

UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555-0001

Science & Engineering Associates, InMAY 1 1994 ATTN: Ms. Ilene Colina, Contract Administrator SEA Plaza, 6100 Uptown Blvd. NE Albuquerque, NM 87110

Dear Ms. Colina:

Subject: Contract No. NRC-04-91-066, Task Order No. 28 Entitled,

"Individual Plant Examination (IPE) Reviews, Internal Events,

Front End Only" (Brunswick 1 & 2)

In accordance with Section G.5, <u>Task Order Procedures</u>, of the subject contract, this letter definitizes <u>Task Order No. 28</u>. This effort shall be performed in accordance with the enclosed Statement of Work.

Task Order No. 28 shall be in effect from May 16, 1994 through May 15, 1995 with a total cost ceiling of \$26,891.00. The amount of \$24,899.00 represents the total estimated reimbursable costs and the amount of \$1,992.00 represents the fixed fee.

The obligated amount of this task order is \$26,891.00:

Accounting Data for Task Order No. 28 is as follows:

APPN No.: 31X0200.460 B&R No.: 46019202300

JOB CODE: B5787 BOC No.: 252A

Obligated Amount: \$26,891.00 RES Identifier: RES-C94-101

The following individuals are considered to be essential to the successful performance for work hereunder: John Darby.

The Contractor agrees that such personnel shall not be removed from the effort under the task order without compliance with Contract Clause H.1, <u>Key Personnel</u>.

The issuance of this task order does not amend any terms or conditions of the subject contract.

Your contacts during the course of this task order are:

Technical Matters:

John Flack, Project Officer

(301) 492-3979

Contractual Matters:

Paulette Smith, Contract Specialist

(301) 415-6594

9406240249 940511 PDR CONTR NRC-04-91-066 PDR

DF02/

Please indicate your acceptance of this Task Order No. 28 by having an official, authorized to bind your organization, execute three copies of this document in the space provided and return two copies to the above Contract Specialist. You should retain the third copy for your records.

If you have any questions regarding the task order, please contact Paulette Smith, Contract Specialist, on (301) 415-6594.

Sincerely,

Mary Mace, Contracting Officer Technical Acquisition Branch No. 1 Division of Contracts and Property Management Office of Administration

Enclosure: Statement of Work

ACCEPTED:

Alexe B. Calina NAME Contract administration

6/6/94

DATE

Contract NRC-04-91-066 Science & Engineering Associates

> STATEMENT OF WORK Task Order - 28

TITLE: Individual Plant Examination (IPE) Reviews,

Internal Events Front-End Only

(Brunswick Units 1 & 2)

DOCKET NUMBERS: 50-325

50-324

NRC PROJECT MANAGER: John H. Flack, RES (301-492-3979)

NRC TEAM LEADER FOR BRUNSWICK UNITS 1 & 2: John H. Flack, RES (301-492-3979)

TECHNICAL MONITOR: John H. Flack, RES (301-492-3979)

PERIOD OF PERFORMANCE: one year

BACKGROUND:

On November 23, 1988, the NRC issued Generic Letter 88-20, "Individual Plant Examination," which stated that licensees of existing plants should perform a systematic examination (IPE) to identify any plant-specific vulnerabilities to severe accidents, and to report the results to the Commission. The purpose of the IPE is to have each utility (1) develop an overall appreciation of severe accident behavior; (2) understand the most likely severe accident sequences at its plant; (3) gain a quantitative understanding of the overall probability of core damage and radioactive material releases; and (4) reduce the overall probability of core damage and radioactive releases by modifying procedures and hardware to prevent or mitigate severe accidents. All IPE submittals will be reviewed by the NRC staff to determine if licensees met the intent of Generic Letter 88-20.

OBJECTIVE:

The purpose of this contract is to solicit contractor support in order to enhance the NRC review of licensees' IPE submittals. This contract includes the examination and evaluation of the <u>Brunswick Units 1 & 2 IPE submittal</u>, specifically with respect to the <u>"front-end"</u> analysis. The contractor review will be of limited scope and consist of a "submittal only" review and the licensee's response to cuestions raised by the staff. The "submittal only" review and gathering of associated insights will help the NRC staff determine whether the licensee's IPE process met the intent of Generic Letter 88-20, or whether a more detailed review is warranted.

By identifying the IPE's strengths and weaknesses, extracting important insights and findings, and providing a comparison to staff reviewed and

accepted PSAs (e.g. NUREG-1150, PSAs identified in NUREG-1335 Appendix B), it is expected that the NRC will be in a better position to expeditiously evaluate the licensee's IPE process. To provide support under this contract, the contractor will search for obvious errors, omissions and inconsistencies in the IPE submittal and the licensee's response to a "Request for Additional Information" (RAI) as described in the work requirements listed below.

