

NUCLEAR TRAINING DEPARTMENT

SOUTH TEXAS PROJECT

ELECTRIC GENERATING STATION

SIMULATOR CERTIFICATION SUBMITTAL

INITIAL REPORT

9103130287 910301 PDR ADOCK 05000498

ATTACHMENT

SOUTH TEXAS PROJECT ELECTRIC GENERATING STATION SIMULATOR CERTIFICATION SUBMITTAL

SOUTH TEXAS PROJECT ELECTRIC GENERATING STATION SINULATOR CERTIFICATION SUBMITTAL

INDEX

SECT	ION	PAGE
SIMU	LATION FACILITY CERTIFICATION FORM (474) UNIT 1 AND	UNIT 2
1.	INTRODUCTION/DEFINITIONS	1
2.	ANSI/ANS 3.5,1985 SIMULATOR CERTIFICATION CHECKLIST	11
з.	EVALUATION OF NON-COMPLIANCE ITEMS TO ANSI/ANS 3.5,1985 REQUIREMENTS	34
4.	SIMULATOR PROCEDURES	35
5.	OPERATING EXPERIENCE REVIEWS (OERS)	37
6.	SIMULATOR DATA BASE	38
7.	PLANT MONITORING SIMULATOR COMPUTER SYSTEM (PMSCS)	39
8.	SIMULATOR INSTRUCTOR STATION OVERVIEW	40
9.	UNIT/SIMULATOR DIFFERENCES	43
	1) PHYSICAL FIDELITY	
	2) ENVIRONMENTAL COMPARISON	
10.	SIMULATOR PERFORMANCE TEST	45
	1) PERFORMANCE TEST PERSONNEL QUALIFICATIONS	
	2) REAL TIME TEST	
	3) TRANSIENT TEST	
	4) NORMAL OPERATIONS TEST	
	5) MALFUNCTION TEST	
	6) STEADY STATE OPERATIONS TEST	
	7) SURVEILLANCE TEST	

i

INDEX

SECT	NON	PAGE
11.	SIMULATOR PERFORMANCE TEST SCHEDULE	53
12.	SIMULATOR UPGRADE PLAN AND SCHEDULE	54
13.	EVALUATION OF DIFFERENCES IN UNIT 2 VERSUS UNIT 1 AND THE SIMULATOR	55
ADDI	INDUM	PAGE
1)	LISTING OF CURRENT DISCREPANCY REPORTS (DRs)	1-1 thru 1-14
2)	CURRENTLY EXISTING UNIT/SIMULATOR DIFFERENCES	2-1 thru 2-7
3)	MALFUNCTIONS ACCEPTED FOR TRAINING AND EXAMINATIONS	3-1 thru 3-14
4)	SYNOPSIS OF MALFUNCTION TESTS	4-1 thru 4-171
5)	LISTING OF CURRENT MODIFICATION REPORTS (MRs)	5-1 thru 5-3
6)	LIST OF CURRENT INITIAL CONDITIONS (ICS)	6-1 thru 6-3
7)	REMOTE FUNCTIONS (LOCAL OPERATOR ACTIONS) ACCEPTED FOR TRAINING/EXAMINATIONS	7-1 thru 7-11
8)	MANUAL RX TRIP TRANSIENT TEST DATA	8-1 thru 8-25
9)	SYNOPSIS OF TRANSIENT TEST DATA	9-1 thru 9-10
10)	OVERRIDES ACCEPTED FOR TRAINING/ EXAMINATIONS	10-1 thru 10-14
11)	SURVEILLANCE TEST IIST	11-1 thru 11-3
12)	FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE	12-1 thru 12-44

ADDENDA CROSS REFERENCE

ADDENDUM NUMBER	ANS	APPLICABLE L/ANS 3.5,1985	COMMENTS
1.1	3.1	DISCREPANCIES	
1.2	3.1.1 3.3.1 4.2.1.c	DISCREPANCIES	ALSO SECTION 10 OF THIS REPORT
1.3	32 3.3 1 4.2.1.C	DISCREPANCIES	
1.4	3.2.2	DISCREPANCIES	
1.5	3.3.2	DISCREPANCIES	
1.6	4.1	DISCREPANCIES	ALSO SECTION 10 OF THIS REPORT
1.7	B.2.2	DISCREPANCIES	
1.8	N/A		DISCREPANCIES ON INSTRUCTOR STATION
1.9	3.2.2		DISCREPANCIES ON PLANT COMPUTERS SIMULATION
1.10	5.3	DISCREPANCIES	

ADDENDA CROSS REFERENCE

ADDENDUM NUMBER	APPLICABLE ANSI/ANS 3.5,1985	COMMENTS
2	3.2.1 3.2.3	
3	3.1.2 3.4.2	ALSO SECTION 10 OF THIS REPORT
4	3.1.2 3.4.2 4.2.2	ALSO SECTION 10 OF THIS REPORT
5	3.2.1	ALSO SECTION 10 OF THIS REPORT
6	3.4.1	
7	3.4.4	ALSO SECTION 8 OF THIS REPORT
8	4.2.2	ALSO SECTION 10 OF THIS REPORT
9	4.2.2	ALSO SECTION 10 OF THIS REPORT
10	N/A	SECTION 8 OF THIS REPORT
11	N/A	SECTION 10 OF THIS REPORT
12	5.4	SECTION 11 OF THIS REPORT

10 861 D CFR 5 55 45(b). 5 4 and 55 5	SIMULATION I	ACILITY CERTIFICATION	U.S. NUCLEAR REGULATORY COMMISSIC Approved by OI 3150-0138 Expres 10-31-88
STRUCTIONS. This form is to be fill de after initial submittal of such a pla	ed for initial certification, rece in Provide the following infor	rtification (if required), and for any change to a si mation, and check the appropriate box to indicate	mulation facility performance testing plan reason for submittal.
ACILITY SOUTH TEXAS PROTECT	ELECTRIC DENDEATI	NO OTATION INTEL	DOCKET NUMBER
ICENSEE	LLECIKIC GENERALI	NG STATION UNIT 1	50 498 DATE
HOUSTON LIGHTING & P	OWER, P.O. BOX 28	9, WADSWORTH, TEXAS 77483	March 1, 1991
This is to centry that 1 the above named facilit maets the guidance contained in ANSI ANS 3 I exceptions to the certification of item 2 above	Hoamsele using a simulation facility op 1985, as endorsed by NRC Regulatory theok here and describe fully on add	instating solies of a paint referenced amulator that meets the require Solide 1.148, and 3. documentation is available for NRC review in r thoma pages as recreasing.	rements of 10 CFR * 56.46, 2, this emulation facility accordance with 10 CFR * 56.46(b). If there are any
AME for other identification, AND LOCATI	ON OF SIMULATION FACILITY		
SUULATION FACILITY PERFORMAN	DEMULATUR/ NUCLEAR	C TRAINING FACILITY, FMD21, 8m	with the date of this certification: 77483
DESCRIPTION OF PERFORMANCE TESTIN	G COMPLETED (Attach additional	page(s) as necessary, and identify the item description bei	ng continued)
SEE SECTION TO OF AT	TACHMENT		
TEIMULATION FACILITY PERFORMAN	TE TECTINO SOMEDINE ATTAC	IED. (For the conduct of environmetely, 25% of performa-	non tasts pay user for the four date payout
commencing with the date of this certifica	NOR J		the tests per year of the top year period
ESCHIFTION OF FERTURE NESTIN	D TO BE CONDUCTED IMINET AC	плинонал раделялав несемалу, алы ноепину спеннет шеастр	ana mang ana mang
SEE SECTION 11 OF AT	TACHMENT		
DEE DECISION IT OF HI	i no neno n		
)			
)			
)			
PERFORMANCE TESTING PLAN CHAN	GE. /For any modification to a per S PLAN CHANGE (Attach additio	formance testing plan submitted on a previous rertification nal page(s) as necessary, and identify the item description b	1/ Seing continued/
PERFORMANCE TESTING PLAN CHAN RESCRIPTION OF PERFORMANCE TESTIN	GE. <i>IF or any modification to a per</i> S PLAN CHANGE <i>(Attach additio</i>	formance testing plan submitted on a previous -ertification nal pagels/ as necessary, and identify the item description b	n/ Seing continued/
PERFORMANCE TESTING PLAN CHAN ESCRIPTION OF PERFORMANCE TESTIN	GE /For any modification to a per S PLAN CHANGE (Attach additio	formance testing plan submitted on a previous "ertification nal pageis) as necessary, and identify the item description b	n/ being continued/
PERFORMANCE TESTING PLAN CHAN DESCRIPTION OF PERFORMANCE TESTIN NOT APPLICABLE	GE, <i>IF or any modification to a per</i> S PLAN CHANGE <i>(Attach additio</i>	formance testing plan submitted on a previous - ertification nal page(s) as necessary, and identify the item description b	n Heing continued)
PERFORMANCE TESTING PLAN CHAN RESCRIPTION OF PERFORMANCE TESTIN NOT APPLICABLE	GE <i>(For any modification to a per</i> S PLAN CHANGE (Attach additio	formance testing plan submitted on a previous -ertification nal pagels) as necessary, and identify the item description b	n) Deing continued)
PERFORMANCE TESTING PLAN JHAN DESCRIPTION OF PERFORMANCE TESTIN NOT APPLICABLE	GE. <i>IF or any modification to a per</i> S PLAN CHANGE <i>(Attach additio</i>	formance testing plan submitted on a previous - entification hal page(s) as necessary, and identify the item description b	l Weing continued)
PERFORMANCE TESTING PLAN LHAN DESCRIPTION OF PERFORMANCE TESTIN NOT APPLICABLE	GE, <i>lFor any modification to a per</i> 3 PLAN CHANGE (Attach additio	formance testing plan submitted on a previous "ertification nal page(s) as necessary, and identify the item description b	n) Deing continued)
PERFORMANCE TESTING PLAN UHAN DESCRIPTION OF PERFORMANCE TESTIN NOT APPLICABLE RECERTIFICATION (Describe corrective	GE. IF or any modification to a per S PLAN CHANGE (Attach addition actions taken, attach results of com	formance testing plan submitted on a previous rentification nal page(s) as necessary, and identify the item description b preses performance testing in accordance with 10 CFR & 1	1/ being continued) 55 45(b)(5)(y).
PERFORMANCE TESTING PLAN CHAN DESCRIPTION OF PERFORMANCE TESTIN NOT APPLICABLE RECERTIFICATION (Describe corrective Attach additional page 12) as necessary, and	GE, IF or any modification to a per S PLAN CHANGE (Attach addition S PLAN CHANGE (Attach addition solutions taken, attach results of con- identify the item description being	formance testing plan submitted on a previous -ertification nal pagels) as mecessary, and identify the item description b pietes performance testing in accordance with 10 CFR & continued.)	1/ ≫eing cantinu€d/ 58 45(b1/(5)/γ)
PERFORMANCE TESTING PLAN JHAN DESCRIPTION OF PERFORMANCE TESTIN NOT APPLICABLE RECERTIFICATION (Describe corrective Attach additional page(s) as necessary and	GE. IF or any modification to a per S PLAN CHANGE (Attach addition settions taken, attach results of con identify the item description being	formance testing plan submitted on a previous - entification nal page(s) as necessary, and identify the item description b pletes performance testing in accordance with 10 CFR & continued (1/ being continued) 55 45/b1/(5/(y)
PERFORMANCE TESTING PLAN CHAN DESCRIPTION OF PERFORMANCE TESTIN NOT APPLICABLE RECERTIFICATION (Describe corrective Attach additional page(1) as necessary, and	GE, IF or any modification to a per S PLAN CHANGE (Attach addition S PLAN CHANGE (Attach addition solutions taken, attach results of con identify the item description being	tormance testing plan submitted on a previous retrification al page(s) as necessary, and identify the item description b pietes performance testing in accordance with 10 CFR & continued (nj Dering contrinued; 55 45/b1/(5/(v).
PERFORMANCE TESTING PLAN JHAN DESCRIPTION OF PERFORMANCE TESTIN NOT APPLICABLE RECERTIFICATION (Describe corrective Attach additional page(s) as necessary and NOT APPLICABLE	GE. IF or any modification to a per S PLAN CHANGE (Attach addition settions taken, attach results of com refentify the item description being	formance testing plan submitted on a previous - entification nal page(s) as necessary, and identify the item description b pleteo performance testing in accordance with 10 CFR & continued (n Seing continued! 55 4b/b//5/y)
PERFORMANCE TESTING PLAN CHAN DESCRIPTION OF PERFORMANCE TESTIN NOT APPLICABLE RECERTIFICATION (Describe corrective Attach additional page) of as mecasiary, and NOT APPLICABLE	GE, IF or any modification to a per S PLAN CHANGE (Attach addition actions taken, attach results of con identify the item description being	formance testing plan submitted on a previous retrification al page(s) as necessary, and identify the item description b pietes performance testing in accordance with 10 CFR & continued (1/ Seing continuedi 55 45/b/(5/(v)
PERFORMANCE TESTING PLAN JHAN DESCRIPTION OF PERFORMANCE TESTIN NOT APPLICABLE RECERTIFICATION (Describe corrective Attach additional page(s) as necessary and NOT APPLICABLE	GE, IF or any modification to a per S PLAN CHANGE (Attach addition sections taken, attach results of com identify the item description being	formance testing plan submitted on a previous - entification nal page(s) as necessary, and identify the item description b pleteo performance testing in accordance with 10 CFR & continued (n veing continuedi 55.48/bi/Si/v)
PERFORMANCE TESTING PLAN CHAN DESCRIPTION OF PERFORMANCE TESTIN NOT APPLICABLE RECERTIFICATION (Describe corrective Attach additional page of as measury and NOT APPLICABLE	GE. IF or any modification to a per 5 PLAN CHANGE (Attach addition 5 PLAN CHANGE (Attach addition cleanting taken attach results of com identify the item description being	formance testing plan submitted on a previous - entification nal page(s) as micessary, and identify the item description b pietes performance testing in accordance with 10 CFR & s continued (1/ Seing continued; 55 45(b)(5)(v)
PERFORMANCE TESTING PLAN JHAN DESCRIPTION OF PERFORMANCE TESTIN NOT APPLICABLE RECERTIFICATION (Describe corrective Attach additional page(s) as necessary and NOT APPLICABLE	GE . If or any modification to a per S PLAN CHANGE (Attach addition ections taken, attach results of con identify the item description being	formance testing plan submitted on a previous sertification nal page(s) as necessary, and identify the item description b pleteo performance testing in accordance with 10 CFR & continued (ni being continued! 55 48/bi/(5)/y)
PERFORMANCE TESTING PLAN CHAN DESCRIPTION OF PERFORMANCE TESTIN NOT APPLICABLE RECERTIFICATION (Describe corrective Attach additional page (s) as necessary and NOT APPLICABLE NOT APPLICABLE	GE /For any modification to a per 5 PLAN CHANGE (Attach addition solutions taken, attach results of com identify the item description being nt, including attachments, may be startive	formance testing plan submitted on a previous retrification nal page(s) as mecessary, and identify the item description b prefer performance testing in accordance with 10 CFR & continued (1) Seing continued) 55 45(b)(5)(y) S5 45(b)(5)(y)
PERFORMANCE TESTING PLAN JHAN DESCRIPTION OF PERFORMANCE TESTIN NOT APPLICABLE RECERTIFICATION (Describe corrective Attach additional page(s) as necessary and NOT APPLICABLE NOT APPLICABLE	GE IF or any modification to a per SPLAN CHANGE (Attach addition ections taken, attach results of con identify the item description being nt, including attachments, may be TATIVE	formance testing plan submitted on a previous vertification val page(s) as necessary, and identify the item description b pleteo performance testing in accordance with 10 CFR & continued / continued / ubject to Usil and climinal sanctions. I certify under pena [TitLE VICE_PRESIDENT-NUCLEAR_GENE	Inty of perjury that the information in this BATE ERATION
PERFORMANCE TESTING PLAN CHAN DESCRIPTION OF PERFORMANCE TESTIN NOT APPLICABLE RECERTIFICATION (Describe corrective Attach additional page (1) as necessary and NOT APPLICABLE NOT APPLICABLE NOT APPLICABLE NOT APPLICABLE NOT APPLICABLE NOT APPLICABLE NATURE AUTHORIZED REPRESE W. H. KINSEY accordance with 10 CFR 5 55 5 Car	GE /For any modification to a per SPLAN CHANGE (Attach addition actions taken, attach results of com identify the item description being nt. including attachments, may be VTA TIVE Thurnications, Wis form shall b	tormance testing plan submitted on a previous retrification nal page(s) as micessary, and identify the item description b prefer performance testing in accordance with 10 CFR & continued (continued)	The ing contributed (55 45/6/(5//v) Sty of perjury that the information in this ERATION

NRC FORM 474			U.S. NUCLEAR REGULATORY COMMISS
10 C *** g 55 4510). 15 4 and 55 5	SIMULATIC	ON FACILITY CERTIFICATION	Expense TO 31
STRUCTIONS. This form is to t ide after initial submittal of such	be filed for initial certification a plan. Provide the following	on, recertification (if required), and for any change to a sim ing information, and check the appropriate box to indicate r	nulation facility performance testing plan eason for submittal.
ACILITY POYAS SPATEOR	FIRSTRIC SENER	441N/2 24471/00 10014 5	DUCKET NUMBER
ICENSEE	ELECTRIC GENERA	ATINC STATION UNIT 2	DATE
HOUSTON LIGHTING &	POWER. P.O. BOX	289, WADSWORTH, TEXAS 77483	March 1, 199
This is to certify that 1 the above named meets the guidance contained in ANSI/ A inceptions to the certification of them 2 at 1.4.4.	Tacility (NS 3.5 LIOVE CR LIOVE CR LIOVE CR	facility consisting solary of a particleferenced simulator that makes the recover Regulatory Guide 1.149, and 3, documentation is available for NRC review in ac ulty on additional parties as necessary	ments of 10 CFR * 55 45, 2 the simulation facility conclance with 10 CFR * 55,45(b). If there are any
SOUTH TEXAS PROJECT	SIMULATOR/NUCLE	EAR TRAINING FACILITY, FM521.8 mi.	West of Wadeworth TX
SIMULATION FACILITY PERFOR	MANCE TEST ABSTRACTS AT	TTACHED /For performance rests conducted in the period ending w	ith the date of this cartifications 7748
DESCRIPTION OF PERFORMANCE TE	STING COMPLETED (Artach a	idditional page(s) as necessary, and identify the item description being	g continued)
THE DESCRIPTION OF BASIS FOR APPLICATION	PERFORMANCE TEST ON TO UNIT 2 ARE	TING IS IN SECTION 10 OF THE ATTA E IN SECTION 13 OF THE ATTACHMENT	CHMENT AND THE
TEIMULATION FACULTY PERFOR	MANCE TESTING SCHEDULE	ETTERMEN (For the conduct of spread orally) 354 of service and	the family state states from the forum states the state
commencing with the date of this cer	nification)	en an anna anna an an an an anna an an an	
ESCRIPTION OF PERFORMANCE TE	STING TO BE CONDUCTED (A	A thach wordstionwi pagessi as necessary, and identify the item description	un being continued)
THE DESCRIPTION OF	PERFORMANCE TEST	TING TO BE CONDUCTED IS IN SECTIO	N 10 OF THE
	I PARE PARTERIAM TO A TOTAL	riud to be composite to th beate	N IN OF THE
ATTACHMENT AND THE	BASIS FOR APPLIC	CATION TO UNIT 2 ARE IN SECTION 1	3 OF THE ATTACHMENT.
ATTACHMENT AND THE	BASIS FOR APPLIC	CATION TO UNIT 2 ARE IN SECTION 1	3 OF THE ATTACHMENT.
ATTACHMENT AND THE	BASIS FOR APPLIC	CATION TO UNIT 2 ARE IN SECTION 1	3 OF THE ATTACHMENT.
ATTACHMENT AND THE	BASIS FOR APPLIC	CATION TO UNIT 2 ARE IN SECTION 1	3 OF THE ATTACHMENT.
ATTACHMENT AND THE	BASIS FOR APPLIC	CATION TO UNIT 2 ARE IN SECTION 1	3 OF THE ATTACHMENT.
ATTACHMENT AND THE	BASIS FOR APPLIC	CATION TO UNIT 2 ARE IN SECTION 1	3 OF THE ATTACHMENT.
PERFORMANCE TESTING PLAN C	BASIS FOR APPLIC	CATION TO UNIT 2 ARE IN SECTION 1	3 OF THE ATTACHMENT.
PERFORMANCE TESTING PLAN C	BASIS FOR APPLIC HANGE (For any modification STING PLAN CHANGE (Attach	CATION TO UNIT 2 ARE IN SECTION 1 to a performance testing plan submitted on a previous certification/ h additional page(s) as necessary, and identify, the item description be	3 OF THE ATTACHMENT.
PERFORMANCE TESTING PLAN C	BASIS FOR APPLIC HANGE (For any modification STING PLAN CHANGE (Arrach	CATION TO UNIT 2 ARE IN SECTION 1 to a performance testing plan submitted on a previous certification/ h additional page(s) as necessary, and identify, the item description be	3 OF THE ATTACHMENT.
PERFORMANCE TESTING PLAN C DESCRIPTION OF PERFORMANCE TE	BASIS FOR APPLIC HANGE (For any modification STING PLAN CHANGE (Attach	CATION TO UNIT 2 ARE IN SECTION 1 to a performance testing pion submitted on a previous certification; h additional page(s) as necessary, and identify, the item description be	3 OF THE ATTACHMENT.
PERFORMANCE TESTING PLAN C PERFORMANCE TESTING PLAN C ESCRIPTION OF PERFORMANCE TE	BASIS FOR APPLIC	CATION TO UNIT 2 ARE IN SECTION 1 to a performance testing pion submitted on a previous certification/ h additional page(s) as necessary, and identify the item description be	3 CF THE ATTACHMENT.
PERFORMANCE TESTING PLAN C ESCRIPTION OF PERFORMANCE TE NOT APPLICABLE	BASIS FOR APPLIC HANGE (For any modification STING PLAN CHANGE (Attach	CATION TO UNIT 2 ARE IN SECTION 1 to a performance testing plan submitted on a previous certification/ h additional page(s) as necessary, and identify, the item description be	3 OF THE ATTACHMENT.
PERFORMANCE TESTING PLAN C ESCRIPTION OF PERFORMANCE TE	BASIS FOR APPLIC HANGE (For any modification STING PLAN CHANGE (Attach	CATION TO UNIT 2 ARE IN SECTION 1 to a performance resting prin submitted on a previous certification/ h additional page(s) as necessary, and identify the item description be	3 OF THE ATTACHMENT.
PERFORMANCE TESTING PLAN C ESCRIPTION OF PERFORMANCE TE	BASIS FOR APPLIC	CATION TO UNIT 2 ARE IN SECTION 1	3 OF THE ATTACHMENT.
PERFORMANCE TESTING PLAN C ESCRIPTION OF PERFORMANCE TE	BASIS FOR APPLIC	CATION TO UNIT 2 ARE IN SECTION 1	3 OF THE ATTACHMENT.
ATTACHMENT AND THE PERFORMANCE TESTING PLAN C ESCRIPTION OF PERFORMANCE TE NOT APPLICABLE RECEPTIFICATION (Describe corre Attach additional page(s) as increased	BASIS FOR APPLIC HANGE (For any modification STING PLAN CHANGE (Attach STING PLAN CHANGE (Attach strive actions taken attach result y and (dentify the tiem descripto	CATION TO UNIT 2 ARE IN SECTION 1 to a performance testing plan submitted on a previous certification/ h additional pagets) as necessary, and identify, the item description be is of completes performance testing in accordance with 10 CFR § 55 ion being continued.	3 OF THE ATTACHMENT.
PERFORMANCE TESTING PLAN O PERFORMANCE TESTING PLAN O ESCRIPTION OF PERFORMANCE TE NOT APPLICABLE	BASIS FOR APPLIC HANGE (For any modification STING PLAN CHANGE (Attach STING PLAN CHANGE (Attach stress actions taken attach result y and (dentify the tiem description	CATION TO UNIT 2 ARE IN SECTION 1 to a performance resting plan submitted on a previous certification in h additional page(s) as necessary, and identify the item description be to of completes performance lasting in accordance with 10 CFR § 55 on being continued.	3 OF THE ATTACHMENT.
PERFORMANCE TESTING PLAN C ESCRIPTION OF PERFORMANCE TE NOT APPLICABLE RECEPTIFICATION (Describe corre Attach additional page(3) at medisary	BASIS FOR APPLIC HANGE /For any modification STING PLAN CHANGE (Attach STING PLAN CHANGE (Attach Krive actions taken attach result y and (dentify the liem descript)	CATION TO UNIT 2 ARE IN SECTION 1 to a performance testing plan submitted on a previous certification/ h additional page(s) as necessary, and identify the item description be is of completed performance lasting in accordance with 10 CFA 5 55 on being continued.	3 CF THE ATTACHMENT.
TACHMENT AND THE	BASIS FOR APPLIC HANGE (For any modification STING PLAN CHANGE (Attach STING PLAN CHANGE (Attach stree actions taken, attach result y and (dentify the trem descript)	CATION TO UNIT 2 ARE IN SECTION 1 to a performance resting prin submitted on a previous certification/ h additional pagets) as necessary, and identify the item description be additional pagets) as necessary, and identify the item description be	3 CF THE ATTACHMENT.
PERFORMANCE TESTING PLAN C PERFORMANCE TESTING PLAN C ESCRIPTION OF PERFORMANCE TE NOT APPLICABLE NOT APPLICABLE	BASIS FOR APPLIC HANGE /For any modification STING PLAN CHANGE (Attach Stree actions taken attach result y and identify the trem descripts	CATION TO UNIT 2 ARE IN SECTION 1 to a performance testing plan submitted on a previous certification i h additional page(s) as recessary, and identify the item description be is of completed performance lasting in accordance with 10 CFA 5 55 on being continued.	3 OF THE ATTACHMENT.
PERFORMANCE TESTING PLAN O ESCRIPTION OF PERFORMANCE TE NOT APPLICABLE RECEPTIFICATION /Describe corre Attach additional page() at the same	BASIS FOR APPLIC HANGE /For any modification STING PLAN CHANGE (Attach Stree actions taken attach result y and (dentify the liem descript)	CATION TO UNIT 2 ARE IN SECTION 1 to a performance testing plan submitted on a previous certification/ h additional page(s) as necessary, and identify the nem description be is of completed performance lessing in accordance with 10 CFR 5 55 on being continued.	3 CF THE ATTACHMENT.
PERFORMANCE TESTING PLAN C ESCRIPTION OF PERFORMANCE TE NOT APPLICABLE RECEPTIFICATION /Describe corre Article additional page(p) as recessing NOT APPLICABLE	BASIS FOR APPLIC HANGE (For any modification STING PLAN CHANGE (Attach STING PLAN CHANGE (Attach enver actions taken attach result y and (dentify the tien description)	CATION TO UNIT 2 ARE IN SECTION 1 to a performance testing prin submitted on a previous certification/ h additional page(s) as necessary, and identify the nem description be additional page(s) as necessary, and identify the nem description be to of completes performance (assing in accordance with 10 CFR § 55 ion being continued).	3 CF THE ATTACHMENT.
PERFORMANCE TESTING PLAN C ESCRIPTION OF PERFORMANCE TE NOT APPLICABLE RECEPTIFICATION /Describe corre Attach additional page [1] as interesting NOT APPLICABLE	BASIS FOR APPLIC HANGE (For any modification STING PLAN CHANGE (Attach STING PLAN CHANGE (Attach where ections taken, attach result y, and (dentify the item descript)	CATION TO UNIT 2 ARE IN SECTION 1 1 to a performance testing plan submitted on a previous certification i h additional page(s) as necessary, and identify the nem description be 15 of completes performance testing in accordance with 10 CFR § 55 on being continued.	3 OF THE ATTACHMENT.
ATTACHMENT AND THE PERFORMANCE TESTING PLAN C ESCRIPTION OF PERFORMANCE TE NOT APPLICABLE RECEPTIFICATION (Describe corre- Artach additional page(g) at medisary NOT APPLICABLE	BASIS FOR APPLIC HANGE (For any modification STING PLAN CHANGE (Attach Etwe ections taken attach result y and (dentify the trem descript)	CATION TO UNIT 2 ARE IN SECTION 1	3 OF THE ATTACHMENT.
ATTACHMENT AND THE PERFORMANCE TESTING PLAN C ESCRIPTION OF PERFORMANCE TE NOT APPLICABLE RECEFTIFICATION <i>IDeerite corre</i> Attack additional papers is increased NOT APPLICABLE	BASIS FOR APPLIC HANGE (For any modification STING PLAN CHANGE (Attach stree echions taken attach result , and (dentify the tien descript)	The subject to civil and climinal lanctions. To enviry under penalt	3 OF THE ATTACHMENT.
ATTACHMENT AND THE PERFORMANCE TESTING PLAN O IESCRIPTION OF PERFORMANCE TE NOT APPLICABLE RECEPTIFICATION /Onerrithe corres Attack additional page(1) as the essent NOT APPLICABLE NOT APPLICABLE NOT APPLICABLE	BASIS FOR APPLIC HANGE (For any modification STING PLAN CHANGE (Attach stree ections taken attach result y and (dentify the tiem descript) scoreent including attachments (rect	The subject to civil and criminal lanctions. Therein under penalt	3 OF THE ATTACHMENT.
ATTACHMENT AND THE PERFORMANCE TESTING PLAN O ESCRIPTION OF PERFORMANCE TE NOT APPLICABLE RECEF TIFICATION /Describe corre Artack additional page[] as the Band NOT APPLICABLE NOT APPLICABLE NOT APPLICABLE	BASIS FOR APPLIC HANGE // For any modification STING PLAN CHANGE (Attach etime actions taken attach result y and (dentify the liem descript) incument, including attachments rect ESENTATIVE	The subject to civil and climinal functions. Toently under penalt The Subject to civil and climinal functions. Toently under penalt The VICE PRESIDENT-NUCLEAR GENE	3 OF THE ATTACHMENT.
PERFORMANCE TESTING PLAN C ESCRIPTION OF PERFORMANCE TE NOT APPLICABLE RECEFTIFICATION /Describe corre Attack additional papers as meressed NOT APPLICABLE NOT APPLICABLE NOT APPLICABLE NOT APPLICABLE NOT APPLICABLE NOT APPLICABLE NOT APPLICABLE	BASIS FOR APPLIC HANGE (For any modification STING PLAN CHANGE (Attach STING PLAN CHANGE (Attach etwe actions taken attach result and (dentify the tiem description and (dentify the tiem description communications) this (orm	The a performance testing prin submitted on a previous certification? In a distributed page(s) as necessary, and identify the nem description be additional page(s) as necessary, and identify the nem description be to of completes performance (assing in accordance with 10 CFR § 55 ion being continued). The subject to civil and climinal tenctions. Thereby under penalt Title VICE PRESIDENT-NUCLEAR GENE shall be submitted to the NRC as follows	3 OF THE ATTACHMENT.
PERFORMANCE TESTING PLAN C ESCRIPTION OF PERFORMANCE TE NOT APPLICABLE RECEPTIFICATION //Describe corre Attach sometiments is in the second NOT APPLICABLE V faise statement or omussion in this do cument and attachments is true and cor NATURE AUTHORIZED REPR , H, KINSEY accordance with TO CFR 4 5515. BY MAIL ADDRESS	BASIS FOR APPLIC HANGE /For any modification STING PLAN CHANGE (Attach STING PLAN CHANGE (Attach extrement, including attach result communications) this your SED TO Director Office of U.S. Nuclear Case	The subject to civil and circlinal weeklons. Toernly under penalt The subject to civil and circlinal weeklons. Toernly under penalt Title VICE PRESIDENT-NUCLEAR GENE of Nuclear Reactor Regulation BY DELIVERY IN PERS VI Nuclear Reactor Regulation BY DELIVERY IN PERS VI Nuclear Reactor Regulation BY DELIVERY IN PERS VI Nuclear Reactor Regulation BY DELIVERY IN PERS	3 OF THE ATTACHMENT.

SOUTH TEXAS FROJECT ELECTRIC GENERATING STATION SIMULATOR CERTIFICATION REPORT FEBRUARY 8, 1991

1.0 INTRODUCTION/DEFINITIONS

1.1 PURPOSE AND ARRANGEMENT OF THIS REPORT

The purpose of this report is to provide the basis for Houston Lighting & Power Company's (HL&P's) certification that the simulator can be used in the conduct of operating tests for Unit 1 and Unit 2 of the South Texas Project Electric Generating Station (STPEGS). This is done by showing compliance with the provisions of ANSI/ANS 3.5,1985 or by identifying exceptions to compliance and justifying why operating tests can still be administered. Each section of the standard is reproduced and, immediately following, the current status of the related requirement is provided.

This report is being submitted as the Initial Certification Report in accordance with 10 CFR 55.45.b.5.

1.2 GENERAL SIMULATOR INFORMATION

STPEGS is a two unit Westinghouse PWR - Four Loop 1250 MWE Plant operating from independent control rooms.

The power plant simulator is used for training and examining the STPEGS Unit 1 and Unit 2 operators. The STPEGS simulator is considered plant specific to Unit 1. Due to the minor diff 'ences between the Units, this report represents the Certification submittal for both Units 1 and 2. The differences between the simulator and Unit 2 are evaluated in Section 9 and Addendum 2 of this submittal.

The simulator was constructed by Gould Inc. in the early 1980's and delivered to Houston Lighting & Power in late 1984.

1.3 DEFINITIONS

1.3.1 DISCREPANCY REPORT (DR)

A form used to document problems in simulator configuration or operation. The documented problems are delivered to the simulator support section for resolution. Anyone responsible for operation or maintenance of the simulator can generate DRs. Students and operators are also encouraged to submit DRs through the simulator training instructors.

1.3.2 MODIFICATION REPORT (MR)

A form used to document and track plant modifications or changes to the scope of simulation which may or may not be incorporated on the simulator. MRs are reviewed by the Simulator Configuration Management Committee (SCMC) to determine the training/examination impact and whether the plant modification should be incorporated on the simulator.

1.3.3 SIMULATOR ENHANCEMENT

A change made to the simulator, either an addition or deletion from the original scope of simulation which is not related to a plant modification. Examples of a simulator enhancement would be the addition or deletion of a malfunction or a modification made to the instructor station.

1.3.4 MALFUNCTION RESPONSE/REMOTE RESPINSE BOOKS

2

Manuals, available to the simulator instructors, which contain the cause and effects of each malfunction/remote which has been tested and approved for operator training and examinations.

1.3.5 COMPLIANCE

Discrepancies which may exist do not have significant adverse effect on the conduct of a licensing examination or operator training. Correction is not necessary to comply with ANSI/ANS 3.5,1985. 1.3.6

EXCEPTION

Discrepancies which have been identified during performance testing or operator training that prevent full compliance with ANSI/ANS 3.5,1985. These discrepancies, depending on the severity, are categorized as follows:

1.3.6.1 PARTIAL COMPLIANCE

Discrepancies exist which have a minor but definite impact on the ability to conduct a licensing examination or operator training. These discrepancies include those which can be easily accounted for and overcome during a licensing examination or operator training. Correction of these discrepancies will be scheduled, utilizing available resources, in accordance with the simulator configuration control procedures as part of the ongoing simulator update program.

1.3.6.2 NON-COMPLIANCE

Discrepancies exist which adversely affect the ability to conduct a reliable licensing examination on the event. Operator training may still be possible with instructor intervention. However the simulator will not be used in the administration comperating test using the non-cooplying procedure, system or event until the discrepancies are corrected. The The identified discrepancies will be scheduled for correction, utilizing available resources, in accordance with the simulator configuration control procedures as part of the ongoing simulator update program.

1.3.6.3 AC AFFLICABLE

3

Not applicable refers to requirements of ANSI/ANS 3.5,1985 which do not apply to the STPEGS reference plant simulator.

-

1.4 ACRONYMS, ABBREVIATIONS, TRADENAMES

AC	Alternating Current
ACC, ACCU, ACCUM	Accumulator(s)
ACT	Activation or Actuation
ACW	Auxiliary Cooling Water
AFW	Auxiliary Feed Water
ANSI/ANS	American National Standards Institute/American Nuclear Society
ANN, ANNUN	Annunciator
ATWS	Anticipated Transient without Scram
AUTO	Automatic
XUA	Auxiliary
BA	Boric Acid
BATT	Battery
BKR	Breaker
BNK	Bank
BOL	Beginning Of (Core) Life
BOP	Balance-Of-Plant
BRNG	Bearing
B/S	Bistable
B/U	Back-Up
BWR	Boiling Water Reactor
CCW	Component Cuoling Water System
CET	Core Exit Thermocouple

1.4 ACRONYME, ABBREVIATIONS, TRADENAMES (cont'd)

CFR	Code of Federal Regulations
СН	Channel
CLDWN, CLDN	Cooldown
CLSD	Closed
CNTMT	Containment Building
CONT	Containment
COND	Condenser, Condensate
CRYWOLF	Gould Trade Name for Annunciator Functions
CR	Control Room
CSF	Critical Safety Functions
CTRL, CNTRL	ontrol
cvcs	Chemical and Volume Control System
DA	Deaerator
DC	Direct Current
DISCH	Discharge
DISPL	Display
DG	Diesel Generator
D/P, DP	Differential Pressure
DR	Discrepancy Report
DRPI	Digital Rod Position Indicating System
DRFD	Daily Readiness Test

(1)

1.4 ACRONYME, ABBREVIATIONS, TRADENAMES (cont'd)

ECW	Essential Cooling Water
EH, EHC	Electrohydraulic Control System
ELEC	Electrical
EMER, EMERG	Emr gency
EOL	End Of (Core) Life
EOP	Emergency Operating Procedures
ERFDADS	Emergency Response Facility Data Acquisition and Display System
ESF	Engineered Safety Features
FC	Fail Closed
FW	Feedwater
FO	Fail Open
GEN	Generator
GOV	Governor (Component)
GPM	Gallons Per Minute
GS	Gland Seal System
HDR	Header
HHSI	High Head Safety Injection
HL&P	Houston Lighting and Power Company
IA	Instrument Air
IC	Initial Condition
INC, INCR	Increase, Increasing
IND	Indication

1	53	37	ь.	
6				ι.
12				84
6				18

1.4 ACRONYMS, ABBREVIATIONS, TRADENAMES (cont'd)

INJ	Injection
INOP	Inoperable
INST	Instrument
INTEG	Integrator
1/0	Input/Output
IR	Intermediate Range
ISOL	Isolation
LC, L/C	Load Center
LHSI	Low Head Safety Injection
LOCA	Loss of Coolant Accident
LOOP	Loss of Off-Site Power
LP	Low Power or Low Pressure
LTDN	Letdown System
LVL	Level
MALF	Malfunction
мсс	Motor Control Center
MN	Main
MNTR	Monitor
MOL	Middle of (Core) Life
MR	Modification Report
MS	Main Steam
MSIV	Main Steam Isolation Valve
MSR	Moisture Separator Reheater

1.4 ACRONYMS, ABBREVIATIONS, TRADENAMES (cont'd)

M/U	Makeup
MWE	Megawatts (Electrical)
NI	Nuclear Instrumentation
NSSS	Nuclear Steam Supply System
NTD	Nuclear Training Department
OER	Operating Experience Review
OPS	Operations
PART	Particulate
РН	Phase
PMSCS	Plant Monitoring Simulator Computer System
PNL	Panel
POP03	Normal Plant Operating Procedure
PORV	Power Operated Relief Valve
PR	Power Range, Pressure
PROTEUS	Plant Process Computer System (P-2500)
PRT	Pressurizer Relief Tank
PWR	Pressurized Water Reactor
PZR/PRZR	Pressurizer
QDPS	Qualified Display Parameter (or Process) System
RC	Rod Control
RCP	Reactor Coolant Pump

1.4 ACRONYME, ABEREVIATIONS, TRADENAMES (cont'd)

RCS	Reactor Coolant System
REG	Regulator
RHR	Residual Heat Removal
RM	Room
RM-11	Normal Radiation Monitoring System
RMS	Radiation Monitoring System
RMW	Reactor Make-Up Water
RO	Reactor Operator
RTD	Resistance Temperature Detector
RWST	Refueling Water Storage Tank
RX	Reactor
scc	Simulator Configuration Coordinator
SCMC	Simulator Configur ion Management Committee
S/D	Shutdown
SDA	Simulation Development Aid Program
SEC	Secondary
SEQNCR	Sequencer
SFTY	Safety
S/G	Steam Generator
SGTL, SGTR	Steam Generator Tube Leak, Tube Rupture

1)

9

60

1.4 ACRONYMS, ABBREVIATIONS, TRADENAMES (cont'd)

SI	Safety Infaction
SOE	Sequence-Of-Events
SPDS	Safety Parameter Display System
SPLY	Supply
SR	Source Range
SRO	Senior Reactor Operator
STM	Steam
STP	South Texas Project
STPEC ~	South Texas Project Electric Generating Station
s/u	Start-Up
TAVG	Average Reactor Coolant Temperature
TC	Thermocouple
TK	Tank
TURB	Turbine
UAT	Unit Auxiliary Transformer
VCT	Volume Control Tank
VLV	Valve
WR	Wide Range
XCONN	Cross-Connect
XFER	Transfer
XFMR	Transformer
XMTR	Transmitter
ZG	Designator For Normal Plant Procedure

2.0 ANSI/ANS 3.5, 1985 SIMULATOR CERTIFICATION CHECKLIST

2.1 ANSI REQUIREMENT (SECTION 3.1 SIMULATOR CAPABILITIES)

The response of the simulator resulting from operator action, no operator action, improper operator action, automatic plant controls and inherent operating characteristics shall be realistic to the extent that within the limits of the performance criteria (Section 4, Performance Criteria) the operator shall not observe a difference between the response of the simulator control room instrumentation and the reference plant.

2.1.1 STATUS: PARTIAL COMPLIANCE

Twenty-eight discrepancies have been identified which do not allow full compliance with this requirement. The discrepancies related to this requirement are listed in Addendum 1.1.

Several methods are available to ensure effective training and examinations may continue to be administered with the existence of these discrepancies.

The methods include:

- Placement of tags on the simulator control boards as done in the reference plant. This provides concise information on components or indications which have outstanding discrepancies associated with them.
- 2) Briefings held with the trainers prior to training sessions or examinations as done during shift turnovers in the reference plant. This gives the training instructors the opportunity to discuss with the trainees the differences which exist between the reference plant and the simulator.
- 3) Dry-running the simulator scenarios prior to use during training sessions or examinations. This allows the training instructors to identify problems which may occur and provides time to modify the scenarios to circumvent identified problems.

2.2 ANSI REQUIREMENT (SECTION 3.1.1 NORMAL PLANT EVOLUTIONS)

The simulator sh 11 be capable of simulating continuously, and in real time, plant operations of the reference plant. The simulator shall calculate plant system parameters corresponding to particular operating conditions, displaying these parameters on the appropriate instrumentation, and provide proper alarm or protective system action, or both. The minimum evolutions that the simulator shall be capable of performing, using only operator action normal to the reference plant, are as follows:

- Plant startup cold to hot standby. The starting conditions shall be cold shutdow: conditions of temperature and pressure. Removal of the reactor vessel head is not a required condition for simulation:
- Nuclear startup from hot standby to rated power;
- 3) Turbine startup and generator synchronization;
- 4) Reactor trip followed by recovery to rated power;
- 5) Operations at hot standby;
- 6) Load changes;
- Startur, shutdown and power operations with less than full sector coolant flow;
- B) Plant shutdown from rated power t hot standby and cooldown to cold shutdown condition
- 9) Core performance testing such as plant heat balance, determination of shutdown margin, and measurement of reactivity coefficients and control rod worth using permanently inst of instrumentation;
- Operator conted surveillance testing on safety related equipment or systems.

2.2.1 STATUS: PARTIAL COMPLIANCE FOR 1 THROUGH 6 AND 8 THROUGH 10

Fourteen discrepancies have been identified which do not allow full compliance with requirements 1 through 6 and 8 through 10. The discrepancies related to these requirements are listed in Addendum 1.2. The most significant result of these discrepancies is that examination scenarios do not include the real-time formation of a pressurizer steam bubble.

ITEM 7 ABOVE IS NOT APPLICABLE TO STPEGS.

Requirement 7 is prohibited by STPEGS Technical Specifications, therefore, neither training nor examinations will be conducted on start-up, shutdown and power operations with less than full reactor coolant flow.

Several methods are available to ensure effective training and examinations may continue to be administered with the existence of the other discrepancies.

The methods include:

- 1) Placement of tags on the simulator control boards as done in the reference plant. This provides concise information on components or indications which have outstanding discrepancies issociated with them.
- 2) Briefings held with the trainers prior to training sessions or examinations . done during shift turnovers in the reference plant. This gives the training instructors the opportunity to discuss with the trainees the differences which exist between the reference plant and the simulator.
- 3) Dry-running the simulator scenarios prior to use during training sessions or examinations. This allows the training instructors to identify problems which may occur and provides time to modify the scenarios to circumvent identified problems.

2.3 ANSI REQUIREMENT (SECTION 3.1.2 PLANT MALFUNCTIONS)

The simulator shall be capable of simulating, in real time, abnormal and emergency events including malfunctions to demonstrate inherent plant response and automatic plant control functions. Each type of accident analyzed in the reference plant safety analysis report that results in observable indications on control room instrumentation and for which the simulator is determined to be appropriate for training shall be simulated.

Where the operator actions are a function of the degree of severity of the malfunction (e.g., Loss of condenser vacuum, steam line break, loss of coolant, degraded feedwater flow, etc), the simulator shall have adjustable rates for the malfunction of such a range to represent the plant malfunction conditions. The remaining events shall consist of a variety of malfunctions associated with the electrical, auxiliary, engineered safety features systems, steam systems, reactor coolant system, and instrumentation and control systems.

The malfunctions issted below shall be included:

- 1) Loss of coolant;
 - a) Significant PWR steam generator leaks;
 - b) Inside and outside primary containment;
 - Large and small reactor coolant breaks including demonstration of saturation condition;
 - d) Failure of safety and relief valves;
- Loss of instrument air to the extent that the whole system or individual headers can lose pressure and effect the plant's static or dynamic performance;
- 3) Loss or degraded electrical power to the station, including loss of offsite power, loss of emergency power, loss of emergency generators, loss of power to the plant's electrical distribution buses and loss of power to the individual instrumentation buses (ac as well as dc) that provide power to control room indication or plant control functions affecting the plant's response;

0

- Loss of forced core coolant flow due to single or multiple pump failure;
- 5) Loss of condenser vacuum including loss of condenser level control;
- 6) Loss of service water or cooling to individual components;
- 7) Loss of shutdown cooling;
- B) Loss of component cooling system or cooling to individual components;
- 9) Loss of normal feedwater or normal feedwater system failure;
- 10) Loss of all feedwater (normal and emergency);
- 11) Loss of protective system channel;
- 12) Control rod failure including stuck rods, uncoupled rods, drifting rods, rod drops, and misaligned rods;
- 13) Inability to drive control rods;
- 14) Fuel cladding failure resulting in high activity in reactor coolant or off gas and the associated high radiation alarms;
- 15) Turbine trip;
- 16) Generator trip;
- 17) Failure in automatic control system(s) that affect reactivity and core heat removal;
- 18) Failure of rec or coolant pressure and volume control systems (PWR);
- 19) Reactor trip;
- 20) Main steam line as well as main feed line break (both inside and outside containment);
- 21) Nuclear instrumentation failure(s);
- 22) Process instrumentation, alarms, and control system failures;

- 23) Passive malfunctions in systems, such as engineered safety features, emergency feedwater systems;
- 24) Failure of the automatic reactor trip system;
- 25) Reactor pressure control system failure including turbine bypass failure (BWR).

The response of the simulator shall be compared to actual plant response or best estimate plant response (see Seccion 4, Performance Criteria). Safety and lysis calculated response is based on conservative initial conditions and assumptions and may not accurately reflect realistic plant response. Comparing simulator response to safety and lysis results may show significant discrepancies which shall be resolved based on best estimate results. Where applicable to the malfunction the simulator shall provide to the operator the capability of taking action to recover the plant, mitigate the consequences, or both. The simulation shall be capable of continuing until such time that a stable, controllable and safe conditions, or until the simulator operating limits (4.5, Simulator Operating Limits) are reached.

2.3.1 STATUS: COMPLIANCE WITH 5, 6 10, 11, 13, 15, 16, 17, 19, 21, 23, 24

The malfunctions that are approved for training and examinations are listed in Addendum 3. Addendum 4 corresponds to the sequential listing of Addendum 3 and details the specific tests done as well as any noted discrepancies.

2.3.2 STATUS: PARTIAL COMPLIANCE WITH 1, 2, 3, 4, 7, 8, 12, 14, 18, 20, 22

Fifty-one discrepancies have been identified related to several of the required malfunctions. Addendum 1.3 list, these malfunctions and their associated DRs.

In the Addendum, each DR is cross-referenced to the specific malfunction affected.

Each discrepancy is also referenced to the following letter code to describe the impact and remedial steps taken for training and examination purpside:

"R" <u>Radiation</u> Monitoring System Modul Problem. Values do not trend but rather jump to the alarm value, or values must be prepared before hand.

Addressed by:

- 1) Placement of tags on the simulator control boards as done in the reference plant. This provides concise information on components or indications which have outstanding discrepancies associated with them.
- 2) Briefings held with the trainees prior to training sessions or examinations as done during shift turnovers in the reference plant. This gives the training instructors the opportunity to discuss with the trainees the differences which exist between the reference plant and the simulator.
- 3) Dry-running the simulator scenarios prior to use during training sissions or examinations. This allows the training instructors to identify problems which may occur and provides time to modify the scenarios to circumvent identified problems.
- "L" Dynamic Model Scope Problem. These are Limits upon the extent of simultaneous malfunctions and/or the depth of recovery and contingency actions that can be done or triggered.

Addressed by:

 Placement of tags on the simulator control boards as done in the reference plant. This provides concise information on components or indications which have outstanding discrepancies associated with them. 2

- 2) Briefings held with the trainees prior to training sessions or examinations as done during shift turnovers in the reference plant. This gives the training instructors the opportunity to discuss with the trainees the differences which exist between the reference plant and the simulator.
- 3) Dry-running the simulator scenarios prior to use during training sessions or examinations. This allows the training instructors to identify problems which may occur and provides time to modify the scenarios to circumvent identified problems.
- "P" Potential Logic or Dynamic problems exist. These do not preclude the use of a required malfunction but may impose limits on combinations of malfunctions. If limitations or dynamic problems are identified which cannot be easily accounted for by the examiner, alternate scenarios can be made available to provide a reliable examination.

Addressed by:

- Briefings held with the trainees prior to training sessions or examinations, as done during shift turnovers in the reference plant. This gives the training instructors the opportunity to discuss with the trainees the difference which exist between the reference plant and the simulator.
- 2) Dry-running the simulator scenarios prior to use during training sessions or examinations. This allows the training instructors to identify problems which may occur and provides time to modify the scenarios to circumvent identified problemy.

"M" Minor Logic and Dynamic Problems. Some redundant computer point indicators are not available or fully modeled. Some minor logic inputs to equipment are not modeled and must be worked around using individual override or annunciator functions. The magnitude of the response of some auxiliary systems differs from the reference plant system.

Addressed by:

- 1) Placement of tags on the simulator control boards as done in the reference plant. This provides concise information on components or indications which have outstanding discrepancies associated with them.
- 2) Briefings held with the trainees prior to training sessions or examinations as done during shift turnovers in the reference plant. This gives the training instructors the opportunity to discuss with the trainees the differences which exist between the reference plant and the simulator.
- 3) Dry-running the simulator scenarios prior to use during training sessions or examinations. This allows the training instructors to identify problems which may occur and provides time to modify the scenarios to circumvent identified problems.
- "O" Other malfunctions are available and used instead of the listed malfunction with the discrepancy.

2.3.3 STATUS: NON-COMPLIANCE WITH 1.d

The STPEGS reference plant simulator is not capable of demonstrating the repressurization conditions from any sustained pressurizer steam space leak at this time due to modeling limitations of the current software. At the completion of the Simulator Model Upgrade Project, (see Section 12), the STPEGS reference plant simulator will be in compliance with this requirement. Deficiencies regarding this non-compliance are marked with a double asterisk (**) in Addendum 1.3.

2.3.4 STATUS: NOT AP/LICABLE FOR 25

2.4 ANSI REQUIREMENT (3.2.1 DEGREE OF PANEL SIMULATION)

The simulator shall contain sufficient operational panels to provide the controls, instrumentation, alarms, and other man-machine interfaces to conduct the normal plant evolutions of 3.1.1 (Normal Plant Evolutions) and respond to the malfunctions of 3.1.2 (Plant Malfunctions). The control panels and nonsoles that are simulated shall be signed to plant the size, shape, color, and configure of the tructionally simulated hardware of the reference plant. There may be deviations in dimensions and arrangement of panels provided these deviations do not detract from training or examinations.

2.4.1 STATUS: COMPLIANCE

Minor deviations exist between Unit 1 and Unit 2 Control Rooms and between Unit 1 Control Room and the simulator. These identified differences are listed in Addendum 2. Those differences that are appropriate for correction are the subject of MRs in Addendum 5. The MRs will be corrected in accordance with normal simulator configuration control procedures. Each difference has been reviewed by the SCMC and it has been determined that until corrected or resolved they do not detract from training or examinations. See Section 13.

2.5 ANSI REQUIREMENT (3.2.2 CONTROLS ON PANELS)

The controls on panels and consoles that are simulated shall be designed to duplicate the size, shape, color, and configuration of the functionally simulated hardware of the reference plant. Consideration should be given to face-front visual simulation of hardware components located on simulated panels but not used by the trainee during training. All functionally simulated and visually simulated hardware shall replicate that in the reference plant control room. There may be dimensional deviation in the configuration of components and instrumentation, provided these deviations do not impact on actions to be taken by the operator. Plant information shall be displayed to the operator in the same form and units that are available in the reference plant. Meters, recorders, switches, annunciators, controllers, plant computer interface hardware and other components or displays that would function during normal, abnormal, and emergency evolutions shall be included in the simulator.

2.5.1 STATUS: PARTIAL COMPLIANCE

Thirty-three discrepancies exist which do not allow full compliance with this requirement. The discrepancies related to this requirement are listed in Addendum 1.4. Twenty other discrepancies that potentially relate to this requirement are listed in Addendum 1.9.

The effect of the discrepancies can be summarized by: (1) poor trending by the Radiation Monitoring System Model or (2) the incomplete modeling of isolated computer data points.

Several methods are available to ensure effective training and examinations may continue to be administered with the existence of these discrepancies.

The methods include:

1) Placement of tags on the simulator control boards as done in the reference plant. This provides concise information on components or indications which have outstanding discrepancies associated with them.

- 2) Briefings held with the trainees prior to training sessions or examinations as done during shift turnovers in the reference plant. This gives the training instructors the opportunity to discuss with the trainees the differences which exist between the reference plant and the simulator.
- 3) Dry-running the Limulator scenarios prior to use during training sessions or examinations. This allows the training instructors to identify problems which may occur and provides time to modify the scenarios to circumvent identified problems.

2.6 ANSI REQUIREMENT (3.2.3 CONTROL ROOM ENVIRONMENT)

Consideration shall be given to simulating as much of the control room environment as is reasonable and practical, for example, turbine noise, control rod step counter noise, flooring, obstructions and lighting. Communications systems that a control room operator would use to communicate with an auxiliary operator or other support activities shall be operational to the extent that the simulator instructor, when performing these remote activities, shall be able to communicate over the appropriate communication system.

2.6.1 STATUS: COMPLIANCE

Minor discrepancies exist which have been identified and are listed in Addendum 2. These minor differences have been reviewed by the SCMC and it has been determined that until they are corrected or resolved they do not detract from training or examinations.

2.7 ANSI REQUIREMENT: (3.3.1 SYSTEMS CONTROLLED FROM THE CONTROL ROOM)

The inclusion of systems of the reference plant and the degree of simulation shall be to the extent necessary to perform the reference plant evolutions described in 3.1.1 (Normal Plant Evolutions), and the malfunctions described in 3.1.2 (Plant Malfunctions). It shall be possible to perform these control manipulations and observe plant response as in the reference plant. This shall include system interactions with other simulated systems and shall provide total system integrated response.

2.7.1

STATUS: PARTIAL COMPLIANCE

Sixty-three discrepancies exist which do not allow full compliance with these requirements. The discrepancies related to these requirements are listed in Addendums 1.2 and 1.3.

- Placement of tags on the simulator control boards as done in the reference plant. This provides concise information on components or indications which have outstanding discrepancies associated with them.
- 2) Briefings held with the trainees prior to training sessions or examinations as done during shift turnovers in the reference plant. This gives the training instructors the opportunity to discuss with the trainees the differences which exist between the reference plant and the simulator.
- 3) Dry-running the simulator scenarios prior to use during training sessions or examinations. This allows the training instructors to identify problems which may occur and provides time to modify the scenarios to circumvent identified problems.

2.8 ANSI REQUIREMENT (3.3.2 SYSTEMS OPERATION OR FUNCTIONS CONTROLLED OUTSIDE OF THE CONTROL ROOM).

The systems that are operated outside the control room or that provide some input to the simulation models and are necessary to perform reference plant evolutions described in 3.1.1 (Normal Plant Evolutions) and malfunctions described in 3.1.2 (Plant Malfunctions) shall be simulated. The simulator trainee shall be able to interface with the remote activity in a similar manner as in the reference plant.

2.8.1 STATUS: PARTIAL COMPLIANCE

Discrepancies that are related to the "Normal Plant Evolution" requirement, including surveillance tests used for training, are listed in Addendum 1.5. Of these discrepancies, the only examination limitations are the cold shutdown draining of steam generators by recirculation pumps and the portion of the Pressurizer PORV surveillance test that is performed at the Auxiliary Shutdown Panel. With regard to draining steam generators, the alternate means (by blowdown) is available.

With regard to the PORV surveillance, the control room portions can be done and the Auxiliary Shutdown Panel is beyond the scope of ANSI/ANS 3.5,1985 requirements.

With regard to the Plant Malfunction requirement, the Fall 1990 revision of the Emergency Operating procedures : s analyzed. As a result of this analysis, one hundred twenty-six additional remote functions were identified as being necessary to ensure the capability to complete all paths through the new procedures. Although these additions are not plant modifications, these items are the subject of MRs, which are listed in Addendum 1.5.

2.9 ANSI REQUIREMENT (3.4.1 INITIAL CONDITIONS)

The simulator shall possess a minimum capability for storage of 20 initialization conditions. At the time of commencement of operations of the simulator in the training program, a minimum of ten initialization conditions shall be operational and shall include a variety of plant operating conditions, fission product poison concentrations, and various times in core life.

2.9.1 STATUS: COMPLIANCE

The present initial conditions are listed in Addendum 6.

2.10 ANSI REQUIREMENT (3.4.2 MALFUNCTIONS)

It shall be possible to convent sty insert and terminate the plant malfunctions specified if s.1.2 (Plant Malfunctions). The simulator shall be capable of simulating simultaneous or sequential malfunctions, or bion, if these malfunctions can be expected to occur by design if operational experience. The introduction of a malfunction shall not alert the operator to the impending malfunction in any manner other than would occur in the reference plant. Provision shall be made for incorporating additional malfunctions identified from operational experience and not included in 3.1.2 (Plant Malfunctions).

2.10.1 STATUS: COMPLIANCE

The Instructor Station is more fully described in Section 8. All approved malfunctions are listed in Addenda 3.

2.11 ANSI REQUIREMENT (3.4.3 OTHER CONTROL FEATURES)

The simulator shall have the capability of freezing simulation. In addition, consideration should be given to incorporation of fast time, slow time, backtrack, and snapshot capabilities.

2.11.1 STATUS: COMPLIANCE

The instructor station capabilities are described in Section 8.

2.12 ANSI REQUIREMENT (3.4.4 INSTRUCTOR INTERFACE)

The capability shall be provided for the instructor to act in the capacity of auxiliary or other operators remote from the control room; for example, change the operating conditions of valves, breakers or other devices.

2.12.1 STATUS: COMPLIANCE

Functions that have been presently approved for training and examinations are listed in Addendum 7.

2.13 ANSI REQUIREMENT (4.1 STEADY STATE OPERATION)

The simulator accuracies shall be related to full power values and interim power levels for which valid reference plant information is available. The parameters displayed on the control panels may have the instrument error added to the computed values. During testing, the accuracy of computed values sh. I be determined for a minimum of three points over the power range:

- A. The simulator instrument error shall not be greater than that of the comparable meter, transducer and related instrument system of the reference plant;
- B. Principal mass and energy balances shall be satisfied. Examples are:
 - Net NSSS thermal power to generated electrical power;
 - Reactor coolant system temperature to steam generator pressure;
 - 3. Feedwater flow to reactor thermal power;
 - 4. Mass balance of pressurizer;
 - 5. Mass balance of steam generator.

The simulator computed values for steady state, full power operation with the reference plant control system configuration shall be stable and not vary more than $\pm 2\%$ of the initial values over a 60 minute period.

- C. The simulator complied values of critical parameters shall agree within ±2% of the reference plant parameters and shall not detract from training. Some examples of critical parameters are:
 - 1. Reactor thermal power;
 - 2. Reactor hot and cold leg temperatures;
 - 3. Feedwater flow;
 - 4. Steam pressure;
 - 5. Generated electrical power;
 - 6. Reactor coolant system pressure.

D. The calculated values of non-critical parameters pertinent to plant operation, that are included on the simulator control room panels, shall agree within ±10% of the reference plant parameters and shall not detract from training.

2.13.1 STATUS: PARTIAL COMPLIANCE

Two discrepancies exist which do not allow full compliance with this requirement. The first is software related. The second is hardware related. Both are 1.1.1 d in Addendum 1.6. The first discrepancy relates to conditions less than 50% power. Feed and steam flows exceed the specified tolerance by 0.1%. This discrepancy does not apply to higher power levels. This discrepancy is part of the formal pre-session briefing and imposes no examination limitations. The second discrepancy relates to meter calibrations which are part of an ongoing simulator maintenance schedule.

2.14 ANSI REQUIREMENT (4.2.1 TRANSIENT OFERATION)

Tests shall be conducted to prove the capability of the simulator to perform correctly during the limiting cases of those evolutions identified in 3.1.1 (Normal Plant Evolutions) and 3.1.2 (Plant malfunctions) of this standard. Acceptance criteria for these tests shall:

- (a) Where applicable, be the same as plant star up test procedure acceptance criteria;
- (b) Require that the observable change in the parameters correspond in direction to those expected from a best estimate for the simulated transient and do not violate the physical laws of nature;
- (c) Require that the simulator shall not fail to cause an alarm or automatic action if the reference plant would have caused an alarm or automatic action, and conversely, the simulator shall not cause an alarm or automatic action if the reference plant would not cause an alarm or automatic action.

2.14.1

STATUS: PARTIAL COMPLIANCE

This requirement is met for parts (a) and (b) in that the required testing has been completed and the acceptance criteria has been applied to the test results. A synopsis of all malfunction test results is contained in Addendum 4 and associated discrepancies are listed in Addenda 1.1. and 1.2.

Discrepancies having to do with part (c) (alarms) are denoted by a single asterisk (*) in Addenda 1.2 and 1.3.

Several methods are available to ensure effective training, and examinations may continue to be administered with the existence of these discrepancies.

The methods include:

- 1) Facement of tags on the simulator control boards as done in the reference plan. This provides concise information on components or indications which have outstanding discrepancies associated with them.
- 2) Briefings held with the trainess prior to training sessions or examinations as done during shift turnovers in the reference plant. This gives the training instructors the opportunity to discuss with the trainess the differences which exist between the reference plant and the simulator.
- 3) Dry-running the simulator scenarios prior to use during training sessions or examinations. This allows the training instructors to identify problems which may occur and provides time to modify the scenarios to circumvent identified problems.

28
2.15 ANSI REQUIREMENT (4.2.2 MALFUNCTIONS AND TRANSIENTS).

Malfunctions and transients not tested in accordance with 4.2.1 shall be tested and compared to best estimate or other available information and shall meet the acceptance criteria of 4.2.1(B).

2.15.1 ETATUS: PARTIAL COMPLIANCE

Required testing has been completed and the acceptance criteria has been applied to the test results. The malfunction tests were performed by the personnel listed in Sectior 10.1 and results were compared to the Malfunction Response Book. A synopsis of the test results is included in Addendum 4. Transient test results were reviewed by the personnel listed in Section 10.4. An example of data from the manual reactor trip transient may be found in Addendum 8. Certain trend discrepancies were noted for four of the transients which were run with no operator action (Simultaneous trip of all reactor coolant pumps, maximum size LOCA with a loss of off-site power, maximum size unisolable main steam rupture, and simultaneous closure of all main steam isolation valves). The significance of these discrepancies is described, along with their impact upon training and examinations, in Addendum 9.

2.16 ANSI REQUIREMENT (4.3 SIMULATOR OPERATIONS LIMITS)

Mathematical equations may be simplified to meet real time simulation requirements. In addition, it is sometimes possible to create events on a simulator which progress beyond plant design limits. Examples of such events include primary containment failure, gross core damage, and reactor coolant system two-phase flow.

In order to avoid negative training which could result from simulator operation during such events, administrative controls or other means shall be provided to alert the instructor when certain parameters approach values indicative of events beyond the implemented model or known plant behavior. Conditions to be considered are:

- A. Primary containment pressure greater than design limit;
- B. Reactor coolant system pressure greater t'an design limit;

Sel temperature histories indicative of gross fuel failure;

D. Reactor coolant system pressure versus temperature relationship indicative of gross voiding;

2.16.1 STATUS: COMPLIANCE

This requirement was verified by a series of tests which checked activation of a monitoring light upon the attainment of any individual trigger value (A, B, C, or D, from above). The simulator operating limits test record is maintained by the simulator support group and is available for review.

2.17 ANSI REQUIREMENT (4.4 MONITORING CAPABILITY)

It shall be possible to obtain hardcopy transient data in the form of either plots or printouts for critical parameters during the evolutions of 3.1.1 (Normal Plant Evolutions) and the malfunctions of 3.1.2 (Plant Malfunctions). This monitoring capability shall provide sufficient parametric and time resclution to determine compliance with the performance criteria of Section 4 (Performance Criteria).

2.17.1 STATUS: COMPLIANCE

A hard copy of all transient test results is maintained by the Simulator Support Section. See Addendum 8 for an example of curves generated from the collected transient data.

2.18 ANSI REQUIREMENT (5.1 SIMULATOR DECIGN DATA)

The simulator design data forms the basis for existing simulator configuration. This data base may include predicted plant performance until the reference plant has been in commercial operation for 18 months. After this period, available actual plant configuration and performance data shall be included in the simulator design data.

2.18.1 STATUS: COMPLIANCE

See Section 6 for a description of the simulator database.

2.19 ANSI REQUIREMENT (5.2 SIMULATOR UPDATE DESIGN DATA)

The simulator update design data forms the basis for future simulator design changes. This data base shall include available plant data within 18 months after the reference plant is in commercial operation or within 18 months of the simulator operational date, whichever is later. Reference plant modifications shall be reviewed at least once per year and the simulator update design data shall be revised as appropriate based on engineering and training value assessment. Student feedback should be evaluated as part of the review process.

2.19.1 STATUS: COMPLIANCE

See Section 9 for information on reference plant, simulator configuration control methods.

