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Abstract

Two advanced light water reactor (LWR) concepts, namely the General Electric
Simplified Boiling Water Reactor (SBWR) and the Westinghouse Advanced Passive
600 MWe Reactor (AP600), were reviewed in detail by Argonne National Laboratory.
The objectives of these reviews were to (a) evaluate proposed advanced-reactor
designs and the materials of construction for the safety systems, (b) identify all aging
and environmentally related degradatior mechanisms for the materials of
construction, and (c) evaluate from the safety viewpoint the suitability of the
proposed materials for the design application.

Safety-related systems selected for review for these two LWRs included
(a) reactor pressure vessel, (b) control rod drive system and reactor internals,
(c) coolant pressure boundary, (d) engineered safety systems, (e) steam generators
(AP600 only), (f) turbines, and (g) fuel storage and handling system. In addition, the
use of cobalt-based alloys in these plants was reviewed.

The selected materials for both reactors were generally sound, and no major
selection errors were found. It was apparent that considerable thought had been
given to the materials selection process, making use of lessons learned from previous
LWR experience. The review resulted in the suggestion of alternate and possibly
better materials choices in a number of cases, and several potential problem areas
have been cited. The review of the AP600 materials of construction was impaired by
the fact that the materials designations given in the Standard Safety Analysis Report
(SSAR) for this reactor were often too vague to identify the specific alloy to be used.
With some notable exceptions, the SBWR SSAR generally gave more detailed
materials information.
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Executive Summary

Two advanced light water reactor (LWR) concepts, namely the General Electric
Simplified Boiling-Water Reactor (SBWR) and the Westinghouse Advanced Passive
600 MWe Reactor (AP600), were reviewed in detail at Argonne National Laboratory
(ANL). The objectives of these reviews were to (a) evaluate proposed advanced-
reactor designs and the materials ol construction for the safety systems, (b) identify
all aging and environmentally related degradation mechanisms for the materials of
construction, and (¢) evaluate from a safety viewpoint the suitability of the proposed
materials for the design application.

The safety-related systems selected for review for these two LWRs were:

Reactor pressure vessel.

Control rod drive system and reactor internals.
Coolant pressure boundary.

Engineered safety systems.

Steam generators (AP600 only).

Turbines.

Fuel storage a..d handling system.

In addition, the use of cobalt-based alloys in these plants was reviewed.

The materials selections for both reactors were generally sound, and no major
selection errors were found. It was apparent that considerable thought had been
given to the materials selection process, making use of lessons learned from previous
LWR experience. The review resulted in the suggestion of alternate and possibly
better materials choices in a number of cases, and several potential problem areas
have been cited. The review of the AP600 materials of construction was impaired by
the fact that the materials designations given in the Standard Safety Analysis Report
(SSAR) for this reactor were often too vague to identify the specific alloy to be used.
With some notable exceptions, the SBWR SSAR generally gave more detailed
materials information.

Specific findings resulting from the reviews of these systems in the two reactor
concepts are summarized below.

Reactor Pressure Vessel. Fabrication procedures and restrictions on copper and
phosphorus appear to be adequate to preclude irradiation embrittlement in both the
SBWR and the AP600 pressure vessels over their 60-year design life. The limit of
0.01 wt.% on sulfur content in the SA533, Grade B steel to be used to fabricate the
SBWR vessel may not be sufficient to ensure no environmental enhancement of
fatigue crack growth rates. The AP600 design calls for a 0.005 wt.% limit on sulfur,
and this limit was judged to be sufficiently low to avoid this problem. Both the SBWR
and the AP600 designs call fer the use of nickel-chromiume-iron alloys for a number
of applications inside the vessel, but the precise alloys are not identilied. Some of
these alloys, including Alloy 600 structural components and Alloy 182 weld butters,
have experienced stress corrosion cracking (SCC) problems in conventional LWRs,
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and more information is needed to determine if the optimum alloys have been
chosen for the two advanced reactors. In addition, the 17-4 PH precipitation-
hardening stainless steel (SS) chosen for the control rod drive (CRD) seal housing
nuts in the SBWR is subject to severe SCC and hydrogen embrittilement if improperly
heat treated, and stringent acceptance criteria are required for this component to
avoid this potential problem. Finally, a number of ambiguities and apparent errors
were noted in some of the materials specifications for the SBWR vessel.

Conirol Rod Drive System and Reactor Internals. The SSARs for both the SBWR
and the AP600 were somewhat vague about the materials of construction for several
important CRD and reactor internal components. Both designs call for the use of
17-4 PH precipitation hardened SS. and the possible susceptibility of this alloy to
combined thermal aging and irradiation embrittlement at high fluence was noted.
Components fabricated from Inconel X-750 and Types 304 and 316 SSs are
susceptible to failure by irradiation-assisted stress corrosion cracking (IASCC), but
this susceptibility has been found to exhibit significant heat-to-heat variation among
steels of nominally similar chemical composition and fabrication history. No general
guidelines for material selection to avoid this problem are currently available, and
these components must be considered susceptible to IASCC for 25 x 1020 n/em?2.
Because the mechanism(s) of IASCC and origin of the heat-to-heat variation are not
understood at present, material selection based upon general ASTM or ASME
specification cannot assure resistance to IASCC failure. The hydrogen water
chemistry specified for SBWR should help to control potential IASCC problems, but it
may not be sufficient or practical to avoid problems in the top guide. The water
chemistry parameters specified for the AP600 are quite sound, but it is not clear
what specific additional steps have been taken to minimize effective stresses and
eliminate crevices. Stress is an accelerant for the IASCC process and components
should be designed to have the lowest possible applied and residual stress levels.
Special attention should be paid to the reduction of the residual stresses due to fit-
up and welding processes. Where solution annealing is not possible, welding
processes should be optimized to achieve low residual stresses.

Coolant Pressure Boundary. Few materials-related problems were seen for the
SBWR coolant pressure boundary components. However, potential SCC problems
were noted for Type 410 martensitic SS and Alloys 600 and 182 that were to be
used for certain components. In addition, it was not clear that a nitrogen cover gas
was to be used for the makeup water and condensate storage tanks, and questions
were raised about the adequacy of the proposcd 1% water cleanup reprocessing rate
to maintain the high-quality coolant water chemistry specified for the SBWR. The
materials specifications for the AP600 coolant pressure boundary components were
generally much too vague to permit a detailed review. Assuming that most of the
components were to be fabricated of materials similar to those used in conventional
Westinghouse pressurized water reactors (PWRs) (an exception is the Type 316LN
SS to be used for the coolant piping). no significant corrosion problems were
foreseen. Aging embrittlement of the castings in the pump bodies was a possible
concern.
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Engineered Safety System Components. Potential SCC problems were noted in
SBWR depressurization valves, and it was not clear from the specifications that the
desired "L" grades ol forged austenitic SS were to be used for this application.
Potential aging embrittlernent problems were noted for the cast valve bodies. In
addition, the carbon steel to be used for the isolation condenser steam piping may be
susceptible to excessive general corrosion and wastage if exposed to condensate over
extended time periods. The review of the AP600 materials of construction was again
impaired by a lack of detailed information. Alloy 82 was noted to be more resistant
to SCC than Alloy 182 for the weld buttering in the core makeup tanks. The
apparent proposed use ol Inconel 600 for the passive residual-heat-removal heat
exchanger tubes was considered satisfactory for the anticipated service conditions,
although Inconel 690 would provide improved resistance to SCC. Finally, the need
for a maximum specified ductile-to-brittle transition temperature (DBTT) for the
carbon steel containment vessel was noted.

Steam Generators. The selection of Alloy 690 for the AP600 steam generator
tubes instead of Alloy 600 should lead to greatly improved resistance to outer-
diameter stress corrosion cracking (ODSCC) and primary-water stress corrosion
cracking (PWSCC), although it is premature to assume that this selection will ensure
a 60-year lite. In addition, the use of the Type 405 ferritic SS trifoil tube support
plate design, along with improved secondary water chemistry, should prevent tube
denting and further reduce ODSCC problems. Fretting wear, flow-induced vibration,
and thermal fatigue problems have apparently been corrected through improved
design, and the flow-accelerated corrosion of the feedwater ring has been addressed
by the use of more resistant alloys for the affected components. Virtually all of the
design changes and materials proposed for the AP600 steam generators have been
implemented with apparent success for replacement steam generators in current
PWRs.

Turbines. The SSARs for both the SBWR and the AP600 make no explicit
reference to the extensive work that has been performed on SCC and the
optimization of fracture toughness in low-pressure turbine materials for nuclear
power systems over the past decade. The specifications provided for turbine
materials in both SSARs are insuflicient to determine whether the materials actually
conform to the "good practices” that are alluded to. The specification of 100%
volumetric ultrasonic inspections, surface visual examinations, and magnetic-particle
inspections of the finished, machined surfaces should ensure that fabrication defects
will be detected. Potential SCC problems have been addressed in both designs, and
the SBWR SSAR includes procedures for analyzing fatigue crack growth. Flow-
accelerated corrosion problems, which tend to be more severe in PWRs, should be
mitigated in the AP600 turbine through the use of morpholine rather than ammonia
for pH control. Finally, that the specification of minimum fracture toughness for the
AP600 turbine is incomplete because units were inadvertently omitted.

Fuel Storage and Handling System. It was recommended that the "L" grades of
austenitic SS be used to fabricate large, welded components in the SBWR fuel storage
svstem to preclude possible SCC problems. It was also noted that carbon steels will
apparently be used for several components that are in contact with the SBWR spent-
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event of a loss-of-coolant signal from the reactor control system, or they can be
manually actuated from the main control room.

Suppression pool. A water-filled suppression pool is located inside containment
to serve as a heat sink during abnormal operations and accidents and to provide a
supplemental source of cooling water in a severe accident situation. Specifically, the
suppression pool serves to condense steam released by actuation of the safety relief
valves and to condense steam released into the drywell in a loss-of-coolant accident.
In the event of a severe accident in which molten core material penetrates the
pressure vessel lower head and enters the drywell, the suppression pool supplies
supplemental cooling water to the gravity-driven cooling system to flood the lower

drywell region.