WORK REQUIREMENTS AND SCHEDULE:

The contractor will perform a "submittal only" review of the <u>Brunswick Units 1</u> & 2 "front-end" IPE analysis. The contractor shall provide the qualified specialists and the necessary facilities, materials, and services to carry out such a review. The contractor will utilize NRC review guidance documents for detail and reference, as well as other interim guidance provided by the NRC Technical Monitor. The contractor is not expected to make a plant/site visit in order to perform this review.

Subtask 1. Review and Identification of IPE Insights

Perform a <u>front-end</u> "submittal only" review of each IPE submittal and identify important IPE insights by completing the NRC IPE Plant Data Summary Sheets. During the review, focus on the areas described below under "Work Requirement." Note any: (1) inconsistencies between methodology employed in the IPE submittals and other PSA studies, and (2) inconsistencies between the submittal's IPE findings and findings stemming from other PSAs (See NUREG-1335, Appendix B). Respond explicitly to each work requirement by evaluating licensee consideration of the area and any associated shortcomings. Appropriately characterize any shortcomings with respect to the impact on IPE conclusions. Identify and provide a justification for a Request for Additional Information (RAI).

Work Requirement 1.1. Licensee's IPE Process

Check the following:

- 1.1.1 The IPE submittal is essentially complete with respect to the type of information and level of detail requested in the Submittal Guidance Document, NUREG-1335. Identify any obvious omissions.
- 1.1.2 The employed methodology is clearly described and is justified for selection. Methodology is consistent with the methods for examination identified in Generic Letter 88-20.
- 1.1.3 For multi-unit plant analyses, that the IPE explicitly considered events affecting more than one unit, and systems shared between units.
- 1.1.4 The IPE submittal employed a viable process to confirm that the IPE represents the as-built, as-operated plant.
- 1.1.5 Licensee participation in the IPE process.

1.1.6 The IPE front-end had been peer-reviewed to ensure the analytic techniques were correctly applied.

Work Requirement 1.2. Review the Accident Sequence Delineation and System Analysis

Check the following:

- 1.2.1 The IPE submittal described the process used to identify generic/plant-specific initiators (including internal flood) and dependencies which could exist between initiating events and the associated mitigation functions. Determine whether the initiating events are consistent and complete with respect to other PSAs.
- 1.2.2 The methodology used to treat internal flood is clearly described and justified. (Use NUREG-1174 for review insights.)
- 1.2.3 The system event trees and creatment of dependencies between event tree top events were appropriately described, and associated success criteria documented. Special events that have been potentially significant at similar plants (e.g., station blackout, ATWS, ISLOCA) were appropriately considered.
- 1.2.4 The IPE identified and analyzed front-line and support-systems important to the prevention of core damage and mitigation of fission product release. Support systems should, as a minimum, include:

electrical power (AC and DC) ESF actuation system instrument air HVAC service water component cooling water

- 1.2.5 The IPE treated dependencies (including asymmetries) among plant systems, and that dependencies within a system and between systems were identified and documented in a dependency matrix form.
- 1.2.6 The IPE appropriately treated common cause failures employing the beta factor method, MGL method, or sensitivity studies (see NUREG/CR-2815 or plant-specific).

Work Requirement 1.3. Review the IPE's Quantitative Process

Check the following:

1.3.1 The data utilized in the IPE has a basis, and is appropriately described and documented (e.g., mean, median, point estimate, best-estimate, etc.). Note whether any sensitivity studies were performed to determine the impact of vital assumptions.

- 1.3.2 The technique used to perform data analysis appears consistent with other PSAs. [Note: plant-specific data is expected to be used for important components and systems as identified in NUREG-1335.1 1.3.3 Sources of generic failure data used in the IPE are identified, and a rationale for their use provided. Data source should be reasonably consistent with data reported in NUREG-2815. Appendix 1.3.4 The licensee quantified contribution from common cause failure data and identified data sources. Work Requirement 1.4. Review the IPE Approach to Reducing the Probability of Core Damage Check the following. 1.4.1 The IPE identified the most probable core damage sequences and these are consistent with insights from PSAs of similar design. Check that sequences were expanded to identify dominant contributor, i.e., specific components, plant conditions or behavior, common cause failures that contribute to plant vulnerabilities. 1.4.2 The IPE analysis supports the licensee's definition of vulnerability with respect to core damage, and that the analysis probed beyond the system level, to train or segment level, to uncover vulnerabilities. The licensee's definition provided a means by which the licensee could identify potential vulnerabilities (as so defined) and plant modifications (or safety enhancements) to eliminate or reduce the affect of vulnerabilities.
 - 1.4.3 The identification of plant improvements and proposed modifications are reasonably expected to enhance plant safety.