2.20 ANSI REQUIREMENT (5.3 SIMULATOR MODIFICATIONS)

The simulator shall be modified as required within 12 months following the annual establishment of the simulator update design data referenced in 5.2 (Simulator Update Design Data). Simulator modifications may precede reference plant modifications based on training value.

2.20.1 STATUS: PARTIAL COMPLIANCE

This requirement is met in that reference plant modifications are reviewed, and if required, incorporated on the simulator within the time constraints of ANSI/ANS 3.5,1985 Section 5.3. See Section 9 for information on reference plant/simulator configuration control methods.

Sixty-six discrepancies have been identified during performance testing or normal operator training that require a major software upgrade to correct. See Addendum 1.10. Following completion of the Oct./Nov. 1990 Performance Test, three of these discrepancies were identified as not meeting the two year update criteria as stated in ANSI/ANS 3.5,1985, Sections 5.2 and 5.3 for incorporating plant changes into the simulator. It is anticipated that additional discrepancies may be identified that may require an extensive upgrade to correct.

Although sections 5.2 and 5.3 of ANSI/ANS 3.5, 1985 do not apply to the resolution of discrepancies, these requirements are being conservatively applied to include discrepancies. An exception is therefore noted with regard to the two-year update criterion. The sixty-six identified discrepancies, and any identified prior to the completion of the simulator upgrade, which require extensive modeling changes beyond our current capabilities, will be deferred to the completion of the simulator upgrade. See Section 12 for the simulator upgrade plan and schedule.

2.21 ANSI REQUIREMENT (5.4 SIMULATOR PERFORMANCE TESTING)

Simulator performance shall be established by preparing a simulator performance test, conducting the tests, and comparing the simulator's performance with the simulator design data within the requirements of Section 4 (Performance Criteria). Testing shall be conducted and a report prepared for each of the following occasions:

- A. Completion of initial construction;
- B. If simulator design charges result in significant simulator configuration or performance variations.

When a limited change is made, a specific performance test on the affected systems and components shall be performed.

2.21.1 STATUS: COMPLIANCE

See Section 10 for information related to simulator performance testing.

2.22 ANSI REQUIREMENT (5.4.2 SIMULATOR OPERABILITY TESTING)

A simulator operability test shall be conducted innually. The intent of this test is to:

- A. Verify overall simulator model completeness and integration;
- B. Verify simulator performance against the steady state criteria of 4.1 (Steady State Oraration);
- C. Verify simulator performance against the transient criteria of 4.2 (Transient Operation) for a benchmark set of transients.

2.22.1 STATUS: COMPLIANCE

See Section 10 for information related to simulator performance testing. Also Addendum 12 for the 4 year test schedule.

a

3.0 EVALUATION OF NON-COMPLIANCE ITEMS TO ANSI/ANS 3.5,1985 REQUIREMENTS

STPEGS has identified malfunction 1d, "Failure of safety and relief valves", of ANSI/ANS 3.5,1985 3.1.2 as a non-compliance item.

STPEGS has identified this as a non-compliance item because presently an unisolable malfunction will depressurize the system, but the system will not repressurize when subcooling and water inventory is restored. Pending correction, this discrepancy is justified for the following reasons:

- The model failure applies only to losses of coolant that are unisolable and from the top of the pressurizer.
- Small losses of coolant from other locations in the Reactor Coolant System will allow the system to repressurize and other malfunctions are available for examinations and training.
- 3) The symptoms and onset of pressurizer steam space leakage may be taught and examined by use of the approved malfunctions for isolable pressurizer leakage.
- The recovery steps for all small losses of coolant are independent of the particular location.

STPEGS also identifies the portion of the normal plant heatup procedure for the real-time formation of a Pressurizer Steam Bubble of ANSI/ANS 3.5, 1985 3.1.1.(1) as a non-compliance item. STPEGS believes that pending correction this discrepancy is justified for the following reasons:

- 1) The rest of the procedure is performable, including the steps that are immediately preliminary and subsequent to the steam bubble formation, and
- This isolated part of the procedure is otherwise able to be examined on by a Job Performance Measure (JPM).

4.0 SIMULATOR PROCEDURES

The South Texas Project reference plant simulator is controlled, operated, tested and modified utilizing the following procedures:

1) NTP-302.02 Vault Storage of Recorded Magnetic Media

This procedure details the method for labeling and identifying materials exclusively related to the simulator and delivering them to the Site Records Management Supervisor for safe storage.

2) NTP-303.01 Analysis of System Data

This procedure defines the responsiblity of each Division Manager, Supervisor, and the Simulator Configuration Management personnel regarding specific reviews of new revisions to plant design documents, determination of specific impact on their area of responsibility, and the appropriate transmittals.

3) NTP-303.04 Maintenance of Modification Documentation

This procedure covers the necessary steps to ensure that plant changes and simulator enhancements are entered, logged and tracked as part of the modification project program.

4) NTP-304.01 Simulator Alterations

This procedure covers the execution of all simulator changes other than DRs.

5) NTP-304.02 Simulator Configuration Control

This procedure covers the individual responsibilities for the conduct of all configuration management activities.

Simulator Discrepancy Reporting

This procedure describes the complete process for identifying and implementing the acceptance and documentation of simulator discrepancies. It provides the methodology for determining the precise priority for a particular discrepancy with regard to training and examination purposes.

7) NTP-306.01 Simulator Performance Test Implementation

This procedure gives details concerning the completion of testing required by ANSI/ANS 3.5,1985.

8) IP-03-01Q Plant Modifications

This procedure sets forth the responsibilities for and requirements of the Plant Modification Program.

9) IP-08-24 Simulator Configuration Management

This procedure specifies the responsibilities and requirements for the Simulator Configuration Management.

These procedures are maintained by the simulator support section and are available for review.

5.0 OPERATING EXPERIENCE REVIEWS (OERs)

OERs are reviewed for possible impact on training programs by the Operations Training Division. This review is performed in accordance with Nuclear Training Procedure NTP-109 (Licensing Commitment Management). If an OER affects simulator training to the extent of requiring changes to the simulator, an MR is generated in accordance with the Simulator Configuration Control and Simulator Alteration procedures.

6.0 SIMULATOR DATA BASE

The simulator data base is comprised of controlled documents such as drawings, plant control board engraving lists, operating procedures, and other available plant data. Operator feedback is also an essential part of keeping the simulator up-to-date with the plant.

A drawing list is maintained by the Simulator Support Section which contains a record of the drawings used as part of the simulator data base. The drawing list contains the following for each document listed:

- 1) Document number
- 2) Document title
- 3) Applicable simulation models
- 4) Latest document revision date
- 5) Latest revision modeled

The difference between the revision levels (latest revision and revision modeled) of all drawings are compared to determine which drawings must be reviewed. If it is determined by the Simulator Configuration Coordinator that a simulator change is required, an MR is written and the change is implemented. After the modification is complete and tested satisfactorily, the drawing list is updated to the revision modeled.

The data base documentation is maintained by the Simulator Support Section and is available for review. Current MRs are listed in Addendum 5.

7.0 PLANT MONITORING SIMULATOR COMPUTER SYSTEM (PMSCS)

The PMSCS simulates four plant monitoring subsystems: the Emergency Response Facility Data Acquisition & Display System (ERFDADS), the Plant Process Computer System (PROTEUS), the Qualified Display Process System (QDPS), and the Radiation Monitoring System (RM-11). The purpose of these subsystems is to display simulated plant data in various formats and provide various man-machine interfaces to select those formats.

7.1 OVERVIEW OF PMSCS

In terms of PMSCS applications software, all four subsystems perform essentially the same functions. They acquire information from the simulation computer into a database identified by point identification names. Next they use raw data points to calculate points which aid the operator in the assimilation of data. The point information is then displayed to the operator in an easy to understand graphical format utilizing trending, bar charts, and tabular displays. Selection of desired information is simplified by specific keyboard design and menu selection. Alarm information is also displayed to the operator.

7.2 TRAINING STATUS

The Safety Parameter Display System (SPDS) on ERFDADS and the QDPS are accepted for training with minor discrepancies. The PROTEUS and RM-11 monitoring systems have approximately eleven outstanding discrepancies which are scheduled for resolution in accordance with Simulator Configuration Control procedures. Discrepancies related to the PMSCS are listed in Addendum 1.9. As noted in Section 2.5 of this report, methods are in effect for mitigating the effect of these discrepancies.

A more detailed description of each subsystem can be found in PMSCS/RMS Overview, PMSCS Final Design Document, and PMSCS Final Detailed Design Document. These documents are maintained by the Simulator Support Section and are available for review.

8.0 SIMULATOR INSTRUCTOR STATION OVERVIEW

The instructor station is the primary controlling interface to the simulator. It consists of an Aydin keyboard and monitor which are connected to the simulation computer system. The instructor station supports training and examinations by allowing an instructor to insert either immediate or delayed malfunctions, control remote functions, override items on the simulator panels, and reset the simulator to a previously stored state. Dedicated function keys, menu selections, and data entry are methods used to insert commands for simulator control. A hand-held remote transmitter is used to initiate a limited number of functions to the simulator while away from the main control station. Table 8 - 1 lists the functions available for instructor station control of the simulator.

The instructor station software is activated simultaneously with the simulator executive programs during simulator startup. To use the instructor station the instructor must enter a valid code name. The desired function is then selected from a menu of available function categories.

The simulator may be reset to any of seventy available snapshot conditions. Forty of these are available to the instructor through the instructor station. Thirty are used by the simulator executive program for backtrack capability. These thirty snapshot conditions are saved every minute while the simulator is in the run mode, so that the past thirty minutes of operation may be reviewed. The mathematical models of the simulation system have the capability to simulate core conditions at Beginning Of Life (BOL), Middle Of Life (MOL), and End Of Life (EOL). These conditions may be stored into the operator-settable snapshots. The reset function includes a switchcheck function which insures that all input devices are properly positioned prior to placing the simulator in the run mode.

The malfunctions available for training (see Addendum 3) may be initiated in a variety of modes. Individual non-logical malfunctions may be ramped through their allowed range. For training and examination purposes, ramping is only used for the various leak malfunctions.

Operator remote functions may be initiated at any time during simulator operation. The simulator system currently has the capacity for 500 remote functions. They may be activated to simulate physical operation of local equipment or they may be used to adjust a steady state parameter such as outside air temperature. A remote may be initiated with a selected delay time. The remote functions that are presently approved for training and examinations are listed in Addendum 7.

The override function of the instructor station has the capability to fix the condition of any panel device. Analog devices, meters and potentiometers can be set to the top or bottom of their scale, left as-is, or set to any value within their range. Digital devices, switches and lamps can be set on, off, or left as-is. The simulator system can have up to sixty Input/Output (I/O) signals overridden simultaneously. Each digital device which is overridden is verified raior to use. All analog overrides approved for training and examinations are listed in Addendum 10.

Other features are also available at the instructor station to aid the instructor in controlling the simulation. For example the annunciators may be silenced, acknowledged, and reset. The preoperational test function (DRED) may be used for tests on the simulator panel items to ensure their proper operation prior to a training session. The handheld remote operator is available for the instructor's control of Run, Freeze, Initialize, Reset functions, and malfunction triggering (ir previously set up for such at the main control station).

In addition to the instructor station, the simulator is provided with a Simulation Development Aide Program (SDA) on the simulation computer. From a computer terminal, the instructor may use this program to perform many of the same functions as are available at the instructor station. The program provides for additional, finer control and monitoring of simulation events. Individual data points may be monitored or set to different values. It also serves as a backup to the instructor station in case of failures during a training session.

Discrepancies that affect the instructor station are listed in Addendum 1.8. These discrepancies may be summarized as being inconveniences to the simulator operator. There is no impact upon the ability to give a valid examination.

TABLE 8- 1 INSTRUCTOR STATION FUNCTIONS

RUN	Place the simulator in the run mode
FREEZE	Place the simulator in the freeze mode
INIT	Select one of 0 initialization conditions (ICs)
RESET	Reset to the selected ICs
BACKTRACK	Reset to one of the 30 automatically saved ICs
SNAPSHOT	Store the current simulation status to one of the 40 selectable ICs
MALFUNCTION	Enter desired malfunctions into simulation and set their activation attributes
TRIGGER	Directly trigger malfunctions for immediate or delayed activation
OVERRIDE	Override the calculated condition or position of any panel hardware item
REM CONT	Activate the hand held remote control station
FASTTIME	Increase the calculation increment for a fixed set of parameters
EXPERT	Bypass menus for direct entry of control data
REM FUNC	Enter remote functions and set their values
MASTER INDEX	Display the main menu and provide for activation of the desired function
ANNUNCIATOR	Silence, acknowledge, or reset annunciators
DRED TEST	Activate the preoperational panel item tests (Daily Readiness Test)

9.0 UNIT/SIMULATOR DIFFERENCES

9.1 PHYSICAL FIDELITY

The physical fidelity of the simulator versus the reference plant is maintained by several methods.

- 9.1.1 The Simulator Configuration Coordinator reviews all plant modification to determine if the plant change affects the physical fidelity of the simulator. If it is determined that a simulator modification is required, an MR is generated to track the change.
- 9.1.2 All proposed simulator modifications which require a change in scope of simulation, addition or deletion of a simulated system, component, panel, etc., are reviewed, approved, or disapproved by SCMC. The SCMC is composed of personnel designated by the Plant Operations Manager and the Operations Training Manager. The SCMC meets at least annually and as necessary to review plant modifications.
- 9.1.3 After collecting plant changes for one year, MRs are generated for plant changes that may be implemented on the simulator. The SCMC then meets to determine which of these MRs actually will be implemented on the simulator. Approved MRs are implemented on the simulator within one year. If a plant modification is identified that should be incorporated on the simulator immediately, the SCMC will meet and review t' proposed change.
- 9.1.4 Operator feedback of observable differences between the simulator and the plant is encouraged. Simulator training instructors are required to initiate DRs after verifying operator identified problems.

9.1.5

In addition to the above methods, photographs are taken of the reference plant control room annually and compared to the simulator panels. Differences identified are recorded and the necessary material required to correct the problem is ordered. Simple hardware corrections are made as time permits soon after the material is received. An MR is generated to correct differences found which require both hardware and software changes, such as annunciator window position and engraving changes. These modifications are usually made just prior to the annual performance test.

Addendum 5 lists the currently outstanding hardware and software modifications. Addendum 2 lists the currently existing unit/simulator differences.

9.2 ENVIRONMENTAL COMPARISON

A comparison was made between the simulator and the reference plant control room to determine if deficiencies exist which could detract from training.

Items which were evaluated are:

- 9.2.1 Control panel layout and dimensions
- 9.2.2 Annunciator tones and noise level
- 9.2.3 Furnishings, carpet and wall color
- 9.2.4 Communications system
- 9.2.5 Normal and emergency lighting

All identified differences are reviewed by the SCMC to determine the impact on operator training and examinations. These differences have been reviewed by the SCMC and it has been determined that the identified differences do not detract from training or examinations.

10.0 SIMULATOR PERFORMANCE TEST

10.1	PERSONNEL	QUALIFICATIONS:	
	10.1.1	Vance Verbeck -	South Texas Project SRO Licensed Training Instructor
	10.1.2	James Calvert -	South Texas Project SRO Licensed Training Instructor
	10.1.3	Kenneth Kline -	South Texas Project SRO Licensed Simulator Configuration Coordinator
	10.1.4	Ricky Rodgers -	South Texas Project SRO Licensed Training Instructor
	10.1.5	Ron Graham -	South Texas Project SRO Licensed Training Instructor
	10.1.6	Matt Buenai.or -	Previously Licensed, Certified Simulator Training Instructor
	10.1.7	James Shaw -	Previously Licensed, Certified Simulator Training Instructor
	10.1.8	Jody Brodsky -	South Texas Project RO Licensed Training Instructor
	10.1.9	Herb Cato -	Previously Licensed, Certified Simulator Training Instructor

10.2 CONDUCT

The conduct of the simulator performance test is governed by the Nuclear Training Department Procedure NTP-306.01 (Simulator Performance Test Implementation).

10.3 REAL TIME TEST

The purpose of this test is to ensure that the simulator runs in real time. To ensure real time operation, 2 Cycle is monitored while the simulator is running models. 2 Cycle is a timer function operating under the real time executive program. The test involves running the simulator for a minimum of one hour, recording the 2 Cycle count at the start and end of the test, and comparing the result to a stop watch used to time the test.

The acceptance criteria requires no model time-outs or aborts and must run within ± 0.1% of real time. This test was completed satisfactorily on 10/18/90.

10.4 TRANSIENT TEST

The purpose of the transient test is to verify that the simulator is capable of simulating reference plant response to the following ten transients as listed in Appendix B of ANSI/ANS 3.5,1985:

- 10.4.1 Manual reactor trip
- 10.4.2 Simultaneous trip of all feedwater pumps
- 10.4.3 Simultaneous closure of all main steam line isolation valves
- 10.4.4 Simultaneous trip of all reactor coolant pumps
- 10.4.5 Trip of any single reactor coolant pump
- 10.4.6 Main turbine trip (maximum power level which does not result in immediate reactor trip)
- 10.4.7 Maximum rate power ramp (100% down to approximately 75% and back up to 100%)
- 10.4.⁹ Maximum size reactor coolant system rupture combined with loss of all offsite power
- 10.4.9 Maximum size unisolable main steam line rupture
- 10.4.10 Slow primary system depressurization to saturated condition using pressurizer relief or safety valve stuck open (Inhibit activation of high pressure emergency core cooling systems)

The ten required transients were completed during the Oct/Nov 1990 performance test. The required parameters were collected at one-half second intervals and the transients were run for fifteen minutes each. A hard copy of the test data and plots of each transient are maintained by the simulator support section and are available for review.

See Addendum 8 for an example of a completed transient test including RETRAN and reference plant simulator data.

A synopsis of the remaining tests and results is attached as Addendum 9.

Discrepancies identified during the transient testing and an evaluation of the impact on training and examinations are noted in the individual synopsis of Addendum 9.

For analysis and evaluation of the simulator response, the transient test results were submitted to a panel of experts whose qualifications are listed below:

NAME: KENNETH KLINE

TITLE: SIMULATOR CONFIGURATION COORDINATOR

STPEGS EXFERIENCE:

2 1/? years Simulator Training Instructor 3 years Simulator Configuration Coordinator

OTHER RELATED EXPERIENCE:

24 years power plant experience including fossil and nuclear.

NRC LICENSES/EDUCATION:

SRO Prairie Island Nuclear Plant, RO, Shift Supervisor 8 years SRO South Texas Nuclear Project, Training Instructor, Simulator Configuration Coordinator 5 1/2 years.

NAME: JAMES CONSTANTIN

TITLE: SUPERVISOR SIMULATOR TRAINING

STPEGS EXPERIENCE:

5 1/2 years STP Supervisor Simulator Training

OTHER RELATED EXPERIENCE:

9 years Navy Nuclear 11 years Operations/Training

NRC LICENSES/EDUCATION:

SRO Certified STP SRO License Arkansas Nuclear One Unit 2 (CE) RO License Arkansas One Unit 1 (B/W)

NAME: KEVIN P MULLIGAN

TITLE: SUPERVISING ENGINEER

STPEGS EXPERIENCE:

Senior Reactor Operator License since January 1987 (inactive) on shift. Shift Technical Advisor since June, 1987 Initial Startup Test Director for Unit 1 (July 1987 to August 1988) and for Unit 2 (December 1988 to June 1989) Reactor Engineer since January 1985.

OTHER RELATED EXPERIENCE:

3 years as Reactor Engineer, Initial Startup Test Director at Callaway Plant (4 Loop PWR) 6 1/2 years as Nuclear Engineer with Public Service Co of Oklahoma (Black Fox Station)

NRC LICENSES/EDUCATION:

SRO License STPEGS BSME, Texas A&M, 10 week PWR system at Callaway 1 week GE BWR Simulator at Morris, Illinois

NAME: DAREN CHANG

10

TITLE: SENIOR SOFTWARE SPECIALIST

STPEGS EXPERIENCE:

3 1/2 years of STP Simulator experience as a Simulation Specialist and Senior Software Specialist with responsibility of all simulator software.

OTHER RELATED EXPERIENCE:

1 1/2 years simulation experience with Simulation Associates Incorporated.

NRC LICENSES/EDUCATION:

Ph.D in Nuclear Engineering

NAME: DAVID W. MCCALLUM

TITLE: MANAGER PLANT OPERATIONS SUPPORT

STPEGS EXPERIENCE:

5 years Shift Supervisor

OTHER RELATED EXPERIENCE:

6 years Maine Yankee Operations AO-RO-5RO 6 years U.S. Navy MM/ECT

NRC LICENSES/EDUCATION:

Maine Yankee Reactor Operator, Maine Yankee Senior Reactor Operator, STP Senior Reactor Operator

NAME: ROBERT CROSS

TITLE: SENIOR ENGINEER

STPEGS EXPERIENCE:

1 year in Thermal Hydraulics Section. Work includes verification of RETRAN model for simulator verification.

49

OTHER RELATED EXPERIENCE:

3 1/2 years as an engineer working in Thermal Hydraulics at TVA. Work included simulator verification using RETRAN for Browns Ferry Nuclear Plant, and reload licensing work for BFNP using RETRAN.

NRC LICENSES/EDUCATION:

B.S. In Nuclear Engineering M.S. in Nuclear Engineering

NAME: JOHN M. ALVIS, JR.

TITLE: ENGINEER

STPEGS EXPERIENCE:

Transient Safety Analysis and LOCA analysis using RETRAN 02/MOD2, RELAP5/MOD2 and VIPER-01 (1 year)

OTHER RELATED EXPERIENCE:

Performed transient and steady-state fuel performance analysis to support SP-100 core behavior studies. Analyzed core Thermal Hydraulic behavior with Cobra-WC. Assisted in modeling neutronic behavior of SP-100 core with MONP and DIFF3D. (1 1/2 Year)

NRC LICENSES/EDUCATION:

B.S., M.S. IN NUCLEAR ENGINEERING FROM TEXAS A&M UNIVERSITY

10.5 NORMAL OPERATIONS TEST

The purpose of the normal operations test is to demonstrate the ability to operate the simulator in accordance with reference plant procedures.

The simulator was configured to the cold shutdown condition using the reference plant system operating procedures and initial condition 1 was established. The simulator was then taken to 100% power and returned to the cold shutdown condition using the reference plant operating procedures.

During the transition several ICs were established. The current ICs are listed in Addendum 6.

The following is a list of the operating procedures used during the normal operations test. These controlled procedures are maintained in the simulator by the Operations Document Control Center and are available for review.

10.5.1	1P0P03-ZG-0001	PLANT HEATUP
10.5.2	1POP03-ZG-0003	SECONDARY PLANT STARTUP
10.5.3	1POP03-ZG-0004	REACTOR STARTUP
10.5.4	1POP03-2G-0005	PLANT STARTUP TO 100%
10.5.5	1P0P03-ZG-0006	PLANT SHUTDOWN FROM 100% TO HOT STANDBY
10.5.6	1POP03-ZG-0007	PLANT COOLDOWN

Discrepancies noted during this evolution are documented on simulator DRs. A list of outstanding DRs associated with normal plant evolutions is listed in Addendum 1.2. These discrepancies are noted in Section 2.2.1 of this report (regarding ANSI/ANS 3.5,1035 3.1.1)

10.6 MALFUNCTION TEST

The purpose of this test is to ensure all malfunctions that were not tested during the transient testing, and that are to be used in operator training programs, are tested and compared to best estimates or other available data such as the malfunction response book. The results are documented on the malfunction performance test record. Only those malfunctions which are accepted are used in the operator training program. The acceptance criteria used is stated in ANSI/ANS 3.5,1985, Section 3.1.2 (Plant Malfunctions) and Appendix A-A3.4.

Addendum 3 contains a complete list of malfunctions accepted for training and examinations. Addendum 4 contains a synopsis of each malfunction test and results. Malfunctions that are in partial compliance have been discussed in Sections 2.3.1 and 2.3.2 of this report.

10.7 STEADY STATE OPERATIONS TEST

The purpose of this test is to ensure the stability of the simulator by establishing steady state conditions and monitoring parameter variation with respect to time. During this test, simulator computed values are compared to reference plant values at different power levels. The power levels selected are those for which heat balance data is available: 1) 28.8%, 2) 50%, and 3) 100%. This test was completed during the Oct/Nov. 1990 Simulator Performance Test.

The acceptance criteria of ANSI/ANS 3.5,1985, Section 4.1 was applied. The simulator met the \pm 2% variance requirement. Some minor discrepancies were identified when applying the \pm 2% requirement to the simulator displayed values for critical parameters and the reference plant heat balance data.

Identified discrepancies are listed in Addendum 1.6 and have been described in Section 2.13.1 of this report (regarding ANSI/ANS 3.5,1985-4.1)

The steady state test records are maintained by the Simulator Support Section and are available for review.

10.8 SURVEILLANCE TEST

The purpose of this test is to demonstrate the ability to perform selected safety related surveillance procedures using reference plant procedures. Only the safety related procedures which have been approved by the SCMC for training will be tested. A list of the surveillance procedures tested and the test results are listed in Addendum 11. The surveillance test record is maintained by the Simulator Support Section and is available for review.

*

11.0 SIMULATOR PERFORMANCE TEST SCHEDULE

The following testing will be conducted annually on the STPEGS simulator:

- 1) Real Time test
- 2) Transient test
- 3) Normal Operations test
- 4) Steady State Operations test
- 5) Surveillance test
- 6) Malfunction test *

The results of simulator testing will be documented and maintained by the Simulator Support Section. This documentation will be available for review. See Addendum 12 for the four year schedule.

A minimum of 25 percent of the malfunctions accepted for training, will be tested annually. As additional malfunctions become available they will be tested prior to use. If accepted the malfunction will be included in the simulator four year performance test schedule.

12.0 SIMULATOR UPGRADE PLAN AND SCHEDULE

The simulator performance currently supports a valid examination in accordance with 10 CFR 55. However, in order to correct all of the STPEGS simulator DRs that prevent the simulator performance from meeting ANSI/ANS-3.5,1985 performance requirements, a major simulator model upgrade will be necessary.

HL&P currently plans to issue a Request For Proposal for a specification writer, prepare a simulator model upgrade specification, and award a contract for a simulator model upgrade project by December 31, 1991.

It is expected that the simulator model upgrade project will be completed by July 31, 1995. At that time all current DDagainst simulator performance pursuant to ANSI/ANS-3.5,1985 requirements should be cleared.

The on-goi simulator update program will continue to incorporate plant changes on an annual basis and correct prioritized deficiencies that impact training and examinations within the capability of the simulator support staff.

13.0 EVALUATION OF DIFFERENCES IN UNIT 2 VERSUS UNIT 1 AND THE SIMULATOR

STPEGS executes its overall training program in order to sustain dual unit license eligibility between units (reference letter from HL&P to the NRC dated 10-07-88 [ST-HL-AE-2815].

Differences between the control rooms and the simulator are listed in Addendum 2 and fall into three functional categories.

- 1) Simulator differences from Unit 2
- Outstanding hardware modifications will be addressed during the normal course of simulator modifications to match Unit 1
- Permanent design differences that extend beyond the scope of simulation

The SCMC has reviewed the differences between the simulator and the reference plant control rooms and has found that they do not detract from effective simulator training or licensing examinations. (Reference letter: NTD-9000485 dated March 27, 1990 and Reference letter: NTD-901122 dated December 20, 1990)

1.1

DISCREPANCIES RELATED TO ANSI-3.5,1985 SEC-3.1

DR

DESCRIPTION

01419	INCORE INST SYSTEM OPS NOT CORRECT
01695	CORE EXIT TC RESPONSE NOT CORRECT
01732	RCS MASS BALANCE NOT CORRECT
01734	SECONDARY HEAT BALANCE NOT CORRECT
01848	CNTMT PRESS RESPONSE DURING PURGE NOT CORRECT
01894	PZR PRESS RESPONSE >80% LEVEL NOT CORRECT
90048	S/G WR LEVEL NOT CORPECT
90081	VCT LEVEL RESPONSE DURING M/U NOT CORRECT
90094	DA PRESS RESPONSE NOT CORRECT
90097	CCW TEMP, RESPONSE NOT CORRECT
90121	PZR LEVEL RESPONSE DURING CLDWN NOT CORRECT
90132	IOW HEAD SI FLOW OSCILLATES
90167	PZR RESPONSE DRAWING BUBBLE NOT CORRECT
90168	PZR DYNAMICS AT LOW PRESS NOT CORRECT
90170	RCP SEAL D/P INDICATION NOT CORRECT
90172	STEAM TABLE SUB-ROUTINES ARE DISCONTINUOUS
90174	FW PUMP CAPACITY NOT CORRECT
90251	RCS MASS/DYNAMIC RESPONSE NOT CORRECT
90257	CVCS DYNAMICS/PRESS RESPONSE NOT CORRECT
90258	CONTAINMENT PRESS DYNAMICS NOT CORRECT
90282	ERFDADS/CR ALARMING NOT CORRECT
90303	RHR TEMP RESPONSE NOT CORRECT
90306	LP FRV ADMITTANCE NOT CORRECT
90329	SEC PLANT DYNAMICS AT LO PWR NOT CORRECT
90336	SUBCOOLING INDICATION ON ERFDADS/QDPS
90340	PROTEUS COMPUTER OPS NOT CORRECT
90345	5/G DYNAMIC RESPONSE NOT CORRECT
90347	PZR/RCS MASS BALANCE NOT CORRECT

NOTE

DISCREPANCIES WITHIN THE CAPABILITY OF THE SIMULATOR SUPPORT STAFF WILL BE CORRECTED ON A PRIORITIZED BASIS PURSUANT TO PROCEDURE NTP-304.3. OTHER DISCREPANCIES WILL BE CORRECTED AS PART OF THE SIMULATOR MODEL UPGRADE PROJECT. SEE SECTION 12 FOR THE SCHEDULE AND PLAN REGARDING THIS PROJECT.

1-1

1.2

DISCREPANCIES RELATED TO ANSI-3.5,1985 SEC-3.1.1

DR #

DESCRIPTION

ANSI/ANS RELATED ITEM

90167	PZR RESPONSE DRAWING BUBBLE NOT CORRECT	1
90168	PZR DYNAMICS AT LOW PRESSURE NOT CORRECT	1
90174	FW PUTP CAPACITY NOT CORRECT	2
90175	MSR RESPONSE NOT CORRECT	6
90176	FWP D/P CONTROL NOT CORRECT	6
90177	MAIN STH LINE W/U PRESS RESPONSE NOT CORRECT	2.5
90179	MAIN TURB GV RUSPONSE NOT CORRECT	6
90181	S/G ADDITIONAL REMOTES REQUIRED	1
90185	MSR OPERATIONS NOT CORRECT	6
90199	ADD REMOTE FOR PZR PORV XFER TO ASP	10
90350	REACTOR TRIP BREAKERS RESHUT ON LOW POWEL	4.8
	MANUAL TRIP	
90351	ELECTRONIC NOISE ON CONTROL ROD STEP COUNTERS	2
90355	GENERATOR BREAKER WITH LO-LO TAVG CAUSE	3.8
	TURBINE TRIP	
90359 *	ERRONEOUS SEAL WATER INJECTION HI	6

ALSO AFFECTS 4.2.1.C

NOTE

DISCREPANCIES WITHIN THE CAPABILITY OF THE SIMULATOR SUPPORT STAFF WILL BE CORRECTED ON A PRIORITIZED BASIS PURSUANT TO PROCEDURE NTP-304.3. OTHER DISCREPANCIES WILL BE CORRECTED AS PART OF THE SIMULATOR MODEL UPGRADE PROJECT. SEE SECTION 12 FOR THE SCHEDULE AND PLAN REGARDING THIS PROJECT.

1-2

1.3

DISCREPANCIES RELATED TO ANSI-3,5,1985 SEC-3,1,2

DR # CODE		DESCRIPTION	ANSI RELATED MALFUNCTION
01581	R	S/G TUBE LEAK RMS RESPONSE	1.8
01672	R	CONTAINMENT RMS RESPONSE	1.
01695	L,P	CET RESPONSE	1.
01704	L, P, R	FAILED FUEL	14.
01747	M	S/G SAFETY VLV POS IND	20.
01769	M	ACCUM RESPONSE ON LOCA	1.
01858	M	STEAM BREAK	20.
01899	M	LOSS OF GRID	3.
90039	L	S/G TUBE LEAK	1.a
90040	Р	RX VESSEL WTR LEVEL IND	1.
90059	M	S/G TUBE RUPIURE	1.a
90062	M	S/G TUBE LEAK	1.a
90096	L,P	RX VESSEL WTR LEVEL IND	1.
90097	M	CCW TEMP RESPONSE	1.
90207	M	ATWS	24.
90215	м	ESF DIESEL (TROUBLE ALARM) 1 INCOMPLETE	INPUTS 3.
90226	м	LOSS OF ESSENTIAL CHILLERS	8.
90229	M	ROD CONTROL	12.
90234	0	PRESS TRANS FAILS	22.
90240	M	ECW PUMP FAILS	8.
90242	M	Th FAILURE	22.
90243	M	TC FAILURE	22.
90247	M	LOSS OF MCC-E1A1	3.
90250	M	LOSS OF AUX BUS 1J	3.
90251	M	RCS/LHSI DYNAMICS	1.0
90255	0	PCV-135 FAILS OPEN	18.
90256	M	VCT LEVEL CH FAILS	18.
90257	0	CVCS DYNAMICS	18.
90258	L,P	CONTAINMENT RESPONSE	1.
90261	0, M	CHARGING LINE BREAK	18.
90276	L,P	CONT DYNAMIC RESPONSE	1.
90281	R	LOCKED ROTOR	4.
90288	p	ESF D/G OPERATIONS	3.
90296	M	LOSS OF ALL AC	3.
90297	M	LOSS OF INST AIR	2.

1.3

DISCREPANCIES RELATED TO ANSI-3.5,1985 SEC-3.1.2 (Continued)

-

DR # CODE		DESCRIPTION	RELATED MALFUNCTION		
90298	0	LOSS OF PNL-125F	з.		
90299	0	LOSS OF PNL-125E	3.		
90300	м	LOSS OF ACW	8.		
90303	M	RHR TEMP RESPONSE	7.		
90305	0	LOSS OF ECW TRAIN	8.		
90308	0	LOSS OF PNL-125B	З,		
90312	L	TURB GOV VLV F/O	22.		
90313	L	TURB THROTTLE VLV F/O	22.		
90319	M	LOSS OF DP-1201	З.		
90323	M	LOSS OF DP-1202	3.		
90334	M *	RWST LEVEL ALARMS	1.		
90335	M	CCW-FV-4493	1.		
90336	M	SUBCOOLING INDICATION	1.		
90342	M	IMPROPER OVERLAP	12.		
90347	P,L **	UNISOLABLE PRESSURIZER LEAK MALFUNCTION	1.d		

* - ALSO AFFECTS 4.2.1.c

** - NON-COMPLIANCE

LETTER CODES: (SEE SECTION 2.3.2 FOR MORE DETAILED EXPLANATION)

- R RADIATION MONITORING RESPONSE PROBLEM; DRY-RUN SCENARIOS
- L DYNAMIC SCOPE PROBLEM IMPOSES LIMITS ON EXTENT OF SCENARIOS; DRY RUN SCENARIOS IN REAL-TIME
- P POTENTIAL LOGIC OR DYNAMIC PROBLEMS EXIST. THESE DO NOT PRECLUDE THE USE OF A REQUIRED MALFUNCTION BUT MAY IMPOSE LIMITS ON COMBINATIONS OF MALFUNCTIONS. IF LIMITATIONS OR DYNAMIC PROBLEMS ARE IDENTIFIED, WHICH CANNOT BE EASILY ACCOUNTED FOR BY THE EXAMINER, ALTEPNATE SCENARIOS CAN BE MADE AVAILABLE TO PROVIDE A TABLE EXAMINATION.

1.3

DISCREPANCIES RELATED TO ANSI-3.5,1985 SEC-3.1.2 (Continued)

- M MINOR LOGIC OR DYNAMIC PROBLEMS CAN BE WORKED AROUND FOR EXAMINATIONS OR TRAINING;
- O OTHER MALFUNCTIONS EXIST AS ALTERNATIVES TO MEET THE ANSI/ANS-3.5 - 1985 CRITERIA.

NOTE

DISCREPANCIES WITHL. THE CAPABILITY OF THE SIMULATOR SUPPORT STAFF WILL BE CORRECTED ON A PRIORITIZED BASIS PURSUANT TO PROCEDURE NTP-304.3. OTHER DISCREPANCIES WILL BE CORRECTED AS PART OF THE SIMULATOR MODEL UPGRADE PROJECT. SEE SECTION 12 FOR THE SCHEDULE AND PLAN REGARDING THIS PROJECT.

1.4

DISCREPANCIES RELATED TO ANSI-3.5,1985 SEC-3.2.2

DR #

DESCRIPTION

01313	QD'S IND OF FAILED S/G LEVEL INST NOT CORRECT
01501	RMS RESPONSE ON RX HEAD VENT LEAK NOT CORRECT
01555	IMS RESPONSE IN INCORE RM NOT CORRECT
01570	RMS RESPONSE TO LETDOWN LINE LEAK NOT CORRECT
01572	RMS RESPONSE TO CHARGING LINE LEAK NOT CORRECT
01575	CONT PART/GASEOUS ACTIVITY RESPONSE NOT CORRECT
01581	RMS RESPONSE ON S/G TUBE LEAK NOT CORRECT
01672	RMS RESPONSE ON LEAK IN CONTAINMENT NOT CORRECT
01674	RMS RESPONSE ON PZR PORV LEAK NOT CORRECT
01704	FAILED FUEL MONITOR RESPONSE NOT CORRECT
01747	MS SAFETY VLV IND ON ERFDADS NOT CORRECT
01769	ODPS IND NOT CORRECT
01864	ERFDADS NIS POWER TREND NOT CORRECT
90032	SGTL RMS RESPONSE NOT CORRECT
90035	PROTEUS SYSTEM UPDATE TIME TOO SLOW
90055	ERFDADS PZR LEVEL IND NOT CORRECT
90057	S/G BLDWN RMS RESPONSE NOT CORRECT
90061	ERFDADS CSF HEAT SINK DISPL NOT CORRECT
90072	PROTEUS IND OF VACUUM NOT CORRECT
90077	ERFDADS CONT SUMP LEVEL IND NOT CORRECT
90088	LOCA RMS RESPONSE NOT CORRECT
90138	PLOTEUS IND OF PRT PARAMETERS NOT CORRECT
90154	ERFDADS SI INOP IND NOT CORRECT
90160	CONT BACKGROUND RAD NOT CORRECT
90190	ERFDADS RAD DISPLAY NOT CORRECT
90200	ERFDADS IND FOR FHB POINTS NOT CORRECT
90336	SUBCOOLING ON ERFDADS & ODPS NOT CORRECT
90242	ODPS TH INDICATION NOT CORRECT
90243	QDPS TC INDICATION NOT CORRECT
90282	ERFDADS ALAPMING NOT CORRECT
90283	NORMAL HEAT SINK DISPL NOT CORRECT
90291	QDPS W/R TEMP IND NOT CORRECT
90304	RHR ODPS DISPL NOT CORRECT

NOTE

1-6

DISCREPANCIES WITHIN THE CAPABILITY OF THE SIMULATOR SUPPORT STAFF WILL BE CORRECTED ON A PRIORITIZED BASIS PURSUANT TO PROCEDURE NTP-304.3. OTHER DISCREPANCIES WILL BE CORRECTED AS PART OF THE SIMULATOR MODEL UPGRADE PROJECT. SEE SECTION 12 FOR THE SCHEDULE AND PLAN REGARDING THIS PROJECT.

1.5

DISCREPANCIES RELATED TO ANSI-3.5,1985 SEC-3.3.2

DESCRIPTION

90181	S/G ADDITIONAL REMOTES REQUIRED
90199	ADD REMOTE FOR PZR PORV XFER TO ASP
90237	ADD REMOTE FOR FIGH FLUX AT SHUTDOWN ALARM
90289	REMOTE FOR IA COMP RESPONSE NOT CORRECT
90346	ADD AND VERIFY SEVERAL ELEC. REMOTE FUNCTIONS

MR

DR #

600	MODIFY FUNCTION OF AFW REMOTES
609	ADD REMOTE TO CHANGE BREAKER POSITION
611	ADD REMOTES TO SUPPORT LOSS OF ALL AC
614	ADD SEVERAL NON-ELECT. REMOTES
616	ADD REMOTES TO SUPPORT EOP PERFORMANCE
619	ADD REMOTES TO SUPPORT POPO3 PERFORMANCE

NOTE

DISCREPANCIES WITHIN THE CAPABILITY OF THE SIMULATOR SUPPORT STAFF WILL BE COLLECTED ON A PRIORITIZED BASIS PURSUANT TO PROCEDURE NTP-304.3. OTHER DISCREPANCIES WILL BE CORRECTED AS PART OF THE SIMULATOR MODEL UPGRADE PROJECT. SEE SECTION 12 FOR THE SCHEDULE AND PLAN REGARDING THIS PROJECT.

THE MRS FOR ADDITIONAL REMOTES (LOCAL OPERATOR ACTIONS), LISTED ABOVE, ARE SCHEDUIED FOR COMPLETION BY DEC-1991.

1.6

DISCREPANCIES RELATED TO ANSI-3,5,1985 SEC-4,1

DR #

DESCRIPTION

90329	SECONDARY	PLANT	DYNAMICS	AT	LOW	POWE	R		
90330	METER CAL	IBRATIC	NS REQUIR	ED	ON	PNLS	4	6	6

NOTE

DISCREPANCIES WITHIN THE CAPABILITY OF THE SIMULATOR SUPPORT STAFF WILL BE CORRECTED ON A PRIORITIZED BASIS PURSUANT TO PROCEDURE NTP-304.3. OTHER DISCREPANCIES WILL BE CORRECTED AS PART OF THE SIMULATOR MODEL UPGRADE PROJECT. SEE SECTION 12 FOR THE SCHEDULE AND PLAN REGARDING THIS PROJECT.

50

110
2.7

DISCREPANCIES RELATED TO ANSI-3.5,1985 APPENDIX B.2.2

DR §	T.ESCRIPTION
01555	RMS RESPONSE IN INCORE RM NOT CORRECT
01575	CONT PART/GASEOUS ACTIVITY RESPONSE NOT CORRECT
01672	RMS RESPONSE ON LEAK IN CONTAINMENT NOT CORRECT
01695	CORE EXIT TC RESPONSE NOT CORRECT
01732	RCS MASS BALANCE NOT CORRECT
01734	SECONDARY HEAT BALANCE NOT CORRECT
01769	ACCUM RESPONSE ON LOCA
01848	CNTMT PRESS RESPONSE DURING PURGE NOT CORRECT
01858	STEAM BREAK
01894	PZR PRESS RESPONSE >80% LEVEL NOT CORRECT
90040	RX VESSEL WTR LEVEL IND
90048	S/G WR LEVEL NOT CORRECT
90061	ERFDADS CSF HEAT SINK DISPL NOT CORRECT
90077	ERFDADS CONT SUMP LEVEL IND NOT CORRECT
90088	LOCA RMS RESPONSE NOT CORRECT
90096	RX VESSEL WTR LEVEL IND
90121	PZR LEVEL RESPONSE DURING CLDWN NOT CORRECT
90132	LOW HEAD SI FLOW OSCILLATES
90160	CONT BACKGROUND RAD NOT CORRECT
90168	PZR DYNAMICS AT LOW PRESS NOT CORRECT
90172	STEAM TABLE SUB-ROUTINES ARE DISCONTINUOUS
90190	ERFDADS RAD DISPLAY NOT CORRECT
90251	RCS MASS/DYNAMIC RESPONSE
90257	CVCS DYNAMICS/PRESS RESPONSE NOT CORRECT
90258	CONTAINMENT RESPONSE
90276	CONT DYNAMIC RESONSE
90277	SMALL BREAK LOCA
90336	SUBCOOLING INDICATION ON ERFDADS/ODDS
90345	S/G DYNAMIC RESPONSE NOT CORRECT
905-7	PZR/RCS MASS BALANCE

NOTE

1-9

PZR/RCS MASS BALANCE

DISCREPANCIES WITHIN THE CAPABILITY OF THE SIMULATOR SUPPORT STAFF WILL BE CORRECTED ON & PRIORITIZED BASIS PURSUANT TO PROCEDURE NTP-304.3. OTHER DISCREPANCIES WILL BE CORRECTED AS PART OF THE SIMULATOR MODEL UPGRADE PROJECT. SEE SECTION 12 FOR THE SCHEDULE AND PLAN REGARDING THIS PROJECT.

1.8

DISCREPANCIES ON THE INSTRUCTOR STATION AND THEIR IMPACT

DR #

DESCRIPTION

1688, 90053 BOOLEAN LOGIC NECESSARY FOR CONDITIONAL MALFUNCTION TRIGGERING DOES NOT WORK

IMPACT: Conditional triggers are not used.

1772

1890

MENU FIELD LENGTH FOR OVERRIDE LISTINGS TRUNCATES SOME DESCRIPTIONS

15

IMPACT: Hard copy listings must be kept available and used

INTERMITTENT LOCKUP OF THE INSTRUCTOR STATION SUBROUTINE

IMPACT: The computer replacement in 1989 bas apparently corrected this problem, but the DR is kept active to check against a substantial simulator operating history. The Simulator Development 71d (SDA) Program still allows the execution of frozen console functions

INSTRUCTOR CONSOLE LOCKUP AFTER PERIODS OF STATIC SIMULATOR EXAMS. (INTERMITTENT)

IMPACT: Static Simulator Exams are scheduled to cycle all examinees through sessions where one set of condiction is maintained.

#.,

90027

1.8

DJACREPANCIES ON THE INSTRUCTOR STATION AND THEIR IMPACT (CONTINUED)

DESCRIPTION

90049

DR #

RESETTING SOME IC SETS TO OTHERS WILL CHANGE THE WORD DESCRIPTION OF ACTIVE MALFUNCTIONS ON STATUS MENUS.

IMPACT: This occurs only when going directly from one IC with malfunctions active, into another IC with malfunctions active. Only word descriptions are changed. All actual malfunctions are unaffected.

90052

DRILL FUNCTIONS AND PERFORMANCE MONITORING FUNCTIONS DO NOT WORK

IMP/CT: These are not used for training or exams.

2.9

DISCREPANCIES RELATED TO THE FLANT COMP. TR SYSTEMS AND POTENTIALLY TO ANSI/ANS-3.5,1985 SEC-3.2.2

DR #

DESCRIPTION

QDPS IND OF FAILED S/G LEVEL INST NOT CORRECT
ODPS IND NOT CORRECT
ERFDADS NIS POWER TREND NOT CORRECT
PROTEUS SYSTEM UPDATE TIME TOO SLOW
ERFDADS PZR LEVEL IND NOT CORRECT
ERFDADS CSF HEAT SINK DISPL NOT CORRECT
PROTEUS IND OF VACUUM NOT CORRECT
EREDADS CONT SIMP LEVEL IND NOT CORRECT
SPOTFUS TNO OF DET DADAMETERS NOT CODDECT
EDEDADE ET TNOD TND NOT CODDECT
ERFERES BI INOF IND NOT CORRECT
ERFDALS RAD DISPLAY NOT CORRECT
ERFDADS IND FOR FHB POINTS NOT CORRECT
Th FAILURE
TC FAILURE
ERFDADS/CR ALARMING NOT CORRECT
NORMAL HEAT SINK DISPL NOT CORRECT
ODPS W/R TEMP IND NOT CORRECT
RHR ODPS DISPL NOT CORRECT
SUBCOOLING INDICATION ON ERFDADS/ODPS
PROTEUS COMPUTER OPS NOT CORRECT

NOTE

DISCREFANCIES WITHIN THE CAPABILITY OF THE SIMULATOR SUPPORT STAFF WILL BE CORRECTED ON A PRIORITIZED BASIS PUREUANT TO PROCEDURE NTP-304.3. OTHER DISCREPANCIES WILL BE CORRECTFD AS PART OF THE SIMULATOR MODEL UPGRADE PROJECT. SEE SECTION 12 FOR THE SCHEDULE AND PLAN REGARDING THIS PROJECT.

1.10

DISCREPANCIES RELATED TO ANSI-3.1. 1985 SEC-5.3

DR #

DESCRIPTION

01313	QDPS INDICATION WITH FAILED CHANNEL
01397	RUDS DISFLAT ON 1000 OF CHANNED I
01501	DMC DECDONCE
01555	EPRONEOUS DWG ALADM (THOODE DOOM)
01570	DWC DECONCE DUDING LEBOOD ITHE LEAV OC
01572	CONTAT DISTITION DECONCE ON CHING ITHE
01575	DOB CASEGUE ACT & DADTICULATE ACTIVITY
01581	S/C TUBE LEAK (YNCODDI -0204)
01619	LOSS OF PLANT COMPUTER X: CM0701
01672	RMS
01674	PMS/RC1403
01682	D.A. LEVEL CONTROL
01695	CORE EXIT TO RESPONSE
01696	S/G VOLUME
01704	FAILED FUEL
01732	RCS MASS
01734	F.W. TEMP
01768	STEAM GENERATOR MODEL
01769	LOCA
01848	CNTMT RESPONSE TO SUPPLEMENTAL PURGE
01858	STEAM INSIDE CONTAINMENT
01894	RX TRIP/SI AS PZR EXCEEDS 80%
01898	DECA. HEAT MODEL
90012	PANEL 6 RIGHT HAND QDPS LOCKS UP
90032	SGTR RAMP FUNCTION
90035	PROTEUS SYSTEM TO SLOW
90040	RCSD MODEL RVWL RESPONSE
90048	STEAM GENERATOR LEVEL INDICATION
90057	S/G BLOWDOWN ROD MON. RESPONSE
90062	SG TUBE RUPTURE
90077	CONTAINMENT WTR LVL (EMERGENCY SUMP)
0088	RCB RMS RESPONSE
900.76	RVWLIS
90017	CCW TEMPERATURE RESPONSE ON LOCA
90106	QDPS S/G NARROW RANGE RTD VALVES
90-20	"D" S/G PRESSURE
90148	H2 INDICATION ON ERFDADS CSF-Z
90157	RM-8050, 8051 NO RESPONSE
90160	CNTMT BACKGROUND RAD LEVEL
90167	PZR. RESPONSE

1.10

DISCREPANCIES RELATED TO ANSI-3.1, 1985 SEC-5.3 (Continued)

DESCRIPTION

90168	PRESSURIZER DYNAMICS AT LOW PRESSURE
90172	STEAM TABLE SUBOUTINES
90188	RHR MASS/ FLOW PROCESS PARAMETERS
90190	RAD SAFETY FUNCTION "ERFDADS"
90194	PROTEUS GROUP LOGS
90202	PROTEUS POINT U1118
90212	PROTEUI
90251	DYNAMICS OF RCS AND LHSI
90257	CVED DYNAMICS
90258	CONTAINMENT PRESSURE DYNAMICS
90276	CONTAINMENT DYNAMICS MODEL THE TEMP & PRESS
90277	SMALL BREAK LOCA RESPONSE
90281	LOCKED RCP ROTOR X:RC0801.2.3.4
90282	EREDADS SYSTEM ANNUNCIATORS
90291	INCORRECT RCS WE INDICATION
90293	SEAL/INT TEMP RESPONSE
90301	LETDOWN FLOW ON PHP
90303	DUD TEMD DESDONSE
90304	DED ODDE DIEDLAV INDICATES DOS SUBCOOL
00320	SECONDARY DIANT DYNAMICS AT LOW DOWER
36600	CUBCONTRA INDIANTON ON ODDE EDEDADE
00340	DECAMPIC DEDIMENTED COM
00000	PROIEUS PARAMEIER CRI
DODAR	RAK FLAW
90345	5/6 DINAMIC RESPONSE
90347	MODELING OF CON. PZR STEAM LEAKAGE

DR .

DIFFERENCES BETWEEN UNIT 1, UNIT 2, AND SIMULATOR

2.1 CONTROL PANEL REFERENCE LIST

1010 1411 (V)

CONTROL ROOM EQUIP. NO.	DESCRIPTION
CONTROL ROOM EQUIP. NO. 2CP001 2CP002 2CP003 2CP004 2CP005 2CP006 2CP007 2CP008 2CP009 2CP010 2CP010 2CP011 2CP012 2CP013 2CP013 2CP015 2CP015 2CP015 2CP015 2CP017 2CP018 2CP019 2CC020 2CC021 2CC021 2CC022 2CC023 2CC023 2CC063 2CC063 2CC068 2CC075 2CC075	DESCRIPTION ENGINEERED SAFETY FEATURES, TRAIN A ENGINEERED SAFETY FEATURES, TRAIN B ENGINEERED SAFETY FEATURES, TRAIN C CHEMICAL AND VOLUME CONTROL SYSTEM REACTOR CONTROL STEAM GENERATOR TURBINE GENERATOR FEEDWATER AND CONDENSATE CIRCULATING WATER ELECTRICAL AUXILIARY POWER NUCLEAR INSTRUMENTATION SYSTEM FLUX MAPPING MOTION SEISMIC MONITORING LOOSE PARTS MONITORING SPARE PANEL NO. MISC. RECORDER PANE. FIRE PROTECTION PANEL OPERATORS CONSOLE AUXILIARY CONSOLE HVAC PANEL RADIATION MONITORING PANEL CONTROL ROOM ALARM TYPER CONTROL ROOM JUTILITY LOG TYPER CONTROL ROOM UTILITY LOG TYPER CONTROL ROOM VIDEO COPIER RMS ALARM TYPER RMS COLOR PRINTER
2CC397 2CC398	ERF-DADS COLOR PRINTER ERF-DADS ALARM TYPER
ZCC399	ERT-DADS ALARM TYPER

DIFFERENCES BETWEEN UNIT 1, UNIT 2, AND SIMULATOR (Continued)

2.2 PERMANENT DESIGN DIFFERENCES

SIMULATOR

UNIT 1

MOTION SEISMIC MONITORING PANEL 13 IS NOT MODELED

MATCHES UNIT 1

MAIN RESERVOIRRESERVOIR LEVELLEVEL INDICATIONREAD ON PROTEUS AS(LI-6670) ON PANELWELL AS REMAINING9 --- RESERVOIRRESERVOIR TELEMETRY TELEMETRY MONITORED BY PLANT COMPUTER

RESERVOIR MAKE-UP PUMPS SWITCHES ON FANEL 18

SWITCH FROM 4160VSWITCH FROM 4160VAUX BUS 1D2 FEEDSAUX BUS 2D2 FEEDTRANSFORMER 12H2TRANSFORMER 12H1 ON PANEL 10

SWITCH FROM 13.8KV SWITCH FROM 13.8KV AUX BUS 1J THAT AUX BUS 2J THAT FEED TRANSFORMER 12M1 ALSO FEEDS 12F1

SWITCH FROM 13.8KVSWITCH FROM 13.8KVAUX BUS 1J FEEDSAUX BUS 2J FEEDSTRANSFORMERS 12J1TRANSFORMERS 12J212K2, AND 12LAND 12K1 12K2, AND 12L

SPARE BREAKER ON 4.16KV BUS 1D1

SPARE BREAKER ON DOES NOT EXIST 13.8 KV AUX BUS 1F

UNIT 2

MOTION SEISMIC DOES NOT EXIST MONITORING PANEL 13

RESERVOIR TELEMETRY.

8

DOES NOT EXIST

TRANSFORMER 12H1 ON PANEL 10

FEEDS TRANSFORMER 12M2 ALSO FEEDS 12F3

AND 12K1

DOES NOT EXIST

DIFFERENCES BETWEEN UNIT 1, UNIT 2, AND SIMULATOR (Continued)

SIMULATOR

UNIT 1

UNIT 2

TERMINAL FOR RM21

DOES NOT EXIST

10:

WATT HOUR METERING

UNIT 2 AUX XMFR

UNIT 2 MAIN GEN

MATCHES UNIT 1

MATCHES UNIT 1

MATCHES UNIT 1

RM21 COMPUTER NOT MODELED

MATCHES UNIT 1

HOUR METERS ON THE BACK OF PANEL 10

THE ONLY RM21 COMPUTER FOR THE COMPUTER FED FROM PLANT IS IN UNIT 1 UNIT 1 COMPUTER

WIND DIRECTION AND SPEED ARE DISPLAYED ON PANEL 22

THERE ARE NO WATT- WATT HOUR METERING ON THE BACK OF PANEL ON THE BACK OF PANEL 10:

> UNIT 1 AUX XMFR UNIT 1 MAIN GEN UNIT 1 STBY XMFR UNIT 1 STBY SMFR

CENTRAL ALARM STATION DOES NOT EXIST BATT RM EXH FLOW LOW ALARM

ZCP-019 OPERABLE

MATCHES UNIT 2

MATCHES UNIT 2

FIXTURES OPERABLE

MATCHES UNIT 1

ZCP-019 FIRE PROT. PANEL NOT MODELED

CARPET COLOR IS DIFFERENT THAN UNIT 1

PANELS ZCP-20 AND 21 ARE APPROX. ONE (1) FT. CLOSER TO PANELS 1, 2 AND 3.

EMERGENCY LIGHTING EMERGENCY LIGHTING MATCHES UNIT 1 DOES NOT EXIST

DIFFERENCES BETWEEN UNIT 1, UNIT 2, AND SIMULATOR (Continued)

2.3 DIFFERENCES DUE TO FLANT MODIFICATIONS

SIMULATOR

HARDWARE

IS COMPLETE

SIMULATOR

1991

SIMULATOR TO BE

COMPLETED AFTER

PROCUREMENT AND

SCHEDULED FOR COMPLETION OCT,

SOFTWARE UPGRADE

UNIT 1

ROD DEVIATION ALARM ACTUATED BY PROTEUS COMPUTER WHEN PRESET LIMIT IS EXCEEDED

ADDED ALARM FOR HIGHEST CORE EXIT THERMALCOUPLE ON SIGNAL FROM QDPS TO TROUDI & REPLACE WITH DIFFERENT RECORDER

UNIT 2

UNIT 2 MODIFICATION WILL BE INCORPORATED AFTER TESTING AND EVALUATION IN UNIT 1

MATCHES UNIT 1

ALARMS THAT ARE LABELED DIFFERENTLY BETWEEN UNITS

BIMULA "OR

MATCHES UNIT 1

MATCHES UNIT 1

MATCHES UNIT 1 13KV 1H XFMR 12J2 - 12K1 FDR BKR TRIP

UNIT 1

7M01-A6,7 345KV SWYD ¥510/¥520 TRIP

10M02~A4 345KV BKR ¥500 TRIP

10M02-E2

UNIT 2

7M01-A6,7 345KV SWYD Y600/Y590 TRIP

10M02-A4 345KV BKR ¥610 TRIP

10M02-E2 13KV 2J XFMR 12J2 - 12K1 FDR BKR TRIP

UNIT 1 CONTROL ROOM FLOOR PLAN

UNIT 2 CONTROL ROOM FLOOR PLAN

AD.

S. all

MALFUNCTIONS ACCEPTED FOR TRAINING AND EXAMINATIONS

The order of listing in this Addendum corresponds to the order of the associated test synopses in Addendum 4. FOTE:

MNEMONIC

DESCRIPTION

X:RX0101	AUTO MODE CONT ROD WITHDRWL
X:RX0102	MAN MODE CONT ROD WITHDRWL
X:RX0201	AUTO MODE CONT ROD INSERTION
X:RX0202	MAN MODE CONT ROD INSERTION
X:RX0301	GRP-1, CB-C FAILS TO MOVE
X:RX0302	GRP-1, CB-D FAILS TO MOVE
X:RX0401	GRP-2, CB-C FAILS TO MOVE
X:RX0402	GRP-2, CB-D FAILS TO MOVE
X:RX0501	ROD H2 FAIL TO MOVE W/BNK C
X:RX0502	ROD B2 FAIL TO MOVE W/BNK C
X:RX0503	ROD H14 FAIL TO MOVE W/BNK C
X:RX0504	ROD P8 FAIL TO MOVE W/BNK C
X:RX0505	ROD F6 FAIL TO MOVE W/BNK C
X:RX0506	ROD F10 FAIL TO MOVE W/BNK C
X:RX0507	ROD K10 FAIL TO MOVE W/BNK C
X:RX0508	ROD K6 FAIL TO MOVE W/BNK C
X:RX0509	ROD D4 FAIL TO MOVE W/BNK D
X:RX0510	ROD M12 FAIL TO MOVE W/BNK D
X:RX0511	ROD D12 FAIL TO MOVE W/BNK D
X:RX0512	ROD M4 FAIL TO MOVE W/BNK D
X:RX0513	ROD H8 FAIL TO MOVE W/BNK D
XRRX0601	IMPROPER OVLP CB A TO CB B
XRRX0602	IMPROPER OVLP CB B TO CB C
XRRX0603	IMPROPER OVLP CB C TO CB D
X:RX0701	DROP ROD C9 OF SD B
X:RX0702	DROP ROD E3 OF SD C
X:RX0703	DROP ROD K2 OF CB B
X:RX0704	DROP ROD P8 OF CB C
X:RX0705	DROP ROD H14 OF CB C
X:RX0706	DROP ROD K6 OF CB C
X:RX0707	DROP ROD M12 OF CB D
X:RX0708	DROP ROD H8 OF CB D
X:RX0709	DROP ROD D12 OF CB D
X:RX0801	DROP GRP 1 RODS CB C
X:RX0802	DROP GRP 2 RODS CB C
X:RX0803	DROP GRP 1 RODS CB D
X:RX0804	DROP GRP 2 RODS CB D
X:RX0901	RODS FAIL TO MOVE IN AUTO
X:RX0902	RODS FAIL TO MOVE IN MANUAL
XRRX1001	AUTO RC CNTLS TAVG HI OR LO
X:RX1101	ROD EJECTION D12 CB D GRP 2

ADDENDUN 3

MALFUNCTIONS ACCEPTED FOR TRAINING AND EXAMINATIONS (Continued)

MNEMONIC

6

DESCRIPTION

X:RX1102
X:RX1103
X: RX1104
Y+PV1105
A RALLUD
A:RA1201
X:RX1202
Y:RX1203
X:RX1204
X:RX1205
X:RX1206
X:RX1207
X:RX1208
X: RX1301
X: DV1202
VIDV1401
X:RX1401
X:RX1402
X:RX1403
X:RX1404
X:RX1405
X:RX1406
X:RX1407
X:RX1408
X:RX1409
X:RX1410
XIEXIAII
X · DV1/11
VIDVI412
A; RA1413
X:RX1414
X:RX1415
X:RX1501
X:RX1601
X:RX1602
X:RX1603
X:RX1604
X: 2X1701
X: DX1701
VIDVIDO2
XIRA1801
X:RX1802
X:RX1901
X:RX1902
X:RX1903
X:RX1904
X:RX2001
X:RX2002
and the second se

ROD EJECTION M4 CB D GRP 2
POD EJECTION H8 CB D GRP 2
ROD EJECTION D4 CB D GRP 1
ROD EJECTION M12 CB D GPP 1
FAILURE OF AUTO BX TRTP STONAT
ATWS - NO TRIP ON TRIP STONAL
FAILURE OF AUTO ST STONAL
FAILURE OF AUTO PH & TEOT
FAILURE OF AUTO PH B TCOL
FAILURE OF MS ISOL STONAT
RX TRIP BER FODEN TRATE
RX TRIP BKP F/OPEN TRAIN R
DEPT FATLUPE DATA
DEPT FATLURE DATA A
FATT DEDT CULTURE NO
FAIL DEPT CHANNEL M2
FAIL DEPI CHANNEL B12
FAIL DRPI CHANNEL C7
FAIL DEPI CHANNEL J13
FAIL DRPI CHANNEL L13
FAIL DRPI CHANNEL N11
FAIL DRFI CHANNEL M8
FAIL DRPI CHANNEL H6
FAIL DRPI CHANNEL E11
FAIL DRPI CHANNEL B10
FAIL DRPI CHANNEL F14
FAIL DRPI CHANNEL H2
FAIL DRPI CHANNEL P8
FAIL DRPI CHANNEL H8
FAIL DRPI CHANNEL M12
COMPLETE LOSS OF DRP1
FAIL ROD BLOCK C1
FAIL ROD BLOCK C2
FAIL ROD BLOCK C3
FAIL ROD BLOCK C4
RODS MOVE AT MIN SPEED - AUTO
RODS MOVE AT MAX SPEED - AUTO
C/BNKS OUT WHEN IN REOUTRED
C/BNKS IN WHEN OUT REOUTRED
RX TRIP BKR P4 BYP OPEN TP P
RX TRIP BKR P4 BKR OPEN TR R
RX TRIP BKR PA BYD ODEN TR R
RX TRIP BKR PA BKP OPEN TR S
ROD D2 STUCK ON BY MDTD
ROD G13 STUCK ON DY MOTO
THE STOCK ON KX TRIP

3 - 2

.

MALFUNCTIONS ACCEPTED FOR TRAINING AND EXAMINATIONS (Continued)

MNEMONIC

0

DESCRIPTION

KARLALKALK.N.
X+RX2003
X: PY2004
V: DY2005
XIRAZ005
X: KA2000
X: KX2007
X:RX2008
X:RX2009
X:RP2101
X:RP2102
X:RP2103
X:RP2104
X:RP2105
X:RP2106
X:RP2107
X:RP2108
X:RP2109
X:RP2110
X:RP2111
X:RP2112
X:RP2201
X:RP2202
X:RP2203
X:RP2204
X:RP2205
X:RP2206
X:RP2207
X:RP2208
X:RP2209
X:RP2210
X:RP2211
X:RP2212
X:RP2213
X:RP2214
X:RP2215
X:RP2216
X:RP2301
X:RP2302
X:RP2303
X:RP2304
X:RP2305
X:RP2306
X:RP2307
X: RP2308
X:RP2401

ROD E3 STUCK ON RX TRIP
ROD N11 STUCK ON TX TRIP
ROD D8 STUCK ON RX TRIP
ROD H6 STUCK ON RX TRIP
ROD F2 STUCK ON RX TRIP
ROD P8 STUCK ON RX TRIP
ROD HS STUCK ON RX TRIP
LOW FLOW RX TRIP LP 1 CH 1
LOW FLOW RX TRIP LP 2 CH 1
LOW FLOW RX TRIP LP 3 CH 1
LOW FLOW RX TRIP LP 4 CH 1
LOW FLOW RX TRIP LP 1 CH 2
LOW FLOW RX TRIP LP 2 CH 2
LOW FLOW RX TRIP LP 3 CH 2
LOW FLOW RX TRIP LP 4 CH 2
LOW FLOW RX TRIP LP 1 CH 3
LOW FLOW RX TRIP LP 2 CH 3
LOW FLOW RX TRIP LP 3 CH 3
LOW FLOW RX TRIP LP 4 CH 3
OP/DT RX TRIP LOOP 1
OP/DT RX TRIP LOOP 2
OP/DP RX TRIP LOOP 3
OP/DT RX TRIP LOOP 4
OP/DT RUNBACK LOOP 1
OP/DT RUNBACK LOOP 2
OP/DT RUNBACK LOOP 3
OP/DT RUNBACK LOOP 4
OP/DT RX TRIP LOOP 1
OP/DT RX TRIP LOOP 2
OP/DT RX TRIP LOOP 3
OP/DT RX TRIP LOOP 4
OP/DT RUNBACK LOOP 1
OP/DT RUNBACK LOOP 2
OP/DT RUNBACK LOOP 3
OP/DT RUNBACK LOOP 4
LO T AVG LOOP 1 B/S
LO T AVG LOOP 2 B/S
LO T AVG LOOP 3 B/S
LO T AVG LOOP 4 B/S
LO-LO T AVG LOOP 1 B/S
LO-LO T AVG LOOP 2 B/S
LO-LO T AVG LOOP 3 B/S
LO-LO T AVG LOOP 4 B/S
SPRAY ACT TEST BYP CH 1 B/S
and the second

3 - 3

sC.

