00<br>030.30+/-3.00<br>023.00+/-5.00<br>019.00+/-5.00                                     |
|                   | 0.1  | 035.00+/-4.00                        | 027.004/-4.00<br>017.00+/-4.00<br>022.00+/-4.00<br>016.00+/-4.00                                      | 017.00+/-4.00<br>024.00+/-4.00<br>025.00+/-5.00<br>029.00+/-4.00                 | 010.00+/-4.00<br>022.00+/-5.00<br>029.00+/-5.00<br>023.00+/-5.00                 | 028.00+/-5.00<br>026.00+/-3.00<br>021.00+/-5.00<br>017.00+/-5.00                                     |
| COLLECTION        |      | 930811 TO 930818<br>930818 TO 930825 | SEP 930825 TO 930901<br>930901 TO 930908<br>930908 TO 930915<br>930915 TO 930922<br>930922 TO 930929  | OCT 930929 TO 931006<br>931013 TO 931020<br>931020 TO 931027                     | NOV 931027 TO 931103<br>931103 TO 931110<br>931110 TO 931124                     | DEC 931124 TO 931201<br>931201 TO 931208<br>931208 TO 931215<br>931215 TO 931222<br>931222 TO 931222 |

LOCATIONS 的的的 00+/-4: 00+/-4: 00+/-4: 00+/-4: 00+/-4 00+/-4 00+/-4 00+/-4 00+/-4 00+/-4 00+/-4 00+/-4 00+/-4 00+/-4. STATION in in in m 100 000 +000 +000 019. 008. 011. 016. 019. 012. 0116. 100 019.00+/-4.0 030.004/-5.0 024.00+/-5.0 018.00+/-4.0 00+/-5. 00+/-5. 00+/-4. 000+/-4 00+/-4 .00+/-4. .00\*/-4. an an an an 7-/-00 025. 025. 017. 014. 021. 016. 019. 009. 013. 018. 020. 023. 0117. 018. 20 025.00+/-5.0025.00+/-5.0023.00+/-5.0018.00+/-4.0011.00+/-4.00 004/-5. .00+/-4.00.00+/-4.00.00+/-4. 4444 000-/-4 4-1 019.00+/-4 017.00+/-4 016.00+/-4 +000 1000 018. 015. 032. 019. 90 930106 930113 930120 930210 930217 930217 930224 930310 930317 930324 930324 930414 930421 930421 930428 930505 930512 930519 930526 30602 30609 30616 30623 30707 30721 30728 930804 COLLECTION 01010101010 0.0.0.0 2222 2222 22222 2222 2222 22222 2222 921230 930106 930113 930120 930127 930203 930210 930324 930303 930310 930317 930331 930407 930414 930421 930505 930505 930512 930519 930526 930602 930609 930616 930707 930707 9307214 930728 田田田 UMN AUG MAR MAY

G-BETA AIR REPORT SAMPLE FREQUENCY IS : WEEKLY RESULTS IN E-03 PCI/CU.M. +/- 2 SIGMA

4

| STATION LOCATIONS | 35   | 035.00+/-4.00                        | 025.00+/-4.00<br>018.00+/-4.00<br>022.00+/-4.00<br>017.00+/-4.00                | 015.00+/-4.00<br>023.00+/-4.00<br>029.00+/-5.00                  | 010,00+/-4.00<br>023,00+/-4.00<br>032,00+/-5.00<br>022,00+/-4.00 | 025.00+/-4.00<br>028.00+/-3.00<br>023.00+/-5.00<br>014.00+/-5.00            |
|-------------------|------|--------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------|
|                   | 0.7  | 032.00+/-4.00                        | 024.00+/-4.00<br>020.00+/-4.00<br>019.00+/-4.00<br>018.00+/-4.00                | 014.00*/-4.00<br>024.00+/-4.00<br>022.00+/-5.00<br>027.00+/-4.00 | 011.00+/-4.00<br>022.00+/-4.00<br>029.00+/-5.00<br>026.00+/-5.00 | 024.00+/-4.00<br>027.00+/-3.00<br>022.00+/-5.00<br>014.00+/-5.00            |
|                   | 0.66 | 033.00+/-5.00                        | 031.00+/-5.00<br>018.00+/-4.00<br>019.00+/-4.00<br>015.00+/-4.00                | 021.00+/-4.00<br>026.00+/-4.00<br>022.00+/-4.00<br>028.00+/-4.00 | 013.00+/-4.00<br>020.00+/-4.00<br>028.00+/-5.00<br>024.00+/-4.00 | 025.00+/-4.00<br>025.00+/-3.00<br>018.00+/-5.00                             |
| COLLECTION        |      | 930811 TO 930818<br>930818 TO 930825 | SP 930825 TO 930901<br>930901 TO 930908<br>930908 TO 930915<br>930915 TO 930929 | 931006 TO 931006<br>931013 TO 931020<br>931020 TO 931027         | MOV 931027 TO 931103<br>931103 TO 931110<br>931110 TO 931124     | 93124 TO 931201<br>931201 TO 931208<br>931208 TO 931215<br>931215 TO 931222 |



# I-131 REPORT SAMPLE FREQUENCY IS: WEEKLY RESULTS IN PCI/CU.M. +/- 2 SIGMA

AFF

| OCATION | SAMPLE<br>TYPE | COLLECTION     | 1-131  |
|---------|----------------|----------------|--------|
| -01     | AIR            | 921230/930106  | LT .03 |
| 01      | AIR            | 930106/930113  | LT .02 |
| 01      | AIR            | 930113/930120  | LT .02 |
| 01      | AIR            | 930120/930127  | LT .02 |
| 01      | AIR            | 930127/930203  | LT .02 |
| 01      | AIR            | 930203/930210  | LT .03 |
| 01      | AIR            | 930210/930217  | LT .02 |
| 01      | AIR            | 930217/930224  | LT .02 |
| 0.1     | AIR            | 930224/930303  | LT .02 |
| 01      | AIR            | 930303/930310  | LT .02 |
| 01      | AIR            | 930310/930317  | LT .03 |
| 01      | AIR            | 930317/930324  | LT .03 |
| 01      | AIR            | 930324/930331  | LT .04 |
| 0.1     | AIR            | 930331/930407  | LT .02 |
| OI      | AIR            | 930407/930414  | LT .02 |
| 01      | AIR            | 930414/930421  | LT .02 |
| 01      | AIR            | 930421/930428  | LT .02 |
| 01      | AIR            | 930428/930505  | LT .02 |
| 01      | AIR            | 930505/930512  | LT .02 |
| 01      | AIR            | 930512/930519  | LT .01 |
| 01      | AIR            | 930519/93052   | LT .03 |
| 01      | AIR            | 930526/93060.1 | LT .04 |
| 01      | AIR            | 930602/930609  | LT .62 |
| 01      | AIR            | 930609/930616  | LT .01 |
| 01      | AIR            | 930616/930623  | LT .02 |
| 01      | AIR            | 930623/930630  | LT .02 |
| 01      | AIR            | 930630/930707  | LT .01 |
| 01      | AIR            | 930707/930714  | LT .02 |
| 01      | AIR            | 930714/930721  | LT .02 |
| 01      | AIR            | 930721/930728  | LT .02 |
| 01      | AIR            | 930728/930804  | LT .02 |
| 01      | AIR            | 930804/930811  | LT .02 |
| 01      | AIR            | 930811/930818  | LT .02 |
| 01      | AIR            | 930818/930825  | LT .02 |
| 01      | AIR            | 930825/930901  | LT .02 |
| 01      | AIR            | 930901/930908  | LT .02 |
| 01      | AIR            | 930908/930915  | LT .02 |
| 01      | AIR            | 930915/930922  | LT .03 |
| 01      | AIR            | 930922/930929  | LT .02 |

I-131 REPORT
SAMPLE FREQUENCY IS: WEEKLY
RESULTS IN PCI/CU.M. +/- 2 SIGMA

| STATION<br>LOCATION | SAMPLE<br>TYPE | COLLECTION    | I-131  |
|---------------------|----------------|---------------|--------|
| 01                  | AIR            | 930929/931006 | LT .02 |
| 01                  | AIR            | 931006/931013 | LT .02 |
|                     | AIR            | 931013/931020 | LT .02 |
| 01                  | AIR            | 931020/931027 | LT .02 |
| 01                  | AIR            | 931027/931103 | LT .03 |
|                     | AIR            | 931103/931110 | LT .02 |
|                     | AIR            | 931110/931117 | LT .02 |
|                     | AIR            |               |        |
|                     |                | 931117/931124 | LT .03 |
|                     | AIR            | 931124/931201 | LT .02 |
|                     | AIR            | 931201/931208 | LT .02 |
|                     | AIR            | 931208/931215 | LT .02 |
|                     | AIR            | 931215/931222 | LT .03 |
| 01                  | AIR            | 931222/931229 | LT .02 |
| 03                  | AIR            | 921230/930106 | LT .03 |
| 03                  | AIR            | 930106/930113 | LT .02 |
|                     | AIR            | 930113/930120 | LT .02 |
|                     | AIR            | 930120/930127 | LT .02 |
|                     | AIR            | 930127/930203 | LT .02 |
|                     | AIR            | 930203/930210 | LT .03 |
|                     | AIR            | 930210/930217 | LT .02 |
|                     | AIR            | 930217/930224 | LT .02 |
|                     | AIR            |               |        |
|                     |                | 930224/930303 | LT .02 |
|                     | AIR            | 930303/930310 | LT .02 |
|                     | AIR            | 930310/930317 | LT .03 |
|                     | AIR            | 930317/930324 | LT -02 |
|                     | AIR            | 930324/930331 | LT .03 |
|                     | AIR            | 930331/930467 | LT .02 |
|                     | AIR            | 930407/930414 | LT .02 |
|                     | AIR            | 930414/930421 | LT .02 |
|                     | AIR            | 930421/930428 | LT .02 |
|                     | AIR            | 930428/930505 | LT .02 |
|                     | AIR            | 930505/930512 | LT .02 |
|                     | AIR            | 930512/930519 | LT .01 |
|                     | AIR            | 930519/930526 | LT .03 |
| 0.3                 | AIR            | 930526/930602 | LT .03 |
| 03                  | AIR            | 930602/930609 | LT .02 |
|                     | AIR            | 930609/930616 | LT .01 |



# I-131 REPORT SAMPLE FREQUENCY IS: WEEKLY RESULTS IN PCI/CU.M. +/- 2 SIGMA

| STATION<br>LOCATION | SAMPLE<br>TYPE | COLLECTION<br>DATE | I-131  |  |
|---------------------|----------------|--------------------|--------|--|
| 0.3                 | AIR            | 930616/930623      | LT .02 |  |
| 03                  | AIR            | 930623/930630      | LT .02 |  |
| 03                  | AIR            | 930630/930707      | LT .01 |  |
| 03                  | AIR            | 930707/930714      | LT .02 |  |
| 03                  | AIR            | 930714/930721      | LT .02 |  |
| 03                  | AIR            | 930721/930728      | LT .02 |  |
| 03                  | AIR            | 930728/930804      |        |  |
| 03                  | AIR            | 020004/020011      | LT .02 |  |
| 03                  |                | 930804/930811      | LT .02 |  |
|                     | AIR            | 930811/930818      | LT .02 |  |
| 03                  | AIR            | 930818/930825      | LT .01 |  |
| 03                  | AIR            | 936825/930901      | LT .02 |  |
| 03                  | AIR            | 930901/930908      | LT .02 |  |
|                     | AIR            | 930908/930915      | LT .02 |  |
| 03                  | AIR            | 930915/930922      | LT .02 |  |
| 03                  | AIR            | 930922/930929      | LT .02 |  |
| 03                  | AIR            | 930929/931006      | LT .02 |  |
| 03                  | AIR            | 931006/931013      | LT .02 |  |
| 03                  | AIR            | 931013/931020      | LT .02 |  |
| 03                  | AIR            | 931020/931027      | LT .02 |  |
|                     | AIR            | 931027/931103      | LT .02 |  |
| 0.3                 | AIR            | 931103/931110      | LT .02 |  |
| 03                  | AIR            | 931110/931117      | LT .02 |  |
| 03                  | AIR            | 931117/931124      | LT .03 |  |
| 03                  | AIR            | 931124/931201      | LT .02 |  |
| . 03                | AIR            | 931201/931208      | LT .02 |  |
| 03                  | AIR            | 931208/931215      | LT .02 |  |
| 03                  | AIR            | 931215/931222      | LT .03 |  |
| 03                  | AIR            | 931222/931229      | LT .02 |  |
| 0.4                 | AIR            | 921230/930106      | LT .03 |  |
| 04                  | AIR            | 930106/930113      | LT .02 |  |
| 0.4                 | AIR            | 930113/930120      | LT .02 |  |
| 0.4                 | AIR            | 930120/930127      | LT .02 |  |
| 0.4                 | AIR            | 930127/930203      | LT .02 |  |
| 0.4                 | AIR            | 930203/930210      | LT .03 |  |
| 0.4                 | AIR            | 930210/930217      | LT .02 |  |
| 04                  | AaR            | 930217/930224      | LT .01 |  |
| 0.4                 | AIR            | 930224/930303      | LT .02 |  |

I-131 REPORT
SAMPLE PREQUENCY IS: WEEKLY
RESULTS IN PCI/CU.M. +/- 2 SIGMA

| н |  |  |
|---|--|--|
|   |  |  |

| TATION<br>LOCATION | SAMPLE<br>TYPE | COLLECTION<br>DATE | 1-131   |
|--------------------|----------------|--------------------|---------|
| 94                 | AIR            | 930303/930310      | LT .02  |
| 0.4                | AIR            | 930310/930317      | LT .02  |
| 0.4                | AIR            | 930317/930324      | LT .02  |
| 04                 | AIR            | 930324/930331      | I,T .03 |
| 0.4                | AIR            | 930331/930407      | LT .02  |
| 0.4                | AIR            | 930407/930414      | LT .02  |
| 0.4                | AIR            | 930414/930421      | LT .02  |
| 0.4                | AIR            | 930421/930428      | LT .02  |
| 0.4                | AIR            | 930428/930505      | LT .02  |
| 0.4                | AIR            | 930505/930512      | LT .02  |
| 0.4                | AIR            | 930512/930519      | LT .02  |
| 0.4                | AIR            | 930519/930526      | LT .03  |
| 0.4                | AIR            | 930526/930602      | LT .03  |
| 0.4                | AIR            | 930602/930609      | LT .02  |
| 04                 | AIR            | 930609/930616      | LT .01  |
| 04                 | AIR            | 930616/930623      | LT .02  |
| 04                 | AIR            | 930623/930630      | LT .02  |
| 0.4                | AIR            | 930630/930707      | LT .01  |
| 04                 | AIR            | 930707/930714      | LT .02  |
| 0.4                | AIR            | 930714/930721      | LT .02  |
| 0.4                | AIR            | 930721/930728      | LT .01  |
| 0.4                | AIR            | 930728/930804      | LT .02  |
| 04                 | AIR            | 930804/930811      | LT .02  |
| 04                 | AIR            | 930811/930818      | LT .02  |
| 0.4                | AIR            | 930818/930825      | LT .02  |
| 0.4                | AIR            | 930825/930901      | LT .02  |
| 0.4                | AIR            | 930901/930908      | LT .01  |
| 0.4                | AIR            | 930908/930915      | LT .02  |
| 0.4                | AIR            | 930915/930922      | LT .03  |
| 04                 | AIR            | 930922/930929      | LT .02  |
| 0.4                | AIR            | 930929/931006      | LT .02  |
| 04                 | AIR            | 931066/931013      | LT .02  |
| 0.4                | AIR            | 931013/931020      | LT .02  |
| 04                 | AIR            | 931020/931027      | LT .02  |
| 0.4                | AIR            | 931027/931103      | LT .03  |
| 04                 | AIR            | 931103/931110      | LT .02  |
| 0.4                | AIR            | 931110/931117      | LT .02  |
| 0.4                | AIR            | 931117/931124      | LT .03  |
| 0.4                | AIR            | 931124/931201      | LT .02  |

# CLEVELAND ELECTRIC ILLUMINATING CO. - PNPP. REMP TRACKING SYSTEM



# I-131 REPORT SAMPLE PREQUENCY IS: WEEKLY RESULTS IN PCI/CU.M. +/- 2 SIGMA

| STATION<br>OCATION | SAMPLE<br>TYPE | COLLECTION                     | 1-131            |
|--------------------|----------------|--------------------------------|------------------|
| 0.4                | AIR            | 931201/931208                  | LT .02           |
| 0.4                | AIR            | 931208/931215                  | LT .02           |
| 0.4                | AIR            | 931215/931222                  | LT .03           |
| 04                 | AIR            | 931222/931229                  | LT .02           |
| 05                 | AIR            | 921230/930106                  | LT .03           |
| 05                 | AIR            | 930106/930113                  | LT .02           |
| 0.5                | AIR            | 930113/930120                  | LT .02           |
| 05                 | AIR            | 930120/930127                  | LT .02           |
| 05                 | AIR            | 930127/930203                  | LT .02           |
| 05                 | AIR            | 930203/930210                  | LT .03           |
| 0.5                | AIR            | 930210/930217                  | LT .02           |
| 05                 | AIR            | 930217/930224                  | LT .02           |
| 05                 | AIR            | 930224/930303                  | LT .02           |
| 05                 | AIR            | 930303/930310                  | LT .02           |
| 0.5                | AIR            | 930310/930317                  | LT .03           |
| 05                 | AIR            | 930317/930324                  | LT .02           |
| 05                 | AIR            | 930324/930331                  | LT .03           |
| 05                 | AIR            | 930331/930407                  | LT .02           |
| 0.5                | AIR            | 930407/930414                  | LT .02           |
| 05                 | AIR            | 930414/930421<br>930421/930428 | LT .02<br>LT .03 |
| 05                 | AIR            | 930428/930505                  | LT .02           |
| 05                 | AIR            | 930505/930512                  | LT .02           |
| 05                 | AIR            | 930512/930512                  | LT .02           |
| 05                 | AIR            | 930519/930526                  | LT .03           |
| 05                 | AIR            | 930526/930602                  | LT .04           |
| 05                 | AIR            | 930602/930609                  | LT .02           |
| 05                 | AIR            | 930609/930616                  | LT .01           |
| 05                 | AIR            | 930616/930623                  | LT .02           |
| 05                 | AIR            | 930623/930630                  | LT .02           |
| 05                 | AIR            | 930630/930707                  | LT .01           |
| 0.5                | AIR            | 930707/930714                  | LT .02           |
| 05                 | AIR            | 930714/930721                  | LT .02           |
| 05                 | AIR            | 930721/930728                  | LT .02           |
| 05                 | AIR            | 930728/930804                  | LT .02           |
| 05                 | AIR            | 930804/930811                  | LT .02           |
| 05                 | AIR            | 930811/930818                  | LT .02           |