Work Requirement 1.5. Front-End/Back-End Interface

Check the following:

- 1.5.1 The IPE appropriately treated front-end and back-end dependencies:
 - important sequences were not screened out
 - considered containment by-pass
 - considered containment isolation
 - plant damage states considered reactor system/containment system availability
 - source term
 - system mission times
 - inventory depletion
 - dual usage (spray vs. injection)

Work Requirement 1.6.

Review Licensee's Evaluation of the Decay Heat Removal Function

Check the following:

- 1.6.1 In accordance with the resolution of USI A-45, the IPE performed an examination of the DHR system to identify vulnerabilities.
- 1.6.2 IPE explored the benefit of diverse means of decay heat removal, e.g. feed-and-bleed, recovery of main feedwater.
- 1.6.3 Any unique features or other means which contribute to increased DHR reliability were substantiated.

Work Requirement 2.0

Complete data sheets

A. Summarize data on the Consolidated Data Summary Sheet as described below.

CONSOLIDATED DATA SUMMARY SHEET* (INTERNAL EVENTS)

- o Total Core Damage Frequency:/year
- o Major initiating events and contribution to core melt frequency (internal events):

Contribution

TRANSIENTS		(%)
LOCAs		(%)
BLACKOUT		. (%)
SGTR		(%)
ISLOCA		- (%)

- o Major (non-human) contributions to dominant core melt sequences:
- o Significant PRA findings:
- o Enhanced plant hardware (implemented after 1988 PRA):
- o Potential improvements under consideration and not modeled:
- B. Complete NRC IPE data sheets

Complete the NRC IPE data summary sheets and note lack of information as appropriate. However, exclude those data entries marked "CNL Data Entry." These data will be collected by Brookhaven National Laboratory under a separate contract.

Subtask 2. Prepare Preliminary Technical Evaluation Report

Prepare a preliminary Technical Evaluation Report with the outline prescribed below.

Executive Summary

Provide a brief overview of the licensee's IPE process, and it; basis, e.g., earlier PRA. Indicate whether severe accident vulnerabilities were identified, and whether any safety enhancements were implemented or under commitment. Identify any unresolved safety issues or safety issues proposed for resolution. Discuss any important or unique plant characteristics.

II. Contractor Review Findings

Explicitly address each work requirement element listed under Subtask 1. Discuss any significant limitations and impact on overall IPE conclusions. Comment on the need for additional information, but list questions separately in an appendix. Indicate why the information is important for closure.

III. Overall Evaluation and Conclusion

Summarize the "submittal only" review conclusions based on the information submitted and significance of IPE strengths and weaknesses.

IV. IPE Insights, Improvements, and Commitments

Characterize important IPE findings and insights, including any unique plant features or analytic assumptions. Describe and characterize plant improvements or safety enhancements implemented by the licensee, specifically in response to important insights which stem from the process. Identify any licensee commitments, and characterize the need to track commitments based on the impact on IPE conclusions. Also identify and characterize any improvements not forthcoming but perceived to be significant.

V. IPE Evaluation and Data Summary Sheets

Attach: (a) Consolidated Data Summary Sheets using the above outline, and (b) the NRC IPE data sheets.

Appendix: Questions and Comments

Provide all questions and comments which are to be discussed with the licensee. Provide rationale for comments, especially when seeking additional information.

ESTIMATED LEVEL OF EFFORT:

For each IPE reviewed:

Subtask 1 80 contractor hours Subtask 2 132 contractor hours. Subtask 3 16 contractor hours

It shall be the responsibility of the contractor to assign technical staff, employees, and subcontractors who have the required educational background, experience, or combination thereof, to meet both the technical and regulatory objectives of the work specified in this SOW. The NRC will rely on representation made by the contractor concerning the qualifications of the personnel proposed for assignment to this task order including assurance that all information contained in the technical and cost proposals, including resumes and conflict of interest disclosures, is accurate and truthful.

NRC FURNISHED MATERIAL:

- 1. Licensee's IPE submittal.
- Licensee's response to staff generated questions and associated information.

TECHNICAL DIRECTION:

The NRC Project Manager is:

John H. Flack Severe Accident Issues Branch Division of Safety Issue Resolution U.S. NRC, Mail Stop NL/S 324 Washington, D.C. 20555 Telephone No. (301) FTS-492-3979