ADDENDUN 3

DESCRIPTION

MNEMONIC
X:RP2402
X:RP2403
X:RP2404
X:RP2405
X:RP2406
X:RP2407
X:RP2408
X:RP2409
X:RP2410
X:RP2411
X:RP2501
X:RP2502
X:RP2503
X:RP2504
X:RP2505
XIRP2506
X:RP2507
X:RF2508
X:RF25U9
X:RP2510
X: RP2512
X: RP2513
X: RP2514
X: RP2515
X:RP2516
X:RP2517
X:RP2518
X:RP2519
X:RP2601
X:RP2602
X:RP2603
X:RF2604
X:RP2605
X: RP2606
X:RP2607
X:RP2608
X:NI2701
X:NI2702
X:NI2703
X+NT270A

X:NI2705 X:N12706 X:NI2707

SPRAY ACT TEST BYP CH 2 B/S
SPRAY ACT TEST BYP CH 3 B/S
SPRAY ACT TEST BYP CH 4 B/S
CTMT PRESS HI-1 CH 1 B/S
CTMT PRESS HI-1 CH 2 B/S
CTMT PRESS HI-1 CH 3 B/S
CTMT PRESS HI-3 CH 1 B/S
CTMT PRESS HI-3 CH 2 B/S
CTMT PRESS HI-3 CH 3 B/S
CTMT PRESS HI-3 CH 4 B/S
PZR PRESS LO RX TRIP CH 1
PZR PRESS LO RX TRIP CH 2
PZR PRESS LO RX TRIP CH 3
PZR PRESS LO RX TRIP CH 4
PZR PRESS LO SI CH 1
PZR PRESS LO SI CH 2
PZR PRESS LO SI CH 3
PZR PRESS LO SI CH 4
PZR PRESS HI RX TRIP CH 1
PZR PRESS HI RX TRIP CH 2
PZR PRESS HI RX TRIP CH 3
PZR PRESS HI RX TRIP CH 4
PZR PRESS BLOCK CH 1
PZR PRESS BLOCK CH 2
PZR PRESS BLOCK CH 3
PZR LEVEL HI RX TRIP CH 1
PZR LEVEL HI RX TRIP CH 2
PZR LEVEL HI RX TRIP CH 3
PZR LEVEL HI RX TRIP CH 4
RCP 1A U/V RX TRIP CH-1 B/S
RCP 1B U/V RX TRIP CH-2 B/S
RCP 1C U/V RX TRIP CH-3 B/S
RCP 1D U/V RX TRIP CH-4 B/S
RCP 1A U/F RX TRIP CH-1 B/S
RCP 1B U/F RX TRIP CH-2 B/S
RCP 1C U/F RX TRIP CH-3 B/S
RCP 1D U/F RX TRIP CH-4 B/S
SOURCE RANGE HI CH 1 B/S
SOURCE RANGE HI CH 2 B/S
SR TRIP/BYP CH 1 B/S
SR TRIP/BYP CH 2 B/S
INTERM RANGE HI CH 1 B/S
INTERM RANGE HI CH 2 B/S
IR TRIP/BYP CH 1 B/S

MALFUNCTIONS ACCEPTED FOR TRAINING AND EXAMINATIONS (Continued)

MNERONIC

DESCRIPTION

V-1075506	TE METE/EVE AL 9 B/8
XINA6/VO VINCSODD	IK IKIP/DIP CH 2 B/S
A: N12709	INTERM RANGE PO CH 1 B/S
A:PIE/IO	INTERM RANGE HI CH 2 B/S
A:N12801	POWER RANGE P-8 CH 1 B/S
X:NI2802	POWER RANGE P-8 CH 2 B/S
X:N15803	POWER RANGE P-8 CH 3 B/S
X:N12804	POWER RANGE P-8 CH 4 B/S
X:NI2805	POWER RANGE P-9 CH 1 B/S
X:NI2806	POWER RANGE P-9 CH 2 B/S
X:NI2807	POWER RANGE P-9 CH 3 B/S
X:NI2808	POWER RANGE P-9 CH 4 B/S
X:NI2809	POWER RANGE P7/P10 CH 1 B/S
X:NI2810	POWER RANGE P7/P10 CH 2 B/S
X:NI2811	POWER RANGE P7/P10 CH 3 B/S
X:NI2812	POWER RANGE P7/P10 CH 4 B/S
X:NI2901	PR OVRPWR ROD STOP BYP CH 1
X:NI2902	PR OVRPWR ROD STOP BYP CH 2
X:NI2903	PR OVRPWR ROD STOP BYP CH 3
X:NI2904	PR OVRPWR ROD STOP BYP CH 4
X:NI2905	POWER RANGE LO CH 1 B/S
X:NI2906	POWER RANGE LO CH 2 3/S
X:NI2907	POWER RANGE LO CH 3 B/S
X:NI2908	POWER RANGE LO CH 4 B/S
X:NI2909	POWER RANGE HI CH 1 B/S
X:NI2910	POWER RANGE HI CH 2 B/S
X:NI2911	POWER RANGE HI CH 3 B/S
X:NI2912	POWER RANGE HI CH 4 B/S
X:NI2913	POWER RANGE RATE CH 1 B/S
X:NI2914	POWER RANGE RATE CH 2 B/S
X:NI2915	POWER RANGE RATE CH 3 B/S
X:NI2916	POWER RANGE RATE CH 4 B/S
XNNI3001	SK CHNL 31 FATLS HT
XNNI3002	SR CHNL 32 FAILS HT
X:NI3101	SR CHNL 31 FATLS LOW
X:NI3102	SP CHNL 32 PATLS LOW
XRN13201	SOURCE PANCE CH 31 STUCCTER
XENT3202	SOURCE RANGE CH 32 STUCCTEN
X: PP3301	TO THOMP TO OD BLOCK PATIC
X:NT3401	TO OU SE OUED CONDENCIMED
X:NT3402	TR CH 35 OVER COMPENSATED
XINT3501	TR CH 36 OVER COMPENSATED
VINTAROA	TO ON 26 UNDER COMPERNATED
VINT2601	TR CH 36 UNDER COMPENSATED
NINT2602	IR CH 35 FAILS HIGH
V:WT2005	IK CH 30 FAILS HIGH

KALFUNCTIONS ACCEPTED FOR TRAINING AND EXAMINATIONS (Continued)

MNEMONIC

DESCRIPTION

X:NI3701	
X:NT3702	
XINTIGO	
VINTSDOS	
AINIJOUA	
X:N13803	
X:NI3804	
X:RC0101	
X:RC0102	
X:RC0103	
X:RC0104	
XRRC0301	
XRRC0302	
XEECO303	
VPPCOROA	
XNDCO401	
XNRC0401	
XNRC0501	
X:RC0701	
X:RC0702	
X:RC0703	
X:RC0704	
X:RC0801	
X:RC0802	
X:RC0803	
X:RC0804	
X:RC0901	
X: RC0902	
X:RC0903	
V. PCOGOA	
X DCLODA	
X:RCIOUI	
X:RC1002	
X:RC1003	
X:RC1004	
XNRC1301	
XNRC1302	
X:RC1501	
X:RC1502	
XRP21601	
XRP21602	
X: P21201	
X: P21702	
YPDT 1002	
VND01001	
XNRC1901	
XNRC1902	
XNRC1903	

IR CH 35 FAILS LOW
IR CH 36 FAILS LOW
LOSS OF PWP TO PR CH 41
LOSS OF PWR TO PR CH 42
LOSS OF PWR TO PR CH 43
LOSS OF PWR TO PR CH 44
RCS COLD LEG RUPTURE LOOP 12
RCS COLD LNG RUPTURE LOOP 18
RCS COLD LEG PUPTURE LOOP 10
RCS COLD LEG RUPTURE LOOP IC
DOG TEXY FLOW VMTD LOOD X
DOG TENY FLOW AMIR LOOP A
RCS LEAK, FLOW ANTE LOOP B
RCS LEAK, FLOW XMTR LOOP C
RCS LEAK, FLOW XMTR LOOP D
RCS LEAK, RV HEAD VENT
RCS LEAK, RV HEAD FLANGE
SHEARED RCP SHAFT - RCP 1A
SHEARED RCP SHAFT - RCP 1B
SHEARED RCP SHAFT - RCP 1C
SHEARED RCP SHAFT - RCP 1D
LOCKED RCP ROTOR - RCP 1A
LOCKED RCP POTOR - RCP 1B
LOCKED RCP ROTOR - RCP 1C
LOCKED RCP ROTOR - RCP 1D
RCP 1A TRIPS ON UNDER FRED
RCP 18 TRIPS ON UNDER FREO
RCP 1C TRIPS ON UNDER FREO
RCP 1D TRIPS ON UNDER FREQ
BOD 11 TETES ON UNDER FREY
PCD 18 TRIPS ON UNDER VOLTAGE
RCF ID TRIFE ON UNDER VOLTAGE
RCP IC TRIPS ON UNDER VOLTAGE
RCF 1D TRIPS ON UNDER VOLTAGE
FZR FORV LEAK PCV=655
PZR PORV LEAK PCV-656
PZR SPRAY VLV FC PCV-655B
PZR SPRAY VLV FC PCV-655C
PZR SPRAY VLV FO PCV-655B
PZR SPRAY VLV FO PCV-655C
PZR PRES CONTROL FAIL -30PSI
PZR PRES CONTROL FAIL +30PSI
PZR LVL CONTROL MALFUNCTION
PT 456 FAILS HI, PORV OPENS
PT 457 FAILS HI, PORV OPENS
PT 458 FAILS HI. PORV OPENS
the state of the state of the state

MALFUNCTIONS ACCEPTED FOR TRAINING AND EXAMINATIONS (Continued)

MNEMONIC

DESCRIPTION

XNRC1904
XNRC2001
XNRC2002
XNRC2003
X+000101
AIRCELUI
X:PL2201
X:RC2301
X1RC2302
X:RC2303
X:RC2304
X:RC2305
XNRC2401
XNRC2402
XNRC2403
VNDCOECI
ANRC2DU1
ANRC2502
XNRC2505
XNRC2601
XNRC2602
XNRC2606
XNRC2701
XNRC2702
XNRC2705
XNRC2801
VNDCOROO
VNDCODDC
ANKCZPUO
XNCV0301
X:CV0401
X:CV0601
X:CV0901
X:CV0902
X:CV0903
XNCV1101
XNCV1201
XNCV1301
NICULIOL
AICV1701
X:CV1702
X:CV2001
X:CV2101
XRCV2201
XRCV2202
XNCV2301
XNCV2302
XNCV2303
and the second second

PT 458 FAILS TO ANY POSITION	
LT 465 PZR LVL XMTR FAILS	
LT 466 PZR LVL XMTR FAILS	
LT 468 PZR LVL XMTR FAILS	
PZR HTR B/U GP E FAILS ON	
PZR HTRS FAIL TO COME ON	
PZR HTR GP A FAIL TO COME ON	
PZR HTR GP B FAIL TO COME ON	
PZR HTR GP C FAIL TO COME ON	
PZR HTR GP D FAIL TO COME ON	
PZR HTR GP E FAIL TO COME ON	
RCS PRES XMTR PT 407 FAILS	
RCS PRES XMTR PT 405 FAILS	
RCS PRES XMTR PT 406 FATLS	
RTD FAILS HOT LEG A TT 410A	
RTD FAILS HOT LEG A TT 410B	
RTD FAILS HOT LEG A TT 413	
RTD FAILS HOT LEG B TT 420A	
RTD FAILS COLD LEG B TT 420B	
RTD FAILS COLD LEG B TT 424	
RTD FAILS HOT LEG C TT 430A	
RTD FAILS COLD LEG B TT 430B	
RTD FAILS HOT LEG C TT 433	
RTD FAILS HOT LEG D TT 440	
RTD FAILS COLD LEG D TT 440B	
RTD FAILS COLD LEG D TT 444	
TUBE LEAK LTDN HEAT EXCHANGE	
TCV-143 DIVERTS TO VCT	
LTDN VLV PCV-135 FAILS CLOSE	
LOSS OF CHARGING PUMP CCP-1A	
LOSS OF CHARGING PUMP CCP-1B	
LOSS OF CHARGING PUMP PD-1A	
LETDOWN LINE LEAK IN RCB	
LTDN LINE LEAK OUTSIDE RCB	
LP LTDN LINE LEAK AT FE-132	
TRIP BORIC ACID XFER PUMP 1A	
TRIP BORIC ACID XFER PUMP 1B	
RCS DILUTION-UNBORATED DEMIN	
RCS DILUTION BATCH INTEG FAIL	S
HI DP SEALWATER INJ FILTER A	
HI DP SEALWATER INJ FILTER B	
RCP 1 SEAL FAILS - PUMP 1A	
RCP 2 SEAL FAILS - PUMP 2A	
RCP 1 SEAL FAILS - PUMP 1B	

MALFUNCTIONS ACCEPTED FOR TRAINING AND EXAMINATIONS (Continued)

MNEMONIC

DESCRIPTION

XNCV2304	
XNCV2305	
XNCV2306	
XNCV2307	
XNCV2308	
X:CC0101	
X:CC0102	
X:CC0103	
X:CC0201	
X:CC0202	
X:CC0263	
XNCC0301	
XNCC0302	
XNCC0303	
XNCC0304	
X:CC0401	
X:CC0402	
X:CC0403	
X:CC0501	
X:CC0601	
XNCC0701	
X:EC0901	
X:EC0902	
X:EC0903	
X:EC0904	
X:EC0905	
X:EC0906	
X:EC0907	
X:EC0908	
X:EC0909	
X:RH1001	
X:RH1002	
X:RH1003	
X:RH1101	
X:RH1102	
X:RH1103	
XNRH1201	
XNRH1202	
X:SI1301	
X:SI1302	
X:SI1303	
X:SI1401	
X:SI1402	

X:SI1403

RCP 2 SEAL FAILS - PUMP 2B
RCP 1 SEAL FAILS - PUMP 1C
RCP 2 SEAL FAILS - PUMP 2C
RCP 1 SEAL FAILS - PUMP 1D
RCP 2 SEAL FAILS - PUMP 2D
LOSS COW PUMP 1A THERMAL 0/1
LOSS CCW PUMP 1B THERMAL 0/1
LOSS CCW FUMP 1C THERMAL 0/1
LOSS OF CCW PUMP 1A-FT-4512
LOSS OF CCW PUMP 1B-FT-4517
LOSS OF CCW PUMP 1C-FT-4522
LOSS COW TO RCP 1A THERM BAS
LOSS COW TO ROP 18 THERM BAS
LOSS COW TO ROP 10 THERM BAL
LOSS COW TO BOD 1D THEPM BAL
LOSS CON TO PUD HEAT EVON 12
LOSS CON TO ANA BEAT EVEN 1
LOSS CON TO RUE HEAT EVON 10
LOSS CON TO KAK ALAT EACH IS
CON NUMA NU IN ARAS PATE
CCW AUTO MU LV 4501 FAILS
COW/EOW HA TUBE LEAK
ECW PUMP IA FAILS ON O/L
ECW PUMP 1B FAILS ON 0/L
ECW PUMP IC FAILS ON O/L
TRIF ESSENTIAL CHILLER 11A
TRIP ESSENTIAL CHILLER 11B
TRIP ESSENTIAL CHILLER 11C
TRIP ESSENTIAL CHILLER 12A
TRIP ESSENTIAL CHILLER 12B
TRIP ESSENTIAL CHILLER 12C
LOSS OF RHR PUMP 1A ON O/L
LOSS OF RHR PUMP 1B ON O/L
LOSS OF RHR PUMP 1C ON O/L
RHR PMP RELIEF PSV-3851 FO
RHR PMP RELIEF PSV-3852 FO
RHR FMP RELIEF PSV-3853 FO
TUBE LEAK IN RHR HX 1A
TUBE LEAK IN RHR HX 1B
LOSS OF HHEI PUMP 1A ON O/L
LOSS OF HHSI PUMP 1B ON O/L
LOSS OF HHSI PUMP 1C ON O/L
LOSS OF LHSI PUMP 1A ON O/L
LOSS OF LHSI PUMP 1B ON O/L
LOSS OF LHSI PUMP 1C ON O/L

MNEMONIC

DESCRIPTION

X:SI1501	ACCUM DISCH VLV FAILS TO OPERATE 039A
X:SI1502	ACCUM DISCH VLV FAILS TO OPERATE 039B
X:SI1503	ACCUM DISCH VLV FAILS TO OPERATE 039C
X:CS1501	LOSS OF CS PUMP
X:051602	LOSS OF CMT SPR PUMP 1B
X:CS1603	LOSS OF CMT SPR PUMP 1C
XNS11701	N2 LOSS ACCU 1A VIA PSV-3981
XN911702	N2 LOSS ACCU 1B VIA PSV-3980
KNSI1703	N2 LOSS ACCU 1C VIA PSV-3977
XNSI1801	LEAK PAST SI ACCU 1A CHK VLV
XNSI1802	LEAK PAST SI ACCU 1B CHK VLV
XNSI1803	LEAK PAST SI ACCU 1C CHK VLV
XNMS0101	STEAM BREAK OUTSIDE CONTAINM
XNMS0201	STM BKR IN CONTAINMENT LOOP A
XNMS0202	STM BKR IN CONTAINMENT LOOP B
XNMS0203	STM BKR IN CONTAINMENT LOOP C
XNMS0204	STM BKR IN CONTAINMENT LOOP D
XNSG0301	STEAM GEN TUBE LEAK - SG 1A
XNSG0302	STEAM GEN TUBE LEAK - SG 1B
XNSG0303	STEAM GEN TUBE LEAK - SG 1C
XNSG0304	STEAM GEN TUBE LEAK - SG 1D
λ:MS0401	MN STM SFTY VLV PSV 741C FO
X:MS0402	MN STM SFTY VLV PSV 7420 FO
X:MS0403	MN STM SFTY VLV PSV 7430 FO
X:MS0404	MN STM SFTY VLV PSV 7440 FO
XNMS0501	MS SAFETY PSV 7410 SEAT LEAK
XNMS0502	MS SAFETY PSV 7420 SEAT LEAK
XNMS0503	MS SAFETY PSV 7430 SEAT LEAK
XNMS0504	MS SAFETY PSV 7440 SEAT LEAK
X:MS0601	MSIV FAILS CLOSED SG A
X:MS0602	MSIV FAILS CLOSED SG B
X:MS0603	MSIV FAILS CLOSED SG C
X:MS0604	MSIV FAILS CLOSED SG D
X:MS0701	MSIV FAIL TO OPERATE MS 7414
X:MS0702	MSIV FAIL TO OPERATE MS 7424
X:MS0703	MSIV FAIL TO OPERATE MS 7434
X:MS0704	MSIV FAIL TO OPERATE MS 7444
X:MS0801	MSIV SHUTS DURING TEST SG A
X:MS0802	MSIV SHUTS DURING TEST SG B
X:MS0803	MSIV SHUTS DURING TEST SG C
X:MS0804	MEIV SHUTS DURING TEST SG D
X:MS0901	GS REGULATOR PV-6150 F/O
X:MS1001	NO GS SPLY FROM MS PV 6150 FC
X:MS1101	NO STM PLO STG TO FWCS SC A

MALFUNCTIONS ACCEPTED FOR TRAINING AND EXAMINATIONS (Continued)

MNEMONIC

DESCRIPTION

X:MS1102
X:MS1103
X:MS1104
X:SG1201
VICC10L0
VIDG150.
X:501203
X:SG1204
X:PD1301
X:PD1302
X:PD1303
X:PD1304
XNMS1401
XNMS1501
X:PD1601
X:TU0101
X: TU0201
X:TUOA01
X:T110402
X+100402
X:100403
ATTUO404
X:T00501
X:TU0502
X:T00503
X:TU0504
X:TU0701
XNTU0801
XNTU0901
X:TU1001
X:TU1201
X:TU1301
X:EH1401
X:EH1501
XNTU1601
XNTU1602
XRPD1801
XRTU1901
XRTU1902
XRTU1903
XRTU1904
XETUIDOS
VPTILLOOG
XPTU1003
VDUU1000
XKIU1908
YKI01303

NO STM FLO SIG TO FWCS SG B
NO STM FLO SIG TO FWCS SG C
NO STM FLO SIG TO FWCS SG D
NO SG LVL SIG TO FWCS SG 1A
NO SG LVL SIG TO FWCS SG 1B
NO SG LVL SIG TO FWCS SG 1C
NO SG LVL SIG TO FWCS SG 1D
BNK 1 STM DMPS FAIL TO CLOSE
BNK 2 STM DMPS FAIL TO CLOSE
BNK 3 STM DMPS FAIL TO CLOSE
BNK 4 STM DMPS FAIL TO CLOSE
STM HDR PR XMTR PT-557 FAILS
NO RHT STM FRM MSR CNTRL SYS
STM DUMP CNTRL FAILS ON TRIP
TURB TRIP FROM AST 20-1, 20-2
NO TUR TRP ON AUTO TRP SIG
MN TURBINE GOVERNOR VLV 1 FO
MN TURBINE GOVERNOR VLV 2 FO
MN TURBINE GOVERNOR VIN 3 FO
MN TURBINE GOVERNOR VLV 4 FO
MN TURBINE GOVERNOR VLV FC 1
MN TURBINE GOVERNOR VLV FC 2
MN TURBINE GOVERNOR VIN FC 3
MN TURBINE GOVERNOR VLV FC 4
LOSS OF MN TURB CIL PMP
MN TURB LUBE OIL PRESS LOW
MN TURB LUBE OIL TEMP HI
AC BRNG OIL PUMP WON'T START
MN TURB THRUST BRNG FAILS
TURNING GEAR MOTOR FAILURE
EH AUTO MODE FAILURE
EH HYDRAULIC LINE FAILURE
1ST STG PR XMTR PT-505 FAILS
1ST STG PR XMTR PT-506 FAILS
TREF SIG TO STM DUMPS FAIL
MN TURB VIBRATION HI BRNG 1
MN TURB VIBRATION HI BRNG 2
MN TURB VIBRATION HI BRNG 3
MN TURB VIBRATION HI BRNG 4
MN TURB VIBRATION HI BRNG 5
MN TURB VIBRATION HI BRNG 6
MN TURB VIBRATION HI BRNG 7
MN TURB VIBRATION HI BRNG 8
MN TURB VIBRATION HI BRNG 9

.

b...

ADDENDUH 3

MALFUNCTIONS ACCEPTED FOR TRAINING AND EXAMINATIONS (Continued)

MNEMONIC

DESCRIPTION

XRTU1910	MN TURB VIBRATION HI BRNG 10
XRTU1911	MN TURB VIERATION HI BRNG 11
X:CD0101	LOSS OF COND VACUUM PUMP 11
X:CD0102	LOSS OF COND VACUUM PUMP 12
X:CD0103	LOSS OF COND VACUUM PUMP 13
XRTU2001	MN TURB ECCENTRICITY HI
XNCD0201	CONDENSER AIR IN LEAKAGE
XNCD0301	MAIN CONDENSER TUBE LEAK
X:CD0401	LOSS OF MAIN FW PUMP - 11
X:CD0402	LOSS OF MAIN FW PUMP - 12
X:CD0403	LOSS OF MAIN FW PUMP - 13
X:CD0501	HOTWELL LEVEL XMTR FAILS - HGH
X:CD0502	HOTWELL LEVEL XMTR FAILS - LOW
X:AF0301	LOSS OF AUX FW PUMP NO 11
X:AF0302	LOSS OF AUX FW PUMP NO 12
X:AF0303	LOSS OF AUX FW PUMP NO 13
X:AF0401	LOSS OF STEAM AUX FW PUMP
X:AF0501	AFW X-CONN VLV FY-7515 FAILS
X:AF0502	AFW X-CONN VLV FY-7516 FAILS
X:AF0503	AFW X-CONN VLV FY-7517 FAILS
X:AF0504	AFW X-CONN VLV FY-7518 FAILS
XNFW0601	MN FW LINE RUPTURE IN CONTMT
XNFW0701	MN FW RUPTURE OUTSIDE CONTMT
XNFW0801	HI PRES FW HTR TUBE LEAK
XNFW0901	LOSS OF PUMP CONTROL - MFP11
XNFW0902	LOSS OF PUMP CONTROL - MFP12
XNFW0903	LOSS OF PUMP CONTROL - MFP13
X:PF1001	FAIL AUTO SPEED CNTRL MFP-11
X:PF1002	FAIL AUTO SPEED CNTRL MFP-12
X:PF1003	FAIL AJTO SPEED CNTRL MFP-13
X:FW1201	TURB OVERSPEED TRIP MFP-11
X:FW1202	TURB OVERSPEED TRIP HFP-12
X:FW1203	TURB OVERSPEED TRIP MFP-13
X:FW1204	STARTUP FP OVERLOAD TRIP
X:FW1301	LUBE OIL PRES LOW MFP-11
X:FW1302	LUBE OIL PRES LOW MFP-12
X:FW1303	LUBE OIL PRES LOW MFP-13
X:PG1401	AUTO FW CNTRL SYS FAILS SG-A
X:PG1402	AUTO FW CNTRL SYS FAILS SG-B
X:PG1403	AUTO FW CNTRL SYS FAILS SG-C
X:PG1404	AUTO FW CNTRL SYS FAILS SG-D
X:FW1501	LOSS OF FEED FLOW SIG SG-A
X:FW1502	LOSS OF FEED FLOW SIC SG-B
X:FW1503	LOSS OF FEED FLOW SIG SG-C

MALFUNCTIONS ACCEPTED FOR TRAINING AND EXAMINATIONS (Continued)

MNEMONIC

DEPURIPTION

X:FW1504	LOPS OF FEED FLOW SIG SG-D
X:FW1601	MN FW REG VLV F/C FCV-551
X:FW1602	MN FW REG VLV F/C FCV-552
X:FW1603	MN FW REG VLV F/C FCV-553
X:FW1604	MN FW REG VLV F/C FCV-554
X: FW1701	MN FW REG VLV STUCK FCV-551
X:FW1702	MN FW REG VLV STUCK FCV-552
X:FW1703	MN FW REG VLV STUCK FCV-553
X:FW1704	MN FW REG VLV STUCK FCV-554
XNFW1801	MN FW REG VLV LEAK FCV-551
XNFW1802	MN FW REG VLV LEAK FCV-552
XNFW1803	MN FW REG VLV LEAK FCV-553
XNFW1804	MN FW REG VLV LEAK FCV-554
XNFW1901	MN FW REG BYP VLV STUCK FV-7151
XNFW1902	MN FW REG BYP VLV STUCK FV-7152
XNFW1903	MN FW REG BYP VLV STUCK FV-7153
XNFW1904	MN FW REG BYP VLV STUCK FV=7154
X:FW2001	MFP RECIRC VLV F/O FV-7104
X:FW2002	MFP RECIRC VLV F/O FV-7109
X:FW2003	MFP RECIRC VLV F/O FV-7114
X:CD2301	LOSS OF CONDENSATE PUMP 11
X:CD2302	LOSS OF CONDENSALE PUMP 12
X:CD2303	LOSS OF CONDENSATE PUMP 13
XNCD2401	LEAK IN COND HDR TO HTR-14A
XNCD2402	LEAK IN COND HDR TO HTR-14B
XNCD2501	HI CONDUCTIVITY COND/FW SYS
X:CD2701	POLISH DEMIN BYP CD-132 F/C
X:CD2702	POLISH DEMIN BYP CD-132 F/O
X:FW2801	LOSS OF LP HTR DRAIN PMP-11
X:FW2802	LOSS OF LP HTR DRAIN PMP-12
X:FW2803	LOSS OF LP HTR DRAIN PMP-13
X:FW2901	TRIP ALL FW BOOSTER PUMPS
X:HV0101	LOSS OF CRDM COOLING FAN 11A
X:HV0102	LOSS OF CRDM COOLING FAN 11B
X:HV0103	LOSS OF CRDM COOLING FAN 11C
X:HV0201	LOSS OF CNTMT FAN CLR 11A
X:HV0202	LOSS OF CNTMT FAN CLR 11B
X:HV0203	LOSS OF CNTMT FAN CLR 11C
X:HV0204	LOSS OF CNTMT FAN CLR 12A
X:HV0205	LOSS OF CNTMT FAN CLR 12B
X:HV0206	LOSS OF CNTMT FAN CLR 12C
X:RM0601	CNTMT GAS/PART RAD ALARM
X:RM0701	PLANT VENT RAD MNTR PEGS HI
X:RM0901	INCR RAD LEVEL RIT-8012

MALFUNCTIONS ACCEPTED FOR TRAINING AND EXAMINATIONS (Continued)

MNEMONIC

DESCRIPTION

X:HV0301	
X:HV1101	
X: HV1102	
X: HV1103	
X+EBO101	
X:EBO101	
A: EAULUZ	
X: EA0103	
X:EA0201	
X:EA0202	
X:EA0203	
X:EA0301	
X:EA0401	
X:EA0601	
X: EA0701	
X:EA0801	
X:EA0901	
X: EA0902	
X: EA0903	
XIELOGOA	
X+FA1001	
V.EN1001	
X+ER1002	
A: EALIOI	
X:EAI102	
XIEAL103	
X:EA1201	
X:EA1202	
X:EA1203	
X:EA1204	
X:EA1205	
X:EA1206	
X:EA1207	
X:EA1208	
X:EA1209	
X:EA1301	
X:EA1401	
X:EA1501	
X:GE1601	
X:GE1602	
X: AC0101	
X: AC0102	
X: AC0103	
X: AC0201	
X:ACO2O2	
X:ACO2O2	
n.n.02000	

LOSS OF NORM CNTM	T PURGE SUP
HIGH TOXIC GAS ES	F ACTUATION
BOTH TOXIC GAS MO	NITORS FAIL
SMOKE IN THE CONT	ROL ROOM ESF SIGNAL
LOSS OF EMERGENCY	DG 11
LOSS OF EMERGENCY	DG 12
LOSS OF EMERGENCY	DG 13
EMERGENCY DG 11 F	AIL TO LOAD
EMERGENCY DG 12 F	AIL TO LOAD
EMERGENCY DG 13 F	AIL TO LOAD
LOSS OF MAIN GEN	EXCITER
AUTO VOLTAGE REG	FAILS
MN GEN OUTPUT BKR	OPENS
LOSS OF UNIT AUX	TRANSFORMER
LOSS OF GRID (345	KV & 138 KV)
LOSS OF 13.8 KV S	TBY BUS 1F
LOSS OF 13.8 KV S	TBY BUS 1G
LOSS OF 13.8 KV S	TBY BUS 1H
LOSS OF 13.8 KV A	UX BUS 1J
LOSS C? 4.16KV BU	S 1D1
LOSS OF 4.16KV BU	S 1D2
LOSS OF 4.16KV ES	F BUS E1A
LOSS OF 4.16KV ES	F BUS E1A
LOSS OF 4.16 KV E	SF BUS E1C
LOSS OF 480V ESF	MCC E1A1
LOSS OF 480V ESF	MCC E1A2
LOSS OF 480V ESF	MCC E1A3
LOSS OF 480V ESF	MCC E1B1
LOSS OF 480V ESF 1	MCC E1B2
LOSS OF 480V ESF 1	MCC E1B3
LOSS OF 480V ESF 1	MCC E1C1
LOSS OF 480V ESF 1	MCC E1C2
LOSS OF 480V ESF 1	MCC E1C3
LOSS OF 138KV EME	RGENCY XFMR
LOSS OF ALL AC POI	WER
LOSS OF NON 1E DC	PNL PL125A
LOSS OF GEN SEAL	DIL REG 256
LOSS OF GEN SEAL	DIL REG 254
LOSS OF ACW OPEN	LOOP PMP 11
LOSS OF ACW OPEN 1	LOOP PMP 12
LOSS OF ACW OPEN 1	LOOP PMP 13
LOSS OF ACW CLSD	LP PMP 11
LOSS OF ACW CLSD	LP PMP 12
LOSS OF ACW CLSD	P PMP 13

MALFUNCTIONS ACCEPTED FOR TRAINING AND EXAMINATIONS (Continued)

DESCRIPT/ON

XNCT0301 XNAR0401 XNAR0501 X:AN0801 X: AN0802 X: AN0803 X: AN0804 X: AN0805 X: AN0806 X: AN0807 X: ANO808 X: AN0809 X:ANO810 XIAN0901 . THRU XIAN2140

MNEMONIC

INCR IN CONTAINMENT PRESSURE LOSS OF INSTRUMENT AIR LOSS OF STATION AIR PANEL 1 ANNUNCIATOR FAILURE PANEL 2 ANNUNCIATOR FAILURE PANEL 3 ANNUNCIATOR FAILURE PANEL 4 ANNUNCIATOR FAILURE PANEL 5 ANNUNCIATOR FAILURE PANEL 6 ANNUNCIATOR FAILURE PANEL 7,8,9 ANNUNCIATOR FAILURE PANEL 10 ANNUNCIATOR FAILURE PANEL 10 ANNUNCIATOR FAILURE PANEL 21 ANNUNCIATOR FAILURE PANEL 22 ANNUNCIATOR FAILURE CRYWOLF ALARMS 1M002A1

The malfunctions listed as "Crywolf Alarms" give the instructor the ability to activate, clear, or de-activate any given control room annunciator.

SYNOPSIS OF MALFUNCTION TESTS

X:RX0101 AUTO MODE CONTROL ROD WITHDRAWAL

The malfunction was tested on 10-12-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the 11, 't was at 50% power steady state. A 4 ppm

boration was used to lower Tavg and generate an outward demand

signal.

The test concluded when rods continuously withdrew until an

"Inward" signal was generated. The fact that the selection of

"Manual" mode defeated the malfunction was also verified.

The malfunction was approved for training/licensing examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X: RX0102 MANUAL MODE CONTROL ROD WITHDRAWAL

The malfunction was tested on 10-12-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 50% power steady state. (Control

rods must be in "Manual" with the controlling bank at least

partially inserted).

The test concluded with the alarm for reference and auctioneered

Tayg deviation activated and control bank D fully withdrawn.

The malfunction was approved for training/licensing examinations.

EYNOPHIS OF MALFUNCTION TESTS

X: RX0201 AUTO MODE CONTROL ROD INSERTION

The malfunction was tested on 10-12-90. No Ramps or delays were

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 50% power steady state with control rods in automatic.

The test concluded with the rods moving continuously inward-

after verifying the minimum speed was no less than 6 steps per

minute and that the rods continued to move in even with an

average coolant temperature lower than reference.

The malfunction was approved for training/licensing examinations.

di

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X: RX0202 MANUAL MODE CONTROL ROD INSERTION

The malfunction was tested on 10-12-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 50% power steady state and the control

rods in manual mode.

The test concluded when continuous inward rod motion was verified

and it was verified that the selection of the "Auto" mode

terminated the continuous insertion.

The malfunction was approved for training/licensing examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:RX0301	GROUP 1 OF CONTROL BANK C FAILS TO MOVE
X: RX0302	GROUP 1 OF CONTROL BANK D FAILS TO MOVE
X:RX0401	GROUP 2 OF CONTROL BANK C FAILS TO MOVE
X: RX0402	GPOUP 1 OF CONTROL BANK D FAILS TO MOVE

The malfunctions were tested on <u>10-12-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 50% power steady state, with the

controlling bank "D" riginally at 206 steps.

The test concluded 'hen it was verified that the malfunctions

actually locked up the specified groups of rods. The simulator

was reset between individual tests and the ability of the Lift

Coil Disconnect System to support the abnormal procedure

recovery was verified.

The malfunctions were approved for training/licensing examinations.

A precaution applies to the Group 2 malfunctions. The simulator's

Bank Overlap Unit Emulation is inadequate to allow full recovery.

(i.e., clearing alarms) for these. When the Group 2 variations

are used. A session must be completed by a training "walk-

through.

SYNOPSIS OF MALFUNCTION TESTS

X:RX0501 ("BELECTED" ROD(S) FAIL TO MOVE) THRU X:RX0513

The malfunctions were tested on <u>10-12-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 10'8 amps as part of a Reactor

Startup. The individual malfunctions were activated and cleared.

The test concluded with power at 10'9 amps after the use of the

lift coil disconnect switches was checked for either bringing the

rod to the group or bringing the group to the rod.

The malfunctions were approved for training/licensing

examinations, but a precaution was added to ensure that when

multiple stuck rods are selected -- not to pick all rods within

the same Group 1 or Group 2. Testing showed that this would

result in a lock up of all control rods and an "Urgent Failure"

alarm,

ADDENDUN 4

SYNOPSIS OF MALFUNCTIC. TESTS

The malfunctions were tested on <u>10-12-90</u>. No Ramps or del js were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the reactor was shutdown with all shutdown ban's

withdrawn and all control banks at the bottom. The simulation

was reset before each test.

The test concluded by ensuring that a value of 30 caused the

actual overlap to increase to 167 steps (namely that the next

group started when the previous group reached 107 steps).

The malfunctions were approved for training/licensing examinations.

Only one (1) of these malfunctions may be active at a time. For

XRR0602 and XRR0603 to be used, a further precaution requires the

instructor to override the Digital Rod Position Indication System

(DRPI) Urgent Failure Alarm --- to prevent it from

inappropriately alarming.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

SYNOPSIS OF MALFUNCTION TESTS

X:RX0701 (DROP SELECTED ROD(s)) THRU X:RX0709

The malfunctions were tested on <u>10-12-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% power steady state. Each

malfunction was activated individually, with simulator resets in

between.

The test concluded after the NI channels affected, the

temperature drops and recovery steps were verified for each

malfunction. The simulator was re-initialized for each

malfunction test.

The malfunctions were approved for training/licensing examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:RX0801	DROP GRO	UP 1	RODS	OF	CONTROL	BANK	C
X:RX0802	DROP GPS	UP 2	RODS	OF	CONTROL	BANK	C
X:RX0803	DROP GRO	UP 1	RODS	OF	CONTROL	BANK	D
X:RX0804	DROP GRO	UP 2	RODS	OF	CONTROL	BANK	D

The malfunctions were tested on <u>10-12-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. These malfunctions are logical (TRUE or FALSE).

Initially the plant was at steady state, Test runs were made at

29%, 50%, 75% and 100% power.

The test concluded with a reactor tri, in each scenario and

after verifying cases where a reactor trip is not expected.

The malfunction was approved for training/licensing examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X:RX0901 RODS FAIL TO MOVE IN AUTOMATIC

The malfunction was tested on <u>10-12-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant log diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 50% power steady state, and control

rods in the automatic mode.

The test concluded with steady state conditions after load

changes, borations and dilutions were proven to fail to cause

control rods to respond.

The malfunction was approved for training/licensing examinations.

ADDENDUN 4

SYNOPSIS OF MALFUNCTION TESTS

X: RX0902 __ RODS FAIL TO MOVE IN "MANUAL"

The malfunction was tested on 10-15-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at a 75% power steady state condition.

The test concluded when it was verified that control rods would

not move in "MANUAL" either out or in, and that automatic mode

still worked by selecting "AUTO" and dropping generator load.

The malfunction was approved for training/licensing examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

XRRX1001 AUTO ROD CONTROL CONTROLS TAVE HI OR LOW

The malfunction was tested on 10-15-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 50% steady state power with Control

Rods selected to "AUTO".

The test concluded once it was verified that a value of 5 caused

actual temperature to be controlled higher than reference

temperature -- and that a value of -5 caused actual temperature

to be controlled 5 degrees below the reference temperature.

The malfunction was approved for training/licensing examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:RX1101 (EJECTION OF A BELECTED ROD) THRU X:RX1105

The malfunctions were tested on 10-22-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the test started at 100% power steady state.

The test concluded with data collected on pressurizer pressure,

level, containment temperature and containment pressure at 2

second intervals for approximately 20 minutes overall -- with

no operator action.

The malfunctions were approved for training/licensing examinations.

Note was made about the effects of deficiencies on the

containment sump level indicators and the Radiation Monitoring

System response that is noted elsewhere in this certification

package. The lack of response of the containment sump level

indicators was corrected at a later time in the Performance Test.

An instructor note in the Simulator Response Book emphasizes

that only one rod may be ejected at a time.

SYNOPSIS OF MALFUNCTION TESTS

X:RX1201 FAILURE OF THE AUTOMATIC REACTOR TRIP SIGNAL

The malfunction was tested on <u>10-12-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% power steady state. Separate runs were also made at 75% and 50% power.

The test concluded when it was verified that no automatic reactor trip signal would open the reactor trip breakers, but that the manual trip function still worked. To test the ATWS, Reactor Coolant Pumps were tripped, the feed pumps were run to zero, The malfunction was approved for training/examinations, with the precaution that (1) a simultaneous loss of heat removal, (2) this malfunction, and (3) power level greater than 75% and (4) operator failure to manually trip within 30 seconds will cause model responses to be unreliable. These conditions represent a simulation limit for which data is being sought. Models will perform reliably at 50% power and below -- even with a concurrent gross heat sink loss.

SYNOPSIS OF MALFUNCTION TESTS

X:RX1202 ATWS: NO TRIP ON (AUTO OR MANUAL) REACTOR TRIP SIGNAL

The malfunction was tested on <u>10-12-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% power steady state. The results

of X:RX1201 were consulted for comparison. The feed isolation

valve to "D" Steam Generator was then shut. The "C" Reactor

Coolant Pump was tripped, and then the main turbine was tripped.

The test concluded when it was verified that (1) neither an

automatic nor a manual trip signal would function (2) that

opening power supplies to "Rod Drive" would cause rods to fall

into the core, and (3) the results were reverified against the

results of malfunction X:RX1201.

The malfunction was approved for training/examinations, with the

same general precautions stipulated under the previous

malfunction X:RX1201 "Failure of the Automatic Reactor Trip

Signal".

SYNOPSIS OF MALFUNCTION TESTS

X:RX1273 FAILURE OF AUTO SI SIGNAL

The malfunction was tested on <u>10-12-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% power steady state, Separate

runs were made with (1) steam breaks and (2) ruptured Steam

Generator as the causes for the SI signal.

The test concluded when it was verified that an automatic SI

signal would not occur -- but that the manual signal still

functioned in each case.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X: RX1204 FAILURE OF THE AUTO PHASE "A" ISOLATION SIGNAL

The malfunction was tested on 10-12-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 50% power steady state. A large break

LOCA was activated to generate the SI and Phase "A" Containment

Isolation signals.

The test concluded when it was verified that no automatic phase

"A" signal or valve reposition would occur -- but that manual

Initiation of the signal was effective. The relevant valves

were checked individually before and after by the applicable

addendum of the actual plant's Emergency Operating Procedures.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:RX1205 FAILURE OF THE AUTOMATIC PHASE "B" ISOLATION BIGNAL

The malfunction was tested on <u>10-12-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% power steady state. A large break

LOCA was activated to generate the Phase "B" Isolation Signal.

The test concluded when it was verified that an automatic phase

"B" signal would not activate at the "HI-2" setpoint -- but that

the manual phase "B" signal was still effective.

The malfunction was approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X:RX1206 FAILURE OF THE AUTOMATIC (MAIN STEAM) ISOLATION SIGNAL

The malfunction was tested on <u>10-12-90</u>. No Ramps or delays <u>were</u> used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% power steady state. Separate

runs were made with (1) a steam break outside containment and

(2) a cold leg rupture to generate main steam isolation signal.

The test concluded when it was verified that an Automatic Main

Steam Isolation did not occur and that the Manual Main Steam

signal was still effective.

The malfunction was approved for training/exarinations.

SYNOPSIS OF MALFUNCTION TESTS

X:RX1207 REACTOR TRIP BREAKER FAILS TO OPEN (TRAIN "K") X:RX1208 REACTOR TRIP BREAKER FAILS TO OPEN (TRAIN "S")

The malfunctions were tested on <u>10-23-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100 % power steady state and each

malfunction was tested individually. (The simulator was reset

in between runs).

The test concluded after a manual reactor trip and verification

that the selected breaker failed to open.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

4 - 15

SYNOPSIS OF MALFUNCTION TESTS

X:RX1301 DIGITAL ROD POSITION F.LURE (DATA A) X:RX1302 DIGITAL ROD POSITION FAILURE (DATA B)

The malfunctions were tested on <u>10-13-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic disgrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% power steady state, with each

of the malfunctions activated individually.

The test concluded when it was verified that for the activation

of each malfunction individually, the half-accuracy indications

occurred and that by moving rods that the precise +/- accuracy

values existed for the existing failure.

0

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:RX1401 (INDIVIDUAL FAILURES OF DIGITAL ROD POSITION INDICATING THRU CHANNELS (DRPI) FOR SELECTED RODS). X:RX1415

The malfunctions were tested on 10-13-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% power steady state and the

malfunctions were activated individually and sequentially.

The test concluded when it was verified that the selected

malfunction was actually associated with each specified ROD/DRPI

Channel and that the Rod Bottom General Warning and DRPI Rod

Deviation and Urgent Failure Alarm(s) also appropriately

corresponded.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X:RX150. COMPLETE LOSS OF (DIGITAL ROD POSITION INDICATION) DRPI

The malfunction was tested on <u>10-13-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% power steady state.

The test concluded with the loss of all position indicating

light-emitting diodes (LED's) and proper annunciation verified.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:RX1601	FAIL ROD BLOCK C-1	
X:RX1602	FAIL ROD BLOCK C-2	
X:RX1603	FAIL ROD BLOCK C-3	
X:RE1604	FAIL ROD BLOCK C-4	

The malfunctions were tested on <u>10-23-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially for the test of the C-1 Block, the initial condition

was 10% power with the P10/P-7 input unblocked. Power was

increased to greater than 20% to ensure that the rod block was

activated.

The test concluded when the malfunction was activated and it was verified that rods could then be withdrawn in "MANUAL".

and a shall the manufal of the state of the

Initially for the test of the C-2 Block, the initial condition

was 100% power. Power was increased to slightly over 103% with

caution exercised to ensure that a margin to the OPAT setpoints

was still provided. The rod block alarm was verified.

The test concluded when the malfunction was activated and the

failure of the C-2 Block to prevent rod withdrawal was verified.

The malfunction was cleared and then it was verified that a

steady 100% power level could be restored,

SYNOPSIS OF MALFUNCTION TESTS

(CONTINUED)

X:RX1601	FAIL ROD BLOCK C-1
X:RX1602	FAIL ROD BLOCK C-2
X:RX1603	FAIL ROD BLOCK C-3
X:RX1604	FAIL ROD BLOCK C-4

Initially for the test of the C-3 Block and the C-4 Block, the

initial conditions were again 100% power steady state. The

Simulator is configured to match the Units - where the OTAT and

OPAT rod steps are disabled.

The test concluded when it was verified that with the

malfunctions activated and 2 of 4 of the OT and OPAT roc steps

energized that rods could still be moved in either direction in

auto or manual.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:RX1701 RODS MOVE AT MINIMUM SPEED IN AUTOMATIC X:RX1702 RODS MOVE AT MAXIMUM SPEED IN AUTOMATIC

The malfunctions were tested on <u>10-22-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 50% power steady state. Load was

increased and decreased to create temperature errors for each

individually activated malfunction.

The test concluded when on in/out transient had been created for

each case and it had been verified that the respective minimum

and maximum speed indication and actual effects had occurred.

When the malfunctions were cleared the reactor was at a final

power level of 45%, steady state.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALPUNCTION TESTS

X:RX1601 CONTROL BANKS GO OUT WHEN "IN" IS REQUIRED. X:RX1602 CONTROL BANKS GO IN WHEN "OUT" IS REQUIRED.

The malfunctions were tested on 10-22-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 50% power steady state. The "AUTO"

control mode was selected.

The test concluded when it was verified that control rods would

move "IN" when a temperature error occurred with a load increase

with X:RX1802 and that a load reduction caused rods to move

"OUT" when X:RX1801 was active.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:RX1901 Reactor Trip Bypass Breaker (Train "R") Opens X:RX1903 Feactor Trip Bypass Breaker (Train "S") Opens

X:RX1902 REACTOR TRIP BYPASS BREAKER (TRAIN "K") OPENS X:RX1904 REACTOR TRIP BYPASS BREAKER (TRAIN "S") OPENS

The malfunctions were tested on 19-11-90 and retested on 11-07-90. No ramps or delays were used. All these malfunctions and other associated operations are logical (TRUE or FALSE).

Correct Annunciation was verified using the Malfunction Response Book, and the related plant logic and elementary diagrams and the Westinghouse D-22 drawings.

Initially the plant was at 100% steady-state power. Each

malfunction was tested concurrently with logical variables for

the rack-in and closure of bypass breakers. This gave a structure

wherein the most applicable plant surveillance procedure (TADOT

1PSP03-SP-0006R(S)) served as a test procedure for the logic of

the simulation.

The test concluded when it was noted that these malfunctions and

the logical variables for the bypass breaker rack-in and closure

could not be used for training. Most noticeably:

A. Both bypass breakers could be racked in and one of them could be shut - without a reactor trip.

B. The second bypass breaker could not be shut, but neither would this cause a reactor trip.

C. The rack-in of a bypass breaker caused the malfunction of its associated "Main Breaker to fail.

D. The rack-in and closure of a bypass breaker while its associated main breaker was shut caused the associated bypass breaker malfunction to fail.

E. Treated as a sole entity, the individual malfunctions X:RX1902 and X:RX1904 for the Reactor Trip Breakers would work -- and actually open the designated breaker. However any combination would fail.

SYNOPSIS OF MALFUNCTION TESTS

(CONTINUED)

X:RX1901	Reactor	Trip	Bypass	Breaker	(Train	"R")	Opens	
X:RX1903	Reactor	Trip	BYDASS	Breaker	(Train	"8")	Opens	of State Addition of the second
X:RX1902	REACTOR	TRIP	BYPASS	BREAKER	(TRAIN	"R")	OPENS	1111-1
X:RX1904	REACTOR	TRIP	BYPASS	BREAKEP	(TRAIN	(1181)	OPENS	Concernant Concerns

The 10-11-90 test concluded that all items would be inappropriate for training due to the (1) Lack of consequences for wrong actions, and (2) the extensive logic discrepancies discovered. The malfunctions were approved for training/examinations <u>after</u> the 11-07-90 retest, and with the addition of precautions to the Malfunction Response Book and the Instructor Remote Response Book.

The results of the 11-07-90 retest concluded:

The Logical variables for the Reactor Trip Bypass
Breakers Rack-in and closure have a logical state that
differs from the 217 other similar type functions
(labelled "Instructor Remote Functions"). They can now
be operated, but must be specifically deactivated
immediately before proceeding to the next step. This
discovery obviated the discrepancies a. . and d
mentioned above.

 The software corrections eliminated the rest of deficiency b, and fully corrected c and e above.

ADDENDUN 4

SYNOPSIS OF MALFUNCTION TESTS

X:RX2001 (SELECTED ROD(s)) STUCK ON A REACTOR TRIP THRU X:RX2009

The malfunctions were tested on <u>10-13-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% power steady state. Successive

reactor trip and resets were performed.

The test concluded when it was verified that the selected rod

did actually stick in its last position prior to the trip.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

 $\langle \rangle$

SYNOPSIS OF MALFUNCTION TESTS

X:RP2101 LOW FLOW REACTOR TRIP (BISTABLE) VARIOUS LOOPS; VARIOUS X:RP2112 CHANNELS)

The malfunctions were tested on <u>10-13-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% power steady state. Several

resets and re-initializations were done as 2/3 logic was spot

checked.

The test concluded when it was verified that the specified

bistables malfunction caused the precisely corresponding

bistable lamps to turn on, and when all spot checks of 2/3 logic

on a loop caused a reactor trip.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:RP2201 OP/DT REACTOR TRIP (BISTABLES) LOOP 1, 2, 3, 4 THRU X:RP2204

The malfunctions were tested on <u>10-15-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was placed at 75% power steady state. Reset

and re-initialization occurred as the 2/4 reactor trip logic was

verified.

The test concluded when the selected bistable malfunction was

verified as having energized the precisely applicable bistable

lamp and when the reactor trip on 2 of 4 channels was proven.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:RP2205 OP/DT RUNBACK (BISTABLES) LOOP 1, 2, 3, 4 THRU X:RP2208

The malfunctions were tested on <u>10-16-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was placed at 100% power steady state.

The test concluded when it was verified that the selected

bistable malfunction actually lit the corresponding bistable

lamp. (Runback itself was not checked since the simulator has

disabled these to conform to the temporary modification on Unit

#1

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:RF2209 OT/DT REACTOR TRIP (BISTABLES) LOOP 1, 2, 3, 4 THRU X:RF2212

The malfunctions were tested on <u>10-13-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was put at 100% power steady state. Reset

and re-initializations occurred as the 2/4 reactor trip logic

was tested.

The test concluded when it was verified that the selected

bistable energized the precisely corresponding bistable lamp

and when the reactor trip on 2 of 4 channels was verified,

The malfunctions was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:RP2213 OP/DT RUNBACK (BISTABLES) LOOP 1, 2, 3, 4 THRU X:RP2216

The malfunctions were tested on <u>10-16-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% power steady state.

The test concluded when it was verified that the selected

bistable energized the precisely corresponding bistable lamp.

No actual runback was tested since this runback is disabled on

the simulator to correspond to the temporary modification on

Unit #1.

The malfunctions were approved for training/eximinations.

SYNOPSIS OF MALFUNCTION TESTS

X:RX2301 LOW TAVG (BISTABLES) LOOP 1, 2, 3, 4 THRU X:RX2304

The malfunctions were tested on <u>10-13-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This mulfunction is logical (TRUE or FALSE).

Initially and finally the conditions were 100% power steady state

The test concluded when the selected bistable malfunction was

proven to energize the corresponding bistable lamps.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X:RX2305 LO-LO TAVG (BISTABLES) LOOP 1, 2, 3, 4 THRU X:RX2308

The malfunctions were tested on <u>10-13-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially and finally the conditions were 100% steady state

power.

The test concluded when it was proven that the selected bistable

malfunction energized the corresponding bistable lamp and it had

been verified that 2 of 4 bistables would prevent steam dump

operation.

The malfunctions were approved for training/examinations.

ADDENDUN 4

SYFOPSIS OF MALFUNCTION TESTS

X:RP2401 SPRAY ACTUATION TEST SYPASS (SISTABLES) CHANNELS 1,2,3,4 THRU X:RP2404

The malfunctions were tested on <u>10-13-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially and finally the conditions were 100% power steady state

power.

The test concluded when the selected bistable malfunction was

verified as having activated the appropriate bistable lamps and

alarms.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:RP2405 (CONTAINMENT EUILDING) HI-1 (BISTABLES) CHANNELS 1,2,3 THRU X:RP2407

The malfunctions were tested on <u>10-13-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the simulation was set at 100% steady state power.

The test concluded when the lighting of the appropriate bistable

lamp was verified for each malfunction and the SI actuation on

2 of 3 logic was verified.

The malfunctions were approved for training/examinations.

Drawing comparisons reve, led a typographical error on the menu

listing the malfunction label of Channel 1. 2. 3 actually

represent actual plant Channels 2, 3 and 4. The Malfunction

Response Book was annotated.

EYNOPSIS OF MALFUNCTION TESTS

X:RP2406 (CONTAINMENT BUILDING) PRESSURE EI-3 (BISTABLES) THRU CHANNELS 1, 2, 3, 4 X:RP2411

The malfunctions were tested on <u>10-13-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the simulation was set at a steady state 100% power level.

The test concluded when the malfunction were verified as having

energized the appropriate bistable lamp; and when the 2 of 4

logic resulted in a Phase "B" actuation with the containment

spray actuation with the exception of the actual spray pump

starts.

The malfunctions were approved for training/examinations, with

the single deficiency that one annunciator "CNTMT SPRAY ACT" does

not come in. The Malfunction Response Book was updated in the

interim for this deficiency.

SYNOPSIS OF MALFUNCTION TESTS

X:RP2501 PRESFURIZER PRESSURE LO REACTOR TRIP (BISTABLES) THAU CHANNELS 1, 2, 3 4 X:RP2504

The malfunctions were tested on <u>10-15-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the simulation was placed at a steady state 100% power

condition.

The test concluded when verification was made that each

malfunction energized the appropriate bistable light and the 2/4

coincidence was proven to produce reactor trips.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X:RP2505 PRESSURIZER PRESSURE LO SI (BISTABLES) CHANNELS 1,2,3,4 THRU X:RP2508

The malfunctions were tested on <u>10-13-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant simulation was kept at 100% steady state.

The test concluded when it was verified that each selected

malfunction energized the appropriate bistable light and the SI

actuation on 2 of 4 channels was proven.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:RF2509 PRESSURIZER PRESSURE HI REACTOR TRIF (BISTABLES) THRU CHANNELS 1, 2, 3, 4 X:RF2512

The malfunctions were tested on <u>10-13-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant simulation was kept at a 100% steady state

power condition.

The test concluded when it was verified that the selected

malfunctions energized the appropriate bistable lights and the

reactor trip on 2 of 4 channels was proven.

The malfunctions were approved for training/examinations.

SYNOI'SIS OF MALFUNCTION TESTS

X:RP2513 <u>PRESSURIZER PRESSURE BLOCK (BISTABLES) CHANNELS 1, 2, 3</u> THRU X:RP2515

The malfunctions were tested on <u>10-19-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was put in a shutdown condition emulating a

heatup operation with primiry system at approximately 455 psig.

Reactor Coolant temperature was 380'F and (the reactor coolant

pumps for Loops 1 and 2 were running.

The test concluded when it was verified that the selected

malfunctions energized the appropriate bistable lights. After

this, the Main Steam Isolation valves were opened and the 2 of 3

Channel coincidence was verified to produce both an SI signal and

a Main Steam Isolation signal.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:RP2516 PRESSURIZER LEVEL HI REACTOR TRIP (BISTABLES) THRU CHANNELS 1, 2, 3, 4 X:RP2519

The malfunctions were tested on <u>10-13-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was kept at a continuous 100% steady state

power condition. Permissive bistable P-7 was verified as "TRUE".

The test concluded when it was verified that the selected

malfunctions energized the appropriate bistable lamps and when a

reactor trip on the 2 of 4 channel coincidence was proven.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

4 - 37

SYNOPSIS OF MALFUNCTION TESTS

X:RP2601 <u>REACTOR COOLANT FUMP (RCP)</u> UNDERVOLTAGE REACTOR TRIP THRU (BISTABLES) FOR CHANNELS 1, 2, 3, 4 X:RP2604

The malfunctions were tested on <u>10-16-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was kept at a 75% steady state power level

condition. Permissive bistable P-7 was verified as "TRUE".

The test concluded when it was verified that the selected

malfunctions each energized the appropriate bistables, and after

a reactor trip on the 2 of 4 channel coincidence was proven.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

a

SYNOPSIS OF MALFUNCTION TESTS

X:RP2605 <u>REACTOR COOLANT PUMP (RCP) UNDERFREQUENCY REACTOR TRIP</u> THRU (<u>BISTABLES</u>) CHANNELS 1, 2, 3, 4 X:RP26(8

The malfunctions were tested on <u>10-13-50</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was maintained at a 100% steady state power

condition. Permissive bistable P-7 was verified as "TRUE".

The test concluded when it was verified that the selected

malfunctions energized the appropriate bistable lights and when

the reactor trip on the 2 of 4 channel coincidence was proven.

The malfunctions were approved for training/examinations.

ADDENDUK 4

SYNOPSIS OF MALFUNCTION TESTS

X:NI2701 SOURCE RANGE (NUCLEAR INSTRUMENT) HI (BISTABLES) AND CHANNELS 1, 2 X:NI2702

The malfunctions were tested on 10-13-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was shutdown with the shutdown banks

withdrawn and the control banks fully inserted.

The test concluded when it was verified that the selected

malfunctions each energized their appropriate and associated

bistable, and when the 1 of 2 channel coincidence was proven to

produce a reactor trip.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:NI2703 BOURCE RANGE CHANNEL BYPASS (BISTABLES) CHANNELS 1, 2 AND X:NI2704

The malfunctions were tested on 10-13-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was shutdown, with shutdown banks fully

withdrawn and all control banks fully inserted.

The test concluded when it was verified that the selected

malfunctions each energized their appropriate and associated

bistable, and when it was proven that a reactor trip failed to

occur when the previous applicable malfunctions (X:NI2701 or

X:NI2702) were simultaneously activated.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:NI2705 INTERMEDIATE RANGE NUCLEAR INSTRUMENT HI (BISTABLES) AND CHANNELS 1, 2 X:NI2706

The malfunctions were tested on <u>10-13-90</u>. No Ramps <u>or</u> delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was placed at a 10's amps steady state power

level.

The test concluded when it was verified that the selected

malfunctions each energized their appropriate and associated

bistables, and the reactor trip on 1 of 2 channel coincidence was

proven.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:NI2707 INTERMEDIATE RANGE CHANNEL EYPASS (BISTABLES) AND CHANNELS 1, 2 X:NI2708

The malfunctions were tested on <u>10-13-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was placed at a 10" amps steady state power

level.

The test concluded when it & verified that the selected

malfunctions each energized their appropriate and associated

bistables, and when proven that a reactor trip failed to occur

when the corresponding previous malfunction (X:NI2705 or X:NI2707

was simultaneously activated).

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:NI2709 INTERMEDIATE RANGE NUCLEAR INSTRUMENT P-6 (BIS (ABLES) AND CHANNELS 1, 2 X:NI2710

The malfunctions were tested on <u>10-13-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was placed at a 10-10 amps steady state power

level. Then power was reduced to slightly below 1010 amps and the

P-6 bistables were verified as de-energized.

The test concluded when it was verified that the selected

malfunctions each energized their appropriate and associated

bistables, and when it was proven that the source range

instruments could be manually and prematurely de-energized when

1 of 2 channel coincidence was met.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:NI2801 <u>POWER RANGE CHANNEL P-8 (BISTABLES) CHANNELS 1, 2, 3, 4</u> THRU X:NI2804

The malfunctions were tested on <u>10-13-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was placed at a 10'8 amps steady state power

level. All P-8 bistables were verified de-energized.

The test concluded when it was verified that the selected

malfunctions each energized their appropriate and associated

bistables. It was also verified that no individual stop of a

reactor coolant pump would cause a trip but that a reactor trip

occurred if one pump was stopped with 2 of 4 channels of this

malfunction activated.

The malfunctions were approved for training/examinations.
ADDENDUH 4

SYNOPSIS OF MALFUNCTION TESTS

X:NI2805 POWER RANGE CHANNELS P-9 (BISTABLES) CHANNELS 1, 2, 3, 4 THRU X:NI2808

The malfunctions were tested on <u>10-13-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was placed at a 30% steady state power level.

The test concluded when it was verified that the selected

malfunctions each energized their appropriate and associated

bistables, and when the manual trip of the turbine would cause

a reactor trip if the 2 of 4 channel coincidence was met for

these P-9 bistables

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:NI2609 POWER RANGE CHANNELS P-9 (BISTABLES) CHANNELS 1, 2, 3, 4 THRU X:NI2812

The malfunctions were tested on <u>10-13-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was placed at a 30% steady state power level.

The test concluded when it was verified that the selected

malfunctions each energized their appropriate and associated

bistables, and when the manual trip of the turbine would cause

a reactor trip if the 2 of 4 channel coincidence was met for

these P-9 bistables

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

6

ADDENDUN 4

SYNOPSIS OF MALPUNCTION TESTS

X:NI2901 POWER RANGE OVERPOWER ROD STOP EYPASS (BISTABLES) THRU CHANNEL 1, 2, 3, 4 X:NI2904

The malfunctions were tested on <u>10-13-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was placed at a 100% steady state power

level: (1) each malfunction was triggered separately (2) channel

41 was failed low and X:NI2901 was tested to verify that the same

effect was achieved as if the rod stop bypass switch was used.

The test concluded when it was verified that each selected

malfunction energized its appropriate and associated

bistable, and that any of the malfunctions correspond to

the same effect as using the Rod Stop Bypass Switch,

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:NI2905 POWER RANGE (HI FLUX LOW SETPOINT BISTABLES) THRU CHANNEL 1, 2, 3, 4 X:NI2908

The malfunctions were tested on <u>10-13-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was placed at a 10% steady state power

level, then steady state conditions were established below 10%

power to verify that the condition that would allow a manual

permissive block was not met.

The test concluded when it was verified that the selected

malfunction each energized their appropriate and associated

bistable, and that a 2 of 4 channel coincidence was proven to

cause a reactor trip.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:NI2909 POWER RANGE (HI FLUX HI SETPOINT BISTABLES) THRU CHANNEL 1, 2, 3, 4 X:NI2912

The malfunctions were tested on 10-13-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was placed at a 10% steady state power

level. (The bistable setpoints are 109% power)

The test concluded when it was verified that the selected

malfunction each energized their appropriate and associated

bistable, and that a 2 of 4 channel coincidence cause a reactor

trip.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:NI2913 POWER RANGE RATE (BISTABLES) CHANNELS 1, 2, 3, 4 THRU X:DI2916

The malfunctions were tested on <u>10-16-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was placed at a 75% steady state power

level.

The test concluded when it was verified that the selected

malfunction each energized their appropriate and associated

bistable, and that a reactor trip occurs if the 2 of 4 channel

coincidence is met.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XNII3001 <u>BOURCE RANGE CHANNEL HIGH (BISTABLES)</u> AND <u>CHANNEL 1, 2, 3, 4</u> XNII3002

The malfunctions were tested on <u>10-16-90</u>. <u>No</u> Ramps <u>or</u> delays <u>were</u> used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was placed at a 10-8 amps steady state power

level. Power was then reduced to a level slightly less than

10,000 cps in the source range.

The test concluded when it was verified that the selected

malfunction each energized their appropriate and associated

bistable, and that the energizing of either bistable caused a

reactor trip.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:NI3101 (BOURCE RANGE) CHANNEL 31 FAILS LOW AND X:NI3102 (BOURCE RANGE) CHANNEL 32 FAILS LOW

The malfunctions were tested on <u>10-16-90</u> and <u>11-12-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially power was at a steady state 10.8 amps. Power was then

reduced to 10,000 cps in the Source Range.

The test concluded on 10-16-90 as unsatisfactory because although

the indications were acceptable. The annunciator for the "SR HI

Volts Failure" did not energize.

The deficiency was corrected and a satisfactory retest was done

on 11-12-90.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XRNI3201 BOURCE RANGE CHANNEL 31 SLUGGISH AND XRNI3202 BOURCE RANGE CHANNEL 32 SLUGGISH

The malfunctions were tested with a value of -20 on <u>10-16-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Ma. function Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the reactor was shutdown with all shutdown banks

withdrawn and all control banks fully inserted. A reactor startup

was then begun, and the malfunctions were separately activated

and cleared.

The test concluded when it was observed that the particular

selected malfunction channel read significantly slower than the

unaffected channel.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:RF3301 INTERMEDIATE RANGE CHANNELS INPUT TO THE SOURCE RANGE BLOCK (P-6) CIRCUIT FAILS.

The malfunction was tested on 10-16-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALS2).

Initially power was established just below the P-6 setpoint of

10-10 amps. The malfunction was activated and power was raised.