I-131 REPORT SAMPLE FREQUENCY IS: WEEKLY RESULTS IN PCI/CU.M. +/- 2 SIGMA

| CATION<br>OCATION | SAMPLE<br>TYPE | COLLECTION    | 1-131  |
|-------------------|----------------|---------------|--------|
| 05                | AIR            | 930818/930825 | LT .02 |
| 05                | AIR            | 930825/930901 | LT .02 |
| 05                | AIR            | 930901/930908 | LT .02 |
| 05                | AIR            | 930908/930915 | LT .02 |
| 05                | AIR            | 930915/930922 | LT .03 |
| -05               | AIR            | 930922/930929 | LT .02 |
| -05               | AIR            | 930929/931006 | LT .02 |
| 05                | AIR            | 931006/931013 | LT .02 |
| 05                | AIR            | 931013/931020 | LT .02 |
| 05                | AIR            | 931020/931027 | LT .02 |
| 0.5               | AIR            | 931027/931103 | LT .03 |
| 05                | AIR            | 931103/931110 | LT .02 |
| 05                | AIR            | 931110/931117 | LT .02 |
| 0.5               | AIR            | 931117/931124 | LT .03 |
| 05                | AIR            | 931124/931201 | LT .02 |
| 0.5               | AIR            | 931201/901208 | LT .02 |
| 05                | AIR            | 931208/931215 | LT .02 |
| 05                | AIR            | 931215/9:1222 | LT .03 |
| 05                | AIR            | 931222/951229 | LT .02 |
| 06                | AIR            | 921230/930106 | LT .03 |
| 0.6               | AIR            | 930106/930113 | LT .02 |
| 06                | AIR            | 930113/930120 | LT .02 |
| 06                | AIR            | 930120/930127 | LT .02 |
| 0.6               | AIR            | 930127/930203 | LT .02 |
| 0.6               | AIR            | 930203/930210 | LT .03 |
| 06                | AIR            | 930210/930217 | LT .02 |
| 0.6               | AIR            | 930217/930224 | LT .02 |
| 06                | AIR            | 930224/930303 | LT .02 |
| 06                | AIR            | 930303/930310 | LT .02 |
| 06                | AIR            | 930310/930317 | LT .03 |
| 06                | AIR            | 930317/930324 | LT .02 |
| 0.6               | AIR            | 930324/930331 | LT .03 |
| 0.6               | AIR            | 930331/930407 | LT .02 |
| 0.6               | AIR            | 930407/930414 | LT .02 |
| 0.6               | AIR            | 930414/930421 | LT .02 |
| 0.6               | AIR            | 930421/930428 | LT .02 |
| 0.6               | AIR            | 930428/930505 | LT .02 |

### CLEVELAND ELECTRIC ILLUMINATING CO. - PNPP. REMP TRACKING SYSTEM

P. : 002 DATE: 22-FEB-94

# I-131 REPORT SAMPLE FREQUENCY IS: WEEKLY RESULTS IN PCI/CU.M. +/- 2 SIGMA

| STATION<br>LOCATION | SAMPLE<br>TYPE | COLLECTION<br>DATE | 1-131  |
|---------------------|----------------|--------------------|--------|
| 06                  | AIR            | 930505/930512      | LT .02 |
| 06                  | AIR            | 930512/930519      | LT .02 |
| 0.6                 | AIR            | 930519/930526      | LT .03 |
| 06                  | AIR            | 930526/930602      | LT .03 |
| 0.6                 | AIR            | 930602/930609      | LT .02 |
| 0.6                 | AIR            | 930609/930616      | LT .01 |
| 06                  | AIR            | 930616/930623      | LT .02 |
| 0.6                 | AIR            | 930623/930630      | LT .02 |
| 06                  | AIR            | 930630/930707      | LT .01 |
| 0.6                 | AIR            | 930707/930714      | LT .02 |
| 06                  | AIR            | 930714/930721      | LT .02 |
| 0.6                 | AIR            | 930721/930728      | LT .01 |
| 0.6                 | AIR            | 930728/930804      | LT .02 |
| 0.6                 | AIR            | 930804/930811      | LT .02 |
| 0.6                 | AIR            | 930811/930818      | LT .02 |
| 0.6                 | AIR            | 930818/930825      | LT .02 |
| 0.6                 | AIR            | 930825/930901      | LT .02 |
| 0.6                 | AIR            | 930901/930908      | LT .01 |
| 0.6                 | AIR            | 930908/930915      | LT .02 |
| 0.6                 | AIR            | 930915/930922      | LT .03 |
| 0.6                 | AIR            | 930922/930929      | LT .02 |
| 0.6                 | AIR            | 930929/931006      | LT .02 |
| 0.6                 | AIR            | 931006/931013      | LT .02 |
| 0.6                 | AIR            | 931013/931020      | LT .02 |
| 0.6                 | AIR            | 931020/931027      | LT .02 |
| 0.6                 | AIR            | 931027/931103      | LT .03 |
| 0.6                 | AIR            | 931103/931110      | LT .02 |
| 0.6                 | AIR            | 931110/931117      | LT .02 |
| 0.6                 | AIR            | 931117/931124      | LT .03 |
| 06                  | AIR            | 931124/931201      | LT .02 |
| 0.6                 | AIR            | 931201/931208      | LT .02 |
| 06                  | AIR            | 931208/931215      | LT .02 |
| 0.6                 | AIR            | 931215/931222      | LT .03 |
| 0.6                 | AIR            | 931222/931229      | LT .02 |
|                     |                |                    |        |
| 07                  | AIR            | 921230/930106      | LT .03 |
| 07                  | AIR            | 930106/930113      | LT .02 |
| 07                  | AIR            | 930113/930120      | LT .02 |

### I-131 REPORT SAMPLE PREQUENCY IS : WEEKLY RESULTS IN PCI/CU.M. +/- 2 SIGMA

| -  |    |     |
|----|----|-----|
| 25 | ×2 | 100 |
|    | Э. | 37  |

| STATION<br>LOCATION | SAMPLE<br>TYPE | COLLECTION<br>DATE             | 1-131            |
|---------------------|----------------|--------------------------------|------------------|
| 07                  | AIR            | 930120/930127                  | LT .02           |
| 07                  | AIR            | 930127/930203                  | LT .02           |
| 07                  | AIR            | 930203/930210                  | LT .03           |
| 07                  | AIR            | 930210/930217                  | LT .02           |
| 07                  | AIR            | 930217/930224                  | LT .02           |
| 07                  | AIR            | 930224/930303                  | LT .02           |
| 07                  | AIR            | 930303/930310                  | LT .02           |
| 07                  | AIR            | 930310/930317                  | LT .03           |
| 07                  | AIR            | 930317/930324                  | LT .02           |
| 0.7                 | AIR            | 930324/930331                  | LT .03           |
| 07                  | AIR            | 930331/930407                  | LT .02           |
| 07                  | AIR            | 930407/930414                  | LT .02           |
| 07                  | AIR            | 930414/930421                  | LT .02           |
| 07                  | AIR            | 930421/930428                  | LT .02           |
| 07                  | AIR            | 930428/930505                  | LT .02           |
| 07                  | AIR            | 930505/930512                  | LT .02           |
| 67                  | AIR            | 930512/930519                  | LT .02           |
| 07                  | AIR            | 930519/930526                  | LT .03           |
| 07                  | AIR            | 930526/930602                  | LT -04           |
| 07                  | AIR            | 930602/930609                  | LT .02           |
| 07                  | AIR            | 930509/930616                  | LT .01           |
| 07                  | AIR            | 930616/930623                  | LT .02           |
| 07                  | AIR            | 930623/930630                  | LT .02<br>LT .01 |
| 07                  | AIR            | 930630/930707                  | LT .02           |
| 0.7                 | AIR            | 930707/930714                  | LT .02           |
| 07                  | AIR            | 930714/930721                  | LT .01           |
| 07                  | AIR            | 930721/930728<br>930728/930804 | LT .02           |
| 07                  | AIR            | 930804/930811                  | LT .02           |
| 07                  | AIR            | 930811/930818                  | LT .02           |
| 07                  | AIR            | 930818/930825                  | LT .02           |
| 07                  | AIR            | 930825/930901                  | LT .02           |
| 07                  | AIR            | 930901/930908                  | LT .01           |
| 07                  | AIR            | 930908/930915                  | LT .02           |
| 07                  | AIR            | 930915/930922                  | LT .03           |
| 07                  | AIR<br>AIR     | 930922/930929                  | LT .02           |
| 07                  | AIR            | 930929/931006                  | LT .02           |
| 07                  | AIR            | 931006/931013                  | LT .02           |
| 07                  | AIR            | 931013/931020                  | LT .02           |

# CLEVELAND ELECTRIC ILLUMINATING CO. - PNPP. REMP TRACKING SYSTEM



# I-131 REPORT SAMPLE FREQUENCY IS: WEEKLY RESULTS IN PCI/CU.M. +/- 2 SIGMA

| STATION<br>LOCATION | SAMPLE<br>TYPE | COLLECTION    | 1-131  |  |
|---------------------|----------------|---------------|--------|--|
| 07                  | AIR            | 931020/931027 | LT .02 |  |
| 07                  | AIR            | 931027/931103 | LT .03 |  |
| 07                  | AIR            | 931103/931110 | LT .02 |  |
| 0.7                 | AIR            | 931110/931117 | LT .02 |  |
| 07                  | AIR            | 931117/931124 | LT .03 |  |
| 07                  | AIR            | 931124/931201 | LT .02 |  |
| 07                  | AIR            | 931201/931208 | LT .02 |  |
|                     |                | 931208/931215 | LT .02 |  |
| 07                  | AIR            | 931215/931222 | LT .03 |  |
| 07                  | AIR            | 931222/931229 | LT .02 |  |
| 07                  | AIR            | 931222/931229 | 51 .02 |  |
| 35                  | AIR            | 921230/930106 | LT .02 |  |
| 35                  | AIR            | 930106/930113 | LT .02 |  |
| 35                  | AIR            | 930113/930120 | LT .02 |  |
| 35                  | AIR            | 930120/930127 | LT .02 |  |
|                     | AIR            | 930127/930203 | LT .02 |  |
| 35                  | AIR            | 930203/930210 | LT .02 |  |
| 35                  | AIR            | 930210/930217 | LT .02 |  |
| 35                  | AIR            | 930217/930224 | LT .02 |  |
| 35<br>35            |                | 930224/930303 | LT .02 |  |
| 35                  | AIR            | 930303/930310 | LT .02 |  |
|                     |                | 930310/930317 | LT .02 |  |
| 35                  | AIR            | 930317/930324 | LT .02 |  |
| 35                  | AIR            | °30324/930331 | LT .02 |  |
| 35                  | AIR            | 930331/930407 | LT .02 |  |
| 35                  | AIR            | 930407/930414 | LT .02 |  |
| 35                  | AIR            | 930414/930421 | LT .02 |  |
| 35                  | AIR            |               | LT .02 |  |
| 35                  | AIR            | 930421/930428 |        |  |
| 35                  | AIR            | 930428/930505 | LT .02 |  |
| 35                  | AIR            | 930505/930512 | LT .02 |  |
| 35                  | AIR            | 930512/930519 | LT .02 |  |
| 3.5                 | AIR            | 930519/930526 | LT .02 |  |
| 35                  | AIR            | 930526/930602 | LT .02 |  |
| 3.5                 | AIR            | 930602/930609 | LT .02 |  |
| 35                  | AIR            | 930609/930616 | LT .01 |  |
| 35                  | AIR            | 930616/930623 | LT .02 |  |
| 35                  | AIR            | 930623/930630 | LT -02 |  |
| 35                  | AIR            | 930630/930707 | LT .01 |  |

### I-131 REPORT SAMPLE PREQUENCY IS: WEEKLY RESULTS IN PCI/CU.M. +/- 2 SIGMA

| STATION<br>LOCATION | SAMPLE<br>TYPE | COLLECTION<br>DATE             | 1-131            |
|---------------------|----------------|--------------------------------|------------------|
| 35                  | AIR            | 930707/930714                  | LT .02           |
| 35                  | AIR            | 930714/930721                  | LT .02           |
| 35                  | AIR            | 930721/930728                  | LT .02           |
| 35                  | AIR            | 930728/930804                  | LT .02           |
| 3.5                 | AIR            | 930804/930811                  | LT .02           |
| 35                  | AIR            | 930811/930818                  | LT .02           |
| 35                  | AIR            | 930818/930825                  | LT .02           |
| 35                  | AIR            | 930825/930901                  | LT .01           |
| 35                  | AIR            | 930901/930908                  | LT .02           |
| 35                  | AIR            | 930908/930915                  | LT .02           |
| 35                  | AIR            | 930915/930922                  | LT .02           |
| 35                  | AIR            | 930922/930929                  | LT .02           |
| 3.5                 | AIR            | 930929/931006                  | LT .02           |
| 35                  | AIR            | 931006/931013                  | LT .02           |
| 35                  | AIR            | 931013/931020                  | LT .02           |
| 35                  | AIR            | 931020/931027                  | LT .02           |
| 35                  | AIR            | 931027/931103                  | LT .02           |
| 35                  | AIR            | 931103/931110                  | LT .02           |
| 35                  | AIR            | 931110/931117                  | LT .01           |
| 35                  | AIR            | 931117/931124                  | LT .03           |
| 35                  | AIR            | 931124/931201                  | LT .02           |
| 35                  | AIR            | 931201/931208                  | LT .03           |
| 35                  | AIR            | 931208/931215                  | LT .02           |
| 35<br>35            | AIR            | 931215/931222<br>931222/931229 | LT .02<br>LT .03 |

GAMMA SPEC REPORT OF APTG SAMPLE FREQUENCY IS: QUARTERLY RESULTS IN E-03 PCI/CU.M. +/- 2 SIGMA

M. t. su.

|                | 0000                                                             | 0000                                                             | 8000                                                             | 0000                                                             | 00000                                                            | 0000                                                             | 000                                      |
|----------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------|
| 00-58          | LT 1.0<br>LT 1.0<br>LT 1.0                                       | LT 1.0<br>LT 1.0<br>LT 1.0                                       | HHH                                                              |                                                                  | HHH                                                              | HH                                                               | 11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 |
| 09-02          | LT 1.00<br>LT 1.00<br>LT 1.00<br>LT 1.00                         | LT 1.00<br>LT 1.00<br>LT 1.00<br>LT 1.00                         | LT 1.00<br>LT 1.00<br>LT 1.00<br>LT 1.00                         | LT 1.00<br>LT 1.00<br>LT 1.00                                    | LT 2.00<br>LT 1.00<br>LT 1.00                                    | LT 1.00<br>LT 1.00<br>LT 1.00<br>LT 1.00                         | LT 1.00                                  |
| CS-137         | LT 1.00<br>LT 1.00<br>LT 1.00<br>LT 1.00                         | LT 1.00<br>LT 1.00<br>LT 1.00                                    | LT 1.00<br>LT 1.00<br>LT 1.00<br>LT 1.00                         | LT 1.00<br>LT 1.00<br>LT 1.00                                    | LT 1.00<br>LT 1.00<br>LT 1.00                                    | LT 1.00<br>LT 1.00<br>LT 1.00<br>LT 1.00                         | LT 1.00                                  |
| CS-134         | LT 1.00<br>LT 1.00<br>LT 1.00<br>LT 1.00                         | LT 1.00<br>LT 1.00<br>LT 1.00                                    | ######################################                           | 11111                                                            | LT 1.00<br>LT 1.00<br>LT 1.00<br>LT 1.00                         | LT 1.00<br>LT 1.00<br>LT 1.00                                    | LT 1.00                                  |
| BE-7           | 45.00+/-8.00<br>72.00+/-17.00<br>77.00+/-18.00<br>60.00+/-19.00  | 66.00+/-16.00<br>64.00+/-18.00<br>80.00+/-18.00<br>56.00+/-17.00 | 53.00+/-11.00<br>60.00+/-19.00<br>93.00+/-21.00<br>73.00+/-18.00 | 56.00+/-11.00<br>63.00+/-16.0<br>74.00+/-18.00<br>73.00+/-16.00  | 57.00+/-11.00<br>96.00+/-20.00<br>54.00+/-17.00<br>58.00+/-14.00 | 52.00+/-19.00<br>65.00+/-19.00<br>54.00+/-15.00<br>52.00+/-16.00 | 48.00+/-12.00                            |
| COLLECTION     | 921230/930331<br>930331/930630<br>930630/930929<br>930929/931229 | 921230/930331<br>930331/930630<br>930630/930929<br>930929/931229 | 921230/930331<br>930331/930630<br>930630/930929<br>930929/931229 | 921230/930331<br>930331/930630<br>930630/930929<br>930929/931229 | 921230/930331<br>930331/930630<br>930630/930929<br>930929/931229 | 921230/930331<br>93031/930630<br>930630/930929<br>930929/931229  | 921230/930331                            |
| SAMPLE<br>TYPE |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |                                          |
| STATION        | 01 AIR<br>01 AIR<br>01 AIR                                       | 03 AIR<br>03 AIR<br>03 AIR                                       | 04 AIR<br>04 AIR<br>04 AIR                                       | 05 AIR<br>05 AIR<br>05 AIR                                       | 06 AIR<br>06 AIR<br>06 AIR                                       | 07 AIR<br>07 AIR<br>07 AIR                                       | 20 00 00 00 00 00 00 00 00 00 00 00 00 0 |

TRITIUM REPORT SAMPLE PREQUENCY IS : MONTHLY RESULTS IN PCI/KG +/- 2 SIGMA

| STATION<br>LOCATION | SAMPLE<br>TYPE | COLLECTION<br>DATE | Н3                     |
|---------------------|----------------|--------------------|------------------------|
| 03                  | PR             | 921230/930127      | LT 165.00              |
| 03                  | PR             | 930127/930224      | LT 171.00              |
| 03                  | PR             | 930224/930324      | LT 174.00              |
| 03                  | PR             | 930324/930428      | LT 175.00              |
| 03                  | PR             | 930428/930526      | LT 181.00              |
| 03                  | PR             | 930526/930701      | LT 198.00              |
| 03                  | PR             | 930701/930728      | LT 200.00              |
| 03                  | PR             | 930728/930825      | LT 194.00              |
| 03                  | PR             | 930825/930929      | LT 177.00              |
| 03                  | PR             | 930929/931027      | LT 184.00              |
| 0.3                 | PR             | 931027/931124      | LT 184.00              |
| 0.3                 | PR             | 931124/931229      | LT 189.00              |
|                     |                |                    |                        |
| 0.4                 | PR             | 921230/930127      | LT 165.00              |
| 0.4                 | PR             | 930127/930224      | LT 171.00              |
| 0.4                 | PR             | 930224/930324      | LT 174.00              |
| 04                  | PR             | 930324/930428      | LT 175.00              |
| 0.4                 | PR             | 930428/930526      | LT 181.00              |
| 0.4                 | PR             | 930526/930701      | LT 198.00              |
| 0.4                 | PR             | 930701/930728      | LT 200.00              |
| 04                  | PR             | 930728/930825      | LT 194.00<br>LT 177.00 |
| 04                  | PR             | 930929/931027      | LT 184.00              |
| 0.4                 | PR<br>PR       | 931027/931124      | LT 184.00              |
| 0.4                 | PR             | 931124/931229      | LT 189.00              |
| 0.4                 | PIC            | 731124/731227      | 11 107.00              |
| 06                  | PR             | 921230/930127      | LT 165.00              |
| 06                  | PR             | 930127/930224      | LT 171.00              |
| 0.6                 | PR.            | 930224/930324      | LT 178.00              |
| 0.6                 | PR             | 930324/930428      | LT 175.00              |
| 0.6                 | PR             | 930428/930526      | LT 177.00              |
| 0.6                 | PR             | 930526/930701      | LT 198.00              |
| 0.6                 | PR             | 930701/930728      | LT 200.00              |
| 0.6                 | PR             | 930728/930825      | LT 194.00              |
| 0.6                 | PR             | 930825/930929      | LT 177.00              |
| 0.6                 | PR             | 930929/931027      | LT 184.00              |
| 06                  | PR             | 931027/931124      | LT 184.00              |