Passive containment cooling system. The passive containment cooling system
removes the core decay heat rejected to containment after a loss-of coolant accident,
thereby maintaining containment within pressure limits. The system consists of
three independent loops, each containing a steam condenser, or passive
containment cooling condenser. immersed in the same external pools as the
isolation condensers. The system operates in the same manner as the isolation
condenser system, i.e., steam present in the drywell in an accident situation is
condensed in the cooling condensers, thereby rejecting its heat to the isolation
pools. The resulting condensate is returned to the three gravity-driven cocling
system pools, and noncondensable gases are vented to the suppression pool. The
passive containment cooling system operates by natural circulation without the use of
valves and is automatically activated when the drywell pressure exceeds that of the

suppression pool.
2.1.4 Control and electrical systems

Space conditioning of the reactor control room is achieved by a passive, natural-
circulation air system. This feature, combined with the gravity-driven core cooling
system, eliminates the need for safety-grade emergency diesel electrical generators
and their associated reliability problems in the SBWR. The control rod drives (CRDs)
are electronydraulic rather than the conventional hydraulic design of the standard
BWR, and the reactor instrumentation and controls are incorporated into a digitized
multiplexed system that makes extensive use of microprocessor-based control and
instrumentation modules.

2.1.5 Power-generation systems

The philosophy of system simplification carries over into the power generation
system as well. A tandem, double-flow turbine with 52-in. last-stage buckets reduces
the size of the turbine hall and simplifies the condenser and piping arrangement.
The complexity and cost of the feedwater and condensate systems are reduced by
the use of a single string of feedwater heaters. Variable-speed, motor-driven feed
pumps reduce cost and simplify controls. The pumps used to pump forward the
high-pressure drains in the conventional BWR have been eliminated by regulating the
feed pump suction pressure to allow the drains to be pressure driven into the

NUREG/CR-6223 6
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maximum of 0.05% copper and 0.012% phosphorous in base materials and a
maximum of 0.08% copper and 0.012% phosphorous in weld materials.

The RPV is clad with weld-deposited austenitic stainiess steel. No detailed
specifications are given for the clad material. Presumably, it follows current
practice, i.e., Type 308L SS weld material laid down by the submerged-arc process.
The bottom head of the vessel is clad with a nickel-chromium-iron alloy (apparently
Inconel 600) instead of austenitic SS to minimize thermal stresses in the welds that
join the shroud support brackets to the lower head. The shroud support brackets
are also Inconel 600.

The studs, nuts, and washers for the head closure are AISI 4340H or 4340
modified low-alloy steels with a minimum yield strength of 893 MPa (129.5 ksi).
The modified grade refers to somewhat lower allowables for phosphorus and sulfur
and a somewhat higher molybdenum level than in conventional 4340 steel. The
maximum ultimate tensile <'rength of the bolting materials is specified not to exceed
1172 MPa (170 Kksi).

The CRD components are principally Type 304L or 316L SS, although the
mounting bolts are AISI 4140 or related steels and the seal housing nuts are 17-4 PH
martensitic SS.

2.2.3 Anticipated operating environment

The vessel design pressure is 8.62 MPa (1250 psi) and the design temperature
is 302°C (576°F). Because the welds are outside of the peak flux region, the peak
fluence in the weld exposed to the highest radiation levels is only 1.41 x 10!8 n/cm2.
The calculated shift in RTypT for the worst weld is 29°C (52°F). The expected peak
neutron fluence at the 1/4 T location that was used for evaluation is less than 5.8 x
1018 n/em? for 60 yr. This corresponds to a shift in RTypt of 16°C (29°F).

The reactor coolant is high-purity water, but it contains oxygen that is produced
by radiolysis in the core. Although the SBWR uses a hydrogen-water chemistry to
suppress dissolved-oxygen levels, the dissolved-oxygen content within the RPV is
likely to vary considerably, being relatively high (=0.2 ppm) in the upper part of the
vessel and much lower in the lower part of the vessel. However, these are only
peneralizations: the actual distribution of dissolved oxygen level is a very complex
funcuion of the radiolytic reactions within the core and the internal circulation of the
reactor coolant within the RPV by natural circulation.

2.2.4 Potential material degradation and failure modes

Adequate fracture toughness of the RPV is the critical requirement for safe
operation of the reactor. The low-alloy steels used for the RPV do have high
toughness in the proper metallurgical condition, but their toughness can decrease
greatly under some conditions. However, as demonstrated by many vears of
successful experience, the requirements imposed by the ASME Code, 10 CFR 50
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which typically range from 0.17-0.24% sulfur, lower levels are commonly found in
the steels for new reactors in Europe and Japan. The steels for the Sizewell-B
reactor in the U.K., for example, were limited to 0.005% sulfur. Thus, lower levels
are well within the capability of commercial steel suppliers and should be specified
here.

The use of 17-4 PH precipitation-hardening SS (SA564, Gr. 630 (H1100)) for
the CRD seal housing nut also requires comment. This alloy is particularly
susceptible to SCC and hydrogen embrittlement when heat treated to excessive
hardnesses. !4 In the present application, the H1100 age-hardening treatment (4 h
at 593°C (1100°F)) should produce a hardness of less than Rockwell C 35, Severe
susceptibility to cracking sets in for hardnesses ol Rockwell C 40 or greater, which
is associated with age-hardening heat treatments at less than 500°C (925°F). If the
consequences of cracking are particularly severe for this component, the designers
should require a verification of final hardness as one of the acceptance criteria.

Bevond these observations, the following apparent errors and ambiguities were
noted in the materials specifications listed in Table 5.2-4 of the SSAR for the RPV
and CRD components.

* The specification SA182, Type 316L, as called for in the RPV instrumentation
nozzle forgings in Table 5.2-4, does not exist. It is assumed that the
specification SA182, Grade F316 is intended, with the maximum carbon
content of 0.02% indicated in the footnote to the table. Likewise, the
specification SA336, Class F8 or F8M for the same component does not exist.
It is assumed that the designers mean SA336. Class F316L. The F8 and F8M
designations typically refer to the cast grades of Types 304 and 316 SS
respectively, and the use of these grades for this application would be entirely
inappropriate,

« SB166 and SB167 are indicated as alternative materials for the
instrumentation nozzle forgings in Table 5.2-4. However, these specifications
refer to Inconel 600 rather than the austenitic SSs indicated in the "Material”
column of the table. It is assumed (as shown in Table 1) that the SB166 and
SB167 specilications should, instead, refer to the instrument nozzle bars and
seamless pipes, for which no specification is given. This is in agreement with
the SB564, the forged grade of Inconel 600, that is specified for the stub tube
material.

« For RPV drain nozzles, SA508, Class 1 is called for in Table 5.2-4. However,
this is a carbon steel, and does not contain the 0.75% nickel and 0.5%
molybdenum that is indicated in the "Material’ column of the table. It is
assumed that this should, instead, be SA508, Class 3.

¢ It is assumed that the SA194, B7 material specified for CRD mounting bolts
actually means SA194, Grade 7.

11 NUREG/CR-6223
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2.3 Control Rod Drive System and Reactor Internals
2.3.1 General description

The SBWR CRD system and the reactor internal components are vital to the safe
and reliable operation of the plant. The CRD system controls the reactor power level
and provides the essential safety function of promptly shutting down, or
“scramming,” the reactor in the event of off-normal conditions. Reactor internal
core support structures support the core and maintain proper core geometry and
fuel subassembly spacing. Loss of core structural integrity could disrupt the coolant
flow through the core or prevent proper functioning of the control rods and
consequent loss of reactor control. Other reactor internal components direct
coolant flow in the core region, position and protect in-core instrumentation, and
provide for the injection and distribution of burnable poison for supplementary
reactivity control. All of these functions are safety related, and the materials of
construction for these components are reviewed here.

2.3.2 Materials selection

The CRD system and the reactor internal components are described in Chapters
3.0 and 4.0 of the SSAR, and detailed information on the proposed materials of
construction is presented in Section 4.5. This information is summarized in Tables
2 and 3 for the major system components.

Inconel X-750 and 17-4 PH and Type 316L SS are the proposed materials of
construction for the majority of the key components in the CRD system of the SBWR.
Type 440 martensitic SS is used for the balls in the ball spindle assembly, Type 304L
austenitic SS for the outer tube assembly flange, coated Type 321 austenitic SS for
the CRD O-ring seal, and low-alloy steels for the CRD installation bolts. Cobalt-based
alloys are specified for components that are subject to high wear conditions, such as
the ball spindle assembly guide roller, roller pin, and guide shaft and bushing.
However, unspecified non-cobalt alloys are to be used for the buffer assembly guide
roller and pin.

For the reactor internal materials, Types 304L and 316L SS are specified for key
structural components (i.e., safety-significant and hard-to-replace components such
as the top guide, shroud, and core plate) in the SBWR. This is in contrast to the
exclusive use of Type 304 SS to fabricate these components in conventional BWRs.
The alloy XM-9 is suggested as an alternative material for several of these
components. Less information and experience is available for this material, but it
appears very resistant to environmentally assisted cracking in these environments.!5

2.3.3 Anticipated operating environment
The operating environment for these components will be reactor coolant at

=288°C (550°F). The expected SBWR water chemistry, taken from Table 5.2-5 of the
SSAR, is presented in Table 4. A significant radiation field is also present in the

13 NUREG/CR-6223
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In summary, it is not clear what metallurgical factors control IASCC in core
components at high fluence. However, the specification of a low-carbon grade is
neither a necessary nor a sufficient condition to prevent IASCC. Selection of the
wrong heat o. Type 304L SS (i.e., a heal containing an unfavorable combination of
impurities other than carbon) would result in an increased susceptibility of safety-
significant SBWR components to IASCC.

High-purity Type 304 SS has been specified for the SBWR neutron absorber
tubes rather than the commonly used commercial-purity material. The selection
appears to be based on the performance of essentially one heat of high-purity Type
304 SS. However, other high-purity heats tested at ANL did not exhibit superior
performance despite nominally similar compositions.32 This indicates that materials
selection cannot be based upon general composition and ASTM- or AlSI-designated

class alone.

Water chemistry. Water chemistry parameters specified for normal operation of
the SBWR are conductivity <0.3 uS/cm (at 25°C), pH =7, and electrochemical
potential (ECP) <-230 mV SHE. Hydrogen-water chemistry will be used in the
SBWR to suppress IASCC. The dissolved-oxygen content and the parameters for
hydrogen-water chemistry are to be specified in the future.