The test concluded when it was verified that the Source Range

Instruments could not be de-energized and that the reactor trip

occurred at 105 cps.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:NI3401	IR CHANNEL 35 OVER COMPENSATED
X:NI3402	IR CHANNEL 36 OVER COMPENSATED
X:NI3501	IR CHANNEL 35 UNDER COMPENSATED
X:NI3502	IR CHANNEL 36 UNDER COMPENSATED

The malfunctions were tested on <u>10-16-90</u> and <u>11-07-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was placed at 10.8 amps with power being

reduced and raised alternately as the malfunctions were

individually triggered,

The test concluded when it was verified that X:NI3401 and

X:NI3402 cause the selected channel to read lower than the

unaffected channel, and that X:NI3501 and X:NI3502 caused the

affected channel to read high.

The malfunctions were approved for training/examinations, with an

instructor notation not to use over compensation malfunction for

startup scenarios since the character of the malfunctions make

the affected channel go straight to 10'16 amps in that case,

which could be unduly misleading. A retest was required on 11-07-

90 because of the discovery that X:NI3501 did not activate. A

typographical error in coding was corrected and this malfunction

was cleared for training and examinations after the retest.

SYNOPSIS OF KALFUNCTION TESTS

X:NI3601 IR CHANNEL 35 FAILS HIGH X:NI3602 IR CHANNEL 36 FAILS HIGH

The malfunctions were tested on <u>10-16-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially power was established at a steady state 10'8 amps.

The test concluded when it was verified that either malfunction

would cause a reactor trip.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X:NI3701 IR CHANNEL 35 FAILS LOW X:NI3702 IR CHANNEL 36 FAILS LOW

The malfunctions were tested on <u>10-16-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially power was established at a steady state 10-8 amps.

The test concluded when it was read downscale and the associated

SUR channel will at first show a negative value and return to

zero.

The malfunctions were approved for training/examinations.

ADDENDUH 4

SYNOPSIS OF MALFUNCTION TESTS

X:NI3861 LOSS OF POWER TO POWER RANGE CHANNEL; THRU CHANNELS 41, 42, 43, 44 X:NI3804

The malfunctions were tested on <u>10-15-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially power was established at a steady state of 100% power.

The malfunctions were triggered separately and sequentially.

The test concluded after verifying that (1) all of the affected

channel's bistables tripped (2) that panel CP-005 indication

remains (the cause is loss of control power, not instrument

power) and (3) that malfunction removal will return the channel

to normal and (4) that the logic and effect of using the Rod Ctop

Bypass Switch by the plant abnormal procedure could be done.

The malfunctions were approved for training/examinations, with

instructor cautions on the control power fuses which are not

in the simulation switch check program,

SYNOPSIS OF MALFUNCTION TESTS

X:RC0101 RCS COLD LEG RUPTURES, LOOPS A. B. C. D THRU X: EC0104

The malfunctions were tested on <u>10-18-90</u> and <u>11-01-90</u>. No Ramps but 5 second delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially power was established at 100% steady state. On screen

monitoring of software variables for Pressurizer Pressure and

containment pressure was conducted simultaneously with a data

recording of points for these pressures, Pressurizer level and

containment temperature which were taken at 1/2 second intervals

for 15 minutes. X: RC0101 was run once with a Loss of Offsice

Power and once as a stand-alone malfunction, Each of the

rema ning three were run once, as individual stand-alone

malfunctions,

The test concluded at 20 minutes on the 10-18-90 test and at 90

minutes on the 11-01-90 retest of an associated deficiency

report.

The malfunctions were approved for training/examinations.

See Addendum 9 for a synopsis of the LOCA with LOOP Transient

Test results.

SYNOPSIS OF MALFUNCTION TESTS

XNRC0301 RCS LEAK ON FLOW TRANSMITTER; LOOPE A, B, C, D THEU XNRC0304

The malfunctions were tosted at severity values of 1.0 and 0.5 on 10-23-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially power was established at 100% steady state, Each

ministion was activated separately after reset, and recording

of leak rates.

The test concluded after verifying that due to the locations

emulated, that loops A & C flow instruments indication fails

high, and loops F & D low instruments indication fails low and

that the leak rates for the severity levels of 0.5 and 1.0 are

74 gpm and 150 gpm, respectively.

The malfunctions were approved for training/examinations,

with notations for instructors that the deficiencies

against the Radiation Monitor Response - recorded generically,

also applies for these malfunctions. The generic deficiency

against the too rapid and large containment pressure response is

also noted in the Malfunction Response Book.

SYNOPSIS OF MALFUNCTION TESTS

XNRC0401 RCS LEAK (REACTOR VESSEL HEAD VEN")

The malfunction was tested with severity values of 1.0 and 0.5 on 10-25-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially power was set at 100% steady state.

The test concluded with "erification of gross indications of

approximately 100 gpm and 50 gpm leaks and the CVCS and makeup

systems maintaining inventory,

The malfunction was approved for training/examinations, with

instructor notes that the containment pressure rise is too large

for the magnitude of the leak. This deficiency is not written

against this particular malfunction, but it is recorded as being

against the Containment Cooling System Model(s).

ADDELOUM 4

SYNOPSIS OF KALFONCTION YESTS

XNRC0501 RCS LEAK (REACTOR VESSEL) HEAD FLANGE

The malfunction was tested at maximum severity (1.0) on <u>10-11-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially power was established at 75% steady state. On screen

monitoring of mnemonics for VCT mass and PZR/RCS total mass was

done to calculate on exact leak rate.

The test concluded with power remaining at 75% and the CVCS/

Makeup System maintaining inventory, and with the maximum

severity leak rate checked at 30 gpm.

The malfunction was approved for training/examinations, with

notation to the Instructors that the annunciation occurs

immediately upon initiation of the malfunction.

SYNOPSIS OF MALFUNCTION TESTS

X:RC0701 SHEARED REACTOR COOLANT PUMP SHAFT; PUMPS A, B, C, D TERU X:RC0704

The malfunctions were tested on <u>10-25-90 and 11-14-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially four runs were made -- 2 at 100% power and 2 at 29%

power to test the effects above and below the P-8 setpoint.

The test concluded when it was verified that (1) any of the

individual malfunctions would cause a reactor trip above the P-8

setpoint and the indications stipulated in the Malfunction

Response Book were me: (2) that the reactor would not trip for

any individual malfunction below P-8 and that the general trends

of Low-then-High level and High-then-Low feed flow occurred for

the S/G on the affected Loop.

The malfunctions were approved for training/examinations.

SYNOPEIS OF MALFUNCTION TESTS

X:RC0801 LOCKED RCP ROTOR; PUMPS A, B, C, D THRU X:RC0804

The malfunctions were tested on 10-29-90 and 11-14-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially separate tests were run at 100% power and at 29% power

(that is, above and below the P-8 setpoint). The simulator was

reset for each test.

The test concluded when it was verified that (1) any of the

individual malfunctions would cause a reactor trip above the P-8

setpoint, (2) the reactor did not trip for any individual

malfunction below the P-8 setpoint.

The malfunctions were a proved for training/examinations, with

precautions to Instructors to note that the models do not support

the responses for damaged fuel.

SYNOPSIE OF MALFUNCTION TESTS

X:RC0901 RCF TRIPS ON UNDERFREQUENCY; PUMPS A, B, C, D THRU X:RC0904

The malfunctions were tested on 10-15-90. No Ramps _r delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was set to 30% power steady state.

malfunctions were entered separately, with resets in between.

The test concluded when it was verified that no individual

malfunction would cause a reactor trip but that a reactor trip

occurred when the 2 of 4 coincidence was met, and that all other

RCP's would also trip.

The malfunctions were approved for training/examin tions.

SYNOPSIS OF MALFUNCTION TESTS

X:RC1001 RCP TRIPS ON UNDERVOLTAGE: PUMPS A. B. C. D THRU (FAILURE OF THE UNDERVOLTAGE DEVICE ONLY) X:RC1004

The malfunctions were tested on <u>10-15-9(</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially power was set to 75% steady state, Individual

malfunctions were triggered separately with reset/

reinitialization in between.

The test concluded when it was verified that no individual

malfunction would cause a reactor trip unless accompanied by an

actual Loss of Flow, and that 2 of 4 malfunctions would indeed

cause a reactor trip but that the other RCP's would continue to

run.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XNRC1301 PRESSURIZER PORV LEAK PCV-655 AND XNRC1302 PRESSURIZER PORV LEAK PCV-656

The malfunctions were tested at severity values of 0.5 and 1.0 on 10-18-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially the plant was placed at 100% steady state; the

malfunctions were triggered and deactivated individually.

The test concluded when pressure was seen to steadily decrease

and the associated block valve was shut and pressure had been

restored to normal.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X:RC1501 PRESSURIZER SPRAY VALVE FAILS CLOSED PCV-655B AND X:RC1502 PRESSURIZER SPRAY VALVE FAILS CLOSED PCV-655C

The malfunctions were tested on <u>10-24-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially power was set to 100% steady state. The malfunctions

were sequentially triggered and deactivated.

The test concluded with the unit still at 100%, both spray valves

closed and pressure slightly above the starting pressure.

The malfunctions were approved for training/examinations.

ADDENDUN 4

SYNOPSIS OF MALFUNCTION TESTS

XRPZ1601 PRESSURIZER SPRAY VALVE FAILS OPEN PCV-655B AND XRPZ1602 PRESSURIZER SPRAY VALVE FAILS OPEN PCV-655C

The malfunctions were tested at a maximum severity on <u>10-24-90</u>. No Ramps but a second delay was used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially power was set to 100% steady state, the malfunctions

were triggered sequentially and no operator action was taken.

The test concluded with the reactor tripped and SI activated.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X: PZ1701 PZR PRESSURE CONTROL FAILS 30 PSI (LOW) AND X: PZ1702 PZR PRESSURE CONTROL FAILS 30 PSI (HIGH)

The malfunctions were tested on 10-22-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was set to EO% power steady state with a

constant pressure of 2238 psig. The malfunctions were entered

and deactivated sequentially,

The test concluded when pressure was seen to reach and stabilize

value ±30 psi of 2238 psig, and after the malfunctions were

removed and pressure was restored to 2235 psig.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XRPL1801 PRESSURIZER LEVEL CONTROL MALFUNCTION

The malfunction was tested were values of +40.0 and -40.0 on 10-22-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially power was set to 50% steady state in order to use a

starting pressurizer water level in the middle of its control

band.

The test concluded with pressurizer level proven to reach its

limitation points of 60% and 25% respectively.

The malfunction was approved for training/examinations.

4 - 69

SYNOPSIS OF MALFUNCTION TESTS

XNRC1901 (PRESSURIZER PRESSURE TRANSMITTERS) FAIL TO ANY THRU POSITION: PT-455, 456. 457, 458 XNRC1904

The malfunctions were tested with maximum and minimum values of 1.0 and 0.1 on <u>10-15-90</u> with retests to correct annunciation difficulties on 11-06-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially power was always set to 75% power steady state and a

reinitialization was done for each individual test.

The test concluded with the bistable activations associated with

the particular channel verified and the opening of a PORV for

each channel selectable for control, and the closure of the PORV

with the affected channel de-selected, and all indications

returned to normal.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

4 - 70

SYNOPSIS OF KALFUNCTION TESTS

XNRC2001 (PRESSURIZER WATER LEVEL) TRANSMITTER FAils; LT-465, THRU 466, 468 XNRC2003

The malfunctions were tested at minimum and maximum values of 0.1 and 1.0 on 10-22-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially power was a steady 50%. The malfunctions were triggered

individually and sequentially with resets in between.

The test concluded after verifying that the particular letdown

system valves associated with a particular channel had their

actuations verified, that controlling channel failures caused

actual level decreases, that affected controlling channels could

be de-selected, that 465 and 468 could be defeated on low

failures, and that system restoration could be accomplished.

The malfunctions were approved for training after a deficiency on

the LETDOWN valve sequence alarm was corrected on 11-07-90.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

4 - 71

SYNOPSIS OF MALFUNCTION TESTS

X:RC2101 PZR (BACKUP HEATER GROUP) E FAILS "ON"

The malfunction was tested on <u>10-17-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially power was 100%. Pressure was established at 2280 psig

(above the backup heater shutoff point), and with Group E heaters

in "AUTO".

The test concluded with the Group "E" heaters energized and with

verification that they could not be de-energized from the Control

Room by any means other than dropping the power supply.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X: PL2201 (ALL) PZR REATERS FAIL TO COME ON

The malfunction was tested on <u>10-17-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially power was 100% with all Heaters in "AUTO". Spray valves

were shut and in "AUTO" and the master pressure controller was in "AUTO".

The test concluded after taking the master pressure controller

(in "MANUAL") to 42% of signal, verifying the alarm and actuation

signal for Heaters to energize, noting that no heaters would come

on. The test was repeated without the malfunction active to

verify that heaters did energize.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:RC2301 FAILURE OF (INDIVIDUAL P2R HEATER GROUPS) TO COME ON: THRU A, B, C, D, E X:RC2305

The malfunctions were tested on <u>10-17-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially power was 100% and re-stabilized from the previous test

of the above malfunction X: PL2201. The same initial conditions

and procedure was used for each individual malfunction.

The test concluded when it was verified that the selected

malfunction did affect the appropriate group and that remaining

groups could maintain system pressure.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XNRC2401 RCS (WIDE RANGE) PRESSURE TRANSMITTERS FAIL: PT-407 THRU PT-405, 406 XNRC2403

The malfunctions were tested with severity values of 0.25 on 10-22-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially the system was at 350 psig with residual heat removal

trains "A" and "B" in service.

The test concluded with verification that failure of PT-407

caused valves 60C and 61B to close; that PT-406 caused valves

60B and 61A to close; and that PT-405 cause valves 60A and 61C

to close.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XNRC2501	RTD FAILS HOT LEG A TT 410A
XNRC2502	RTD FAILS COLD LEG A TT 410B
XNRC2505	RTD FAILS HOT LEG A TT 413
XNRC2601	RTD FAILS HOT LEG B TT 4202
XNRC2602	RTD FAILS COLD LEG B TT 420B
XNRC2606	RTD FAILS COLD LEG B TT 424
XNRC2701	RTD FAILS HOT LEG C TT 430A
KNRC2702	RTD FAILS COLD LEG C TT 430B
XNRC2705	RTD FAILS HOT LEG C TT 433
XNRC2801	RTD FAILS HOT LEG D TT 440A
XNRC2802	RTD FAILS COLD LEG D TT 440B
XNRC2806	RTD FAILS COLD LEG D TT 444

RTD INSTRUMENT FAILURES

For all + a narrow range instruments 412A, B; 420A, B; 430A, B; and 440A , initial conditions were selected as a mix of 50% and 100% steady state conditions where the minimum and maximum values of 0.1 and 1.0 were individually inserted.

Each channel was originally tested for verification of its effects upon control systems, -- that each failed channel could be defeated, and that the procedural actions of the applicable abnormal operating procedure (i.e., "POPO4") could be performed.

For Wide Range Instrument failures (413, 424, 433, 444) each was verified with initial conditions of Mode 5 and completed when it was proven that these failures did not affect any controls and that all of their associated indications showed values commensurate with their selected failure severity values of 0.1, 0.5, and 1.0.

The malfunctions were tested on <u>10-22-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XNCV0301 TUBE LEAK IN THE LETDOWN HEAT EXCHANGER

The malfunction was tested on 10-17-90. A 1 minute ramp and a 1 minute delay were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially power was put at 100% with on-screen simultaneous

monitoring of software variables for VCT mass and actual letdown

flow, to augment centrol board monitoring.

The test concluded with verification of a low letdown flow

condition, closure of valve PCV-0135, the procession of letdown

outlet flow to zero, visible rises in Component Cooling Water

(CCW) Surge Tank Level and visible increases on Radiation Monitor

RML 8040.

The malfunction was approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X:CV0401 VALVE TCV-0143 DIVERTS TO THE VCT (BECAUSE OF A HIGH FAILURE OF THE ASSOCIATED TEMPERATURE ELEMENT)

The malfunction was tested on 10-17-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially power was at 100% steady-state.

The test concluded when the full diversion of TCV-143 and

associated alarms were verified.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X: CV0601 LETDOWN VALVE PCV-0135 FAILS CLOSED.

The malfunction was tested on 10-17-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially power was set at 100% and on-screen software variable

monitoring of all letdown flow/mass nodes and relief valve flows

to augment the control board monitoring.

The test concluded with verification that all letdown flow

stopped, relief valve PSV-3100 opened to the PRT and high

temperature conditions existed downstroam of the relief valve.

The malfunction was approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X:CV0901 LOSS OF (INDIVIDUAL) CHARGING PUMPS; CENTRIFUGAL "A", THRU CENTRIFUGAL "B", AND POSITIVE DISPLACEMENT X:CV0903

The malfunctions were tested on <u>10-17-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially in a steady state 100%, the pump's whose malfunction to

be tested was started.

The test concluded when the trip and low flow alarm conditions

were verified.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XNRC1101 LETDOWN LEAK IN THE REACTOR CONTAINMENT BUILDING. (RCB)

The malfunction was tested at a severity value of 0.5 on <u>10-17-</u> <u>90. No Ramps or delays were</u> used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially two runs were made (1) one with no operator action and

(2) one taking all appropriate operator actions.

The test concluded after verifying the expected increased

charging flow going beyond the capacity of a single pump,

increases in RCB temperature and pressures automatic letdown

isolation -- and for the second run, the ability to take the

required operator actions to stop the leak and stabilize

conditions.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XNCV1201 LETDOWN LEAK OUTSIDE THE REACTOR CONTAINMENT BUILDING (RCB)

The malfunction was tested at a maximum severity value of 1.0 on 10-29-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially in a 100% steady state condition, the results of the

previous malfunction XNRC1101 were drawn for comparison.

The test concluded when it was verified that the same effects as

the previous malfunction occurred with the exception of RCB

parameters. The malfunction was taken all the way to the point of

the VCT Lo-Lo alarm without operator action.

The malfunction was approved for training/examinations, with

notation in the Malfunction Response Book that the generic and

known deficiency of Radiation Monitoring applies.

SYNOPSIS OF MALFUNCTION TESTS

XNCV1301 LOW PRESSURE LETDOWN LINE LEAK AT (FLOW ELEMENT) FE-132

The malfunction was tested at it's maximum severity value of 1.0 on <u>10-29-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diffiams.

Initially at 100% the results of previous letdown leak

malfunctions were drawn for comparison (XNRC1101 and XNRC1102)

The test concluded when the general trends were verified to be a

scaled down parallel to XNCV1201 and when the leak rate was

verified to be 90 gpm.

The malfunction was approved for training/examinations, with the

potation in the Malfunction Response Book that the generic and

known Radiation Monitoring System deficiency applies to this

malfunction.
SYNOPSIS OF MALFUNCTION TESTS

X:CV1701 TRIP OF BORIC ACID FUMP "A" AND X:CV1702 TRIP OF BORIC ACID FUMP "B"

The malfunctions were tested on <u>10-15-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially in a 75% power condition the pumps were alternately

started and their malfunctions tested.

The test concluded when the trip of the selected pump was

verified and the decrease in Boric Acid flow was seen.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X: CV2001 RCS DILUTION FROM AN UNBORATED DEMINERALIZER

The malfunction was tested on <u>10-15-90 and 10-17-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially in a 75% power scenario, the malfunction was rejected.

Boron concentration was 300 ppm and monitored only by BCMS.

The test concluded when a retest, using the same scenario ran 10

minutes longer and monitored on screen software variables for

both RCS and VCT boron concentrations.

The malfunction was approved for training/examinations, with a

reminder added to the Malfunction Response Book to allow at least

30 minutes for a change in RCS boron to be seen.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X: CV2101 RCS DILUTION BATCH INTEGRATOR FAILS

The malfunction was tested on <u>10-15-90</u>. No Ramps or delays <u>were</u> used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially at 75% the malfunction was activated, and a dilution

was started.

The test concluded when it was verified that the dilution did not

stop when the preset value was reached.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XRCV2201 HIGH DIFFERENTIAL PRESSURE ON SEAL WATER INJECTION AND FILTERS; A AND B XRCV2202

The malfunctions were tested at severity values of 1.0 and 10.0 on <u>10-15-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

The malfunctions were tested together during two separate runs at 50% power. With one malfunction set at a severity of 10.0, the other was placed at 1.0.

The test concluded when the proper seal water flow reduction and

alarm condition was reached.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pro-session briefing sheet.

XNCV2301 RCP #1 AND #2 SEAL FAILURES; PUMPS & THROUGH D THRU XNCV2308

The malfunctions were tested sequentially at severity values of 0.1, 02., 0.5 and 1.0 on <u>10-23-90</u>. <u>No</u> Ramps <u>or</u> delays <u>were</u> used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially each test was started at 100% steady state conditions.

The test concluded when it was verified that seal leakoff

consistently increased and charging increased by a commensurate

amount.

The malfunctions were approved for training/examinations, with a

ed deficiency entered and recorded that seal injection

emperature is not responsive to the increased leakoff.

SYNOPSIS OF MALFUNCTION TESTS

X:CC0101 LOSS OF (INDIVIDUAL COMPONENT COOLING WATER) PUMPS; THRU A. B. C X:CC0103

The malfunctions were tested on 10-22-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially in a 100% steady state scenario, the pump to be tested

was placed into run.

The test concluded with verification of flow reduction, alarm

actuation and the start of the pump whose train was currently in

stand by.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:CC0201 LOSS OF CCW PUMPS FLOW TRANSMITTER; FT4:12, 4517 OR 4522 THRU X:CC0203

The malfunctions were tested on <u>10-22-90</u>. No Ramps or de' ys were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially in a 100% steady state condition CCW trains were

alternately placed in run, and their walfunctions sequentially

tested.

The test concluded when the flow indicator was verified as going

downscale and the alarm conditions were verified.

The malfunctions were approved for training/examinations, when an

annunciator deficiency -- noted on 10-22-90, was corrected on

11-07-90.

EYNOPSIS OF MALFUNCTION TESTS

ENCCOSO1 LOSS OF COW TO REACTOR COOLS T. PUNT THERMAL BARRIER THRU HEAT EXCHANGERS : PUMPS A, B, C, D XYCC0304

The malfu ctions wer and in severity value increments 0 to 1.0 on 10-22-90. Nu r . or delays were used.

Correct annunciation was verified using the Malfu. tion Response Book and appropriate plant logic diagrams.

Initially power was set to a 100% steady state conditions.

The test concluded when the salue closure and low flow conditions

were verified.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session triefing sheet.

The malfunctions were tested on <u>10-22-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially one run was made at 100% and one run was made at cold

Shutdown conditions and 355 psig; the Heat Exchanger CCW outlet

valves were opened.

The test concluded when it was verified that valves FV-4531,

FV-4548, FV-4565 were closed by the respective malfunctions in

any plant condition and it was verified that Loss of Shutdown

cooling in the Mode 5 run caused coolant temperature to rise.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XICC0501 LOBS OF CCW TO THE CHARGING PUMPS

The malfunction was tested on <u>10-22-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially at 100% power both centrifugal pumps and the Positive

Displacement Pump were started.

The test concluded when it was verified that the effect was

limited to "A" pump, and that pump "A" tripped within 5 minutes

of the malfunction activation.

The malfunction was approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session brighing sheet.

The malfunctions were tested on <u>10-26-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially at 100% steady state the malfunction was activated

after valve LV-4501 was opened.

The test concluded when it was verified that LV-4501 shut as a

result of the malfunction and could not then be opened until the

malfunction was de-activated.

The malfunction was approved "or training/examinations.

SYNOFSIS OF MALFUNCTION TESTS

XNCC0701 COMPONENT COOLING WATER/ESSENTIAL COOLING WATER HEAT EXCHANGER LEAK

The malfunction was tested at a severity value of 0.2 on 10-25-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially at 100% steady state, CCW pressure was 120 psig with

ECW at 60 psig.

The test concluded when verification was made that CCW surge tank

level steadily decreases and when the stopping of the "A" CCW

pump also stopped the leak.

The malfunction was approved for training/examinations, with a

deficiency noted that the alarms associated with the CCW surge

tank and compartment low levels need to be updated to the newest

numbe

SYNOPSIS OF MALFUNCTION TESTS

X: EC0901 ESSENTIAL COOLING WATER PUMP TRIPS; A, B, C. THRU X: EC0903

The malfunctions were tested on <u>10-22-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially at 100% power the malfunctions were alternately and

sequentially triggered and deactivated.

The test concluded when it was verified that flow stopped in the

affected loop. The low pressure alarms and standby features

functioned, and that malfunction removal would allow a pump

restart,

The malfunctions were approved for training/examinations, with a

annotated discrepancy that an ECW pump's discharge valve fails to

start to shut 2 minutes after it's pump trips.

SYNOPSIS OF MALFUNCTION TESTS

X: ECO904 EBSENTIAL CHILLER TRIPS; 11A, 11B, 11C, 12A, 12B, 12C THRU X: ECO909

The malfunctions were tested on <u>10-15-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially power was set at 75% power steady state. Chillers were

started and sequentially tripped off.

The test concluded when the alarms and safeguards monitoring

status was verified.

The malfunctions were approved for training/examinations, with an

annotated deficiency that there is no current modeling of all the

temperature effects on miscellaneous support systems that occur

with a loss of chiller(s).

EYNOPEIS OF MALFUNCTION TESTS

X:RH1001 LOSS OF (INDIVIDUAL) EHR PUMPS; A, B, C THRU X:RH1003

The malfunctions were tested on <u>10-26-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially conditions were established with coolant temperature

at 160'F and pressure at 400 psig -- with RHR trains "A" and "B"

in service.

The test concluded when it was verified that the loss of an

inservice pump actually caused a loss of cooldown capability and

increasing coolant temperatures and that malfunction removal

would allow the restart of an affected pump.

The malfunctions were approved for training/examinations, with an

annotated discrepancy that the rate at which RHR Heat Exchanger

cools down is much faster that occurs in the units.

SYNOPSIS OF MALFUNCTION TESTS

X:RH1101 RHR FUMP RELIEF FAILS OPEN (PSV-3851, 3852 OR 3853) THRU X:MH1103

The malfunctions were tested on <u>10-26-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially with coolant temperature at 160°F and pressure at

375 psig the malfunction were separately triggered from

re-initialized IC sets.

The test concluded when it was verified that pressure fell in the

RCS and RHR Systems, PRT level rose and the pressurizer level

fell. Charging was manually increased.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XNRH1201 TUBE LEAK IN EAR HEAT EXCHANGER A AND TUBE LEAK IN EAR HEAT EXCHANGER B XNRH1202

The malfunctions were tested with severity values of 0.1, 0.5 and 1.0 on <u>10-26-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially conditions were set at a coolant temperature of 195'

and a pressure of 400 psig. Each test started with an initialized

"IC",

The test concluded when leakage was verified from the RHR system

into the CCW system as evidenced by pressurized level decreasing

and CCW Surge Tank level increasing.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

.

SYNOPSIS OF MALFUNCTION TESTS

X:SI1301 LOSS OF (INDIVIDUAL) HIGH HEAD SAFETY INJECTION (RHSI) THRU X:SI1303

The malfunctions were tested on <u>10-16-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially at 100% steady state, a manual Safety Injection signal

was actuated and the malfunctions were individually triggered,

The test concluded when it was verified that the selected pump

tripped, that affected HHSI flow dropped to zero, and that

malfunction removal allowed a restart of an affected pump.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

4 - 95

SYNOPSIS OF MALFUNCTION TESTS

X:SI1401 LOSS OF (INDIVIDUAL) LOW HEAD SAFETY INJECTION (LHSI) THRU PUMPS, A, B, C X:SI1403

The malfunctions were tested on <u>10-16-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially from a 100% steady condition, a manual SI signal was

activated. The malfunctions were then sequentially triggered.

The test concluded when it was verified that the selected pump

actually tripped and that malfunction removal would allow the

restart of a previously affected pump.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X: BI1501 ACCUMULATOR DISCHARGE VALVES FAIL TO OPERATE: VALVES THRU 39A, 39B, 39C X: SI1503

The malfunctions were tested on <u>10-16-90 and 11-15-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially, the malfunctions were tested in several configurations. All were activated at 100% steady state and it was verified that they would not close when they were "powered up". The malfunctions were then removed and the valves observed to stroke closed with all applicable alarms. The malfunctions were reactivated in mid-stroke to verify that they could be thus failed. Two malfunctions were again removed and two valves were allowed to scroke fully shut. The DBA LOCA was activated (X:RC0101) and the malfunctions were reactivated and it was verified that all valves remained stuck in their respective positions and that they would still not respond to any switch manipulations. Control was shifted to the Auxiliary Shutdown Panel (ZLP-100) where the failures were re-verified. The test concluded when, as a separate test, the simulator was re-initialized at 100%. The valves were shut and the malfunctions activated. It was verified that the valves would not re-position when their switches were returned to "AUTO". The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:CS1601 LOSS OF CS FUMP 1A, B, C THRU X:CE1603

The malfunctions were tested on <u>10-16-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state when the

malfunction was activated.

The test concluded when it was verified that the selected pump

will trip if running or fail to start if not running. The

remaining CS pumps are adequate for containment cooling with

RCFC's).

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XNSI1701 N₂ LOSS ACCU 1A, B, C VIA PSV-3981, 3980, 3977 THRU XNSI1703

The malfunctions were tested on <u>10-16-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially the plant was at 100% steady state when the malfunction was activated.

The test concluded when it was verified that the selected

malfunction caused the respective accumulator's pressure to

decrease resulting in low pressure alarms and possible Tech Spec

violations. Low press alarms occurred in 20 secs for value of .3,

15 secs for .6, 10 secs for .9.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

4 - 99

SYNOPSIS OF MALPUNCTION TESTS

XNSI1801 LEAK POST SI ACCUM 1A (1B) (1C) CHK VLV THRU XNSI1803

The malfunctions were tested on <u>10-16-90</u>. No Ramps or delays were used. Tests were done at values of 0.3, 06 and 0.9.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially power level 100% steady state.

The test concluded when it was verified that since Reactor

pressure is higher, inleakage the causes the SI accumulators high

level alarm. SI Accumulator pressure will also increase.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

XNMS0101 STEAM BREAK OUTSIDE CONTAINMENT

The malfunction was tested on <u>10-29-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially the plant was at 100% power steady state. A value of

1.0 was used.

The test concluded when a reactor trip and SI resulted from the

excessive cooldown per the malfunction response description.

The malfunction was approved for training/examinations.

SWNOPSIS OF MALFUNCTION TESTS

XNMS0201 STM BER IN CONTAINMENT LOOP A XNMS0202 STM BER IN CONTAINMENT LOOP B XNMS0203 STM BER IN CONTAINMENT LOOP C XNMS0204 STM BER IN CONTAINMENT LOOP D

The malfunctions were tested on <u>10-18-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially 100% steady statu. A value of 1.0 was used.

The test concluded post trip, with SI reset and S/G(s) empty

The malfunctions were approved for training/examinations.

ADDENDUN 4

SYNOPSIS OF MALFUNCTION TESTS

XNSG0301 <u>S/G TUBE LEAK IN SG 1A (B, C, D)</u> THRU XNSG0304

The malfunctions were tested on <u>10-26-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially the plant was at 100% power steady state, Values of 1.0

.4 and .3 were used on S/G 1A. Values of 1.0 and .3 were used on

S/C 1B - 1D. The following MNEMONIC variables were monitored

during the course of the test to verify the accuracy or the

Malfunction Response Description:

SGPDA S/G "A" PRESSURE

RCPPZR RCS PZR PRESSURE

SGLSGO S/G "A" LEVEL

CVWCCPO CCP A DISCHARGE FLOW

RML8022 S/G A BLOWDOWN RAA MONITOR

RML8046 S/G A MAIN STEAM RAD MONITOR

The test concluded when OPOP05-EO-E030 was exited to EC31 entry conditions.

The malfunctions were approved for training/examinations, with a Deficiency Report (DR) written to correct the problem concerning RCS Pressure not being able to be decreased less than ruptured

5/G.

SYNCFAIS OF MALFUNCTION TESTS

X:MS0401	MN STM SFTY VLV PSV 7410 PO	
X:MB0402	NN STN HFTY VLV PSV 7620 FO	
X:ME0403	MN STM SFTY VLV PSV 7430 PO	_
X:MS0404	NN STM SFTY VLV PSV 7440 FO	_

The malfunctions were tested on <u>10-16-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially 100% steady state, value taken to "TRUE", monitored

initial and final steady state values of feed and steam flows on

all 5/G.

The test concluded at 100% steady state conditions with all

malfunctions cleared, and after the quantitative rise in steam

flows had been recorded and compared to the Main Control Board

indications.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XNMS0501 MS SAFETY PSV 7410 SEAT LEAK XNMS0502 MS SAFETY PSV 7420 SEAT LEAK XNMS0503 MS SAFETY PSV 7430 SEAT LEAK XNMS0504 MS SAFETY PSV 7440 SEAT LEAK

The malfunctions were tested on <u>10-16-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially from 100% steady state, the malfunctions were initiated

with a value of 1.0. The effects on all S/G were monitored for

each malfunction independently tested.

The test concluded with 100% steady state after monitoring

MNEMONICS MSWMSLIA 0,1,2 and 3 (S/G steam flow A, B, C, & D) and

the data was used to update the Malfunction Response Book.

The malfunctions were approved for training/examinations.

The Acoustic Monitor is not modeled. This is thing addressed

under a separate Deficiency Report (DR) for ERFDADS.

SYNOPSIS OF MALFUNCTION TESTS

X:MS0601 MSIV FAILS CLOSED EG A(B, C, D) THRU X:MS0604

The malfunctions were tested on <u>10-15-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 75% power steady state, Each

malfunction was entered from initial steady state conditions.

The test concluded when the response was verified to be in

accordance with the malfunction response description. Affected

S/G level shrinks, pressure increases above feed pump

pump discharge pressure and the Rx trips on low level due to lack

of feed flow,

The malfunctions were approved for training/exami ations.

SYNOPSIS OF MALFUNCTION TESTS

X:MS0701 MSIV FAIL TO OPERATE 7414 X:MS0702 MSIV FAIL TO OPERATE 7424 X:MS0703 MSIV FAIL TO OPERATE 7434 X:MS0704 MSIV FAIL TO OPERATE 7444

The malfunctions were tested on <u>10-15-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially at 75% steady state, a value of "TRUE" was used.

Attempts were made to manually close MSIVs. When the valves

failed to close, the value of the malfunction was set to "FALSE".

The MSIVs were then manually closed.

Each test concluded in a post reactor trip condition due to

MSIV's closing on manual signal,

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this cest that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

4 - 106

ADDFNDUM 4

SYNOPSIS OF MALFUNCTION TESTS

X:MS0801	MSIV SHUTS DURING	TEST SG A	
X:MS0802	MSIV SHUTS DURING	TEST SG B	
X:M80803	MSIV SHUTS DURING	TEST SG C	
X:MS0804	MSIV SHUTS DURING	TEST SG D	

The malfunctions were tested on 10-15-90. No Ramps or delays were used.

Correct annunciation was verified using the Maifunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially at 8% steady state, the malfunction was activated with

a value of "TRUE". The MSIV was taken to test and it fully

closed. When the malfunction was taken to "FALSE", the aff

MSIV reopened on its own, as expected,

The test concluded at 8% steady state,

The malfunctions were approved for training/examinations, and "

Malfunction Response was updated to include an instructor

reminder that clearing the malfunction will reopen the MSIV

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X:MS0901 GS REGULATOR PV 6150 F/O

The malfunction was tested on 10-15-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state.

The test concluded when Gland Seal Pressure increased causing LP

Turbine Gland Pressure HI alarms.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:ME1001 NO GE SPLY FROM MS PV6150 FC

The malfunction was tested on 10-15-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially B& steady state, with T/G on line. The malfunction was

set to "TRUE" and the response was checked against the

malfunction description.

The problem was allowed to progress without operator action

until the Turbine Trip.

The test concluded at 8% steady state with the Turbine Tripped.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

MELICI NO STM FLOW SG TO FWCS S/G A (B, C, D) THRU X:MELICA

The malfunctions were tested on 10-15-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 29% power steady state (IC #13). The

malfunction was entered for each S/G from initial conditions.

The test concluded when the steam signal failed low, feed flow to

the affected S/G decreased in response to steam flow signal

failure and then increased in response to decreasing S/G level

dominant signal.

The malfunctions were approved for training/examinations.

SYNOPSIE OF MALFUNCTION TESTS

X:8G1201	NO	BGLVL	SIG	TC	FWCB	6G	11	
X:8G1202	NO	BGLVL	SIG	TO	FWCB	BG	18	
X:8G1203	NO	BGLVL	SIG	TO	FWCB	BG	10	
X:8G1204	NO	SGLVL	SIG	TO	FWCB	89	10	

The malfunctions were tested on <u>10-15-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was placed at 29% steady state power. The

mal function was activated with a value of "TRUE".

The test concluded with a Rx trip on a Low-Low S/G Level.

Malfunction responded as described in Malfunction Description.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X: PD1301	BNK1 STM DMPS FAIL TO	CLOSE
X: PD1302	BNK2 STM DMPS FAIL TO	CLOSE
X: PD1303	BNK3 STM DMPS FAIL TO	CLOSE
X: PD1304	BNK4 STN DMPS FAIL TO	CLOSE

The malfunctions were tested on 10-16-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially conditions were set to 100% power steady state.

Malfunctions were activated individually and then successive

Reactor Trips were performed.

The test concluded with Mode 3 Tave = 518'F, and with the

Malfunction Response Book description verified.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

XNMS1401 STM HDR XMTR PT-557 FAILS

The malfunction was tested on 10-22-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially the plant was at 50% power steady state. A value of 0.3

was entered. Indicated pressure failed to approx. 430 psig.

Simulator was re-initialized at 100% steady state and a value of

.7 was entered which resulted in PT 557 failing to 975 psig.

The test concluded with Rx tripping on S/G Lo Levels.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XNMS1501 NO RHT STM FRM CNTRL SYS

The malfunction was tested on 10-22-90. No Ramps or delays was used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially 100% steady state, the malfunction was used with values

of 0.3, 0.6 and 0.9, MNEMONICS MSSPRTC (MSR Setpoint) and PXHTAVG

(Tavg) were monitored

The test concluded at 92% steady state, and with the Malfunction

description verified.

The malfunction was approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X: PD1601 STM DUMP CNTRL FAILS ON TRIP

The malfunction was tested on <u>10-22-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially 100% steady state, the malfunction was taken to "TRUE"

and then a MANUAL REACTOR TRIP was initiated. Response was as

described in the MALFUNCTION DESCRIPTION.

The test concluded with Post Rx Trip Conditions, maintaining RCS

Tave with S/G PORVs.

The malfunction was approved for training/examinations.

AODENDUM 4

SYNOPSIS OF MALFUNCTION TESTS

X TUOLOS TURE TRIP PROM AST 20-1, 20-2

The malfunction was tested on 10-22-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially conditions were set to 100% stendy state. The

Malfunction was activated with a value of "TRUE". The Turbine

Tripped and the Response was a verified against the Malt. nction

Description.

The test concluded with the plant in Mode 3, Tave 567'F

The malfunction was approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X:TU0201 NO TUR TRP ON AUTO 8/G

The malfunction was tested on 12-23-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This mulfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state. The malfunction was

entered, then a manual Reactor Trip was initiated from the main

control board.

The test concluded when approximately 27 sec. had elapsed without

a Turbine Trip, at which time the Turbine Tripped from AMSAC.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:TU0401	MN TURBINE GOVERNOR VLV	0 1
X: TU0402	MN TURBINE GOVERNOR VLV F	0 2
X:TUO403	MN TURBINE GOVERNOR VLV ?	2.3
X:TUO404	MN TURBINE GOVERNOR VLV F	52.4

The malfunctions were tested on <u>10-29-95</u>. No Ramps or delays were used.

Conject annunciation was verified using the Malfunction Response Book an appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially <u>12</u> power, the Malfunction was act/vated as "TRUE". The test con: uded at power, steady state, with the Malfunction Description regized.

malfunct: ns were approved for training/examinations, for at power conditions only.

Discrepancies were noted during this test. A DR was w itten as

response to malfunction with the Turbine Generator not loaded.

The furbine far, d to overspeed under these conditions. all

Maliunction desor stion will have an instructor note warmand not

to use these mal? metions unless in "AT POW. R" conditiona

SYNOPSIS OF MALFUNCTION TESTS

X:TU0501 <u>MN TURBINE GOV VLV FC 1 (2.3,4)</u> THRU X:TU0504

The malfunction was tested on <u>10-24-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 50% steady state: The malfunctions

were entered separately from initial conditions. As each valve

was failed closed the other Governor Valves (GV) opened to

compensate.

The test concluded with the plant at steady state conditions with

the same MW Load and different GV configuration.

The malfunctions were approved for training/examinations.

SYNOPSIE OF MALFUNCTION TESTS

X: TU0701 LOSS OF MN TUPB OIL PUMP

The malfunction was tested on <u>10-23-90</u>. No Ramps or del <u>e</u> used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially conditions were set to at 100% steady state.

The Malfunction was activated as "TRUE", the Turb Aux L.O. and

Seal Oil B/U, and TG EMERG BRG Oil pumps started,

The test concluded maintaining 100% steady state, and with the

Malfunction Response description verified.

The malfunction was approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

XNTU0801 MN TURB LUBE OIL PRESS LOW

The malfunction was tested on <u>10-23-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially conditions were set at 100% steady state. A range of

values were used from 0.1. to 1.0 The Response was as described

in the Malfunction Description.

The test concluded in Post Trip Conditions, steady state.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

KNTU0901 MN YURB LUBE OIL TEMP HI

The malfunction was tested on 10-13-90. No Ramps or delays were used. Different severity values were used, in a range of 0.2 to 1.0.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially the plant was at 100% steady state when the malfunction

was entered.

The test concluded at 100% steady state.

The malfunction was approved for training/examinations, with an

Instructor Note to include malfunction 8M02-A-8, CryWolf "Plant

Computer System Alarm" and to have typical bearing drain temps

ready to provide as simulated local readings. (The plant computer

system is not approved for training use.)

SYNOPSIS OF MALFUNCTION TESTS

X:TU1001 AC BENG OIL PUMP WON'T START

The malfunction was tested on <u>10-23-90</u>. No ramp or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% power with the Main Lube Oil Pump

supplying lubrication to the main turbine.

The test concluded with verification that if main lube oil

pressure dropped, the bearing oil pump and seal oil backup pump

would fail to start. When bearing oil pressure decreases to the

appropriate setpoint, the emergency oil pump will start and

supply turbine lubrication.

The maltunction was approved for training/examinations.

No additional discrepancies we a noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X:TU1201 MN TURB THRUST BRNG FAILS

The malfunction was tested on 10-23-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was 100% steady state when the malfunction

was inserted.

The test concluded with the plant at 0% power, turbine trip/

reactor trip.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X: TU1301 TURNING GEAR MOTOR FAILURE

The malfunction was tested on <u>10-23-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state. The Reactor was

then manually tripped resulting in a turbine trip and coastdown

to turning gear engagement speed.

The test concluded when it was verified that the turning gear

motor failed to start (due to electrica' fault.)

The malfunction was approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X: EH1401 EHC AUTO MODE FAILURE

The malfunction was tested on 10-23-90. No Ramps were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state.

The test concluded with the plant at 100% steady state after the

malfunction was entered with a short delay, and the turbine's

shift to manual control was verified.

The malfunction was approved for training "aminations.

SYNOPSIS OF MALFUNCTION TESTS

K: EH1501 EHC HYDRAULIC LINE FAILURE

The malfunction was tested on <u>10-23-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 29% steady state with the turbine on-

line when the EHC pipe rupture occurred.

The test concluded when it was verified that the standby EHC pump

started on low EHC pressure, appropriate reservoir level alarms

came in and the main turbine and operating turbine driven feed

pumps tripped on low EHC pressure. The Rx did not trip. Since the

conditions were below the P-9 setpoint,

The malfunction was approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

51

SYNOPSIS OF MALFUNCTION TESTS

XNTU1601 1st FTG PR XMTR PT-506 FAILS 0-100% XNTU1602 1st STG PR XMTR PT-505 FAILS 0-100%

The malfunctions were tested on <u>10-23-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially the plant was at 75% steady state. The malfunction

were entered at varying values which gave the following results

for each channel. Rods were left in manual.

<u>.1 - 100 .3 - 300 1.0 - 1000 psig</u> .2 - 200 .8 - 800

The test concluded with the plant at steady power as it was

initially. Rods were temporarily placed in AUTO to verify proper

red motion in AUTO.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XRPD1601 TREF BIGNAL TO STM DUMPS FAIL +30, -30

The malfunction was tested on <u>10-23-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially the plant was at 75% and the malfunction(s) were

activated. The turbine was then ramped down in power at 200% min.

The test concluded when it was verified that a value of -30 has

Tref fail below Tavg, the "STM DUMP VLVS TRIP" light comes on

with dump demand going to 100% , and that when C-7 was actuated

by turbine load decrease all steam dump valves opened. A value of

+30 has Tref fail above Tava. On load rejection (C-7) the dumps

do not respond due to Tref being >Tavg. The dumps respond

appropriately for turbine trip C-8 for both failures.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XRTU1901 MN TURB VIBRATION HI BRNG 1(9-10) THRU XRTU1911

The malfunctions were tested on <u>10-15-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially the plant was at 75% steady state. (IC #15) when the

malfunctions were entered, at severity values of 5.0 or 10.0.

The test concluded at 75% steady state, with the Malfunction

Description verified.

The malfunction were approved for training/examinations. with an

Instructor reminder that the panel CP-018 recorder is not

presently modelled, and that "reports" from relay rack indicators

must be prepared.

SYNOPSIS OF MALFUNCTION TESTS

X:CD0101	LOSS	OF	COND	VACUUM	PUMP	2 11
X:CD0102	LOSS	OF	COND	VACUUM	PUMP	12
X:CD0103	LOSS	OF	COND	VACUUM	PUMP	2 13

The malfunctions were tested on <u>10-15-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 75% steady state when the malfunction

was entered with a value of TRUE. Tests were performed on

running pumps.

The test concluded with the plant at 75% steady state, and after

verification that each pump restarted at 25 inches vacuum when

its malfunction was deaccivated.

The malfunctions were approved for training/examinations.

SYNOPSIS OI MALFUNCTION TESTS

XRTU2001 MN TURBINE ECCENTRICITY HI

The malfunction was tested on <u>10-23-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially the plant was in Mode 1 with the turbine ready to roll.

The Malfunction was inserted and the turbine roll up commenced.

(This malfunction is only applicable below 600 rpm turbine speed)

The test concluded that a value of 5.2 will give vibration alarm

on CP-007 at = 505 rpm. A value of 5.3 resulted in vibration

alarm at = 37 rpm

The malfunction was approved for training/examinations, with a

note that the Instructor must provide readings on vibration from

RR-035 in relay room due to recorder and proteur points being

inoperable.

SYNOPSIS OF MALFUNCTION TESTS

KNCD0201 CONDENSER AIR IN LEAKAGE

The malfunction was tested on 10-15-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially the plant was at 75% steady state when the malfunction was entered.

The test concluded when it was verified that a severity of .04

resulted in the standby vacuum pump start in 340 secs with no

turbine trip. At .1 the standby vacuum pump starts and vacuum

stabilizes at 23" at .3, the standby vacuum pump starts but

vacuum decreases to < turbine trip setpoint resulting a turbine

(trip and Rx trip if > P-9).

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XNCD0301 MAIN CONDENSER TUBE LEAK

The malfunction was tested on <u>10-16-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially the plant was at 75% steady state.

The test concluded with the plant at 75% steady state, and with

the times to a 3 inch hotwell level change as shown in the

Malfunction Response Book verified.

The malfunction was approved for training, with a note to the

Instructor to manually include the High Conductivity Alarm in the

scenario.

The malfunction was approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

4 - 127

SYNOPSIS OF MALFUNCTION TESTS

X:CD0401 LOSS OF MAIN FW PUMP #11 (#12, #13) THRU X:CD0403

The malfunctions were tested on <u>10-16-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially and plant was at 75% steady state (IC #15) the

malfunctions were entered one at a time from IC #15 initial

conditions. Indications were compared to the Malfunction

Response Book.

The test concluded when it was verified that start-up feed pump

started and the affected feed pump tripped and coasted down to

zero rpm.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TMSTS

X:CD0501 HOTWELL LEVEL XMTR FAILS HIGH X:CD0502 HOTWELL LEVEL XMTR FAILS LOW

The malfunctions were tested on 10-13-39. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction i. logical (TRUE or FALSE).

Initially the plant was at 75% power steady state. The

malfunctions were inserted one at a time in the same IC.

The test concluded when the Hotwell Standpipe Alarm (9M01-E-1)

came in.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X:AF0301 LOSS OF AUX FW PUMP #11, #12, #13 THRU X:AF0303

The malfunctions were tested on 10-15-90. No ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 75% steady state when the

malfunction(s) were sequentially activated. The particular pump

to be tested was manually started.

The test concluded when it was verified the affected pump will

trip if running and fail to start if automatic actuation occurs.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X: AF0401 LOSS OF STEAM AUX FW PUMP

The malfunction was tested on <u>10-15-90</u> and retested on <u>11-12-90</u>. No ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 75% power steady state

when the malfunction was activated.

The test concluded when it was verified that if MOV-143 is shut

when the malfunction is activated, it will not open.

The malfunction was not initially approved for

training/examinations, on 10-15-90 but was subsequently re-

checked on 11-12-90 and approved for training.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X:AF0501 AFW CROSS-CONNECT VALVE FAILS SHUT THRU X:AF0504

The malfunctions were tested on <u>10-15-90</u>. No ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the test consisted of verifying that the activation of

each malfunction prevents any manual opening of the affected

valve.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TES'S

XNFW0601 MAIN FEED LINE RUPTURE IN CONTAINMENT

The malfunction was tested on 10-29-90. No ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. The range of this malfunction is 0.0 to 1.0. It was tested at values of 0.25 and 0.5.

initially, conditions were established at 100% power steady

state.

The test concluded when it was verified that: (1) the reactor

trips on Low-Low "A" S/G Level, and that an SI signal is

generated from containment pressure, (2) that containment

temperature and pressure steadily trended upward, and (3) the

times until receipt of containment pressure, reactor trip, safety

injection, and 0% wide range steam generator level matched the

times specified in the Malfunction Response Book.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XNFW0701 MN FW RUPTURE OUTSIDE CONTMT

The malfunction was tested on 10-29-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially the plant was at 100% steady state. Malfunction

severities were inserted at various values, from 0.2 to 1.0.

The test concluded with the plant at post reactor trip

conditions.

The malfunction was approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

XNFW0801 HI PRES FW HTR TUBE LEAK

The malfunction was tested on 10-29-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially conditions were set to 100% steady state. The

malfunction was activated at 0.25 and 0.5.

The test concluded when it was verified that the tube leak on

#11A FW Heater results in decreased flow to all S/G and the

associated loss of FW Heating causes RCS temp to decrease, A

severity of .5 will result in an eventual plant trip. The leak

can be isolated by isolation of #11A FW Heater.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XNFW0901 LOSS OF PUMP CONTROL MFP 11, 12, 13 THRU XNFW0903

The malfunctions were tested on <u>10-24-90</u>. No Ramps or delays <u>were</u> used. Severity values of 0.1, 0.2, 0.5, 0.8, 0.9 and 1.0 were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially the plant was placed at 100% steady state.

The test concluded when it was verified that increasing values

caused increasing RPM drops in turbine speed. This reduction in

turbine speed causes reduction in FW flow to S/G at larger values

(power & pump combination dependent). A Rx trip will occur on

LO-LO S/G level.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X: PF1001 FAIL AUTO SPEED CNTRL MFP-11 X: PF1002 FAIL AUTO SPEED CNTRL MFP-12 X: PF1003 FAIL AUTO SPEED CNTRL MFP-13

The malfunctions were tested on 10-24-00. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state when the malfunction

was entired with a value of TRUE.

The test concluded with the plant at 75% steady state after

verifying that the affected pump would not respond to any load

change.

The malfunctions were approved for training, examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:FW1201 TURB OVERSPEED TRIP MFP #11, #12, #13 THRU X:FW1203

The malfunctions were tested on <u>10-16-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 75% steady state when the malfunctions were activated.

The test concluded with verification that the affected pump

trips, its discharge valve closes the other feed pumps speed up,

and startup feedwater pump starts to makeup for loss of feed

from the tripped pump.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X: FW1204 SUFP OVERLOAD TRIP

The malfunction was tested on <u>10-24-90</u>. No ramps <u>but a 30 second</u> delay was used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 50% steady state when a malfunction

value of TRUE was entered with a 30 second delay.

The test concluded at 50% with S/G levels decreasing.

The malfunction was appreved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:FW1301 LUBE OIL PRESS LOW MFP #11, #12, #13 THRU X:FW1303

The malfunctions were tested on <u>10-15-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 75% steady state when the malfunctions

.

were activated.

The test concluded when it was verified that the selected MFP

trips on Low Lube oil pressure causing decreased F.W. flow to all

S/G, that the other feed pumps speed up, and that the startup

feedwater pump starts.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X: PG1401 AUTO FW CNTRL EYS FAILS S/G A, B, C, D THRU X: PG1404

The malfunctions were tested on <u>10-17-90</u>. No ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALCE).

Initially the plant was at 100% steady state when the malfunction was activated.

The test concluded when it was verified that the selected F.W

valve immediately fails shut - stopping F.W. flow to the

respective S/G. Manual control is operational and it can be used

to restore level if power is sufficiently low and operator

response if fast enough -- otherwise a Rx trip will occur on

LO-LO S/G level.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X: FW1501	LOSS OF FEED FLOW SIG	SG-X
X:FW1502	LOSS OF FEED FLOW SIG	BG-B
X:FW1503	LOSS OF FEED FLOW SIG	SG-C
X:FW1504	LOSS OF FEED FLOW SIG	8G-D

The malfunctions were tested on <u>10-23-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state when the malfunction

were entered with a value of TRUE.

The test concluded with the plant at 100% steady state and the

Malfunction Description verified.

17

The malfunctions were approved for training/examinations, with an

added Instructor Note that the known deficiency regarding the

lack of a feed signal to the Deaerator Level Control System

causes the Deaerator to remain more stable than the plant.

SYNOPSIS OF MALFUNCTION TESTS

X:FW1601 <u>MN FW REG VLV F/C FCV-551, 552, 553, 554</u> THRU X:FW1604

The malfunctions were tested on <u>10-17-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state when the malfunction

was activated.

The test concluded when it was verified that the selected FCV

immediately fails closed with no manual control. FW to affected

S/G is lost and the Rx trips on LO-LO S/G level - resulting in

AFW actuation.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X:FW1701	MN	FW	REG	VLV	STUCK	FCV-551
X:FW1702	MN	FW	REG	VLV	STUCK	FCV-552
X: FW1703	MN	FW	REG	VLV	STUCK	FCV-553
X:FW1704	MN	FW	REG	VLV	STUCK	PCV-554

The malfunctions were tested on <u>10-15-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 75% steady state when the malfunctions

were sequentially entered with a value of TRUE.

The test concluded with the plant at 75% steady state.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

XNFW1801 MN FR PEG VLV LEAKS FCV-551, 552, 553, 554 THRU XNFW1804

The malfunctions were tested on <u>10-17-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Plant response was checked at 10% and 100% steady state.

The test concluded with verifications that flow through the valve

increases, with 1.0 being a severity of = 3,000 gpm. During

startup (low power) this can result in F.W. isolation and turbine

Ô

O

0

0

trip on MI-HI level. When MFRV are controlling, this malfunction

will represent various effects depending on feed pumps control

combination.

The malfunctions were approved for training/examinations.

SYNOPEIE OF MALFUNCTION TESTS

XNFW1901	FW REG BYP VLV STUCK FY-7151
XNFW1902	FW REG BYP VLV STUCK EV-7152
XNFW1903	FW REG BYF VLV STUCK FV-7153
XNFW1904	FW REG BYP VLV STUCK FV-7154

The malfunctions were tested on 10-15-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially the plant was at 75% steady state when the malfunctions

were sequentially entered with values of 1.0.

The test concluded with the plant at 75% stendy state, and the

main feed regulating valves closing to compensate for the extru

flow through the hypasses.

The malfunctions were approved for training/examinations.

SYNOPELS OF XALLONCTION TESTS

E: /W2001 MPP N. TRC VLV F/O FV-7114 7115, 7116 TERU T(F42003

The malfunctions were tested on 10-18-90. No Ramps or delays vere used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state when the malrunction were activated.

The test concluded when it was verified that the affected recirc

0

valve fails full open causing decreased feed flow and pressing

from the respecti e pump. If pumps are 'icse to capacity (i.e.

Ligh nowery the resulting flow decrease to S/G's may remain in

LO-LO level Rx trip.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X: CD2301 LOBS OF CONDENSATE FUMP 13, 12, 13 THRU X: CD2303

Ű

The malfunctions were tested on <u>10-15-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Kesponse Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state when the malfunction was activated.

The test concluded with verification that the selected condensate

pump trips -- reducing flow to D/A and causing D/A level to

decrease. Depending on power level and pump combinations this

results in a Booster pump trip, then MFP trip on suction low

pressure and finally Rx trip on LO-LO S/G level.

The malfunctions were approved for training/examinations.

ADDEN.'UM 4

SINOPSIS OF MALFUNCTION TESTS

ENCD2401 LEAK IN COND HDR TO HTR 14A, B THRU XNCD2402

The malfunctions were tested on <u>10-21-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially the plant was at 100% steady state when the malfunction was activated.

The test concluded with verification that the selected heater had

a condensate leak in the line to the her er. This caused a

decrease in D/A level which, depending on power level and

severity could result in Rx trip on LO-LO S/G level. A severity

of .25 Rx will give a Rx Trip = 12 min. (1.0 Rx trip = 6.5 min.)

The malfunctions were approved for training/examinations.

SYNOPSIE OF MALFUNCTION TESTS

XNCD2501 HI CONDUCTIVITY COND/FK SYS

The malfunctions were tested on <u>10-24-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams.

Initially the plant was at 100% steady state when the

malfunction was entered with various values from 0.1 to 1.0.

The test concluded with the plant at 100% steady state and the

specified times-to-alarm verified.

The malfunction was approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

The malfunctions were tested on <u>10-24-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state when the malfunction

was activated.

The test concluded after it was verified that in the F/C

portion, the valve will not open -- even on a HI D/P condition.

F/O causes the valve to open, bypassing the polishers --

decreasing the ability to clean up the condensate system.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X: FW2801 LP HTR DRAIN PUMP TRIP THRU X: FW2803

The malfunctions were tested on 10-24-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially we set 100% power MOL steady state conditions,

The test concluded with verification that the pump trip alarm was

received, condensate flow increased and level in the associated

tank increased.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X: FW2901 TRIP ALL FW BOOSTER FUMPS

The malfunction was tested on <u>10-18-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state when the mulfunction

was activated.

The test concluded once it was verified that all F.W. Myoster

Pumps tripped -- causing all Main F.W. Pumps to trip, resulting

in a LO-LO S/G level Rx trip and AFW actuation.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X: HV0101 <u>HV0101, 02, 03 CRDM COOLING FAN TRIPE</u> THRU X: HV0103

The malfunctions were tested on <u>10-15-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially conditions were 75% power MOL steady state.

The test concluded with verification that alarm 22M01-F2 was

received, and that the selected fan actually tripped.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X: HV0201 LOSS OF CNTHT FAN COOLER 11A, B, C, 12A, R, C THRU X: HV0205

The malfunctions were tested on <u>10-15-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 75% steady state when the malfunctions

were sequentially activated and cleared.

The test concluded when it was verified that the selected fan

cooler did trip, and that the remaining fan coolers are capable

of heat removal during accident conditions.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

1

SYNOPSIS OF MALFUNCTION TESTS

X: RM0601 CNTMT GAS/PART RAD ALARM

The malfunction was tested on 10-24-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state when the malfunction

was activated.

The test concluded when the RMS alarm on RITS 8011 was verified.

The malfunction was approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X: RM0701 CNTMT GAS/PART RAD ALARM

The malfunction was tested on 10-24-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate play. logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state when the malfunction

was activated.

The test concluded when it was verified that containment vent

isolation occurs along with RMS alarm on RITS-8012.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X: RM0901 IN 'R RAD LEVEL RIT-8012

The malfunction was tested on 10-24-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state when the malfunction

was activated.

The test concluded when it was verified that rad levels increase

at the RCB Purge Monitor, and that when the setpoint is reached,

Purge Isolation occurs.

The malfunction was approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X: HV0301 LOSS OF NORMAL CNTMT FURGE SUPPLY DAMPER

The malfunction was tested on <u>10-25-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially 100% power MOL steady state conditions.

The test concluded when it was verified that the specified damper

actually tripped.

The malfunction was approved for training/examinations, with a

note that the instructor must override the "stop" contact for the

running Purge Fan and Activate the Fan Trip Alarm. This is

annotated for Instructors in the Malfunction Response Book.

0

ADDENDUN 4

SYNOPSIS OF MALFUNCTION TESTS

X: HV1101 HI TOXIC GAS ESF ACTUATION

The malfunction was tested on <u>10-25-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state with train A CRE in

service and train B & C CRE outside air invake dampers open.

The test concluded when it was verified that CR/Kitchen/Toilet

Fan stops, and that the Train A, B, C inlet isol dampers close.

The mulfunction was approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X: HV1102 BOTH TOXIC GAS MONITORS FAIL

The malfunction was tested on 10-25-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state with train A CRE

in service with B & C train outside air intake dampers open.

The test concluded when it was verified that CR/Kitchen/Toilet

fan stops and all outside air intake dampers close.

The malfunction was approved for training/examinations.

ADDENDCM 4

SYNOPSIS OF MALFUNCTION TESTS

X: HV1103 BMOKE IN CTRL ROOM ESF ACT

The malfunction was tested on <u>10-25-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially plant was at 100% steady state with all CRE Trains

inlet isol dampers open.

The test concluded yhen it was verified that CR/Kitchen/Toilet

fan stops and all outside air intake dampers close.

The malfunction was approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X:EA0101 LOSS OF ESF DG 11, 12, 13 THRU X:EA0103

The malfunctions were tested on <u>10-25-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially we set 100% power MOL steady state conditions.

The test concluded when it was verified that if a DG is running,

it will trip. If a DG is not running then it will not start.

Removal of the malfunction can allow for restoration of DG.

The malfunctions were approved for training/examinations.

SYNOPSIS OF KALFUNCTION TESTS

X: EA0201 <u>EMERGENCY DG #11, #12, #13, FAIL TO LOAD</u> THRU X: EA0203

The malfunctions were tested on 10-24-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state when the

malfunctions were activated and then normal power from bus was

removed.

The test concluded when it was verified that the selected D/G

did come up to speed and voltage and "close in" on the bus and

that the sequencer did not load its equipment. Manual loading of

equipment i: possible with malfunction active.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X: EA0301 LOSS OF MAIN GEN EXCITER

The malfunction was tested on <u>10-25-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state when the malfunction was activated.

The test concluded when it was verified that the main gen exciter

breaker tripped open, causing loss of generator excitation --

resulting in generator trip and turbine trip. If >P-9 then kx

trip will occur. The remaining systems function properly for

Turb/Rx trip,

The malfunction was approved for training/examinations, with a

discrepancy written on .75 sec time delay for the turbine

Lockout relay and generator voltage/VARS indication during that

time period, but this was determined to not adversely affect

training,

No additional discrepancies were noted during this test that are not alread. included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

U

ø
SYNOPSIS OF MALFUNCTION TESTS

X: RA0401 AUTO VOLTAGE REGULATOR FAILS

The malfunction was tested on 10-29-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the conditions were set at 50% power MOL steady state.

The test concluded when it was verified that exciter field amps

became unstable in automatic but that manual operation of the

voltage regulator still operated properly.

The malfunction was approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X: EA0601 MAIN GEN. OUTPUT BRKR OPENS

The maifunction was tested on <u>10-29-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state when the malfunction

was filivated.

The test concluded when it was verified that the breaker opening

causes load rejection > capability of plant resulting in RX

Trip/Turbine Trip on OTAT. If < P-9 the reactor will not trip.

All other systems function as designed.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X: EA0701 LOSS OF UAT

The malfunction was tested on 10-29-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state when the malfunction was activated.

The test concluded when it was verified that all aux busses were

de-energized and that standby bus 1F was de-energized, causing an

"A" train Loop. A Turbine trip occurred on Aux XFMER lockout

which resulted in Rx trip above P-9. Plant Components/busses

de-energized due to loss of Aux busses was verified against

wiring diagrams. TSC diesel starts to supply load center 1W.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X: EA0801 LOSS OF GRID

The malfunction was tested on 10-29-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially conditions were established at 50% power MOL steady

state.

The test concluded when it was verified that all off-site power

345 and 138 KV power is lost.

The malfunction was approved for training/examinations.

Some secondary System Components (Pumps) that do not have auto

start feature, restart when power is restored if they are not

taken Pull-To-Lock. Since procedures direct this particular

action, this is not expected to adversely affect training or

examinations. The particular pumps are annotated in the

Malfunction Response Book.

16

SYNOPSIS OF MALFUN/TION TESTS

X: EA0901 LOSS OF 13.6 KV STBY BUS 1F, G, H THRU X: EA0903

The malfunctions were tested on <u>10-19-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 50% steady state power when the

malfunctions were activated.

The test concluded when it was verified that the selected

malfunction caused a "LOOP" signal to be generated for the

respective ESF bus causing the respective D/G to start and load

the bus through the Mode II Sequencer. No individual malfunction

results in an immediate reactor trip.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X: EA0904 LOSS OF 13.8 KV AUX BUS 1J

The malfunction was tested on 10-11-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state when the malfunction was activated.

The test concluded when it was verified that equipment powered by

the bus did lose power, RCP 1D tripped (power loss) resulting in

Rx Trip, When below P-9 the loss of the RCP did not result in a

Rx Trip.

The malfunction was approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

SYNOPSIS OF MALFUNCTION TESTS

X:EA1001 LOSS OF 4.16 KV BUS 1D1, 1D2 THRU X:EA1092

The malfunctions were tested on <u>10-19-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 50% steady state when each malfunction

was activated.

The test concluded when it was verified that the bus fault causes

supply breaker to 1D1 or 1D2 to open causing loss of power to the

bus and its related components. Tie breaker between 1D1 and 1D2

cannot be closed with fault on bus,

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:EA1101 LOSS OF 4.16 KV ESF BUS E1A, B, C THRU X:EA1103

The malfunctions were tested on 10-19-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 50% steady state when the malfunction was activated.

The test concluded when it was verified that the fault causes the

normal feeder breaker to open causing a "LOOP" on the respective

bus. This starts the respective ESF D/G but its output breaker

will not close due to the bus fault.

The malfunctions were approved for training/examinations, with

use of an instructor note: on D/G lube oil pressure. L.O.

pressure drops to 0 when D/G starts. Actual oil pressure is

adequate because of its being supplied by D/G attached Lube Oil

Pump.

SYNOPSIS OF MALFUNCTION TESTS

X:EA1201 LOSS OF 480V ESF MCC E1A1-3, E1B1-3, E1C13 THRU X:EA1209

The malfunctions were tested on <u>10-17-90 - 10-19-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state when the malfunction

was activated.

The test concluded when it was verified that the supply breaker

to the selected bus opened and components supplied by the bus

lost power.

 (\mathfrak{d})

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

L'EA1301 LOBS OF 138 KV EMERGENCY XFMR

The malfunction was tested on 10-19-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 50% steady state when the malfunction was activated.