### TRITIUM REPORT SAMPLE PREQUENCY IS: MONTHLY RESULTS IN PCI/KG +/- 2 SIGMA

| STATION<br>LOCATION | SAMPLE<br>TYPE | COLLECTION<br>DATE | H3        |
|---------------------|----------------|--------------------|-----------|
| 06                  | PR             | 931124/931229      | LT 189.00 |
| 07                  | pa             | 921230/930127      | LT 165.00 |
| 0.7                 | PR             | 930127/930224      | LT 171.00 |
| 07                  | PR             | 930224/930324      | LT 178.00 |
| 0.7                 | PR             | 930324/930428      | LT 175.00 |
| 0.7                 | PR             | 930428/930526      | LT 181.00 |
| 07                  | PR             | 930526/930701      | LT 193.00 |
| 07                  | PR             | 930701/930728      | LT 200.00 |
| 07                  | PR             | 930728/930825      | LT 194.00 |
| 07                  | PR             | 930825/930929      | LT 182.00 |
| 0.7                 | PR             | 930929/931027      | LT 184.00 |
| 07                  | PR             | 931027/931124      | LT 184.00 |
| 07                  | PR             | 931124/931229      | LT 189.00 |
| 12                  | PR             | 921230/930127      | LT 165.00 |
| îž                  | PR             | 930127/930224      | LT 171.00 |
| 12                  | PR             | 930224/930324      | LT 178.00 |
| 12                  | PR             | 930324/930428      | LT 175.00 |
| 12                  | PR             | 930428/930526      | LT 181.00 |
| 12                  | PR             | 930526/930701      | LT 198.00 |
| 12                  | PR             | 930701/930728      | LT 200.00 |
| 1.2                 | PR             | 930728/930825      | LT 194.00 |
| 12                  | PR             | 930825/930929      | LT 177.00 |
| 12                  | PR             | 930929/931027      | LT 184.00 |
| 12                  | PR             | 931027/931124      | LT 187.00 |
| 12                  | PR             | 931124/931229      | LT 189.00 |
| 35                  | PR             | 921230/930127      | LT 165.00 |
| 35                  | PR             | 930127/930224      | LT 171.00 |
| 35                  | PR             | 930224/930324      | LT 179.00 |
| 35                  | PR             | 930324/930428      | LT 175.00 |
| 35                  | PR             | 930428/930526      | LT 181.00 |
| 35                  | PR             | 930526/930701      | LT 193.00 |
| 35                  | PR             | 930701/930728      | LT 200.00 |
| 35                  | PR             | 930728/930825      | LT 194.00 |

P24001 CLEVELAND ELECTRIC ILLUMINATING CO. - PNPP. PAG.: 002
REMP TRACKING SYSTEM DATE: 14-FEB-94

# TRITIUM REPORT SAMPLE PREQUENCY IS: MONTHLY RESULTS IN PCI/KG +/- 2 SIGMA

| STATION<br>LOCATION | SAMPLE<br>TYPE | COLLECTION DATE | н3        |
|---------------------|----------------|-----------------|-----------|
| 35                  | PR             | 930825/930929   | LT 182.00 |
| 35                  | PR             | 930929/931027   | LT 184.00 |
| 35                  | PR             | 931027/931124   | LT 187.00 |
| 35                  | PR             | 931124/931229   | LT 189.00 |



G-BETA PR REPORT SAMPLE PREQUENCY IS : MONTHLY RESULTS IN PCI/L +/- 2 EIGMA

| 921220 TO 930127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | COLLECTI | COLLECTION |              |           | STATION LOC | LOCATIONS |           |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|------------|--------------|-----------|-------------|-----------|-----------|-----------|
| TO 930127         01.60+/20         01.70+/20         01.70+/20         01.70+/20         01.20+/30         01.20+/20         01.20+/30         01.20+/30         01.20+/30         01.20+/30         01.20+/30         01.20+/30         01.20+/30         03.60+/30         03.60+/30         03.60+/30         03.60+/30         03.60+/30         03.60+/30         03.60+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/40         01.50+/50         01.50+/30         01.50+/30         01.50+/30         01.50+/30         01.50+/30         01.50+/30         01.50+/30         01.50+/30         01.50+/30         01.50+/30         01.50+/30         01.50+/30         01.50+/30         01.50+/30         01.50+/30         01.50+/30         01.50+/30         01.50+/30         01.50+/30         01.50+/30         01.50+/30         01.50+/30         01.50+/30        |    |          |            | 03           | 04        | 90          | 07        |           | 35        |
| 930127 TO 93024         03.80+/40         03.70+/30         04.20+/40         01.60+/30         01.90+/30         03.60+/40           930224 TO 930324         02.30+/30         01.60+/40         05.80+/40         01.20+/40         04.10+/40         01.50+/40           930324 TO 930428         14.20+/90         08.10+/70         08.20+/70         06.30+/60         11.60+/80         05.80+/60           930428 TO 930428         14.20+/20         16.10+/30         19.40+/-2.60         09.60+/90         66.40+/-3.00         33.40+/-1.50           930526 TO 930701         01.20+/20         01.70+/30         02.40+/30         01.90+/30         01.80+/30           930722 TO 930728         10.70+/20         01.10+/50         02.10+/50         03.80+/30         03.80+/40           930728 TO 930929         04.00+/60         01.20+/20         01.00+/20         01.30+/20         01.30+/40           930825 TO 930929         04.00+/60         01.20+/20         03.30+/50         02.50+/40         02.50+/40           931027 TO 931124         04.10+/50         02.30+/50         03.30+/50         02.50+/40         02.50+/40           931124 TO 9311229         08.10+/50         04.20+/40         02.50+/10         0                                             |    |          |            | -/+09        |           | 70+7-       | 2.00+/    | 1.90+/    | 1.20+/2   |
| 930224 TO 930324         02.304/30         01.604/40         06.304/40         04.104/40         01.504/40           930324 TO 930428         14.204/90         08.104/40         08.204/70         06.304/60         11.604/80         06.804/60           930428 TO 930428         14.204/10         16.104/12         19.404/-2.60         09.604/90         66.404/30         06.804/60           930428 TO 930526 TO 930728         10.704/20         01.704/30         02.404/30         01.904/30         01.904/30           930728 TO 930728 TO 930825         03.004/50         01.104/70         01.004/20         01.304/30         01.904/30         01.904/30           930728 TO 930825 TO 930825 TO 930825         04.004/50         01.204/20         01.004/30         01.304/30         01.004/30           930825 TO 930825 TO 930826 TO 931027         04.004/40         02.304/80         09.304/30         02.04/40         02.304/40           930829 TO 931027         04.104/40         09.304/50         03.304/50         03.304/40         05.504/40           931027 TO 931124         04.104/50         04.904/50         03.304/50         03.304/40         05.504/40           931124 TO 931229         08.104/50         04.204/40         02                           | E3 | 30127    | CTV        | 80+/         |           | 4.20+/4     | 1.60+/3   | 1.90+/3   | 3.60+/3   |
| 930428 TO 930428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 10       |            | 30+/         | \$/+09    | 80+/4       | 1.204/4   | .10+/4    | 504/4     |
| 930526         23.40+/-1.90         16.10+/-1.20         19.40+/-2.60         09.60+/-90         66.40+/-3.00         33.40+/-1.5           930526         TO 930728         01.20+/20         01.70+/30         02.46+/30         01.90+/30         01.60+/30         01.90+/30           930721         TO 930728         10.70+/80         07.20+/70         02.10+/50         08.80+/70         01.90+/80         08.70+/40           930728         TO 930825         03.00+/60         01.10+/70         01.00+/20         01.30+/20         01.30+/40         00.80+/40           930825         TO 930829         04.00+/60         01.20+/20         03.10+/30         02.60+/50         01.30+/40         01.30+/20           931027         TO 931124         04.10+/60         02.30+/50         04.90+/50         03.30+/60         02.50+/40         05.50+/40           931124         TO 931229         08.10+/50         04.20+/40         02.50+/40         05.10+/40         06.30+/40                                                                                                                                                                                                                                                                                                  |    | KF       | 9304       | 14.20+/90    | 7/+01     | 8.20*/7     | 6.30+/6   | 1.60+/8   | 6.80+/6   |
| 930526 TO 930701         01.20+/20         01.70+/30         02.46+/30         01.90+/30         01.60+/30         01.90+/30         01.90+/30         01.90+/30         01.90+/30         01.90+/30         01.90+/30         01.90+/30         01.30+/30         01.30+/30         08.70+/30         08.70+/40         08.70+/40         08.70+/40         08.70+/40         08.70+/40         08.70+/40         08.70+/40         08.70+/40         08.70+/40         08.70+/40         08.70+/40         08.70+/40         08.70+/40         08.70+/40         08.70+/40         08.70+/40         08.50+/40         08.50+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40         08.30+/40 |    | 00       | O.         | 40+/-1.      | 6.10+/-1. | 9.40+/-2.6  | 9.60+/9   | 6.40+/-3. | 3.40+/-1. |
| 930728 TO 930825 03.00+/50 01.10+/70 02.10+/50 08.80+/70 12.10+/80 08.70+/ 930728 TO 930825 03.00+/50 01.20+/20 01.00+/20 01.30+/50 01.90+/40 00.80+/ 930825 TO 930929 04.00+/60 01.20+/80 03.10+/50 02.60+/50 02.70+/30 01.10+/ 930929 TO 931027 33.50+/-1.40 10.80+/80 09.30+/50 03.30+/60 04.40+/40 12.70+/ 931027 TO 931124 04.10+/60 02.30+/50 04.20+/40 02.50+/50 05.10+/50 05.30+/50 05.30+/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |          |            |              |           | 2.40+/3     | 1.90+/3   | 1.60+/3   | .904/3    |
| 930728 TO 930825 03.00+/50 01.10+/70 01.00+/20 01.30+/20 01.90+/40 00.80+/ 930825 TO 930929 04.00+/60 01.20+/20 03.10+/30 02.60+/50 02.70+/30 01.10+/ 930929 TO 931027 33.50+/-1.40 10.80+/80 09.30+/50 10.20+/60 04.40+/40 12.70+/ 931027 TO 931124 04.10+/60 02.30+/50 04.90+/50 03.30+/50 05.50+/50 05.30+/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |          | 9307       |              | 20+/7     | 2.10+/5     | 8.80+/7   | 2.10+/8   | 8.70+/7   |
| 930825 TO 930929 04.00+/60 01.20+/20 03.10+/30 02.60+/50 02.70+/30 01.10+/ 930929 TO 931027 33.50+/-1.40 10.80+/80 09.30+/50 10.20+/60 04.40+/40 12.70+/ 931027 TO 931124 04.10+/60 02.30+/50 04.90+/50 03.30+/50 02.50+/50 05.50+/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |          |            | -/+00        | 10+/7     | 1.00+/-,    | 1.30+/2   | 1.904/4   | P/+08     |
| 930929 TO 931027 33.50+/-1.40 10.80+/80 09.30+/50 10.20+/60 04.40+/40 12.70+/<br>931027 TO 931124 04.10+/60 02.30+/50 04.90+/50 03.30+/60 02.50+/50 05.30+/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 10       |            |              | 1         | 3.10+/3     | 2,604/5   | 2.70+/3   | .104/2    |
| 931027 TO 931124 04.10+/50 02.30+/50 04.90+/50 03.30+/60 02.50+/50 05.50+/50 05.50+/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | 30929    | (P)        | 33.50+/-1.40 | 80+/8     | 9.30+/5     | 0.20+/6   | 4.40+/4   | 2.70+16   |
| 931124 TO 931229 08.10+/50 04.20+/40 02.50+/-1.00 01.40+/30 05.10+/40 06.30+/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |          | 93112      | 04.10+/60    | 1-        | 4.90+/5     | 3.30+/6   | 2.50+/5   | .50+/     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          | 0 931229   | 08.104/50    | 100       | 2.50+/-1.   | 1.40+/3   | .10+/4    | .30+/4    |

SAMPLE FREQUENCY IS : MONTHLY RESULTS IN PCI/L +/- 2 SIGMA

| ZN-65                    | LT 4.90             | LT 4.00                        | LT 8.20            | LT 3.70<br>LT 2.40                      | LT 7.40<br>LT 7.00 | LT 5.30<br>LT 3.90 | LT 5.10            | LT 5.50            | LT 3.00<br>LT 7.30 | LT 9.50<br>LT 4.60 | LT 3.30<br>LT 6.80 | LT 3.90<br>LT 5.30 |
|--------------------------|---------------------|--------------------------------|--------------------|-----------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| CS-134<br>NB-95          | LT 5.80             | LT 4.50                        | LT 3.80<br>LT 4.30 | LT 3.00<br>LT 4.50                      | LT 3.40<br>LT 5.80 | LT 5.20<br>LT 6.50 | LT 5.80            | LT 3.80<br>LT 2.70 | LT 3.20<br>LT 4.40 | LT 8.20<br>LT 4.10 | LT 4.10<br>LT 3.80 | LT 3.00            |
| CO-60<br>MN-54           | LT 5.80<br>LT 5.40  | LT 4.40                        | LT 4.00<br>LT 4.10 | LT 2.40<br>LT 4.60                      | LT 5.80<br>LT 6.60 | LT 2.80            | LT 2.40            | LT 4.20            | LT 3.70            | LT 5.40            | LT 2.70            | LT 3.20            |
| CO-58<br>LA-140          | LT 6.10<br>LT 11.00 | LT 4.00<br>LT 6.90             | LT 4.20<br>LT 7.00 | LT 2.20                                 | LT 6.60            | LT 6.50            | LT 3.30<br>LT 2.30 | LT 3.00            | LT 3.90<br>LT 7.70 | LT 7.70<br>LT 6.80 | LT 2.40<br>LT 3.70 | LT 4.40            |
| EA-140<br>FE-59<br>ZR-95 | 23                  | LT 9.70<br>LT 21.70<br>LT 7.70 | 22.0               | 8 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 11.3               | 000                | 3.2                | the set of         | 7.6                | F 33.8             |                    | 113                |
| COLLECTION               | 921230/930127       | 930127/930224                  | 930224/930324      | 930324/930428                           | 930428/930526      | 930526/930701      | 930701/930728      | 930728/930825      | 930825/930929      | 930929/931027      | 931027/931124      | 931124/931229      |
| SAMPLE                   |                     |                                |                    |                                         |                    |                    |                    |                    |                    |                    |                    |                    |
| STATION                  | 03 PR               | 03 PR                          | 03 PR              | 03 PR                                   | 03 PR              | 03 PR              | 03 PR              | 03 PR              | 03 PR              | 03 PR              | 03 PR              | 03 PR              |

GAMMA SPEC REPORT OF PRG SAMPLE PREQUENCY IS: MONTHLY RESULTS IN PCI/L +/- 2 SIGMA

| SAMPLE         COLLECTION         BA-96         CO-66         CS-134         ZN-65           PR         921230/930127         LT 23.90         LT 4.00         LT 4.30         LT 4.00         LT 4.30         LT 4.00         LT 9.30           PR         930124/93024         LT 7.00         LT 4.00         LT 4.00 |            |        |             |     |                                                 |                   |                                       |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|-------------|-----|-------------------------------------------------|-------------------|---------------------------------------|-------------------------|
| 921230/930127 LT 23.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TION       | SAMPLE | RCT         | 200 | 20 H                                            | 10.10             | H 00                                  | 50 M<br>- (<br>0 M      |
| 930224/93024 LT 20.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.         |        | 21230/93012 |     | T 4.4                                           | m er              | en co                                 | ep ch<br>En En          |
| 930224/930324 LT 21:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01.<br>01. |        | 30127/93022 |     | 40 CD 40 CD | F 5.9             | 8 4 4 E                               | T 5.10                  |
| 930428/930428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DC<br>Gu   |        | 30224/93032 |     | 44                                              | ngi (ri)<br>En En | E E                                   | 44.                     |
| 930526/930701 LT 26 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Di.        |        | 30324/93042 |     | 11.3                                            | 9.0               | 4 2 3                                 | 3.9                     |
| 930526/930701 LT 32.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ox<br>ox   |        | 30428/93052 |     | 45.2                                            | T 6.4             | 7 4.1                                 | 44                      |
| 930701/930728 LT 29.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O.         |        | 30526/93070 |     | er un<br>En En                                  | 12.1              | 5.2                                   | 10 E                    |
| 930728/930825 LT 20.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OL CL      |        | 30701/93072 |     | 8 .0                                            | 17.1              | 年 E-                                  | T 8.40                  |
| 930925/930929 LT 38.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.         |        | 30728/93082 |     | 3.6                                             | 2.0               | D D D D D D D D D D D D D D D D D D D | es es<br>es es          |
| 930929/931027 LT 16.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O.         |        | 30825/93092 |     | T 8.0                                           | 122               | F 5 . C                               | n w<br>E E              |
| 931027/931124 LT 11.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.         |        | 30929/93102 |     | T 7.90                                          | T 6.5             | T 3.30                                | T 5.40                  |
| R 931124/931229 LT 28.20 LT 3.10 LT 3.70 LT 1.50 LT 3.3 LT 3.3 LT 3.3 LT 2.50 LT 2.20 LT 3.8 LT 3.8 LT 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01.<br>Cu  |        | 31027/93112 |     | 250                                             | 40                | T 2.4                                 | 54.4                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O. C.      |        | 31124/93122 |     | 13.9                                            | 7.5               | 12                                    | en en<br>en en<br>en en |

### GAMMA SPEC REPORT OF PRG SAMPLE FREQUENCY IS : MONTHLY RESULTS IN PCI/L +/- 2 SIGMA

| STATION<br>OCATION | SAMPLE<br>TYPE | DATE          | EA-140<br>FE-59<br>ZR-95        | CO-58<br>LA-140     | CO-60<br>MN-54     | CS-134<br>NB-95    |                     |
|--------------------|----------------|---------------|---------------------------------|---------------------|--------------------|--------------------|---------------------|
| 06. 1              | PR             | 921230/930127 | LT 26.80<br>LT 12.70<br>LT 8.50 | LT 5.70<br>LT 10.50 | LT 7.20<br>LT 5.30 | LT 4.70<br>LT 5.80 | LT 5.00<br>LT 11.20 |
| 06                 | PR             | 930127/930224 | LT 26.30                        | LT 5.70<br>LT 10.80 |                    | LT 5.00<br>LT 5.20 | LT 4.10<br>LT 13.40 |
| 06                 | PR             | 930224/930324 | LT 20.60<br>LT 8.70             | LT 4.30<br>LT 4.80  | LT 3.50            | LT 3.40<br>LT 4.60 | LT 3.70<br>LT 8.50  |
| 06                 | FR             | 930324/930428 | LT 7.90<br>LT 5.30              | LT 2.90<br>LT 1.80  | LT 3.10            | LT 2.40<br>LT 3.60 | LT 4.50             |
| 06                 | PR             | 930428/930526 | LT 13.40                        | LT 2.30<br>LT 3.50  | LT 3.00<br>LT 2.40 | LT 2.30<br>LT 2.50 | LT 2.40<br>LT 5.30  |
| 06                 | PR             | 930526/930701 |                                 | LT 2.20<br>LT 2.60  | LT .90<br>LT .90   | LT 2.00<br>LT 1.90 | LT 2.30<br>LT 4.00  |
| 06                 | PR             | 930701/930728 | LT 31.70<br>LT 6.10<br>LT 2.40  | LT 4.30<br>LT 2.10  | LT 3.40<br>LT 4.20 | LT 4.10<br>LT 5.40 | LT 2.90<br>LT 5.00  |
| 06                 | PR             | 930728/930825 | LT 22.00<br>LT 8.20<br>LT 7.70  | LT 5.30<br>LT 3.80  | LT 2.10<br>LT 1.90 | LT 4.60<br>LT 6.50 | LT 4.40<br>LT 9.00  |
| 06                 | PR             | 930825/930929 | LT 24.30<br>LT 4.20<br>LT 11.50 | LT 7.00<br>LT 6.40  | LT 3.80<br>LT 3.40 | LT 1.80<br>LT 7.80 | LT 3.00<br>LT 6.80  |
| 06                 | PR             | 930929/931027 |                                 | LT 1.30<br>LT 3.10  | LT 1.90<br>LT 1.40 | LT 1.10<br>LT 3.10 | LT 2.10<br>LT 4.00  |
| 06                 | PR             | 931027/931124 | 1.7 21.70                       | LT 4.10<br>LT 4.10  | LT 3.40<br>LT 4.50 | LT 5.20<br>LT 3.80 | LT 3.30<br>LT 6.50  |
| 06                 | PR             | 931124/931229 | LT 26.80                        | LT 6.50<br>LT 4.20  | LT 6.90<br>LT 6.20 | LT 6.10<br>LT 8.30 | LT 6.30<br>LT 10.00 |

CLEVELAND ELECTRIC IDEMINATING CO. - PNPP.

