SEABROOK STATION
Engineering Office:
1671 Worcester Rood
Framingham, Massachusetts 01701
(617) - 872 -8100

December 3, 1982

SBN-401
T.F. B7.1.2

```
United States Nuclear Regulatory Commission
Washington, D. C. }2055
Attention: Mr. George W. Knighton, Chief
    Licensing Branch No. 3
    Division of Licensing
References: (a) Construction Permits CPPR-135 and CPPR-136, Docket
        Nos. 50-443 and 50-444
    (b) USNRC Letter, dated June 18, 1982, "Request for Additional
        Information - Mechanical Engineering Branch,"
        F. J. Miraglia to W. C. Tallman
    (c) PSNH Letter, dated September 30, 1982, "Response to 210
    Series RAIs; Mechanical Engineering Branch,"
    J. DeVincantis to Ms. Janice B. Kerrigan (SBN-337)
Subject: Response to Mechanical Engineering Branch RAI 210.89
Dear Sir:
Enclosed please find our response to Mechanical Engineering Branch RAT 210.89 , which was inadvertently omitted from our Reference (c) response to your Requests for Additional Information forwarded in Reference (b).
```

Very truly yours,
YANKEE ATOMIC ELECTRIC COMPANY

RAM/fsf
cc: Atomic Safety and Licensing Board

```
Philip Ahrens, Esquire Assistant Attorney General Department of the Attorney General
Augusta, ME 04333
```

Representative Beverly Hollingworsh Coastal Chamber of Commerce 209 Winnacunnet Road Hampton, NH 03842

William S. Jordan, III, Esquise
Harmon \& Weiss
1725 I Street, N.W.
Suite 506
Washing +oa, DC 20006
E. Tupper Kinder, Esquire Assistent Attorney Gencral Office of the Attorney General 208 State douse Anaex Concerd, dH U3301

Robert A. Backus, Esquire
116 Lowell Street
P.O. Box 516

Manchester, NH 0310

Edward J. McDermott, Esquire
Sanders and McDermott
Professional Association
408 Lafayette Road
Hampton, NH 03842

Jo Ann Shotwell, Esquire
Assistant Attorney General
Environmental Protection Burcau Department of the Attorney General Onc Ashburton Place, 19th Floor Boston, MA 02108

The analysis of tees or branch connections as required by NB- 3650 of the Code is a relatively complex process; the documents received to date do not give sufficient $\therefore++a l l$ to enable us to say that Code requirements have been or will be met. Please furnish a detailed description of how this analysis has been (or will be) performed, along with examples involving:
(a) An ANSI B16.9 tee
(b) A Branch Connection per NB-3643

RESPONSE: NSSS

(a) A the mal transient heat transfer analysis was performed for sach A.SSI B16.9 tee on all the Class 1 auxiliary lines. All wornal, upset, and test conditions identified in FSAR Section ?.9.1 were onsidered.

The tharmal quantities $\Delta T_{1}, \Delta T_{2}$, and $\left|\alpha_{a} \tilde{T}_{a}-\alpha_{b} T_{b}\right|$, as defined in NB-3650, were calcalated on a time-history basis, us: n_{i} : a one-dimensional finite difference method for forced and free convection heat cransfer aalysis. Stresses due to these quancities were calculated for each time increment using the 3 lmplified methods of NB- 3550 of che Code.

A aintmum of two thermal expansion analyses, corresponding to the maximum and the minimum pipe wall average temperatures or fluid temperatures, were cosservatively performed to generate the maximum and minimum moment sets for stress and fatigue evaluations. Thermal anchor movements were included in these analyses. The combination of stresses due to these moments and the associated peak transient stresses with the other required load sets produced conservative stress ranges and fatigse usage factors.
(b) St ess evaluation of sockolet connections (half-couplings use I on Class 1 auxiliary piping systems) were performed in accordance with the simplified methods described in the Code (NQ-3650). For primary stress evaluation, stress indices for so:kolet connections were conservatively considered to be the sane as those for a branch connection.

For the fatigue evaluation, finite element heat transfer and stress analyses for various thermal transient loadings were performed with conservative fatigue strength reduction facto-s. Finite element thermal transient stresses were coabined with pressure and external moment stresses to evaluate equations (10) through (14) of the ASME Code for sockolet connections.

ASME III, Class 1 piping systems comply with NB-3650. The determination of tee and branch moments is performed according to the requirements of Note 5 of Table NB-3683.2-1. For static piping system loadings, run and branch moments, $M_{i r}$ and $M_{1 b}$ respectively, are computed in a straightforward manner in which the conditions of equilibrium are satisfied. Thus, the determination of M_{r} is direct. Furthermore, since all dynamic seismic analyses are performed utilizing response spectra techniques, the determination of M_{r} is conducted on a modal basis wherein each mode yields a consistent set of moments with the proper signs. The appropriate combination (i.e., grouping method) of the modal M_{r} values is then used to obtain results for each of the three earthquake directions.

The thermal quantities, $\Delta T_{1}, \Delta T_{2}$, and $\left|\alpha_{a} T_{a}-\alpha_{b} T_{b}\right|$ for each applicable thermal transient are deterwined when required by the ADLPIPE program and are included in the appropriate equations of NB-3650.

NOTE: ASME III, Class 1 piping of one inch nominal pipe size or less is qualified according to the requirements of Paragraph NB-3630(d)(1) where Subsection NC is stipulaced.