IASCC is closely related to other forms of environmentally assisted cracking in
high-temperature water in that the effect of water chemistry is similar in both
unirradiated and irradiated materials. A strong effect of corrosion potential on the
susceptibility to intergranular cracking of preirradiated materials has been
reported.27.39.43 The effect appears to be independent of whether the potential was
produced by water chemistry alone (e.g.. by reducing dissolved oxygen44.45) or in
conjunction with irradiation. The effects of solution conductivity on the
susceptibility of irradiated and unirradiated SS appear to be similar. The protection
ECP necessary to suppress IGSCC during CERT tests of irradiated Type 304 SS has
been reported to be <~210 mV SHE by GE investigators, a value similar to that for
unirradiated and thermally sensitized material (<-240 mV SHE given for the design
of SBWR).43 However, some data obtained for a high-purity heat of Type 304 SS
indicate significant crack growth rate for ECP values as low as 450 mV SHE.27.39

Thus, the ranges of ECP and conductivity specified for the SBWR should, in
principle, greatly suppress the susceptibility of the core internal components to
IASCC. However, the effectiveness of hydrogen-water chemistry and the practicality
of achieving a threshold ECP that is sufficient to mitigate IASCC in safety-significant
components have not vet been established. This is particularly true for the top
guide. Because of its position at the core upper level, it is not clear whether local
ECP surrounding a top guide can be suppressed sufficiently (to «<~-230 mV SHE) by
hydrogen-water chemistry. To achieve maximum resistance to IASCC, the sound
water chemistry approach proposed for the SBWR must be combined with careful
attention to materials selection and stress and crevice control.

Stress control. One of the major concerns regarding the structural integrity of
in-core components is the field failures of low-stress components such as the control

NUREG/CR-6223 16



blade sheath and handle. Design features aimed at mitigating IASCC of core
components in the SBWR include maintaining the effective stress below a threshold
level. This is an approach of potentially significant impact. The approach must,
however, be described quantitatively and specifically for each safety-significant
component. Stress in an irradiated component could be produced from a variety of
sources, i.e., applied load, weld residual stresses, fit-up stresses, thermal expansion
during operation, irradiation creep (stress relief), and irradiation-induced swelling.
During a well-defined constant-load test in hot-cell, the applied stress is the only
major stress component present, assuming the swelling-induced stress is negligible.
Results from such tests indicate that the IASCC failure threshold is influenced
strongly by applied stress and fluence 46

Therefore, minimizing the applied load in a given component would certainly be
beneficial if it is practical. However, the situation during actual service is complex
because there is no assurance that applied stress is the major component of overall
stress. There are many reports of field experience in which components have failed
under minimal applied load (e g., cracking in BWR core shrouds and control blade
sheaths). Therefore, special attention should be paid to the reduction of the residual
stresses due to fit-up and welding. Where solution annealing is not possible, welding
procedures should be optimized to produce the lowest possible residual stresses.
This problem has not been well addressed in the SBWR SSAR document,

Crevice control. The greatest threat to the integrity of the SBWR safety-
significant reactor internal components is failure by the combined processes of
IASCC and crevice-assisted stress corrosion cracking (CASCC). This also applies to
other components such as neutron absorber tubes. The systematic elimination of
crevices in the design of the top guide of the SBWR represents a very important
improvement over top guides in conventional BWRs.

2.3.5 Issues

Although several potential degradation and failure modes exist for the materials
specified for the CRD and reactor internal components, available data and
information are often insufficient to make a definitive judgment on the selection of
materials. However, the following issues should be raised:

¢ Accelerated thermal aging under neutron irradiation is possible in the 17-4
PH SS specified for several of the CRD system components. The data
available are not sufficient to provide a basis to determine the significance of
this potential mode of degradation.

¢ Both Inconel X-750 and Type 316 SS, which are specified for numerous CRD
and reactor internal components, are susceptible to IASCC. Heat-to-heat
variations, probably associated with minor variations in chemistry and
microstructure, appear to play an important role, and materials selection
cannot be based upon general ASTM or ASME specifications.
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Table 2. Materials of construction for SBWR control rod drive system

Component

Specification
Material of Construction (ASME or ASTM)

Spool Piece Assembly
Spool piece housing
Seal housing
Drive shalft
Ball bearings
Separation spring

Ball Spindle Assembly
Spool piece housing

Ball nut

Balls

Guide roller

Guide roller pin
Guide shaft

Guide shaft bushing

Buffer Assembly
Buffer spring
Buffer sleeve

Guide roller and pin
Stop piston

Hollow Piston
Piston tube
Piston head

Latch and latch spring

Bavonet coupling
(CRD spud)

Type 304L SS SA182, Gr. F304L

Type 304L SS SA182, Gr. F304L
Austenitic SS SA479, Gr. XM-19

Type 440 SS A276, Type 440C
Inconel X-750 .

17-4 PH SS A564, TPE30 (17-4),

Condition H-1100

17-4 PH SS A564, TP630 (17-4),

Condition H-1100
Type 440 SS A276, Type 440C
Stellite No. 3
Haymnes Alloy No. 25
Stellite No. 6
Stellite No. 12

Inconel X-750

Type 316L 8S, hard faced
with Colmonoy 6

Non-cobait Alloys

Type 316L SS, hard faced
with Stellite 6

XM-19

Type 316L SS, hard faced
with Stellite 3

Inconel X-750
Inconel X-750

19 NUREG/CR-6223
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2.4 Coolant Pressure Boundary

2.4.1 General description
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¢ e P 08 5¢ Other instr entation for water quality measurements
\ )¢ ed 1L L W { ¢ @ aentineq
I'he HWI i i TI'¢ ' \ ¢ lear [ hutdown svstem cooling SVSTLer
lesigned MOVt ( | ¢ mpuritie rom the coolant that can
{ ictival re at ¢ I radiation fields in the piping hough
) \ { { \ €1l Dre 1mabiy SETVEes {( remove \i"‘\{y“\‘l'(i
i that wou ( t I up in the coolant and create potential
y n problen ['1 \ o1 VO ¢ P ¢ W er at rate o | of the rated
£ {€eal 19} \ in CO | € ¢ i1 ¢ water omponents re
1€ ned | 8 1 N lance with api ble ASME ( 1¢ ind U.S. NR(
}‘ 1O | 1€0S
‘ NURE CR-622




2.4.2 Materials selection

minated through the use of natura convective coolant

( ilation through the cort Most of the remaining RCPB components

LI 1 Leart P I 10z2l valve bodi¢ and flanges, as well as the feedwater

V1 olati ndenst DT re to be made of various grades of 0.3 carbon

'he only significant excepll ire the isolation condenser condensate piping,

vhich to be made o ype 316L austenitic SS (0.02 carbon max.), and selected
ipir nternal components, which are to be made ol various low-alloy

Section

i thhrotiot 1120 Of
( Uil il 1 use Ol

and
s oOf

o1 I mn | n Table 5.2-4 of the SSAR do not specifically indicate the use of
ype 316NG S nless that is what is meant by the Type 316L SS (0.02 carbon
nax pecified for the isolation condenser condensale piping T'he stabilized nickel
base alloys are al ot specifically called out, except for the use of SB564 [or the
reactor pres re vessel stub tubes discussed in Section 3.1 above The SB564

the

2.4.3 Anticipated operating environment

"t

i SBWR water chemistries for the condensate treatmeni effluent

operation, shutdown, hot standby, and

[able 5.2-5 in the SSAR) are consistent

vith od practice based on BWER Chemistry Guidelines., The conductivity

for the condensate treatmerit ¢

and feedwater and the CRD cooling water

below

insemvice

U\'\"{‘!'l able ASTM

mponents hi entional BWI The use of carbon steel for the main steam
piping and feedwater pipin consistent with conventional BWR practice and
{ .4 ’ nrohlen ) nl vther gignificant note ntial SC{ ;‘H'"Y“.“TT.\ i



e marter ' teels are very susceptible CC when Lardened
I t i cat mu D¢ (aKen |1 ensure pri 1eal
V1 ) 0)0) Il | =) en lor ' 1 ¢ )
{ 20! Y ) il A < . A ) LIt 101 > Cdll
cvgenated wat ticularly under crevice conditions. Proper controls of
| Xy )ola 1110 avoildar Ol crevice geomeltries in
\ | 116 tha ] 1 tani wilh deionized or demineralized waler with
tr i ¢ XV wil used lor linal cleaning and flushing of the
{ I . W lea iny corrosion problems. However, the SSAR
) | elne th L} 1D wale da the condensate storage tanks will have
\ 1 1 1 1
Tl o | ( | 1 11 i1 ) 1SS ed-oxveel 1evels ].”1 1’{0", "
¥ 1 tr ) r 3 ' r B 1 | r i $ t v
b ‘ m the [his fe¢ ire sh be adopted to furthe:
1 4 11t ¢ re i COOlaAnt svstien
1 Y } > f t ey y 1Y Mt \ t ~lir
1 ( HWI i €ca I walel edariul SITULGOWT sSySsielTl cooling
( e d ved 1 undiss ed impurities {rom the coolant
{ i 1 nda I 1le pote 1 1Hation neld and corrosion
Howeve wstem reprocessing rate ol | ) the rated teedwater flow
r low I £a It} i idequa maintain the nigh-quality
v that GE ha ! i ! YyBWEK
Issues
W materials blen reset n the RCPB components However, the
Iy ? 1y 114
The SSAL that o ereiata ¢
| 5 { 1 ’y v r vv . i
{831 ¢ int madte s | Lype 41

A ) | A Ay
!
o ) vy ! ) P My
1ILICS 'l { LYy
el i ondage €1 e pipir
} ) § x - v 12 ' ¢ 1 { t § ¢ 3
[ e K Oy i | )€ ( LILY Called 18 10T LI
| 1 I 1 ' th ’ v | + $
BWR, excey B564 fo € rea I' pressure vess stub tubes
1 4 1 1
F1¢ yB564 { fi { A W B i1 1 al. but coul Fy¢
L { r ; AM rade in tl
't ' { 1 p terd "ttt n the m t o217
1 i | ¢ ¢ 1 ¢ riLernai | L1t [lall yLEedAlll
P 1 [ ¢ cepl { ( { \ n nhardened evels higher
th t 1ire 1m e 1lak f S11re roper neat treatment ol tnese
1 ' 1 R " ’ AA 4 v e ¢ A " tor
ALLOY t ‘ i ¥ Z i FTACK 1I1 [ld L0 Walel
yartic ¥ ’ v [y p { 1 coolant \“xﬂ\l,‘"‘f
ATT 1191 Y y 1
‘ NLU L 4 L ‘