PAGE: 004 DATE: 15-FEB-94

> GAMMA SPEC REPORT OF PRG SAMPLE FREQUENCY IS : MONTHLY RESULTS IN PCI/L +/- 2 SIGMA

| 99 PB  | DATE          | 78-95<br>28-95       | LA-140              | MN - 54            | CS-134<br>NB-95    | ZN-65              |
|--------|---------------|----------------------|---------------------|--------------------|--------------------|--------------------|
| Q      | 921230/930127 | 12 H 0               | LT 5.10             | LT 6.20<br>LT 5.30 | LT 5.60            | LT 12.50           |
|        | 930127/930224 | LT 22.60<br>LT 10.10 | 27 3.10<br>27 7.40  | LT 4.50<br>LT 4.70 | LT 4.30            | LT 4.16            |
| 07 PR  | 930224/930324 | 23.                  | LT 4.60<br>LT 8.20  | LT 4.90            | LT 4.20            | LT 11.00           |
| 07 PR  | 930324/930428 | 26.                  | LT 5.70<br>LT 10.50 | LT 5.50            | LT 5.00            | LT 5.00            |
| 07 P.R | 930428/930526 | 22.0                 | LT 4.60             | LT 4.00            | LT 3.00            | LT 5.00            |
| 07 98  | 930526/930701 | 96.0                 | LT 5.20             | LT 1.80<br>LT 4.10 | LT 2.20<br>LT 6.10 | LT 3.60<br>LT 5.10 |
| 07 PR  | 930701/930728 |                      | LT 6.40             | LT 7.70<br>LT 4.10 | LT 6.60<br>LT 9.70 | LT 4.80            |
| 07 PR  | 930728/930825 | 30.7                 | 11 3.50             | LT 3.40            | LT 7.30<br>LT 3.10 | LT 3.60            |
| 07 PR  | 930825/930929 | 1000                 | LT 8.70             | LT 2.30<br>LT 4.80 | LT 3.80            | LT 4.80            |
| 07 PR  | 930929/931027 | W                    | LT 6.00             | LT 4.00            | LT 3.50<br>LT 5.50 | LT 4.40<br>LT 6.20 |
| 07 PR  | 931027/931124 | 122                  | LT 5.60<br>LT 3.40  | LT 2.80            | LT 3.00            | LT 4.00            |
| 07 PR  | 931124/931229 | . C/ 42              | LT 5.40             | LT 3.30            | LT 3.80            | LT 3.10            |

### CLEVELAND ELECTRIC ILLUMINATING CO. - PNPP. REMP TRACKING SYSTEM

PAGE: 005 DATE: 15-FEB-94

### GAMMA SPEC REPORT OF PRG SAMPLE FREQUENCY IS : MONTHLY RESULTS IN PCI/L +/- 2 SIGMA

| CATION<br>OCATIO | SAMP<br>N TYP | E COLLECTION DATE | BA-140<br>FE-59<br>ZR-95          | CO-58<br>LA-140    | CO-60<br>MN-54     | CS-134<br>NB-95    | CS-137<br>ZN-65     |
|------------------|---------------|-------------------|-----------------------------------|--------------------|--------------------|--------------------|---------------------|
| 12               | PR            | 921230/9301       | 27 LT 22.40<br>LT 9.90<br>LT 8.00 | LT 4.40<br>LT 8.20 | LT 4.60<br>LT 3.80 | LT 4.60<br>LT 4.70 | LT 4.10<br>LT 10.40 |
| 12               | PR            |                   | LT 7.00                           | LT 5.90            | LT 5.90            |                    | LT 7.20             |
| 12               | PR            | 930224/9303       | LT 19.80<br>LT 9.30<br>LT 7.30    | LT 4.50<br>LT 8.80 | LT 4.10            | LT 3.80<br>LT 4.40 | LT 9.30             |
| 12               | PR            | 930324/9304       | 28 LT 29.40<br>LT 11.90           | LT 10.80           | LT 5.40            | LT 5.40<br>LT 5.90 | LT 14.20            |
| 12               | FR            | 930428/9305       | 26 LT 30 90                       | LT 5.80<br>LT 5.30 | LT 3.60<br>LT 5.80 | LT 6.80<br>LT 4.80 | LT 2.20<br>LT 7.60  |
| 12               | PR            | 930526/9307       | D1 LT 30.40<br>LT 7.70<br>LT 7.10 | LT 3.90<br>LT 6.90 | LT 2.70<br>LT 4.70 | LT 2.40<br>LT 4.80 | LT 4.90<br>LT 5.50  |
| 12               | PR            | 930701/9307       | 28 LT 32.20<br>LT 6.40<br>LT 8.10 |                    |                    | LT 4.60<br>LT 4.10 |                     |
| 12               | PR            | 930728/9308       | 25 LT 24.00<br>LT 8.00<br>LT 3.40 | LT 2.00<br>LT 3.10 | LT 2.00<br>LT 4.40 | LT 7.40<br>LT 4.20 | LT 3.30<br>LT 8.80  |
| 12               | PR            | 930825/9309       | 29 LT 28.40<br>LT 9.50<br>LT 5.50 | LT 3.50<br>LT 8.50 | LT 2.80<br>LT 3.20 | LT 3.50<br>LT 4.10 | LT 3.70<br>LT 6.50  |
| 12               | PR            | 930929/9310       |                                   | LT 3.10<br>LT 8.80 | LT 2.00<br>LT 3.90 | LT 4.40<br>LT 4.40 | LT 3.70<br>LT 7.60  |
| 12               | PR            | 931027/9311       | 24 LT 31.20<br>LT 5.80            | LT 6.60<br>LT 3.80 | LT 1.40            |                    | LT 7.80             |
| 12               | PR            | 931124/9312       | 29 LT 14.90<br>LT 6.40<br>LT 4.60 | LT 5.10<br>LT 3.30 | LT 3.10<br>LT 2.00 | LT 3.00<br>LT 3.90 | LT 4.40<br>LT 9.00  |

# CLEVELAND ELECTRIC FINATING CO. - PNPP. REMP TRACKING SYSTEM

PAGE: 006 DATE: 15-FEB-94

### GAMMA SPEC REPORT OF PRG SAMPLE PREQUENCY IS : MONTHLY RESULTS IN PCI/L +/- 2 SIGMA

| TATIO<br>OCATI |    | SAMPLE<br>TYPE | COLLECTION    | PA-140<br>FE-59<br>2R-95         | CO-58<br>LA-140     | CO-60<br>MN-54     | CS-134<br>NB-95    | CS-137<br>2N-65     |
|----------------|----|----------------|---------------|----------------------------------|---------------------|--------------------|--------------------|---------------------|
| 35             | PR |                | 921230/930127 | LT 30.90<br>LT 15.20<br>LT 11.80 | LT 6.70<br>LT 10.60 | LT 7.20<br>LT 6.10 | LT 6.40<br>LT 6.70 | LT 7.40<br>LT 14.90 |
| 35             | PR |                | 930127/930224 |                                  | LT 3.80<br>LT 4.60  | LT 3.60<br>LT 3.70 | LT 3.10<br>LT 3.70 | LT 3.40<br>LT 6.60  |
| 3.5            | PR |                | 930224/930324 | LT 24.30<br>LT 10.60<br>LT 8.50  | LT 6.30<br>LT 9.90  | LT 6.70<br>LT 6.10 | LT 4.90<br>LT 5.20 | LT 5.40<br>LT 13.60 |
| 35             | PR |                | 930324/930428 |                                  | LT 4.70<br>LT 6.50  | LT 4.40<br>LT 4.60 | LT 3.20<br>LT 5.10 | LT 4.00<br>LT 8.60  |
| 35             | PR |                | 930428/930526 | LT 30.40<br>LT 6.40              | LT 5.40<br>LT 5.00  | LT 4.30<br>LT 3.70 | LT 3.00<br>LT 3.70 | LT 4.30<br>LT 5.90  |
| 35             | PR |                | 930526/930701 | LT 17.60<br>LT 8.80<br>LT 5.00   | LT 2.60<br>LT 3.20  | LT 5.00<br>LT 4.30 | LT 3.80<br>LT 7.10 | LT 3.70<br>LT 5.20  |
| 35             | PR |                | 930701/930728 |                                  | LT 3.80<br>LT 6.00  | LT 5.00<br>LT 7.20 | LT 2.90<br>LT 2.90 | LT 7.80<br>LT 11.10 |
| 35             | PR |                | 930728/930825 |                                  | LT 5.60<br>LT 4.00  | LT 3.80<br>LT 4.10 | LT 3.10<br>LT 2.90 | LT 5.20<br>LT 4.80  |
| 35             | PR |                | 930825/930929 | LT 44.70<br>LT 5.20<br>LT 5.80   | LT 5.80<br>LT 5.80  | LT 2.90<br>LT 2.20 | LT 5.30<br>LT 2.50 | LT 2.20<br>LT 6.60  |
| 35             | PR |                | 930929/931027 | LT 44.20<br>LT 12.00<br>LT 7.60  | LT 4.60<br>LT 10.70 | LT 4.80<br>LT 4.30 | LT 4.00<br>LT 5.30 | LT 4.50<br>LT 8.60  |
| 35             | PR |                | 931027/931124 |                                  | LT 4.20<br>LT 4.30  | LT 1.90<br>LT 2.80 | LT 4.10<br>LT 3.40 | LT 4.30<br>LT 5.30  |
| 35             | PR |                | 931124/931229 |                                  | LT 3.70<br>LT 5.00  | LT 4.30<br>LT 3.90 | LT 4.80<br>LT 3.40 | LT 4.90<br>LT 4.40  |

PAGE: 001 DATE: 18-FEB-94

### GAMMA SPEC REPORT OF MLKI SAMPLE FREQUENCY IS: BI-MONTHLY RESULTS IN PCI/L +/- 2 SIGMA

|  | q |  |   |  |
|--|---|--|---|--|
|  |   |  |   |  |
|  |   |  | - |  |
|  |   |  |   |  |

| TATIO<br>OCATI |          | SAMPLE<br>TYPE | COLLECTION                     | I-131            |  |  |  |
|----------------|----------|----------------|--------------------------------|------------------|--|--|--|
| 47             | MILK     |                | 930402/930405                  |                  |  |  |  |
| 4.7            | MILK     |                | 930423/930426                  |                  |  |  |  |
| 4.7            | MILK     |                | 930507/930510                  |                  |  |  |  |
| 4.7            | MILK     |                | 930521/930524                  | LT .40           |  |  |  |
| 47             | MILK     |                | 930604/930607                  | LT .50           |  |  |  |
| 47             | MILK     |                | 930618/930621                  | LT .30           |  |  |  |
| 47             | MILK     |                | 930709/930712                  | LT .30           |  |  |  |
| 47             | MILK     |                | 930723/930726                  | LT .30           |  |  |  |
| 47             | MILK     |                | 930806/930809                  | LT .30           |  |  |  |
| 47             | MILK     |                | 930820/930823<br>930904/930907 | LT .40           |  |  |  |
| 47             | MILK     |                | 930917/930920                  | LT .60<br>LT .30 |  |  |  |
| 47             | MILK     |                | 931001/931004                  | LT .40           |  |  |  |
|                | 23.6.600 |                | 222001/231004                  | D1 -40           |  |  |  |
| 51             | MILK     |                | 930108/930111                  | LT .20           |  |  |  |
| 5.1            | MILK     |                | 930205/930208                  | LT .50           |  |  |  |
| 51             | MILK     |                | 930305/930308                  | LT .50           |  |  |  |
| 51             | MILK     |                | 930402/930405                  | LT .40           |  |  |  |
| 51             | MILK     |                | 930423/930426                  | LT .30           |  |  |  |
| 51             | MILK     |                | 930507/930510                  | LT .40           |  |  |  |
| 51             | MILK     |                | 930521/930524                  | LT .40           |  |  |  |
| 51             | MILK     |                | 930604/930607                  | LT -40           |  |  |  |
| 51<br>51       | MILK     |                | 930618/930621<br>930709/930712 | LT .30           |  |  |  |
| 51             | MILK     |                | 930723/930726                  | LT .20<br>LT .30 |  |  |  |
| 51             | MILK     |                | 930806/930809                  | LT .20           |  |  |  |
| 51             | MILK     |                | 930820/930823                  | LT .40           |  |  |  |
| 51             | MILK     |                | 930904/930907                  | LT .30           |  |  |  |
| 51             | MILK     |                | 930917/930920                  | LT .30           |  |  |  |
| 51             | MILK     |                | 931001/931004                  | LT .40           |  |  |  |
| 51             | MILK     |                | 931015/931018                  | LT .30           |  |  |  |
| 51             | MILK     |                | 931105/931108                  | LT .40           |  |  |  |
| 51             | MILK     |                | 931203/931206                  | LT .40           |  |  |  |
| 61             | MILK     |                | 930402/930405                  | LT .30           |  |  |  |
| 61             | MILK     |                | 930423/930426                  |                  |  |  |  |
| 61             | MILK     |                | 930507/930510                  | LT .40           |  |  |  |
| 61             | MILK     |                | 930521/930524                  | LT .40           |  |  |  |
| 61             | MILK     |                |                                |                  |  |  |  |

### CLEVELAND ELECTRIC ILLUSATING CO. - PNPP. REMP TRACKING SYSTEM

PAGE: 002 DATE: 18-FEB-94

### GAMMA SPEC REPORT OF MLKI SAMPLE PREQUENCY IS: BI-MONTHLY RESULTS IN PCI/L +/- 2 SIGMA

| run- |     |
|------|-----|
|      | 154 |
|      |     |

| STATICY<br>LOCATIO |          | SAMPLE<br>TYPE | COLLECTION<br>DATE             | 1-131    |
|--------------------|----------|----------------|--------------------------------|----------|
| 61                 | MILK     |                | 930618/930621                  | LT .30   |
| 61                 | MILK     |                | 930709/930712                  |          |
| 61                 | MILK     |                | 930723/930726                  |          |
| 6.1                | MILK     |                | 930806/930809                  |          |
| 61                 | MILK     |                | 930820/930823                  |          |
| 61                 | MILK     |                | 930904/930907                  |          |
| 61                 | MILK     |                | 930917/930920                  |          |
| 61                 | MILK     |                | 931001/931004<br>931015/931018 |          |
| 61<br>61           | MILK     |                | 931105/931018                  |          |
| 9.7                | MILLIAN. |                | 931103/931100                  | 111 - 40 |
| 69                 | MILK     |                | 930108/930111                  | LT .20   |
| 69                 | MILK     |                | 930205/930208                  |          |
| 69                 | MILK     |                | 930305/930308                  | LT .40   |
| 69                 | MILK     |                | 930402/930405                  | LT .30   |
|                    |          |                | 0201001020111                  | F.W. 3.0 |
| 71                 | MILK     |                | 930108/930111<br>930205/930208 |          |
| 71<br>71           | MILK     |                | 930305/930308                  |          |
| 71                 | MILK     |                | 930402/930405                  |          |
| 71                 | MILK     |                | 930423/930426                  |          |
| 71                 | MILK     |                | 930507/930510                  |          |
| 71                 | MILK     |                | 930521/930524                  | LT .30   |
| 7.1                | MILK     |                | 930604/930607                  | LT .30   |
| 71                 | MILK     |                | 930618/930621                  |          |
| 7.1                | MILK     |                | 930709/930712                  |          |
| 7.1                | MILK     |                | 930723/930726                  |          |
| 71                 | MILK     |                | 930806/930809                  |          |
| 71                 | MILK     |                | 930820/930823                  |          |
| 71<br>71           | MILK     |                | 930904/930907<br>930917/930920 |          |
| 71                 | MILK     |                | 931001/931004                  |          |
| 71                 | MILK     |                | 931015/931018                  |          |
| 71                 | MILK     |                | 931105/931108                  |          |
| 71                 | MILK     |                | 931203/931206                  |          |

### CLEVELAND ELECTRIC ILLUMINATING CO. - PNPP. REMP TRACKING SYSTEM

PAGE: 001 DATE: 18-FEB-94

### GAMMA SPEC REPORT OF STRG SAMPLE PREQUENCY IS: BI-MONTHLY RESULTS IN PCI/L +/- 2 SIGMA

| B. |  |   |  |
|----|--|---|--|
|    |  |   |  |
|    |  | 1 |  |
|    |  |   |  |

| STATIO<br>LOCATI           |                                      | COLLECTION SR-89<br>DATE                                                                                        | SR-90                                                    |
|----------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 47<br>47<br>47             | MILK<br>MILK<br>MILK                 | 930507/930510 LT .6<br>930521/930524 LT .6<br>930820/930823 LT .9                                               | 5.40+/90<br>2.00+/50<br>2.80+/60                         |
| 51<br>51<br>51<br>51<br>51 | MILK<br>MILK<br>MILK<br>MILK<br>MILK | 930205/930208 LT .7<br>930507/930510 LT .5<br>930521/930524 LT .6<br>930820/930823 LT .7<br>931105/931108 LT .6 | 2.10+/50<br>2.90+/60<br>2.10+/60<br>2.60+/50<br>3.70+/60 |
| 61<br>61<br>61<br>61       | MILK<br>MILK<br>MILK                 | 930507/930510 LT .6<br>930521/930524 LT .6<br>930820/930823 LT .8<br>931105/931108 LT .5                        | 2.20+/60<br>2.50+/60<br>1.30+/40<br>1.50+/40             |
| 69                         | MILK                                 | 930205/930208 LT .5                                                                                             | 1.90+/30                                                 |
| 71<br>71<br>71<br>71<br>71 | MILK<br>MILK<br>MILK<br>MILK         | 930205/930208 LT .5<br>930507/930510 LT .5<br>930521/930524 LT .6<br>930820/930823 LT .9<br>931105/931108 LT .7 | 4.20+/50<br>4.80+/60<br>5.70+/80<br>3.50+/60<br>4.70+/60 |