The test concluded when it was verified that the Feeder Breaker

from the 138 KV XFMR to Bus 1L trips open, and that if 1L were

supplying an ESF bus that the ESF bus and its respective

components will lose power.

The malfunction was approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X: EA1401 LOSS OF ALL AC POWER

The malfunction was tested on 10-29-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially conditions were established at 50% power MOL steady state.

The test concluded when it was verified that all 13.8 KV Aux and

standby buses de-energize and the ESF DG's do not auto start

and the TSC DG fail to start.

The malfunctions were approved for training/examinations,

Malfunction X: EA1301 (Loss of 138 KV Emergency Power) must be run at the same time. Caution is necessary if using this malfunction

in conjunction with DG malfunctions. These cautions are not seen

to adversely affect training or examinations because actual dry-

runs of such compounded failures must be run prior to any use,

due to the inherent complexity of the logic signals involved.

EYNOPEIS OF MALFUNCTION TESTS

X: EA1501 LOSS OF NON 1E DC PANEL PL 125A

The malfunction was tested on 10-25-90 - 10-26-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 75% steady state when the malfunction

was activated.

The test concluded when it was verified that the breaker to panel

PL 135A opens causing loss of power to the paral and the

components served by the panel.

The malfunction was approved for training/examinations, with the

annotated requirement that malfunction X: PD1601 must be activated

simultaneously to defeat the steam dumps.

SYNOPSIS OF MALFUNCTION TESTS

X:GE1601 LOSS OF GEN H₂ SEAL OIL REG 6355, 6355A AND X:GE1602

The malfunctions were tested on <u>10-29-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at "7% steady state with main turbine on

the turning gear when the malfunction was activated.

The test concluded when it was verified that H, pressure will

require power reduction if the turbine is loaded, and that if

6355A fails, H, pressure will go to zero.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:AC0101 LOSS OF ACW OPEN LOOP PUMP 11, 12, 13 THRU X:AC0103

The malfunctions were tested on <u>10-24-90</u>. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state when the malfunction

was activated.

The test concluded when it was verified that the selected

pump tripped resulting in the standby pump starting on low

pressure with no other appreciable affect on the plant.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

X:AC0201 LOSS OF ACW CLSD LOOP PMP 11, 12, 13 THRU X:AC0203

The malfunctions were tested on 10-24-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state when the malfunction

was activated.

The test concluded when it was verified that the selected pump

tripped resulting in the standby pump starting on low pressure

with no other appreciable affect on the plant.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

KNCT0301 INCR IN CNTMT FRESSURE

The malfunction was tested on 10-17-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction has a range of 0-1.0. The value tested was 0.5.

Initially the plant was at 100% steady state when the malfunction was activated.

The test concluded when it was verified that an Instrument Air

Leak occurred in CNTMT causing the air compressor to cycle more

and causing gradual increase in CNTMT pressure. Pressure will

eventually increase to point to cause SI. Pressure was 0.5 psig

after 16 minutes.

The malfunction was approved for training/examinations.

SYNCPSIS OF MALFUNCTION TESTS

XNAR0401 LOSS OF INSTRUMENT AIR

The malfunction was tested on 10:29-90. No Ramps or delays were used.

Correct annunciation was verified vsing the Malfunction Response Book and appropriate plant logic diagrams. This Malfunction has a range of 0 to 1.0 test at values of .5, .7, 1.0.

Initially the pl it was at 100% steady state when the malfunction was activated.

The test concluded when it was verified that increasing severity

causes a greater drop in Instrument Air (IA) pressure to the

point where station air will back up JA With value of 1.0.

station air can still provide enough air to prevent any IA

operated components from failing to their Loss-Of-Air position.

The malfunctions was approved for training/examinations, with a

noted reminder that to get full loss of Instrument Air it is

required to also have a station air leak, A deficiency was

recognized and annotated for three(3) dampers that failed to the

wrong position on total loss of Instrument Air.

ADDERIDUM 4

SYNOPSIS OF MALFUNCTION SENTS

XNAR0501 LOSS OF STATION AIR

The malfunction was tested on 10-17-90. No Ramps or dolays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction has a range of 0 - 1.0. Malfunction tested to a value of 0.8.

Initially the plant was at 100% steady state when the malfunction

was activated.

The test concluded y ien it was verified that a value of .8 will

cause a continued decrease in Service Air pressure. (Service Air

has no backup.) The malfunction was approved for

training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

X:AN0802 PANEL ANNUNCIATOR FAILURE THRU X:AN0810

The malfunctions were tested on <u>10-17-90</u>. No Ramps <u>or</u> delays <u>were</u> used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction is logical (TRUE or FALSE).

Initially the plant was at 100% steady state when the

malfunctions were activated.

The test concluded when it was verified that annunciators on the

selected panels will not annunciate. Any further alarms and any

present alarms cannot be cleared until malfunction is removed.

The malfunctions were approved for training/examinations.

SYNOPSIS OF MALFUNCTION TESTS

.

XIAN0901 <u>CRY WOLF ALARMS</u> THRU XIAN2140

The malfunctions were tested on 10-12-90. No Ramps or delays were used.

Correct annunciation was verified using the Malfunction Response Book and appropriate plant logic diagrams. This malfunction have three values 0 = Reset 2 = Blocked 3 = Actuate

Initially the plant was at 100% steady state when the malfunction

were activated.

The test concluded when it was verified that a value of 3 will

light +he selected annunciator. 2 will block or keep it from

alarming and 0 will reset a given alarm. Malfunction removal will

also reset the alarm.

The malfunctions were approved for training/examinations.

No additional discrepancies were noted during this test that are not already included as an Instructor Note in the Malfunction Response Book, or as a turnover item on the formal pre-session briefing sheet.

LISTING OF CURRENT MODIFICATION REPORTS (MRS)

 δ_{-}

MR. NO.		DESCRIPTION	SCHEDULED COMPLETION DATE	APPLICABLE ANB/ANBI 3.5 REQUIREMENT		
00429		MODIFY PMSCS SUCH THAT "FREEZE" CAN BE INITIATED FROM THE INSTRUCTOR STATION.	COMPLETION OF SIM. UPGRADE	N/A SIM. ENHANCEMENT		
00454		ADD MALF. TO TRIP BISTABLES ON PANEL 6.	12-91	N/A STM. ENHANCEMENT		
00489		MODIFY INPUTS TO NR-45 AND INSTALL ADDITIONAL RECORDERS.	08/91	SEC. 5.3		
00491		ADD RCS MID LOOP LEVEL INDICATION.	COMPLETION OF SIM. UPGRADE	SEC. 5.3		
00496		REPLACE CET RECORDERS AND ADD ALARM.	12/91	SEC. 5.3		
00514		UPDATE ERFDADS DISPLAYS.	12/91	SEC. 5.3		
00525		INCREASE SCOPE OF RMS.	COMPLETION OF SIM. UPGRADE	N/A SIM. ENHANCEMENT		
0532	*	INSTALL PRINTER CABINETS IN SIM CR.	08/91	N/A SIM. ENHANCEMENT		
0535	*	MOD. SIM LIGHTING.	WITHIN 1 YEAR OF REF. PLANT MOD.	SEC. 5.3		
0536		INCREASE SCOPE TO INCLUDE BOP DIESEL GENERATOR.	08/91	N/A SIM. ENHANCEMENT		

20

, y

CT.

set min

.

the subscription of the su

LISTING	OF	CURRENT MODIFICATION	REPORTS	(MRS)
		(Continued)		

MR. NO.	DESCRIPTION	SCHEDULED COMPLETION LATE	SCHEDULED COMPLETION LATEAPPLICABLE ANS/ANSI 3.5 REQUIREMENTWITHIN 1 YEAR OF REF. PLANT MOD.SEC. 5.308/91SEC. 5.308/91SEC. 5.3			
0544	MOD. ANNUN ENGRAVING TO INDICATE ERFDADS OR PROTEUS	WITHIN 1 YEAR OF REF. PLANT MOD.	SEC. 5.3			
0556	MOD. ERFDADS DISPLAYS	08/91	SEC. 5.3			
0558	MOD. ERFDADS DISPLAYS	08/91	SEC. 5.3			
0307	MOD. ERFDADS CONT. PWR. FOR RHR/CVCS VLVS.	SEC, 5.3				
0580	INCREASE LABEL SIZE AND INSTALL NEW FEED PUMP RPM METERS	SEC. 5.3				
0595	UPDATE REMOTE FUNCTIONS	08/91	N/A SIM. ENHANCEMENT			
0598	ADD LIGHT TO INDICATE WHEN QDPS IS HUNG-UP	08/91	N/A SIM. ENHANCEMENT			
0599	MOD. REMOTE TABLES	08/91	N/A SIM. ENHANCEMENT			
0600	MOD. REMOTE VALVES	08/91	N/A SIX. ENHANCEMENT			
0601	DELETE REMOTE VALVE FOR STM TO S/U DA	08/91	N/A SIM. ENHANCEMENT			
0604	MOD. INITIAL VALVES FOR REMOTES	08/91	N/A SIM. ENHANCEMENT			

-

AUDENDUM 5

LISTING OF CURRENT MODIFICATION REPORTS (MRs) (Continued)

APPLICABLE SCHEDULED ANS/ANSI 3.5 COMPLETION REQUIREMENT MR. DATE DESCRIPTION NO. N/A 05/91 COMPLETE INSTALLATION OF VALVE SIM. 0622 FV-011 ON AUX SHUTDOWN PANEL ENHANCEMENT N/A 08/91 ADD MALFUNCTION FOR S/G PORV SIM. 0607 PRESS CHANNEL ENHANCEMENT N/A 08/91 MOD. ELECTRICAL REMOTES 0609 SIM. ENHANCEMENT N/A 08/91 ADL REMOTE FUNCTIONS SIM. 0611 ENHANCEMENT N/A 08/91 ADD S/G PRESS GREATER THAN SIM. 0612 1500 PSIG TO ZERROR ENHANCEMENT N/A 08/91 MOD. ERFDADS TO INCLUDE THE SIM. 0613 DAS FUNCTION ENHANCEMENT N/A 08/91 ADD INST. REMOTES SIM. 0614 ENHANCEMENT N/A 08/91 ADD ELECTRICAL REMOTES SIM. 0615 ENHANCEMENT N/A 08/91 0616 ADD MISC. REMOTES SIM. ENHANCEMENT

* RELATED TO ANSI 3.2.3 "CONTROL ROOM ENVIRONMENT"

MANA WA WEREAUSTA ARTACLESAL WURLDALAUST	LIST	OF	CURRENT	INITIAL	CONDITION
--	------	----	---------	---------	-----------

IC #	TEMP	PRESS	POWER	BORON	DESCRIPTION
ı	166	92	0	827	POP03-ZG1-STEP 6.3
2	166	95	0	1147	POP03-ZG1-STEP 6.5
3	168	411	0	827	POP03-ZG1-STEP 6.8
4	186	422	0	832	POP03-ZG1-STEP 7.0
5	346	398	0	831	POP03-ZG1-STEP 7.16
6	568	455	0	829	POP03-ZG4-STEP 8.17
7	568	2251	0	998	POP03-ZG4-STEP 5.4
8	568	2252	0	664	POP03-ZG4-STEP 6.0
9	567	2252	0	664	POP03-ZG4-STEP 6.28
10	569	2252	3 %	664	POP03-ZG5-STEP 6.0
11	570	2252	7%	665	POP03-2G5-STEP 6.18.7
12	570	2252	28	664	POP03-ZG5-STEP 6.70
13	574	2252	29%	457	POP03-2G5-STEP

1

.....

LIST OF CURRENT INITIAL CONDITIONS (Continued)

IC #	TEMP	PREBS	POWER	BORON	DESCRIPTION
14	580	2253	50%	387	POP03-ZG5-STEP 7-16-10
15	586	2254	75%	301	POP03-ZG5-STEP 7.16.11
16	592	2254	98%	~40	POP03-ZG-0007 STEP 5.9
17	567	2251	0	998	POP03-ZG7-STEP 5.3
18	567	1962	0	998	POP03-ZG7-STEP 5.9
19	455	1147	0	996	POP03-2G7-STEP 5.19
20	352	613	0	1000	POPO3-ZG7-STEP 5.23
21	345	358	0	1006	POP03-ZG7-STEP 6.19
22	567	2252	0	358	10-8 AMPS EOL
23	571	2252	25%	160	25% POWER EOL
24	584	2253	50%	63	50% POWER EOL
25	567	2252	08	100	S/D 10 ⁸ EOL
:	567	2251	0%	75	S/D 10 ⁸ EOL 2 HRS (POST S/D)

LIST OF CURRENT INITIAL CONDITIONS (Continued)

IC #	TEMP	PRES	S POWER BORON DESCRIPTION
27	567	2252	0% 68 S/D 10 ⁸ EOL PEAK XENON
28	567	2252	0% 121 S/D 10 ⁸ EOL 15 HRS (POST S/D)
NOTES:	IC	1-11	XENON FREE
	IC	12	XENON BUILDING UP AND PRESENTLY AT 1.7% POWER VALUE
	IC	13 - 16	EQUILIBRIUM XENON
	IC	17 - 21	SHUTDOWN ICS WITH REAL-TIME XENON ACCUMULATION FOR SHUTDOWN FROM 100% POWER
	IC	22	EOL XENON FREE
	IC	23, 24	EQUILIBRIUM XENON
	IC	25	XENON RISING AND AT 101% POWER EQUIVALENT VALUE
	IC	26 - 28	XENON VALUES FOR 2 HOURS, 7.5 HOURS, AND 15 HOURS AFTER AN EOL S/D FROM 50% POWER

ADDENDUN 7

REMOTE FUNCTIONS (LOCAL OPERATOR ACTIONS) ACCEPTED FOR TRAINING/EXAMINATIONS REFERENCE ANSI/ANS 3.5, 1985 SECTION 3.4.4

MNEMONIC	DESCRIPTION
IINIRFLL	DELTA FLUX LIMIT LOWER SETPOINT
IINIRFLU	DELTA FLUX LIMIT UPPER SETPOINT
IIRC:69A	VESSEL FLANGE LEAKOFF VALVE
IIRC:69B	VESSEL FLANGE LEAKOFF VALVE
IIRCRASP	HIGH FLUX AT SHUTDOWN ALARM SETPOINT
IIRCRRBC	RCS BORON CONCENTRATION
IICV:102	LETLOWN BACKPRESSURE REGULATING VALVE ISOLATION
IIRP:045	TRAIN "R" TRIP TEST SWITCH
IIRP:046	TRAIN "S" TRIP TEST SWITCH
IICV:209	BLENDER TO FILL RWST
IICV:221	MANUAL IMMEDIATE BORA" VALVE
IICV:226	BA TANKS TO CHARGE 1 MPS SUCTION VALVE
IICV:236	B CCP ALTERNATE DISCHARGE TO SEALS
IICV:247	SEAL WATER INJECTION REGULATING VALVE ISOLATION VALVE
IICV:254	CHARGE FLOW CONTROL ISOLATION VALVE
IICV:318	BA TANK 1A OUTLET VALVE
IICV:324	BA TANK 1B OUTLET VALVE
IICV:CVA	BA XFER PUMP SUCTION X-CONN VALVE
IICV:CVB	BA XFER PUMP SUCTION X-CONN VALVE
IICV: PZR	RESET LETDOWN ISOLATION AT LO PZR LVL

REMOTE FUNCTIONS (LOCAL OPERATOR ACTIONS) ACCEPTED FOR TRAINING/EXAMINATIONS REFERENCE ANSI/ANS 3.5, 1985 SECTION 3.4.4 (Continued)

.

MNEMONIC	DESCRIPTION
IICVR104	LETDOWN PRESS REGULATING BYPASS VALVE
IICVR246	SEAL WATER INJECTION REGULATING BYPASS VALVE
IICVR255	CHARGE FLOW CONTROL BYPASS VALVE
IICVR32A	RCP SEAL INJECTION FLOW VALVE
IICVR32B	RCP SEAL INJECTION FLOW VALVE
IICVR32C	RCP SEAL INJECTION FLOW VALVE
IICVR32D	RCP SEAL INJECTION FLOW VALVE
IICVRBC	BORON CONCENTRATION IN BA TANK
IICVRPC	VCT H2 PRESS REGULATING VALVE
IIAS:036	AUX STEAM STARTUP DEAERATOR VALVE
IIAS:128	AUX STEAM FROM BOILER OR UNIT #2
IIAS:186	AUX STEAM TO DEAERATOR
IIASNDEA	AUXILIARY STEAM TO DEAERATOR
IIMS:021	SG A PORV ISOLATION VALVE
IIMS:038	SG B PORV ISOLATION VALVE
IIMS:055	SG C PORV ISOLATION VALVE
IIMS:072	SG D PORV ISOLATION VALVE
IIMS:117	STEAM DUMP ISOLATION VALVE
IIMS:118	STEAM DUMP ISOLATION VALVE
IIMS:121	STEAM DUMP ISOLATION VALVE
IIMS:122	STEAM DUMP ISOLATION VALVE

MNEMONIC	DESCRIPTION
IIMS:125	STEAM DUMP ISOLATION VALVE
IIMS:126	STEAM DUMP ISOLATION VALVE
IIMS:129	STEAM DUMP ISOLATION VALVE
IIMS:130	STEAM DUMP ISOLATION VALVE
IIMS:133	STEAM DUMP ISOLATION VALVE
IIMS:134	STEAM DUMP ISOLATION VALVE
IIMS:137	STEAM DUMP ISOLATION VALVE
IIMS:138	STEAM DUMP ISOLATION VALVE
IICD:013	COND M/U VALVE LCV-7005 ISOLATION
IICD:042	MAIN FEED FEG VALVE "B" ISOLATION
IICD:056	COND DUMP PUMP TO AFWST ISOLATION
IICD:068	MAIN FEED REGULATING VALVE "A" ISOLATION
IICD:089	COND DUMP FUMP TO SMUT ISOLATION
IICD:093	MAIN FEED REGULATING VALVE "C" ISOLATION
IICD:096	COND PUMP 11 SUCTION VALVE
IICD:105	COND PUMP 12 SUCTION VALVE
IICD:109	MAIN FEED REGULATING VALVE "D" ISOLATION
IICD:114	COND PUMP 13 SUCTION VALVE
IICD:125	COND DUMP VALVE LCV-7006 ISOLATION
IICD:187	"D" MAIN FEED BYPASS ISOLATION VALVE
IICD:189	"C" MAIN FEED BYPASS ISOLATION VALVE

REMOTE FUNCTIONS (LOCAL OPERATOR ACTIONS) ACCEPTED FOR TRAINING/EXAMINATIONS REFERENCE ANSI/ANS 3.5, 1985 SECTION 3.4.4 (Continued)

MNEMONIC	DESCRIPTION
IICD:191	"B" MAIN FEED BYPASS ISOLATION VALVE
IICD:193	"A" MAIN FEED BYPASS ISOLATION VALVE
IICD:227	SHORT PATH FEED RECIRC VALVES
IICD:467	S/G D LONG PATH RECIRC VALVES
IICD:469	S/G C LONG PATH RECIRC VALVES
IICD:471	S/G B LONG PATH RECIRC VALVES
IICD:473	S/G A LONG PATH RECIRC VALVES
IICD:476	MAIN FEED PUMP HDR BYPASS VALVE
IICD:619	DA LEVEL CONTROL VALVE ISOLATION VALVE
IICD:621	DA LEVEL CONTROL VALVE ISOLATION VALVE
IICD: PMP	CONDENSER DUMP PUMP
IICD:V11	CONDENSER VACUUM PUMP 11
IICD:V12	CONDENSER VACUUM PUMP 12
IICD:V13	CONDENSER VACUUM PUMP 13
IICDR015	COND M/U VALVE LCV-7005 BYPASS
IICDR134	CONDENSER DUMP VALVE BYPASS VALVE
IICDR22A	COND RECIRC TO CONDENSER VALVE
IICDR22B	COND RECIRC TO CONDENSER VALVE
IICDRDP	CONDENSATE DEMINERALIZER DP
IICDX485	DA BLOWDOWN TO COND #13 VALVE
IICW:005	COND 11 SO. CW THLET VALVE

REMOTE FUNCTIONS (LOCAL OPERAT'R ACTIONS) ACCEPTED FOR TRAINING/EXAMINATIONS REFERENCE ANSI/ANS 3.5, 1985 EECTION 3.4.4 (Continued)

MNEMONIC		DEE	SCRI	PTION	8		
IICW:007	COND	11	NO.	CW I	NLET	VALV	Е
IICW:009	COND	12	so.	CW I	NLET	VALV	Е
IICW:011	COND	12	NO.	CW I	NLET	VALV	E
IICW:013	COND	13	so.	CW I	NLET	VALV	E
IICW:015	COND	13	NO.	CW I	NLET	VALV	E
IICW:018	COND	11	so.	COND	OUTI	ET V	ALVE
IICW:020	COND	11	NO.	COND	OUTI	LET V	ALVE
IICW:022	COND	12	so.	COND	OUTI	ET V	ALVE
IICW:024	COND	12	NO.	COND	OUTI	ET V	ALVE
IICW:026	COND	13	so.	COND	OUTI	ET V	ALVE
IICW:028	COND	13	NO.	COND	OUTI	ET V	ALVE
IICW:DV1	CIRC	PUM	IP 11	DIS	CHARG	E VA	LVE
IICW: DV2	CIRC	PUM	IP 12	DIS	CHARG	E VA	LVE
IICW:DV3	CIRC	PUM	IP 13	DIS	CHARG	E VA	LVE
IICW:DV4	CIRC	PUM	(P 14	DIS	CHARG	E VA	LVE
IICW: P11	CIRC	PUM	IP 11	LEV	EL SW	ITCH	PERMISSIVE
IICW: P12	CIRC	PUM	IP 12	LEV	EL SW	ITCH	PERMISSIVE
IICW: P13	CIRC	PUM	IP 13	LEV	EL SW	ITCH	PERMISSIVE
IICW: P14	CIRC	PUM	IP 14	LEV	EL SW	ITCH	PERMISSIVE
IIEA:1F1	LC BU	IS 1	F1 F	EEDE	R BRE	AKER	

REMOTE FUNCTIONS (LOCAL OPERATOR ACTIONS) ACCEPTED FOR TRAINING/EXAMINATIONS REFERENCE ANSI/ANS 3.5, 1985 SECTION 3.4.4 (Continued)

MNEMONIC	DESCRIPTION
IIEA:1F2	LC BUS 1F2 FEEDER BREAKER
IIEA:1G1	LC BUS 1G1 FEEDER BREAKER
IIEA:1G2	LC BUS 1G2 FEEDER BREAKER
IIEA:1G5	MCC BUS 1G5 FEEDER BREAKER
IIEA:1H1	LC BUS 1H1 FEEDER BREAKER
IIEA:1H2	LC BUS 1H2 FEEDER BREAKER
IIEA:1J1	LC BUS 1J1 FEEDER BREAKER
IIEA:1J2	LC BUS 1J2 FEEDER BREAKER
IIEA:1K1	LC BUS 1K1 FEEDER BREAKER
IIEA:1K2	LC BUS 1K2 FEEDER BREAKER
IIEA:1L1	LC BUS 111 FEEDER BREAKER
IIEA:1L2	LC BUS 112 FEEDER BREAKER
IIEA:1N	L/C IN SUPPLY BREAKER
IIEA:1P	L/C 1P SUPPLY BREAKER
IIEA:1R	L/C IR SUPPLY BREAKER
IIEA:1T	L/C IT SUPPLY BREAKER
IIEA:1U1	L/C 1U1 SUFPLY BREAKER
IIEA:1U2	L/C 1U2 SUPPLY BREAKER
IIEA:1W1	L/C 1W1 SUPPLY BREAKER
IIEA:1W2	L/C 1W2 SUPPLY BREAKER
IIEA: BOP	BOP DG BREAKER

REMOTE FUNCTIONS (LOCAL OPERATOR ACTIONS) ACCEPTED FOR TRAINING/EXAMINATIONS REFERENCE ANSI/ANS 3.5, 1985 SECTION 3.4.4 (Continued)

MNEMONIC	DESCRIPTION
IIEA:DG	DG TROUBLE ANNUNICATOR LOCAL RESET
IIEA:MA1	ESF MCC BUS E1A1 FEEDER BREAKER
IIEA:MA2	ESF MCC BUS E1A2 FEEDER BREAKER
IIEA:MA23	ESF MCC BUS E1A3 FEEDER BREAKER
IIEA:MA5	ESF MCC BUS E1A5 FEEDER BREAKER
IIEA:MB1	ESF MCC BUS E1B1 FEEDER BREAKER
IIEA:MB1	ESF MCC BUS E1B2 FEEDER BREAKER
IIEA:MB3	ESF MCC BUS E1B3 FEEDER BREAKER
IIEA:MB3	ESF MCC BUS E1B3 FEEDER BREAKER
IIEA:MB5	ESF MCC BUS E1B5 FEEDER BREAKER
IIEA:MC1	ESF MCC BUS E1C1 FEEDER BREAKER
IIEA:MC1	ESF MCC BUS E1C2 FEEDER BREAKER
IIEA:MC3	ESF MCC BUS E1C3 FEEDER BREAKER
IIEA:MC3	ESF MCC BUS E1C3 FEEDER BREAKER
IIEA:MC5	ESF MCC BUS 1C5 FEEDER BREAKER
IIEA:MF1	MCC BUS 1F1 FEEDER BREAKER
IIEA:MK1	ESF MCC BUS 1K1 FEEDER BREAKER
IIEA:MK2	ESF MCC BUS 1K2 FEEDER BREAKER
IIEA:ML1	ESF MCC BUS 1L1 FEEDER BREAKER
IIEA: TBF	LC 1F1/1F2 TIE BREAKER
IIEA:TBG	LC 1G1/1G2 TIE BREAKER

REMOTE FUNCTIONS (LOCAL OPERATOR ACTIONS) ACCEPTED FOR TRAINING/EXAMINATIONS REFERENCE ANSI/ANS 3.5, 1985 SECTION 3.4.4 (Continued)

MNEMONIC	DESCRIPTION
IIEA:TBH	LC 1H1/1H2 TIE BREAKER
IIEA:TBJ	LC 1J1/1J2 TIE BREAKER
IIEA:TBK	LC 1K1/1K2 TIE BREAKER
IIEA:TBL	LC 1L1/1L2 TIE BREAKER
IIEA:TBU	LC 1F1/1U2 TIE BREAKER
IIEA:BE1	E1-I BATTERY SUPPLY BREAKER
IIED: BE2	E1-II BATTERY SUPPLY BREAKER
IIED:BE3	E1-III BATTERY SUPPLY BREAKER
IIED:BE4	E1-IV BATTERY SUPPLY BREAKER
IIXX:XFR	TRANSFER SWITCH(ES) FROM CONTROL ROOM TO AUX SHUTDOWN PANEL
IIAF:012	AFW PUMP 14 DISCH ISOL VALVE
IIAF:014	AFW PUMP 14 DISCH ISOL VALVE
IIAF:037	AFW PUMP 14 REC VLV TO AFWST
IIAF:040	AFW PUMP 11 REC VLV TO AFWST
IIAF:041	AFW PUMP 11 DISCH ISOL VALVE
IIAF:042	AFW PUMP 11 DISCH ISOL VALVE
IIAF:059	AFW PUMP 12 DISCH ISOL VALVE
IIAF:061	AFW PUMP 12 DISCH ISOL VALVE
IIAF:070	AFW PUMP 12 REC VLV TO AFWST
IIAF:078	AFW PUMP 13 DISCH ISOL VALVE

REMOTE FUNCTIONS (LOCAL OPERATOR ACTIONS) ACCEPTED FOR TRAINING/EXAMINATIONS REFERENCE ANSI/ANS 3.5, 1985 SECTION 3.4.4 (Continued)

MNEMONIC	DESCRIPTION
080:"(AII	AFW PUMP 13 DISCH ISOL VALVE
IIAF:092	AFW PMP 13 REC VLV TO AFWST
IIAF:515	AFW X-CONN FROM PUMP 13
IIAF:516	AFW X-CONN FROM PUMP 12
IIAF: 5%7	AFW X-CCNN FROM PUMP 12
IIAF:518	AFW X-CONN FROM PUMP 14
IIAF:FS7	AFWST FILL VALVE FRM DEMIN
IICC:231	MAN M/U TO CCW SRG TNK VLV
IICCN009	CCW PUMP A TO HDR ISOL VLV
IICCN120	CCW PUMP B TO HDR ISOL VLV
IICCN179	CCW PUMP C TO HDR ISOL VLV
IIEC:128	ECW INLET VLV TO CCW HX A
IIEC:180	ECW INLET VLV TO CCW HX C
IIEC:181	ECW INLET VLV TO CCW HX B
IIEL:DG1	STBY DIESEL GEN 11 CNTRL XFR
IIEL:DG2	STBY DIESEL GEN 12 CNTRL XFR
IIEL:DG3	STBY DIESEL GEN 13 CNTRL XFR
IIES:356	HI RADIATION ACTUATION TEST
IIES:357	HI RADIATION ACTUATION TEST
IIES:358	HI RADIATION ACTUATION TEST
IIES:480	HI RADIATION ACTUATION TEST

REMOTE FUNCTIONS (LOCAL OPERATOR ACTIONS) ACCEPTED FOR TRAINING/EXAMINATIONS REFERENCE ANSI/ANS 3.5, 1985 SECTION 3.4.4 (Continued)

MNEMONIC	DESCRIPTION
IIES:481	HI RADIATION ACTUATION TEST
IIES:482	HI RADIATION ACTUATION TEST
IIES:LA1	SPRAY ACT BYPASS TEST CH 1
IIES:LA2	SPRAY ACT BYPASS TEST CH 2
IIES:LA3	SPRAY ACT BYPASS TEST CH 3
IIES:LA4	SPRAY ACT BYPASS TEST CH 4
IIES:RS1	DG #1 LD SEQNCR LOCAL RESET
IIES:RS2	DG #2 LD SEQNCR LOCAL RESET
IIES:RS3	DG #3 LD SEQNCR LOCAL RESET
IIAC:105	SUCTION VALVE FOR EMERGENCY COOLING OF AIR COMPRESSOR
IIAC:EAP	AIR COMPRESSOR EMERGENCY COOLING PUMP
IIGS:AXA	GLAND STEAM AIR EXHAUSTER "A"
IIGS:AXB	GLAND STEAM AIR EXHAUSTER "B"
IIIA:FDB	INSTRUMENT AIR FILTER/DRYER BYPASS VALVE
IIIA:I11	INSTRUMENT AIR COMPRESSOR #11
IIIA:I12	INSTRUMENT AIR COMPRESSOR #12
IIIA:IAC	STATION AIR TO INSTRUMENT AIR CROSS-CONNECT VALVE
IIIA:S11	STATION AIR COMPRESSOR #11
IIIA:S12	STATION AIR COMPRESSOR #12
IIIARAAP	& PLUGGING OF INSTRUMENT AIR AFTER FILTER

REMOTE FUNCTIONS (LOCAL OPERATOR ACTIONS) ACCEPTED FOR TRAINING/EXAMINATIONS REFERENCE ANSI/ANS 3.5, 1985 SECTION 3.4.4 (Continued)

MNEMONIC	DESCRIPTION
IIIARAPP	& PLUGGING OF INSTRUMENT AIR PRE-FILTER
IIHVRCWT	CIRCULATING WATER TEMPERATURE
IIHVROAT	OUTSIDE AIR TEMPERATURE
IIES:LB2	S/G HI-HI BISTABLE "B" CHANNEL 2
IIES:LB3	S/G HI-HI BISTABLE "B" CHANNEL 3
IIES:LD2	S/G HI-HI BISTABLE "C" CHANNEL 2
IIES:LD3	S/G HI-HI BISTABLE "C" CHANNEL 3
IIRP:003	S/G LO-LO BISTABLE "A" CHANNEL 2
IIRP:034	S/G LO-LO BISTABLE "B" CHANNEL 3
IIRP035	S/G LO-LO BISTABLE "B" CHANNEL 2
IIRP:036	S/G LO-LO BISTABLE "B" CHANNEL 3
IIRP:037	IMPULSE PRESSURE TO P-13 CHANNEL 1
IIRP:038	C-5 INPUT FROM PT-505
IITU:BLK	BLOCK AMSAC TURBINE TRIP
IITU:RET	REMOTE TURBINE TRIP

MANUAL RX TRIP TRANSIENT TEST DATA

1.0 Discussion

The intent of the transient test is to verify simulator performance. Transients must be capable of continuing until such time that a stable, controllable and safe condition is attained which can be continued to a cold shutdown condition or until the simulator operating limits are exceeded.

- 2.0 Reference(s)
 - 2.1 ANSI/ANS-3.5, 1985, 4.2.1, 4.3, A.3.3 ANS NPP Simulators For Use In Operator Training.
 - 2.2 Reg. Guide 1.149, Nuclear Power Plant Simulation Facilities For Use In Operator License Examinations.
- 3.0 Equipment

3.1 None

- 4.0 Initial conditions
 - 4.1 Initial conditions (ICs) will be as stated in procedure.
- 5.0 Acceptance criteria
 - 5.1 Acceptance criteria shall be that which is stated in ANSI/ANS 3.1, 1985, Section 4.2 (Transient operation).
- 6.0 Non-acceptance of simulator results
 - 6.1 Simulator results do not have to parallel source data. However, observable differences, differences that would detract from positive training, and differences declared unacceptable by evaluation based on acceptance criteria, will not be used for routine training without instructor intervention to discuss proper response. Unacceptable transients will not be used for examinations without real-time dry-runs of each scenario.
- 7.0 Procedure
 - Note: After initiation of transient, <u>operators are to</u> take no followup actions unless otherwise noted.
 - Note: All transients are to be carried to a stable plant condition.

ADDENDUM 8

MANUAL RX TRIP TRANSIENT TEST DATA (continued)

- 7.1 Perform the following transients
 - 7.1.1 Manual RX trip
 - A. Initialize to 100% (IC-16)
 - B. Manually trip reacto
 - C. Run for 5 minutes
 - D. Freeze simulator
 - E. Collect data as per Tableau 1.
 - F. Repeat steps C thru E until stable plant conditions are reached.
 - G. Record number of times data was taken.

Complete SAT UNSAT

ADDENDUM 8

MANUAL RX TRIP TRANSIENT TEST DATA

MANUAL REACTOR TRIP FROM 100% POWER

The simulator was initialized to 100% steady state power (IC-16) and a manual reactor trip was initiated. No operator follow-up actions were taken. The reactor trip was initiated approximately five seconds after data collection was started. The parameters listed in ANSI/ANS-3.5, 1985 Appendix B-B2.2.1 were collected for fifteen minutes with a time resolution of one half Second.

The test data, required to be collected by ANSI/ANS 3.5, 1985, Appendix B, was reviewed by a panel of experts. The individuals and their qualifications are listed in Section 10 (Simulator Performance Test).

The test data was compared to reference plant RETRAN curves and each parameter was analyzed to determine if the acceptance criteria as stated in ANSI/ANS 3.5, 1985 Section 4.2 (Transient Operation) was met. The following are the results of this review:

TEST RESULTS

Several discrepancies were identified associated with this transient. It was the consensus of the panel that the parameters trended in the appropriate direction, however, the magnitude of change was not correct. The S/G dynamic response was identified as the root cause.

It is anticipated that, at the completion of the simulator upgrade project, all identified discrepancies associated with this transient will be corrected. See Section 12 for the Simulator Upgrade Plan and Schedule.

14

.

-

•

.

1.0

33

e

.

ø

ADDENDUM 9 SYNOPSIS OF TRANSIENT TEST RESULTS

SIMULTANEOUS TRIP OF ALL FEEDWATER PUMPS

The simulator was initialized to 100% steady state power (IC-16) and malfunctions X:CD0401 through X:CD0403 (Loss Of Main Feedwater Pumps) were initiated with a five second time delay. The start-up FW pump was rendered inoperable by placing it into the pull-to-lock position. No operator follow-up actions were taken. Data collection was started approximately five seconds prior to the malfunction actuation. Parameters listed in ANSI/ANS-3.5, 1985 Append x B-B2.2.1 Were collected for fiftgen minutes with a time resolution of one-half second.

The test data, required to be collected by ANSI/ANS-3.5, 1985, Appendix B, was reviewed by a pairal of experts. The individuals and their qualifications are listed in Section 10 (Simulator Performance Test).

The test data was compared to reference plant RETRAN curves and each parameter was analyzed to determine if the acceptance criteria as stated in ANSI/ANS-3.5, 1985 Section 4.2 (Transient Operation) was met. The following are the results of this review:

TEST RESULTS

Several discrepancies were identified associated with this transient. See Addendum 1.7 for identified discrepancies associated with the requirements of ANSI/ANS-3.5, 1985 Appendix B.2.2 (Transient Performance). It was the consensus of the panel that the parameters trended in the correct direction, however, the magnitude of change was not correct. The S/G dynamic response was determined to be the root cause.

It is anticipated that, at the completion of the simulator upgrade project, all identified discrepancies associated with this transient will be corrected. See Section 12 for the simulator upgrade plan and schedule.

ADDENDUM 9 BYNOPSIS OF TRANSIENT TEST RESULTS (Continued)

SIMULTANEOUS CLOSURE OF ALL MAIN STEAM ISOLATION VALVES

The simulator was initialized to 100% steady state power (IC-16) and malfunctions X:MS0601 through X:MS0604 (MSIV fails closed) were initiated with a five second time delay. No operator follow-up actions were taken. Data collection was started approximately five seconds prior to the malfunction actuation. Parameters listed in ANSI/ANS-3.5, 1985 Appendix B-B2.2.1 were collected for fifteen minutes with a time resolution of one-half second.

The test data, required to be collected by ANSI/ANS-3.5, 1985, Appendix B, was reviewed by a panel of experts. The individuals and their qualifications are listed in Section 10 (Simulator Performance Test).

The test data was compared to reference plant RETRAN curves and each parameter was analyzed to determine if the acceptance criteria as stated in ANSI/ANS-3.5, 1985 Section 4.2 (Transient Operation) was met. The following are the results of this review:

TEST RESULTS

Several discrepancies were identified associated with this transient. See Addendum 1.7 For identified discrepancies associated with the requirements of ANSI/ANS-3.5, 1985 Appendix B.2.2 (Transient Performance). It was the consensus of the panel that the parameters trended in the correct direction, however, several oscillations were noted related to the steam generators, the overall S/G dynamic response is not correct.

It is anticipated that, at the completion of the simulator upgrade project, all identified discrepancies associated with this transient will be corrected. See Section 12 for the simulator upgrade plan and schedule.

ADDENDUM 9 EYNOPSIS OF TRANSIENT TEST RESULTS (Continued)

SIMULTANEOUS TRIP OF ALL REACTOR COOLANT PUMPS

The simulator was initialized to 100% steady state power (IC-16) and malfunctions X:RC1001 through X:RC1004 (RCP trips on under voltage) were initiated with a five second time delay. No operator follow-up actions were taken. Data collection was started approximately five seconds prior to the malfunction actuation. Parameters listed in ANSI/ANS-3.5, 1985 Appendix B-B2.2.1 Were collected for fifteen minutes with a time resolution of one-half second.

The test data, required to be collected by ANSI/ANS-3.5, 1985, Appendix B, was reviewed by a panel of experts. The individuals and their qualifications are listed in Section 10 (Simulator Performance Test).

The test data was compared to reference plant RETRAN curves and each parameter was analyzed to determine if the acceptance criteria as stated in ANSI/ANS-3.5, 1985 Section 4.2 (Transient Operation) was met. The following are the results of this review:

TEST RESULTS

Several discrepancies were identified associated with this transient. See Addendum 1.7 For identified discrepancies associated with the requirements of ANSI/ANS-3.5, 1985 Appendix B.2.2 (Transient Performance). It was the consensus of the panel that several of the parameters did not follow the expected trend. Several parameters had oscillations which could not be explained.

The impact on the examination process is minimal. While anomalies were visible on the one-half second resolution hard-copy graph, they were not discernible from the control boards. Consequently there is no interference with regard to the ability to complete the immediate or recovery actions of the emergency procedures.

It is anticipated that, at the completion of the simulator upgrade project, all identified discrepancies associated with this transient will be corrected. See Section 12 for the simulator upgrade plan and schedule.

ADDENDUM 9 SYNCPSIS OF TRANSIENT TEST RESULTS (Continued)

TRIP OF ANY SINGLE REACTOR COOLANT PUMP

The simulator was initialized to 100% steady state power (IC-16) and malfunctions X:RC1002 (RCP (B) trips on under voltage) was initiated with a five second time delay. No operator follow-up actions were taken. Data collection was started approximately five seconds prior to the malfunction actuation. Parameters listed in ANSI/ANS-3.5, 1985 Appendix B-B2.2.1 were collected for fifteen minutes with a time resolution of one-half second.

The test data, required to be collected by ANSI/ANS-3.5, 1985, Appendix B, was reviewed by a panel of experts. The individuals and their qualifications are listed in Section 10 (Simulator Farformance Test).

The test data was compared to reference pla & RETRAN curves and each parameter was analyzed to determine if the acceptance criteria as stated in ANSI/ANS-3.5, 1985 Section 4.2 (Transient Operation) was met. The following are the results of this review:

TECT RESULTS

Several discrepancies were identified with this transient. See Addendum 1.7 for identified discrepancies associated with the requirements of ANSI/ANS-3.5, 1985 Appendix B.2.2 (Transient Performance). It was the consensus of the panel that the parameters trended in the correct direction, however, the magnitudes of change were not correct.

It is anticipated that, at the completion of the simulator upgrade project, all identified discrepancies associated with this transient will be corrected. See Section 12 for the simulator upgrade plan and schedule.

ADDENDUM 9 SYNOPSIS OF TRANSIENT TEST RESULTS (Continued)

MAIN TURBINE TRIP FROM APPROXIMATELY 40% POWER

The simulator was initialized to approximately 50% power (IC-14), power was then reduced below the turbine trip setpoint and allowed to stabilize. A manual turbine trip was initiated and no operator follow-up actions were taken. Data collection was started approximately five seconds prior to the manual turbine trip. Parameters listed in ANSI/ANS-3.5, 1985 B-B2.1 were collected for fifteen minutes with a time resolution of one-half second.

The test data, required to be collected by ANSI/ANS-3.5, 1985, Appendix B, was reviewed by a panel of experts. The individuals and their qualifications are listed in Section 10 (Simulator Performance Test).

The test data was compared to reference plant RETRAN curves and each parameter was analyzed to determine if the acceptance criteria as stated in ANSI/ANS-3.5, 1985 Section 4.2 (Transient Operation) was met. The following are the results of this review:

TEST RESULTS

Several discrepancies were identified with this transient. See Addendum 1.7 For identified discrepancies associated with the requirements of ANSI/ANS-3.5, 1985 Appendix B.2.2 (Transient Performance). It was the consensus of the panel that the parameters trended in the correct direction, however, the magnitudes of change were not correct. The S/G model was determined to be the root cause.

It is anticipated that, at the completion of the simulator upgrade project, all identified discrepancies associated with this transient will be corrected. See Section 12 for the simulator upgrade plan and schedule.

ADDENDUM 9 BYNOPSIS OF TRANSIENT TEST RESULTS (Continued)

MAXIMUM RATE POWER RAMP (100% - 75% - 100%) AT 0.5%/MIN

The simulator was initialized to 100% steady state power (IC-16) and power was ramped from 100% to 75% to 100% at a rate of 0.5% Per minute with the control rods in automatic. Other than making the necessary adjustments on the Turbine EH Controller no other operator follow-up actions were taken. Data collection was started approximately five seconds prior to initiating the power ramp. Parameters listed in ANSI/ANS-3.5,-1985 Appendix B-B2.2.1 were collected for fifteen minutes with a time resolution of one-half second.

The test data, required to be collected by ANSI/ANS-3.5, 1985, Appendix B, was reviewed by a panel of experts. The individuals and their qualifications are listed in Section 10 (Simulator Performance Test).

The test data was compared to reference plant RETRAN curves and each parameter was analyzed to determine if the acceptance criteria as stated in ANSI/ANS-3.5, 1985 Section 4.2 (Transient Operation) was met. The following are the results of this review:

TEST RESULTS

Several discrepancies were identified with this transient. See Addendum 1.7 for identified discrepancies associated with the requirements of ANSI/ANS-3.5, 1985 Appendix B.2.2 (Transient Performance). It was the consensus of the panel that the parameters trended correctly with the exception of those related to the S/G.

It is anticipated that, at the completion of the simulator upgrade p.oject, all identified discrepancies associated with this transient will be corrected. See Section 12 for the simulator upgrade plan and schedule.

9 = 6

ADDENDUM 9 BYNCPSIS OF TRANSIENT TEST RESULTS (Continued)

MAXIMUM SIZE LOCA COMBINED WITH LOSS OF OFF : TE POWER

The simulator was initialized to 100% steady state power (IC-16) and malfunctions X:RC0101 (RCS Cold Leg Rupture Loop A) and X:EA0801 (Loss Of Grid) were initiated with a five second time delay. No operator follow-up actions were taken. Data collection was started approximately five seconds prior to the malfunction actuation. Parameters listed in ANSI/ANS-3.5, 1985 Appendix B-B2.2.3 were collected for fifteen minutes with a time resolution of one half second.

The test data, required to be collected by ANSI/ANS-3.5, 1985, Appendix B, was reviewed by a panel of experts. The individuals and their qualifications are listed in Section 10 (Simulator Performance Test).

The test data was compared to reference plant RETRAN curves and each parameter was analyzed to determine if the acceptance criteria as stated in ANSI/ANS-3.5, 1985 Section 4.2 (Transient Operation) was met. The following are the results of this review:

TEST RESULTS

Several discrepancies were identified with this transient. It was the consensus of the panel that the overall response of this transient is unsatisfactory primarily due to the relatively low core exit thermocouple temperatures maintained through the examined transient. As noted in the general transient test description, the proper trends are discussed with operators when this transient is used during training. The non-responsiveness of the thermocouples is also included as a routine item on all pre-session briefings. See Addendum 1.7 For identified discrepancies associated with the requirements of ANSI/ANS-3.5, 1985 Appendix B.2. (Transient Performance).

For examination purposes the impact is significant but not preclusive. All of the required and relevant emergency actions for this LOCA and loss of off-site power can still be properly taken. The net result of the deficiency is a de facto limitation on the number of further compounded failures that could be added to this scenario, (for example a further loss of all three class 1E electric supplies).

It is anticipated that, at the completion of the simulator upgrade project, all identified discrepancies associated with this transient will be corrected. See Section 12 for the simulator upgrade plan and schedule.

ADDENDUM 9 SYNOPSIS OF TRANSIENT TEST RESULTS (Continued)

MAXIMUM SIZE UNISOLABLE MAIN STEAM LINE RUPTURE

The simulator was initialized to 100% steady state power (IC-16) and malfunction XNMS0201 (Steam Break In Containment Loop 1) was initiated at the maximum severity with a five second time delay. No operator follow-up actions were taken. Data collection was started approximately five seconds prior to the malfunction actuation. Parameters listed in ANSI/ANS-3.5, 1985 Appendix B-B2.2.3 were collected for fifteen minutes with a time resolution of one-half second.

The test data, required to be collected by ANSI/ANS-3.5, 1985, Appendix B, was reviewed by a panel of experts. The individuals and their qualifications are listed in Section 10 (Simulator Performance Test).

The test data was compared to reference plant RETRAN curves and each parameter was analyzed to determine if the acceptance criteria as stated in ANSI/ALJ-3.5, 1985 Section 4.2 (Transient Operation) was met. The following are the results of this review:

TEST RESULTS

Several discrepancies were identified with this transient. It was the consensus of the panel that the overall results were unsatisfactory since the containment and RCS response were not correct. As noted in the general transient test description, the proper trends are discussed with operators when this transient is used during training. See Addendum 1.7 for identified discrepancies associated with the requirements of ANSI/ANS-3.5, 1985 Appendix B.2.2 (Transient Performance).

While readily discernible during the expert panel review, these discrepancies are not considered to preclude a valid examination for the following reasons.

(1) Maximum severity malfunctions for steam breaks both inside and outside containment were run as part of the malfunction test (please see Addendum 4, pages 100 and 101). The discrepancies neither precluded the ability to take the proper emergency procedure actions nor were noticeable at the control boards.

SYNOPSIS OF TRANSIENT TEST RESULTS (Continued)

MAXIMUM SIZE UNISOLABLE MAIN STEAM LINE RUPTURE

- (2) Any examination would include required operator actions that are not represented (deliberately) in this transient test.
- (3) Additional compounded malfunctions to be added to this basic scenario must be first validated by a real-time dry-run of the total scenario.

It is anticipated that, at the completion of the simulator upgrade project, all identified discrepancies associated with this transient will be corrected. See Section 12 for the simulator upgrade plan and schedule.

ADDENDUM 9 SYNOPSIS OF TRANSIENT TEST RESULTS (Continued)

SLOW PRIMARY SYSTEM DEPRESEURIZATION TO SATURATED CONDITIONS

The simulator was initialized to 100% steady state power (IC-16) and high head safety injection pumps were placed in the "pull to lock" position and malfunction XNRC1301 (Pressurizer PORV Leak) was initiated at the maximum rate with a five second time delay. No operator follow-up actions were taken. Data collection was started approximately five seconds prior to the malfunction actuation. Parameters listed in ANSI/ANS-3.5, 1985 Appendix B-B2.2.4 were collected for fifteen minutes with a time resolution of one-half second.

The test data, required to be collected by ANSI/ANS-3.5, 1985, Appendix B, was reviewed by a panel of experts. The individuals and their qualifications are listed in Section 10 (Simulator Performance Test).

The test data was compared to reference plant RETRAN curves and each parameter was analyzed to determine if the acceptance criteria as stated in ANSI/ANS-3.5, 1985 Section 4.2 (Transient Operation) was met. The following are the results of this review:

TEST RESULTS

Some discrepancies were identified associated with this transient. It was the consensus of the panel that the parameters trended in the correct direction, however, the basic RCS mass balance is not correct. See Addendum 1.7 for identified discrepancies associated with the requirements of ANSI/ANS-3.5, 1985 Appendix B.2.2 (Transient Performance).

It is anticipated that, at the completion of the simulate upgrade project, all identified discrepancies associated with this transient will be corrected. See Section 12 for the simulator upgrade plan and schedule.

ADDENDUK 10 OVERRIDES ACCEPTED FOR TRAINING/EXAMINATIONS

MNEMONIC	HARDWARE DESIGNATOR	DESCRIPTION
And and the second s	ADDOELS	PWST LEVEL LR-931 PEN 1-RED
SILR931	18005+1	PWST LEVEL LR-931 PEN 2-GRN
SILG931	1R005-2	ACC TH IN PRESS PI-960
SIPT960	11034-1	ACC TH IA PRESS PI-961
SIPT961	11034-2	ACC TH IN LEVEL LI-950
SILT950	11035-1	ACC TH IN LEVEL LI-951
SILT951	11035-2	WHET DIMP IN COLD LEG FLOW FI-901
SIFT901	21031	WHET DIMP IN AOT LEG FLOW FI-917
SIFT917	11032	THET PUP IN COLD LEG FLOW FI-851
SIFT851	11003	THET DIMP IN HOT LEG FLOW FI-927
SIFT927	11033	LAST FORT IN DEESS PI-962
SIPT962	11085-1	ACC IN ID PRESS PI-963
SIPT963	11085-2	ACC IN ID FRINT LI-952
SILT952	11086-1	ACC TK ID LEVEL LI-953
SILT953	11086-2	ACC IN ID SEVED SEE FLOW FI-902
SIFT902	11087	HHSI PUMP IB COLD LEG FLOW FI-918
SIFT918	11089	HEST PURP ID HOT LEG FLOW FI-852
SIFT852	11090	LMSI/KRY IB COLD LES FLOW FI=928
SIFT928	11093	LHSI PUMP IB HOI LEG FLOW IL SE
SIPT964	11095-1	ACC TK IC PRESS PI-904
SIPT965	11095-2	ACC TK IC PRESS PI-905
SILT954	11096-1	ACC TK IC LEVEL DI-954
SILT955	11096-2	ACC TK IC LEVEL DI-955
RCIP406A	11105	REACTOR COOLANT PRESS
SIFT903	11097	HHSI PUMP IC COLD LEG FLOW FI-919
SIFT919	11098	HHSI PUMP IC HOT LEG FLOW FI-853
SIFT853	11100	LHSI/RHR 1C COLD LEG FLOW FI-629
SIFT929	11103	LASI PUMP IC HOT LEG FLOW FI-SES
CC1F4564	11080	RHR HX 1C CCW OUTL FLOW FI-4504
RWSTL932	11048	RWST LEVEL III LI-932
SILRWST	11084	RWST LEVEL II LI=931
ECTI 5893	11081	ECW SUP TEMP LOOP IC TI-6895
ECL16931	11083	ECW PUMP IC BAY LEVEL LI-6951
SIPT904	11030	HHSI PUMP 1A DISCH PRESS PIESO4
SIPT861	11005	LSHI/RHR PUMP 1A DISCH P1-801
RHFT867	11004	RHR PUMP 1A DISCH FLW F1-867
RHFT868	11094	RHR PUMP 1B DISCH FLOW F1-800
SIPT905	11088	HHSI PUMP 1B DISCH PRESS PI-905
SIPT862	11091	LHSI/RHR PUMP 18 DISCH PRESS PI-802
SIPT906	11099	HHSI PUMP 1C DISCH PRESS PI-906
STPT863	11101	LHSI/RHR PUMP 1C DISCH PRESS PI=563
RHFT869	11104	RHR PUMP 1C DISCH FLOW F1-869

02:

MNEMONIC	HARDWARE DESIGNATOR	DESCRIPTION
SITE874	1R001-1	RHR HX 1A INLET/OUTL TEMP RED TR-874
SITE857	1R002-2	RHR HX 1A INLET/OUTL TEMP GRN
SITE87	1R002-1	RHR HX 1B INLET/OUTL TEMP RED TR-875
SITES.	1R002-2	RHR HX 1B INLE /OUTL TEMP GRN
SITE876	1R006-1	RHR HX 1C INLET OUTL TEMP RED TR-876
SITE859	1R006-2	RHR HX 1C INLET/CUTL TEMP GRN
HVIT9681	21080	CONTMT BLDG TEMP TI. 9681
HVIM9682	21081	CONTMT BLDG MOISTURE MI-9682
CCTF4536	21084	RCFC 11A COOL WTR OUTL FLOW FI4536
HVT9664	21085	RCFC 001 AIR INLET TEMP TI-9664/9665
HVT9665	21085	RCFC 001 AIR INLET TEMP TI-9664/9665
CTP4538	21087	RCFC 12A COOL WTR OUTL FLOW FI-4538
HVT9673	21088	RCFC 002 AIR INLET TEMP TI-9673/9674
HVT9674	21088	RCFC 002 AIR INLET TEMP TI-9673/9674
CCTF4553	21052	RCFC 11B COOL WTR OUTL FLOW FI-4553
HVT9661	21005	RCFC 003 AIR INLET TEMP TI-9661/9662
HVT9662	21005	RCFC 003 AIR INLET TEMP TI-9661/9662
CCTF4555	21051	RCFC 12B COOL WTR OUTL FLOW FI-4555
HVT9667	21007	RCFC 004 AIR INLET TEMP TI-9667/9668
HVT9668	21007	RCFC CO4 AIR INLET TEMP TI-9667/9668
CCIFA570	21032	RCFC 11C COOL WTR OUTL FLOW FI-4570
HVT9670	21094	RCFC 005 AIR INLET TEMP TI-9670/9671
HVT9671	21094	RCFC 005 AIR INLET TEMP TI-9,70/9671
CCIF4572	21095	RCFC 12C COOL WTR OUTL FLOW FI-4572
HVT9676	21096	RCFC 006 AIR INLET TEMP TI-9696/9677
HVT9677	21096	RCFC 006 AIR INLET TEMP TI-9676/9677
CCTL4504	21108	CCW SURGE TK COMP A LEVEL LI-4506
CCTL4506	21048	CCW SURGE TK COMP B LEVEL LI-4506
CCTL4508	21109	CCW SURGE TK COMP C LEVEL LI-4508
ECLENDG	28005-1	ECW POND LEVEL LR-6900
ECLPNDR	2R005~2	ECW POND LEVEL LR-6900
CSLT812A	21090	SPR ADD TK 1A LVL LI-812A
CSPT810	21091	SPR ADD TK 1A PRESS PI-810
CSFT813A	21092	SPR PUMP 1A DISCH FLOW FI-813A
CSLT822A	21026	CNTMT SPR TK 1B ADD TK LVL LI-822A
CSPT820	21027	SPR ADD TK 1B PRESS PI-820
CSFT823A	21028	SPR PUMP 1B DISCH FLOW FI-823A
CSLT932A	21097	SPR ADD TK 1C LVL LI-832A
CSFT830	21098	SPR ADD TK 1C PRESS PI-830
CSET833A	21099	SPR PUMP 1C ' SCH FLOW FI-833A
CCTT4510	21100	CCW HX 1A C TMP TI-4510
CCTF4512	21101	CCW LOOP 1A FLOW FI-4512
CCTP4513	21102	CCW HX 1A OUTL PRESS PI-4513

1

in at it

(
MNEMONIC	HARDWARE DESIGNATOR	DESCRIPTION
-	and a selected state on interview in the	
ECT16883	21103	ECW SPLY TEMP LOOP 1A TI-6883
ECP16881	21104	ECW PUMP 1A DISCH PRESS PI-6881
ECL16911	21105	ECW PUMP 1A BAY LVL LI-6911
CCIF4530	21106	RHR HX 1A CCW OUTL FLOW FI-4530
CCIT4515	21045	CCW HX 1B OUTL TEMP TI-4515
CCIF4517	21046	CCW LOOP 1B FLOW FI-4517
CCIP4518	21047	CCW HX 1B OUTL PRESS PI-4518
ECTI6888	21054	ECW SPLY TEMP LOOP 1B TI-6888
ECPI6886	21050	ECW PUMP 15 DISCH PRESS PI-686
FCL16921	21649	ECW PUMP 1B BAY LVL LI-6921
CCIF4547	21043	RHR HX 1B CCW OUTL FLOW FI-4547
CCIT4524	21110	CCW HX 1C OUTL TEMP TI-4520
CCIF4522	21111	CCW LOOP 1C FLOW FI-4522
CCIP4523	21112	CCW HX 1C OUTL PRESS PI-4523
EDCVA11	31078	DC BUS A 11 VOLTAGE TR A/CH I
EDCVB11	31086	DC BUS B 11 VOLTAGE TR B/CH III
EDCVC11	31090	DC BUS C 11 VOLTAGE TR C/CH IV
EDCVD11	31082	DC BUS D 11 VOLTAGE TR D/CH II
EAC1051M	31055	DG 11 XILOWATTS
EAC1054M	31056	DG 11 YVARS
EAC1056M	31057	DG 11 AMPERES
EAC1064M	31058	DG 11 SPEED
EAC1052M	31059	DG 11 HERTZ
EAC1055M	31060	DG 11 VOLTAGE
EAC2050M	31062	ESF BUS ELA VOLTAGE
EACVEIA	31114	DG 11 TRANSF E1A VOLTS
EAC2070M	31067	DG 12 KILOWATTS
EAC2073M	31068	DG 12 KVARS
EAC2075M	31069	DG 12 AMPERES
EAC2063M	31070	DG 12 SPEED
EAC2071M	31071	DG 12 HERTZ
EAC2074M	31072	DG 12 VOLTAGE
EAC2069M	31074	ESF BUS E1B VOLTAGE
EACVE1B	31115	DG 12 TRANSF E1B VOLTS
EAC3045M	31045	DG 13 KILOWATTS
EAC3048M	31048	DG 13 KVARS
EAC3050M	31050	DG 3.3 AMPERES
EAC3039M	31039	DG 13 SPEED
EAC3046M	31046	DG 13 HERTZ
EAC3049M	31049	DG 13 VOLTAGE
EAC3044M	31044	ESF BUS E1C VOLTAGE
EACEIC	37116	DG 13 TRANSF EIC VOLTS

. .

MNEMONIC	HARDWARE DESIGNATOR	DESCRIPTION
EDCEA111	31079	BATT CHC LIAI1-1 CURRENT
EDCEA112	31080	BATT CHG E1A11-2 CURRENT
EDCIA11	31081	BATT A11 CURRENT
EDCEB111	31087	BATT CHG E1B11-1 CURRENT
EDCEB112	31088	BATT CHG E1B11-2 CURRENT
EDCIB11	31089	BATT B11 CURRENT
EDCEC111	31091	BATT CHG E1C11-1 CURRENT
EDCEC112	31092	BATT CHG E1C11-2 CURRENT
EDC1C11	31093	BATT C11 CURRENT
EDCED111	31083	BATT CHG E1D11-1 CURRENT
EDCED112	31084	BATT CHG E1D11-2 CURRENT
EDCIDII	31085	BATT D11 CURRENT
EDCV048	31102	DC BUS EPL 048 VOLT E
EDCB048A	31104	BATT CHG BC 048 A CURRENT
EDCB048B	31103	BATT CHG BC 048 B CURRENT
EDCB048	31105	BATT 048 CURRENT
EDCV125D	31098	DC BUS EPL 12! OLT E
EDCB125A	31100	BATT CHG 125 A LORRENT
EDCB125B	31099	BATT CHG BC 125 B CURRENT
EDCB125	31101	BATT EBT 125 CURRENT
EDCV250	31094	DC BUS EBT 250 VOLT E
EDCB250A	31096	BATT CHG BC 250 A CURRENT
EDCB250B	31095	BATT CHG BC 250 B CURRENT
EDCB250	31097	BATT EBT 250 CURRENT
EAC1063M	31063	DG 11 FUEL OIL STOR TK
EAC1041M	31064-1	DG 11 STARTING AIR PRESS PI-5432A
EAC5433A	31064-2	DG 11 STARTING AIR PRESS PI-5433A
EAC1040A	31065	DG 11 JACKET WTR PRESS PI-5407A
EAC1040B	31106	DG 11 JACKET WTR TEMP TI-5412A
EAC1074A	31066	DG 11 LUBE OIL PRESS PI-5497A
EAC1074B	31107	DG 11 LUBE OIL TEMP TI-5484A
EAC2062M	:1075	DG 12 FUEL OIL STOR TK LVL LI-9111
EAC2031M	11076-1	DG 12 STARTING AIR PRESS PI-5532A
AC5533A	31076-2	DG 12 STARTING AIR PRESS PI-5533A
SEC2032A	31077	DG 12 JACKET WTR PRESS PI-5507A
CAC2032B	31108	DG 12 JACKET WTR TEMP TI-5512A
EAC2053A	31112	DG 12 LUBE OIL PRESS PI-5597A
EAC2053B	31109	DG 12 LUBE OIL TEMP TI-5584A
EAC303M	31039	DG 13 FUEL OIL STOR TK LVL LI-911:
EAC '012M	31012-1	DG 13 STARTING AIR PRESS PI-5632A
EAC5633A	1012-2	DG 13 STARTING AIR PRESS PI-5633A
FACSOSSA	31035	DG 13 JACKET WTR PRESS PI-5607A

9.

