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plant off-gas components including tritiated water, various nitrogen
oxides, various organics, and iodine.

lThe test facility can process a nominal 15 scfm of contaminated gas at
pressures trom 100 to 600 psig and temperatures from minus 45 to plus
25°F. A reprocessing plant off-gas simulation station is capable of
mixing a feed gas containing up to 10 compouents. A solvent recovery
ubsystem 1s provided to reduce the fluorocarbon content of the absorber
off-gas from 8 to 10 mole percent to less than 1 ppm. Present pilot
plant equipment is designed to provide a concentrated gaseous krypton
product for storage in standard high pressure gas cylinders and a solid
carbon-14 product. The design krypton product concentration factor is
10,000 based on a process inlet concentration of 1 to 16 ppm. Low tem-
perature refrigeration equipment 1s required to enable process operation
preferred conditions. The pilot plant employs several mechanical
ve-type refrigeration systems. While this particular system
; he pilot plant work, an optional "brine"
reprocessing plant application,

system has been

rocess flow sheets based on a combination absorber/fractionator and
mbination absorber/fractionator/stripper have evolved from the pilot
'lant work and indicate how the process might be applied to a reprocess-
lant. l'he remaining development program is laid out in such a way
1

l
guarantee the timely evolution of the technology consistent with

2V
he needs of the overall fuel recycle effort.

PROCESS REQUIREMENTS AND DESCRIPTION

wironmental emissions are based, in part, on
 J

B i
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L S |
idequate decontamination goal now very well might
i few years. EPA Standard 40 CFR Part 190 entitled
Radiation Protection for Nuclear Power Operations' mandate:
juantity radioactive raterials entering the general
uranium fuel cycle must contain less than
gigawatt-year of electrical energy pro-
he total burden of krypton retention
sor, approximately 90% of the reprocess

1

to be removed [10]. The potential
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and radon. The reference or design operating point of the development
pilot plant is 99% removal of the fission product krypton. Krypton was
chosen as the reference component because it is the least soluble of the
radioactive off-gas contaminants. Operating the process at conditions
necesary Lo yield a 99% krypton removal results in a corresponding 99.9%
removal of the off-gas xenon, carbon, and radon.
So far, a preferred storage form or concentration limit has not been
established for the radionuclides. Higher product concentrations will
result in smaller storage requirements; however, the more concentrated
fission product activity and decay heat must then be taken into considera-
ion. Present pilot plant equipment is designed to produce a concentrated
gaseous krypton product for storage in standard high pressure gas cylinders
and a solid carbon-14 product, e.g., calcium or lithium carbonate, for
storage in metal drums. Other storage methods can be evaluated as they
are identified. The design krypton product concentration factor is
10,000 based on a process inlet concentration of 1 to 10 ppm. In order
to achieve the target krypton concentration level, the feed gas carbon
dioxide has to be removed from the noble gas [t 1s optional at this
point whether or not the argon or fission product xenon is separated from
the krypton. One of the product purification schemes under evaluation
does effect a krypton-xenon separation; while another one vields a
krypton-argon separation. The carbon released from the irradiated fuel
during shearing and dissolution is joined by atmospheric carbon in the
pl ging ports and air seals.
1 will be established '»
other carbon present in the reprocessing plant off-gas.

ant in-leakage via various char
the final purity of the carbon-1

atmospheric contribution could be sizable and the carbon-14 product
grossly diluted.

As currently planned, the ypton-85/carbon-14/radon-2
will be the final step in integrated chain of
\""11‘,'\'7"" O +

tively decontaminat

reliability of the overa

€ reprocessing plant g
1 decontamination system 1 1 undoubtedly be the

subject of considerable interest. Legitimate corcern will obviously be
. y

expressed not so much about how well the off-gas rain will function in

normal operation but about the overall consequences of abnormal operation
and the capability of the individual processes to meet the challenges
imposed by irregular or otherwise uncontrolled feed conditions. In this
cortext, it is imperative to assess what happens in the event that all of
the ugstream primary removal equipment fails and large amounts of other
fission products a chemical contaminants inadvertently pass downstream,
or this purpose, the development pilot plant is built to evaluate the

behavior and in-house consequences o large amour most other repro

L LU=

céssing piant off-gas components, including tritiated water, nitrogen

L

oxides, carbon monoxide, methane, iodine, methyl iodide, and TBP

Figure 1 1s process
serves to remove € Ing plant
waste gas streams and t« ibsequently concentrate then ‘educing the long-
term radioactive waste storage requirements. Absorption, fractionation,

and stripping steps mus e performed in order to

accomplish these process
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objectives. Each separative step exploits the gas-liquid solubility
differences that exist between the solvent and the various feed gas