CLEVELAND ELECTRIC ILLUSTING CO. - PNPP.
REMP TRACKING SYSTEM

PAGEV 001 DATE: 18-PEB-94

### GAMMA SPEC REPORT OF MLKG SAMPLE FREQUENCY IS: BI-MONTHLY RESULTS IN PCI/L +/- 2 SIGMA

| STATION<br>LOCATION |              | COLLECTION B  | A-140   | CS-134 | CS-137 | K-40           | LA-140  |
|---------------------|--------------|---------------|---------|--------|--------|----------------|---------|
| 47                  | MILK         | 930402/930405 | LT 20.0 | LT 4.5 | LT 5.0 | 1560.0+7-90.0  | LT 6.7  |
| 4.7                 | MILK         |               | LT 23.0 | LT 1.5 | LT 2.6 | 1470.0+/-60.0  | LT 6.0  |
| 47                  | MILK         |               | LT 26.2 | LT 6.0 | LT 6.3 | 1640.0+/-130.0 | LT 9.2  |
| 47                  | MILK         |               | LT 14.6 | LT 2.2 | LT 4.4 | 1710.0+/-150.0 | LT 3.7  |
| 47                  | MILK         |               | LT 25.0 | LT 2.9 | LT 6.6 | 1620.0+/-170.0 | LT 4.1  |
| 4.7                 | MILK         | 930618/930621 | LT 31.8 | LT 2.8 | LT 8.7 | 1680.0+/-190.0 | LT 3.7  |
| 47                  | MILK         |               | LT 15.5 | LT 3.2 | LT 5.0 | 1600.0+/-160.0 | LT 6.0  |
| 47                  | MILK         |               | LT 19.5 | LT 4.2 | LT 3.4 | 1740.0+/-190.0 | LT 3.9  |
| 47                  | MILK         |               | LT 23.3 | LT 7.7 | LT 6.0 | 1680.0+/-160.0 | LT 5.0  |
| 47                  | MILK         |               | LT 35.5 | LT 3.7 | LT 7.4 | 1510.0+/-170.0 | LT 4.1  |
| 47                  | MILK         |               | LT 25.6 | LT 4.1 | LT 4.9 | 1770.0+/-140.0 | LT 7.1  |
| 47                  | MILK         |               | LT 16.3 | LT 6.7 | LT 5.9 | 1720.0+/-190.0 | LT 4.0  |
| 47                  | MILK         |               | LT 16.5 | LT 3.6 | LT 5.0 | 1800.0+/-200.0 | LT 3.3  |
| E 1                 | MILK         | 930108/930111 | LT 24.8 | LT 4.2 | LT 4.7 | 1610.0+/-140.0 | LT 6.4  |
| 51                  |              |               | LT 29.0 | LT 6.2 | LT 6.7 | 1380.0+/-160.0 | LT 9.3  |
| 51<br>51            | MILK<br>MILK |               | LT 23.7 | LT 6.0 | LT 6.4 | 1200.0+/-150.0 | LT 6.8  |
| 51                  | MILK         |               | LT 23.5 | LT 4.4 | LT 4.9 | 1350.0+/-120.0 | LT 9.9  |
| 51                  | MILK         |               | LT 29.3 | LT 2.2 | LT 2.4 | 1350.0+/-70.0  | LT 10.6 |
| 51                  | MILK         |               | LT 29.7 | LT 6.9 | LT 7.4 | 1490.0+/-170.0 | LT 10.8 |
| 51                  | MILK         |               | LT 17.6 | LT 3.2 | LT 5.4 | 1410.0+/-160.0 | LT 4.5  |
| 51                  | MILK         |               | LT 31.9 | LT 3.6 | LT 6.1 | 1330.0+/-160.0 | LT 3.6  |
| 51                  | MILK         |               | LT 41.7 | LT 4.8 | LT 6.8 | 1330.0+/-170.0 | LT 6.0  |
| 51                  | MILK         | 930709/930712 | LT 22.6 | LT 3.3 | LT 4.1 | 1370.0+/-110.0 | LT 5.7  |
| 51                  | MILK         |               | LT 29.3 | LT 2.9 | LT 5.3 | 1380.0+/-170.0 | LT 5.4  |
| 51                  | MILK         |               | LT 21.1 | LT 4.7 | LT 3.8 | 1450.0+/-170.0 | LT 4.2  |
| 51                  | MILK         |               | LT 22.5 | LT 4.4 | LT 4.8 | 1350.0+/-110.0 | LT 9.8  |
| 51                  | MILK         |               | LT 19.5 | LT 3.4 | LT 3.3 | 1240.0+/-180.0 | LT 5.1  |
| 51                  | MILK         |               | LT 23.6 | LT 8.4 | LT 4.2 | 1390.0+/-170.0 | LT 3.7  |
| 51                  | MILK         | 931001/931004 | LT 14.3 | LT 6.1 | LT 3.2 | 1290.0+/-150.0 | LT 6.8  |
| 51                  | MILK         |               | LT 18.9 | LT 4.0 | LT 4.8 | 1210.0+/-120.0 | LT 5.9  |
| 51                  | MILK         |               | LT 17.8 | LT 6.8 | LT 4.8 | 1180.0+/-190.0 | LT 3.7  |
| 51                  | MILK         |               | LT 24.3 | LT 3.2 | LT 3.7 | 1080.0+/-150.0 | LT 4.4  |
|                     | MILLA        | 930402/930405 | LT 36.8 | LT 6.9 | LT 6.9 | 1520.0+/-180.0 | LT 8.6  |
| 61                  | MILK         |               | LT 31.2 | LT 2.4 | LT 2.4 | 1780.0+/-60.0  | LT 8.7  |
| 61                  | MILK         |               | LT 13.3 | LT 2.5 | LT 2.7 | 1880.0+/-70.0  | LT 3.8  |
| 61                  | MILK         |               | LT 31.7 | LT 5.1 | LT 5.3 | 1510.0+/-140.0 | LT 10.6 |
| 61                  | MILK<br>MILK |               | LT 35.4 | LT 5.0 | LT 8.8 | 1850.0+/-190.0 | LT 3.7  |

PAGE: 002 DATE: 18-PEB-94

### GAMMA SPEC REPORT OF MLKG SAMPLE FREQUENCY IS: BI-MONTHLY RESULTS IN PCI/L +/- 2 SIGMA

Milk

| ATION<br>CATION                                                                                                                                                                                                                                                                                                             | SAMPLE<br>TYPE | COLLECTION<br>DATE                                                                                                                                                                                                                                                                                             | BA-140                                                                                                                                                                                                                   | CS-134                                                                                                                                                                           | CS-137                                                                                                   | K-40                                                                                                                                                                                                        | LA-140                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 61 MILE<br>61 MILE<br>61 MILE<br>61 MILE<br>61 MILE<br>61 MILE<br>61 MILE<br>61 MILE<br>61 MILE                                                                                                                                                                                                                             |                | 930618/930621<br>930709/930712<br>930723/930726<br>930806/930809<br>930820/930823<br>930904/930907<br>930917/930920<br>931001/931004<br>931015/931018<br>931105/931108                                                                                                                                         | LT 25.6<br>LT 19.2<br>LT 19.1<br>LT 27.3<br>LT 34.8<br>LT 41.9<br>LT 34.1<br>LT 14.5<br>LT 20.3<br>LT 28.1                                                                                                               | LT 2.4<br>LT 2.8<br>LT 5.6<br>LT 5.0<br>LT 7.5<br>LT 4.5<br>LT 4.4<br>LT 7.1<br>LT 7.8<br>LT 4.8                                                                                 | LT 6.8<br>LT 5.0<br>LT 6.6<br>LT 6.7<br>LT 5.3<br>LT 7.4<br>LT 7.8<br>LT 7.1<br>LT 6.6<br>LT 7.1         | 1970.0+/-1<br>1780.0+/-1<br>1770.0+/-1<br>1810.0+/-2<br>1990.0+/-1<br>1640.0+/-1<br>1860.0+/-2<br>1760.0+/-1<br>1800.0+/-1                                                                                  | 60.0 LT 2.8 70.0 LT 3.0 00.0 LT 6.3 90.0 LT 3.6 90.0 LT 3.8 00.0 LT 4.1 90.0 LT 2.9 90.0 LT 3.0                                                                                      |
| 69 MILK<br>69 MILK<br>69 MILK                                                                                                                                                                                                                                                                                               |                | 930108/930111<br>930205/930208<br>930305/930308<br>930402/930405                                                                                                                                                                                                                                               | LT 33.1<br>LT 28.2<br>LT 25.6<br>LT 32.3                                                                                                                                                                                 | LT 4.0<br>LT 6.1<br>LT 7.0<br>LT 5.6                                                                                                                                             | LT 5.1<br>LT 6.2<br>LT 6.9<br>LT 5.5                                                                     | 1520.0+/-1<br>1400.0+/-1<br>1290.0+/-1<br>1260.0+/-1                                                                                                                                                        | 50.0 LT 7.8<br>60.0 LT 8.6                                                                                                                                                           |
| 71 MILK<br>71 MILK |                | 930108/930111<br>930205/930208<br>930305/930308<br>930402/930405<br>930402/930405<br>930507/930510<br>930521/930524<br>930604/930607<br>930618/930621<br>9307023/930726<br>930723/930726<br>930806/930809<br>930820/930823<br>930904/930907<br>930917/930920<br>931001/931004<br>93105/931108<br>931203/931206 | LT 22.3<br>LT 20.8<br>LT 24.2<br>LT 28.0<br>LT 41.4<br>LT 22.8<br>LT 28.8<br>LT 15.8<br>LT 29.5<br>LT 44.8<br>LT 21.9<br>LT 29.6<br>LT 40.5<br>LT 29.6<br>LT 40.5<br>LT 16.7<br>LT 17.9<br>LT 17.9<br>LT 17.9<br>LT 17.9 | LT 4.1<br>LT 5.0<br>LT 6.8<br>LT 4.2<br>LT 2.8<br>LT 5.1<br>LT 3.0<br>LT 4.5<br>LT 6.4<br>LT 3.1<br>LT 4.7<br>LT 5.5<br>LT 4.2<br>LT 3.8<br>LT 6.6<br>LT 4.8<br>LT 4.8<br>LT 5.0 | LT 4.1 LT 5.0 LT 6.7 LT 5.5 LT 5.5 LT 5.7 LT 3.7 LT 8.0 LT 6.7 LT 6.7 LT 6.1 LT 6.0 LT 5.5 LT 4.9 LT 6.1 | 1370.0+/-1: 1350.0+/-1: 1060.0+/-1: 1270.0+/-1: 1370.0+/-9: 1280.0+/-1: 1370.0+/-1: 1320.0+/-1: 1440.0+/-1: 1320.0+/-1: 1350.0+/-1: 1350.0+/-1: 1270.0+/-1: 1250.0+/-1: 1250.0+/-1: 1250.0+/-1: 1250.0+/-1: | 20.0 LT 8.0 50.0 LT 5.3 10.0 LT 5.6 0.0 LT 7.1 30.0 LT 10.3 30.0 LT 10.3 30.0 LT 3.8 70.0 LT 5.7 50.0 LT 3.3 30.0 LT 6.9 80.0 LT 4.6 30.0 LT 6.5 40.0 LT 6.5 60.0 LT 3.4 40.0 LT 2.4 |

CLEVELAND ELECTRIC INATING CO. - ENPP. REMP TRACKING SYSTEM

PAGE: 001 DATE: 18-PEB-94

> GAMMA SPEC REPORT OF FP SAMPLE PREQUENCY IS : MONTHLY RESULTS IN PCI/KG +/~ 2 SIGMA

> > Food Products

### CLEVELAND ELECTRIC ILLUMINATING CO. - PNPP. REMP TRACKING SYSTEM

PAGE: 002 DATE: 18-FEB-94

### GAMMA SPEC REPORT OF PP SAMPLE PREQUENCY IS: MONTHLY RESULTS IN PCI/KG +/- 2 SIGMA

Food Products

| CATIO |                 | COLLECTION    | CS-134<br>CO-60                | CS-137<br>BE-7                    | I-131    | K-40           | CO-58    |
|-------|-----------------|---------------|--------------------------------|-----------------------------------|----------|----------------|----------|
| 70    | BROCCOLI        | 931019/931019 | LT 10.40<br>LT 13.60           | LT 12.60<br>LT 114.70             | LT 24.80 | 3169.0+/-311.0 | LT 12.10 |
| 72    | BROCCOLI        | 930720/930720 |                                | LT 4.90                           | LT 33.10 | 4417.0+/-360.0 | LT 10.10 |
| 72    | CABBAGE         | 930720/930720 |                                | LT 115.00<br>LT 16.70             | LT 40.90 | 2647.0+/-310.0 | LT 12.60 |
| 72    | CAULIFLOWER     | 930720/930720 | LT 13.80<br>LT 4.30<br>LT 3.60 | LT 114.00<br>LT 6.40<br>LT 61.70  | LT 19.70 | 1782.0+/-200.0 | DT 7.40  |
| 73    | CABBAGE         | 930827/930827 |                                | LT 10.10                          | LT 20.70 | 1714.0+/-313.0 | LT 16.70 |
| 73    | CABBAGE         | 930923/930923 | LT 12.00<br>LT 3.60<br>LT 4.60 | LT 95.30<br>LT 3.70<br>46.7+/-3.0 | LT 9.60  | 2737.0+/-113.0 | LT 4.30  |
| 77    | DILL            | 930720/930720 | LT 7.60<br>LT 25.10            | LT 21.40<br>LT 200.00             | LT 36.70 | 5240.0+/-600.0 | LT 21.30 |
| 77    | TURNIP GREENS   | 930720/930720 |                                | LT 20.80<br>LT 197.00             | LT 31.70 | 5190.0+/-520.0 | LT 8.60  |
| 77    | DILL            | 930827/930827 | LT 21.70<br>LT 29.90           | LT 21.10<br>LT 209.20             | LT 26.80 | 5584.0+/-688.0 | LT 26.40 |
| 77    | TURNIP GREENS   | 930827/930827 |                                | LT 24.00<br>LT 20.80              | LT 30.90 | 6316.0+/-622.0 | LT 24.80 |
| 77    | DILL            | 931019/931019 | LT 13.70<br>LT 17.60           | LT 14.90<br>716.0+/-167.0         | LT 39.20 | 6161.0+/-452.0 | LT 19.70 |
| 77    | TURNIP GREENS   | 931019/931019 |                                | LT 15.40<br>884.0+/-171.0         | LT 26.30 | 4078.0+/-362.0 | LT 17.00 |
| 7.8   | CABBAGE         | 930827/930827 | LT 25.70<br>LT 8.30            | LT 17.00<br>LT 138.00             | LT 17.00 | 2792.0+/-433.0 | LT 15.30 |
| 78    | CHINESE CABBAGE | 930827/930827 |                                | LT 25.30<br>LT 148.00             | LT 17.70 | 4114.0+/-629.0 | LT 20.70 |
| 78    | TURNIP GREENS   | 930827/930827 |                                | LT 18.80<br>LT 145.80             | LT 30.60 | 5794.0+/-481.0 | LT 16.20 |
| 7.8   | BROCCOLI        | 930827/930827 |                                | LT 11.70<br>LT 157.00             | LT 33.60 | 4258.0+/-432.0 | LT 13.00 |

GAMMA SPEC REPORT OF PP SAMPLE FREQUENCY IS : MONTHLY RESULTS IN PCI/KG +/- 2 SIGMA

| 1             | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1             | the same of the sa | CE         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No.        |
| 4             | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0          |
| 1             | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U          |
| 1             | ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0          |
|               | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TO         |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W.         |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 3             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | prot<br>em |
| 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -          |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )<br>jest  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m          |
|               | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 274        |
|               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50         |
|               | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.        |
| 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Т             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 1             | ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 1             | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19,21      |
| 1             | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 450<br>800 |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1          |
| 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S          |
| 1             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 125        |
|               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100        |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F          |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28         |
| 1             | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1          |
| 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COLLECTION |
| 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U          |
| 10            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 23            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| duo           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 8             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 163        |
| 8             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H          |
| 1.1           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ME         |
| -3            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45         |
| ŏ.            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ne         |
| 9             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100        |
|               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S          |
| rood rroducts | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATI        |
|               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E A        |
| 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Co         |
| 11            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |

| STATIO | TION SAMFLE<br>TION TYPE | COLLECTION    | CS-134<br>CO-60                 | CS-137<br>BE-7            | 1-131    | K-40           | CO-58    |
|--------|--------------------------|---------------|---------------------------------|---------------------------|----------|----------------|----------|
| 7.8    | CHINESE CABBAGE          | 930923/930923 | in a                            | 107 6                     | UT 6.20  | 3668.0+/-146.0 | LT 7.60  |
| 7.80   | BROCCOLI                 | 930923/930923 | 0000                            | 3.76                      | LT 8.50  | 3373.0+/-108.0 | LT 3.20  |
| 78     | CABBAGE                  | 931019/931019 | 10.0                            | 9.60                      | LT 15.30 | 2690.0+/-271.0 | LT 7.40  |
| 78     | BROCCOLI                 | 931019/931019 | 121                             | 0 × 0                     | LT 24.50 | 3697.0+/-421.0 | LT 24.00 |
| 78     | CHINESE CABBAGE          | 931019/931019 | LT 13.00<br>LT 6.50<br>LT 10.40 | LT 12.50<br>202.0+/-103.0 | LT 18.20 | 3474.0+/-363.0 | LT 9.60  |
| 7.9    | CABBAGE                  | 9308277930827 | LT 9.10<br>LT 17.30             | LT 11.80<br>LT 94.20      | 11.30    | 1894.0+/-99.0  | 12.70    |

GAMMA SPEC REPORT OF FP SAMPLE FREQUENCY IS : MONTHLY RESULTS IN PCI/KG +/- 2 SIGMA

|       | LOCAL LOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DATE                     | CO-58      | 09-02    |            |                 |                |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|----------|------------|-----------------|----------------|
| 5     | GRASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 930518/930518            | 22.        | 7 26.2   | LT 43.60   | 6170.0+/-564.0  | 850.0+/-187.0  |
| 2     | 00%00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 010617/010617            | 27.22      | T 30.    | 1.0 10.70  | 6312.0+/-470.0  | 1384 0+/-180.0 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 16.1       | T 8.90   |            |                 |                |
| 9 9   | GRASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 930720/930720            | 15.8       | T 30.1   | LT 43.30   | 6624.0+/-830.0  | 730.0+/-310.0  |
| 8     | CRASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 930817/930817            | 12.4       | T 14.9   | LT 42.00   | 4163.0+/-372.0  | 3822.0+/-263.0 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 16.7       | E 15.4   |            |                 |                |
| 9     | GRASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 930922/930922            | LT 13.30   | LT 16.40 | LT 43.90   | 13720.0+/-479.0 | 4342.0+/-238.0 |
| 8     | CRASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 931019/931019            | 20.7       | 7 21.8   | LT 43.50   | 3352.0+/-463.0  | 5268.0+7-414.0 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 20.2       | 7 26.3   |            |                 |                |
| 7     | GRASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 930518/930518            | 155        | T 15.8   | LT 29.10   | 12000.0+/-471.0 | 4980.04/-210.0 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 16.        | T 18.10  |            |                 |                |
| 07 6  | GRASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.0617/930617            | 12.        | T 15.    | LT 26.10   | 15400.0+/-468.0 | 1849.0+/-1/1.0 |
| 7 6   | GRASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 930720/930720            | 24         | 7 39.3   | LT 38.50   | 7828.0+/-830.0  | 1670.0+/-320.0 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 177        | T 19.50  |            |                 |                |
| 07 6  | GRASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 930817/930817            | in a       | 0.8+/-   | LT 25.70   | 6800.0-/-207.0  | 3861.04/-279.0 |
| 0.7   | 00300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 620010/620010            | 7.07       | T 9.30   | 17 30.20   | 5528.0+/-258.0  | 3691.0+/-157.0 |
|       | COUNTY OF THE PARTY OF THE PART |                          | 8          | T 9.9    |            |                 |                |
| 0     | GRASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 931019/931019            | LT 12.10   | LT 12.60 | LT 35,90   | 4015.0+/-353.0  | 2918.0+/-264.0 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |            |          |            |                 |                |
| , m   | GRASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 930518/930518            | 65         | 5.3+/-   | LT 19.00   | 4647.0+/-288.0  | 4356.0+/-181.0 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | e-4<br>e-4 | T 10.    |            |                 |                |
| 5     | GRASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 930617/930617            | ed :       | T 16.6   | LT 28.20   | 5958.04/-320.0  | 1134.0+/-150.0 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second second second | 7          | 5 C      | 4.4        | 0000 0 0 000    | A              |
| in in | GRASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 930720/930720            | -4 /7      | 2.11 1   | 15. 37. 50 | 0.090.0+/-500.0 | 0.001-7+7-100  |
| 10    | GRASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 930817/930817            | E          | T 17.1   | LF 44.60   | 4312.0+/-390.0  | 1465.0+/-221.  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 17.        | T 18.    |            |                 |                |
| 5     | GRASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 930922/930922            | LT 12.50   | LT 14.20 | LT 28.80   | 4275.0+/-296.0  | 1493.0+/-145.  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 00         | T 5.00   | 200        | 200 1 10 200    | 200 000        |
| 5     | CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 931019/931019            | 200        | T 18     | LT 36.90   | 3315.04/-422.0  | 3295.0+/-319.  |