MNEMONIC	HARDWARP DESIGNATOR	DESCRIPTION
	Methodal States and a second	
EAC3035B	31110	DG 13 JACKET WTR PRESS TI-5612A
EAC3051A	31151	DG 13 LUBE OIL PRESS PI-5697A
EAC3051B	31111	DG 13 LUBE OIL TEMP TI-5684A
CVLT110	4R002R	BORIC ACID BLEND FR-110
CVT121	4R002G	BORIC ACID BLEND FR-110
BTLT380	41009	BTR: CHILLER SURG TK 1A LVL LI-0380
BTTT379	41010	BTR' CHILLER SURG TK 1A TEMP TI0379
BTTT376	41075	CHILLED WTR/LTDN CHILL HX 1A TMP TI- 376
BFTFT375	41012	BTRS CHILLER 1A TOTAL FLOW FI-0375
CVFT156A	4R003R	RCP 1A FLOW FR-0156
CVFT156B	4R003G	RCP 1A FLOW FR-0156
CVFT144	4R003B	RCP 1A FLOW FR-0156
CVFT157A	4R004R	RCP 1B FLOW FR-0157
CVFT157B	4R004B	RCP 1B FLOW FR-0157
CVFT145	4R004G	RCP 1B FLOW FR-0157
CVFT158A	4R005R	RCP 1C FLOW FR-0158
CVFT158B	4R005B	RCP 1C FLOW FR-0158
CVFT146	4R005G	RCP 1C FLOW FR-0158
CVFT159A	4R006R	RCP 1D FLOW FR-0159
CVFT159B	4R006B	RCP 1D FLOW FR-0159
CVFT147	4R006G	RCP 1D FLOW FR-0159
CVTT125	41036	RC LTDN ORIF REL VLV DISCH TMP TI125
RCIT609	41076	RC PRZR 1A SURG LINE TEMP TI-0609
RCIT605	41077-1	PZR SPY VLV SUP TEMP LOOP 1 TI-605, 606
RCIT606	41077-2	PZR SPY VLV SUP TEMP LOOP 1 TI- 605.506
RCIT607	41078	RC PRZR 1A STM TEMP TI-0607
RCIT608	41079	RC PRZR 1A LIQUID TEMP TI-0608
RCIT676	41080-1	RC PZR 1A SFTY POR DSCH TMP TI-676.
RCIT677	41080-2	RC PZR 1A SFTY POR DSCH TMP TI-676, 677
RCIT678	41081-1	RC PZR 1A SFTY VLV DSCH TMP TI-678, 679
RCIT679	41081-2	RC PZR 1A SFTY VLV DSCH TMP TI-678, 679
RCIL465	41082-1	RC PRZR 1A LVL LI-0465, 0466
RCIL466	41082-2	RC PRZR 1A LVL LI-0465, 0466

ip

MNEMONIC	HARDWARE DESIGNATOR	DESCRIPTION
And the design of the second	AND THE R & R & R & R & R & R & R & R & R & R	
RCIL467	41083-1	PRZR VLV/PRZR PROG-CLD COMP LVL LI-0467
RCIL675	41083-2	PRZR VLV/PRZR PROG-CLD COMP LVL
RCIP455	41084-1	RC PRZR 1A PRESS PI-0455, 0456
RCIP456	41084-2	RC PRZR 1A PRESS PT-0455, 0456
RCIP457	41085-1	RC PRZR 1A PRESS PT-0457, 0458
RCIP458	41085-2	RC PRZR 1A PRESS PT-0457 0458
HVISCNSL	41059	SECONDARY CNTMT NORMAL SUMP LVL
CVPT152	41001	RCP 1A SEAL NO 1 DP PI-0152
CVPT153	41003	RCP 1B SEAL NO 1 DP PT-0153
CVPT154	41004	RCP 1C SEAL NO 1 DP PT-0154
CVPT155	41007	RCP 1D SEAL NO 1 DP PT-0155
CVTT216	41050	RC PUMPS SEAL THI TEMP TI-0216
RCIL670	41070	PRT WTF LVL LT-0670
RCIP669	41071	PRT' PRESS PT=0669
RCIT668	41072	PRT WTR TEMP TT-0668
CVPT4904	41026	RCDT PUMPS 1A, 1B DISCH PRESS PI-
CVFT4905	41022	RODT PUMPS 14 18 DISCH FLOW FT-4905
CVTT4906	41069-1	RCDT HX 1A INL/OUTL TEMP TI-4906, 4906A
CVT4906A	41069-2	RCDT HX 1A INL/OUTL TEMP TI-4906, 4906A
CVLT4901	41025	RCDT 1A LVL LI-4901
CVPT4900	41027	RCDT 1A PRESS PI-4900
CVTT4902	41028	RCDT 1A TEMP TI-4902
HVICNSL	41060	CNTMT NORMAL SUMP LVL LI-7812
CVTT229	41038	EXCESS LETDN HX 1A OUTL TEMP TI-0229
CVTT228	41037	EXCESS LETDN HX 1A OUTL PRESS PI-
CVLT7653	41018	RMW STORAGE TK 1A LVL LI-7653
CVLIT103	41073	BA TK 1A LVL LI=0103
CVTT104	41013-1	BA TK 1A. 1B TEMPS TI-0104. 0107
CVTT107	41013-2	BA TK 1A, 1B TEMPS TI-0104 0107
CVLT106	41074	BA TK 1B LVL LT-CLOS
CVPT7656	41017	RMW PUMPS 1A, 1B DISCH HDR PRESS PI-

BTTT386 4I031-1 THEM HX 1A OUTL REGEN DEMIN TI-386, 389 BTTT389 4I031-2 THEM HX 1A OUTL REGEN DEMIN TI-386, 389 BTTT381 4I030 LETDN REHEAT HX 1A OUTL TMP TI-381 BTT381 4I030 LETDN REHEAT HX 1A OUTL TMP TI-381 CVDT115 4I015 VCT 1A FRESS PI-0115 CVF1120A 4I034 ALTERN BORIC ACID MAKEUP FLOW FI- 0120A CVPT135 4I041 LETDN HX 1A OUTL TEMS FI-0135 CVT127 4I035 REGEN HX 1A OUTL TEMP TI-0120 CVT127 4I035 REGEN HX 1A OUTL TEMP TI-0127 CVF120A 4I044 CENTRIF CHG FMP DSCH HDR PRESS FI- 0204 CVT126 4I046 RC CHARGING FLOW FI-0205A CVT126 4I046 RC CHARGING FLOW FMP 1A CURRENT RCIFA17A 5I074 RX COOLANT FLOW MOP 1A CURRENT RCIFA27A 5I071 RX COOLANT FLOW MPP 1B CURRENT RCIFA37A 5I072 RX COOLANT FLOW MPP 1B CURRENT RCIFA47A 5I073 RX COOLANT FLOW MPP 1D CURRENT RCIFA47A 5I073 RX COOLANT FLOW MPP 1B CURRENT RCIFA47A 5I073	MNEMONIC	HARDWARE DESIGNATOR	DESCRIPTION
BTT1386 4I031-1 THRM HX 1A OUTL REGEN DEMIN TI-386, 389 BTT1389 4I031-2 THRM HX 1A OUTL REGEN DEMIN TI-386, 389 BTT1381 4I030 LETDN REHEAT HX 1A OUTL TMP TI-381 BTF1381 4I030 LETDN REHEAT HX 1A OUTL TMP TI-381 BTT1381 4I029 THERM REGEN DEMIN FLOW FI-0385 CVP1115 4I015 VCT 1A LVL LI-0112 CVF1120A 4I034 ALTERN BORIC ACID MAKEUP FLOW FI- 0120A CVPT135 4I041 LETDN HX 1A OUTL TEMP TI-0130 CVT127 4I035 REGEN HX 1A LETON OUTL TEMP TI-0127 CVF132 4T043 LETDN HX 1A OUTL TEMP TI-0126 CVF1204 4I044 CENTRIF CHG PMP DSCH HOR PRESS PI- 0204 CVF126 4I045 REGEN HX 1A LETON OUTL TEMP TI-0126 RCIF417A 5I070 RX COOLANT FLOW MP1 1a CURRENT RCIF427A 5I071 RX COOLANT FLOW MP1 1a CURRENT RCIF427A 5I075 RX COOLANT FLOW MP1 1c CURRENT RCIF427A 5I076 RX COOLANT FLOW MP1 1c CURRENT RCIF427A 5I077 RX COOLANT FLOW MP1 1c CURRENT RCIF427A			
BTTT38941031-2THRM HX 1A OUTL REGEN DEMIN TI-386, 389BTTT38141030LETON REHEAT HX 1A OUTL TMP TI-381BTFT38541029THERM REGEN DEMIN FLOW FI-0365CVPT11541015VCT 1A PRESS PI-0115CVLT1124.016VCT 1A LVL LI-012CVFT120A41034ALTERN BORIC ACID MAKEUP FLOW FI- 0120ACVTT13541041LETON HX 1A OUTL TEMP TI-0130CVTT12741035REGEN HX 1A LETON OUTL TEMP TI-0127CVT1244.044CENTRIF CHG PMP DSCH HDR PRESS PI- 0204CVT205A41046RC CHARGING FLOW FI-0205ACVT12641045REGEN HX 1A CHG OUTL TEMP TI-0126RCIF427A51070RX COOLANT FLOW LOOP 1RCIF427A51071RX COOLANT FLOW DOP 2RCIF427A51072RX COOLANT FLOW LOOP 2RCIRCPB51075RX COOLANT FLOW LOOP 3RCIRCPD51076RX COOLANT FLOW PMP 1C CURRENTRCIF447A51073RX COOLANT FLOW PMP 1D CURRENTRCIF447A51059-1PWR RANGE 41 DETECTOR CURRENTNILP2DC551059-1PWR RANGE 41 DETECTOR CURRENTNILP2PP551060-1PWR RANGE 42 POWERNILP3PP51061-1PWR RANGE 43 DETECTOR CURRENTNILP3PP551061-1PWR RANGE 43 POWERNILP3PP551031-1SOURCE RANGE 32 CPS NEUTRON LEVELNILS1SUR51033-1SOURCE RANGE SURNILS2SUR51035-2INTER RANGE 36 CURRENT LEVELNILL32SUR51037-2INTER RANGE SURNILL32SUR51037-2IN	BTTT386	41031-1	THRM HX 1A OUTL REGEN DEMIN TI-386, 389
BTTT381 41030 LETDN REHEAT HX 1A OUTL TMP TI-381 BTFT385 41029 THERM REGEN DEMIN FLOW FI-0385 CVPT115 41015 VCT 1A FRESS FI-0115 CVLT112 41016 VCT 1A LVL LI-0112 CVPT135 41041 LETDN HX 1A OUTL FRESS FI-0135 CVT130 41042 LETDN HX 1A OUTL TEMP FI-0130 CVT127 41035 REGEN HX 1A LETDN OUTL TEMP TI-0127 CVFT32 47043 LETDN HX 1A FLW FI-0132 CVFT204 41046 RC CHARGING FLOW FI-0205A CVFT205A 41046 RC COLANT FLOW LOOP 1 RCIIRCPA	BTTT389	41031-2	THRM HX 1A OUTL REGEN DEMIN TI-386, 389
BTFT38541029THERM REGEN DEMIN FLOW FI-0385CVPT11541015VCT 1A PRESS PI-0115CVLT11241034ALTERN BORIC ACID MAKEUP FLOW FI- 0120ACVPT13541041LETDN HX 1A OUTL TERSS PI-0135CVTT13041042LETDN HX 1A OUTL TEMP TI-0130CVTT12741035REGEN HX 1A LETDN OUTL TEMP TI-0127CVT13247043LETDN HX 1A FLW FI-0132CVT12441046RECHNRIG FLOW FI-0205ACVT205A41046RC CHARGING FLOW FI-0205ACVTT2641045REGEN HX 1A CHG OUTL TEMP TI-0126RCIF417A51070RX COOLANT FLOW DOP 1RCIRCPA51074RX COOLANT FLOW DOP 2RCIRCPA51075RX COOLANT FLOW LOOP 2RCIRCPA51076RX COOLANT FLOW LOOP 3RCIRCPC51076RX COOLANT FLOW LOOP 4RCIRCPC51077RX COOLANT FLOW LOOP 4RCIRCPD51078PWR RANGE 41 DETECTOR CURRENTNILP2DC551058-1PWR RANGE 41 DETECTOR CURRENTNILP2DC551059-1PWR RANGE 43 DETECTOR CURRENTNILP2DC551059-2PWR RANGE 43 DETECTOR CURRENTNILP3PP51061-1PWR RANGE 43 DETECTOR CURRENTNILP3PP51061-1PWR RANGE 44 DETECTOR CURRENTNILP3PP551061-1PWR RANGE 44 POWERNILP3PP51031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILS1NL551031-1SOURCE RANGE 32 CPS NEUTRON LEVELNILS1NL551035-1INTER RANGE 36 CURRENT LEVELNILS1NL551035-1INTER RANGE SUR<	BTTT381	41030	LETDN REHEAT HX 1A OUTL TMP TI-381
CVPT11541015VCT 1A PRESS PI-0115CVPT11241015VCT 1A LVL LI-0112CVPT120A41034ALTERN BORIC ACID MAKEUP FLOW FI-0120A0120ACVPT13541041LETDN HX 1A OUTL PRESS PI-0135CVTT13041042LETDN HX 1A OUTL TEMP TI-0130CVTT12741035REGEN HX 1A LETDN OUTL TEMP TI-0127CVFT13247043LETDN HX 1A FLW FI-0132CVFT205A41046RC CHARGING FLOW FI-0205ACVFT205A41046RC CHARGING FLOW FI-0205ACVT12641045REGEN HX 1A CHG OUTL TEMP TI-0126RCIFA17A51070RX COOLANT FLOW LOOP 1RCIFA27A51071RX COOLANT FLOW DOP 2RCIRCPB51075RX COOLANT FLOW DOP 3RCIRCPE51076RX COOLANT FLOW PMP 1B CURRENTRCIF447A51073RX COOLANT FLOW PMP 1C CURRENTRCIF447A51073RX COOLANT FLOW PMP 1C CURRENTNILP1DC551058-1PWR RANGE 41 DETECTOR CURRENTNILP1DC551059-1PWR RANGE 41 DETECTOR CURRENTNILP2DC551059-2PWR RANGE 43 DETECTOR CURRENTNILP2PP551060-1PWR RANGE 43 POWERNILP2PP551061-2PWR RANGE 44% POWERNILP3PP51061-2PWR RANGE 44% POWERNILP4PP51031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILS2SUR51033-1SOURCE RANGE 32 CPS NEUTRON LEVELNILS2SUR51035-1INTER RANGE 36 CURRENT LEVELNIL12NL551035-2INTER RANGE 36 CURRENT LEVELNIL12NL55103	BTFT385	41029	THERM REGEN DEMIN FLOW FI-0385
CVLT1124:016VCT 1A LVL LI-0112CVFT120A4:034ALTERN BORIC ACID MAKEUP FLOW FI- 0120ACVT1354:041LETDN HX 1A OUTL PRESS PI-0135CVTT1304:042LETDN HX 1A OUTL TEMP TI-0130CVTT1274:035REGEN HX 1A LETDN OUTL TEMP TI-0127CVF1324:043LETDN HX 1A FLW FI-0132CVPT2044:044CENTRIF CHG FMP DSCH HDR PRESS PI- 0204CVF1265A4:046RC CHARGING FLOW FI-0205ACVT1264:1045REGEN HX 1A CHG OUTL TEMP TI-0126RCIF417A5:070RX COOLANT FLOW LOOP 1RCIRCPA5:071RX COOLANT FLOW LOOP 2RCIRCPB5:075RX COOLANT FLOW LOOP 3RCIRCPC5:076RX COOLANT FLOW DP 1B CURRENTRCIRCPD5:077RX COOLANT FLOW PMP 1D CURRENTRCIRCPD5:058-1PWR RANGE 41 DETECTOR CURRENTNILP1DC55:1059-2PWR RANGE 41 DETECTOR CURRENTNILP1DC55:059-2PWR RANGE 43 DETECTOR CURRENTNILP1PP55:060-1PWR RANGE 43 DETECTOR CURRENTNILP1PP55:060-2PWR RANGE 41 DETECTOR CURRENTNILP1PP55:060-1PWR RANGE 43 DETECTOR CURRENTNILP3DC55:031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILP3PP5:031-1SOURCE RANGE 32 CPS NEUTRON LEVELNILS1SUR5:033-1SOURCE RANGE SURNILS2SUR5:033-2SOURCE RANGE SURNILISUR5:035-2INTER RANGE 36 CURRENT LEVELNIL11SUR5:037-2INTER RANGE SUR	CVPT115	41015	VCT 1A PRESS PI-0115
CVFT120A4I034ALTERN BORIC ACID MAKEUP FLOW FI- 0120ACVPT1354I041LETDN HX 1A OUTL PRESS PI-0135CVTT1304I042LETDN HX 1A OUTL TEMP TI-0130CVTT1274I035REGEN HX 1A LETDN OUTL TEMP TI-0127CVF13247043LETDN HX 1A FLW FI-0132CVPT2044I044CENTRIF CHG FMP DSCH HDR PRESS PI- 0204CVFT205A4I046RC CHARGING FLOW FI-0205ACVT1264I045REGEN HX 1A CHG OUTL TEMP TI-0126RCIF417A5I070RX COOLANT FLOW DOP 1RCIF427A5I071RX COOLANT FLOW MPP 1A CURRENTRCIF427A5I072RX COOLANT FLOW MPP 1B CURRENTRCIF437A5I072RX COOLANT FLOW PMP 1B CURRENTRCIF437A5I073RX COOLANT FLOW PMP 1C CURRENTRCIF447A5I073RX COOLANT FLOW PMP 1D CURRENTNLLP1DC55I058-1PWR RANGE 41 DETECTOR CURRENTNILP1DC55I059-2PWR RANGE 41 DETECTOR CURRENTNILP2DC55I059-1PWR RANGE 43 DETECTOR CURRENTNILP1PP55I060-1PWR RANGE 43 DETECTOR CURRENTNILP1PP55I061-1PWR RANGE 43* POWERNILP3PP5I061-1PWR RANGE 43* POWERNILP4PP5I031-1SOURCE RANGE 32 CPS NEUTRON LEVELNILS1SUR5I033-1SOURCE RANGE SURNILIS1SUR5I035-1INTER RANGE 35 CURRENT LEVELNILS2SUR5I035-1INTER RANGE 35 CURRENT LEVELNIL11SUR5I035-1INTER RANGE 36 CURRENT LEVELNIL11SUR5I037-1INTER RANGE 35 CURRENT LEVEL </td <td>CVLT112</td> <td>4:016</td> <td>VCT 1A LVL LI-0112</td>	CVLT112	4:016	VCT 1A LVL LI-0112
CVPT1354I041LETDN HX 1A OUTL PRESS PI-0135CVTT1304I042LETDN HX 1A OUTL TEMP TI-0130CVTT1274I035REGEN HX 1A LETDN OUTL TEMP TI-0127CVT1244I045REGEN HX 1A FLW FI-0132CVPT2044I044CENTRIF CHG PMP DSCH HDR PRESS PI- 0204CVT1264I045REGEN HX 1A CHG OUTL TEMP TI-0126RCIF417A5I070RX COOLANT FLOW LOOP 1RCIIRCPA5I074RX COOLANT FLOW LOOP 2RCIRCPB5I075RX COOLANT FLOW LOOP 2RCIRCPB5I075RX COOLANT FLOW LOOP 3RCIRCPC51076RX COOLANT FLOW LOOP 4RCIRCPD51077RX COOLANT FLOW LOOP 4RCIRCPD51077RX COOLANT FLOW LOOP 4RCIRCPD51077RX COOLANT FLOW DMP 1D CURRENTNLLP1DC551058-1PWR RANGE 41 DETECTOR CURRENTNILP2DC551059-1PWR RANGE 41 DETECTOR CURRENTNILP3DC551059-1PWR RANGE 43 DETECTOR CURRENTNILP4DC551060-1PWR RANGE 43 DETECTOR CURRENTNILP3PP51061-1PWR RANGE 43% POWERNILP3PP51061-1PWR RANGE 32 CPS NEUTRON LEVELNILS1SUR51031-1SOURCE RANGE 32 CPS NEUTRON LEVELNILS2SUR51035-2INTER RANGE 32 CPS NEUTRON LEVELNILS1SUR51035-1INTER RANGE 35 CURRENT LEVELNILS2SUR51035-1INTER RANGE 32 CPS NEUTRON LEVELNILS2SUR51035-1INTER RANGE 35 CURRENT LEVELNIL11SUR51035-1INTER RANGE SURNIL11SUR51035-1INTER	CVFT120A	41034	ALTERN BORIC ACID MAKEUP FLOW FI- 0120A
CVTT1304I042LETDN HX 1A OUTL TEMP TI-0130CVTT1274I035REGEN HX 1A LETDN OUTL TEMP TI-0127CVFT13247043LETDN HX 1A FLW FI-0132CVPT2044I044CENTRIF CHG PMP DSCH HDR PRESS PI- 0204CVT1264I046RC CHARGING FLOW FI-0205ACVT1264I045REGEN HX 1A CHG OUTL TEMP TI-0126RCIF417A5I070RX COOLANT FLOW LOOP 1RCIRCPA5I074RX COOLANT FLOW LOOP 2RCIRCPA5I071RX COOLANT FLOW LOOP 3RCIRCPC5I076RX COOLANT FLOW LOOP 3RCIRCPC5I076RX COOLANT FLOW LOOP 4RCIRCPC5I076RX COOLANT FLOW LOOP 4RCIRCPD5I077RX COOLANT FLOW LOOP 4RCIRCPD5I078RX COOLANT FLOW LOOP 4RCIRCPD5I077RX COOLANT FLOW DAP 1D CURRENTNILP1DC55I058-1PWR RANGE 41 DETECTOR CURRENTNILP2DC55I058-2PWR RANGE 41 DETECTOR CURRENTNILP3DC55I059-2PWR RANGE 41 DETECTOR CURRENTNILP3PP5I061-1PWR RANGE 41% POWERNILP3PP5I061-2PWR RANGE 41% POWERNILP3PP5I061-2PWR RANGE 31 CPS NEUTRON LEVELNILS1SUR5I031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILS2SUR5I033-1SOURCE RANGE 32 CPS NEUTRON LEVELNILS1SUR5I033-1SOURCE RANGE SURNIL11NL55I035-2INTER RANGE SURNIL11SUR5I035-1INTER RANGE SURNIL11SUR5I035-1INTER RANGE SUR	CVPT135	41041	LETDN HX 1A OUTL PRESS PI-0135
CVTT1274I035REGEN HX 1A LETDN OUTL TEMP TI-0127CVFT13247043LETDN HX 1A FLW FI-0132CVPT2044I044CENTRIF CHG PMP DSCH HDR PRESS PI- 0204CVFT205A4I046RC CHARGING FLOW FI-0205ACVTT1264I045REGEN HX 1A CHG OUTL TEMP TI-0126RCIF417ASI070RX COOLANT FLOW LOOP 1RCIRCPA5I074RX COOLANT FLOW LOOP 2RCIIRCPASI075RX COOLANT FLOW LOOP 2RCIIRCPBSI075RX COOLANT FLOW DMP 1A CURRENTRCIF437ASI072RX COOLANT FLOW DMP 1C CURRENTRCIF447ASI073RX COOLANT FLOW DOP 3RCIIRCPCSI076RX COOLANT FLOW DOP 4RCIIRCPCSI077RX COOLANT FLOW DOP 4RCIIRCPDSI077RX COOLANT FLOW DOP 4RCIIRCPDSI058-1PWR RANGE 41 DETECTOR CURRENTNILP1DC5SI058-2PWR RANGE 41 DETECTOR CURRENTNILP3DC5SI059-1PWR RANGE 43 DETECTOR CURRENTNILP4DC5SI060-2PWR RANGE 43 DETECTOR CURRENTNILP4PPSI061-1PWR RANGE 42% POWERNILP3PPSI061-1PWR RANGE 42% POWERNILP3PPSI061-1PWR RANGE 43% POWERNILP3PPSI031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILS1SURSI033-1SOURCE RANGE SURNILS1SURSI035-1INTER RANGE 35 CURRENT LEVELNIL111NL5SI035-2INTER RANGE SURNIL11SURSI037-1INTER RANGE SURNIL11SURSI037-1INTER RANGE SUR	CVTT130	41042	LETDN HX 1A OUTL TEMP TI-0130
CVFT13247043LETDN HX 1A FLW FI-0132CVFT2044I044CENTRIF CHG PMP DSCH HDR PRESS PI- 0204CVFT205A4I046RC CHARGING FLOW FI-0205ACVTT1264I045REGEN HX 1A CHG OUTL TEMP TI-0126RCIF417ASI070RX COOLANT FLOW LOOP 1RCIIRCPASI074RX COOLANT FLOW DOP 2RCIRCPBSI075RX COOLANT FLOW DOP 2RCIRCPCSI076RX COOLANT FLOW DOP 3RCIRCPCSI076RX COOLANT FLOW DOP 4RCIRCPDSI077RX COOLANT FLOW DOP 4RCIRCPDSI073RX COOLANT FLOW DOP 4RCIRCPDSI077RX COOLANT FLOW DOP 4RCIRCPDSI077RX COOLANT FLOW DMP 1D CURRENTNILP1DC5SI058-1PWR RANGE 41 DETECTOR CURRENTNILP2DC5SI059-1PWR RANGE 43 DETECTOR CURRENTNILP2DC5SI059-2PWR RANGE 44 DETECTOR CURRENTNILP3PPSI060-1PWR RANGE 41% POWERNILP3PPSI061-1PWR RANGE 41% POWERNILP3PPSI061-1PWR RANGE 41% POWERNILP3PPSI061-2PWR RANGE 41% POWERNILP3PPSI061-1PWR RANGE 31 CPS NEUTRON LEVELNILS1SURSI031-1SOURCE RANGE 32 CPS NEUTRON LEVELNILS2NL5SI03-2SOURCE RANGE SURNILS2NL5SI03-1INTER RANGE 35 CURRENT LEVELNIL11NL5SI035-1INTER RANGE SURNIL11SURSI037-1INTER RANGE SURNIL11SURSI037-1INTER RANGE SUR	CVTT127	41035	REGEN HX 1A LETDN OUTL TEMP TI-0127
CVPT2044I044CENTRIF CHG PMP DSCH HDR PRESS PI- 0204CVFT205A4I046RC CHARGING FLOW FI-0205ACVTT1264I045REGEN HX 1A CHG OUTL TEMP TI-0126RCIF417ASI070RX COOLANT FLOW LOOP 1RCIIRCPASI074RX COOLANT FLOW LOOP 2RCIF427ASI071RX COOLANT FLOW DOP 2RCIF437ASI072RX COOLANT FLOW DOP 3RCIRCPCSI076RX COOLANT FLOW PMP 1C CURRENTRCIF437ASI072RX COOLANT FLOW PMP 1C CURRENTRCIF447ASI073RX COOLANT FLOW PMP 1C CURRENTRCIRCPCSI076RX COOLANT FLOW PMP 1C CURRENTNILP1DC5SI058-1PWR RANGE 41 DETECTOR CURRENTNILP2DC5SI058-2PWR RANGE 43 DETECTOR CURRENTNILP3DC5SI059-2PWR RANGE 43 DETECTOR CURRENTNILP1PP5SI060-1PWR RANGE 43 DETECTOR CURRENTNILP2P5SI060-1PWR RANGE 43* POWERNILP3PPSI061-1PWR RANGE 43* POWERNILP3PPSI061-2PWR RANGE 43* POWERNILP3PPSI031-1SOURCE RANGE 32 CPS NEUTRON LEVELNILS1NL5SI031-1SOURCE RANGE 32 CPS NEUTRON LEVELNILS2NL5SI033-2SOURCE RANGE SURNIL11NL5SI035-1INTER RANGE 36 CURRENT LEVELNIL12NL5SI035-2INTER RANGE SURNIL11SURSI037-1INTER RANGE SURNIL12SURSI037-1INTER RANGE SUR	CVFT132	47043	LETDN HX 1A FLW FI-0132
CVFT205A4I046RC CHARGING FLOW FI-0205ACVTT1264I045REGEN HX 1A CHG OUTL TEMP TI-0126RCIF417A5I070RX COOLANT FLOW LOOP 1RCIIRCPA5I074RX COOLANT FLOW LOOP 2RCIIRCPB5I075RX COOLANT FLOW DMP 1A CURRENTRCIF427A5I071RX COOLANT FLOW DOP 3RCIIRCPC5I076RX COOLANT FLOW DOP 3RCIIRCPC5I076RX COOLANT FLOW DMP 1C CURRENTRCIF447A5I073RX COOLANT FLOW PMP 1C CURRENTRCIF447A5I073RX COOLANT FLOW PMP 1D CURRENTNILP1DC55I058-1PWR RANGE 41 DETECTOR CURRENTNILP2DC55I058-1PWR RANGE 41 DETECTOR CURRENTNILP3DC55I059-1PWR RANGE 43 DETECTOR CURRENTNILP4DC55I059-2PWR RANGE 43 DETECTOR CURRENTNILP4DC55I060-1PWR RANGE 42% POWERNILP3PP5I061-1PWR RANGE 43% POWERNILP3PP5I061-2PWR RANGE 31 CPS NEUTRON LEVELNILP3PP5I031-1SOURCE RANGE 32 CPS NEUTRON LEVELNILS2NL55I035-1INTER RANGE 35 CURRENT LEVELNIL12NL55I035-1INTER RANGE 36 CURRENT LEVELNIL12NL55I035-2INTER RANGE 36 CURRENT LEVELNIL12NL55I037-1INTER RANGE 36 CURRENT LEVELNIL11SUR5I037-1INTER RANGE 36 CURRENT LEVELNIL12SUR5I037-1INTER RANGE SUR	CVPT204	41044	CENTRIF CHG PMP DSCH HDR PRESS PI- 0204
CVTT1264I045REGEN HX 1A CHG OUTL TEMP TI-0126RCIF417A5I070RX COOLANT FLOW LOOP 1RCIIRCPA5I074RX COOLANT FLOW LOOP 1RCIIRCPA5I071RX COOLANT FLOW LOOP 2RCIIRCPB5I075RX COOLANT FLOW LOOP 3RCIRCPC5I076RX COOLANT FLOW LOOP 3RCIRCPC5I076RX COOLANT FLOW PMP 1C CURRENTRCIF447A5I073RX COOLANT FLOW PMP 1C CURRENTRCIRCPD5I077RX COOLANT FLOW PMP 1D CURRENTNLP1DC55I058-1PWR RANGE 41 DETECTOR CURRENTNILP2DC55I059-1PWR RANGE 41 DETECTOR CURRENTNILP3DC55I059-1PWR RANGE 44 DETECTOR CURRENTNILP3DC55I060-1PWR RANGE 41% POWERNILP4P55I060-2PWR RANGE 42% POWERNILP4P55I061-1PWR RANGE 43% POWERNILP4PP5I031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILS1NL55I033-1SOURCE RANGE 32 CPS NEUTRON LEVELNILS1SUR5I033-1SOURCE RANGE 32NILS1SUR5I035-1INTER RANGE 36 CURRENT LEVELNIL12NL55I035-2INTER RANGE 36 CURRENT LEVELNIL12NL55I035-2INTER RANGE 36 CURRENT LEVELNIL11SUR5I037-1INTER RANGE 36 CURRENT LEVELNIL12SUR5I037-1INTER RANGE SURNIL12SUR5I037-2INTER RANGE SUR	CVFT205A	41046	RC CHARGING FLOW FI-0205A
RCIF417ASI070RX COOLANT FLOW LOOP 1RCIIRCPA51074RX COOLANT FLOW PMP 1A CURRENTRCIF427A51071RX COOLANT FLOW LOOP 2RCIIRCPB51075RX COOLANT FLOW LOOP 3RCIRCPC51076RX COOLANT FLOW LOOP 3RCIRCPC51076RX COOLANT FLOW PMP 1C CURRENTRCIF447A51073RX COOLANT FLOW PMP 1C CURRENTRCIF447A51077RX COOLANT FLOW PMP 1D CURRENTNILP1DC551058-1PWR RANGE 41 DETECTOR CURRENTNILP2DC551059-1PWR RANGE 43 DETECTOR CURRENTNILP3DC551059-2PWR RANGE 43 DETECTOR CURRENTNILP3DC551060-1PWR RANGE 44 DETECTOR CURRENTNILP3PP51061-1PWR RANGE 42* POWERNILP3PP51061-1PWR RANGE 43* POWERNILP4PP51031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILS1NL551031-2SOURCE RANGE 32 CPS NEUTRON LEVELNILS2SUR51033-1SOURCE RANGE 32 CPS NEUTRON LEVELNIL11NL551035-2INTER RANGE 35 CURRENT LEVELNIL12NL551035-1INTER RANGE 36 CURRENT LEVELNIL12NL551035-2INTER RANGE 35 CURRENT LEVELNIL11SUR51037-1INTER RANGE 35 CURRENT LEVELNIL12SUR51037-1INTER RANGE 36 CURRENT LEVELNIL12SUR51037-2INTER RANGE SUR	CVTT126	41045	REGEN HX 1A CHG OUTL TEMP TI-0126
RCIIRCPA51074RX COOLANT FLOW PMP 1A CURRENTRCIF427A51071RX COOLANT FLOW LOOP 2RCIIRCPB51075RX COOLANT FLOW PMP 1B CURRENTRCIF437A51072RX COOLANT FLOW LOOP 3RCIIRCPC51076RX COOLANT FLOW PMP 1C CURRENTRCIF447A51073RX COOLANT FLOW PMP 1C CURRENTRCIF447A51077RX COOLANT FLOW PMP 1D CURRENTNILP1DC551058-1PWR RANGE 41 DETECTOR CURRENTNILP2DC551058-2PWR RANGE 41 DETECTOR CURRENTNILP3DC551059-1PWR RANGE 43 DETECTOR CURRENTNILP4DC551060-1PWR RANGE 43 DETECTOR CURRENTNILP3PD551060-2PWR RANGE 43% POWERNILP3PP51061-1PWR RANGE 43% POWERNILP3PP51061-2PWR RANGE 43% POWERNILP4PP51061-2PWR RANGE 31 CPS NEUTRON LEVELNILS1NL551031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILS2NL551033-1SOURCE RANGE SURNILS2NR51033-2SOURCE RANGE SURNIL11NL551035-1INTER RANGE 35 CURRENT LEVELNIL12NL551035-2INTER RANGE 36 CURRENT LEVELNIL11SUR51037-1INTER RANGE SURNIL12SUR51037-2INTER RANGE SUR	RCIF417A	51070	RX COOLANT FLOW LOOP 1
RCIF427A51071RX COOLANT FLOW LOOP 2RCIIRCPB51075RX COOLANT FLOW PMP 1B CURRENTRCIF437A51072RX COOLANT FLOW LOOP 3RCIIRCPC51076RX COOLANT FLOW PMP 1C CURRENTRCIF447A51073RX COOLANT FLOW DOOP 4RCIIRCPD51077RX COOLANT FLOW PMP 1D CURRENTNILP1DC551058-1PWR RANGE 41 DETECTOR CURRENTNILP2DC551058-2PWR RANGE 41 DETECTOR CURRENTNILP3DC551059-1PWR RANGE 43 DETECTOR CURRENTNILP4DC551060-1PWR RANGE 44 DETECTOR CURRENTNILP3PD551060-1PWR RANGE 43% POWERNILP3PP51061-1PWR RANGE 43% POWERNILP4PP51061-2PWR RANGE 44% POWERNILP4PP51031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILS1SUR51033-1SOURCE RANGE SURNILS2SUR51035-1INTER RANGE 35 CURRENT LEVELNIL11NL551035-2INTER RANGE 36 CURRENT LEVELNIL12NL551035-2INTER RANGE SURNIL12SUR51035-1INTER RANGE 36 CURRENT LEVELNIL12SUR51037-2INTER RANGE SURNIL12SUR51037-1INTER RANGE SURNIL12SUR51037-2INTER RANGE SUR	RCIIRCPA	51074	RX COOLANT FLOW PMP 1A CURRENT
RCIIRCPB51075RX COOLANT FLOW PMP 1B CURRENTRCIF437A51072RX COOLANT FLOW LOOP 3RCIIRCPC51076RX COOLANT FLOW PMP 1C CURRENTRCIF447A51073RX COOLANT FLOW PMP 1C CURRENTRCIRCPD51077RX COOLANT FLOW PMP 1D CURRENTNILP1DC551058-1PWR RANGE 41 DETECTOR CURRENTNILP2DC551058-2PWR RANGE 41 DETECTOR CURRENTNILP3DC551059-1PWR RANGE 43 DETECTOR CURRENTNILP4DC551069-2PWR RANGE 44 DETECTOR CURRENTNILP4DC551060-1PWR RANGE 41% POWERNILP3PP551061-2PWR RANGE 43% POWERNILP3PP51061-2PWR RANGE 43% POWERNILP4PP51061-2PWR RANGE 31 CPS NEUTRON LEVELNILS2NL551031-1SOURCE RANGE 32 CPS NEUTRON LEVELNILS2NR51033-1SOURCE RANGE SURNILS2SUR51035-1INTER RANGE 35 CURRENT LEVELNIL11NL551035-1INTER RANGE 36 CURRENT LEVELNIL12NL551035-2INTER RANGE 30 CURRENT LEVELNIL11SUR51037-1INTER RANGE SURNIL12SUR51037-2INTER RANGE SURNIL12SUR51037-1INTER RANGE SURNIL12SUR51037-1INTER RANGE SURNIL12SUR51037-2INTER RANGE SUR	RCIF427A	51071	RX CUOLANT FLOW LOOP 2
RCIF437A5I072RX COOLANT FLOW LOOP 3RCIIRCPC5I076RX COOLANT FLOW PMP 1C CURRENTRCIF447A5I073RX COOLANT FLOW LOOP 4RCIIRCPD5I077RX COOLANT FLOW PMP 1D CURRENTNILP1DC55I058-1PWR RANGE 41 DETECTOR CURRENTNILP2DC55I058-2PWR RANGE 41 DETECTOR CURRENTNILP3DC55I059-1PWR RANGE 43 DETECTOR CURRENTNILP4DC55I059-2PWR RANGE 44 DETECTOR CURRENTNILP1PP55I060-1PWR RANGE 42% POWERNILP2PP55I061-2PWR RANGE 42% POWERNILP3PP5I061-2PWR RANGE 43% POWERNILP4PP5I031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILS2NL55I033-1SOURCE RANGE 32 CPS NEUTRON LEVELNILS2UR5I033-1SOURCE RANGE SURNILI1NL55I035-2INTER RANGE 35 CURRENT LEVELNIL12NL55I035-2INTER RANGE 36 CURRENT LEVELNIL13UR5I037-1INTER RANGE SURNIL13UR5I037-2INTER RANGE SURNIL13UR5I037-1INTER RANGE SURNIL13UR5I037-2INTER RANGE SUR	RCIIRCPB	51075	RX COOLANT FLOW PMP 1B CURRENT
RCIIRCPC51076RX COOLANT FLOW PMP 1C CURRENTRCIF447A51073RX COOLANT FLOW LOOP 4RCIIRCPD51077RX COOLANT FLOW PMP 1D CURRENTNILP1DC551058-1PWR RANGE 41 DETECTOR CURRENTNILP2DC551058-2PWR RANGE 41 DETECTOR CURRENTNILP3DC551059-1PWR RANGE 43 DETECTOR CURRENTNILP4DC551059-2PWR RANGE 44 DETECTOR CURRENTNILP1PP551060-1PWR RANGE 41% POWERNILP2PP551061-2PWR RANGE 43% POWERNILP3PP51061-2PWR RANGE 44% POWERNILP4PP51061-2PWR RANGE 31 CPS NEUTRON LEVELNILS1NL551031-1SOURCE RANGE 32 CPS NEUTRON LEVELNILS2NL551033-1SOURCE RANGE SURNIL11NL551035-1INTER RANGE 35 CURRENT LEVELNIL12NL551035-2INTER RANGE 36 CURRENT LEVELNIL11SUR51037-1INTER FANGE SURNIL12SUR51037-2INTER RANGE 35 CURRENT LEVELNIL12SUR51037-1INTER FANGE SURNIL12SUR51037-2INTER RANGE 35 CURRENT LEVELNIL12SUR51037-2INTER FANGE SUR	RCIF437A	51072	RX COOLANT FLOW LOOP 3
RCIF447A51073RX COOLANT FLOW LOOP 4RCIIRCPD51077RX COOLANT FLOW PMP 1D CURRENTNILP1DC551058-1PWR RANGE 41 DETECTOR CURRENTNILP2DC551058-2PWR RANGE 41 DETECTOR CURRENTNILP3DC551059-1PWR RANGE 43 DETECTOR CURRENTNILP4DC551059-2PWR RANGE 44 DETECTOR CURRENTNILP1PP551060-1PWR RANGE 41% POWERNILP2PP551060-2PWR RANGE 42% POWERNILP3PP51061-1PWR RANGE 43% POWERNILP4PP51061-2PWR RANGE 43% POWERRCIT60051002REACTOR VESSEL FLANGE LEAKOFFNILS1NL551031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILS2NL551033-1SOURCE RANGE 32 CPS NEUTRON LEVELNILS1SUR51033-1SOURCE RANGE 32 CPS NEUTRON LEVELNILS2SUR51035-2INTER RANGE 35 CURRENT LEVELNIL11NL551035-1INTER RANGE 36 CURRENT LEVELNIL12NL551035-2INTER RANGE 36 CURRENT LEVELNIL11SUR51037-1INTER FANGE SURNIL12SUR51037-2INTER RANGE SURNIL12SUR51037-2INTER RANGE SUR	RCIIRCPC	51076	RX COOLANT FLOW PMP 1C CURRENT
RCIIRCPD51077RX COOLANT FLOW PMP 1D CURRENTNILP1DC551058-1PWR RANGE 41 DETECTOR CURRENTNILP2DC551058-2PWR RANGE 41 DETECTOR CURRENTNILP3DC551059-1PWR RANGE 43 DETECTOR CURRENTNILP4DC551069-2PWR RANGE 44 DETECTOR CURRENTNILP1PP551060-1PWR RANGE 41% POWERNILP3PP51061-1PWR RANGE 42% POWERNILP3PP51061-2PWR RANGE 43% POWERNILP4PP51061-2PWR RANGE 44% POWERRCIT60051002REACTOR VESSEL FLANGE LEAKOFFNILS1NL551031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILS2NL551033-1SOURCE RANGE 32 CPS NEUTRON LEVELNILS2SUR51033-1SOURCE RANGE SURNILL1NL551035-1INTER RANGE 35 CURRENT LEVELNIL12NL551035-2INTER RANGE 36 CURRENT LEVELNIL11SUR51037-1INTER RANGE SURNILL2SUR51037-2INTER RANGE SURNILL2SUR51037-2INTER RANGE SUR	RCIF447A	51073	RX COOLANT FLOW LOOP 4
NILP1DC55I058-1PWR RANGE 41 DETECTOR CURRENTNILP2DC55I058-2PWR RANGE 41 DETECTOR CURRENTNILP3DC55I059-1PWR RANGE 43 DETECTOR CURRENTNILP4DC55I059-2PWR RANGE 44 DETECTOR CURRENTNILP1PP55I060-1PWR RANGE 41% POWERNILP2PP55I061-2PWR RANGE 42% POWERNILP3PP5I061-2PWR RANGE 43% POWERNILP4PP5I061-2PWR RANGE 44% POWERRCIT6005I002REACTOR VESSEL FLANGE LEAKOFFNILS1NL55I031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILS2NL55I033-1SOURCE RANGE SURNILS2NR5I033-2SOURCE RANGE SURNIL11NL55I035-1INTER RANGE 35 CURRENT LEVELNIL12NL55I035-2INTER RANGE 36 CURRENT LEVELNIL13UR5I037-1INTER RANGE SURNIL12NL55I037-2INTER RANGE SURNIL12NL55I037-1INTER RANGE SURNIL12NL55I037-2INTER RANGE SURNIL12NL55I037-2INTER RANGE SURNIL12NL55I037-1INTER RANGE SURNIL12NL55I037-2INTER RANGE SUR	RCIIRCPD	51077	RX COOLANT FLOW PMP 1D CURRENT
NILP2DC55I058-2PWR RANGE 41 DETECTOR CURRENTNILP3DC55I059-1PWR RANGE 43 DETECTOR CURRENTNILP4DC55I059-2PWR RANGE 44 DETECTOR CURRENTNILP1PP55I060-1PWR RANGE 41% POWERNILP2PP55I061-2PWR RANGE 42% POWERNILP3PP5I061-2PWR RANGE 43% POWERNILP4PP5I061-2PWR RANGE 44% POWERRCIT6005I002REACTOR VESSEL FLANGE LEAKOFFNILS1NL55I031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILS2NL55I033-1SOURCE RANGE SURNILS2SUR5I035-2INTER RANGE 35 CURRENT LEVELNILI2NL55I035-2INTER RANGE 36 CURRENT LEVELNILI3UR5I037-1INTER RANGE SURNILI3UR5I037-1INTER RANGE SURNILI3UR5I037-2INTER RANGE SURNILI3UR5I037-1INTER RANGE SURNILI3UR5I037-1INTER RANGE SURNILI3UR5I037-1INTER RANGE SURNILI3UR5I037-1INTER RANGE SUR	NILP1DC5	51058-1	PWR RANGE 41 DETECTOR CURRENT
NILP3DC55I059-1PWR RANGE 43 DETECTOR CURRENTNILP4DC55I059-2FWR RANGE 44 DETECTOR CURRENTNILP1PP55I060-1PWR RANGE 41% POWERNILP2PP55I060-2PWR RANGE 42% POWERNILP3PP5I061-1PWR RANGE 43% POWERNILP4PP5I061-2PWR RANGE 44% POWERRCIT6005I002REACTOR VESSEL FLANGE LEAKOFFNILS1NL55I031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILS2NL55I031-2SOURCE RANGE 32 CPS NEUTRON LEVELNILS1SUR5I033-1SOURCE RANGE SURNILI11NL55I035-1INTER RANGE 35 CURRENT LEVELNIL12NL55I035-2INTER RANGE 36 CURRENT LEVELNIL13UR5I037-1INTER RANGE SURNIL13UR5I037-1INTER RANGE SURNIL13UR5I037-1INTER RANGE SURNIL12SUR5I037-2INTER RANGE SUR	NILP2DC5	51058-2	PWR RANGE 41 DETECTOR CURRENT
NILP4DC55I059-2FWR RANGE 44 DETECTOR CURRENTNILP1PP55I060-1PWR RANGE 41% POWERNILP2PP55I060-2PWR RANGE 42% POWERNILP3PP5I061-1PWR RANGE 43% POWERNILP4PP5I061-2PWR RANGE 44% POWERRCIT6005I002REACTOR VESSEL FLANGE LEAKOFFNILS1NL55I031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILS2NL55I031-2SOURCE RANGE 32 CPS NEUTRON LEVELNILS1SUR5I033-1SOURCE RANGE SURNILS2SUR5I035-2INTER RANGE 35 CURRENT LEVELNIL11NL55I035-2INTER RANGE 36 CURRENT LEVELNIL12NL55I037-1INTER FANGE SURNIL12SUR5I037-1INTER FANGE SURNIL12SUR5I037-1INTER FANGE SURNIL12SUR5I037-1INTER FANGE SURNIL12SUR5I037-2INTER FANGE SUR	NILP3DC5	51059-1	PWR RANGE 43 DETECTOR CURRENT
NILP1PP55I060-1PWR RANGE 41% POWERNILP2PP55I060-2PWR RANGE 42% POWERNILP3PP5I061-1PWR RANGE 43% POWERNILP4PP5I061-2PWR RANGE 44% POWERRCIT6005I002REACTOR VESSEL FLANGE LEAKOFFNIIS1NL55I031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILS2NL55I031-2SOURCE RANGE 32 CPS NEUTRON LEVELNILS1SUR5I033-1SOURCE RANGE SURNILS2SUR5I035-1INTER RANGE 35 CURRENT LEVELNIL11NL55I035-2INTER RANGE 36 CURRENT LEVELNIL12NL55I037-1INTER RANGE SURNIL12SUR5I037-2INTER RANGE SURNIL12SUR5I037-1INTER RANGE SUR	NILP4DC5	51059-2	PWR RANGE 44 DETECTOR CURRENT
NILP2PP55I060-2PWR RANGE 42% POWERNILP3PP5I061-1PWR RANGE 43% POWERNILP4PP5I061-2PWR RANGE 44% POWERRCIT6005I002REACTOR VESSEL FLANGE LEAKOFFNIIS1NL55I031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILS2NL55I031-2SOURCE RANGE 32 CPS NEUTRON LEVELNILS1SUR5I033-1SOURCE RANGE SURNILS2SUR5I035-2INTER RANGE 35 CURRENT LEVELNIL12NL55I035-2INTER RANGE 36 CURRENT LEVELNIL13UR5I037-1INTER RANGE SURNIL12SUR5I037-2INTER RANGE SURNIL12SUR5I037-1INTER RANGE SURNIL12SUR5I037-2INTER RANGE SUR	NILP1PP5	51060-1	PWR RANGE 41% POWER
NILP3PP51061-1PWR RANGE 43% POWERNILP4PP51061-2PWR RANGE 44% POWERRCIT60051002REACTOR VESSEL FLANGE LEAKOFFNIIS1NL551031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILS2NL551031-2SOURCE RANGE 32 CPS NEUTRON LEVELNILS1SUR51033-1SOURCE RANGE SURNILS2SUR51035-2SOURCE RANGE SURNIL11NL551035-2INTER RANGE 35 CURRENT LEVELNIL12NL551035-2INTER RANGE 36 CURRENT LEVELNIL12SUR51037-1INTER RANGE SURNIL12SUR51037-2INTER RANGE SUR	NILP2PP5	51060-2	PWR RANGE 42% POWER
NILP4PP5I061-2PWR RANGE 44% POWERRCIT6005I002REACTOR VESSEL FLANGE LEAKOFFNIIS1NL55I031-1SOURCE KANGE 31 CPS NEUTRON LEVELNILS2NL55I031-2SOURCE RANGE 32 CPS NEUTRON LEVELNILS1SUR5I033-1SOURCE RANGE SURNILS2SUR5I035-2SOURCE RANGE 35 CURRENT LEVELNIL12NL55I035-2INTER RANGE 36 CURRENT LEVELNIL11SUR5I037-1INTER FANGE SURNIL12SUR5I037-2INTER RANGE SUR	NILP3PP	51061-1	PWR RANGE 43% POWER
RCIT60051002REACTOR VESSEL FLANGE LEAKOFFNIIS1NL551031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILS2NL551031-2SOURCE RANGE 32 CPS NEUTRON LEVELNILS1SUR51033-1SOURCE RANGE SURNILS2SUR51033-2SOURCE RANGE SURNIL11NL551035-1INTER RANGE 35 CURRENT LEVELNIL12NL551035-2INTER RANGE 36 CURRENT LEVELNIL11SUR51037-1INTER FANGE SURNIL12SUR51037-2INTER RANGE SUR	NILP4PP	51061-2	PWR RANGE 44% POWER
NIIS1NL55I031-1SOURCE RANGE 31 CPS NEUTRON LEVELNILS2NL55I031-2SOURCE RANGE 32 CPS NEUTRON LEVELNILS1SUR5I033-1SOURCE RANGE SURNILS2SUR5I033-2SOURCE RANGE SURNIL11NL55I035-1INTER RANGE 35 CURRENT LEVELNIL12NL55I035-2INTER RANGE 36 CURRENT LEVELNIL11SUR5I037-1INTER RANGE SURNIL12SUR5I037-2INTER RANGE SUR	RCIT600	51002	REACTOR VESSEL FLANGE LEAKOFF
NILS2NL55I031-2SOURCE RANGE 32 CPS NEUTRON LEVELNILS1SUR5I033-1SOURCE RANGE SURNILS2SUR5I033-2SOURCE RANGE SURNIL11NL55I035-1INTER RANGE 35 CURRENT LEVELNIL12NL55I035-2INTER RANGE 36 CURRENT LEVELNIL11SUR5I037-1INTER FANGE SURNIL12SUR5I037-2INTER RANGE SUR	NIISINL5	51031-1	SOURCE HANGE 31 CPS NEUTRON LEVEL
NILSISUR5I033-1SOURCE RANGE SURNILS2SUR5I033-2SOURCE RANGE SURNILI1NL55I035-1INTER RANGE 35 CURRENT LEVELNILI2NL55I035-2INTER RANGE 36 CURRENT LEVELNILI1SUR5I037-1INTER FANGE SURNILI2SUR5I037-2INTER RANGE SUR	NTLS2NL5	51031-2	SOURCE RANGE 32 CPS NEUTRON LEVEL
NILS2SUR5I033-2SOURCE RANGE SURNIL11NL55I035-1INTER RANGE 35 CURRENT LEVELNIL12NL55I035-2INTER RANGE 36 CURRENT LEVELNIL11SUR5I037-1INTER FANGE SURNIL12SUR5I037-2INTER RANGE SUR	NTLSISUR	51033-1	SOURCE RANGE SUR
NILIINL55I035-1INTER RANGE 35 CURRENT LEVELNILI2NL55I035-2INTER RANGE 36 CURRENT LEVELNILI1SUR5I037-1INTER FANGE SURNILI2SUR5I037-2INTER RANGE SUR	NILS2SUR	57033-2	SOURCE RANGE SUR
NILI2NL5 51035-2 INTER RANGE 36 CURRENT LEVEL NILI1SUR 51037-1 INTER FANGE SUR NILI2SUR 51037-2 INTER BANGE SUR	NILTINIS	51035-1	INTER DANGE 35 CURRENT LEVEL
NILIISUR 51037-1 INTER FANGE SUR NILI2SUR 51037-2 INTER RANGE SUR	NTLT2NL5	57035-2	INTER RANGE 36 CURRENT LEVEL
NILI2SUR 51037-2 INTER RANGE SUR	NTLTISUR	51037-1	INTER FANGE SUR
ATTA AND AND AND AND AND AND AND AND AND AN	NTLIZSUR	51037-2	INTER RANGE SUR

MNEMONIC	HARDWARE DESIGNATOR	DESCRIPTION
PXCS1660	51030	ROD SPEED SI-0660
PXCHTAUG	51078-1	AUCTIONEERED HI-AVG
PXCTREF	51078-2	T-REFERENCE
PXC5157	51057	T ERROR TI-0612
RPCT412A	51003	RC LOOP 1 TAVG TI-0412A
RCIT413R	51062	RC LOOP 1A HOT LEG TEMP
RCIT414R	51063	RC LOOP 1A COLD LEG TEMP
RPC5I04	51004	RC LOOP 1A DELTA T TI-0411
RPC5114A	51014-1	RC LOOP 1A OP/DT T TI-0412
RPC5114B	51014-2	RC LOOP 1A OP/DT SETPT TI-0412
RPCT422A	51016	RC LOOP 1B TAVG TI-0422A
RCTT423R	51064	RC LOOP 1B HOT LEG TEMP
RPCT424R	51065	RC LOOP 1B COLD LEG TEMP
RPCT421	51017	RC LOOP 1B DELTA T TI-0422
RPC5115A	51015-1	RC LOOP 2B OP/DT TI-0422 SETPT
RPC511B	51015-2	RC LOOP 1B OP/DT TI-0412
RPC5125B	51025	RC LOOP 1C TAVG TI-0432A
RCTT433R	51066	RC LOOP 1C HOT LEG TEMP
RCIT434R	51067	RC LOOP 1C COLD LEG TEMP
RPC5126R	51026	RC LOOP 1C DELTA T TI-0431
RCP5123A	51023-1	RC LOOP 1C OP/DT SETPT TI-0431
RPC51238	51023-2	RC LOOP 1C OP/DT TI-0432
RPC5122	51022	RC LOOP 1D TAVG TI-0442A
RCIT433G	51068	RC LOOP 1D HOT LEG TEMP
RCIT434G	51069	RC LOOP 1D COLD LEG TEMP
RPC5121	51021	RC LOOP 1D OP/DT SETPT TI-0442
RPC5124B	51024-2	RC LOOP 1D OP/DT TI-0442
PLCD465R	5R008-1	PRZR LEVEL/PROGRAM LR-0465
PLCR465G	5R008-2	PRZR LEVEL/PROGRAM LR-0456
RCIP455R	5R007-1	PRZR PRESS RECORDER PR-0455
PXCHTAUG	5R005-1	AUCTIONEERED TAVG TR-0612
PXCTREF	5R005-2	AUCTIONEERED TAVG TR-0612
RXCCAE5	5M06-J3	BANK A-E5
RXOCAE11	5M06-J3	BANK A-E11
RXOCAL11	5M06-J3	BANK A-L11
RXOCAL5	5M06-J3	BANK A-L5
RXOCAH6	5M06-J3	BANK A-H6
RXOCAFS	5M06-J3	BANK A-F8
RXOCAH10	5M06-J3	BANK A-H10
RXOCAKS	5M06-J3	BANK A-K8
RXOCBF2	5M06-J3	BANK B-F2
RXOCBB10	5M06-J3	BANK B-10
RXOCBK14	5M06-J3	BANK B-K14

MNEMONIC	HARDWARE DESIGNATOR	DESCRIPTION
	Research and the second s	
RXOCBP6	5M06-J3	BANK B-P6
RXOCBB6	5M06-J3	BANK B-B6
RXOCBF14	5M06-J3	BANK B-F14
RXOCBP10	5MC3-J3	BANK B-P10
RXOCBK2	5M06-J3	BANK B-K2
RXOCCH2	5M06-J3	BANK C-H2
RXOCCBS	5M06-J3	BANK C-B8
PYOCCH14	5M06-J3	BANK C-H14
PYOCCPR	5M06-J3	BANK C-P8
PYOCOFE	5M06-J3	BANK C-F6
PYOCCE10	5M06-J3	BANK C-F10
PYOCCK10	5M06-J3	BANK C-K10
RXOCCK10	5M06-J3	BANK C-K6
RACCODA	5M06-J4	BANK D-D4
PYOCDM12	5M06-J4	BANK D-M12
PYOCDD12	5M06-J4	BANK D-D12
RACEDD12	5M06-J4	BANK D-M4
PYOCDHS	5M06-J4	BANK D-H8
RAOCDIO DVOCAD2	5M06-J4	SHUTDOWN BANK A-D2
RAUSAD2	5M06-J4	SHUTDOWN BANK A-B12
RACOADIA	5M06~J4	SHUTDOWN BANK A-M14
PYOSAPA	5M06-J4	SHUTDOWN BANK A-PA
RYOSARA	5M06-J4	SHUTDOWN BANK A-B4
RXOSAD14	5M06-J4	SHUTDOWN BANK A-D14
PXOSAP12	5M06-J4	SHUTDOWN BANK A-P12
PXOSAM2	5M06-J4	SHUTDOWN BANK A-M2
PXOSBG3	5M06-J4	SHUTDOWN BANK B-G3
RXOSBC9	5M06-J4	SHUTDOWN BANK B-C9
PYCOBI13	5M06-J4	SHUTDOWN BANK B-J13
PXOSBN7	5M06-J4	SHUTDOWN BANK B-N7
EXOSBC7	5M06-J4	SHUTDOWN BANK B-C7
PYOSBG13	5M06-J4	SHUTDOWN BANK B-G13
PYOSBNO	5M06-J4	SHUTDOWN BANK B-N9
PYOSB13	5M06-J4	SHUTDOWN BANK B-J3
PYOSCE3	5M06-J5	EHUTDOWN BANK C-E3
PROSCC11	5M06-J5	SHUTDOWN BANK C.C11
PXOSCL13	5M06-J5	SHUTDOWN BANK C-L13
PYOSCNS	5M06-J5	SHUTDOWN BANK C-N5
RXOSCD5	5M06-J5	SHUTDOWN BANK D-C5
RXOSDE13	5M06-J5	SHUTDOWN BANK D-E13
RXSDN11	5M06-J5	SHUTDOWN BANK D-N11
RXOSDL3	5M06-J5	SHUTDOWN BANK D-L3

MNEMONIC	HARDWARE DESIGNATOR	DESCRIPTION
		an a
RXOSEH4	5M06-J5	SHUTDOWN BANK E-H4
RXOSED8	5M06-J5	SHUTDOWN BANK E-D8
RXOSEH12	5M06-J5	SHUTDOWN BANK E-H1?
RXOSEM8	5M06-J5	SHUTDOWN BANK E-M8
SGFT512	61099-1	SG 1A STM FLOW FI-0512, 0513
SGFT513	61099-2	SG 1A STM FLOW FI-0512, 0513
SGFT510	61098-1	SG 1A FW FLOW FI-0510, 0511
SGFT511	61098-2	SG 1A FW FLOW FI-0510, 0511
SGLI571	61046-1	SG 1A NR LVL LI-0519, 0571
SGLI571A	61046-2	SG 1A NR LVL LI-0519, 0571
SGCLI551	61120	SG 1A PROG LVL LI0551
SFGT522	61090-1	SG 1B STM FLOW FI-0522, 0523
SFGT523	61090-2	SG 1B STM FLOW FI-0522, 0523
SFGT520	61089-1	SG 1B STM FLOW FI-0520, 0521
SFGT520	61089-1	SG 1B STM FLOW FI-0520, 0521
SFGT521	61089-2	SG 1B STM FLOW FI-0520, 0521
SFGL572	61075-1	SG 1B NR LVL LI-0529, 0572
SGLI522	61075-2	SG 1B NR LVL LI-0529, 0572
PGLI552	61121	SG 1B PROG LVL LI-0552
SGFT533	61114-1	SG 1C STM FLOW FI-0532, 0533
SGFT532	61114-2	SG 1C STM FLOW FI-0532, 0533
SGFT530	61113-1	SG 1C FW FLOW FI-0530, 0531
SGFT531	6I113-2	SG 1C FW FLOW FI-0530, 0531
SGLI573	61142-1	SG 1C NR LVL LI-0539, 0573
SGLI573A	61042-2	SG 1C NR LVL LI-0539, 0573
PGCLI553	61122	SG 1C PROG LVL LI-0553
SGFT542	61106-1	SG 1D STM FLOW FI-0542, 0543
SGFT543	6I106-2	SG 1D STM FLOW FI-0542, 0543
SGFT540	61105-1	SG 1L STM FLOW FI-0540, 0541
SGFT541	61105-2	SG 1D STM FLOW FI-0540, 0541
PGCLI554	61123	SG 1D PROG LVL LI-0554
SGLI574	61076-1	SG 1D NR LVL LI-0549, 0574
SGLI524	61076-2	SG 1D NR LVL LI-0549, 0574
FWT7119	61071-1	FW LINE 1A TEMP DEVIATION TI-7119 7119A
FWD7119A	61071-2	FW LINE 1A TEMP DEVIATION TI-7119 7119A
AFA074P1	61084-1	AUX FW FLOW TO SG 1A FI-7525
FWT7121	61072-1	FW LINE 1B TEMP DEVIATION TI-7121 7121A
RPCT421	61072-2	FW LINE 1B TEMP DEVIATION TI-7121 7121A

0

MNEMONIC	HARDWARE DESIGNATOR	DESCRIPTION
Constant Account of Account of Account		
FWF7104	61057	SGFP FLOP rI-7104
FWP7107	61058	SGFP 11 DISCH PRESS PI-7107
AFA056P2	61094-1	AUY FW FLOW TO SG 1B FI-7524
FWF7109	61059	3GFP 12 FLOW FI-7109
FWP7112	61050	SGFP 12 DISCH PRESS PI-7112
FWT7123	61073-1	FW LINE 1C TEMP DEVIATION TI-7123,
AFA034P3	61103-1	AUX FW FLOW TO SG 1C FI-7523
SGFR551F	6R014-1	STM GEN 1A UR-551
SGFR551M	6R014-2	STM GEN 1A UR-551
SGFR551	6R014-3	STM GEN 1A UR-551
MSAD07P6	6R082-1	STM 1A STM PRESS PI-0514, 0515
MSA022P2	6R082-2	STM 1A STM PRESS PI-0514, 0515
SGFR552F	6R015-1	STM GEN 1B UR-552
SGFR552M	6R015-2	STM GEN 1B UR-552
SGFR552	6R015-3	STM GEN 1B UR-552
MSA019P6	6R092-1	SG 1B STM PRESS PI-0524, 0525
MSA014P2	6R092-2	SG 1B STM PRESS PI-0524, 0525
SGFR553F	6R016-1	STM GEN 1C UR-553
SGFR553M	6R016-2	STM GEN 1C UR-553
SGFR553	6R016-3	STM GEN 1C UR-553
MSA056P6	61101-1	SG 1C STM PRESS PI-0534, 0535
MSA023P2	61101-2	SG 1C STM PRESS PI-0534, 0535
SGFR554F	6R017-1	STM GEN 1D UR=554
SGFR554M	6R017-2	STM GEN 1D UR-554
SGFR554	6R017-3	STM GEN 1D UR-554
MSA024P6	61108-1	SG 1D STM PRESS PI-0544, 0545
MSA024P6	67108-1	SG 1D STM PRESS PI-0544, 0545
MSA015P6	61108-2	SG 1D STM PRESS PI-0544, 0545
FWLPGV1	6M008-M1	LO PRESS GVP \$
FWT7102	61067	SGFP SUCTION HDR TEMP TI-7102
FWP7101	61068	SGFP DISCH HDR PRESS PI-7101
FWT7124	61069	FW HTR 11A/11B DISCH TEMP TI-7124
FWP558	61070	FW HTR 11A/11B DISCH PRESS PI-0558
FWHPGV1	6M008-M3	HI PRESS GVP &
FWF7114	61051	SGFP 13 FLOW FI-7114
FWP7117	61052	SGFP 13 DISCH PRESS PI-7117
FWT7125	61045-1	FW LINE 1D TEMP DEVIATION TI-7125.
	04010 1	71258
FWD7125	61045-2	FW LINE 1D TEMP DEVIATION TI-7125,
AFAD73P1	6T112-1	AFW PMP FLOW TO SG 1D FT-7526
AFAD72P1	6T111-1	AFW PMP 14 DISCH PRESS DI 7520
nini/ of 1	OTTTT-T	WIN LUL TA DIOCU LUDD LI-1052

MNEMONIC	HARDWARE	DESCRIPTION
* ****		
FWLPGV2	6M009-M1	LO PRESS GVP &
FWHPGV2	6M009-M3	HI PRESS GVP &
FWLPGV3	6M010-M1	LO PRESS GVP &
FWHPGV3	6M010-M3	HI PRESS GVP &
MSA015P7	71015	MAIN STM HDR PRESS PI-557
MSA016P7	71017	LEFT STM CHEST PRESS PI-7483
MSA017P7	71018	RIGHT STM CHEST PRESS PI-7484
MSA014P7	71014	TURB IMPULSE PRESS I/II PI-505, 506
EACOO46M	71014	TURB IMPULSE PRESS I/II PI-505, 506
EAC9035M	71019	GEN H2 PURITY AI-6057
EAC9036M	71020	GEN H2 PRESS PI-6059
EAC9037M	71021	GEN H2 CLD GAS TEMP TI-6050
EAC0046M	71025	GENERATOR AMPS
EAC0049M	71026	GENERATOR VOLTS
EAC0044M	71028	GENERATOR MEGAWATTS
EAC0047M	71029	GENERATOR MEGAVARS
EAC0042M	71030	EXCITER FIELD AMPS
EAC0045M	71031	EXCITER FIELD VOLTS
EAC0064M	71023	345KV RUNNING VOLTAGE
EAC0065M	71024	345KV INCOMING VOLTAGE
EACOO2AM	71022	GENERATOR SYNCHROSCOPE
EHMTVTRK	7M004-M1	EHC OPER DISP PAN
EHMGVTRK	7M004-M1	EHC OPER DISP PAN
EHMTV1VP	7M004-M1	EHC OPER DISP PAN
EHMTV2VP	7M004-M9	EHC OPER DISP PAN
EHMTV3VP	7M004-M8	EHC OPER DISP PAN
EHMTV4VP	7M004-M7	EHC OPER DISP PAN
EHMGV1VP	7M004-M6	EHC OPER DISP PAN
EHMGV2VP	7M004-M5	EHC OPER DISP PAN
EHMGV3VP	7M004-M4	EHC OPER DISP PAN
EHMGV4VP	7M004-M3	EHC OPER DISP PAN
EHMGOVC	7M004-M2	EHC OPER DISP PAN
EHMVPL	7M004-M1	EHC OPER DISF PAN
EHMSPEED	7M004-M1	EHC OPER DISP PAN
EPIMMW	7M004-M1	EHC GPER DISP PAN
PDCSTMDD	71011	STM DUMP DEMAND DI-555
TUPLUBE	71007	MAIN BRG OIL PRESS PI-6232
TUTLUHEX	71006	L.O. COOLERS OULT TEMP TI-6207A
TUPEHHP	71013	EHC FLUID PRESS PI-6308
EAC0048M	71027	GEN VOLT REG NULL METER
EACB003R	8R003	GEN MEGAWATTS

ſ

10

MNEMONIC	HARDWARE DESIGNATOR	DESCRIPTION
NELODICI	0N000-NC	
MENODICI	8M002-M6	INLET S.T. IIL M-6+
MONODOOO	SMOUZ-MS	INLET S.T. IIL M-5+
MONOPTICA	8M002-M4	INLET S.T. 12L M-4+
MSAORTC4	8M002-M3	INLET S.T. 12L M-3+
MSAORTC5	8M002-M2	INLET S.T. 13L M-2+
MSAORTC6	8M002-M1	INLET S.T. 13L M-1+
CRCSTAPR	81057	STA AIR PRESS PI-8509
CRCINAOP	81058	INSTR AIR DRYER OUTL PRESS PI-8563
FWL7175	81059-1	DEAER STORAGE TK LVL LI7175, 7175A
FWL7175A	81059-2	DEAER STORAGE TK LVL LI7175, 7175A
FWP7174	81061	DEAER PRESS PI-7174
FWP7383	81037	LP HDP 11 DISCH PRESS PI-7383
FWF7384A	81047	LP HDP 11 DISCH FLOW PI-7384A
FWP7388	81009	LP HDP 12 DISCH PRESS PI-7388
FWF7389A	81048	LP HDP 12 DISCH FLOW PI-7389A
FWP7393	81021	LP HDP 13 DISCH PRESS PI-7393
FWF7394A	81049	LP HDP 13 DISCH FLOW PI-7394A
MSA003P7	81056	GLAND SEAL STM HDR PRESS PI-6151
MSA002P7	81055	HP STM SEAL SPILLOVER PI-6154
M3A001P7	81054	STM SEAL HOR TEMP TI-6972
CWLI6670	91017	RESERVOIR LVI. LI-6670
FWP6557	91043	COND 11 VACINIM PT-7485
FWP6558	91044	COND 12 VACUUM PT-7486
FWP6559	97045	COND 13 VACUUM DT-7488
FWI.7351	81025	FLACH THE 11 TUT TT-7351
FW1.7355	81026	FIACH THE 12 THE DITION
FWI.7359	81027	FIACH ME 12 TUT TT-7360
CDF7022	PTOEO	COND FION FT-7000
FWD7017	01000	CUND FLOW FI-7022
FWF7017	01020	GLAND STM COND INL PRESS PI-7017
FWOPDIN	81019	NOTWELL STD PIPE LVL LI-7007
FWCDP11	81062	FW BSTR PUMP 11 AMPS
FWCBP12	81063	FW ESTR PUMP 12 AMPS
FWCBP13	81064	FW BSTR PUMP 13 AMPS
FWCA11	81065	CONDENSATE PUMP 11 AMPS
FWCA12	81066	CONDENSATE PUMP 12 AMPS
FWCA13	81067	CONDENSATE PUMP 13 AMPS
ACPCHXO	91041	ACW CL DISCH HDR PRESS PI-6809
ACPODPM	91042	ACW OL DISCH HDR PRESS PI-6756
CWICP11	91047	CIRC WTR PUMP 11 AMPS
CWICP12	91048	CIRC WTR PUMP 12 AMPS
CWICP13	91049	CIRC WTR PUMP 13 AMPS
CWICP14	91050	CIRC WTR PUMP 14 AMPS

P

MNEMONIC	HARDWARE DESIGNATOR	DESCRIPTION
FLCOOGAN	108064	DINNING VOIDE
FACOLORM	107010-1	EVNOU COODE
EACOLOBA	101010-1	TNOONTNO VOITE
EACOOGEM	108066	CUTTCH VADD NODTH BUC VOITC
EACOO67M	108067	SWITCH VADD COUTH BUS VOLTS
EACODEIM	101061	AUX BUS 101 FROM YFMP 101 AMPS
EACOD63M	101063	AUX BUS 1D2 FROM XFMR 1D2 AMPS
EAC0062M	101062	AUX BUS 101 VOLTS
EAC0064M	101064	AUX BUS 1D2 VOLTS
EACO004M	101004	UAT TO AUX BUS 1F AMPS
EACO007M	101007	AUX BUS 1F VOLTS
EACODOGM	101006	STBY XFMR 1 (2) TO STBY BUS 1F AMPS
EACOOO5M	101005	STBY XFMR 2 (1) TO STBY BUS 1F AMPS
EACOOO8M	101008	STEY BUS 1F VOLTS
EACOO39M	101039	STBY BUS 1F XFMR E1A AMPS
EACO015M	101015	UAT TO AUX BUS 1G AMPS
EACOGISM	101018	AUX BUS 1G VOLTS
EACO017M	101017	STBY XFMR 1 TO STBY BUS 1G AMPS
EACO016M	101016	STBY XFMR 2 TO STBY BUS 1G AMPS
EACOO19M	101019	STBY BUS 1G VOLTS
EAC0040M	101040	STBY BUS 1G TO XFMR E1B AMPS
EAC0023M	101023	UAT TO AUX BUS 1H AMPS
EAC0026M	101026	AUX BUS 1H VOLTS
EAC0025M	101025	STBY XFMR 1 TO STBY BUS 1H AMPS
EAC0024M	101024	STBY XFMR 1 TO STBY BUS 1H AMPS
EAC0027M	101027	STBY BUE 1H VOLTS
EAC0041M	101041	STBY BUS 1H TO XFMR EIC AMPS
EAC00°1M	101031	UAT TO AUX BUS 1J AMPS
EACOOJ3M	101033	STBY XFMR 1 TO AUX BUS 1J AMPS
EAC0037M	101037	AUX BUS 1J VOLTS
EACOO32M	101032	STBY XFMR 2 TO AUX BUS 1J AMPS
EAC0034M	101034	EMER BUS 1L TO XFMR EIA AMPS
EACOUSSM	101035	EMER BUS 1L TO XFMR E1B AMPS
EACOUSEM	101038	EMER BUS IL VOLTS
EACOUSEM	101036	EMER BUS 1L XFMR EIC AMPS
EACOUSSA	TOTPA	PILOT WIRE RELAY MILLAMETER
EAC0059B	101228	PILOT WIRE RELAY MILLAMETER

ADDENDUM 11 SURVEILLANCE TEST LIST

THE FOLLOWING IS A LIST OF SAFETY RELATED SURVEILLANCE PROCEDURES WHICH HAVE BEEN SELECTED BY THE SIMULATOR CONFIGURATION MANAGEMENT COMMITTEE AS REQUIRED FOR TRAINING.