Main Steam Piping
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Main Steam Line Safety Relief Valve (C ont'd.)

i ° ['vpe 630 PH 55 SA564. Gr. 630
H1100
W £3¢ AIST 4161 H low A304. Gr. 4161 H
A 3 VvV SLe¢ O .4 Or 15( '\1 "\’.)/
C-1.4 Ni Mo (German grade
! 3\ OW il
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Feedwater Piping yeamle 0.3% carbon stee SA333. Gr. 6
. Isolation Condenser
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2.5 Engineered Safety Systems

2.5.1 General desciiption

¢ ‘ BWI N Py, |
) |1t ’ 1 L} 1 | ) er: : ()11
¢ § Ma O 1 () 1€ { Wi
[he l o Wa vstems in 1de o inmernt, the
A P ( 1 H1¢ conta ment 3 { 3" €1 LI¢
L . . P ' T y VO { SVSLer 'he emergency core cooling
I V-Arive 0oling vstierr nd automaitif
¢ 4 " ¢ ¢ f ~17 I'¢ """ t ¢ 1( I 1""& ': u 1 "’nl'v
{o . - t aria sntainment " A ent situatior
I i CDre { | Al fornm part of the reacto
2.5.2 Materials selection
l . { { ¢ \ construction i1 1N ipated
{ { ' [ €] L I¢ 1S rii¢ { :‘1:.'1' H.U O 1he >~ w-\i\
! . Lhe L [ ¢ g 1 ed Section 6.1 [his informatio
rized I { . np ey
'he e ction pi sophy for these systems appeat {0 bhe one
i fvil the \ racde O 1 tenitic SS (Type 3041, or 3161 o
( ) \ iting i1 nta with reactor coolant or emergency
( | Wit () { ent { %0 \ made of carbon or w-allov steel
[ neralize pecified r the SBWR core cooling water and the
| ¢ ! thi 1 i the SSAR state that chloride leaching from

'®
~
O
—
a
X
-
=
r
-
7

. I .
' | ) 4 nitr n atmosphere } O9) at temperatures below
i {

Isolation and passive containment cooling systems. The principal components in
the isolation and passive containment cooling systems are the condensers and the
. ited p ithe i ion « 1¢ er tubing and pipi: ilso comprise a part of
hie reactor re bou he isolation condensers will normally operate in

.

tact vitt 1€1 i1 primart (1€ ina ttion pool water on the

0 lan ¢ botl f )¢ Ires we elow 1007 [he PCCS ndensers wil
t ¢ ¢ ¢ 1y de, b ne primary e will rmally
} v | { n } ) i \ 1 1 tedd Sar \




B&( ! ! ¢ ) rmally be darny he PCI piping wil
! [ ] O1 11 it £s 1O0 ¢
3 Automatic depressurization system. The automalic depressu ition systen
; f eight salety ellel alve ind six depressuri 1ition valves hese
( ' eve excCe . m pressure during off-normal situations
ympletely depressurize the sysiem 1l a 1055 of coolant accident situation, thereby
enablin he gI v-driven coo svstemn to flood the core. The safety reliel valves
[ LNt e . top of the main steam lines in the reactor drywell and discharge
hi gl es routed to quenchers located in the suppression pool Four of the
jepressurization valves ire mounted on horizontal stub lines connected to the
reacior press vessel at about the elevation of the main steam lines The
mairiy { W ( (1¢ pres 7aliol LIVes are H'-»‘].(fl‘q“; cn horizontal lines v"IdH“}HHL
ach 1 stear 1€
lhe four depressurization valves located on stub lines from the reactor pressure
eccel operate with their interior suriaces nominally in continuous contact with
1 ted steamm al Zeolell However, Lheill cation in St lines somewhat removed
from the pre re vesst nean that they will probably be at a slightly lower
‘ erature, and tinuous condensation and refluxing of the reactor coolant is
K¢ occur inside the valves and 1b lines

Gravity-driven cooling system. The components f the gravity-driven cooling

t with deionized water at temperatures well below

ysierl arg y operate in contaf 1]
\ . = +} I TR RS " TN - pon—— o s e
W)« sinilar to the suppression-pool Col iponents

2 54 Potential material degradation and failure modes

Containment., Corrosion 1s not expected to be a problem under the benign
conditions present in the containment system, ind the carbon steel specified for
most of the containment components should perform satisfactorily The suppression
ool liner and vents operate in contact with deionized water at temperatures well

below 1007°( hese components are specified to be made of Type 304L SS, and this

material should be satisfactory for this application

The Tvpe 304L SS specified
I !

Isolation and passive containment cooling systems.

for the PCCS components should provide satislactory Service However, it is not

}
ish corrosion resistance of Type 304L SS is needed for the inlet
piping to this condenser. In the case 0 the isolation condenser, the SSAR does not

construction for the condenser tubing. Type

pecifically spell out the material ol
e preferred material to avoid excessive general
wastage in this normally wet environmentl The Type 316L S5
sate piping should be satislactory However, the carbon steel

304L or Type 316L 55 would be

COrrosion ant

specilied for the conden
for the stea Nping may suffer excessive general corrosion and wastage il
01 ensatic oCcours 1t his ¢

Automatic depressurization system rhe four depressurization valves on stub
lines from the reactor pressure vessel are parti ularly susceptible to SCC because 0l
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|4 adu M £ > i !
— y . For , struct ASTM /ASMI \
™ Gravity-Driven Cooling System (cont'd)
Flanges Forging O SA182, ( I 1 7 ¥
} '[i \ ¢
gate, squib Forging SS SA 182 ; 1
eCK) r F31t
{ Siing o 1 SA { ("}
F3M
Bolts Bar lloy steel SA193, Gr. B7 «
- B7M (AISI 4141
Nuts Ba: Low-alloy stet¢ SA194. Gr. 7 or 7™M
AISI 4140 steel

Automatic Depressurization System Depressurization Valves

Internal Forging e SA182, Gr. F304l
F3161 coolant




2.6 Turbines

' 2.6.1 General description
| t { 1 ¢ el eloctty
I P \ { ( ! i OCclale s L1 \ eIl
t ! { IT¢ 1 i 1 4 1e-1HOW W
r 1n i (s 100 ) 3 I extracinior
l ) f 1 W I'e roine, wi nas four extraction poin
| { ) ¢ ire eeawaler neating 1! exhausts into the main
1¢ ¢ 1 l { ¢ £ { | £]-\ L O Ij"‘t turbine 1S
! e] er fr eam and drait lowest extractio
| ¢ ( nree-pnase pmm synchronous
i f { \ rog 001ed rotor
ne I | ( I ¢ ¢ l 1 nrou fou steam lead ne from
€A ! \ t ¢ { ] Xpanded ially across several stages of
‘ {1 ) ' | f ndrica 1ell, in-line HVSs are installed in the

\ ) ] efore it enters the low
P ¢ rHine {1 OW- DI 1 tur | ¢ team is exparn | axially across
f ' ¢ { \ 11 K
['he f | i ictured 1ot a e-piece lorging ind includes
\ field : ided { 510 [he
| ! eel o Material nrot
t
) 1¢ 1K e | { 101 I inda ¢ micri
{ § { \ 11N 1t ' I f K 1e1¢ ts t
¥ ¢ rf { 1 v rrY
X 1 N [ [ f ) €
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2.6.2 Materials selection
i . f } . ’ P - o ’ 3 1 :
t i1¢ ld € i 1 pa > 11t dentiiieg ontly i !4I'L\f
} ’ ' 1) R y v 1 1Y 4 "o 171 $ | + 1 H
olvbdenum-vanadiu 110y sleels I e ost widely used steels ol this
4 } A A 1 v ¥ } g t {lpcrr . 1 x
\ Y e 3.5Ni-Cr-Mo-\ [ ) ibly the description is left suffliciently
a2 ; ‘

1l so that other materials in t! class could be cor jered 'he SSAR specifies

that the steels will be vacuum melted or vacuum degassed by pro s6:5 th

1 mi W 0OC( I'e ¢ and provide adequate fracture toughness NO detailed
pecilicatior or relere ¢ i1 Ven 1Istead, the material characteristics are
lescribed only in general terms that are certainly unexceptionable, but vague [he

1 I 1M & CO OLlleX { WIS pra Ccl icentra
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(ra (emperatire FA ind highest Charpy V-nol enerqgies obtainable
con { ! f 14 uenched Nt Mo material at the sizes and
2 6.9 Anticipated operating environment
{ ) ent {o h-pres turbine and the lirst stages ol
f { ary ean As energy is removed from the steam, it
begl ndense e exa haracteristi f this process will depend on the
jetailed the od I he turbine. but in a typical nuclear low-pressure
rbine, the M beg o condense at the third stage ol the low-pressure rotol L
AL 1 tl A tair 9% water and its temperature is 160-170°C. At
e la ‘ the water conte n the steam is <13 and the temperature is below
1O Based upon the proposed operating water chemistry 1o the SBWR, which is
[ ¢ lable 4. the impurity levels should be very low, but the dissolved
wxyvgen level could be 0.1-2 ppn Although the hvdrogen-water chemistry proposed
for the SBWI ould be very effective in maintaining low dissolve d-oxvgen levels in
he reactor vessel and associated piping, radiolysis still occurs in the core, and the
team te to remain relatively high in dissolved oxygen 19 It is in the wet steam
{ onment that SC( the turbine s most likely to occur.48.50 Although dissolved
xvigen is detrimental for SCC of the turbine alloys, it i beneficial in preventing flow
rated ToOSI the high-velocity moisture separalors

