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) Review of Environmental Effects on Fatigue Crack Growth
of Austenitic Stainless Steels

17y

W. J. Shack and T. F. Kassner

i

Abstract

Fatigue and environmentally assisted cracking of piping, pressure vessel cladding, and
core components in light water reactors are potential concerns to the nuclear industry and
regulatory agencies. The degradation processes include intergranular stress corrosion
cracking of austenttic stainless steel (SS) piping in' boiling water reactors (BWRs), and
propagation of fatigue or stress corrosion cracks (which initiate in sensitized SS cladding)
into low-alloy ferritic steels in BWR pressure vessels. Crack growth data for wrought and
cast austenitic SSs in simulated BWR water, developed at Argonne National Laboratory under
U.S. Nuclear Regulatory Commission sponsorship over the past 10 years, have been compiled
into a data base along with similar data obtained from the open literature. The data were

,

analyzed to develop corrosion-fatigue curves for austenitic SSs in aqueous environments
corresponding to normal BWR water chemistries, for BWRs that add hydrogen to the
feedwater, and for pressurized water reactor primary-system-coolant chemistry. The
corrosion-fatigue data and curves in water were compared with the air line in Section XI of
the ASME Code,
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Executive Summary

Fatigue and environmentally assisted cracking of piping, pressure vessel cladding, and
core components in light water reactors are potential concerns to the nuclear industry and
regulatory agencies. The degradation processes include intergranular stress corrosion
cracking of austenttic stainless steel (SS) piping in boiling water reactors (BWRs), and
propagation of fatigue or stress corrosion cracks (which initiate in sensitized SS cladding)
into low--alloy ferritic stects in BWR pressure vessels, Crack growth data for wrought and
cast auste,nitic SSs in simulated BWR water, developed at Argonne National Laboratory under
U.S. Nuclear Regulatory Commission sponsorship over the past 10 years, have been compiled
into a data base along with similar data obtained from the open literature. The data were
analyzed to develop corrosion-fatigue curves for austenttle SSs in aqueous environments
corresponding to normal BWR water chemistries (NWCs), for BWRs that add hydrogen to the
feedwater, and for pressurized water reactor (PWR) prirnary-system-coolant chemistry. The
corrosion-fatigue data and curves in water were compared with the air line in Section XI of
the ASME Code.

Under most loading conditions, the contribution from stress corrosion cracking is
negligible for PWR primary-water-chemistry conditions and for BWRs that employ
hydrogen-water chemistry (!!WC). The available laboratory data show that at crack growth
rates (CGRs) of <10-10 m s-1 (0.25 in yr-1), the rates in BWR NWCs exceed the air line in
the ASME Code by a factor of -20-30. Relatively few data are available in PWR environments
at rates of <10-9 m s-1 At high CGRs the observed enhancement in both PWR and BWR
environments is relatively small, and the magnitude of the enhancement under the same
loading conditions is comparable in the two environments. Until further data are obtained
for PWR water at low CGRs, we recommended that the environmental enhancement in BWR

environments with IlWC should be considered for PWR environments,

fx
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Introduction

In-service inspection of piping and pressure vessels in light water reactors (LWRs)
occasionally reveals the presence of planar flaws (i.e., weld defects or stress corrosion
cracks) that must be addressed to detennine whether a plant can be operated safely for a
given time period before the flaw is repaired or the component is replaced. Reactor piping
systems are designed in accordance with Section !!! of the ASME Code to ensure that they
have adequate resistance to initiation of fatigue cracks. Ilowever, once a flaw is detected and
its size and depth are determined, the extent to which the flaw will grow during continued
service can be determined by procedures outlined in Section XI of the ASME Code. At
present, Section XI of the Code does not explicitly account for effects of reactor coolant
environments on crack growth rates (CGRs) of austenitic stainless steels (SSs). This report
summarizes available data on growth of fatigue cracks and provides correlations for assessing
fatigue-crack propagation in austenitic SS piping in boiling-water-reactor (BWR) and
pressurized-water-reactor (PWR) environments.