EACH SURVEILLANCE PROCEDURE WAS COMPLETED USING A CONTROLLED COPY OF THE REFERENCE PLANT PROCEDURE.

THE COMPLETED PROCEDURES ARE MAINTAINED BY THE SIMULATOR SUPPORT SECTION AND ARE AVAILABLE FOR REVIEW.

PROCEDURE

TEST RESULTS

OFF/ONSITE SUPPLY BREAKER OPER (EA-002)

AFW P-11 INSERVICE TEST (AF-0001)

AFW P-12 INSERVICE TEST (AF-0002)

AFW P-13 INSERVICE TEST (AF-0003)

AFW P-14 INSERVICE TEST (AF-0007)

CCW P-1A INSERVICE TEST (CC-0001)

CCW P-1B INSERVICE TEST (CC-0002)

CCW P-1C INSERVICE TEST (CC-0003)

STBY DG-11 OP TEST (DG-0001)

STBY DG-12 OP TEST (DG-0002)

STBY DG-13 OP TEST (DG-0003)

COMPLETED SAT

COMPLETED SAT 10/10/90

COMPLETED SAT 10/10/90 21

Ø

COMPLETED SAT 10/10/90

TESTED UN-SAT 10/10/90 DR #90211

COMPLETED SAT 10/10/90

COMPLFTED SAT 10/10/90

COMPLETED SAT 10/10/90

COMPLETED SAT 10/23/90

COMPLETED SAT 10/23/90

COMPLETED SAT 10/23/90

States and a state of the state

ADDENDUM 11 SURVEILLANCE TEST LIST (Continued)

PROCEDURE

TEFT RESULTS

RX CONT FAN COOLER OPERABILITY (HC-0001)

CR EMERG VENT SYSTEM (HE-0001)

FUEL HANDLING BLDG VENT (HF-0001)

MS SYS VLV OPER. TEST (MS-0001)

DAILY PR NI CHANNEL CALIBRAT"ON (NI-0001)

REACTOR COOLANT INVENTORY (RC-0006)

PZR PORV OPERABILITY TEST (RC-0010)

RHR P-1A INSERVICE TEST (RH-0001)

RHR P-1B INSERVICE TEST (RH-0002)

RHR P-1C INSERVICE TEST (RH-0003)

MONTHLY CONT ROD OPER. (RS-0001)

COMPLETED SAT

COMPLETED SAN' 10/10/90

COMPLETED SAT 10/11/90

TESTED 10/11/90 MSIV B/P TEST UN-SAT BEYOND SCOPE OF SIM. REMAINDER COMPLETED SAT.

TESTED 10/11/90 PROCEDURE CAN BE RUN ON SIM. BUT DATA COL. METHOD IS BEYOND SCOPE OF SIMULATION.

COMPLETED SAT 10/11/90 DR #1732 WRITTEN ON A SLOW RISE IN VCT LEVEL

TESTED UN-SAT 10/11/90 DR #90199 WRITTEN

COMPLETED SAT 10/10,'90

TESTED UN-SAT 10/10/90 DR #90227 WRITTEN

COMPLETED SAT 10/10/90

COMPLETED SAT 10/09/90

ADDENDUM 11 SURVEILLANCE TEST LIST (Continued)

PROCEDURE

TEST RESULTS

QPTR SURVEILLANCE WITH THE QPTR ALARM INOPERABLE. (1PSP10-NI-0002)

MONTHLY BORIC ACID FLOW PATH VERIFICATION (CV-0009) COMPLETED SAT 10/10/90

COMPLETED SAT 10/10/90

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE

The performance test schedule to be conducted over the next four years will consist of the following tests. The Performance Tests required by ANSI/ANS-3.5-1985 will be conducted annually.

MALFUNCTION 4 YEAR TEST SCHEDULE

MALFUNCTIONS TO BE TESTED DURING 1991

MNEMONIC

DESCRIPTION

TRIPLE CODE

	and a second of the second state of the second s	
X:RX0101	AUTO MODE CONT ROD WITHDRWL	01-01-01
X:RX0301	GRP-1, CB-C FAILS TO MOVE	01-03-01
X:RX0501	ROD H2 FAIL TO MOVE W/BNK C	01-05-01
X:RX0505	ROD F6 FAIL TO MOVE W/BNK C	01-05-05
X:RXOE09	ROD D4 FAIL TO MOVE W/BNK D	01-05-09
X:RX0513	ROD H8 FAIL TO MOVE W/BNK D	01-05-13
X:RX0701	DROP ROD C9 OF SD B	01-07-01
X:RX0705	DROP POD H14 OF CB C	01-07-05
X:RX0709	DROP ROD D12 OF CB D	01-07-09
X:RX0804	DROP GRP 2 RODS CB D	01-08-04
X:RX1101	ROD EJECTION D12 CB D GRP 2	01-11-01
X:RX1105	ROD EJECTION M12 CB D GRP 1	01-11-05
X:RX1203	FAILURE OF AUTO SI SGNL	01-12-03
X:RX1207	RX TRIP BKR R FAILS TO OPEN	01-12-07
X:RX1302	DRPI FAILURE DATA B	01-13-02
X:RX1404	FAIL DRPI CHANNEL J13	01-14-04
X:RX1408	FAIL DRPI CHANNEL H6	01-14-08
X:RX1412	FAIL DRPI CHANNEL H2	01-14-12
X:RX1501	COMPLETE LOSS OF DRPI	01-15-01
X:RX1604	FAIL ROD BLOCK C4	01-16-04
X:RX1802	C/BNKS IN WHEN OUT REQUIRED	01-18-02
X:RX1902	RX TRTP BKR P4 BKR OPEN TR R	01-19-02
X:RX2002	ROD G13 STUCK ON RX TRIP	01-20-02
X:RP2103	LOW FLOW RX TRIP LP 3 CH 1	01-21-03
X:RP2110	LOW FLOW RX TRIP LP 2 CH 3	01-21-10
X:RP2111	LOW FLOW RX TRIP LP 3 CH 3	01-21-11
X:RP2112	LOW FLOW RX TRIP LP 4 CH 3	01-21-12
X:RP2208	OP/DT RUNBACK CHNL 4	01-22-08
X:RP2212	OT/DT RX TRIP CHNL 4	01-22-12
X:RP2216	OT/DT RUNBACK CHNL 4	01-22-16
X:RX2304	LO T AVG LOOP 4 B/S	01-23-04
X:RX2308	LO-LO T AVG LOOP 4 B/S	01-23-08
X:RP2404	SPRAY ACT TEST BYP CH 4 B/S	01-24-04

AODENDUM 1.2

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC

DESCRIPTION

X:RP2409	CTMT PRESS HI-3 CH 2 B/S	01-24-09
X:RP2502	PZR PRESS LO RX TRIP CH 2	01-25-02
X:RP2506	FZR PRESS LO SI CH 2	01-25-06
X:RP2510	PZR PRESS HI RX TRIP CH 2	01-25-10
X:RP2514	PZR PRESS BLOCK CH 2	01-25-14
X:RP2518	PZR LEVEL HI RX TRIP CH 3	01-25-18
X:RP2603	RCP 1C U/V RX TRIP CH-3 B/S	01-26-03
X:RP2607	RCP 1C U/F RX TRIP CH-3 B/S	01-26-07
X:NI2703	SR TRIP/BYP CH 1 B/S	01-27-03
X:NJ2707	IR TRIP/BYP CH 1 B/S	01-27-07
X:N12801	POWER RANGE P-8 CH 1 B/S	01-28-01
X:NI2805	POWER RANGE P-9 CH 1 B/S	01-28-05
X:NI2809	POWER RANGE P7/P10 CH 1 B/S	01-28-09
X:NI2901	PR OVRPWR ROD STOP BYP CH 1	01-29-01
X:NI2505	POWER RANGE LO CH 1 B/S	01-29-05
X:NI2969	POWER RANGE HI CH 1 B/S	01-29-09
X:NI2913	POWER RANGE RATE CH 1 B/S	01-29-13
XNNI3001	SR CHNL 31 FAILS HI	01-30-01
XRNI3201	SOURCE RANGE CH 31 SLUGGISH	01-32-01
X:NI3402	IR CH 36 OVER COMPENSATED	01-34-02
X:NI3602	IR CH 36 FAILS HIGH	01-36-02
X:NI3802	LOSS OF PWR TO PR CH 42	01-38-02
X:RC0102	RCS COLD LEG RUPTURE LOOP 1B	02-01-02
XNRC0302	RCS LEAK, FLOW XMTR LOOP B	02-03-02
XNRC0501	RCS LEAK, RV HEAD FLANGE	02-05-01
X:RC0704	SHEARED RCP SHAFT - RCP 1D	02-07-04
X:RC0804	LOCKED RCP ROTOR - RCP 1D	02-08-04
X:RC0904	RCP 1D TRIPS ON UNDER FREQ	02-09-04
X:RC1004	RCP 1D TRIP ON UNDER VOLTAGE	02-10-04
XNRC1401	PZR SAFETY VLV LEAK PSV 3450	02-14-01
X:RC1502	PZR SPRAY VLV FC PCV-655C	02-15-02
X: PZ1702	PZR PRES CONTROL FAIL +30PSI	02-17-02
XNRC1903	PT 457 FAILS TO ANY POSITION	02-19-03
X:RC2101	PZR HTR B/U GP E FAILS ON	02-21-01
X:RC2303	PZR HTR GP C FAIL TO COME ON	02-23-03
XNRC2402	RCS PRES XMTR PT 405 FAILS	02-24-02
XNRC2505	RTD FAILS HOT LEG A TT 413	02-25-05
XNRC2506	RTD FAILS COLD LEG A TT 414	02-25-06
XNRC2601	RTD FAILS HOT LEC B TT 420A	02-26-01
XNRC2606	RTD FAILS COLD LEG B TT 424	02-26-06
XNRC2805	RTD FAILS HOT LEG D TT 443	02-28-05
X:CV0201	LOSS OF LTDN IN BORATE MODE	03-02-01
X:CV0601	LTDN VLV PCV-135 FAILS CLOSE	03-06-01

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC

DESCRIPTION

X:CV0902	LOSS OF CHARGING PUMP CCP-1B	03-09-02	
XNCV1201	LTDN LINE LEAK OUTSIDE RCB	03-12-01	
X:BT1601	BTRS WILL NOT DILUTE	03-16-01	
X:MW1901	RX MU CNTRL FAILS IN BORATE	03-19-01	
XRCV2202	HI DP SEALWATER INJ FILTER B	03-22-02	
XNCV2304	RCP 1B #2 SEAL FAILS	03-23-04	
XNCV2308	RCP 1D #2 SEAL FAILS	03-23-08	
X:CC0201	LOSS OF CCW PUMP 1A-FT-4512	04-02-01	
XNCC0302	LOSS CCW TO RCP 1B THERM BAR	04-03-02	
X:CC0402	LOSS CCW TO RHR HEAT EXCH 1B	04-04-02	
XNCC0701	CCW/ECW HX TUBE LEAK	04-07-01	
X:EC0903	ECW PUMP 1C FAILS ON O/L	04-09-03	
X:EC0906	TRIP ESSENTIAL CHILLER 11C	04-09-06	
X: PH1101	RHR PMP RELIEF PSV-3851 FO	04-11-01	
XNRH1202	TUBE LEAK IN RHR HX 1B	04-12-02	
X:SI1401	LOSS OF LHSI PUMP 1A ON O/L	04-14-01	
X:SI1503	ACCUM DISCH VLV F/OP 039C	04-15-03	
X:CS1603	LOSS OF CNTMT SPR PUMP 1C	04-16-03	
XNSI1801	LEAK PAST SI ACCU 1A CHK VLV	04-18-01	
XNMS0201	STM BKR IN CONTAINMENT LOOP A	05-02-01	
XNSG0301	STEAM GEN TUBE LEAK - SG 1A	05-03-01	
X:MS0401	MN STM SFTY VLV PSV 7410 FO	05-04-01	
XNMS0501	MS SAFETY PSV 7410 SEAT LEAK	05-05-01	
X:MS0601	MSIV FAILS CLOSED SG A	05-06-01	
X:MS0701	MSIV FAIL TO OPERATE MS 7414	05-07-01	
X:MS0801	MSIV SHUTS DURING TEST SG A	05-08-01	
X:MS0901	GLAND SEAL REGULATOR PV-6150 F/O	05-09-01	
X:MS1103	NO STM FLO SIG TO FWCS SG C	05-11-03	
X:SG1203	NO SG LVL SIG TO FWCS SG 1C	05-12-03	
X:PD1302	BNK 2 STM DMPS FAIL TO CLOSE	05-13-02	
XNMS1501	NO RHT STM FRM MSR CNTRL SYS	05-15-01	
X:TU0101	TURB TRIF FROM AST 20-1,20-2	06-01-01	
X:TU0303	MN TURBINE THROTTLE VLV FO C	06-03-03	
X:TU0403	MAIN TURB GOVERNOR VLV 3 FO	06-04-03	
X:TU0503	MN TURBINE GOVERNOR VLV FC 3	06-05-03	
XNTU0901	MN TURB LUBE OIL TEMP HI	06-09-01	
X:EH1401	EHC AUTO MODE FAILURE	06-14-01	
XRPD1803	TREF SIG TO STM DUMPS FAIL	06-18-01	
XRTU1904	MN TURB VIBRATION HI BRNG 4	06-19-04	
XRTU1908	MN TURB VIBRATION HI BRNG 8	06-19-08	
XRTU2001	MN TURB ECCENTRICITY HI	06-20-01	
XNCD0201	CONDENSER AIR IN LEAKAGE	07-02-01	

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC

DESCRIPTION

X:CD0403	LOSS OF MAIN FW PUMP - 13	07-04-03
X:AF0201	AUX FW PUMP NO 14 OVERSPEEDS	08-02-01
X:AF0401	LOSS OF STEAM AUX FW PUMP	08-04-01
X:AF0504	AFW X-CONN VLV FY-7518 FAILS	08-05-04
XNFW0901	LOSS OF PUMP CONTROL - MFP11	08-09-01
X:PF1002	FAIL AUTO SPEED CNTRL MFP-12	08-10-02
X:FW1203	TURB OVERSPEED TRIP MFP-13	08-12-03
X:FW1204	STARTUP FP OVERLOAD TRIP	08-12-04
X:PG1401	AUTO FW CNTRL SYS FAILS SG-A	08-14-01
X:FW1501	LOSS OF FEED FLOW SIG SG-A	08-15-01
X:FW1601	MN FW REG VLV F/C FCV-551	08-16-01
X:FW1701	MN FW REG VLV STUCK FCV-551	08-17-01
XNFW1801	MN FW REG VLV LEAKS FCV-551	08-18-01
XNFW1901	FW REG BYP VLV STUCK FV-7151	08-19-01
X:FW2001	MFP RECIRC VLV F/O FV-7104	08-20-01
X:CD2302	LOSS OF CONDENSATE PUMP 12	08-23-02
XNCD2501	HI CONDUCTIVITY COND/FW SYS	08-25-01
X:FW2802	LOSS OF LP HTR DRAIN PMP-12	08-28-02
X:HV0103	LOSS OF CRDM COOLING FAN 11C	09-01-03
X:HV0204	LOSS OF CNTMT FAN CLR 12A	09-02-04
XRRM0401	RADIO ACTIV REL OF LIQ WASTE	09-04-01
X:RM0801	LOSS OF PWR TO RIT-8012	09-08-01
X:HV1103	SMOKE IN CTRL RM ESF ACT	09-11-03
X:EA0102	LOSS OF EMERGENCY DG 12	10-01-02
X:EA0203	EMERGENCY DG 13 FAIL TO LOAD	10-02-03
X:EA0502	LOSS OF DP-1202	10-05-02
X:EA0701	LOSS OF UNIT AUX TRANSFORMER	10-07-01
X:EA0903	LOSS OF 13.8KV STBY BUS 1H	10-09-03
X:EA1101	LOSS OF 4.16KV ESF BUS E1A	10-11-01
X:EA1202	LOSS OF 480V ESF MCC E1A2	10-12-02
X:EA1206	LOSS OF 480V ESF MCC E1B3	10-12-06
X:EA1301	LOSS OF 138KV EMERGENCY XFMR	10-13-01
X:EA1503	LOSS OF NON 1E DC PNL PL125E	10-15-03
X:GE1602	LOSS OF GEN SEAL OIL REG 264	10-16-02
X:AC0202	LOSS OF ACW CLSD LP PMP 12	11-02-02
X:CM0701	LOSS OF PLANT COMPUTER	11-07-01
X: AN0802	PANEL 2 ANNUNCIATOR FAILURE	11-08-02
X:AN0806	PANEL 6 ANNUNCIATOR FAILURE	11-08-06
XIAN0902	CRYWOLF LAMP 1M002-B1	11-09-02
XIAN0906	CRYWOLF LAMP 1M002-F1	11-09-06
XIAN0910	CRYWOLF LAMP 1M002-D2	11-09-10
XIAN0914	CRYWOLF LAMP 1M002-B3	11-09-14
XIAN0918	CRYWOLF LAMP 1M002-F3	11-09-18

MNEMONIC	DEI	CRIPTION	TRIPLE CODE
XIAN0922	CRYWOLF L	MP 1M002-D4	11-09-22
XIAN0926	CRYWOLF L	MP 1M002-B5	11-09-26
XIAN0930	CRYWOLF LA	MP 1M002-F5	11-09-30
XIAN0934	CRYWOLF LA	MP 1M002-D6	11-09-34
XIAN0938	CRYWOLF LA	MP 1M002-B7	11-09-38
XIAN0942	CRYWOLF LA	MP 1M002-F7	11-09-42
XIAN0946	CRYWOLF LA	MP 1M002-D8	11-09-46
XIAN0950	CRYWOLF LA	MP 2M002-B1	11-09-50
XIAN0954	CRYWOLF LJ	MP 2M002-F1	11-09-54
XIAN0958	CRYWOLF LA	MP 2M002-D2	11-09-58
XIAN0962	CRYWOLF LA	MP 2M002-B3	11-09-62
XIAN0966	CRYWOLF LA	MP 2M002-F3	11-09-66
XIAN0970	CRYWOLF LA	MP 2M002-D4	11-09-70
XIAN0974	CRYWOLF LA	MP 2M002-B5	11-09-74
XIAN0978	CRYWOLF LA	MP 2M002-F5	11-09-78
XIAN0982	CRYWOLF LA	MP 2M002-D6	11-09-82
XIAN0986	CRYWOLF LA	MP 2M002-B7	11-09-86
XIAN0990	CRYWOLF LA	MP 2M002-F7	11-09-90
XIAN0994	CRYWOLF LA	MP 2M002-D8	11-09-94
XIAN1002	CRYWOLF LA	MP 2M003-B1	11-10-02
XIAN1006	CRYWOLF LA	MP 2M003-F1	11-10-06
XIAN1010	CRYWOLF LA	MP 2M003-D2	11-10-10
XIAN1014	CRYWOLF LA	MP 2M003-B3	11-10-14
XIAN1018	CRYWOLF LA	MP 2M003-F3	11-10-18
XIAN1022	CRYWOLF LA	MP 2M003-D4	11-10-22
XIAN1026	CRYWOLF LA	MP 2M003-B5	11-10-26
XIAN1030	CRYWOLF LA	MP 2M003-F5	11-10-30
XIAN1034	CRYWOLF LA	MP 2M003-D6	11-10-34
XIAN1038	CRYWOLF LA	MP 2M003-B7	11-10-38
XIAN1042	CRYWOLF LA	MP 2M003-F7	11-10-42
XIAN1046	CRYWOLF LA	MP 2M003-D8	11-10-46
XIAN1050	CRYWOLF LA	MP 2M004-B1	11-10-50
XIAN1054	CRYWOLF LA	MP 2M004-F1	11-10-54
XIAN1058	CRYWOLF LA	MP 2M004-D2	11-10-58
XIAN1062	CRYWOLF LA	MP 2M004-B3	11-10-62
XIAN1066	CRYWOLF LA	MP 2M004-F3	11-10-66
XIAN1070	CRYWOLF LA	MP 2M004-D4	11-10-70
XIAN1074	CRYWOLF LA	MP 2M004-B5	11-10-74
XIAN1078	CRYWOLF LA	MP 2M004-F5	11-10-78
XIAN1082	CRYWOLF LA	MP 2M004-D6	11-10-82
XIAN1086	CRYWOLF LA	MP 2M004-B7	11-10-86
XIAN1090	CRYWOLF LA	MP 2M004-F7	11-10-90
XIAN1094	CRYWOLF LA	MP 2M004-D8	11-10-94

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

11-12-74

MNEMONIC	D	ESCRI	PTION	TRIPLE CODE
XIAN1102	CRYWOLF :	LAMP	3M002-B1	11-11-02
XIAN1106	CRYWOLF :	LAMP	3M002-F1	11-11-06
XIAN1110	CRYWOLF :	LAMP	3M002-D2	11-11-10
XIAN1114	CRYWOLF :	LAMP	3M002-B3	11-11-14
XIAN1118	CRYWOLF :	LAMP	3M002-F3	11-11-18
XIAN1122	CRYWOLF :	LAMP	3M002-D4	11-11-22
XIAN1126	CRYWOLF :	LAMP	3M002-B5	11-11-26
XIAN1130	CRYWOLF	LAMP	3M002-F5	11-11-30
XIAN1134	CRYWOLF :	LAMP	3M002-D6	11-11-34
XIAN1138	CRYWOLF :	LAMP	3M002-B7	11-11-38
XIAN1142	CRYWOLF :	LAMP	3M002-F7	11-11-42
XIAN1146	CRYWOLF :	LAMP	3M002-D8	11-11-46
XIAN1150	CRYWOLF :	LAMP	3M003-B1	11-11-50
XIAN1154	CRYWOLF :	LAMP	3M003-F1	11-11-54
XIAN1158	CRYWOLF :	LAMP	3M003-D2	11-11-58
XIAN1162	CRYWOLF :	LAMP	3M003~B3	11-11-62
XIAN1166	CRYWOLF :	LAMP	3M003-F3	11-11-66
XIAN1170	CRYWOLF :	LAMP	3M003-D4	11-11-70
XIAN1174	CRYWOLF :	LAMP	3M003-B5	11-11-74
XIAN1178	CRYWOLF :	LAMP	3M003-F5	11-11-78
XIAN1182	CRYWOLF !	LAMP	3M003-D6	11-11-82
XIAN1186	CRYWOLF 1	LAMP	3M003-B7	11-11-86
XIAN1190	CRYWOLF :	LAMP	3M003-F7	11-11-90
XIAN1194	CRYWOLF :	LAMP	3M003-D8	11-11-94
XIAN1202	CRYWOLF :	LAMP	4M007-B1	11-12-02
XIAN1206	CRYWOLF :	LAMP	4M007-F1	11-12-06
XIAN1210	CRYWOLF !	LAMP	4M007-D2	11-12-10
XIAN1214	CRYWOLF :	LAMP	4M007-B3	11-12-14
XIAN1218	CRYWOLF :	LAMP	4M007-F3	11-12-18
XIAN1222	CRYWOLF :	LAMP	4M007-D4	11-12-22
XIAN1226	CRYWOLF :	LAMP	4M007-B5	11-12-26
XIAN1230	CRYWOLF :	LAMP	4M007-F5	11-12-30
XIAN1234	CRYWOLF :	LAMP	4M007-D6	11-12-34
XIAN1238	CRYWOLF :	LAMP	4M007-B7	11-12-38
XIAN1242	CRYWOLF	LAMP	4M007-F7	11-12-42
XIAM1246	CRYWOLF :	LAMP	4M007-D8	11-12-46
XIAN1250	CRYWOLF	LAMP	4M008-B1	11-12-50
XIAN1254	CRYWOLF	LAMP	4M008-F1	11-12-54
XIAN1258	CRYWOLF	LAMP	4M008-D2	11-12-58
XIAN1262	CRYWOLF	LAMP	4M008-B3	11-12-62
XIAN1266	CRYWOLF	LAMP	4M008-F3	11-12-66
XIAN1270	CRYWOLF	LAMP	4M008-D4	11-12-70

CRYWOLF LAMP

4M008-B5

XIAN1274

.....

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC	DE	BCRI	PTION	TRIPLE CODE
XIAN1278	CRYWOLF I	AMP	4M008-F5	11-12-78
XIAN1282	CRYWOLF I	AMP	4M008-D6	11-12-82
XIAN1286	CRYWOLF I	AMP	4M008-B7	11-12-86
XIAN1290	CRYWOLF I	AMP	4M008-F7	11-12-90
XIAN1294	CRYWOLF I	AMP	4M008-D8	11-12-94
XIAN1302	CRYWOLF I	AMP	5M002-B1	11-13-02
XIAN1306	CRYWOLF I	AMP	5M002-F1	11-13-06
XIAN1310	CRYWOLF I	AMP	5M002-D2	11-13-10
XIAN1314	CRYWOLF I	AMP	5M002-B3	11-13-14
XIAN1318	CRYWOLF I	AMP	5M002-F3	11-13-18
XIAN1322	CRYWOLF I	AMP	5M002-D4	11-13-22
XIAN1326	CRYWOLF I	AMP	5M002-B5	11-13-26
XIAN1330	CRYWOLF I	AMP	5M002-F5	11-13-30
XIAN1334	CRYWOLF I	AMP	5M002-D6	11-13-34
XIAN1338	CRYWOLF I	AMP	5M002-37	11-13-38
XIAN1342	CRYWOLF I	AMP	5M002- 77	11-13-42
XIAN1346	CRYWOLF I	AMP	5M002-D8	11-13-46
XIAN1350	CRYWOLF I	AMP	5M003-B1	11-13-50
XIAN1354	CRYWOLF I	AMP	5M003-F1	11-13-54
XIAN1358	CRYWOLF I	AMP	5M003-D2	11-13-58
XIAN1362	CRYWOLF I	AMP	5M003-B3	11-13-62
XIAN1402	CRYWOLF I	AMP	5M003-F3	11-14-02
XIAN1406	CRYWOLF I	AMP	5M003-D4	11-14-06
XIAN1410	CRYWOLF I	AMP	5M003-B5	11-14-10
XIAN1414	CRYWOLF I	AMP	5M003-F5	11-14-14
XIAN1418	CRYWOLF I	AMP	5M003-D6	11-14-18
XIAN1422	CRYWOLF I	AMP	5M003-B7	11-14-22
XIAN1426	CRYWOLF I	AMP	5M003-F7	11-14-26
XIAN1430	CRYWOLF I	AMP	5M003-D8	11-14-30
XIAN1434	CRYWOLF I	AMP	5M004-B1	11-14-34
XIAN1438	CRYWOLF I	AMP	5M004-F1	11-14-38
XIAN1442	CRYWOLF I	AMP	5M004-D2	11-14-42
XIAN1446	CRYWOLF I	AMP	5M004-B3	11-14-46
XIAN1450	CRYWOLF I	AMP	5M004-F3	11-14-50
XIAN1454	CRYWOLF I	AMP	5M004-D4	11-14-54
XIAN1458	CRYWOLF I	AMP	5M004-B5	11-14-58
XIAN1462	CRYWOLF I	AMP	5N004-F5	11-14-62
XIAN1502	CRYWOLF I	AMP	5M004-D6	11-15-02
XIAN1506	CRYWOLF I	AMP	5M004-B7	11-15-06
XIAN1510	CRYWOLF I	AMP	5M004-F7	11-15-10
DELETE**	CRYWOLF I	AMP	5M004-D8	11-15-14
XIAN1518	CRYWOLF I	AMP	6M003-B1	11-15-18
XTAN1522	CRYWOLF I	AMP	6M003-F1	11-15-22

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC

XIAN1834

XIAN1838

XIAN1842

XIAN1846

XIAN1850

XIAN1854

XIAN1858

XIAN1862

XIAN1866

XIAN1870

XIAN1874

XIAN1878

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

DESCRIPTION

XIAN1706 CRYWOLF LAMP 7M003-B3 XIAN1710 CRYWOLF LAMP 7M003-F3 XIAN1714 CRYWOLF LAMP 7M003-D4 XIAN1718 CRYWOLF LAMP 7M003-B5 XIAN1722 CRYWOLF LAMP 7M003-F5 XIAN1726 CRYWOLF LAMP 7M003-D6 XIAN1730 CRYWOLF LAMP 7M003-B7 XIAN1734 CRYWOLF LAMP 7M003-F7 XIAN1738 CRYWOLF LAMP 7M003-D8 CRYWOLF LAMP XIAN1742 8M003-B1 XIAN1746 CRYWOLF LAMP 8M003-F1 XIAN1750 CRYWOLF LAMP 8M003-D2 XIAN1754 CRYWOLF LAMP 8M003-B3 **XIAN1758** CRYWOLF LAMP 8M003-F3 XIAN1762 CRYWOLF LAMP 8M003-D4 XIAN1766 CRYWOLF LAMP 8M003-B5 CRYWOLF LAMP XIAN1770 8M003-F5 XIAN1774 CRYNOLF LAMP 8M003-D6 XIAN1778 CRYWOLF LAMP 8M003-B7 XIAN1782 CRYWOLF LAMP 8M003-F7 XIAN1786 CRYWOLF LAMP 8M003-D8 XIAN1790 CRYWOLF LAMP 9M001-31 XIAN1794 CRYWOLF LAMP 9M001-F1 XIAN1802 CRYWOLF LAMP 9M001-D2 XIAN 806 CRYWOLF LAMP 9M001-B3 XIAN1810 CRYWOLF LAMP 9M001-F3 XIAN1814 CRYWOLF LAMP 9M001-D4 XIAN1818 CRYWOLF LAMP 9M001-B5 XIAN1822 CRYWOLF LAMP 9M001-F5 XIAN1826 CRYWOLF LAMP 9M001-D6 XIAN1830 CRYWOLF LAMP 9M001-B7

CRYWOLF LAMP

CRYWOLF LAMP

CRYWOLF LAMP 10M001-B1

CRYWOLF LAMP 10M001-F1

CRYWOLF LAMP 10M001-D2

CRYWOLF LAMP 10M001-B3

CRYWOLF LAMP 10M001-F3

CRYWOLF LAMP 10M001-D4

CRYWOLF LAMP 10M001-B5

CRYWOLF LAMP 10M001-F5

CRYWOLF LAMP 10M001-D6

CRYWOLF LAMP 10M001-B7

11-17-10 11-17-14 11-17-18 11-17-22 11-17-26 11-17-30 11-17-34 11-17-38 11-17-42 11-17-46 11-17-50 11-17-54 11-17-58 11-17-62 11-17-66 11-17-70 11-17-74 11-17-78 11-17-82 11-17-86 11 17-90 11-17-94 11-18-02 11-18-06 11-18-10 11-18-14 11-18-18 11-18-22 11-18-26 11-18-30 11-18-34 11-18-38 11-18-42 11-18-46 11-18-50 11-18-54 11-18-58 11-18-62 11-18-66

11-18-70

11-18-78

11-18-74

TRIPLE CODE

11-17-06

9M001-F7

9M001-D8

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC

DESCRIPTION

	and the second second second second	the second second	the law is the second of the		
XIAN1882	CRYWOLF	LAMP	10M001-F7	11-18-82	
XIAN1886	CRYWOLF	LAMF	10M001-D8	11-18-86	
XIAN1893	CRYWOLF	LAMP	10M002-B1	11-18-90	
XIAN1894	CRYWOLF	LAMP	10M002-F1	11-18-94	
XIAN1902	CRYWOLF	LAMP	10M002-D2	11-19-02	
XIAN1906	CRYWOLF	LAMP	10M002-B3	11-19-06	
XIAN1910	CRYWOLF	LAMP	10M002-F3	11-19-10	
XIAN1914	CRYWOLF	LAMP	10M002-D4	11-19-14	
XIAN1918	CRYWOLF	LAMP	10M002-B5	11-19-18	
XIAN1922	CRYWOLF	LAMP	10M002-F5	11-19-22	
XIAN1926	CRYWOLF	LAMP	10M002-D6	11-19-26	
XIAN1930	CRYWOLF	LAMP	10M002-B7	11-19-30	
XIAN1934	CRYWOLF	LAMP	10M002-F7	11-19-34	
XIAN1938	CRYWOLF	LAMP	10M002-D8	11-19-38	
XIAN1942	CRYWOLF	LAMP	21M001-B1	11-19-42	
XIAN1946	CRYWOLF	LAMP	21M001-F1	11-19-46	
XIAN1950	CRYWOLF	LAMP	21M001-D2	11-19-50	
XIAN1954	CRYWOLF	LAMP	21M001-B3	11-19-54	
XIAN1958	CRYWOLF	LAMP	21M001-F3	11-19-58	
XIAN1962	CRYWOLF	LAMP	21M001-D4	11-19-62	
XIAN1966	CRYWOLF	LAMP	21M001-B5	11-19-66	
XIAN1970	CRYWOLF	LAMP	21M001-F5	11-19-70	
XIAN1974	CRYWOLF	LAMP	21M001-D6	11-19-74	
XIAN1978	CRYWOLF	LAMP	21M001-B7	11-19-78	
XIAN1982	CRYWOLF'	LAMP	21M001-F7	11-19-82	
XIAN1986	CRYWOLF	LAMP	21M001-D8	11-19-86	
XIAN1990	CRYWOLF	LAMP	22M001-B1	11-19-90	
XIAN1994	CRYWOLF	LAMP	22M001-F1	11-19-94	
XIAN2002	CRYWOLF	LAMP	22M001-D2	11-20-02	
XIAN2006	CRYWOLF	LAMP	22M001-B3	11-20-06	
XIAN2010	CRYWOLF	LAMP	22M001-F3	11-20-10	
XIAN2014	CRYWOLF	LAMP	22M001-D4	11-20-14	
XIAN2018	CRYWOLF	LAMP	22M001-B5	11-20-18	
XIAN2022	CRYWOLF	LAMP	22M001-F5	11-20-22	
XIAN2026	CRYWOLF	LAMP	22M001-D6	11-20-26	
XIAN2030	CRYWOLF	LAMP	22M001-B7	11-20-30	
XIAN2034	CRYWOLF	LAMP	22M001-F7	11-20-34	
XIAN2038	CRYWOLF	LAMP	22M001-D8	11-20-38	
XIAN2042	CRYWOLF	LAMP	22M002-B1	11-20-42	
XIAN2046	CRYWOLF	LAMP	22M002-F1	11-20-46	
XIAN2050	CRYWOLF	LAMP	22M002-D2	11-20-50	
XIAN2054	CRYWOLF	LAMP	22M002-B3	11-20-54	
XIAN2058	CRYWOLF	LAMP	22M002-F3	11-20-58	

-

2410 C 11

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC	DESCRI	PTION	TRIPLE CODE
XIAN2062	CRYWOLF LAMP	22M002-D4	11-20-62
XIAN2066	CRYWOLF LAMP	22M002-B5	11-20-66
XIAN2070	CRYWOLF LAMP	22M002-F5	11-20-70
XIAN2074	CRYWOLF LAMP	22M002-D6	11-20-74
XIAN2078	CRYWOLF LAMP	22M002-B7	11-20-78
XIAN2082	CRYWOLF LAMP	22M002-F7	11-20-82
XIAN2086	CRYWOLF LAMP	22M002-D8	11-20-86
XIAN2090	CRYWOLF LAMP	22M003-B1	11-20-90
XIAN2094	CRYWOLF LAMP	22M003-F1	11-20-94
XIAN2102	CRYWOLF LAMP	22M003-D2	11-21-02
XIAN2106	CRYWOLF LAMP	22M003-B3	11-21-06
XIAN2110	CRYWOLF LAMP	22M003-F3	11-21-10
XIAN2114	CRYWOLF LAMP	22M003-D4	11-21-14
XIAN2118	CRYWOLF LAMP	22M003-B5	11-21-18
XIAN2122	CRYWOLF LAMP	22M003-F5	11-21-22
XIAN2126	CRYWOLF LAMP	22M003-D6	11-21-26
XIAN2130	CRYWOLF LAMP	22M003-B7	11-21-30
XIAN2134	CRYWOLF LAMP	22M003-F7	11-21-34
XIAN2138	CRYWOLF LAMP	22M003-D8	11-21-38

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MALFUNCTIONS TO BE TESTED DURING 1992

MNEMONIC

DESCRIPTION

TRIPLE CODE

X:RX0102	MAN MODE CONT ROD WITHDRWL	01-01-02
X:RX0302	GRP-1, CB-D FAILS TO MOVE	01-03-02
X:RX0502	ROD B2 FAIL TO MOVE W/BNK C	01-05-02
X:RX0506	ROD F10 FAIL TO MOVE W/BNK C	01-05-06
X:RX0510	ROD M12 FAIL TO MOVE W/BNK D	01-05-10
XRRX0601	IMPROPER OVLP CB A TO CB B	01-06-01
X:RX0702	DROP ROD E3 OF SD C	01-07-02
X: RX0706	DROF ROD K6 OF CB C	01-07-06
X:RX0801	DROP GRP 1 RODS CB C	01-08-01
X:RX0901	RODS FAIL TO MOVE IN AUTO	01-09-01
X:RX1102	ROD EJECTION M4 CB D GPP 2	01-11-02
X:RX1201	FAILURE OF AUTO RX TRIP SGNL	01-12-01
X:RX1204	FAILURE OF AUTO PH A ISOL	01-12-04
X:RX1208	RX TRIP BKR S FAILS TO OPEN	01-12-08
X:RX1401	FAIL DRPI CHANNEL M2	01-14-01
X:RX1405	FAIL DRPI CHANNEL L13	01-14-05
X:RX1409	FAIL DRPI CHANNEL E11	01-14-09
X:RX1413	FAIL DRPI CHANNEL P8	01-14-13
X:RX1601	FAIL ROD BLOCK C1	01-16-01
X:RX1701	RODS MOVE AT HIN SPEED -AUTO	01-17-01
X:RX1903	RX TRIP BKR P4 BYP OPEN TR S	01-19-03
R:RX2003	ROD E3 STUCK ON RX TRIP	01-20-03
X:RX2006	ROD H6 STUCK ON RX TRIP	01-20-06
X:RP2101	LOW FLOW RX TRIP LP 1 CH 1	01-21-01
X:RP2102	LOW FLOW RX TRIP LP 2 CH 1	01-21-02
X:RP2105	LOW FLOW RX TRIP LP 1 CH 2	01-21-05
X:RF2205	OP/DT RUNBACK CHNL 1	01-22-05
X:RP2207	OP/DT RUNBACK CHNL 3	01-22-07
X:RP2209	OT/DT RX TRIP CHNL 1	01-22-09
X:RP2213	OT/DT RUNBACK CHNL 1	01-22-?3
X:RX2301	LO T AVG LOOP 1 B/S	01-23-01
X:RX2305	LO-LO T AVG LOOP 1 B/S	01-23-05
X:RP2401	SPRAY ACT TEST BYP CH 1 B/S	01-24-01
X:RP2405	CTMT PRESS HI-1 CH 2 B/S	01-24-05
X:RP2406	CTMT PRESS HI-1 CH 3 B/S	01-24-06
X:RP2410	CTMT PRESS HI-3 CH 3 B/S	01-24-10
X:RP2503	PZR PRESS LO RX TRIP CH 3	01-25-03
X:RP2507	PZR PRESS LO SI CH 3	01-25-07
X:RP2511	PZR PRESS HI RX TRIP CH 3	01-25-11
X:RP2515	PZR PRESS BLOCK CH 3	01-25-15

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMCNIC

)

DESCRIPTION

TRIFLE CODE

-

1960

X:RP2519	PZR LEVEL HI HX TRIP CH 4	01-25-19
X:RP2604	RCP 1D U/V RX TRIP CH-4 B/S	01-26-04
X:R72608	RCP 1D U/F PX TRIP CH-4 B/S	01-26-08
X:NI2704	SR TRIP/EYP CH 2 B/S	01-27-04
X:NI2708	IR TRIP/BYP CH 2 B/S	01-27-08
X:NI2802	POWER RANGE P-8 CH 2 B/S	01-28-02
X:NI2806	FOWER RANGE P-9 CH 2 B/S	01-28-06
X:NI2810	POWER RANGE P7/P10 CH 2 B/S	01-28-10
X:NI2902	PR OVRPWR ROD STOP BYP CH 2	01-29-02
X:NI2906	POWER RANGE LO CH 2 B/S	01-29-06
X:NI2910	POWER RANGE HI CH 2 B/S	01-29-10
X:NI2914	POWER RANGE RATE CH 2 B/S	01-29-14
XNNI3002	SR CHNL 32 FAILS HI	01-30-02
XRN13202	SOURCE RANGE CH 32 SLUGGISH	01-32-02
X:NI3501	IR CH 35 UNDER COMPENSATED	01-35-01
X:NI3701	IR CH 35 FAILS LOW	01-37-01
X:NI3803	LOSS OF PWR TO PR CH 43	01-38-03
X:RC0105	RCS COLD LEG RUPTURE LOOP 1C	02-01-03
XNRC0303	RCS LEAK, FLOW XMTR LOOP C	02-03-03
X:RC0701	SHEARED RCP SHAFT - RCP 1A	02-07-01
X:RC0801	LOCKED RCP ROTOR - RCP 1A	02-08-01
X:RC0901	RCP 1A TRIPS ON UNDER FREQ	02-09-01
X:RC1001	RCP 1A TRIP ON UNDER VOLTAGE	02-10-01
XNRC1201	PZR STEAM SPACE RUPTURE	02-12-01
XNRC1402	PZR SAFETY VLV LEAK PSV 3451	02-14-02
XRP21601	PZR SPRAY VLV FO PCV-655B	02-16-01
XRPL1801	PZR LVL CONTROL MALFUNCTION	02-18-01
XNRC1904	PT 458 FAILS TO ANY POSITION	02-19-04
XNRC2001	LT 465 PZR LVL XMTR FAILS	02-20-01
X:PL2201	PZR HTRS FAIL TO COME ON	02-22-01
X:RC2304	PZR HTR GP D FAIL TO COME ON	02-23-04
XNRC2403	RCS PRES XMTR PT 406 FAILS	02-24-03
XNRC2701	RTD FAILS HOT LEG C TT 430A	02-27-01
XNRC2706	RTD FAILS COLD LEG C TT 434	02-27-06
XNRC2806	RTD FAILS COLD LEG D TT 444	02-28-06
XNCV0301	TUBE LEAK LTDN HEAT EXCHANGE	03-03-01
X:CV0602	LTDN VLV PCV-135 FAILS OPEN	03-06-02
X:CV0903	LOSS OF CHARGING PUMP PD-1A	03-09-03
XNCV1301	LP LTDN LINE LEAK AT FE-132	03-13-01
X:CV1701	TRIP BORIC ACID XFER PUMP 1A	03-17-01
X:CV2001	RCS DILUTION-UNEORATED DEMIN	03-20-01
XNCV2301	RCP 1A #1 SEAL FAILS	03-23-01
XNCV2305	RCP 1C #1 SEAL FAILS	03-23-05

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC

DESCRIPTION

X:CC0101	LOSS CCW PUMP 1A THERMAL O/L	04-01-01
X:CC0202	LOSS OF CCW PUMP 1B-FT-4517	04-02-02
XNCC0303	LOSS CCW TO RCP 1C THERM BAR	04-03-03
X:CC0403	LOSS CCW TO INR HEAT EXCH 1C	04-04-03
XNEC0801	LOSS OF ECW 1 AIN	04-08-01
X:EC0907	TRIP ESSENTIAL CHILLER 12A	04-09-07
X:RH1001	LOSS OF RHR PL YP 1A ON O/L	04-10-01
X:RH1102	RHR PMP RELIEF PSV-3852 FO	04-11-02
X:SI1301	LOSS OF HHSI PUMP 1A ON O/L	04-13-01
X:SI1402	LOSS OF LHSI PUMP 1B ON O/L	04-14-02
X:CS1602	LOSS OF CMT SPR PUMP 1B	04-15-02
XNSI1701	N2 LOSS ACCU 1A VIA PSV-3981	04-17-01
XNSI1802	LEAK PAST SI ACCU 1B CHK VLV	04-18-02
XNMS0202	STM BKR IN CONTAINMENT LOOP B	05-02-02
XNSG0302	STEAM GEN TUBE LEAK - SG 1B	05-03-02
X:MS0402	MN STM SFTY VLV PSV 7420 FO	05-04-02
XNMS0502	MS SAFETY PSV 7420 SEAT LEAK	05-05-02
X:MS0602	MSIV FAILS CLOSED SG B	05-06-02
X: MS0702	MSIV FAIL TO OPERATE MS 7424	05-07-02
X:MS0802	MSIV SHUTS DURING TEST SG B	05-08-02
X:MS1001	NO GS SPLY FROM MS PV61JO FC	05-10-01
X:MS1104	NO STM FLO SIG TO FWCS SG D	05-11-04
X:SG1204	NO SG LVL SIG TO FWCS SG 1D	05-12-04
X: PD1303	BNK 3 STM DMPS FAIL TO CLOSE	05-13-03
X:TU0201	NO TUR TRP ON AUTO TRP SIG	06-02-01
X:TU0304	MN TURBINE THROTTLE VLV FO D	06-03-04
X:TU0404	MAIN TURB GOVERNOR VLV 4 FO	06-04-04
X:TU0504	MN TURBINE GOVERNOR VLV FC 4	06-05-04
X:TU1001	AC BRNG OIL PUMP WON'T START	06-10-01
X:EH1501	EHC HYDRAULIC LINE FAILURE	06-15-01
XRTU1901	MN TURB VIBRATION HI BRNG 1	06-19-01
XRTU1905	MN TURB VIBRATION HI BRNG 5	06-19-05
XRTU1909	MN TURB VIBRATION HI BRNG 9	06-19-09
X:CD0101	LOSS OF COND VACUUM PUMP 11	07-01-01
XNCD0301	MAIN CONDENSER TUBE LEAK	27-03-01
X:CD0501	HOTWELL LEVEL XMTR FAILS-HGH	07-05-01
X:AF0301	LOSS OF AUX FW PUMP NO 11	08-03-01
X:AF0501	AFW X-CONN VLV FY-7515 FAILS	08-05-01
XNFW0601	MN FW LINE RUPTURE IN CONTMT	08-06-01
XNFW0902	LOSS OF PUMP CONTROL - MFP12	08-09-02
X:PF1003	FAIL AUTO SPEED CNTRL MFP-13	08-10-03
X:FW1301	LUBE OIL PRES LOW MFP-11	08-13-01
X:PG1402	AUTO FW CNTRL SYS FAILS SG-B	08-14-02

663	i.
	h
	å

٠

FOUR YEAR JLATOR PERFORMANCE TEST "DULE (Continued)

MNEMONIC

OF GORIFALM

TRIPLE CODE

X:FW1502	LOSS OF FEED FLOW SIG SG-B	08-15-02
X:FW1602	MN FW REG VLV F/C FCV-552	08-16-02
X:FW1702	MN FW REG VLV STUCK FCV-552	08-17-02
XNFW1802	MN FW REG VLV LEAKS FCV-552	08-18-02
MIFW1902	FW REG BYP VLV STUCK FV-7152	08-19-02
FW2002	MFP RECIRC VLV F/O FV-7209	08-20-02
%: CD2303	LOSS OF CONDENSATE PUMP 13	08-23-03
X:CD2701	POLISH DEMIN BYP CD-132 F/C	08-27-01
X:FW2901	TRIP ALL FW BOOSTER PUMPS	08-29-01
X: HV02 1	LOSS OF CNTMT FAN CLR 11A	09-02-01
X: HV 1:05	LOSS OF CNTMT FAN CLR 123	09-02-05
XRRM0502	RADIO ACTIV REL OF GAS WASTE	09-05-01
X:RM0901	INCR RAD LEVEL RIT-8012	09-09-01
X:EA0103	LOSS OF EMERGENCY DG 13	10-01-03
X:EA0301	LOSS OF MAIN GEN EXCITER	10-03-01
X:EA0503	LOSS OF DP-1203	10-05-03
X:EA0801	LOSS OF GRID (345KV&138KV)	10-08-01
X:EA0904	LOSS OF 13.8KV AUX BUS 1J	10-09-04
X:EA1152	LOSS OF 4.16KV ESF BUS E1B	10-11-02
X:EA1203	JOSS OF 480V ESF MCC E1A3	10-12-03
X:EA1207	LOSS OF 480V ESF MCC E1C1	10-12-07
X:EA1401	LOSS OF ALL AC POWER	10-14-01
X:EA1504	LOSS OF NON 1E DC PNL PL125F	10-15-04
X:AC0101	LOSS OF ACW OPEN LOOP PMP 11	11-01-01
X:AC0102	LOSS OF ACW OPEN LOOP PMP 12	11-01-02
X:AC0203	LOSS OF ACW CLSD LP PMP 13	11-02-03
XNAR0501	LOSS OF STATION AIR	11-05-01
X: AN0803	PANEL 3 ANNUNCIATOR FAILURE	11-08-03
X: AN0807	PANEL 7,8,9 ANNUNCIATOR FAILURE	11-08-07
XIAN09C3	CRYWOLF LAMP 1M002-C1	11-09-03
XIAN0907	CRYWOLF LAMP 1M002-A2	11-09-07
XIAN0911	CRYWOLF LAMP 1M002-E2	11-09-11
XIAN0915	CRYWOLF LAMP 1M002-C3	11-09-15
XIAN0919	CRYWOLF LAMP 1M002-A4	11-09-19
XTAN0923	CRYWOLF LAMP 1M002-E4	11-09-23
XIAN0927	CRYWOLF LAMP 1M002-C5	11-09-21
XIAN0931	CRYWOLF LAMP 1M002-A6	11-09-33
XIAN0935	CRYWOLF LAMP 1M002-E6	11-09-3
XIAN0939	CRYWOLF LAMP 1M002-C7	11-09-39
XIAN0943	CRYWOLF LAMP 1M002-A8	11-09-4:
XIAN0947	CRYWOLF LAMP 1M002-E8	11-09-4
XIAN0951	CRYWOLF LAMP 2M002-C1	11-09-5
XIAN0955	CRYWOLF LAMP 2M002-A2	11-09-5

1

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

FOUR YEAR SINULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEHONIC	DESCRIPTION			TRIPLE CODE
XIAN1139	CRYWOLF	LAMP	3M002-C7	11-11-39
XIAN1143	CRYWOLF	LAMP	3M002-A8	11-11-43
XIAN1147	CRYWOLF	LAMP	3M002-E8	11-11-47
XIAN1151	CRYWOLF	LAMP	3M003-C1	11-11-51
XIAN1155	CRYWOLF	LAMP	3M003-A2	11-11-55
XIAN1159	CRYWOLF	LAMP	3M003-E2	11-11-59
XIAN1163	CRYWOLF	LAMP	3M003-C3	11-11-63
XIAN1167	CRYWOLF	LAMP	3M003-A4	11-11-67
XIAN1171	CRYWOLF	LAMP	3M003-E4	11-11-71
XIAN1175	CRYWOLF	LAMP	3M003-C5	11-11-75
XIAN2:79	CRYWOLF	LAMP	3M003-A6	11-11-79
XIAN1183	CRYWOLF	LAMP	3M003-E6	11-11-83
XIAN1187	CRYWOLF	LAMP	3M003-C7	11-11-87
XIAN1191	CRYWOLF	LAMP	3M003-A8	21-11-91
XIAN1195	CRYWOLF	LAMP	3M003-E8	11-11-95
XIAN1203	CRYWOLF	LAMP	4M007-C1	11-12-03
XIAN1207	CRYWOLF	LAMP	4M007-12	11-12-07
XIAN1211	CRYWOLF	LAMP	4M007-E2	11-12-11
XIAN1215	CRYWOLF	LAMP	4M007-C3	11-12-15
XIAN1219	CRYWOLF	LAMP	4M007-A4	11-12-19
XIAN1223	CRYWOLF	LAMP	4M007-E4	11-12-23
XIAN1227	CRYWOLF	LAMP	4M007-C5	11-12-27
XIAN1231	CRYWOLF	LAMP	4M007-A6	11-12-31
XIAN1235	CRYWOLF	LAMP	4MC07-E5	11-12-35
XIAN1239	CRYWOLF	LAMP	4M007-C7	11-12-39
XIAN1243	CRYWOLF	LAMP	4M007-A8	11-12-43
XIAN1247	CRYWOLF	LAMP	4M007-E8	11-12-47
XIAN1251	CRYWOLF	LAMP	4M008-C1	11-12-51
XIAN1255	CRYWOLF	LAMP	4M008-A2	11-12-55
XIAN1259	CRYWOLF	LAMP	4M008-E2	11-12-59
XIAN1263	CRYWOLF	LAMP	4M008-C3	11-12-63
XIAN1267	CRYWOLF	LAMP	4M008-A4	11-12-67
XIAN1271	CRYWOLF	LAMP	4M008-E4	11-12-71
XIAN1275	CRYWOLF	LAMP	4M008-C5	11-12-75
XIAN1279	CRYWOLF	LAMP	4M008-A6	11-12-79
XIAN1283	CRYWOLF	LAMP	4M008-E6	11-12-83
XIAN1287	CRYWOLF	LAMF	4M008-C7	11-12-87
XIAN1291	CRYWOLF	LAMP	4M008-A8	11-12-91
XIAN1295	CRYWOLF	LAMP	4M008-E8	11-12-95
XIANJ303	CRYWOLF	LAMP	5M002-C1	11-13-03
XIAN1307	CRYWOLF	IAMP	5M002-A2	11-17-0.
XIAN1311	CRYWOLF	LAMP	5M002-E2	11-13-11
XIAN1315	CRYWOLF	LAMP	5M002-C3	11-13-15

in:

-

MNEMONIC	DE	BCRI	PTION	TRIPLE CODE	
XIAN1319	CRYWOLF L	AMP	5M002-A4	11-13-19	
XIAN1323	CRYWOLF L	AMP	5M002-E4	11-13-23	
XIAN1327	CRYWOLF L	AMP	5M002-C5	11-13-27	
XIAN1331	CRYWOLF L	AMP	5M002-A6	11-13-31	
XIAN1335	CRYWOLF L	AMP	5M002-E6	11-13-35	
XIAN1339	CRYWOLF L	AMP	5M002-C7	11-13-39	
XIAN1343	CRYWOLF L	AMP	5M002-A8	11-13-43	
XIAN1347	CRYWOL7 L	AMP	5M002-E8	11-13-47	
XIAN1351	CRYWOLF L	AMP	5M003-C1	11-13-51	
XIAN1355	CRYWOLF L	AMP	5M003-A2	11-13-55	
XIAN1359	CRYWOLF L	AMP	5M003-E2	11-13-59	
X1AN1363	CRYWOLF L	AMP	5M003-C3	11-13-63	
XIAN1403	CRYWOLF L	AMP	5M003-A4	11-14-03	
XIAN1407	CRYWOLF L	AMP	5M003-E4	11-14-07	
XIAN1411	CRYWOLF I	AMP	5M003-C5	11-14-11	
XIAN1415	CRYWOLF I	AMP	5M003-A6	11-14-15	
XIAN1419	CRYWOLF I	AMP	5M003-E6	11-14-19	
XIAN1423	CRYWOLF L	AMP	5M003-C7	11-14-23	
XIAN1427	CRYWOLF I	AMP	5M003-A8	21-14-27	
XIAN1431	CRYWOLF I	AMP	5M003-E8	11-14-31	
XIAN1435	CRYWOLF I	AMP	5M004-C1	11-:4-35	
XIAN1439	CRYWOLF I	AMP	5M004-A2	11-14-39	
XIAN1443	CRYWOLF I	AMP	5M004-E2	11-14-43	
XIAN1447	CRYWOLF I	AMP	5M004-C3	11-14-47	
XIAN1451	CRYWOLF I	AMP	5M004-A4	11-14-51	
XIAN1455	CRYWOLF I	AMP	5M004-E4	11-14-55	
XIAN1459	CRYWOLF I	AMP	5M004-C5	11-14-59	
XIAN1463	CRYWOLF I	AMP	5M004-A6	11-14-63	
XIAN1503	CRYWOLF I	AMP	5M004-E6	11-15-03	
XIAN1507	CRYWOLF I	AMI	5M004-C7	11-15-07	
DELETE**	CRYWOLF I	AMP	5M004-A8	11-15-11	
DELETE**	CRYWOLF I	AMP	5M004-E8	11-15-15	
XIAN1519	CRYWOLF I	AMP	6M003-C1	11-15-19	
XIAN1523	CRYWOLF I	AMP	6M003-A2	11-15-23	
XIAN1527	CRYWOLF I	AMP	6M003-E2	11-15-27	
XIAN1531	CRYWOLF I	AMP	6M003-C3	11-15-31	
XIAN1535	CRYWOLF I	AMP	6M003-A4	11-15-35	
XIAN1539	CRYWOLF I	AMP	6M003-E4	11-15-39	
XIAN1543	CRYWOLF I	AMP	6M003-C5	11-15-43	
XIAN1547	CRYWOLF 1	AMP	6M003-A6	11-15-47	
XIAN1551	CRYWOLF I	LAMP	6M003-E6	11-15-51	
XIAN1555	CRYWOLF 1	LAMP	6M003-C7	11-15-55	
XIAN1559	CRYWOLF 1	AMP	6M003-A8	11-15-59	

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

ł.