2 6.4 Potential material degradation and failure modes

is weil known that in U class of materials cleanliness is critical to achieving

high fracture toughness and resistance 0 (€mpel embrittlement.®! The minimum
values cited for the fracture-appearance-transition temperature (50 FATT) of less
than -18°C (0°F) and for the Charpy V-notch energy at the minimum operaling
temperature of each low-pressure disk ol al least 81.3 N-m (60 ft-1b) are typical ol
hose reported for modern rotor steels, @V although they are not necessarily
tent with the claim in Subsection 10.2.3.1 of the SSAR that

e 1 inée naterials have the lowest [racture appearance franstion

temperatures (i \T'] and highest Charpy V notch enerqgies obtainable, on a

consistent basis, from water-quenched Ni-Cr-Mo-\ material at the sizes and

renath levels sedd

Inasmuch as actual levels of FATT and Charpy V-notch energy will vary with the
iize of the part and the location within the lorging these variations must be
considered in the acceptance of a specific forging. Adequate [racture toughness is to
be ensured by Charpy V-notch tests on selected samples which are then correlated
hy the method of Longsdon and Begley.=« In addition to obtaining high [racture
oughnes t is important to avoid defects I'he P;m;nmr-f! preservice inspections
include 100% volumetric (ultrasonic) inspections and suriace visual examinations
All subsurface indications will be either removed oI evaluated to ensure that they
vil ot grow | e whit will compromise the integrity of the unil during
NUREG/CR-( 18
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2.7 Fuel Storage and Handling System

2.7.1 General description

lhe fu rage and hand sstem for the SBWR does not constitute a part of
the reactor | ssure boundar Nonetheless, failure ol critica ymponents in this
vStel d have ! ety 1mp 11101 ind election ol appropriate
' ria f constru {for these components is an nortant safety consideration
ne principal ety conce 1 ciated with the Iue torage and handling systen
ire (1 Jaintaining proper cOOlnf the stored spent fuel to prevent overneaung
nd cladding damage aina (< maintaining proper spdacing ol stored fuel elements
hooth new ind sper 0 prevent a cidental formatiol of a critical geometn ['he
wale n the spent fuel storage pool also provi les radiological shielding

2.7.2 Materials seiection

ne I rage and i Chapter 9
ection 9.1 ol tne AR construction for
H cal components are f to be used

for construct the sper (tube side)

pump intemm nd prefilt 1e new and

pent fuel storage rack: remaining
ponents are presumably ]

2.7.3 Anticipated operating environment

rhe as-received new fuel assemblies are initially stored dry in storage racks in
] 11 { ' 111l § o " ¥ . 1
ihe new fuel s srage vaull in the reactor building. After inspection, e asst mblies
' 1 to the new fuel storage pool to await loading into the reaclor The spent
116 nents are stored in the spent fuel storage pool
I .

rhe anticipated water temperature and chemistry conditions for the spent-fuel
{ . ¢ i har lin \ T T "ot . 111 varized . y T it h ’ )
storage and handling system COIMmMpore rnts are summarnrzed I1r able 7. with walter
} mictr mnaintained throuch the 16 f lemir ralizet m the oireinl tin [ WVing
hemistry maintained uiiougl 1s¢ 0of demineralizers in un¢ circulating coolineg
vetemn. Most of the critical components will operate lor extended periods ol time in
ontact with the spent-fuel storage pool water or the isolation condenser/passive

ntainment cool DOV water

2 7.4 Potential material degradation and failure modes

[he greatest threat to the inte of these components under the anticipated

{1 5 1 i § Tal 1, 1. '
conditions s Iall by corrosion-reialed procesrses SUCH Processcs could take the
} 1 1 " : Tale

form of either general corrosion or localized eflects such as Crevice corrosion or SC(
rhe susceptibility of the three categories ol proposed materials ol construction
v v ' } \ i1 te
11 S, aluminum, an irbon steel failure by corrosion in the anticipated

nge ol operal environment will be discussed €
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Use of Cobalt-Based Alloys

{ { \ve | l De 1sed 1in n car reacie appicatiol
t ‘ ' | e and rrosive wear | equire [The \pplicatio
¢ W { wvrcl 1a ! ¢ ] yLriace Ol valvt na i wea
\ n CRI ponel ' ¢ IS wilel ma iIT 1Nt of cobal {ron
\ { ed t I oolar o the core and activated by neutrons to 101
I mitte ‘ 1Dsequ ntly trat orted through the
) | depd L ¢ Il Iriace or incorpot ed | O the Ooxid¢
n ' rfa rhe resulting radiation field can create exposure

L | ! L A LI ¢ il ] L | 'SOLire
ention | e in the SSAK { th e of cobalt-based alloys in the SBWR
¢ n ina 1t )t clear what all re used for these applications In the CRD
el il temmpt has been made nimize the presence ol coball-containing
y I the \ { t} re ¢ AR (Section 12.3.1) indicat that the

A ( { f the austeni ) X Dol inside and outside the core |

a 11 ot part rlv stringent. In the case of the XM-19 alloy

el 10  { ('RRD) 1 11)¢ the cobalt o\ mited to U.0D

How t )l base alloys conll ¢ L0 specified as hard-lacin materials for

¢ CRD mponet 1n the BWR where high resistance to wear | recaired

Oy ¢ clude the traditiorn tHavnes 25 and Stellite 6, as well a the less
1y used tellite ind 12 ddition. the cobalt-free hard facing alloy
10V O eqd 1 i £ast e i i 1l 1l the ( }\'l‘ sysiLem ]l‘\_ use ol {}“‘*

\ 4 nanrized L ADIE

he EPRI ha DONSO work in recent vears on the
elopment and evaluall the standard hard lacing
ys 01t Several pro resulted from this research
rt. including the NORE that can be cast or wel
yosited as hard facis studies have demonstrated
it, in the weld-deposite and corrosion resistances
nparapie that of Stel deposit 10 gate valve sealing
face ind € I for example, three ol the
YREM alloy wowed somewhat t or wear resistance than did the Stellite 6
1 <‘:,“

Despite the encouragin esults. no mention is made of the NOREM and other
halt-free allovs or their possible u in the SBWR SSAR. Because of the increasing
phasis on ALARA in nu lear plant ¢ it is recommended that
e NOREM allovs be considered as 1 cobalt-base hard facing
iterd currently specitied tor tl n components listed in
w‘\(‘ [y




Table 8. Proposed use of cobalt-based hard-facing alloys for selected CRD system
components in the SBWR

Component Material of Construction

Ball spindle assembly guide roller Stellite 3

Ball spindle assembly guide roller pin Haynes 25

Ball spindle assembly guide shaft Stellite 6

Ball spindle assembly guide shaft Stellite 12

bushing

Buffer assembly sleeve Type 316L SS hard-faced with

Colmonoy 62

Buffer assembly guide roller stop Type 316L S8 hard-faced with

piston Stellite 6

Hollow piston head Type 316L SS hard-faced with
Stellite 3

Check valve ball Haynes Alloy (unspecified)

4Cobalt-free alloy

43 NUREG/CR-6223



Westinghouse Advanced Passive Pressurized Water Reactor (AP600)

(e roj \ Leria I con MICUO! Were review i £ the {ollow g read )1
1 1 nd el in ¢ Westinghouse Advanced Passive 600 MWe
{ Wale | 1 ( T APGOO
]
- E“’ toy DI
o ( ro yd drive (CRD V wnd rea nternal
. Rea 14 VSLer
b ngineer 1€l 3 term
b LEall enerator
. bines
b4 Fue % B4 \nd nat dlin 'Y eIl
M )t ormatit 1 { design and proposed materials ol construction
the APS00 utilized in this study wa btained from the AP60C SSAR.¢ This
ion W pplemented by descriptions Ol the AP600 published in the
cl : terature.’ No direct contact was made with Westinghouse personnel
e 111 he APGOO d 1 ( mate
NURE ! s o:.
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J LTS . P \n1 oversized pressurize .
[ I'¢ { 1 { [ i1 ] § rna e 1 ed L power
t " I L ]
[he reaf { I er ut | n the same manner as i1n a
l convent 11 PWI ) Pre { r n | he coolar provided by
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3.1.2 Steam generators and coolant pumps
he AP600 steam generators are 1ed to be readily accessible for inspection
| repai [hev include a steam separator area sludge trap with cleanout provisions
e f ! enerator channel head is designed for the direct attachment ol two
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'he 1800-rpm turbine consists of a double-flow high-pressure section and two
jouble-flow low-pressure sections he high-pressure turpine has extraction
connections for two stages ter heating The high-pressure exhaust steam
provides for one stage ol ieating in the deaerator he low-pressure
) roHine have extraction connecticas for tour stages ol feedwater heating Moisture
eparator reheater which extract moisture from and reheat the steam, are an
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atmosphere through power-operated relief valves or spring-loaded main steam safety
valves when either the turbine generator of the condenser is not available. Three
steam generator safety valves are utilized in each of the two steam headers.

The main feedwater system supplies condensate from the deaerator storage
vessel to the steam generators. The condensate system condenses and collects
steam from the low-pressure turbines and turbine steam bypass systems and
transfers it from the main condenser to the deaerator. Both systems are designed
for improved control of dissolved oxvgen.?

3.1.4 Safety systems

Similar to the General Electric SBWR, the AP600 concept incorporates a
number of passive safety system features. These include the following:

* Core decay heat is removed by a passive residual-heat-removal heat exchanger
located in the in-containment refueling water storage tank, which serves as a
heat sink. The system is actuated by opening two normally closed, fail-open,
air-operated valves, and circulation is by convection.

¢ Coolant makeup for small leaks is provided by two core makeup tanks filled
with borated water and located above the reactor cooling system (RCS) loop
piping. The system is actuated by isolation valves that open automatice lly in
the event of low water level in the pressurizer, and makeup flow is by gravity.

* Coolant makeup for large leaks (including loss-of-coolant accidents) is
provided by the two core makeup tanks described above, plus two gas-
pressurized accumulators. Additional makeup water is provided by an in-
containment refueling water storage tank located above the RCS. An
automatic RCS depressurization system reduces system pressure to permit
gravity (hydrostatic head) flow from the tank.

e Borated water and pressurized nitrogen tanks located outside the
containment provide core spray to reduce iodine and cesium concentrations
in the containment atmosphere in the event of a core release. The system is
actuated by the automatic opening of a normally closed valve between the
nitrogen and borated-water tanks.

* Containment cooling to carry RCS sensible and core decay heat away from the
containment structure is provided by natural air circulation between the
containment structure and the surrounding concrete shield building.

* A low-power-density core provides increased design margins of safety and
extends the life of the reactor vessel by reducing the radiation levels at the
vessel beltline.