PAGE: 001 DATE: 16-FEB-94

GAMMA SPEC REPORT OF SOIL SAMPLE FREQUENCY IS: QUARTERLY RESULTS IN PCI/KG(DRY) +/- 2 SIGMA

| STATIO<br>LOCATI |      | SAMPLE<br>TYPE | COLLECTION    | K-40<br>CO-60                         | RA-226         | CS-134  | CS-137       | CO-58   |
|------------------|------|----------------|---------------|---------------------------------------|----------------|---------|--------------|---------|
| 03               | SOIL |                | 930406/930406 | 7625.0+/-418.0<br>LT 35.7             | 1620.0+/-240.0 | LT 34.7 | LT 29.2      | LT 27.7 |
| 03               | SOIL |                | 930922/930922 | 10340.0+/-486.0<br>LT 13.9            | 1261.0+/-262.0 | LT 14.4 | 270.0+/-27.0 | LT 15.2 |
| 04               | SOIL |                | 930406/930406 |                                       | 1600.0+/-2.5   | LT 19.3 | LT 15.8      | LT 16.9 |
| 0.4              | SOIL |                | 930922/930922 | LT 23.2<br>10167.04/-462.0<br>LT 14.7 | 1084.0+/-266.0 | LT 6-1  | 362.0+/-27.0 | LT 12.6 |
| 06               | SOIL |                | 930406/930406 | 14290.0+/-383.0                       | 2094.0+/-335.0 | LT 11.2 | 200.0+/-17.0 | LT 11.3 |
| 06               | SOIL |                | 930922/930922 | LT 16.3<br>15440.0+/-640.0<br>LT 26.9 | 2521.0+/-620.0 | LT 21.1 | 217.0+/-26.0 | LT 29.4 |
| 07               | SOIL |                | 930406/930406 | 11600.0+/-299.0                       | 1450.0+/-179.0 | LT 17.8 | 381.0+/-14.0 | LT 13.0 |
| 07               | SOIL |                | 930922/930922 | LT 18.0<br>13151.0+/-520.0<br>LT 15.7 | 1284.0+/-267.0 | LT 15.5 | 66.0+/-21.0  | LT 16.9 |
| 09               | SOIL |                | 930406/930406 | 10970.0+/-269.0<br>LT 11.0            | 1332.0+/-242.0 | LT 7.8  | 350.0+/-15.0 | LT 8.7  |
| 09               | SOIL |                | 930922/930%2  | 10789.0+/-496.0<br>LT 13.6            | 1314.0+/-296.0 | LT 15.3 | 508.0+/-33.0 | LT 19.1 |
| 12               | SOIL |                | 930406/930406 | 10200.0+/-310.0                       | 1320.0+/-144.0 | LT 16.6 | 505.0+/-18.0 | LT 11.7 |
| 12               | SOIL |                | 930922/930922 | LT 15.1<br>11097.0+/-495.0<br>LT 14.2 | 1257.0+/-259.0 | LT 6.2  | 213.0+/-26.0 | LT 7.0  |
| 35               | SOIL |                | 930406/930406 | 10300.0+/-274.0<br>LT 15.7            | 1150.0+/-159.0 | LT 14.6 | 182.0+/-10.0 | LT 11.7 |
| 35               | SOIL |                | 930922/930922 | 10695.0+/-478.0<br>LT 16.8            | 1297.0+/-285.0 | LT 14.3 | 330.0+/-33.0 | LT 17.1 |

PAGE: 001 DATE: 16-FEB-94

### GAMMA SPEC REPORT OF STRG SAMPLE FREQUENCY IS: QUARTERLY RESULTS IN PCI/KG(DRY) +/- 2 SIGMA

Soil

|          | The second second second second |                                |       |                                |
|----------|---------------------------------|--------------------------------|-------|--------------------------------|
| STATION  |                                 | COLLECTION                     | SR-89 | SR-90                          |
| 03<br>03 | SOIL                            | 930406/930406<br>930922/930922 |       | 32.50+/-7.10<br>31.10+/-9.00   |
| 04<br>04 | SOIL                            | 930406/930406<br>930922/930922 |       | LT 9.9<br>13.00+/-5.90         |
| 06<br>06 | SOIL<br>SOIL                    | 930406/930406<br>930922/930922 |       | LT 20.1<br>LT 11.4             |
| 07<br>07 | SOIL<br>SOIL                    | 930406/930406<br>930922/930922 |       | 28.80+/-9.70<br>43.40+/-10.20  |
| 09<br>09 | SOIL                            | 930406/930406<br>930922/930922 |       | 26.40+/-13.10<br>36.60+/-8.60  |
| 12<br>12 | SOIL                            | 930406/930406<br>930922/930922 |       | 46.20+/-12.10<br>36.30+/-9.10  |
| 35<br>35 | SOIL                            | 930406/930406<br>930922/930922 |       | 37.20+/-10.50<br>44.60+/-11.20 |

PAGE: 001 DATE: 11-FEB-94

> G-BETA WATER REPORT SAMPLE FREQUENCY IS : MONTHLY RESULTS IN PCI/L +/+ 2 SIGMA

> > Mai

| COLLECTION           |           |           | STATION LOCATIONS | ATIONS    |           |
|----------------------|-----------|-----------|-------------------|-----------|-----------|
|                      | 28        | 100 E     | 36                | 5.9       | 09        |
| JAN 921228 TO 930128 | 02.10+/80 | 02.40+/50 | 02.60+/50         | 02.80+/50 | 02.50+/50 |
| FEB 930128 TO 930225 | 03.50+/70 | 03.30+/60 | 02.50*/60         |           |           |
| 930225 TO 930330     | 02.90+/60 | 02.70+/60 | 02.50+/40         |           |           |
| 930330 TO 930429     | 03.50+/60 | 02.60+/60 | 02.50+/60         | 02.40+/60 | 03.50+/70 |
| MAY 930429 TO 930527 | 03.00+/60 | 02.30+/60 | 01.90+/60         | 02.20+/60 | 02.30+/60 |
| 930527 TO 930624     | 02.20+/50 | 01.90+/50 | 01.90+/50         | 02.20+/50 | 01.90+/50 |
| 930624 TO 930729     | 02.50+/50 | 02,20+/40 | 02.00+/50         | 02.60+/50 | 02.90+/50 |
| 930729 TO 930826     | 01.90*/60 | 02.00+/40 | 02.00+/60         | 02.20+/60 | 02.10+/60 |
| 930826 TO 930930     | 02.70+/50 | 02.00+/60 | 02.50+/60         | 02.40+/60 | 02,30+/60 |
| 930930 TO 931028     | 03.30+/70 | 01.80+/60 | 02.90+/60         | 02.90+/40 | 02.30+/60 |
| 931028 TO 931130     | 03.30+/70 | 02.40+/60 | 02.60+/60         | 02.90+/50 | 04.00+/70 |
| DEC 931130 TO 931230 | 02.90+/70 | 02.60+/60 | 03.10*/70         | 02.50+/70 | 02.50+/70 |
|                      |           |           |                   |           |           |

PAGE: 001 DATE: 11-FEB-94

### GAMMA SPEC REPORT OF WTRG SAMPLE FREQUENCY IS : MONTHLY RESULTS IN PCI/L +/- 2 SIGMA

| TATION<br>OCATION |       | COLLECTION    | BA-140<br>FE-59<br>ZR-95       | CO-58<br>LA-140     | CO-60<br>MN-54     | CS-134<br>NB-95     | CS-137<br>ZN-65     |
|-------------------|-------|---------------|--------------------------------|---------------------|--------------------|---------------------|---------------------|
| 28                | WATER | 921228/930128 | LT 24.40<br>LT 9.00<br>LT 8.40 |                     | LT 5.60<br>LT 4.70 | LT 4.50<br>LT 5.60  | LT 5.00<br>LT 9.90  |
| 28                | WATER | 930128/930225 |                                | LT 5.50<br>LT 10.30 | LT 6.30<br>LT 5.70 | LT 5.80<br>LT 10.10 | LT 6.40<br>LT 11.80 |
| 28                | WATER | 930330/930330 | LT 22.50                       | LT 5.90<br>LT 10.60 | LT 8.00<br>LT 5.80 | LT 6.10<br>LT 5.30  | LT 5.90<br>LT 15.10 |
| 28                | WATER | 930330/930429 | LT 26.00<br>LT 8.30<br>LT 5.80 | LT 3.40<br>LT 4.30  |                    | LT 3.10<br>LT 3.80  | LT 2.90<br>LT 6.80  |
| 28                | WATER | 930429/930527 | LT 32.10                       | LT 5.20<br>LT 5.30  | LT 1.40<br>LT 4.00 | LT 2.50<br>LT 4.60  | LT 5.60<br>LT 8.00  |
| 28                | WATER | 930527/930624 |                                | LT 3.60<br>LT 5.30  | LT 2.20<br>LT 2.00 | LT 3.60<br>LT 3.80  | LT 1.60<br>LT 5.20  |
| 28                | WATER | 930624/930729 | LT 14.00                       | LT 2.20<br>LT 5.30  | LT 1.40<br>LT 1.70 | LT 3.90<br>LT 2.30  | LT 3.80<br>LT 7.00  |
| 28                | WATER | 930729/930826 | LT 25.60<br>LT 8.10<br>LT 8.30 | LT 5.90<br>LT 2.90  | LT 1.80<br>LT 3.20 | LT 4.50<br>LT 4.40  | LT 4.90<br>LT 4.30  |
| 28                | WATER | 930826/930930 |                                | LT 2.30<br>LT 3.90  | LT 3.30<br>LT 4.60 | LT 4.50<br>LT 4.20  | LT 3.60<br>LT 7.60  |
| 28                | WATER | 930930/931028 |                                | LT 2.30<br>LT 3.60  | LT 3.50<br>LT 2.90 | LT 2.80<br>LT 2.80  | LT 5.10<br>LT 2.80  |
| 28                | WATER | 931104/931130 | LT 13.30<br>LT 4.10<br>LT 5.50 | LT 5.20<br>LT 2.60  | LT 2.50<br>LT 2.60 | LT 2.70<br>LT 2.30  | LT 4.50<br>LT 4.30  |
| 28                | WATER | 931130/931230 |                                | LT 4.20<br>LT 1.70  | LT 4.00<br>LT 4.30 | LT 3.90<br>LT 2.50  | LT 4.20<br>LT 6.50  |

PAGE: 002 DATE: 11-FEB-94

GAMMA SPEC REPORT OF WTRG SAMPLE FREQUENCY IS : MONTHLY RESULTS IN PCI/L +/- 2 SIGMA

| TATION<br>OCATION | SAMPLE<br>ON TYPE | COLLECTION    | BA-140<br>FE-59<br>ZR-95         | CO-58<br>LA-140     | CO-60<br>MN-54     |                    |                     |
|-------------------|-------------------|---------------|----------------------------------|---------------------|--------------------|--------------------|---------------------|
| 34                | WATER             | 921228/930128 | LT 31.70<br>LT 10.90<br>LT 10.40 | LT 5.20<br>LT 9.60  | LT 6.20<br>LT 5.80 | LT 5.70<br>LT 6.40 | LT 6.00<br>LT 11.40 |
| 34                | WATER             | 930128/930225 |                                  | LT 4.90<br>LT 9.60  | LT 5.80<br>LT 4.60 | LT 4.60<br>LT 8.80 | LT 4.60<br>LT 10.80 |
| 34                | WATER             | 930225/930330 | LT 24.70                         | LT 6.00<br>LT 9.20  | LT 6.10<br>LT 6.70 | LT 6.00<br>LT 5.70 | LT 6.60<br>LT 12.20 |
| 34                | WATER             | 930330/930429 |                                  | LT 6.80<br>LT 10.00 | LT 8.20<br>LT 7.60 | LT 5.50<br>LT 7.40 | LT 5.80<br>LT 11.60 |
| 34                | WATER             | 930429/930527 |                                  | LT 1.90<br>LT 3.10  | LT 1.60<br>LT 3.40 | LT 2.90<br>LT 4.70 | LT 5.20<br>LT 3.60  |
| 34                | WATER             | 930527/930624 |                                  |                     | LT 3.80<br>LT 4.80 | LT 2.80<br>LT 5.00 | LT 5.80<br>LT 10.80 |
| 34                | WATER             | 930624/930729 |                                  |                     | LT 3.60<br>LT 3.20 | LT 4.60<br>LT 5.30 | LT 3.60<br>LT 3.80  |
| 34                | WATER             | 930729/930826 | LT 31.20<br>LT 8.20              | LT 3.50             | LT 2.40            | LT 7.40<br>LT 3.60 | LT 6.90             |
| 34                | WATER             | 930826/930930 | LT 24.40<br>LT 7.60<br>LT 4.80   | LT 2.10<br>LT 2.60  | LT 4.00<br>LT 2.40 | LT 4.80<br>LT 4.60 | LT 2.20<br>LT 6.80  |
| 3.4               | WATER             | 930930/931028 | LT 34.40<br>LT 4.70<br>LT 3.60   | LT 4.00<br>LT 4.70  | LT 3.00<br>LT 4.70 | LT 2.80<br>LT 5.60 | LT 4.10<br>LT 8.10  |
| 34                | WATER             | 931028/931130 | rm 13 30                         | LT 3.80<br>LT 2.10  | LT 4.20<br>LT 3.70 | LT 1.70<br>LT 2.20 | LT 4.10<br>LT 3.80  |
| 34                | WATER             | 931130/931230 | LT 19.70                         | LT 2.80<br>LT 1.70  | LT 5.20            | LT 2.10<br>LT 4.20 | LT 3.80<br>LT 2.80  |

PAGE: 003 DATE: 11-FEB-94

### GAMMA SPEC REPORT OF WTRG SAMPLE FREQUENCY IS: MONTHLY RESULTS IN PCI/L +/- 2 SIGMA

| TATION<br>OCATION | N T   | SAMPLE<br>TYPE | COLLECTION<br>DATE | BA-140<br>FE-59<br>ZR-95         | CO-58<br>LA-140    | CO-60<br>MN-54     | CS-134<br>NB-95    | CS-137<br>ZN-65     |
|-------------------|-------|----------------|--------------------|----------------------------------|--------------------|--------------------|--------------------|---------------------|
| 36                | WATER |                | 921228/930128      | LT 24.80<br>LT 9.90<br>LT 7.80   | LT 4.90<br>LT 8.20 |                    | LT 4.70<br>LT 4.70 | LT 4.70<br>LT 9.60  |
| 36                | WATER |                | 930128/930225      |                                  | LT 4.90<br>LT 8.60 | LT 4.90<br>LT 4.90 | LT 5.20<br>LT 5.20 | LT 4.30<br>LT 9.30  |
| 36                | WATER |                | 930225/930330      | LT 15.10<br>LT 7.80<br>LT 5.40   | LT 3.50<br>LT 4.20 |                    | LT 3.40<br>LT 3.90 | LT 4.20<br>LT 7.80  |
| 36                | WATER |                | 930330/930429      | LT 29.60<br>LT 11.30<br>LT 10.40 | LT 5.10<br>LT 8.50 | LT 6.00<br>LT 6.10 | LT 5.80<br>LT 6.20 | LT 6.00<br>LT 13.00 |
| 36                | WATER |                | 930429/930527      | LT 13.40<br>LT 4.40<br>LT 6.10   | LT 5.20<br>LT 4.40 | LT 6.10<br>LT 5.20 | LT 3.30<br>LT 4.80 | LT 2.80<br>LT 8.60  |
| 36                | WATER |                | 930527/930624      | LT 38.80<br>LT 4.80              |                    | LT 3.50            | LT 1.40<br>LT 4.80 | LT 4.70<br>LT 11.10 |
| 36                | WATER |                | 930624/930729      | LT 14.10<br>LT 5.90<br>LT 4.00   | LT 2.70<br>LT 6.80 | LT 5.60<br>LT 3.70 | LT 3.50<br>LT 2.60 | LT 3.20<br>LT 4.40  |
| 36                | WATER |                | 930729/930826      |                                  | LT 2.70<br>LT 4.30 | LT 3.40<br>LT 4.20 | LT 3.50<br>LT 3.00 | LT 4.00<br>LT 15.20 |
| 36                | WATER |                | 930826/930930      |                                  | LT 4.40<br>LT 2.60 | LT 3.90<br>LT 3.50 | LT 2.10<br>LT 3.60 | LT 5.00<br>LT 5.80  |
| 36                | WATER |                | 930930/931028      |                                  | LT 4.40<br>LT 3.90 |                    | LT 3.80<br>LT 2.10 | LT 3.00<br>LT 5.50  |
| 36                | WATER |                | 931104/931130      | LT 21.10                         | LT 3.90            | LT 4.70<br>LT 3.30 | LT 3.00<br>LT 3.40 | LT 4.30<br>LT 3.20  |
| 36                | WATER |                | 931130/931230      | LT 12.30                         | LT 1.80<br>LT 1.70 | LT 3.60<br>LT 4.60 | LT 3.00<br>LT 3.80 | LT 4.00<br>LT 6.60  |

GAMMA SPEC REPORT OF WIRG SAMPLE FREQUENCY IS : MONTHLY RESULTS IN PCI/L +/- 2 SIGMA

| LOCATION  |       | TYPE | COLLECTION    | BA-140<br>PE-59<br>ZR-95       | CO-58<br>LA-140    | CO-60<br>MN-54     | CS-134<br>NB-95                          | CS-137<br>ZN-65                          |
|-----------|-------|------|---------------|--------------------------------|--------------------|--------------------|------------------------------------------|------------------------------------------|
| 80        | WATER |      | 930107/930128 | LT 27.2                        | LT 5.80            | LT 7.10            | LT 5.40                                  | LT 5.90<br>LT 14.20                      |
| 0.0       | WATER |      | 930415/930429 | LT 23.7<br>LT 23.7             | LT 5.40            | LT 5.00            | LT 4.90                                  | 4 60                                     |
| Ø1<br>1/1 | WATER |      | 930506/930527 | 32.9                           | LT 5.10            | E E                | E E                                      | M W W                                    |
| 20,000    | WATER |      | 930603/930624 | 0.5                            | 10.5               | LT 5.8             | LT 5.1                                   | 9 90                                     |
| 8         | WATER |      | 930701/930729 | 34.2                           | LT 4.10            | LT 2.90            | 2.1                                      | er er                                    |
| 60        | WATER |      | 930805/930826 | 3 3 3                          | LT 4.60<br>LT 2.60 | LT 3.60            | LT 7.2<br>LT 2.6                         | F 15 15 15 15 15 15 15 15 15 15 15 15 15 |
| en<br>on  | WATER |      | 930902/930930 | 4 (4 00                        | LT 3.40            | 17 3.70            |                                          | E E E                                    |
| en<br>un  | WATER |      | 931007/931028 | 239.2                          | LT 4.60<br>LT 7.90 | un m               | 11 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | T 4.0                                    |
| 5.6       | WATER |      | 931104/931130 | 30.5                           | LT 3.10<br>LT 4.90 | LT 1.80            | LT 2.00                                  | ni ni<br>In I-                           |
| N)        | WATER |      | 931209/931230 | LT 9.20<br>LT 16.40<br>LT 8.30 | LT 3.20<br>LT 2.80 | W W                | 44<br>44<br>44<br>44<br>44<br>44         | 0.0<br>0.4                               |
| 0.9       | WATER |      | 930107/930128 | [- E- E-                       | LT 4.80            | LT 6.10<br>LT 4.20 | LT 4.20                                  | LT 4.50                                  |
| 09        | WATER |      | 930415/930429 | LT 23.00<br>LT 10.10           | LT 8.30            | LT 4.70            | LT 4.3                                   | T 4.60                                   |