‘e constituents. The main separation of radioactive components from the
bulk gas is effected in the absorber. The fractionator serves to remove
the coabsorbed carrier gas from the solvent, thereby enriching the
solvent in the more soluble components. The stripper removes all
remaining gas from the process soivent and thereby prepares the solvent
for recycle back to the absorber. The absorber consists of only a packed
column, while the fractionator and stripper are each composed of a
packed column, reboiler, and condenser In addition, the fractionator
equipment also includes a flash drum. Support equipment items for the
basic process include a feed gas heat exchanger, process gas compressor,
solvent pump, solvent cooler, storage tanks, and several refrigeration
compressors. If the feed gas contains significant quantities of high
boiling components, i.e., those components with a vapor pressure less
than refrigerant-12, a solvent purification still is available as an
in-line option to prevent these materials from building up in the recircu-
lating solvent. Final product separation and isolation equipment has
also been added to achieve higher product concentrations. Finally, a
solvent recovery system is necessary to remove solvent vapor from the
absorber off-gas.

The process feed gas is first compressed to the absorber column operating

s pressure and then cooled to the desired absorption temperature. Amounts

of th~ feed gas water, iodine, and nitrogen dioxide will freeze out in
the process gas cooler. The feed gas is then passed into the absorber.

. Under favorable operating conditions as determined by the absorption
temperature, pressure, and process solvent-to-gas flow rate ratio,
essentially all of the krypton, xenon, and carbon dioxide, plus a sig-
nificant quantity of bulk feed gas is dissolved. Essentially all remain-
ing water, iodine, and nitrogen dioxide and feed gas methyl iodide will
also be dissolved by the solvent. Typically, the absorber might operate
at a pressure of 100 to 300 psig, temperature near -25°F, and solvent-to-
gas molar flow ratio of 10 to 15. The decontaminated gas leaving the to;

| of the absorber is then"passed on to the fractionator flash drum. The
fractionator is normally operated at substantially less pressure than

/ the absorber, e.g., 35 to 50 psig. A large portion of the less soluble
| gas desorbs upon entering the expansion chamber and passes into the over-
head condenser. The loaded solvent containing the remaining gases is
then fed into the top of the fractionator column where it is contacted
with upflowing solvent vapor from the reboiler which desorbs neariy all
/ of the remaining less soluble dissolved gas. A liquid-to-vapor molar
‘ flow rate ratic of approximately 4 to 6 is required for this step. The
total concentration of gases dissolved in the solvent at the bottom of
the column is generally quite small. Consequently, the fractionator

/ reboiler is operated essentially at the saturation temperature of the

solvent, which is 52°F for a pressure of 50 psig. Solvent vapor and a
gas mixture consisting predominantly of nitrogen and oxygen pass from
the top of the column and into the overhead condenser for solvent removal.

| ® oy S
v V(\d(‘("/ while Hae 'uh\q"r-\ ()u‘vc\.{* ’(-)Ll"’) Hie b *4‘.’\'\ (‘" T ob" bacy 1
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consists of a flash drum, packed column, reboiler, and
fractionator column is 3 inches in diameter and similar

tion to that used for the absorhar except that each of the
of Goodloe packing for a
height of 7.5 feet Figures 20 and 21 in Appendix A give

umn details The fractionator rebuiler connects directly to the
the columa, while the overhead condenser 1is seil off to the side
yvined by a 90-degree elbow The condenser offset allows external

tion and sampling of the overhead condensate The condenser 1S

ndenser

in constru

three packed column sections contains 2.5 .eot

packe

mounted 10 degrees to the horizontal

fractionator reboiler is 14 inches in diameter and approximately 4
feet long overall Reboiler details are given in figures 22 and 23 of
Appendix A The reboiler shell was rolled from 0 S-inch-thick 304L stain-
less steel sheet Internal heating is provided with a Chromalox* Model
IMI-12183 18-kN immersion heater with Incaloy sheath The heater 1is

one end of the reboiler shell with 6-inch, 300-pound
flanges The design load on the reboiler 1s 5 kW, giving the heater a
surface heat flux of less than 10 watts per square inch The heater if
controlled by a Loyold' LPAC-3 series, 48G-volt, three-phase mult purpose
power controller with current and