¢ An oversized pressurizer is used to increase the transient operating margins

and to eliminate the need for power-operated relief valves.
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3.2 AP600 Reactor Pressure Vess

3.2.1 General description

el
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3.2.2 Materials selection
'he materials of construction specified for the AP600 reactor pressure vessel
components are summarized in Table 9. The specifications are vague oI incomplete
in some cases, and it is not always possible to identify the precise alloy to he used
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“Appurtenances” to the CRDs and instrument penetrations are specified as
either SB166 or SB167 and SA182. The SA182 specification covers literally dozens
of low-alloy steels and SSs; however, based on current practice, the critical
components will be the tubes, which are probably covered by the SB167
specification, and hence, are either Alloy 600 or Alloy 690, both of which are
covered by the specilication. Welds between the low-alloy steels and austenitic or
nickel alloys will be made with nickel-chromium-iron Weld Metal F-Number 43.

3.2.3 Anticipated operating environment

The vessel design pressure is 2485 psi and the nominal design temperature at
the pressure vessel outlet is 343°C (650°F). The reactor coolant chemistry (Table
10) is consistent with that used in current PWRs and the EPRI PWR Primary Water
Chemistry Guidelines. 74

3.2.4 Potential material degradation and failure modes

Adequate fracture toughness of the RPV is the critical requirement for safe
operation of the reactor. The low-alloy steels used for the RPV do have high
toughness in the proper metallurgical condition, but under some conditions, the
toughness can be greatly reduced. However, as demonstrated by many years of
successful experience, the requirements imposed by the ASME Code, 10 CFR 50
Appendix G, and U.S. NRC Regulatory Guides 1.43 and 1.50 are adequate to ensure
that the as-fabricated vessel has adequate fracture toughness.

In service, the primary factor leading to loss of fracture toughness is irradiation
embrittlement. However, given the requirements for low copper and phosphorus
levels in the low-alloy steels and the controls on other alloying elements, the
predicted loss in toughness based on the correlations given in U.S. NRC Regulatory
Guide 1.99 Rev, 210 should be conservative because the operating temperature of the
veesel 18 comparable to temperatures that comprise the database upon which the
correlations in the Regulatory Guide are based. Although no detailed comparison of
the neutron spectrum for the AP600 with that of conventional PWRs is provided, the
effects of any differences in the spectra (in terms of effects on irradiation
embrittlement) would be expected to be extremely small. The estimated RTprs at
the end of the design life is only 51°F, far below the screening criterion in 10 CFR
50.61. The calculated upper-shelf values at the end of life are above 50 ft-Ib,

325 Issues

Although irradiation embrittlement is a critical issue for the RPV, the fabrication
procedures and restrictions on copper and phosphorus levels appear adequate to
assure that the loss in toughness over the 60-year life is acceptable.

Another potential degradation mode for the vessel is fatigue crackh growth.

Extensive experimental data show that the primary determinant of accelerated,
environmentally enhanced fatigue crack growth rates in low-alloy steels is the sulfur
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) 10. Ked nmended specilication for AP60OU reactor cooia Wt ! .
Parameter ypecilication
i
‘ I cal condu 10 ymhos/cm at 25°
, . "N 10) ¢ @ M termt rature
, pH W 10.5 at root \peratut
.0 at operating temperaturt
) ed oxy ‘ Controlled to <0.1 ppm for T > 2007
with hvdrazine additions prior
operation: controlled to <0.005 ppm
with hvdrogen additions during power
operations
3 ( } " i) '; y YD1
J I wricle 0.15 ppn
Hvdt o1l )5 1 W) CI ST kg Ho O
y nended lid J P
1 1 ( ) 1 « L
p pH control agent LiOH Coordinated with boron additi
Boric acid 0 to 400 ppm as boron
\ 1.0 ppm
Aluminun .05 ppn
Calcium + magnesium 0.0CO ppn
Magnesium 0.025 ppmi
y
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3.3 Control Rod Drive System and Reactor Internals

1.3.1 Genera! description
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313.4 Potential material degradation and failure modes
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not specific as to what steps have been taken to eliminate crevices in the design of
the AP600 internal components.

3.3.5 Issues

Potential degradation processes other than thermal sensitization and IGSCC
applicable to core internal components irradiated to high fluences are not addressed
in the AP600 SSAR. These processes include (a) IASCC of nonsensitized steels,
(b) irradiation-induced degradation in toughness and embrittlement near end of life,
and (c) the integrity of weldments at high fluence. '

Unfortunately, available data and information are often .nsufficient to make a
definitive judgment on the materials selections to avoid these potential degradation
and failure processes. However, sufficient information is available to raise the
following issues:

Accelerated thermal aging under neutron irradiation is possible in the 17-4
PH SS specified for a number of the rod cluster control spider assembly
retainers. The available data are not adequate to provide a basis for
determinizig the suitability of this alloy for this application.

Both Inconel X-750, which is specified for the CRD internal latch assembly
springs, and Types 304 and 316 SS, which are specified for numerous CRD
and reactor internal components, are susceptible to IASCC. Heat-to-heat
variations, probably associated with minor variations in chemistry and
microstructure, appear to play an important role, and materials selection
cannot be based upon general ASTM or ASME specifications.

It is not clear what specific steps, if any, have been taken to maintain the
elffective stresses on AP600 reactor internal components to levels below the
threshold for IASCC. Similarly, the SSAR does not specify what steps have
been taken to eliminate crevices in the design of the AP600 internal
components,
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11. Materia for AP600 Reactor control rod drive system and internal
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3.4 Coolant Pressure Boundary

3.4.1 General description
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3.5 Engineered Safety Systems

1.5.1 General description
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3.5.2 Materials Selection

| ¢ POSE 11 { ] ) { T ' ' nt the pa f
ntainment and o« T ¢ 1! n i { in Table 13 nlortunately
nectl 110 ¢ { £ I'a 1! f 1| | material Ol constructior
( 3 ] 1 Yy ,f,' e 1 f ) I 9 ¥
3.5.3 Anticipated operating environment
he ant yate operatii environime e arious componer ol e
1 ered et { mmarize n Table 13 [he er ronments
11 from relative 1) I 1007C at 1 atm pressure contact with borated
ale [ ore o ilier g (3157 it 2200 p pressure |ir ontact with reacto:
00 ‘ I { \ | 5 the nponent is ¢ 0 benign conditions for the
1 maiority of {1 e, with more severe conditions imposed « in an accident or
ther fi-1 ‘ i Nese case the materi nstruction must be
alible vy ¢ evere « aiio { { { ¢ Froce 3 € uco a
:SCC an ngy tlernent are f Conce
1.5.4 Potential material degradation and failure modes
Core makeup tanks. The core akeup tar ire part of the passive core cooling
vatem and provide coolant makeup for small leaks they are filled with borated
locate 1thove the op piping of the rea ) COOLNE svstern he svstem is
T e b { | Ve that ope tutomatic nt of low water level in
¢ pre rize nd akeu OW t ravity Al 1l1s for the tank to
be made of SAD a AH0 inc Lhe idin { ASME Code Section
IX weld metal A F-43
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lifferer manganest bdenu ind manganese-molybdenum-nickel steels, and
thie tual alloy b)e { annot be i ied without further information as to the
| ype and cla ¢ tende Oy believe AS533. Type B, Cla p
1lo { {} {4 { f lear essure vessel 'hi Hoy
I | § i} { 1] 11101 1 the rema ng three alloy cluded
’ e AD ] \ ld 1 bablv a e satisfactory
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; { ) } )1} 1 \ 50X \ AN O DI yabis D¢ vl | laclory nerte
{ 114 1 ! f { 1116 { i
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y v \ : b 4 \'. lv’l { ol ' ' X " T ’ l \ “. < eI y)' 1SS 65
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wi A ! eld cladd alloyvs in this composition rangt should be
islactor b ! v 10 De ed is probably Typ¢ 3116 or 316L austenitic SS filler
't ect )€ ( tion F-43 includes no fewer than | nickel-base
alloy but the a sed here is believed to be IN 82 or IN 182. Both ol these
) 1 isfa t h pplication, with IN 82 probably providing better
I r ince t ' ibility of some of the other F-43 alloys uncertain
L
Passive residual heat removal heat exchanger Removal of core decay heat i
) ided by a passi esidual heat removal heat exchanger located in the in
ontainme refue 1ter ve tank. which serves as a heat sink. The system
, actuated by the ¢ of two normally closed, fail-open, air-operated valves, and
( 181 by ctiol The mate s specified lor the plates, forgings
l laddir ind but this component are identical to thost discussed above lor
he core makeup and the same comments apply In addition, the heat
hangt 1Dl be n of an SB163 nickel-iron-chromium alloy or an
e il ) 1D pecil 1 n cover eight alloy compositions but the
! intende 1 eved he Inconel 600 (UNS NOb6LO) This alloy has
experienced 1l oblems in PWR steam generator service, but this failure
le would not pected under normal operating conditions al temperatures
1007 Exposu her temperatures where cracking is possible would only
brielly du ceident conditions, and sufficient time al temperature Lo
¢ Crackirng unlikely Nonetheless. Inconel 690 (NO6690) would be a
etter cholce r th at exchanger tubing in this respect. The use of SB163 alloys
N02200 and NOZ wominally pure nickel) as well as NO4400 (nic kel-copper) 18
{ recommended applicatior he performance Ol the remaining SB163
allo (INOBE 10 ar 1I8825) would probably be sall dlactory
In-containment refueling water storage tank. The refueling-water storage tank is
located above the tor coolant system (RCS) and provides additional coolant
makeup walt irt of the passive COrt cooling syslem An automati
epressurizatior reduces svstem pressure to permil gravity (hvdrostatic
head) flow from 'he SSAR does not § an ASME specification for the
aterial o COn or il 1N ¥ xCept U« dentity it as SS (austenitic?) ',1}.3H‘
tiffened w ! ectio { nears that structural steel modules will also
part ol the wa Because the tank will normally operate at well below
00« o 10) he a problem nd SS should be satisiactory Carbon and low
\ uct | ( | vith the refueling water will suller general corrosion
ind istage will {1 eltect 1 he taken into account in the desig!
Passive containment cooling system water storage tank. This tank is located o1
the roof ol the < {aint 1t building and holds 1300 m¥ (350 000 gal) of water lor
nhanced coolil ( tainmer hell in an accident situation. The materials ol
nstru 11 Al d on n SS liner on reinforced concrete walls Jecause
f the benign 1 the erating environmt no materials problems ar¢
reseen e
Sparqgers. | ! water {rom he in-containment refueling-water storage
M NURIE CR-62 }
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"Her these ¢ {itics > < f he
yurities can build up in thest 1N .. Where these conditions exist, Lne
L on 1 il the 1 .
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Table 13. AP600 engineered safety features component materials and anticipated operating environments

Material of Specification Operating Environment
Component Construction (ASME or ASTM) {(Normal and Accident)
Core Makeup Tanks
Pressure plates 0.25% carbon low-alloy SA533 Operating temperature <100°C; operating
steel pressure = 15.5 MPa (2250 psia); inner
surface in contact with borated water.
Pressure forgings Carbon or low-alloy SA508
steel
Cladding and ER308Mo, ER316. or SS weld metal analysis
buttering ER316L (?); IN82 (?) A-8; Ni-Cr-Fe weld

metal F-number 43

Passive Residual Heat Removal Heat Exchanger

Pressure plates 0.25% carbon low-alloy SA533 Operating temperature <100°C under
steel normal conditions(?). 315°C under acciden!
conditions.
Pressure forgings Carbon or low-alloy SA508 Design pressure <0.7 MPa (100 psig) (?}
steel under normal conditions, 20 MPa (2900
psigl under accident conditions.
Cladding and ER308Mo, ER316, or SS weld metal analysis Outer surface in contact with refueling-
buttering ER316L{?): IN82(?) A-8: Ni-Cr-Fe weld water storage tank water, inner surface in
metal F-number 43 contact with reactor coolant.