P24001

### CLEVELAND ELECTRIC IL MINATING CO. - PNPP. REMP TRACKING SYSTEM

PAGE: 005 DATE: 11-FEB-94

GAMMA SPEC REPORT OF WIRG SAMPLE PREQUENCY IS: MONTHLY RESULTS IN PCI/L +/- 2 SIGMA

| STATION<br>LOCATIO |       | COLLECTION    | BA-140<br>FE-59<br>ZR-95        | CO-58<br>LA-140     | CO-60<br>MN-54     | CS-134<br>NB-95    | CS-137<br>ZN-65     |
|--------------------|-------|---------------|---------------------------------|---------------------|--------------------|--------------------|---------------------|
| 60                 | WATER | 930506/930527 | LT 34.90<br>LT 4.60<br>LT 10.00 | LT 3.70<br>LT 4.80  | LT 2.40<br>LT 5.40 | LT 4.50<br>LT 7.30 | LT 3.10<br>LT 5.70  |
| 60                 | WATER | 930603/930624 |                                 | LT 4.90<br>LT 9.40  | LT 5.40<br>LT 4.50 | LT 3.60<br>LT 7.10 | LT 5.20<br>LT 9.00  |
| 60                 | WATER | 930701/930729 |                                 | LT 3.40<br>LT 3.40  | LT 3.00<br>LT 1.50 | LT 2.20<br>LT 4.60 | LT 4.90<br>LT 4.70  |
| 60                 | WATER | 930805/930826 |                                 | LT 10.60<br>LT 5.20 | LT 4.80<br>LT 4.20 | LT 4.80<br>LT 5.90 | LT 3.70<br>LT 13.70 |
| 60                 | WATER | 930902/930930 |                                 | LT 3.80<br>LT 6.30  | LT 4.00<br>LT 3.20 | LT 3.30<br>LT 4.60 | LT 3.70<br>LT 6.80  |
| 60                 | WATER | 931007/931028 |                                 | LT 1.70<br>LT 3.80  | LT 3.80<br>LT 3.10 | LT 3.60<br>LT 3.20 | LT 4.10<br>LT 4.60  |
| 60                 | WATER | 931104/931130 |                                 | LT 7.20<br>LT 3.70  | LT 2.80<br>LT 2.80 | LT 4.70<br>LT 5.90 | LT 4.80<br>LT 3.80  |
| 60                 | WATER | 931209/931230 |                                 | LT 1.60<br>LT 1.80  | LT 1.90<br>LT 2.20 | LT 3.30<br>LT 3.80 | LT 4.00<br>LT 3.90  |



# TRITIUM REPORT SAMPLE FREQUENCY IS : QUARTERLY RESULTS IN PCI/KG +/- 2 SIGMA

| TATION<br>OCATION | SAMPLE<br>TYPE | COLLECTION                     | н3                     |
|-------------------|----------------|--------------------------------|------------------------|
| 28<br>28          | WATER<br>WATER | 921228/930330<br>930330/930624 | LT 178.00<br>LT 179.00 |
| 28                | WATER          | 930624/930930                  | LT 186.00              |
| 28                | WATER          | 930930/931230                  | LT 189.00              |
| 3.4               | WATER          | 921228/930330                  | LT 179.00              |
| 34                | WATER          | 930330/930624                  | 224.00+/-98.00         |
| 34                | WATER          | 930624/930930                  | LT 186.00<br>LT 189.00 |
| 34                | WAIDA          | 9309307931230                  | b1 109.00              |
| 3.6               | WATER          | 921228/930330                  | LT 179.00              |
| 36                | WATER          | 930330/930624                  | LT 179.00              |
| 3.6               | WATER          | 930624/930930                  | LT 186.00              |
| 3.6               | WATER          | 930930/931230                  | LT 193.00              |
| 59                | WATER          | 930107/930128                  | LT 174.00              |
| 59                | WATER          | 930415/930624                  | 233.00+/-98.00         |
| 59                | WATER          | 930701/930930                  | 194.00+/-100.00        |
| 59                | WATER          | 931007/931230                  | LT 194.00              |
| 60                | WATER          | 930107/930128                  | LT 179.00              |
| 60                | WATER          | 930415/930624                  | 193.00+/-97.00         |
| 60                | WATER          | 930701/930935                  | LT 186.00              |
| 60                | WATER          | 931007/931230                  | LT 189.00              |

PAGE: 001 DATE: 11-FEB-94

GAMMA SPEC REPORT OF STRG SAMPLE FREQUENCY IS : MONTHLY RESULTS IN PCI/L +/- 2 SIGMA

| STATIO<br>LOCATI     |                                  | SAMPLE<br>TYPE | COLLECTION DATE                                                  | SR-89                               | SR-90                                   |
|----------------------|----------------------------------|----------------|------------------------------------------------------------------|-------------------------------------|-----------------------------------------|
| 28<br>28<br>28<br>28 | WATER<br>WATER<br>WATER          |                | 930429/930527                                                    | LT .6<br>LT 1.2<br>LT .9<br>LT .8   | .70+/40<br>LT .6<br>1.80+/50<br>.60+/30 |
| 34<br>34<br>34<br>34 | WATER<br>WATER<br>WATER<br>WATER |                | 930429/930527<br>930729/930826                                   | LT .5<br>LT 1.3<br>LT .9<br>LT .7   | .60+/30<br>LT .6<br>.80+/30<br>.50+/30  |
| 36<br>36<br>36<br>36 | WATER<br>WATER<br>WATER          |                | 930128/930225<br>930429/930527<br>930729/930826<br>931104/931130 | LT .6<br>LT 1.2<br>LT .9<br>LT .7   | .60+/40<br>LT .6<br>.90+/40<br>.60+/30  |
| 59<br>59<br>59       | WATER<br>WATER<br>WATER<br>WATER |                | 930805/930826                                                    | LT 2.0<br>LT 1.2<br>LT 1.0<br>LT .7 | .70+/40<br>LT .6<br>.90+/50<br>.60+/20  |
| 60<br>60<br>60       | WATER<br>WATER<br>WATER<br>WATER |                | 930506/930527<br>930805/930826                                   | LT 1.9<br>LT 1.2<br>LT 1.1<br>LT .9 | .60+/30<br>LT .6<br>LT .6<br>LT .6      |

PAGE: 001 DATE: 15-PEB-94

GAMMA SPEC REPORT OF STRG SAMPLE FREQUENCY IS : SEM-ANNUAL RESULTS IN PCI/L +/- 2 SIGMA

Sediment

| SR-90      | 11.90+/-6.10       | 13,20+/-6.70       | 12.60+/-6.90       | 34.70+/-12.80      | 5.50+/-3.20        | LT 3.8            | 6.60+/-3.50<br>LT 8.1 | 7.90+/-3.70   |
|------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------|-----------------------|---------------|
| SR-89      | LT 19.3<br>LT 32.5 | LT 20.3<br>LT 19.3 | LT 18.8<br>LT 18.0 | LT 32.7<br>LT 14.0 | LT 10.1<br>LT 13.9 | LT 7.9<br>LT 18.5 | LT 10.8<br>LT 16.3    | LT 12.2       |
| COLLECTION | 930506/930506      | 930506/930506      | 930506/930506      | 930506/930506      | 930510/930510      | 930510/930510     | 930510/930510         | 930510/930510 |
| SAMPLE     | SEDIMENT           | SEDIMENT           | SEDIMENT           | SEDIMENT           | SEDIMENT           | SEDIMENT          | SEDIMENT              | SEDIMENT      |
| STATION    | 22.53              | 9 9                | 27                 | 32                 | 69                 | 79                | 50.50                 | 25            |

P24001

### CLEVELAND ELECTRIC ILLUMINATING CO. - PNPP. REMP TRACKING SYSTEM

PAGE: 001 DATE: 15-FEB-94

# GAMMA SPEC REPORT OF SED SAMPLE FREQUENCY IS : SEM-ANNUAL RESULTS IN PCI/KG(DRY) +/- 2 SIGMA

Sediment

| STATION<br>LOCATION |          | COLLECTION DATE                | CO-58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO-60                       | CS-134             | CS-137                     | K-40                              |
|---------------------|----------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|----------------------------|-----------------------------------|
| 25                  | SEDIMENT | 930506/930506                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT 17.3                     | LT 19.5            | LT 23.3                    | 12051.0+/-600.0                   |
| 25                  | SEDIMENT | 931019/931019                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT 34.7                     | LT 21.4            | 180.0+/-27.0               | 15047.0+/-659.0                   |
| 26                  | SEDIMENT | 930506/930506                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT 13.2                     | LT 17.5            | LT 42.0                    | 13080.0+/-620.0                   |
| 26                  | SEDIMENT | 931019/931019                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT 28.2                     | LT 24.8            | 170.0+/-27.0               | 15464.0+/-648.0                   |
| 27                  | SEDIMENT | 930506/930506                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT 19.7                     | LT 15.5            | 180.0+/-30.0               | 14729.0+/-670.0                   |
| 27                  | SEDIMENT | 931019/931019                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT 30.2                     | LT 9.3             | 294.0+/-25.0               | 17272.0+/-582.0                   |
| 32                  | SEDIMENT | 930506/930506                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT 33.9                     | LT 26.1            | 757.0+/-70.0               | 15574.0+/-720.0                   |
| 32                  | SEDIMENT | 931019/931019                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT 27.8                     | LT 19.2            | 364.0+/-33.0               | 14899.0+/-662.0                   |
| 63                  | SEDIMENT | 930510/930510                  | and the same of th | LT 14.3                     | LT 34.1            | LT 20.5                    | 5749.0+/-370.0                    |
| 63                  | SEDIMENT | 931019/931019                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT 15.0                     | LT 12.6            | LT 11.7                    | 6273.0+/-358.0                    |
| 64                  | SEDIMENT | 930510/930510                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT 15.7                     | LT 12.8            | LT 19.1                    | 5811.0+/-300.0                    |
| 64                  | SEDIMENT | 931019/931019                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT 24.3                     | LT 40.9            | LT 18.9                    | 9414.0+/-466.0                    |
| 65                  | SEDIMENT | 930510/930510                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT 13.9                     | LT 12.8            | LT 11.0                    | 6467.0+/-370.0                    |
| 65                  | SEDIMENT | 931022/931022                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT 13.2                     | LT 5.1             | LT 11.4                    | 8616.0+/-416.0                    |
| 76<br>76            | SEDIMENT | 930510/930510<br>931022/931022 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96.0+/-28.0<br>230.9+/-53.0 | LT 25.2<br>LT 60.8 | 68.0+/-40.0<br>77.0+/-37.0 | 12716.0+/-685.0<br>3181.0+/-682.0 |
|                     |          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                    |                            |                                   |

PAGE: 001 DATE: 16-FEB-94

### GAMMA SPEC REPORT OF FSH SAMPLE FREQUENCY IS: SEM-ANNUAL RESULTS IN PCI/KG(WET) +/- 2 SIGMA

Fish

| CATION<br>CATIO |                   | COLLECTION     | CO-58<br>K-40             | CO-60<br>MN-54     | CS-134<br>ZN-65    | CS-137      | FE-59    |
|-----------------|-------------------|----------------|---------------------------|--------------------|--------------------|-------------|----------|
| 25              | WHITE PERCH       | 930506/930507  | LT 5.5                    | LT 12.1            | LT 11.0            | LT 10.0     | LT 9.5   |
| 25              | FRESHWATER DRUM   | 930506/930507  | 3024.0+/-290.0<br>LT 9.2  | LT 3.6<br>LT 7.3   | LT 9.3<br>LT 8.0   | LT 12.0     | LT 8.2   |
|                 |                   |                | 2337.0+/-250.0            | LT 6.5             | LT 18.0            |             |          |
| 25              | YELLOW PERCH      | 930506/930507  | LT 5.8                    | LT 6.4             | LT 5.5             | 20.9+/-10.0 | LT 8.7   |
|                 |                   |                |                           | LT 6.0             | LT 19.0            |             |          |
| 25              | WALLEYE           | 930506/930507  |                           | LT 10.0            | LT 10.0            | LT 15.2     | LT 9.7   |
| -               |                   | *******        | 2716.0+/-340.0            | LT 9.4             | LT 16.1            |             | 10 10 0  |
| 25              | CATFISH           | 930506/930507  |                           | LT 17.5            | LT 17.0            | LT 15.1     | LT 48.9  |
| 22              | WILLIAM ONOVER    | 930506/930507  | 1800.0+/-334.0            | LT 14.3<br>LT 9.2  | LT 36.2<br>LT 4.7  | LT 7.2      | LT 14.3  |
| 25              | WHITE SUCKER      | 330306/330201  | LT 6.3<br>2979.0+/-271.0  | LT 7.2             | LT 19.4            | 191 7 2     | 1/1 14.3 |
| 25              | SMALLMOUTH BASS   | 930506/930507  |                           | LT 4.0             | LT 5.0             | LT 7.6      | LT 7.5   |
| 23              | SMADDMOUIN DASS   | 3203007330307  | 2420.0+/-180.0            | LT 2.9             | LT 9.9             |             |          |
| 25              | LAKE TROUT        | 930506/930507  |                           | LT 10.2            | LT 7.9             | LT 9.1      | LT 19.7  |
|                 |                   |                | 2240.0+/-240.0            | LT 7.0             | LT 13.8            |             |          |
| 25              | CATFISH           | 931019/931020  | LT 20.7                   | LT 9.3             | LT 8.2             | LT 12.0     | LT 30.3  |
|                 |                   |                | 2423.0+/-208.0            | LT 3.3             | LT 10.0            |             |          |
| 25              | ROCK BASS         | 931019/931020  |                           | LT 4.9             | LT 8.6             | LT 12.2     | LT 31.3  |
|                 |                   |                | 2663.0+/-330.0            | LT 10.5            | LT 18.4            |             |          |
| 25              | RED HORSE         | 931019/931020  | LT 24.7                   | LT 6.3             | LT 11.1            | LT 11.2     | LT 39.0  |
| 20              | 114 V 1 8945 W    | 03101010101030 | 1970.0+/-331.0            | LT 11.6            | LT 32.1<br>LT 18.2 | LT 21.6     | LT 41.2  |
| 25              | WALLEYE           | 931019/931020  |                           | LT 16.6<br>LT 15.3 | LT 33.1            | D1 21.6     | 11 41.2  |
| 25              | WHITE SUCKER      | 931019/931020  | 3220.0+/-181.0<br>LT 15.8 | LT 30.3            | LT 19.5            | LT 19.1     | LT 30.6  |
| 23              | WHILE SUCKER      | 331013/331020  | 2729.0+/-499.0            | LT 19.4            | LT 23.5            | WA 42.4     |          |
| 32              | WALLEYE           | 930506/930507  | LT 28.9                   | LT 28.1            | LT 23.7            | LT 23.3     | LT 75.5  |
| 10 60           |                   | 73030301       | 2650.0+/-505.0            | LT 29.6            | LT 74.8            |             |          |
| 32              | YELLOW PERCH      | 930506/930507  |                           | LT 11.9            | LT 3.2             | 13.6+/-8.1  | LT 27.1  |
|                 |                   |                | 3220.G+/-300.0            | LT 6.6             | LT 6.2             |             |          |
| 32              | WHITE PERCH       | 930506/930507  | LT 2.6                    | LT 5.5             | LT 8.0             | LT 9.2      | LT 11.7  |
|                 |                   |                | 2596.0+/-256.0            | LT 4.2             | LT 18.4            |             |          |
| 32              | WHITE SUCKER      | 930506/930507  |                           | LT 9.0             | LT 3.3             | LT 8.4      | LT 12.7  |
|                 |                   |                | 2745.0+/-262.0            | LT 6.7             | LT 12.9            |             | 1 0 7 1  |
| 32              | CARP              | 930506/930507  |                           | LT 7.8             | LT 6.3             | LT 4.2      | LT 7.1   |
| 2.0             | EDDOUGLANDS SPINA | 930506/930507  | 2392.0+/-253.0            | LT 5.9<br>LT 4.8   | LT 11.2<br>LT 4.7  | 15.7+/-1.0  | LT 9.1   |
| 3.2             | FRESHWATER DRUM   | 330306/330307  | 2554.0+/-250.0            | LT 3.8             | LT 13.5            | 13.7+7-1.0  | D1 2 1   |

PACE: 002 CATE: 16-FEB-94

GAMMA SPEC REPORT OF PSH SAMPLE PREQUENCY IS : SEM-ANNUAL RESULTS IN PCI/KG(WET) +/- 2 SIGMA

| The same |                     |               | The second secon | And the second control of the second control | The second secon | The second secon | The second secon |  |
|----------|---------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| LOCATION | N SAMPLE<br>ON TYPE | COLLECTION    | C0-58<br>K-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO-60<br>MN-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CS-134<br>ZN-65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CS-137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 65<br>457<br>- 1<br>137<br>Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 64       | CATFISH             | 931019/931020 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 174 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6. 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|          |                     |               | 2320,0+/-284.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | j.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 333      | WALLEYE             | 931019/931020 | 17 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT 19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 57 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|          |                     |               | 2807.0+/-455.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 100      | WHITE SUCKER        | 931019/931020 | 17 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|          |                     |               | 3251.0+/-316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 61<br>50 | WHITE BASS          | 931019/931020 | 118.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT 21.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|          |                     |               | 14/-388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 33       | CARP                | 931019/931020 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27 45,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|          |                     |               | 2400.0+/-362.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LT 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 60<br>60 | LAKE TROUT          | 931019/931020 | (h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT 21.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|          |                     |               | 14/-430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100 miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LT 30.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |



# SAMPLE FREQUENCY IS : QUARTERLY RESULTS IN MR/QTR +/- 2 SIGMA

| DIRECT               | 17.10+/40<br>16.80+/20<br>14.10+/30<br>12.90+/20                 | 16.20+/10<br>16.20+/40<br>15.50+/20<br>12.70+/40 | 18.60+/40<br>18.00+/20<br>17.60+/30<br>15.50+/40                 | 19.00+/20<br>17.60+/20<br>17.80+/10<br>15.00+/10                 | 17.80+/40<br>15.80+/60<br>17.60+/30<br>12.70+/40                 | 20.40+/10<br>17.90+/20<br>17.50+/20<br>14.90+/20                 | 19.90+/10     |
|----------------------|------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|---------------|
| COLLECTION D<br>DATE | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 930107/930402<br>930402/930707<br>930706/931007  | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 930107/930402 |
| SAMPLE               | 71.0<br>71.0<br>71.0<br>71.0                                     | TLD<br>TLD<br>TLD                                | 110                                                              | 7100                                                             | 11000                                                            | 110000                                                           | 071           |
| STATION              | 5555                                                             | 2222                                             | 0000                                                             | 4444                                                             | 8000                                                             | 99000                                                            | 7000          |