is the column differential

The

flanged through

SCR (silicon controlled rectifier)
power limiters The reboiler control variable
pressure drop High temperature protection 1is provided by & Chromalox
Model LFB7-7 indicating thermostat The liquid level 1is monitored and
ntained 4 inches above the heater bundle by a Drexelbrook capacitance
liguid level contiol system like that used with the absorber The
tion length of the probe 1is 12 inches
The fractionator overhead condenser is a shell-and-tube-type heat exchanger
rocess gas in the shell and boiling refrigerant-22 in the tubes. The
was designed on the basis of a total condensing duty of 17,000
Btu/hr and overall condensing coefficient of 25 Btu/hr-sq ft-°F The con-
denser shell side surface area 1s 23 square feet Details of the con
denser design are given in rigures 24 and 25 The shell is constructed
from 6-inch, Schedule 10, 3041 stainless steel pipe and contains twelve
1-inch 304L stainless steel tubes In order to promote better mixing, the
rubes are filled with 5/¢ inch, 316 stainless steel Pall Rings At most,
only a small portion of the available condensing surface is needed under
“normal” operation since the fractionator 1is routinely fed subcooled liquid
of the solvent at the prevailing fractiona

relative to the boiling point
tion pressure Consequently, the bulk of the upflowing reboiler vapor 1is

with §
condenser

*Edwin L. Wiegand Division, Emerson Electric Company, Pittsburgh,
Pennsylvania

f Astrophysics Research Corporation, Harbor
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of the fractionator. The primary condenser is cooled with boiling
refrigerant-22 on the tube side and the final condenser is cooled with
lower temperature boiling refrigerant-502. The primary condenser was
designed on the basis of a condensing duty of 77,600 Btu/hr and overall
condensing coefficient of 50 Btu/hr-sq ft-°F. The condenser shell side
surface area is 52 square feet. The design of the condenser is detailed

in figures 27, 28, and 29. The shell is constructed from 10-inch, Schedule
40, 304L stainless steel pipe and contains thirty-two 1-inch 304L stainless
steel tubes. The tube sheet is fabricated from l-inch-thick 304L stainless
sheet. Like the fractionator condenser, the tubes are also filled with
5/8-inch stainless steel Pall Rings to ensure better tube-side turbulence.
The primary condenser is fed from the stripper column through a 6-inch-
diameter side inlet. Condenser condensate is first mixed with fresh teed
from the fractionator in a 3-ring mixing chamber on the bottom side of the
condenser before being refluxed back to the stripper column. The final
condenser was designed on the basis of a condensing duty of 10,000 Btu/hr
and overall condensing coefficient of 50 Btu/hr-sq ft-°F. The condenser
shell side surface area is 15.7 square feet. Design details are given in
figures 30 and 31. The shell is constructed from a 4-inch, Schedule 10,
304L stainless steel pipe and contains fourteen 5/8-inch 304L stainless
steel tubes.

The stripper assembly is approved for a maximum working pressure of 350
psig at 0°F and was hydrostatically tested at 525 psig.

Solvent Pur{fication Still

The solvent still is built very similar to the stripper and fractionator
sections of the plant but, because of the different process piping,

opersi»s fundamentally differently: purified solvent is taken from the con-
denser while solvent impurities are withdrawn from the reboiler. Initially,
quantitative recovery of the high boiling feed gas components was not pur-
sued. Rather, the solvent purification still was designed and built to
remove only the bulk amount of these components from the circulating sol-
vent [7]. During the past year, however, it became evident that the
fluorocarbon process designeu for krypton and carbon recovery could act as

a valuable backup system .o remove other fission products such as iodine

and tritiated water and ¢’ .mical contaminants such as nitrogen dioxide
simply by modifying the existing solvent purification equipment to include

a rectifying section with automatic reflux control [36]. This work was
subsequently performed. A schematic of the modified still and operating
flow sheet .. given in figure 5. Overall, the control instrumentation of

the solvent still is more complex than that required for any of the other
sections.