SB163 Ni-Fe-Cr-Alloy
Tubing Inconel 600{?) or SS or SS




o« | € ‘f
In-Containment Refueling-Water Storage Tank
Tar wall SS o stiflene« N ' i€ { [ g 1¢ ! ¢ £
S ral st eSS LT 7 MI 5ig) s
—~q IS “ { W 114
Passive Containment Cooling System Water Storage Tank
SS liner on reinforced Not identilied Design temperature <100°C; desi
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3.6 Steam Generators

-

3.6.1 General description
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is a vertical-shell U~tube evaporator with integral
desi of the steam generator, except for the configuration
e same as that of an upgraded Model F steam generator
ibe bundle called the Model Delta-75 steam generator

)€ ) replace steam generators in existing plants The
nto inlet and outlet chambers by a vertical divider plate

1€ inle ide of the channe! head through the hot-leg

erte lI-tubes transferring heat to the secondary (shell)

ind returns to the outlet (cold-leg) side ol the channel
h two cold-leg nozzles and returns to the reactor vessel
nted . fube sheet

{ TLD¢ ire lack

the full depth of

1 l tuibe i1 earlier models o0l Westinghouse steam
cla 1S th process was cnosen 1o « ontrol secondary water
tubeshet revice. and to minimize residual stresses in the
expansi he tubes are supported by a series ol ferritic
Instead of the simple drilled holes of earlier steam generator
support plate are bre ached and have a trifoil geometry to
n between the tube and support plate, while still providing
inimize vibration Antivibration bars are installed in the
sbe bundle to further minimize the potential for excessive
on the shell side, flows upward, and exits through an outlet
vessel ter enters the steam generator through a
1e top of the U-tube lhe feedwater is dispersed through
hed to the top of the feedring and mixes with saturated
) ure eparator

i1 he APB00 steam generator (Table 14) are the same as
most steam generator replacements. The shell is fabricated
es d AB0R forgings. The channel head is alsc AB08 steel
ne cn 1e]l head and the hot ind cold-leg nozzies are ciad
enitic $S. The primary side of the tube sheet is clad with a

loy (ASME SFA 14) F'he steam generator tubes are
O he divider plate which separates the not and cold

| head is also Alloy 690 The tube support plates anda anti
405 ferritic 5S>




3.6.3

3.6.4

Anticipated operating environment
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A1 peciiied | the AP600, would r to eliminate denting as a |
fation W Operaling experience aiso sSUgEes that the trifoil design mu
the tubin nuch le to fretting wear (compare for example, witl
[ { { ¢ jesign 1 in Combustion Engineering leam generators)
l [he more ope eometry of the trifoil design should al o reduce the tendé¢
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3.7 Turbines

3.7.1 General description

[h rbine-generat ! nsist f an 1800-17 rbine, external
L | rat )] ¢ | [ l-(1 | 4. €1 "“ & 5 (€1 5 Lre dall (M .1"‘
['t rhint ' { louble-flow, high-pressure uni ind twi
I { i . { i , < < | Nk 11I'¢ { inven £ ooled
; pre { ' receive S1e: from eacl [ the two stean
generators throu ty mn le 1ssemblie Lach steam lead assembly ¢« f
top valve | two control valve Cross ties are provided upstream of :
\ O pert ¢ equalization with one or more stop valves closed
P expande '} Y h the } M.-rre - rh t e s through tw
MOSR vessel ['l ' ti { the main stean DI to reheat the
11 ¢ | 4 VSt nsit 1 a4 spring-n ntea reiniorced
ete dech | I vstem should be much less site
eI { ¢ rt ¢ ) ¢ { 1 € 1L ( structure 1s decounied
3.7 Materials selection
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3.7.3 Anticipated operating environment

he operatir f , r the high-pressure turbine and the lirst stages ol
thie yw-pressure turbine will pe dry steam As energy is removed from the it
begin to condens The exa characteristics ol process will depend on the
jetailed thermodynan ’ bine, but i1 typical nuclear low-pressure turbine
hi¢ eam begi condense at the third stage of the low-pressure rotor.®® At this
int the steam contains 3 water and its temperature is 160-170°( At the last
ige, the wate ntent in the steam | 3 and the temperature is below 90
Based upon the proposed secondary water chemistry for the AP600, the impurity
ind dissolved-oxvgen levels should be very low he use of morpholine rather than
nonia for pH control should result in higher nH levels in the condensate than can
he achieved with ammonia.t
3.7.4 Potential material degradation and failure modes
J111¢ ) ¢ D { 1Strop! {iiure ind it is critical 1o «
11¢ with high fracture chness to minimize the likelihood of failure, whether
he operating temperature [ ‘ high-pressure rotor is below the stress
D re rang for the proj [ naterial [herefore creep-rupture is not
! lered a nificant failure mecha n However, basic stress and creep-rupture
ta will D€ ODLAln¢
L
re cort n cracking ol am rotors has been a worldwide problem in the
nuclear power i 15t 1,54
Fatigue inother potential method of degradation Cyclic stresses are
inavol e il tating machinerv. and fatigue life is governed by the inherent fatigue
rack growth characteristics of the material and the size ol the largest undetectable
1e1¢ 1 ¢ § t
Flow-accelerated ITOS eam piping associated with turbine system
{ W I'¢ [ { l ( LOT &=L
|
- ]
[t is well K A ha [ mate s cleanline is critical to achieving
4 gl racture d re¢ nce Lo temper embrittlement Since actual
' eV f FATT and ( \rpy V-not energy wil iy with the size of the part and the
tion within the forgii Lhe ariations must be con
eSts 01 electe amples w re then correlated by
ONgsS( I he oAl I1 Kt [ X { relerence {
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3.8 Fuel Storage and Handling System

3.8.1 General description

il ( § 4 | 1 1 111 \ 1 | tn APHO0 Ao ) ( st1t1ite 1 pa t of
I e reactor pres bound Nonethele the failure of critical component
‘ VS Ve ilicant ety implication and the selection ol
ipp?! L (teria n constructio or these components is an important salety
! eratio It rincipa afety concert issociated with the fuel storage and
11i1 vslen re | nin proper coolng of the stored spent fue €8
evel wert AL cladding lamage. and (2) maintaining proper spaciing o
fuel elemel DO 1ew and spet o prevent the accidental formation ol a
‘ comeltn 'he water in the spent fuel storage pit also provides radiological
3.8.2 Materials selection
Y he fue ige and handiing vstem | he AP600 described in Chapter Y
€ ) e SS5AI lowever, | proposed materials of construction for
component ¢ ' nly in general tern F'he new fuel storage pit is to
! { d ol unl { concrete, w eas the [ fuel storage pit is to be lined
} pecified A nspecified also to be used in the construction ol
{ €1 ! orage pi mp. heat ¢ hangers, demineralizers, lilter, strainer
Ive For both the new and spent ut torage facilities, the SSAR states tha
ter ed I ! K cont 1ctior ire compatible with the storage pil
Nnvironmeln i irfaces that come int ontact with the fuel assemblies are made
| annealed ausiel ¢ stainie Le¢ wctural materials corrosion resistant
W { ntaminate the e 1SS { T pit ¢
3.8.3 Anticipated operating environment
| he f 1nd e Nnat the ew | (L ent 1 I'¢ y D ored dry ind the
[Lie rage poo ( filled with borated walf 500 ppm boronj at a
X tempe e of 497 1207} No further detail n water chemistry are
j ¢ xcept to stat na Co g Syst of the spent fuel storage pit also Serve
idioa { ) n produd fissic produd ons, 4a dust to maintain
{ A 11 ac l neda { erti | ( he heat exchanger wald
W [ { 1 9] i' rall na | { [‘1' 121111 N¢ ¢:',“ 111117¢ i
{ I ca ( nad nvat \ VD € i re remove [Ission and
3 8.4 Potential material degradation and failure modes
) I ) ¢ 1€} 0y ) LI¢ Del 1116 rage and landliing
i { { 111 ¢ { ¢ [ pated A" )1 i | I Dy Orro N-re¢ 1 &4
FOCEesSSes 'he new {uel is to be stored dry, a orrosion is not a concern Such
{ { 14 the {orm { itt e e CoOrt ( ) ) lized eflects 1ich as
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eactor addresses the problem ol controlling radiation
1 of cobalt in Section 12.3 of the SSAR ("Radiation
Relatively stringent ts are placed on cobalt
: he major component and these limits are
¢ s the table indicates, cobalt-based all still
\ 1 hard-lacing materials wnere «app o
n found
g ail igue on the exact alloys used lor specilic
ble to compile a detailed list of the components that
ed allovs ) W d expect these allovs to be used
for applicatior where high resistance to wear 1is
lable 11 of the present report which ‘n[;t’(‘.“f'n a Co
or the contr rod assemblies locking button and
In addition, the latch a be "clad with
to Stellite-6 or a low- or zero-cobalt substitute
specified lor other applications in the APG00 as well
annot be determined from the SSAR
considerable amour
cobalt-free alternati
l'-x' 1-1aci 1110% 4
i1y Fe-Mo-Cr-Ni-(
imber of experimse
nese alioy oller
whet Dp 148 a v
11 ¢ PWR en NN
nat better weal
! no Ime is made of the NOREM and other
15¢ tl SSAR. Becat
int design at operation
] replacements for the cobalt-base nard-iacing
he AP6 CRD svyster mponents liste 1
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4 Summary and C'O_r_ac‘i_yg‘lﬂgus