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC

DESCRIPTION

XIAN1563	CRYWOLF	LAMP	6M003-E8	11-15-63
XIAN1567	CRYWOLF	LAMP	6M004-C1	11-15-67
XIAN1571	CRYWOLF	LAMP	6M004-A	11-15-71
XIAN1575	CRYWOLF	LAMP	6M004-E2	11-15-75
XIAN1579	CRYWOLF	LAMP	6M004-C3	11-15-79
XIAN1583	CRYWOLF	LAMP	6M004-A4	11-15-83
XIAN1587	CRYWOLF	LAMP	6M004-E4	11-15-87
XIAN1591	CRYWOLF	LAMP	6M004-C5	11-15-91
XIAN1595	CRYWOLF	LAMP	6M004-A6	11-15-95
XIAN1603	CRYWOLF	LAMP	6M004-E6	11-16-03
XIAN1607	CFYWOLF	LAMP	6M004-C7	11-16-07
XIAN1611	CRYWOLF	LAMP	6M004-A8	11-16-11
XIAN1615	CRYWOLF	LAMP	6M004-E8	11-16-15
XIAN1619	CRYWOLF	LAMP	6M005-C1	11-16-19
XIAN1623	CRYWOLF	LAMP	6M005-A2	11-16-23
XIAN1627	CRYWOLF	LAMP	6M005-E2	11-16-27
XIAN1631	CRYWOLF	LAMP	6M005-C3	11-16-31
XIAN1635	CRYWOLF	LAMP	6M005-A4	11-16-35
XIAN1639	CRYWOLF	LAMP	6M005-E4	11-16-39
XIAN1643	CRYWOLF	LAMP	7M001-C1	11-16-43
XIAN1647	CRYWOLF	LAMP	7M001-A2	11-16-47
XIAN1651	CRYWOLF	LAMP	7M001-E2	11-16-51
XIAN1655	CRYWOLF	LAMP	7M001-C3	11-16-55
XIAN1659	CRYWOLF	LAMP	7M001-A4	11-16-59
XIAN1663	CRYWOLF	LAMP	7M001-E4	11-16-63
XIAN1667	CRYWOLF	LAMP	7M001-C5	11-16-67
XIAN1671	CRYWOLF	LAMP	7M001-A6	11-16-71
XIAN1675	CRYWOLF	LAMP	7M001-E6	11-16-75
XIAN1679	CRYWOI.F	LAMP	7M001-07	11-16-79
XIAN1683	CR'WOLF	LAMP	7M001-20	11-16-83
XIAN1687	CRYWOLF	LAMP	7M001-E8	11-16-87
XIAN1691	CRYWOLF	LAMP	7M003-C1	11-16-91
XIAN1695	CRYWOLF	LAMP	7M003-A2	11-16-95
XIAN1703	CRYWOLF	LAMP	7M003-E2	11-17-03
XIAN1707	CRYWOLF	LAMP	7M003-C3	11-17-07
XIAN1711	CRYWOLF	LAMP	7M003-A4	11-17-11
XIAN1715	CRYWOLF	LAMP	7M003-E4	11-17-15
XIAN1719	CRYWOLF	LAMP	7M003-C5	11-17-19
XIAN1723	CRYWOLF	LAMP	7M003-A6	11-17-23
XIAN1727	CRYWOLF	LAMP	7M003-E6	11-17-27
XIAN1731	CRYWOLF	LAMP	7M003-C7	11-17-31
XIAN1735	CRYWOLF	LAMP	7M003-A8	11-17-35
XIAN1739	CRYWOLF	LAMP	7M003-E8	11-17-39

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

TRIPLE CODE

1	1	-	1	7	-	4	-
1	1	-	1	7	-	4	1
1	1	**	1	7		5	1
1	1	-	1	7	-	5	-
1	1	-	1	7	-	5	ş
1	1	*	1	7		6	17.7
1	1	-	1	7	-	6	7
1	1	-	1	7	-	7	1
1	1	-	1	7	-	7	-
1	1		1	7	**	7	5
1	1	e	1	7	-	3	17.4
1	1	**	1	7	**	8	1
1	1	**	1	7	**	9	3
1	1	-	1	7	-	9	-
1	1	-	1	8	-	0	2.4
1	1	-	1	8	**	0	7
1	2	61	1	8	-	1	3
1	1	-	1	8	**	1	-
1	1	-	1	8	-	1	S
1	1	**	1	8	**	2	1.1
1	1	**	1	8	-	2	-
1	1	4	1	8	*	3	2
1	1	*	4	8	**	3	1
1	1	-	1	8	-	3	ç
1	1	-	1	8	**	4	4.16
1	1	**	1	8	-	4	1
1	1	***	1	8	-	5	3
1	1	-	1	8	*	5	-
1	1	**	1	8	**	5	5
1	1	-	1	8	-	6	1.1
1	1	**	1	8	-	6	7
1	1	*	1	8	80	7	3
1	1	-	1	8	-	7	100
1	1	-	1	8	**	7	S
1	1	-	1	8	-	8	2.3
1	1	-	1	8	-	8	7
1	1	-	1	8	**	9	1
1	-	14	i	8	-	9	18.3
1	1	*	22	9	***	0	1.5
1	1	-	1	9	-	0	7
1	1	-	1	9	***	1	1
1	1	-	1	9	-	1	10.7

11-19-19

XIAN1903

XIAN1907 XIAN1911

XIAN1915

XIAN1919

12 - 20

CRYWOLF LAMP 10M002-E2 CRYWOLF LAMP 10M002-C3

CRYWOLF LAMP 10M002-A4

CRYWOLF LAMP 10M002-E4

CRYWOLF LAMP 10M002-C5

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC

DESCRIPTION

XIAN1923	CRYWOLF	LAMP	10M002-A6	11-19-23
XIAN1927	CRYWOLF	LAMP	10M002-E6	11-19-27
XIAN1931	CRYWOLF	LAMP	10M002-C7	11-19-31
XIAN1935	CRYWOLF	LAMP	10M002-A8	11-19-35
XIAN1939	CRYWOLF	LAMP	10M002-E8	11-19-39
XIAN1943	CRYWOLF	LAMP	21M001-C1	11-19-43
XIAN1947	CRYWOLF	LAMP	21M001-A2	11-19-47
XIAN1951	CRYWOLF	LAMP	21M001-E2	11-19-51
XIAN1955	CRYWOLF	LAMP	21M001-C3	11-19-55
XIAN1959	CRYWOLF	LAMP	21M001-A4	11-19-59
XIAN1963	CRYWOLF	LAMP	21M001-E4	11-29-63
XIAN1907	CRYWOLF	LAMP	21M001-C5	11-19-67
XIAN1971	CRYWOLF	LAMP	21M001-A6	11-19-71
XIAN1975	CRYWOLF	LAMP	21M001-E6	11-19-75
XIAN1979	CRYWOLF	LAMP	21M001-C7	11-19-79
XIAN1983	CRYWOLF	LAMP	21M001-A8	11-19-83
XIAN1987	CRYWOLF	LAMP	21M001-E8	11-19-87
XIAN1991	CRYWOLF	LAMP	22M001-C1	11-19-91
XIAN1995	CRYWOLF	LAMP	22M001-A2	11-19-95
XIAN2003	CRYWOLF	LAMP	22M001-E2	11-20-03
XIAN2007	CRYWOLF	LAMP	22M001-C3	11-20-07
XIAN2011	CRYWOLF	LAMP	22M001-A4	11-20-11
XIAN2015	CRYWOLF	LAMP	22M001-E4	11-20-15
XIAN2019	CRYWOLF	LAMP	22M001-C5	11-20-19
XIAN2023	CRYWOLF	LAMP	22M001-A6	11-20-23
XIAN2027	CRYWOLF	LAMP	22M001-E6	11-20-27
XIAN2031	CRYWOLF	LAMP	22M001-C7	11-20-31
XIAN2035	CRYWOLF	LAMP	22M001-A8	11-20-35
XIAN2039	CRYWOLF	LAMP	22M001-E8	11-20-39
XIAN2043	CRYWOLF	LAMP	22M002-C1	11-20-43
XIAN2047	CRYWOLF	LAMP	22M002-A2	11-20-47
XIAN2051	CRYWOLF	LAMP	22M002-E2	11-20-51
XIAN2055	CRYWOLF	LAMP	22M002-C3	11-20-55
XIAN2059	CRYWOLF	LAMP	22M002-A4	11-20-59
XIAN2063	CRYWOLF	LAMP	22M002-E4	11-20-63
XIAN2067	CRYWOLF	LAMP	22M002~C5	11-20-67
XIAN2071	CRYWOLF	LAMP	22M002-A6	11-20-71
XIAN2075	CRYWOLF	LAMP	22M002-E6	11-20-75
XIAN2079	CRYWOLF	LAMP	22M002-C7	11-20-79
XIAN2083	CRYWOLF	LAMP	22M002-A8	11-20-83
XIAN2087	CRYWOLF	LAMP	22M002-E8	11-20-87
XIAN2091	CRYWOLF	LAMP	22M003-C1	11-20-91
XIAN2095	CRYWOLF	LAMP	22M003-A2	11-20-95

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC	DESCH	RIPTION	TRIPLE CODE
XIAN2103	CRYWOLF LAME	22M003-E2	11-21-03
XIAN2107	CRYWOLF LAMP	22M003-C3	11-21-07
XIAN2111	CRYWOLF LAMI	22M003-A4	11-21-11
XIAN2115	CRYWOLF LAME	22M003-E4	11-21-15
XIAN2119	CRYWOLF LAMP	22M003-C5	11-21-19
XIAN2123	CRYWOLF LAME	22M003-A6	11-21-23
XIAN2127	CRYWOLF LAMP	22M003-E6	11-21-27
XIAN2131	CRYWOLF LAMI	22M003-C7	11-21-31
XIAN2135	CRYWOLF LAME	22M003-A8	11-21-35
XIAN2139	CRYWOLF LAMP	22M003-E8	11-21-39

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MALFUNCTIONS TO BE TESTED DURING 1993

MNEMONIC

DESCRIPTION

TRIPLE CODE

V. DVADAA	TIMO HARM AGUE DAD THATTANA	
XIRX0201	AUTO MODE CONT ROD INSERTION	01-05-01
X: KX0401	GRP-2, CB-C FAILS TO MOVE	01-04-01
X:RX0503	ROD H14 FAIL TO MOVE W/BNK C	01-05-03
X:RX0507	ROD K10 FAIL TO MOVE W/BNK C	01-05-07
X:RX0511	ROD D12 FAIL TO MOVE W/BNK D	01-05-11
XRRX0602	IMPROPER OVLP CB B TO CB	01-06-02
X:RX0703	DROP ROD K2 OF CB B	01-07-03
X:RX0707	DROP ROD M12 OF CB D	01-07-07
X:RX0802	DROP GRP 2 RODS CB C	01-08-02
X:RX0902	RODS FAIL TO MOVE IN MANUAL	01-09-02
X:RX1103	ROD EJECTION H8 CB D GRP 2	01-11-03
X:RX1202	ATWS - NO TRIP ON TRIP SIGNA	01-12-02
X:RX1205	FAILURE OF AUTO PH B ISOL	01-12-05
X:RX1402	FAIL DRPI CHANNEL B12	01-14-02
X:RX1406	FAIL DEPI CHANNEL N11	01-14-06
X:RX1410	FAIL DEPI CHANNEL B10	01-14-10
X:RX1414	FAIL DEPI CHANNEL HS	01-14-14
X:RY1602	FATL BOD BLOCK C2	01-16-02
X: RX1702	RODS MOVE AT MAX SPEED -AUTO	01-17-02
X PY1904	BY TETE BEE DA BEE ODEN TE C	01-19-04
X · DY2005	DOD DO COMICE ON DE TOTO	01-20-05
X . DY2007	DOD DO CIUCK ON DV MDID	01-20-02
V DVDAAD	DOD DE EMMOY ON DY MDID	01-20-07
X:RAZUU6	KOD PO STUCK ON KA IKIP	02-20-00
X; RP2104	LOW FLOW KX TRIP LP 4 CH 1	01-21-04
X:RP2107	LOW FLOW KX TRIP LP 3 CH 2	01-21-07
X:RP2201	OP/DT RX TRIP CHNL 1	01-22-01
X:RP2202	OP/DT RX TRIP CHNL 2	01-22-02
X:RP2204	OP/DT RX TRIP CHNL 4	01-22-04
X:RP2210	OT/DT RX TRIP CHNL 2	01-22-10
X:RP2214	OT/DT RUNBACK CHNL 2	01-22-14
X:RX2302	LO T AVG LOOP 2 B/S	01-23-02
X:RX2306	LO-LO T AVG LOOP 2 B/S	01-23-06
X:RP2402	SPRAY ACT TEST BYP CH 2 B/S	01-24-02
X:RP2407	CTMT PRESS HI-1 CH 4 B/S	01-24-07
X:RP2411	CTMT PRESS HI-3 CH 4 B/S	01-24-13
X:RP2504	PZR PRESS LO RX TRIP CH 4	01-25-04
X:RP2508	PZR PRESS LO SI CH 4	01-25-08
X:RP2512	PZR PRESS HI RX TRIP CH 4	01-25-12
X:RP2516	PZR LEVEL HI RX TRIP CH 1	01-25-16
X:RP2601	RCP 1A U/V RX TRIP CH-1 B/S	01-26-01

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC

DESCRIPTION

TRIPLE CODE

X:RP2605	RCP 1A U/F RX TRIP CH-1 B/S	01-26-05
X:NI2701	SOURCE RANGE HI CH 1 B/S	01-27-01
X:NI2705	INTERM RANGE HI CH 1 B/S	01-27-05
X:NI2709	INTERM RANGE P6 CH 1 B/S	01-27-09
X:NI2803	POWER RANGE P-8 CH 3 B/S	01-28-03
X:NI2807	POWER RANGE P-9 CH 3 B/S	01-28-07
X:NI2811	POWER RANGE P7/P10 CH 3 B/S	01-28-11
X:NI2903	PR OVRPWR ROD STOP BYF CH 3	01-29-03
X:NI2907	POWER RANGE LO CH 3 B/S	01-29-07
X:NI2911	POWER RANGE HI CH 3 B/S	01-29-11
X:NI2915	POWER RANGE RATE CH 3 B/S	01-29-15
X:NI3101	SR CHNL 31 FAILS LOW	01-31-01
X:RP3301	IR INPUT TO SR BLOCK FAILS	01-33-01
X:NI3502	IR CH 36 UNDER COMPENSATED	01-35-02
X:NI3702	IR CH 36 FAILS LOW	01-37-02
X:NI3804	LOSS OF PWR TO PR CH 44	01-38-04
X:RC0104	RCS COLD LEG RUPTURE LOOP 1D	02-01-04
XNRC0304	RCS LEAK, FLOW XMTR LOOP D	02-03-04
X:RC0702	SHEARED RCP SHAFT - RCP 1B	02-07-02
X:RC0802	LOCKED RCP ROTOR - RCP 1B	02-08-02
X:RC0902	RCP 1B TRIPS ON UNDER FREO	02-09-02
X:RC1002	RCP 1B TRIP ON UNDER VOLTAGE	02-10-02
XNRC1301	PZR PORV LEAK PCV-655	02-13-01
XNRC1403	PZR SAFETY VLV LEAK PSV 3452	02-14-03
XRPZ1602	PZR SPRAY VLV FO PCV-655C	02-16-02
XNRC1901	PT 455 FAILS TO ANY POSITION	02-19-01
XNRC2002	LT 466 PZR LVL XMTR FAILS	02-20-02
X:RC2301	PZR HTR GP A FAIL TO COME ON	02-23-01
X:RC2305	PZR HTR GP E FAIL TO COME ON	02-23-05
XNRC2501	RTD FAILS HOT LEG A TT 410A	02-25-01
XNRC2602	RTD FAILS COLD LEG B TT 420B	02-26-02
XNRC2702	RTD FAILS COLD LEG C TT 430B	02-27-02
XNRC2301	RTD FAILS HOT LEG D TT 440A	02-28-01
XNRC3001	FAILED FUEL ASSEMBLY	02-30-01
X:CV0401	TCV-143 DIVERTS TO VCT	03-04-01
X:CV0701	HI DP ACROSS RC FILTER	03-07-01
XNCV1001	CHARGING LINE LEAK IN RCB	03-10-01
X:BT1401	BTRS FAILS WILL NOT BORATE	03-14-01
X:CV1702	TRIP BORIC ACID XFER PUMP 1B	03-17-02
X:CV2101	RCS DILUTN BATCH INTEG FAILS	03-21-01
XNCV2302	RCP 1A #2 SEAL FAILS	03-23-02
X11CV2306	RCP 1C #2 SEAL FAILS	03-23-06
X:00102	LOSS CCW PUMP 1B THERMAL O/L	04-01-02

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC

DESCRIPTION

TRIPLE CODE

X:CC0203	LOSS OF CCW PUMP 1C-FT-4522	04-02-03
XNCC0304	LOSS CCW TO RCP 1D THERM BAR	04-03-04
X:CC0501	LOSS CCW TO CHARGING PUMPS	04-05-01
X:EC0901	ECW PUMP 1A FAILS ON O/L	04-09-01
X:EC0904	TRIP ESSENTIAL CHILLER 11A	04-09-04
X:EC0908	TRIP ESSENTIAL CHILLER 12B	04-09-08
X:RH1002	LOSS OF RHR PUMP 1B ON O/L	04-10-02
X:RH1103	RHR PMP RELIEF PSV-3853 FO	04-11-03
X:SI1302	LOSS OF HHSI PUMP 1B ON 0/L	04-13-02
X:SI1403	LOSS OF LHSI PUMP 1C ON O/L	04-14-03
X:SI1501	ACCUM DISCH VLV F/OP 039A	04-15-01
XNSI1702	N2 LOSS ACCU 1B VIA PSV-3980	04-17-02
XNSI1803	LEAK PAST SI ACCU 1C CHK VLV	04-18-03
XNMS0203	STM I KR IN CONTAINMENT LOOP C	05-02-03
XNSG0303	STEAM GEN TUBE LEAK - SG 1C	05-03-03
X:MSC403	MN STM SFTY VLV PSV 7430 FO	05-04-03
XNMS0503	MS SAFETY PSV 7430 SEAT LEAK	05-05-03
X:MS0603	MSIV FAILS CLOSED SG C	05-06-03
X:MS0703	MSIV FAIL TO OPERATE MS 7434	05-07-03
X:MS0803	MSIV SHUTS DURING TEST SG C	05-08-03
X:MS1101	NO STM FLO SIG TO FWCS SG A	05-11-01
X:SG1201	NO SG LVL SIG TO FWCS SG 1A	05-12-01
X: PD1301	BNK 1 STM DAPS FAIL TO CLOSE	05-13-01
XNMS1401	STM HDR PF XMTR PT-557 FAILS	05-14-01
X:TU0301	MN TURBINE THROTTLE VLV FO A	06-03-01
X:TU0401	MAIN TURB GOVERNOR VLV 1 FO	06-04-01
X:TU0501	MN TURBINE GOVERNOR VLV FC 1	06-05-01
X:TU0701	LOSS OF MN TURB OIL PMP	06-07-01
X:TU1201	MN TURB THRUST BRNG FAILS	06-12-01
XNTU1601	1ST STG PR XMTR PT-506 FAILS	06-16-01
XRTU1902	MN TURB VIBRATION HI BRNG 2	06-19-02
XRTU1906	MN TURB VIBRATION HI BRNG 6	06-19-06
XRTU1910	MN TURB VIBRATION HI BRNG 10	06-19-10
X:CD0102	LOSS OF COND VACUUM PUMP 12	07-01-02
X:CD0401	LOSS OF MAIN FW PUMP - 11	07-04-01
X:CD0502	HOTWELL LEVEL XMTR FAILS-LOW	07-05-02
X:AF0302	LOSS OF AUX FW PUMP NO 12	08-03-02
X:AF0502	AFW X-CONN VLV FY-7516 FAILS	08-05-02
XNFW0701	MN FW RUPTURE OUTSIDE CONTMT	08-07-01
XNFW0903	LOSS OF PUMP CONTROL - MFP13	08-09-03
X:FW1201	TURB OVERSPEED TRIP MFP-11	08-12-01
X:FW1302	LUBE OIL PRES LOW MFP-12	08-13-02
X:PG1403	AUTO FW CNTRL SYS FAILS SG-C	08-14-03

.

.

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC

DESCRIPTION

TRIPLE CODE

- 0, 1

X: FW1503	LOSS OF FEED FLOW SIG SG-C	08-15-03
X:FW1603	MN FW REG VLV F/C FCV-553	08-16-03
X:FW1703	MN FW REG VLV STUCK FCV-553	08-17-03
XNFW1803	MN FW REG VLV LEAKS FCV-553	08-18-03
XNFW1903	FW REG BYP VLV STUCK FV-7153	08-19-03
X:FW2003	MFP RECIRC VLV F/O FV-7114	08-20-03
XNCD2401	LEAK IN COND HDR TO HTR-14A	08-24-01
X:CD2702	POLISH DEMIN BYP CD-132 F/O	08-27-02
X:HV0101	LOSS OF CRDM COOLING FAN 11A	09-01-01
X:HV0202	LOSS OF CNTMT FAN CLR 11B	09-02-02
X:HV0206	LOSS OF CNTMT FAN CLR 12C	09-02-06
7:RM0601	CNTMT GAS/PART RAD ALARM	09-06-01
X:RM1001	INCR RAD LVL IN PRI SAMPL RM	09-10-01
X:HV1101	HIGH TOXIC GAS ESF ACT	09-11-01
X:EA0201	EMERGENCY DG 11 FAIL TO LOAD	10-02-01
X:EA0401	AUTO VOLTAGE REG FAILS	10-04-01
X:EA0504	LOSS OF DP-1204	10-05-04
X: EA0903	LOSS OF 13.8KV STBY BUS 1F	10-09-01
X:EA1001	LOSS OF 4.16KV BUS 1D1	10-10-01
X:EA1103	LOSS OF 4.16KV ESF BUS E1C	10-11-03
X:EA1204	LOSS OF 480V ESF MCC E1B1	10-12-04
X:EA1208	LOSS OF 480V ESF MCC E1C2	10-12-08
X:EA1501	LOSS OF NON 1E DC PNL PL125A	10-15-01
X:AC0103	LOSS OF ACW OPEN LOOP PMP 13	11-01-03
XNCT0301	INCR IN CONTAINMENT PRESSURE	11-03-01
XNAR0401	LOSS OF INSTRUMENT AIR	11-04-01
X: AN0804	PANEL 4 ANNUNCIATOR FAILURE	11-08-04
X: AN0808	PANEL 10 ANNUNCIATOR FAILURE	11-08-08
X: AN0810	PANEL 22 ANNUNCIATOR FAILURE	11-08-10
XIAN0904	CRYWOLF LAMP 1M002-D1	11-09-04
XIAN0908	CRYWOLF LAMP 1M002-B2	11-09-08
XIAN0912	CRYWOLF LAMP 1M002-F2	11-09-1
XIAN0916	CRYWOLF LAMP 1M002-D3	11-09
XIAN0920	CRYWOLF LAMP 1M002-B4	11-09-20
XIAN0924	CRYWOLF LAMP 1M002-F4	11-09-24
XIAN0928	CRYWOLF LAMP 1M002-D5	11-09-28
XIAN0932	CRYWOLF LAMP 1M002-B6	11-09-32
XIAN0936	CRYWOLF LAMP 1M002-F6	11-09-36
XIAN0940	CRYWOLF LAMP 1M002-D7	11-09-40
XIAN0944	CRYWOLF LAMP 1M002-B8	11-09-44
XIAN0948	CRYWOLF LAMP 1M002-F8	11-09-48
XIAN0952	CRYWOLF LAMP 2M002-D1	11-09-52
XIAN0956	CRYWOLF LAMP 2M002-B2	11-09-56

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

FOUR YEAR SINULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC

DESCRIPTION

TRIPLE CODE

XTAN1140	ATTACK -		Sand Land Britting W. W. K.
XTAN1144	CRYWOLF LAMP	3M002-D7	11-11-10
XTAN1140	CRYWOLF LAMP	3M002-B8	11-11-40
XTANILES	CRYWOLF LAMP	3M002-F8	11-11-44
XIANIISS	CRYWOLT LAMP	3M003-D1	11-11-48
VINILLOO	CRYWOLF LAMP	3M003-B2	11-11-52
XIAN1160	CRYWOLF LAMP	3M003-F2	11-11-56
XIANI164	CRYWOLF LMP	3M003-D3	11-11-60
AIAN1168	CRYWOLF I.M. P	3M003-84	11-11-64
XIAN1172	CRYWOLL LAMP	30003-54	11-11-68
AIAN1176	CRYWOLF LAMP	3M003-D5	11-11-72
XIAN1180	CRYWOLF LAMP	3M003-B6	11-11-76
XIAN1184	CRYWOLF LAMP	30003-06	11-11-80
XIAN1188	CRYWOLF LAMP	3M003-10	11-11-84
XIAN1192	CRYWOLF LAMP	3M003-D7	11-11-88
XIAN1196	CRYWOLF LAMP	34003-58	11-11-92
XIAN1204	CRYWOLF LAMP	SM003-F8	11-11-96
XIAN1208	CRYWOLF LAND	4M007=D1	11-12-04
XIAN1212	CRYWOLF LAND	4M007-E2	11-12-08
XIAN1216	CRYWOLF LAND	4M007-F2	11-12-12
XIAN1220	CRYWOLF LAND	4M007-D3	22-12-16
XIAN1224	CRYWOLF LAND	4M007-B4	11-12-20
XIAN1228	CRYWOLF LAMP	4M007-F4	11-12-24
XIAN1232	CRYWOLF LAND	4M007~D5	11-12-28
XIAN1236	CRYWOLF LAMP	4M007-B6	11-12-32
XIAN1240	CRYWOLF LAMP	4M007-F6	11-12-36
XIAN1244	CRINOLF LAMP	4M007-D7	11-12-40
XIAN1248	CRIWOLF LAMP	4M007-B8	11-12-44
XIAN1252	CRIWOLF LAMP	4M007-F8	11-12-40
XIAN1256	CRIWOLF LAMP	4M008-D1	11-12-40
XIAN1260	CRYWOLF LAMP	4M008-B2	11-12-52
XIAN126A	CRIWOLF LAMP	4M008-F2	11-12-50
XIANIZER	CRYWOLF LAMP	4M008-D3	11-12-00
XIAN1275	CRYWOLF LAMP	4M008-B4	11-12-64
XTAN1076	CRYWOLF LAMP	4M008-F4	11-12-08
XTAN1201	CRYWOLF LAMP	4M008-D5	11-12-72
XTANIDOV	CRYWOLF LAMP	4M008-B6	11-12-76
YTANIDOO	CRYWOLF LAMP	4M008-F6	11-15-80
VIANI268	CRYWOLF LAMP	4M008-D7	11-12-84
VIVNI535	CRYWOLF LAMP	4M008-B8	11-12-88
ALAN1296	CRYWOLF LAMP	4M008-F8	11-12-92
XTAN1304	CRYWOLF LAMP	5M002-D1	11-12-96
ALAN1308	CRYWOLF LAMP	5M002-52	11-13-04
XIAN1312	CRYWOLF LAMP	5M002-F2	11-13-08
XIAN1316	CRYWOLF LAMP	5M002-D2	11-13-12
		011002-03	11-13-16

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC	DESC	RIPTION	TRIPLE CODE
XIAN1320	CRYWOLF LAM	P 5M002-B4	11-13-20
XIAN1324	CRYWOLF LAM	P 5M002-F4	11-13-24
XIAN1328	CRYWOLF LAM	P 5M002-D5	11-13-28
XIAN1332	CRYPOLF LAM	P 5M002-B6	11-13-32
XIAN1336	CRYWOLF LAM	P 5M002-F6	11-13-36
XIAN1340	CRYWOLF LAM	P 5M002-D7	11-13-40
XIAN1344	CRYWOLF LAM	P 5M002-B8	11-13-44
XIAN1348	CRYWOLF LAM	P 5M002-F8	11-13-48
XIAN1352	CRYWOLF LAM	P 5M003-D1	11-13-52
XIAN1356	CRYWOLF LAM	P 5M003-B2	11-13-56
XIAN1360	CRYWOLF LAM	P 5M003-F2	1-13-60
XIAN1364	CRYWOLF LAM	P 5M003-D3	11-13-64
XIAN1404	CRYWOLF LAM	P 5M003-B4	11-14-04
XIAN1408	CRYWOLF LAM	P 5M003-F4	11-14-08
XIAN1412	CRYWOLF LAM	P 5M003-D5	11-14-12
XIAN1416	CRYWOLF LAM	P 5M003-B6	11-14-16
XIAN1420	CRYWOLF LAM	P 5M003-F6	11-14-20
XIAN1424	CRYWOLF LAM	P 5M003-D7	11-14-24
XIAN1428	CRYVOLF LAM	P 5M003-B8	11-14-28
XIAN1432	CRYWOLF LAM	P 5M003-F8	11-14-32
XIAN1436	CRYWOLF LAM	P 5M004-D1	11-14-36
XIAN1440	CRYWOLF LAM	P 5M004-B2	11-14-40
XIAN1444	CRYWOLF LAM	P 5M004-F2	11-14-44
XIAN1448	CRYWOLF LAM	P 5M004-D3	11-14-48
XIAN1452	CRYWOLF LAM	P 5M004-B4	11-14-52
XIAN1456	CRYWOLF LAM	P 5M004-F4	11-14-56
XIAN1460	CRYWOLF LAM	P 5M004-D5	11-14-60
XIAN1464	CRYWOLF LAM	P 5M004-B6	11-14-64
XIAN1504	CRYWOLF LAM	P 5M004-F6	11-15-04
XIAN1508	RYWOLF LAM	P 5M004-D7	11-15-08
DELETE**	RYWOLF LAM	P 5M004-B8	11-15-12
DELETE**	CRYWOLF LAM	F 5M004-F8	11-15-16
XIAN1520	CRYWOLF LAM	P 6M003-D1	11-15-20
XIAN1524	CRYWOLF LAM	P 6M003-B2	11-15-24
XIAN1528	CRYWOLF LAM	P 6M003-F2	11-15-28
XIAN1532	CRYWOLF LAM	P 6M003-D3	11-15-32
XIAN1536	CRYWOLF LAM	P 6M003-B4	11-15-36
XIAN1540	CRYWOLF LAM	P 6M003-F4	11-15-40
XIAN1544	CRYWOLF LAM	P 6M003-05	11-15-44
XIAN1548	CRYWOLF LAM	P 6M003-B6	11-15-48
XIAN1552	CRYWOLF LAM	P 6M003-F6	11-15-52
XIAN1556	CRYWOLF LAM	P 6M003-D7	11-15-56
XIAN1560	CRYWOLF LAM.	P 6M003-B8	11-15-60

FOUR YEAR SIMULATOR FERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC DESCRIPTION TRIPLE CODE XIAN1564 CRYWOLF LAMP 6M003-F8 11-15-64 11-15-68 XIAN1568 CRYWOLF LAMP 6M004-D1 CRYWOLF LAMP XIAN1572 6M004-B2 11-15-72 11-15-76 XIAN1576 CRYWOLF LAMP 6M004-F2 XIAN1580 CRYWOLF LAMP 6M004-D3 11-15-80 XIAN1584 CRYWOLF LAMP 6M004-B4 11-15-84 CRYWOLF LAMP XIAN1588 6M004-F4 11-15-88 XIAN1592 CRYWOLF LAMP 6M004-D5 11-15-92 XIAN1596 CRYWOLF LAMP 6M004-B6 11-15-96 CRYWOLF LAMP XIAN1604 6M004-F6 11-16-04 CRYWOLF LAMP XIAN1608 6M004-D7 11-16-08 XIAN1612 CRYWOLF LAMP 6M004-B8 11-16-12 XIAN1616 CRYWOLF LAMP 6M004-F8 11-16-16 CRYWOLF LAMP XIAN1620 6M005-D1 11-16-20 XIAN1624 CRYWOLF LAMP 6M005-B2 11-16-24 CRYWOLF LAMP XIAN1628 6M005-F2 11-16-28 XIAN1632 CRYWOLF LAMP 6M005-D3 11-16-32 CRYWOLF LAMP XIAN1636 6M005-B4 11-16-36 XIAN1640 CRYWCLF LAMP 6M005-F4 11-16-40 XIAN1644 CRYWOLF LAMP 7M001-D1 11-16-44 XIAN1648 CRYWOLF LAMP 7M001-B2 11-16-48 CRYWOLF LAMP XIAN1652 7M001-F2 11-16-52 XIAN1656 CRYWOLF LAMP 7M001-D3 11-16-56 XIAN1660 CRYWOLF LAMP 7M001-B4 11-16-60 CRYWOLF LAMP XIAN1664 7M001-F4 11-16-64 CRYWOLF LAMP XIAN1668 7M001-D5 11-16-68 XIAN1672 CRYWOLF LAME 7M001-B6 11-16-72 XIAN1676 CRYWOLF LAMP 7M001-F6 11-16-76 XIAN1680 CRYWOLF LAMP 7M001-D7 11-16-80 XIAN1684 CRYWOLF LAMP 7M001-B8 11-16-84 CRYWOLF LAMP XIAN1688 7M001-F8 11-16-88 XIAN1692 CRYWOLF LAMP 7M003-D1 11-16-92 XIAN1696 CRYWOLF LAMP 7M003-B2 11-16-96 XIAN1704 CRYWOLF LAMP 7M003-F2 11-17-04 XIAN1708 CRYWOLF LAMP 11-17-08 7M003-D3 XIAN1712 CRYWOLF LAMP 7M003-B4 11-17-12 XIAN1716 CRYWOLF LAMP 7M003-F4 11-17-16 XIAN1720 CRYWOLF LAMP 7M003-D5 11-17-20 11-17-2: **XIAN1724** CRYWOLF LAMP 7M003-B6 CRYWOLF LAMP 11-1/-28 XIAN1728 7M003-F6 11-17-32 XIAN1732 CRYWOLF LAMP 7M003-D7 XIAN1/36 CRYWOLF LAMP 7M003-B8 11-17-36 11-17-40

XIAN1740

12 - 30

7M003-F8

CRYWOLF LAMP

ADDENDUN 12

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC	DESCR	IPTION	TRIPLE CODE
XIAN1744	XYWOLF LAMP	8M003-D1	11-17-44
XIAN1748	CRYWOLF LAMP	8M003-B2	11-17-48
XIAN1752	CRYWOLF LAMP	8M003-F2	11-17-52
XIAN1756	CRYWOLF LAMP	8M003-D3	11-17-56
XIAN1760	CRYWOLF LAMP	8M003-B4	11-17-60
XIAN1764	CRYWOLF LAMP	8M003-F4	11-17-64
XIAN1768	CRYWOLF LAMP	8M003-D5	11-17-68
XIAN1772	CRYWOLF LAMP	8M003-B6	11-17-72
XIAN1776	CRYWOLF LAMP	8M003-F6	11-17-76
XIAN1780	CRYWOLF LAMP	8M003-D7	11-17-80
XIAN1784	CRYWOLF LAMP	8M003-B8	11-17-84
XIAN1788	CRYWOLF LAMP	8M003-F8	11-17-88
XIAN1792	CRYWOLF LAMF	9M001-D1	11-17-92
XIAN1796	CRYWOLF LAMF	9M001-B2	11-17-96
XIAN1804	CRYWOLF LAMP	9M001-F2	11-18-04
XIAN1308	CRYWOLF LAMP	9M001-D3	11-18-08
XIAN1812	CRYWOLF LAMP	9M001-B4	11-18-12
XIAN1816	CRYWOLF LAMP	9M001-F4	11-18-16
XIAN1820	CRYWOLF LAMP	9M001-D5	11-18-20
XIAN1824	CRYWOLF LAMP	9M001-B6	11-18-24
XIAN1828	CRYWOLF LAMP	9M001-F6	11-18-28
XIAN1832	CRYWOLF LAMP	9M001-D7	11-18-32
XIAN1836	CRYWOLF LAMP	9M001-B8	11-18-36
XIAN1840	CRYWOLF LAMI	9M001-F8	11-18-40
XIAN1844	CRYWOLF LAMI	P 10M001-D1	11-18-44
XIAN1848	CRYWOLF LAMI	P 10M001-B2	11-18-48
XIAN1852	CRYWOLF LAM	P 10M001-F2	11-18-52
XIAN1856	CRYWOLF LAMI	P 10M001-D3	11-18-56
XIAN1860	CRYWOLF LAMI	P 10M001-34	11-18-60
XIAN1864	CRYWOLF LAMI	P 10M001-F4	11-18-64
XIAN1868	CRYWOLF LAM	P 10M001-D5	11-18-68
XIAN1872	CRYWOLF LAM	P 1011001-B6	11-18-72
XIAN1876	CRYWOLF LAM	P 10M001-F6	11-18-76
XIAN1880	CRYWOLF LAM	P 10M001-D7	11-18-80
XIAN1884	CRYWOLF LAM	P 10M001-B8	11-18-84
XIAN1888	CRYWOLF LAM	P 10M001-F8	11-18-88
XIAN1892	CRYWOLF LAM	P 10M002-D1	11-18-92
XIAN1896	CRYWOLF LAM	P 10M002-B2	11-18-96
XIAN1904	CRYWOLF LAM	P 10M002-F2	11-19-04
XIAN1908	CRYWOLF LAM	P 10M002-D3	11-19-08
XIAN1912	CRYWOLF LAM	P 10M002-B4	11-19-12
XIAN1916	CRYWOLF LAM	P 10M002-F4	11-19-16
XIAN1920	CRYWOLF LAM	P 10M002-D5	11-19-20

Sec. 1

1.

12 - 31

.

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC	DEBCR	IPTION	TRIPLE CODE
XIAN2104 XIAN2108 XIAN2112 XIAN2116 XIAN2120 XIAN2124 XIAN2128 XIAN2128 XIAN2132 XIAN2136	CRYWOLF LAMP CRYWOLF LAMP CRYWOLF LAMP CRYWOLF LAMP CRYWOLF LAMP CRYWOLF LAMP CRYWOLF LAMP CRYWOLF LAMP	22M003-F2 22M003-D3 22M003-B4 22M003-F4 22M003-D5 22M003-B6 22M003-F6 22M003-D7 22M003-B8	11-21-04 $11-21-08$ $11-21-12$ $11-21-16$ $11-21-20$ $11-21-24$ $11-21-28$ $11-21-32$ $11-21-36$
XIANZ140	CRYWOLF LAMP	22M003-F8	11-21-40

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MALFUNCTIONS TO BE TESTED DURING 1994

MNEMONIC

DESCRIPTION

TRIPLE CODE

VIDVODOD	VIN VARE AND BAR FUREFREEMENT	
XIRAO202	MAN MODE CONT ROD INSERTION	01-02-02
X:RAU4U2	GRP-2, CB-D FAILS TO MOVE	01-04-02
A:RAUSU4	ROD PS FAIL TO MOVE W/BNK C	01-05-04
XIRXU508	ROD K6 FAIL TO MOVE W/BNK C	01-05-08
XIRXO512	ROD M4 FAIL TO MOVE W/BNK D	01-05-12
XRRX0603	IMPROPER OVLP CB C TO CB D	01-06-03
X1RX0704	DROP ROD PE OF CB C	01-07-04
X:RX0708	DROP ROD H8 OF CB D	01-07-08
X:RX0803	DROP GRP 1 RODS CB D	01-08-03
XRRX1001	AUTO RC CNTLS TAVG HI OR LO	01-10-01
X:RX1104	ROD EJECTION D4 CB D GRP 1	01-11-04
X:RX1206	FAILURE OF MS ISOL SIGNAL	01-12-06
X:RX1301	DRPI FAILURE DATA A	01-13-01
X:RX1403	FAIL DRPI CHANNEL C7	01-14-03
X:RX1407	FAIL DRPI CHANNEL M8	01-14-07
X:RX1411	FAIL DRPI CHANNEL F14	01-14-11
X:RX1415	FAIL DRPI CHANNEL M12	01-14-15
X:RX1603	FAIL ROD BLOCK C3	01-16-03
X:RX1801	C/BNKS OU . WHEN IN REQUIRED	01-18-01
X:RX1901	RX TRIP BKR P4 BYP OPEN TR R	01-19-01
X:RX2001	ROD D2 STUCK ON RX TRIP	01-20-01
X:RX2004	ROD N11 STUCK ON RX TRIP	01-20-04
X:RX2009	ROD H8 STUCK ON RX TRIP	J1-20-09
X:RP2106	LOW FLOW RX TRIP LP 2 CH 2	01-21-06
X:RP2108	LOW FLOW RX TRIP LP 4 CH 2	01-21-08
X:RP2109	LOW FLOW RX TRIP LP 1 CH 3	01-21-09
X:RP2203	OP/DT RX TRIP CHNL 3	01-22-03
X:RP2206	OP/DT RUNBACK CHNL 2	01-22-06
X:RP2211	OT/DT RX TRIP CHNL 3	01-22-11
X:RP2215	OT/DT RUNBACK CHNL 3	01-22-15
X:RX2303	LO T AVG LOOP 3 B/S	01-23-03
X:RX2307	LO-LO T AVG LOOP 3 B/S	01-23-07
X:RP2403	SPRAY ACT TEST BYP CH 3 B/S	01-24-03
X:RP2408	CTMT PRESS HI-3 CH 1 B/S	01-24-08
X:RP2501	PZR PRESS LO RY STA TA 1	01-25-01
X:RP2505	PZR PRESS LO SI CH 1	01-25-05
X:RP2509	PZR PRESS HI RX TRIP CH 1	01-25-09
X:RP2513	PZR PRESS BLOCK CH 1	01-25-13
X:RP2517	PZR LEVEL HI RX TRIP CH 2	01-25-17
X:RP2602	RCP 1B U/V RX TRIP CH-2 B/S	01-26-02

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC

DESCRIPTION

TRIPLE CODE

X:RP2606	RCP 1B U/F RX TRIP CH-2 B/S	01-26-06
X:NI2702	SOURCE RANGE HI CH 2 B/S	01-27-02
X:NI2706	INTERM RANGE HI CH 2 B/S	01-27-06
X:NT2710	INTERM RANGE P6 CH 2 B/S	01-27-10
X:NT2804	POWER RANGE D-8 CH 4 B/S	01-28-04
X:NT2808	DOWER RANGE Dag CH A B/S	01-28-08
X:NT2812	DOWER RANGE P7/P10 CH 4 B/S	01-28-12
XINT2904	DP OUPDWP POD STOP BVP CH 4	01-20-04
XINT2908	DOWED DINGE TO CH A B/S	01-29-08
X:NT2012	POWER RANGE HT CH 4 B/S	01-29-12
X:NT2916	POWER RANGE BATE CH & B/S	01-29-16
X:NT3102	SP CHNI. 32 FATLS LOW	01=31=02
X:NT3401	TP CH 35 OVED COMDENSATED	01-34-01
X:NT3601	TE CH 35 FATIS MICH	01-36-01
X : NT3801	LOSS OF DWD TO DD CH A1	01-38-01
X:RC0101	PCS COLD LEG PHOTUDE LOOD 1A	02-01-01
XNRC0301	DOG LEAK FLOW WATE LOOP A	02-01-01
XNRCOAC1	DOG TEAK DU HEAD VENT	02-03-01
X+PC0703	CUENDED DOD CUNET - DOD 10	02-04-01
X:RCORO3	LOCKED BOD BOTOD - DOD 10	02-07-03
X:RC0000	DOD 10 MDTDE ON UNDED EDEO	02-00-03
X-RC1002	DOD 10 MOTO ON UNDER FREY	02-09-03
XNDC1303	BUD DODU TEXY DOULCES	02-10-03
V. DC1EO1	PER FURY LEAR PEV-000	02-15-02
X:RC1001	PER SPRAI VEV PC PCV=0000	02-10-01
VNDC1000	DT ALL DATE TO ANY DOCTOTON	02-10-02
VNRC2906	TT 450 FAILS TO ANT PUSITION	02-19-02
XIRC2005	DI 400 FER DVL AMIR FAILS	02-20-03
VNDCOJOL	PAR HIR GP B FAIL TO COME ON	02-23-02
NNRC24UI VNDCOECO	RCS FRES AMIK PI 407 FAILS	02-24-01
XNRC2502	RTD FAILS COLD LEG A TT 410B	02-25-02
ANRC2000	RTD FAILS NOT LEG B TT 423	02-20-05
XNRC2700	RTD FAILS HOT LEG C TT 433	02-27-05
XNRC2802	RTD FAILS COLD LEG D TT 440B	02-28-02
XICVOIDI	LOSS OF LTDN FV-3380 SHUTS	03-01-01
XICV0501	VCT LVL CONTROL FAILS LT-112	03-05-01
X:CV0901	LOSS OF CHARGING PUMP CCP-1A	03=09=01
XNCV1101	LETDOWN LINE LEAK IN RCB	03-11-01
XNBT1501	IN BORATE MODE NO INCR BORON	03-15-01
X:MW1801	LOSS OF RX MAKEUP CONTROL	03-18-01
XRCV2201	HI DP SEALWATER INJ FILTER A	03-22-01
XNCV2303	RCP 1B #1 SEAL FAILS	03-23-03
XNCV2307	RCP ID #1 SEAL FAILS	03-23-07
X:CC0103	LOSS CCW PUMP 1C THERMAL O/L	04-01-03

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC

DESCRIPTION

TRIFLE CODE

XNCC0301	LOSS CCW TO RCP 1A THERM BAR	04-03-01
X:CC0401	LOSS CCW TO RHR HEAT EXCH 1A	04-04-01
X:CC0601	CCW AUTO MU LV 4501 FAILS	04-06-01
X:EC0902	ECW PUMP 1B FAILS ON O/L	04-09-02
X:EC0905	TRIP ESSENTIAL CHILLER 11B	04-09-05
X: EC0909	TRIP ESSENTIAL CHILLER 12C	04-09-09
X:RH1003	LOSS OF RHR PUMP 1C ON O/L	04-10-03
XNRH1201	TUBE LEAK IN RHR HX 1A	04-12-01
X:SI1303	LOSS OF HHSI PUMP 1C ON O/L	04-13-03
X:S11502	ACCUM DISCH VLV F/OP 039B	04-15-02
X:CS1601	LOSS OF CNTMT SPR PUMP J.A	04-16-01
XNSI1703	N2 LOSS ACCU 1C VIA PSV-3977	04-17-03
XNMS0101	STEAM BREAK OUTSIDE CONTAINM	05-01-01
XNMS0204	STM BKR IN CONTAINMENT LOOP D	05-02-04
XNSG0304	STEAM GEN TUBE LEAV - SG 1D	05-03-04
X:MS0404	MN STM SFTY VIN ! 7440 FO	05-04-04
XNMS0504	MS SAFETY PSV 74.0 SEAT LEAK	05-05-04
X:MS0604	MSIV FAILS CLOSED SG D	05-06-04
X:MS0704	MSIV FAIL TO OPERATE MS 7444	05-07-04
X:MS0804	MSIV SHUTS DURING TEST SG D	05-08-04
X:MS1102	NO STM FLO SIG TO FWCS SG B	05-11-02
X:SG1202	NO 3G LVL SIG TO FWCS SG 1B	05-12-02
X: PD1304	BNK 4 STM DMPS FAIL TO CLOSE	05-13-04
X:PD1601	STM DUMP CNTRL FAILS ON TRIP	05-16-01
X:TU0302	MN TURBINE THROTTLE VLV FO B	06-03-02
X:TU0402	MAIN TURB GOVERNOR VLV 2 FO	06-04-02
X:TU0502	MN TURBINE GOVERNOR VLV FC 2	06-05-02
XNTU0801	MN TURB LUBE OIL PRESS LOW	06-08-01
X:TU1301	TURNING GEAR MOTOR FAILURE	06-13-01
XNTU1602	1ST STG PR XMTR PT-505 FAILS	06-16-02
XRTU1903	MN TURB VIBRATION HI BRNG 3	06-19-03
XRTU1907	MN TURB VIBRATION HI BRNG 7	06-19-07
XRTU1911	MN TURB VIBRATION HI BRNG 11	06-19-11
X:CD0103	LOSS OF COND VACUUM PUMP 13	07-01-03
X:CD0402	LOSS OF MAIN FW PUMP - 12	07-04-02
X:AF0101	AUX FW PUMP NO 14 FAILS	08-01-01
X:AF0303	LOSS OF AUX FW PUMP NO 13	08-03-03
X:AF0503	AFW X-CONN VLV FY-7517 FAILS	08-05-03
XNFW0801	HI PRES FW HTR TUBE LEAK	08-08-01
X: PF1001	FAIL AUTO SPEED CNTRL MFP-11	08-10-01
X:FW1202	TURB OVERSPEED TRIP MFP-12	08-12-02
X:FW1303	LUBE OIL PRES LOW MFP-13	08-13-03
X: PC1404	AUTO FW CNTRL SYS FAILS SG-D	08-14-04

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC

DESCRIPTION

TRIPLE CODE

80

X:FW1504	LOSS OF FEED FLOW SI? .G-D	08-15-04
X:FW1604	MN FW REG VLV F/C FCV-554	08-16-04
X:FW1704	MN FW REG VLV STUCK FCV-554	08-17-04
XNFW1804	MN FW REG VLV LEAKS FCV-554	08-18-04
XNFW1904	FW REG BYP VLV STUCK FV-7154	08-19-04
X:CD2301	LOSS ?" CONDENSATE PUMP 11	08-23-01
XNCD2402	LEAK IN COND HDR TO HTR-14B	08-24-02
X:FW2801	LC3S OF LP HTR DRAIN PMP-11	08-28-01
X:FW2803	LOSS OF LP HTR DRAIN PMP-13	08-28-03
X:HV0102	LOSS OF CRDM COOLING FAN 11B	09-01-02
X:HV0203	LOSS OF CNTMT FAN CLR 11C	09-02-03
X:HV0301	LOSS OF NORM CNTMT PURGE SUP	09-03-01
X:RM0701	RCB PURGE EXH MNTR PEGS HI	09-07-01
X:HV1102	BOTH TOXIC GAS MONITORS FAIL	09-11-02
X:EA0101	LOSS OF EMERGENCY DG 11	10-01-01
X:EA0202	EMERGENCY DG 12 FAIL TO LOAD	10-02-02
X:EA0501	LOSS OF DP-1201	10-05-01
X:EA0601	MN GEN OUTPUT BER OPENS	10-06-01
X:EA0902	LOSS OF 13.8KV STBY BUS 1G	10-09-02
X:EA1002	LOSS OF 4.16KV BUS 1D2	10-10-02
X:EA1201	LOSS OF 480V ESF MCC E1A1	10-12-01
X:EA1205	LOSS OF 480V ESF MCC E1B2	10-12-05
X:EA1209	LOSS OF 480V ESF MCC E1C3	10-12-09
X:EA1502	LOSS OF NON 1E DC PNL PL125B	10-15-02
X:GE1601	LOSS OF GEN SEAJ DIL REG 256	10-16-01
X:AC0201	LOSS OF ACW CLSD LP PMP 11	11-02-01
X:AN0801	PANEL 1 ANNUNCIATOR FAILURE	11-08-01
X: AN0805	PANEL 5 ANNUNCIATOR FAILURE	11-08-05
X: AN0809	PANEL 21 ANNUNCIATOR FAILURE	11-08-09
XIAN0901	CRYWOLF LAMP 1M002-A1	11-09-01
XIAN0905	CRYWOLF LAMP 1M002-E1	11-09-05
XIAN0909	CRYWOLF LAMP 1M002-C2	11-09-09
XIAN0913	CRYWOLF LAMP 1M002-A3	11-09-13
XIAN0917	CRYWOLF LAMP 1M002-E3	11-09-17
XIAN0921	CRYWOLF LAMP 1M002-C4	11-09-21
XIAN0925	CRYWOLF LAMP 1M002-A5	11-09-25
XIAN0929	CRYWOLF LAMP 1M002-E5	11-09-29
EE60NAIX	CRYWOLF LAMP 1M002-C6	11-09-33
XIAN0937	CRYWOLF LAMP 1M002-A7	11-09-37
XIAN0941	CRYWOLF LAMP 1M002-E7	11-09-41
XIAN0945	CRYWOLF LAMP 1M002-C8	11-09-45
XIAN0949	CRYWOLF LAMP 2M002-A1	11-09-49
XIAN0953	CRYWOLF LAMP 2M002-E1	11-09-53

MNEMONIC	DESCRIPTION			TRIPLE COD	
XIAN0957	CRYWOLF	LAMP	2M002-C2	11-09-57	
XIAN0961	CRYWOLF	LAMP	2M002-A3	11-09-61	
XIAN0965	CRYWOLF	LAMP	2M002-E3	11-09-65	
XIAN0969	CRYWOLF	LAMP	2M002-C4	11-09-69	
XIAN0973	CRYWO',F	LAMP	2M002-A5	11-09-73	
XIAN0977	CRYWCLJ	LAMP	2M002-E5	11-09-77	
XIAN0981	CRYWOLS	LAMP	2M002-C6	11-09-81	
XIAN0985	CRYWOLF	LAMP	2M002-A7	11-09-85	
XIAN0989	CRYWOLF	LAMP	2M002-E7	11-09-89	
XIAN0993	CRYWOLF	LAMP	2M002-C8	11-09-93	
XIAN1001	CRYWOLF	LAMP	2M003-A1	11-10-01	
XIAN1005	CRYWOLF	LAMP	2M003-E1	11-10-05	
XIAN1009	CRYWOLF	LAMP	2M003-C2	11-10-09	
XIAN1013	CRYWOLF	LAMP	2M003-A3	11-10-13	
XIAN1017	CRYWOLF	LAMP	2M003-E3	11-10-17	
XIAN1021	CRYWOLF	LAMP	2M003-C4	11-10-21	
XIAN1025	CRYWOLF	LAMP	2M003-A5	11-10-25	
XIAN1029	CRYWOLF	LAMP	2M003-E5	11-10-29	
XIAN1033	CRYWOLF	LAMP	2M003-C6	11-10-33	
XIAN1037	CRYWOLF	LAMP	2M003-A7	11-10-37	
XIAN1041	CRYWOLF	LAMP	2M003-E7	11-10-41	
XIAN1045	CRYWOLF	LAMP	2M003-C8	11-10-45	
XIAN1049	CRYWOLF	LAMP	2M004-A1	11-10-49	
XIAN1053	CRYWOLF	LAMP	2M004-E1	11-10-53	
XIAN1057	CRYWOLF	LAMP	2M004-C2	11-10-57	
XIAN1061	CRYWOLF	LAMP	2M004-A3	11-10-61	
XIAN1065	CRYWOLF	LAMP	2M004-E3	11-10-65	
XIAN1069	CRYWOLF	LAMP	2M004-C4	11-10-69	
XIAN1073	CRYWOLF	LAMP	2M004-A5	11-10-73	
XIAN1077	CRYWOLF	LAMP	2M004-E5	11-10-77	
XIAN1081	CRYWOLF	LAMP	2M004-C6	11-10-81	
XIAN1085	CRYWOLF	LAMP	2M004-A7	21-10-85	
XIAN1089	CRYWOLF	LAMP	2M004-E7	11-10-89	
XIAN1093	CRYWOLF	LAMP	2M004-C8	11-10-93	
XIAN1101	CRYWOLF	LAMP	3M002-A1	11-11-01	
XIAN1105	CRYWOLF	LAMP	3M002-E1	11-11-05	
XIAN1109	CRYWOLF	LAMP	3M002-C2	11-11-09	
XIAN1113	CRYWOLF	LAMP	3M002-A3	11-11-13	
XIAN1117	CRYWOLF	LAMP	3M002-E3	11-11-17	
XIAN1121	CRYWOLF	LAMP	3M002-C4	11-11-21	
XIAN1125	CRYWOLF	LAMP	3M002-A5	11-11-25	
XIAN1129	CRYWOLF	LAMP	3M002-E5	11-11-29	
XIAN1133	CRYWOLF	LAMP	3M002-C6	11-11-33	

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC

DESCRIPTION

TRIPLE CODE

XIAN1137	CRYWOLF	LAMP	3M002-A7	11-11-37
XIAN1141	CRYWOLF	LAMP	3M002-E7	11-11-41
XIAN1145	CRYWOLF	LAMP	3M002-C8	11-11-45
XIAN1149	CRYWOLF	LAMP	3M003-A1	11-11-49
XIAN1153	CRYWOLF	LAMP	3M003-E1	11-11-53
XIAN1157	CRYWOLF	LAMP	3M003-C2	11-11-57
XIAN1161	CRYWOLF	LAMP	3M003-A3	11-11-61
XIAN1165	CRYWOLF	LAMP	3M003-E3	11-11-65
XIAN1169	CRYWOLF	LAMP	3M003-C4	11-11-69
XIAN1173	CRYWOLF	LAMP	3M003-A5	11-11-73
XIAN1177	CRYWOLF	LAMP	3M003-E5	11-11-77
XIAN1181	CRYWOLF	LAMP	3M003-C6	11-11-81
XIAN1185	CRYWOLF	LAMP	3M003-A7	11-11-85
XIAN1189	CRYWOLF	LAMP	3M003-E7	11-11-89
XIAN1193	CRYWOLF	LAMP	3M003-C8	11-11-93
XIAN1201	CRYWOLF	LAMP	4M007-A1	11-12-01
XIAN1205	CRYWOLF	LAMP	4M007-E1	11-12-05
XIAN1209	CRYWOLF	LAMP	4M007-C2	11-12-09
XIAN1213	CRYWOLF	LAMP	4M007-A3	11-12-13
XIAN1217	CRYWOLF	LAMP	4M007-E3	11-12-17
XIAN1221	CRYWOLF	LAMP	4M007-C4	11-12-21
XIAN1225	CRYWOLF	LAMP	4M007-A5	11-12-25
XIAN1229	CRYWOLF	LAMP	4M007-E5	11-12-29
XIAN1233	CRYWOLF	LAMP	4M007-C6	11-12-33
XIAN1237	CRYWOLF	LAMP	4M007-A7	11-12-37
XIAN1241	CRYWOLF	LAMP	4M007-E7	11-12-41
XIAN1245	CRYWOLF	LAMP	4M007-C8	11-12-45
XIAN1249	CRYWOLF	LAMP	4M008-A1	11-12-49
XIAN1253	CRYWOLF	LAMP	4M008-E1	11-12-53
XIAN1257	CRYWOLF	LAMP	4M008-C2	112-57
XIAN1261	CRYWOLF	LAMP	4M008-A3	11-12-61
XIAN1265	CRYWOLF	LAMP	4M008-E3	11-12-65
XIAN1269	CRYWOLF	LAMP	4M008-C4	11-12-69
XIAN1273	CRYWOLF	LAMP	4M008-A5	11-12-73
XIAN1277	CRYWOLF	LAMP	4M008-E5	11-12-77
XIAN1281	CRYWOLF	LAMP	4M008-C6	11-12-81
XIAN1285	CRYWOLF	LAMP	4M008-A7	1-12-85
XIAN1289	CRYWOLF	LAMP	4M008-E7	1-12-89
XIAN1393	CRYWOLF	LAMP	4M008-C8	11-12-93
XIAN1301	CRYWOLF	LAMP	5M002-A1	11-13-01
XIAN1305	CRYWOLF	LAMP	5M002-E1	11-13-05
21AN1309	CRYWOLF	LAMP	5M002-C2	11-13-09
XIAN1313	CRYWOLF	LAMP	5M002-A3	11-13-13

MNEMONIC	DESC	RIPTION	TRIPLE CODE
XIAN1317	CRYWCLF LAM	P 5M002-E3	11-13-17
XIAN1321	CRYWOLF LAM	P 5M002-C4	11-13-21
XIAN1325	CRYWOLF LAM	P 5M002-A5	11-13-25
XIAN1329	CRYWOLF LAM	P 5M002-E5	11-13-29
XIAN1333	CRYWOLF LAM	P 5M002-C6	11-13-33
XIAN1337	CRYWOLF LAM	P 5M002-A7	11-13-37
XIAN1341	CRYWOLF LAM	P 5M002-E7	11-13-41
XIAN1345	CRYWOLF LAM	P 5M002-C8	11-13-45
XIAN1349	CRYWOLF LAM	P 5M003-A1	11-13-49
XIAN1353	CRYWOLF LAM	P 5M003-E1	11-13-53
XIAN1357	CRYWOLF LAM	P 5M003-C2	11-13-57
XIAN1361	CRYWOLF LAM	P 5M003-A3	11-13-61
XIAN1401	CRYWOLF LAM	P 5M003-E3	11-14-01
XIAN1405	CRYWOLF LAM	P 5M003-C4	11-14-05
XIAN1409	CRYWOLF LAM	P 5M003-A5	11-14-09
XIAN1413	CRYWOLF LAM	P 5M003-E5	11-14-3
XIAN1417	CRYWOLF LAM	P 5M003-C6	11-14-17
XIAN1421	CRYWOLF LAM	P 5M003-A7	11-14-21
XIAN1425	CRYWOLF LAM	P 5M003-E7	11-14-25
XIAN1429	CRYWOLF LAM	P 5M003-C8	11-14-29
XIAN1433	CRYWOLF LAM	P 5M004-A1	11-14-33
XIAN1437	CRYWOLF LAM	P 5M004-E1	11-14-37
XIAN1441	CRYWOLF LAM	P 5M004-C2	11-14-41
XIAN1445	CRYWOLF LAM	P 5M004-A3	11-14-45
XIAN1449	CRYWOLF LAM	P 5M004-E3	11-14-49
XIAN1453	CRYWOLF LAM.	P 5M004-C4	11-14-53
XIAN1457	CRYWOLF LAM	P 5M004-A5	11-14-57
XIAN1461	CRYWOLF LAM	P 5M004-E5	11-14-61
XIAN1501	CRYWOLF LAM	P 5M004-C6	11-15-01
XIAN1505	CRYWOLF LAM	P 5M004-A7	11-15-05
XIAN1509	CRYWOLF LAM	P 5M004-E7	11-15-09
DELETE**	CRYWOLF LAM	P 5M004-C8	11-15-13
XIAN1517	CRYWOLF LAM	P 6M003-A1	11-15-17
XIAN1521	CRYWOLF LAMI	P 6M003-E1	11-15-21
XIAN1525	CRYWOLF LAMI	P 6M003-C2	11-15-25
XIAN1529	CRYWOLF LAMI	P 6M003-A3	11-15-29
XIAN1533	CRYWOLF LAMI	P 6M003-E3	11-15-33
XIAN1537	CRYWOLF LAMI	P 6M003-C4	11-15-37
XIAN1541	CRYWOLF LAM	6M003-A5	11-15-41
XIAN1545	CRYWOLF LAMI	6M003-E5	11-15-45
XIAN1549	CRYWOLF LAMI	6M003-C6	11-15-49
XIAN1553	CRYWOLF LAMI	6M003-A7	11-15-53
XIAN1557	CRYWOLF LAMI	6M003-E7	11-15-57

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

0

FOUR YEAR SIXULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC	DESC	RIPTION	TRIPLE CODE
XIAN1561	CRYWOLF LAN	P 6M003-C8	11-15-61
XIAN1568	CRYWOLF LAN	IP 6M004-A1	11-15-65
XIAN1569	CRYWOLF LAN	IP 6M004-E1	11-15-69
XIAN1573	CRYWOLF LAM	IP 6M004-C2	11-15-73
XIAN1577	CRYWOLF LAN	IF 6M004-A3	11-15-77
XIAN1581	CRYWOLF LAM	IP 6M004-E3	11-15-81
X1AN1585	CRY JOLF LAN	IP 6M004-C4	11-15-85
XJAN1589	CRYWOLF LAN	IP 6M004-A5	11-15-89
XIAN2593	CRYWOLF LAN	IP 6M004-E5	11-15-93
XIAN1601	C (/WOLF LAP	IP 6M004-CO	11-16-01
XIAN1605	CRYWOLF LAN	IP 6M004-A7	11-16-05
XIAN1609	CRYWOLF LAN	EP 6M004-E7	11-16-09
XIAN1613	CRYWOLF LAP	IP 6M004-C8	11-16-13
XIAN.1617	CRYWOLF LAN	4P 6M005-A1	11-16-17
XIAN1621	CRYWOLF LAN	1P 6M005-E1	11-16-21
XIAN1625	CRYWOLF LAN	1P 6M005-C2	21-16-25
XIAN1629	CRYWOLF LAN	IP 6M005-A3	11-16-29
XJAN1633	CRYWOLF LAN	1P 6M005-E3	21-16-33
XIANI637	CRYWOLF LAN	1P 6M005-C4	11-16-37
XIANICAL	CRYWOLF LAN	1P 7M001-A1	11-14,-41
ALAN1040	CRYWOLF LAN	MP 7M001-E1	11-76-45
XIANICES XIANICES	CRYWOLF LA	MP 7M001-C2	11-16-49
ATAN1000	CRIWOUF LA	EA-LOOM 49	11-16-53
VIAN1661	CRYWOLF LA	MP /MOO1-E3	21-16-57
VIANICCE	CRYWOLF LA	MP 7MOO1-C4	11-16-61
VIANIEEO	CRIWOLF LA	MP 7MOO1-A5	11-16-65
VIAN2 003	CRINDLF LA	MP /MOOI-ES	11-16-69
CLOINDO/J	CRIWOLF LA	MP 7MODI-CS	11-16-73
VIAN1601	CRIWULF LA	MP /MODI-A/	11-16-77
VIANICOL	CRIWOLF LA	MP /MOOI-E/	11-16-81
VIANIERO	CRIWOLF LA	MP 7MOO1-C8	11-10-85
VIAN1603	CRIWOLF LA	MP 7M003-A1	11-16-89
XTAN1095	CRIWOLF LA	MP /MOUJ-E1	11-16-93
VIAN1701	CRIWOLF LA	MP 7M003-C2	11-17-01
XTAN1700	CRIWOLF LA	MP 7M003-A3	11-17-05
XTAN1713	CRINOLF LA	MP 7M003-E3	11-17-09
XTANS 717	CRIWOLF LA	MP 7M003~C4	11-17-13
XTAN1721	COVWOLD LAN	MP 7M003-AD	11-1/-1/
XTAN1725	CRYWOLF IN	MD 7003-06	11-1/-21
XTAN1729	CRYNOLF IN	MD 7N003-83	11-1/-25
XTAN1733	OPVHOLE IN	7M003-A7	11-17-29
XTAN1737	OPVHOLE IN	78003-00	11-17-33
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CHINCHE TH	14003-08	11-1/-3/

x d .

.

'n

12 - 41

•

L

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC	r	ESCR1	PTION	TRIPLE CO
XIAN2741	CRYWOLF	LAMP	8M003-A1	11-17-41
XIAN1745	CRYWOLF	LAMP	8M003-E1	11-17-45
XIAN1749	CRYWOLF	LAMP	8M003-C2	11-17-49
XIAN1753	CRYWOLF	LAMP	8M003-A3	11-17-53
XIAN1757	CRYWOLF	LAMP	8M003-E3	11-17-57
XIAN1761	CRYWOLF	LAMP	8M003-C4	11-17-61
XIAN1765	CRYWOLF	LAMP	8M003-A5	11-17-65
XIAN1769	CRYWOLF	LAMP	8M003-E5	11-17-69
XIAN1773	CRYWOLF	LAMP	8M003-C6	11-17-73
XIAN1777	CRYWOLF	LAMP	8M003-A7	11-17-77
XIAN1781	CRYWOLF	LAMP	8M003-E7	11-17-81
XIAN1785	CRYWOLF	LAMP	8M003-C8	11-17-85
XIAN1789	CRYWOLF	LAMP	SM001-A1	11-17-89
XIAN1793	CRYWOLF	LAMP	9M001-E1	11-17-93
XIAN1801	CRYWOLF	LAMP	9M001-C2	11-18-01
XIAN1805	CRYWOLF	LAMP	9M001-A3	11-18-05
XIAN1809	CRYWOLF	LAMP	9M001-E3	11-18-09
XIAN1813	CRYWOLF	LAMP	9M001-C4	11-18-13
XIAN1817	CRYWOLF	LAMP	9M001-A5	11-18-17
XIAN1821	CRYWOLF	LAMP	9M001-E5	11-18-21
XIAN1825	CRYWOLF	LAMP	9M001-C6	11-18-25
XIAN1829	CRYWOLF	LAMP	9M001-A7	11-18-29
XIAN1833	CRYWOLF	LAMP	9M001-E7	11-18-33
XIAN1837	CRYWOLF	LAMP	9M001-C8	11-18-37
XIAN1841	CRYWOLF	LAMP	10M001-A1	11-18-41
XIAN1845	CRYWOLF	LAMP	10M001-E1	11-18-45
XIAN1849	CRYWOLF	LAMP	10M001-C2	11-13-49
XIAN1853	CRYWOLF	LAMP	10M001-A3	11-18-53
XIAN1857	CRYWOLF	LAMP	10M001-E3	11 8-57
XIAN1861	CRYWOLF	LAMP	10M001-C4	11-18-61
XIAN1865	CRYWOLF	LAMP	10M001-A5	11-18-65
XIAN1869	CRYWOLF	LAMP	10M001-E5	11-18-69
XIAN1873	CRYWOLF	LAMP	10M001-C6	11-18-73
XIAN1877	CRYWOLF	LAMP	10M001-A7	11-18-77
XIAN1881	CRYWOLF	LAMP	10M001-E7	11-18-81
XIAN1885	CRYWULF	LAMP	10M001-C8	11-18-85
XIAN1889	CRYWOLF	LAMP	10M002-A1	11-18-89
XIAN1893	CRYWOLF	LAMP	10M002-E1	11-18-93
XIAN1901	CRYWOLF	LAMP	10M002-C2	11-19-01
XIAN1905	CRYWOLF	LAMP	10M002-A3	11-19-05
VIAN1909	CRYWOLF	LAMP	10M002-E3	11-19-09
XIAN1913	CRYWOLF	LAMP	10M002-C4	11-19-13
XIAN1917	CRYWOLF	LAMP	10M002-A5	11-19-17

Self Maria

2

-0

1

12 - 42

PLE CODE

J

.

0

8

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC	DEE	CRI	PTION	TRIPLE CODE
XIAN1921	CRYWOLF L	MP	10M002-E5	11-19-21
XIAN1925	CRYWOLF LJ	AMP	10M002-C6	11-19-25
XIAN1929	CRYWOLF L	AWD	10M002~A7	11-19-29
XIAN1933	CRYWOLF L	AMP	10M002-E7	12-19-33
XIAN1937	CRYWOLF LA	AMP	10M002-C8	12-19-37
XIAN1941	CRYWOLF L	AMP	21M001-A1	12-19-41
XIAN1945	CRYWOLF L	AMP	21M001-E1	11-19-45
XIAN1949	CRYWOLF L	AMP	21M001-C2	11-19-49
XIAN1953	CRYWOLF L	AMP	21M001-A3	11-19-53
XIAN1957	CRYWOLF L	AMP	21M001-E3	11-19-57
XIAN1961	CRYWOLF L	AMP	21M001-C4	11-19-61
XIAN1965	CRYWOLF L	AMP	21M001-A5	11-19-65
XIAN1969	CRYWOLF L	AMP	21M001-E5	11-19-69
XIAN1973	CRYWOLF L	AMP	21M001-C6	11-19-73
XIAN1977	CRYWOLF L	AMP	21M001-A7	11-19-77
XIAN1981	CRYWOLF L	AMP	21M001-E7	11-19-81
XIAN1985	CRYWOLF L	AMP	21M001-C8	11-19-85
XIAN1989	CRYWOLF L	AMP	22M001-A1	11-19-89
XIAN1993	CRYWOLF L	AMP	22M001-E1	11-19-93
XIANZOOI	CRYWOLF L	AMP	22M001-C2	11-20-01
XIANZOUS	CRYWOL" L	A.P	22M001-A3	11-20-05
XIAN2009	CRYWOLF L	MP	22M001-E3	11-20-09
XIAN2013	CRIMOTE T	AWA	22M001-C4	11-20-13
XIAN2017	CRYWOLF L	AMP	22M001-A5	1-20-17
XIANZUZI	CRIWOLF L	AMP	22/1001-E5	1 20-21
XIAN2025	CRIWOLF L	AMP	22M001-C6	1 20-25
XIAN2029	CRYWOLF I.	AMP	22M001-A7	11-20-29
XIANZU33	CRYWOLF L	AMP	22M001-E7	11-20-33
ALAN2037	CRIWOLF L	AMP	23M001-18	11-20.37
XIAN2041	CRIWOLF L	AMP	22M00 1	11-20-41
VIAN2040	CRIWOLF L	AMP	22F 1_ 21	.11-20-45
XIAN2049	CRYWOLF L	AMP	2 2-02	11-20-49
ATAN2000	CRIWOLF L	AMP	22M002-A3	11-20-53
XIAN2057	CRIWOLF L	AMP	22M002-E3	11-20-57
XIAN2001	CRIWOLF L	AMP	22M002-C4	11-20-61
XIAN2000	CRIWOLF L	AMP	22M002-A5	11-20-65
XIAN2009	CRIWOLF L	AMP	22M002-E5	11-20-69
ALAN2073	CRIWOLF L	AMP	22MUU2-C0	11-20-73
XTAN2000	CRIWOLF !	AMP	22M002-A7	11-20-77
VIANDORE	CRIWOLF I	AUTH	22M002=E7	11-20-81
VIAN2065	CRIWOLF I	AMP	22M002-C8	11-20-85
XTAN2009	CRIWOLF I	AMP	22M003-A1	11-20-89
VTWN5232	CHINOTL T	AME	ZZMUUJ-EI	11-20-93

171

12 - 43

FOUR YEAR SIMULATOR PERFORMANCE TEST SCHEDULE (Continued)

MNEMONIC	DESCRIPTION		TRIPLE CODE
XIAN2101	CRYWOLF LAMI	22M003-C2	11-21-01
XIAN2105	CRYWOLF LAM	22M003-A3	11-21-05
XIAN2109	CRYWOLF LAMI	22M003-E3	11-71-09
XIAN2113	CRYWOLF LAMI	22M003-C4	11-21-13
XIAN2117	CRYWOLF LAMI	22M003-A5	11-21-17
XIAN2121	CRYWOLF LAM	22M003-E5	11-21-21
XIAN2125	CRYWOLF LAMI	22M003-C5	11-21-25
XIAN2129	CRYWOLF LAMI	22M003-A7	11-21-29
XIAN2133	CRYWOLF LAMP	22M003-E7	11-21-33
XIAN2137	CRYWOLF LAMI	22M003-C8	11-21-37