The still column is constructed from a 10-inch, Schedule 10, *04L stainless
steel pipe. The column packing is divided into an 8-foot bottom stripping
section and a 4-foot top enriching section for a total packed height of 12
feet. Consistent with the rest of the mass transfer equipment, this column
is also filled with Goodlor high efficiency wire mesh packing. The column
assembly and details are shown in figure 32. Liquid distribution within
the still column is accomplished with a feed and reflux ring drilled so as
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DWG. NO. G- 77243
V)

DECONTAMINATED
VENT GAS

CONTAMINATED
FEED GAS

- VOLATILE SOLUBLE
COMPONENTS Kr, Xe, CO,

LIST OF SYMBOLS

FC — FLOWCONTROL

TC — TEMPERATURE CONTROL

PC — PRESSURE CONTROL

dPC — DIFFERENTIAL PRESSURE
CONTROL

dPA — DIFFERENTIAL PRESSURE
ALARM

LC LEVEL CONTROL

CC -~ COMPOSITION CONTROL

SCR — HEATER CONTROLLER

R — REFRIGERATION SUPPLY
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Figure 18
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SOLVENT STILL CONDENSER ASSEMBLY AND DETAILS
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PROCESS GAS STORAGE TANKS
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PRODUCT PURIFICATION COLD TRAP SCHEMATI(
AND INSTRUMENTATION
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VENT RECOVERY EQUIPMENT OPERATING FLOW SHEET
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Pressure

Product s

02

Transmit

ps’
anical

C4TR1 1)

SO4RA ) DX

LIAL 00X

Pressure PS $1 FORS ’ . SO ( g A

100 a4
15 psit
Mechanical

Pressure Lon

Pressuire Drx




Service

olvent Still Pressure Control

Solvent Still Pressure Control

Solvent Still Pressure Droy

Feed Gas Cooler Liquid Level Conmtrol

Feed Gas Cooler Liquid Level Comtrol

Absorber Liquid Level Control

Absorber Ligquid Level Comtrol

o«ctionator Liquid Level Control

ctionator Liguid Level Coutrol

Stripper Ligquid Level Control

Stripper Liquid lLevel Control

S$ti:1 Condenser Liquid Level Comtrol

$till Condens> Liquid Level Control

TABLE

INSTRUMENTATION KEY

Description

Pressure Transmitter
Indicating Controller
Recorder

1/F Transducer

Refrigeration Control

Control Valve

AF ansmitter
Re der

Ca acitance Probe

T ansmitter

1 dicating Controller
Indicating Meter

1/P Transducer

Control Valve

Capacitance Probe
Transmitter
Indicating Controller
Indicating Meter

1/P Transducer

Control Valve
Control Valve

Capacitance Probe
Transmittor
Indicating Controller
Indicating Mete

1 /P Transducer

Control Valve

Capacitance Probe
Transmitter
Indicating Controller
Indicating Meter

1/P Transducer

Contral Valve
Control vVaive

Lapacitance Probe
Transmitter
Indicating Controller
Indicating Meter

1/P Transducer

Contro!l Valve

1 (Continued

TO OPERATING FLOW Sh.

Manu facturer

taylor
Taylor
Taylor
Moore

Alco Controls
Dover

Taylor

Taylor
Drexelbrook
)rexe lbrook
Taylor
Drexelbrook
Moore

Precision Products

Prexelbrook
Drexelbrook
Taylor

DPrexelbrook

Fairchila

Dover

Jordan

1brook
Ibrook

Mode |

13047021120
1 304RA 10002
1322JA14123

1502TD11122
1322JA0412°
700-1-23
408 -1000
1304RA 10002

16

gt in 0.2
00-1-23
408 - 1 X
1304RA 10004

0-1-2
408 - 1000
SO4RA L 000

00-1-23
408 - 1 00(
1 SO4RA 1 0OC

408-10
1 304RA 10002

C

.

Inp+t_ Range

Output Range
H20

100 div
15 psa

2-110 psig
Mechanical
4-20 mA

100 div

quid Level 4500 pt

}5-4500 pt

100 div

5-15 psi
Mechanical

0.25-4500 pf
4-20 WA

4-20 mA
)-100 dav
3-15 psi

Mechanical
Mechanical

5-4500 pf
0 mA

20 mA
100 div

15 ps2
chanical

4500 ptf

quid Level
25-4500 pf

1.25 v




Absorber

0 | vent

t

sducer

ator

ransmitter

ransmitter

M

Drexel

I

broc

rexelbrook

Drexelbrook

strahmar

Hastin

£s

Hastings

Hastin
Hastir
Taylor

n

B

ved

Brooks

eeds

g
g

gs
g

and

and

Raydi
Rayd:

Rayd:
Raydi

Rayd:
Raydi

Rayda
Rayd:

Raydi
Rayd:

Rayd:
Raydi

Nor

st

hrug

AHIL
1322JA14123

H-3M/L-25
AML - 25F
1233JA14123

H-3M/L-10
AL - 109

SOARAL000:
peedomax W

Speedoma x

Speedoma x

1d
e 45
20 mA
iquad

25 s«

LY

5000

00 pf

Level

fm

f=

sccm

"J[l ut Vs '

4500

scin

100 div

> ¥
10 scfm

Svw
5000 sccm
100 div

5w
50,000 scom

100 div

Mechanical
Mechanical
4-20 mA
4-20 mA

( div

|
3-15 psi

Mechanical




Solvent

>0 [vent

Solvent

Solvent

Stiil

Still

Still

SEervice

Reflux Ratio

Reflux Flow

Bottoms Flow

Bottoms Flow

Contro!l

Lontrol

Control

Control

TABLE 1|

INSTRUMENTATION KEY TX

Des-ription

iplier/Divider

sting Cont ller
sdu.e.

Cont I Valve

E/1 Transmitter
Indicating “ontrolle
1/P Transducer

Control Valve

Cont inued

OPERATING FLOW SHEET

Cut put Kar '

Manuiacturer

Taylor

Taylor 1 304RA 10002

Moore 16

Precision Products Mechanical

lor 140 ) 20 mA
4 ) WA
3-15 psa

Tay
Taylor
Fairchild

Dever Mechanical




TABLE 11

INSTRUMENTAT (ON KEY TO PRODUCT PURIFICATION COLD TRAP

PCV-PT
PdR-PT

TE-LN

TCV-LN

TE-PT

TCV-PT

FIR-ST

FIR-PT1

FIR-PT2

Service

Description

Product Purification Cold Trap
Pressure Control

Product Purification Cold Trap Control

Product Purification Coid Trap Pres-
sure Drop

Product Purification Liquid Nitrogem
Temperature Control

Product Purification Liquid Nitrogen
Control

Product Purification Cold Trap
Temperature Control

Product Purification Cold Trap
Temperature Control

Stripper Product Flow

Product Purification Cold Trap
Off-Gas Flow

Product Purification Cold Trap
Off-Gas Flow

Pressure Transmitter
Indicating Controller
Recorder

1/P Transducer

Control Valve

AP Tramsmitter
Recorder

Thermobulb/Thermowel |

Resistance to Current
Transmitter
Indicating Controller
1/P Transducer

Control Valve

Thermobulb/Thermowel

Resistance to Current
Transmitter
Indicating Controller
1/P Transducer

Control Valve

Thermal Mass Flowmeter
Transducer

Thermal Mass Flowmeter
indicator

Recorder

Thermal Mass Flowmeter
Transducer

Thermal Mass Flowmeter
Indicator

Recorder

Thermal Mass Flowmeter
Thermal Mass Flowmeter

Indicator
Recorder

Manufacturer
Taylor
Taylor

Taylor
Moore

Precision Products

Taylor
Taylor

Taylor
Taylor

Taylor
Moore

Precision Products
Taylor
Taylor

Taylor
Moore

Precision Product
Tylan

Tylan

Taylor

Tylan

Tylan

Taylor
Tylan

Tylan

Taylor

Mode i

1332TF11221
1304RA10002
1322JA14123
77-16

tin., 0.003 ¢,

1301™011122
1322:A14123

PLCL-9-3M/
1-10RL-9
1002TAL4810

1304RA10002
77-18

 in., 0.006 Cy

PLCL-9-3A/
1-10RL-9
1002TAL4810

1304RA10002
77-16

iin, 002,
M- 360
RO-751

1322JA14123
M- 360

KO-751

1322JA14123
FM- 360

RO-751
1322JA14123

_Ingut Range
10-100 psi
0.251.15 v

f.25-1.25 v
4-20 wA

3-15 psi

0-10 in. W0
0.25-1.25 ¥

-320 to +32°F
19-43 0

0.25-1.25 v
4-20

3-15 psi
~320 o +32°F
15-43 0

0.25-1.25 v
4-20 mA

3-15 psi
0-1 sim
0S5 v

0.25-1.28 v
0-100 ..cm

0-5 v

0.25-1.25 v
0-500 sccm

0-5 v
0.25-1.25 v

19-100 @
20 W

4-20 WA
3-15 psi

0-5 v
0-1 slm

0-100 div
05w

0-100 sccm

0-100 div
0-S v

< 100 div
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