\ ‘ ¢ LW} namelvy the General Electn Gl Simplified
Boi Water Reactor BWI and the Westinghouse Advanced Passive bUU MW:¢
P60 A revi detail at Argonne National Laboratory [he objectives 0l
§ { ¥ 4 v i { T r t)
¢ { ) YOS e i 1110¢ Al { ( &1 aA { t
! ¥ { r f " ' i miif 1 - % 1
{ i 118 v ¥ £ i i \ cll 1k i
¢ ¢ (¢ lation mechanisms 101 waterials of construction, and
¢ ‘ ¢ ! \ e prop e iatern & lor the qaes 1 appiicalorn from
¢ Ie lected for revie for these two LWRs wert
f, ' " P .
) W \f . ter 11 T nter S
- { Nr¢ ¢ 11anmn
| S v { fpot '
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Repot \R) were off
1 notable ex
v } T {
{ el A i 1
ST { . ntitied T t e r 1PWS ¢ sVvSster 8 t WO reactor
{ el nay b [ \arized OLIOW
4.1 Reactor Pressure Vessel
e Fabrication procedures and restrictions on copper and pnosphnorus \ppear
be adequate 10 preci irradiation in both the SBWR and the
\ P60 pre 1reé vesset ovelr he 6B
. it of 0.01 wt n sulfur content in the SA533, ( B steel to bt
o fat 11 ¢ he SBWER eS5¢ may ( be adequ to ensure no
envi net nhancement fatigue crack growth rates I )
- { i | L) { '1 & I i 'f. ""' b8 <
t er 1 } ' 20
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entifie me o 1ese a \ Allovy 600 structural components
|1 Alloy 182 weld butter have exper ced SCC in conventional LWRs, and
re information is needed | letermine if the optimum alloys have been

e The | t PH precipitation hardening stainless steel (SS) chosen for the
trol rod drive (CRD) seal ho’ si nuts in the SBWR is subject to severe

1

treated, and stringent

component to avoid this pote

r 4 11 r/ ™t r ™ . ¢ 1 Y 4 Tal ™
. yeveral ambplguiiles and apparent errors were noled in sor

for the SBWR vesst

4.2 Control Rod Drive System and Reactor Internals

e Poiential degradation processes yther than thermal sensitization and
intergranular stress corrosion cracking (IGSCC) applicable to core internal

components irradiated to high {luences were not addressed in the AP600

3
AR hese processes include (a) irradiation-assisted stress corrosion
cracking (IASCC) of nonsensitized steels, {b) irradiation-induvced degradation
I oughnes ind embrittiement near end of life aind () the integrity of

ijon is possible in the 17-4
fied for a number of CRD system components in both the SBWR

ficient to provide a basis for

« Both Inconel X-750 and Types 304 and 316 SS, which are specified for
numerous CRD and internal components in both reactors, are susceptible to
rradiation-assisted stress corrosion cracking (IASCC) Heat-to-heat

variations probably associated with minor variations in chemistry and

+ N - 1 g
microstructure, appear to play an important role, and materials selection



{ ent v oI \ water chemistry 1 prevel IASCH he
oposed approact ) wal hemistry trol, while very good, must be
{ i I¢ £ 11 { 1HETIAIS Seled )1 ind contre 0Ol slress
- s not clear what specili tep if any, have beer \ken to maintain the
A 0) > ’ " t ] e nent $ 1 5y halm ih
elrectLive Ie €S ( \P600 rea Or internal compenenits 1o 1eveis DEIOW ¢
threshold for IASCH Similarly, the SSAR does not specity what steps nave
been take O ¢ ite crevices in the design of the AP600 internal
i ) g
- ™ . - .
4.3 Coolant Pressure Boundary

. 'he materiai elected for the SBWR coolant pressurt boundary componerts
re senerally apnropriate. and the specified water chemistries are consistent
od practice based on BWR water chemistry guidelines Accordingly

elativelv few materials problems are foreseen for these components
e The materials information provided for the AP600 for the coolant pressure
oundary components is, for the most part, much too vague to permil a
detailed review Assuming that the materials are similar to those used in

onventional Westinghouse PWRs (except for tne Type 316LN austenitic 5SS

specified for the coolant piping), no corrosion problems are l[oreseen 1o1

4

water chemistries are maintained

e The SBWR SSAR states that "IGSCC resistance has been ac hieved through the
se of IGSCC -resistant materials such as Type 316 Nuclear Grade 55 and
tabilized nickel-base Alloy 600M and 182M However, the materials of

construction listed in the SSAR do not specifically indicate the use of Type
116NG SS. unless that is what is meant by the Type 316L SS (0.02% carbon

max.) specified for the isolation condenser condensate piping

e The stabilized nickel-based alloys are also not specifically called out for the

SBWR_ except for the use of SB564 for the reactor pressure vessel stub tubes

'he SBH64 ecification refers to Alloy 600 tube in general. but conuld be
taken to mean the stabilized "M" grade in ti
. he martensitic SSs spe-ified for selected valve internais in the main steam
piping svstem o1 the SPWR are very susceptible to SC( when hardened (o
¢ higher than =R. 35. Care must be taken to ensure proper heat
treatmen | Lhese tl‘f?"“"- Clriis

e In the SBWI \llove 600 and 182, even for the "M" grades, can crack in

; b o ) ; b tbEmen ; : ) {

oxvegenate vater. particularly under crevice condiiions }!t",)e.' control ol

yolar lissolved-oxveen levels and the avoidance ol crevice geomelries in
1 ¢ 1ITe CRSE y'




should

oolant

AP600 pun

AP60O0 core
allovs should

resistance to

r the AP6G0O0 passive

will probably give satisfactory

but Inconel 690 would




4.5 Steam Generators

o
-

i < | J | 5] 1 . 3 . 1 1 » d
feedwater ring in early models of the Westinghouse steam generator

L4 o]

bhle el t ¢ approaches have been taken to address the modes Ol
n fna ¢ opserved 1n urrent operating steam generaitors

11l of the df wnges and materials proposed for these steam

I nave oeel mplemented with apparel SUCCess 1n yw;‘.l‘pw[“y-]”
nerators for current PWRs, and these changes are I orporated into

( Allov 690 over Alloy 600 for the AP600 steam generalor

{ 10) A\l . )
1ou lead to greatly improved resistance 1o ODSCC and PWSCC
it is premature to assume that this selection will en a 60-vyr life

of Tvoe 405 ferritic SS and the trifoil design in the tube support

ywether with the tight contrels of water ciermustry specified for the
would appear to eliminate denting as a likely degradation mode. The
ionn makes the tubing much less susceptible to Iretling wear

re open geometry ol the triloi design should also reduce the
v for the formation of aggressive crevice Cnemisiries between the
plate and the tubing logether with good control of secondary waler
v and the greater resistance of Alloy 690 to SCC in causti

nment this sl ld greatly reduct { not completely eliminat

hility to ODSCH{

tance { Alloy 690 to PWSC(C( together with n;\p[«.u*\'i
res that seek to reduce the residual stresses associated

¢

ily reduce susceptibility to

n in earlier models of Westinghouse
nerators appear to have been corrected in later models, and no
ms are expected with the AP600 steam generatlors

d the resulting potential for thermal fatigue are

i Chi A b L

e in the APB00 steam generator, which raises the

relative to the feedwater nozzle, allowing the cooler, more dense
to fill the nozzle before rising into the feedring
celerated corrosion problems were experienced on the .J nozzles on

e internal blowdown pipe and some primary

omoponents, a well a th
v parts. are to be made of nickel-chromium-iron alloys in the AP600
enerator and should be highly resistant to flow-accelerated corrosion




4.6 Turbines
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f BWR a he AP600 make no explicit reference to
| Orl¢ ] oA and the optimuzation ol
' ¢ g ¢ turt 16 mater | ¢ 01 [ 1clean DOWET
ecade he specifications provided {or the turbine
1 + ’ 2R B ’ 1} r tE ™m 1 ri 1< t11 11
Clt { (eie T1L1)¢ WIICLIIE L1t tild 115 | uaily
practice that are alluded
iumetri HLrasorni« nspeclions uriace visual
1AL N ¢ partic ions of the finished machined
.
AR sho i hat fabrication defects will be
ns have been addressed in both turbine designs, and the
ro jlures for analyzing {atigue crack growth
rosion problems in the AP600 turbine should be
e of morpholine rather than ammonia for pH control
minim fracture toughness for the AP600 turbine
becaus ts were inadvertently omitted
on the materiails o
nt for the fuel! storage

of austenitic 5SS (e.j I'yvpes 3041 and 316L) should be

weldments such as the SBWR spent-fuel pool liner to
M SCH

1 hich 11 '}‘,
\ 1LCS f1111 11l 1€
nt that ¢ iNnto accournt

racks must

crevice and pitting corrosion of aluminum-based allovys
rv in the low-llow environment ol a storage pool
sion problems in these systems for both reactors can
1V iedd by proper component desig:




4.8 Use of Cobalt-Based Alloys
mit of 0.15 wi

1 A1 . wnd § ratl i * | vy 4
o The BWI AR specilie é ther lenieil i ) !
¢ t} t are to b ed both inside and ou side the core and a 0.05
4 \ » W QG 2
N | the XM-19 alloy used in the CRD system Fhe APB00 SSAKR
f s A 1 fah t ¢ 8 int
V¢ (¢ € il 101 I moper )] 1LIOVE L1S¢ O 1aprcait thi majol
L 4 1 T NS 1T 1 f11
I { 1din tight 0.05 wt imit for Inconel and SS in the fuel
ASSEIMbIY
1 r i t nt it 4 T O1 11
. Cobalt-based WS are |\ d in hard-lacing applicauon LI YOLI1 I s, and
he possible use of existi obalt-free alternatives is not mentioned
Ri CR-62% g
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