PAGE: 002 DATE: 22-FEB-94

SAMPLE FREQUENCY IS : QUARTERLY RESULTS IN MR/QTR +/- 2 SIGMA

| DIRECT     | 14.70+/20     | 17.40+/30                                                        | 16.70+/20<br>14.90+/30<br>16.00+/10<br>12.90+/20                 | 17.40+/30<br>19.10+/30<br>17.30+/20<br>15.80+/20                 | 18.10+/~.60<br>15.90+/~.23<br>17.30+/~.40<br>12.80+/~.30         | 16.50+/20<br>16.30+/20<br>17.00+/20<br>13.50+/10                 | 17.00+/30<br>15.00+/30<br>16.50+/20<br>13.90+/20                 |
|------------|---------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| COLLECTION | 931007/940106 | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 |
| SAMPLE     | TLD           | 710<br>710<br>710<br>710<br>710                                  | TLD<br>TLD<br>TLD                                                | 710<br>710<br>710                                                | TED<br>TED<br>TED                                                | 71.0<br>71.0<br>71.0                                             | TLD<br>TLD<br>TLD                                                |
| STATION    | 0.7           | 0000                                                             | 6666                                                             | 0000                                                             | and and and and<br>and and and and                               | NANA                                                             | EEEE                                                             |



# DIRECT REPORT SAMPLE FREQUENCY IS : QUARTERLY RESULTS IN MR/QTR +/- 2 SIGMA

| STATION              | SAMPLE            | COLLECTION                                                       | DIRECT                                           |
|----------------------|-------------------|------------------------------------------------------------------|--------------------------------------------------|
| LOCATION             | TYPE              | DATE                                                             |                                                  |
| 14<br>14<br>14<br>14 | TLD<br>TLD<br>TLD | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 17.10+/20<br>16.60+/40<br>16.60+/30<br>12.80+/20 |
| 15                   | TLD               | 930107/930402                                                    | 17.90+/20                                        |
| 15                   | TLD               | 930402/930707                                                    | 16.30+/20                                        |
| 15                   | TLD               | 930706/931007                                                    | 17.20+/30                                        |
| 15                   | TLD               | 931007/940106                                                    | 12.80+/40                                        |
| 16                   | TLD               | 930107/930402                                                    | 21.00+/30                                        |
| 16                   | TLD               | 930402/930707                                                    | 20.00+/30                                        |
| 16                   | TLD               | 930706/931007                                                    | 21.30+/20                                        |
| 16                   | TLD               | 931007/940106                                                    | 18.60+/20                                        |
| 17<br>17<br>17<br>17 | TLD<br>TLD<br>TLD | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 20.40+/20<br>20.20+/10<br>21.30+/20<br>16.80+/40 |
| 18<br>18<br>18<br>18 | TLD<br>TLD<br>TLD | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 26.70+/30<br>25.60+/40<br>28.00+/20<br>23.40+/20 |
| 19                   | TLD               | 930107/930402                                                    | 20.00+/10                                        |
| 19                   | TLD               | 930402/930707                                                    | 20.20+/20                                        |
| 19                   | TLD               | 930706/931007                                                    | 19.70+/20                                        |
| 19                   | TLD               | 931007/940106                                                    | 16.50+/20                                        |
| 20                   | TLD               | 930107/930402                                                    | 20.40+/10                                        |
| 20                   | TLD               | 930402/930707                                                    | 21.60+/40                                        |
| 20                   | TLD               | 930706/931007                                                    | 20.60+/20                                        |
|                      |                   |                                                                  |                                                  |

PAGE: 002 DATE: 22-FEB-94

# SAMPLE FREQUENCY IS : QUARTERLY RESULTS IN MR/QTR +/- 2 SIGMA

| TOIN | CAMPID                 | MOT I DOM TON                                                    | DIBECT                                           |  |
|------|------------------------|------------------------------------------------------------------|--------------------------------------------------|--|
|      | TYPE                   | DATE                                                             | T I                                              |  |
|      | 11.0                   | 931007/940106                                                    | 17,00+/20                                        |  |
|      | 71.5<br>71.50<br>71.50 | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 21.90+/50<br>20.10+/30<br>25.10+/20<br>17.00+/30 |  |
|      |                        | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 20.50+/10<br>19.80+/40<br>21.10+/10<br>16.00+/20 |  |
|      | 999                    | 930107/930402                                                    | 22.20+/40<br>18.70+/40<br>18.80+/20              |  |
|      | TLD                    | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 18.40+/40<br>18.50+/20<br>20.50+/10<br>14.80+/30 |  |
|      | 2222                   | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 17.10+/20<br>15.90+/20<br>17.50+/20<br>13.60+/10 |  |
|      | 71.0<br>71.0<br>71.0   | 930407/930402<br>930402/930107<br>930706/931007<br>931007/940106 | 20.70+/20<br>22.30+/30<br>21.90+/10<br>17.20+/10 |  |
|      | TLD                    | 930107/930402                                                    | 17.20+/40                                        |  |



# SAMPLE PREQUENCY IS : QUARTERLY RESULTS IN MR/QTR +/- 2 SIGMA

| DIRECT     | 16.80*/40<br>20.10*/10<br>13.90*/10             | 18.60+/20<br>16.40+/20<br>18.50+/10<br>13.40+/30                 | 17.40+/40<br>15.30+/10<br>17.20+/20<br>12.80+/30                 | 16.80+/30<br>16.40+/30<br>17.00+/10<br>13.00+/10                 | 17.00+/30<br>16.40+/40<br>16.60+/20<br>12.90+/30                 | 18,40+/-,20<br>17,40+/-,20<br>14,70+/-,10       | 17,40+/30<br>19,60+/20<br>16,80+/20<br>15.00+/30                 |
|------------|-------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------|
| COLLECTION | 930402/930707<br>930706/931007<br>931007/940106 | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 930402/930707<br>930706/931007<br>931007/940106 | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 |
| SAMPLE     | 71.0<br>71.0<br>71.0                            | 2222                                                             | 7LD<br>7LD<br>7LD                                                | 11.0<br>11.0<br>11.0                                             | 710<br>710<br>710<br>710                                         | 7LD<br>7LD<br>7LD                               | 71.0<br>71.0<br>71.0                                             |
| STATION    | ल ल ल<br>च च च                                  | 4444<br>0000                                                     | (M)                          | មាលយូស<br>មេជម្                                                  | W W W W                                                          | N N N                                           | 50 50 50 50<br>50 50 50 50                                       |

P24001

CLEVELAND ELECTRIC ILLUMINATING CO. - PNPP. PAGE: 002
REMP TRACKING SYSTEM DATE: 22-FEB-94

# DIRECT REPORT SAMPLE PREQUENCY IS: QUARTERLY RESULTS IN MR/QTR +/- 2 SIGMA

| STATION<br>LOCATION  | SAMPLE<br>TYPE    | COLLECTION                                                       | DIRECT                                           |  |
|----------------------|-------------------|------------------------------------------------------------------|--------------------------------------------------|--|
| 56<br>56<br>56       | TLD<br>TLD<br>TLD | 930107/930402<br>930706/931007<br>931007/940106                  | 18.60+/40<br>17.40+/30<br>11.50+/10              |  |
| 58<br>58<br>58<br>58 | TLD<br>TLD<br>TLD | 930107/930402<br>930402/930707<br>930706/931007<br>931007/940106 | 18.70+/30<br>18.00+/20<br>19.00+/20<br>14.20+/20 |  |

PAGE: 001 DATE: 1-MAR-94

> SAMPLE FREQUENCY IS : QUARTERLYZ RESULTS IN MR/QTR +/- 2 SIGMA

| DIRECT     | 12.60+/30<br>13.70+/40<br>09.40+/30<br>11.50+/30                 | 11.40+/30<br>13.50+/40<br>13.30+/20<br>11.40+/30                 | 13.30+/40<br>15.40+/20<br>14.80+/30<br>13.70+/10                 | 13.40+/30<br>15.00+/20<br>15.10+/40<br>13.50+/20                 | 12.20+/50<br>13.40+/60<br>14.10+/20<br>12.40+/10                 | 15.00+/40<br>14.90+/20<br>16.50+/10<br>14.70+/30                 | 14.70+/20<br>16.80+/60<br>15.40+/10             |
|------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|
| COLLECTION | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930107/930402<br>930402/930707<br>930707/931508<br>931508/940106 | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930107/930402<br>930402/930707<br>930707/931008 |
| SAMPLE     | 7158<br>7158<br>7158                                             | 11.8<br>11.8<br>11.8                                             | 71.8<br>71.8<br>71.8                                             | TL8<br>TL8<br>TL8                                                | ######################################                           | 71.8<br>71.8<br>71.8                                             | TLB                                             |
| STATION    | 0010                                                             | 0055                                                             | 00000                                                            | 00 00 40 40 40 40 40 40 40 40 40 40 40 4                         | 00000                                                            | 90000                                                            | 000                                             |

PAGE: 002 DATE: 1-MAR-94

| QUARTERLY2<br>2 SIGMA                           | CT.        | 40+/20        | 00+/40<br>40+/50<br>80*/20<br>20+/30                             | 40+/40<br>40+/40<br>00+/10<br>50+/30                             | 60+/20<br>70+/40<br>80+/10<br>00+/40                             | 30+/20<br>20+/30<br>40+/10<br>10+/40                             | 20+/40<br>70+/60<br>40+/10<br>10+/10                             | .70+/20       |
|-------------------------------------------------|------------|---------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|---------------|
| S : QUART                                       | DIREC      | 13.           | e con e                                                          | HORH                                                             | m s u u                                                          | 4.6.5.                                                           | resir.                                                           | 411           |
| AMPLE FREQUENCY I<br>RESULTS IN MR/QTR<br>ALICH | COLLECTION | 931008/940106 | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930107/930402 |
| Si<br>Direct Radi                               | SAMPLE     | TLB           | 718<br>718<br>718                                                | 778<br>778<br>778                                                | 71.8<br>71.8<br>71.8                                             | 8888                                                             | TLB<br>TLB                                                       | TLB           |
|                                                 | STATION    | 0.7           | 0000                                                             | 6666                                                             | 100                                                              | 4444                                                             | 122                                                              | aaa           |



SAMPLE PREQUENCY IS : QUARTERLY2 RESULTS IN MR/QTR +/- 2 SIGMA

| DIRECT     | 14.70+/20<br>13.80+/20<br>15.40+/10<br>12.80+/10                 | 13.10+/60<br>13.60+/50<br>13.90+/40<br>12.20+/10                 | 17.20+/60<br>17.20+/40<br>20.40+/10<br>16.60+/10                 | 16.60+/40<br>17.40+/20<br>20.40+/10<br>15.60+/20                 | 22.80+/30<br>22.80+/30<br>24.60+/40<br>19.80+/20                 | 14.70+/30<br>16.80+/40<br>16.10+/20<br>13.80+/10                 | 15.20+/30<br>17.00+/20<br>15.90+/20             |
|------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|
| COLLECTION | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930107/930402<br>930402/930707<br>930707/931008 |
| SAMPLE     | 71.8<br>71.8<br>71.8                                             | 8 8 8 8<br>11 12 13<br>14 14 14<br>14 14 14                      | 1118<br>1118<br>1118                                             | 8 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                          | 718<br>718<br>718                                                | 7118<br>7118<br>7118                                             | 71.8<br>71.8<br>71.8                            |
| STATION    | कर्म<br>संसम्ब                                                   | 25.55                                                            | 9999                                                             |                                                                  | 00 00 00 00                                                      | 0000                                                             | 20 20 20                                        |

### DIRECT REPORT SAMPLE FREQUENCY IS : QUARTERLY2 RESULTS IN MR/QTR +/- 2 SIGMA

|      |  | and the same |  |
|------|--|--------------|--|
| Dine |  |              |  |
|      |  |              |  |

| STATION<br>LOCATION        | SAMPLE<br>TYPE           | COLLECTION<br>DATE                                               | DIRECT                                           |
|----------------------------|--------------------------|------------------------------------------------------------------|--------------------------------------------------|
| 20                         | TLB                      | 931008/940106                                                    | 14.80+/~.20                                      |
| 21<br>21<br>21<br>21<br>21 | TLB<br>TLB<br>TLB<br>TLB | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 16.60+/40<br>17.20+/30<br>17.60+/30<br>15.40+/30 |
| 22<br>22<br>22<br>22<br>22 | TLB<br>TLB<br>TLB<br>TLB | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 15.30+/40<br>16.60+/30<br>16.60+/10<br>14.20+/30 |
| 23<br>23<br>23<br>23<br>23 | TLB<br>TLB<br>TLB<br>TLB | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 17.10+/60<br>16.30+/20<br>18.20+/30<br>14.60+/20 |
| 24<br>24<br>24<br>24       | TLB<br>TLB<br>TLB<br>TLB | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 15.50+/40<br>15.70+/40<br>16.30+/20<br>13.60+/10 |
| 35<br>35<br>35<br>35       | TLB<br>TLB<br>TLB<br>TLB | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 12.90+/20<br>13.50+/30<br>13.90+/20<br>12.20+/10 |
| 36<br>36<br>36<br>36       | TLB<br>TLB<br>TLB        | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 17.80+/30<br>19.90+/50<br>19.60+/20<br>15.70+/20 |



SAMPLE FREQUENCY IS : QUARTERLY2 RESULTS IN MR/QTR +/- 2 SIGMA

| DIRECT     | 14.00+/40<br>13.90+/40<br>16.60+/20<br>12.80+/10                 | 15.10+/30<br>13.90+/20<br>15.40+/10<br>12.10+/10                 | 13.20+/60<br>13.20+/30<br>14.70+/30<br>11.60+/10                 | 13.50+/40<br>13.90+/20<br>15.40+/10<br>12.50+/10                 | 13.20+/40<br>15.70+/10<br>15.40+/10<br>13.60+/10                 | 15.40+/20<br>12.20+/30<br>13.30+/20                          | 15.90+/60<br>17.10+/30<br>15.90+/10<br>15.30+/30                 |
|------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|
| COLLECTION | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 930402/930707<br>930707/931008<br>931008/940106              | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 |
| SAMPLE     | 718<br>718<br>718                                                | 71.8<br>71.8<br>71.8                                             | 71.8<br>71.8<br>71.8                                             | 71.8<br>71.8<br>71.8                                             | 71.8<br>71.8<br>71.8                                             | 77.7<br>77.0<br>77.0<br>77.0<br>77.0<br>77.0<br>77.0<br>77.0 | TLS<br>TLS<br>TLS                                                |
| STATION    |                                                                  | 4444<br>9490                                                     | लाता ता ता<br>को यो को को                                        | ស្នេងស<br>សល្សស                                                  | 01.00 (01.00)<br>10 (01.00)                                      | ক ক ক<br>১০১০ ১০                                             | ស្រសាសា<br>លាសាសាយា                                              |

P24001

CLEVELAND ELECTRIC ILLUMINATING CO. - PNPP. PAGE: 002
REMP TRACKING SYSTEM DATE: 1-MAR-94 REMP TRACKING SYSTEM

DIRECT REPORT
SAMPLE FREQUENCY IS: QUARTERLY2
RESULTS IN MR/QTR +/- 2 SIGMA

| STATION<br>LOCATION | SAMPLE<br>TYPE    | COLLECTION DATE                                                  | DIRECT                                           |  |
|---------------------|-------------------|------------------------------------------------------------------|--------------------------------------------------|--|
| 56<br>56<br>56      | TLB<br>TLB<br>TLB | 930107/930402<br>930707/931008<br>931008/940106                  | 15.00+/30<br>13.70+/30<br>11.80+/10              |  |
| 58<br>58<br>58      | TLB<br>TLB<br>TLB | 930107/930402<br>930402/930707<br>930707/931008<br>931008/940106 | 13.40+/40<br>15.40+/20<br>15.60+/20<br>13.20+/10 |  |

DAIE: 1-MAR-94



SAMPLE FREQUENCY IS : ANNUAL RESULTS IN MR/QTR +/- 2 SIGMA

| DIRECT     | 53.80+/20     | 46.70+/50     | 50.30*/60     | 51.80+/10     | 47.70+/10     | 56.70+/20     | 56.10+/10     | 40.70+/30     | 44.00+/30     | 59.10+/80     | 45.30+/90     | 39.90+/20     | 52.00+/30     |
|------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| COLLECTION | 930107/940106 | 930107/940106 | 930107/940106 | 930107/940106 | 930107/940106 | 930107/940106 | 930107/940106 | 930107/940106 | 930107/940106 | 930107/940106 | 930107/940106 | 930107/940106 | 930107/940106 |
| SAMPLE     | TLA           | TLA           | TLA           | TLA           | TEAN          | TLA           |
| STATION    | 0.1           | 02            | 03            | 04            | 0.5           | 90            | 7.0           | 0.8           | 60            | 10            | 11            | 122           | 133           |

P24001

CLEVELAND ELECTRIC ILLUMINATING CO. - PNPP. REMP TRACKING SISTEM

PALL: 002 DATE: 1-MAR-94

|      | -3       | WE.               |      |     |
|------|----------|-------------------|------|-----|
|      | 45       | 353               |      |     |
|      | THE.     | FR                |      |     |
|      | 155      | In:               |      |     |
|      | ES.      | 27                |      |     |
|      | 19       | 633               |      |     |
|      | 107      |                   |      |     |
|      |          | 103               |      |     |
|      | 100      |                   |      |     |
| See. |          | . 1               |      |     |
| O.K  | 5n       |                   |      |     |
|      | F        | 16                |      |     |
|      |          |                   |      |     |
| MA.  |          | Section 1         |      |     |
| 푠    | Sec.     | 100               |      |     |
| 49   | 57       | OTTO              |      |     |
|      | 25       | O                 |      |     |
| 64   | Ex3      | 200               |      |     |
| 1    | 233      | 000               |      |     |
| 6    | OX       | 351               |      |     |
| ×    | III      | -                 |      |     |
| LMEC | REQUENCY | 200               |      | а   |
| -5   | E.       | Ming.             |      | Н   |
| -4   | 981      | ***               |      | 4   |
|      | 234      | 22                |      | -1  |
|      | 14)      | 22                |      | А   |
|      | 2114     | Political Control | É    | 넴   |
|      | EA:      | head              | 7    |     |
|      | 20       | 2                 |      | 겝   |
|      | PC.      | 100               |      | 13  |
|      | SAMPL    | RESUL             | 4    | 귀   |
|      |          | 120               | -33  | 덱   |
|      |          |                   |      | ෲ   |
|      |          |                   | Done | 4   |
|      |          |                   |      |     |
|      |          |                   | 5    | 연   |
|      |          |                   | J.J. |     |
|      |          |                   |      | П   |
|      |          |                   | X.   | 5\$ |
|      |          |                   | 18   | ál  |
|      |          |                   |      |     |
|      |          |                   | N    |     |
|      |          |                   | 1    | al. |
|      |          |                   | 35   |     |
|      |          |                   | C    |     |
|      |          |                   | 7    | 31  |



DIRECT REPORT
SAMPLE FREQUENCY IS: ANNUAL
RESULTS IN MR/QTR +/- 2 SIGMA

| STATION<br>LOCATION | SAMPLE<br>TYPE | COLLECTION DATE | DIRECT       |
|---------------------|----------------|-----------------|--------------|
| 41                  | TLA            | 930107/940106   | 49.30+/-1.00 |
| 42                  | TLA            | 930107/940106   | 52.80+/30    |
| 43                  | TLA            | 930107/940106   | 46.30+/30    |
| 45                  | TLA            | 930107/940106   | 46.30+/50    |
| 53                  | TLA            | 930107/940106   | 49.80+/60    |
| 54                  | TLA            | 930107/940106   | 52.80+/50    |
| 55                  | TLA            | 930107/940106   | 58.80+/80    |
| 56                  | TLA            | 930107/940106   | 55.60+/20    |
| 58                  | TLA            | 930107/940106   | 49.30+/-1.00 |