Development of Corrosion Fatigue Curves

Most of the available data on corrosion fatigue of austenitic SSs in aqueous environments
have been developed to support LWR technology in the U.S. and abroad. Because Section XI
of the ASME Code currently provides only an in-air design curve, corrosion-fatigue data for
wrought and cast SSs in simulated BWR environments, obtained at Argonne National
Laboratory (ANL) (Appendix A) and from the literature, have been analyzed to develop
corrosion-fatigue curves for SSs in aqueous environments.1 The approach is basically an
update of the work of Gilman et al. 2 incorporating additional data that are now available.

The CGR, Asuper, in an aqueous environment, is written as a superposition of a tenn
representing the contribution of stress corrosion cracking (SCC) under constant load, 6 scc;
a corrosion-fatigue tenn, A env, representing the additional CGR under cyclic loading due to
the environment; and a mechanical fatigue term Satr, representing the fatigue-crack growth
in air,

(l)Asuper = A cc + Aeny + AutrS

For the SCC term, the correlation given in U.S. Nuclear Regulatory Commission (NRC)
Report NUREG-0313, Rev. 2, January 1988, is used for water chemistries with 8 ppm
dissolved oxygen (DO): for water chemistries with 200 ppb oxygen, the CGR is taken as one-
third that given in NUREG-0313:

d ec = 2.1 x 10-13 K2.161 (m s-1) 8 ppm DO (2)3

A sce = 7.0 x 104 4 K2. lo l (m s-1) 200 ppb DO,

where K is the stress intensity factor in MPa ml/2 The contribution from SCC is assumed to
be negligible for PWR primary-water-chemistry conditions and for BWRs that add hydrogen
to the feedwater (IIWC) and attain water chemistries that meet the purity and
electrochemical potential (ECP) conditions set forth in Ref. 3. The air tenn, based on the

work of James and Jones.4 is given by the current ASME Section XI correlation at 288*C as

I

.
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5.itr = 3.43 x 10-12S(R)oK" / Tu (m s-l) (3)
S(R) = l + 1.18 R R s 0.8

= -43.35 + 57.97 R R > 0.8

where Ta is the rise time (s) of the loading wave fann, R is the load ratio (Kmin/Kmax), and
AK is Kmax - Kmin. Following Shojis and Gilman et al.,2 the corrosion fatil,ue tenn is

,

assumed to be related to d r through a power law,at

denv = A d|1]r- I4)
The values of the coefficient A and the exponent m for water with 200 ppb DO at 288*C

were obtained by an empirical power-law-curve fit to the existing data for R <0.9, where
cyclic loading dominates and the stress corrosion tenn in the superposition model (Eq.1)
can be ignored. The values are

A = 4.5 x 10-5 (5)
m = 0. 5,

for CGRs in m s-1 and K in MPa ml/2,

in water with 8 ppm DO at 2884C. an empirical power-law-curve fit to the available data I
gives

A = 1.5 x 10-4 (6) |
m = 0. 5,

for CCRs in m s-1 and K in MPa m l/2,

Figures 1 and 2 show a comparison of most of the available experimental data at 288'C
for sensitized Type 304 SS in water with 0.2 and 8 ppm DO, respectively, with correlations
based on Eqs.1-6. Data for Types 316NG and solution-annealed 304 SS (all nonsensitized)
are compared with that for sensitized SS in Fig. 3. Although it is clear that the

-

nonsensitized steels are much more resistant to SCC initiation, they show comparable
environmentally enhanced CGRs under cyclic loading. This is also true for cast SSs in the )
as-received and thennally aged conditions in water with 0.2 and 8 ppm DO, shown in Figs. 4- !

and 5, respectively. At DO concentrations >l ppm, the CGRs of thennally aged CF-8M are
I higher by one order of magnitude than CGRs for the steel in the as-received condition.

Thermal aging has a smaller effect on CGRs of CF-8 SS under these conditions.

In most cases, the correlations were intended to be conservative but not necessarily
upper bounds for all of the data. The data from the ANL tests on wrought SSs in simulated
BWR water have been reported in the series of ANL semiannual reports on the NRC-
sponsored program and are summarized in Ref. 6. Data on as-received and thennally aged
cast SSs were reported in Ref. 7. Other data were obtained from the literature (Refs. 8-14).

Ford et al.15 developed a CGR model that includes the effects of DO concentration
(through changes in ECP). The model suggests that environmentally enhanced CGRs (as
detennined by coefficient A in the current case) should decrease by at least one order of
magnitude when the DO concentration decreases from -8 to 0.2 ppm. Based on slow-
strain-rate-tensile ( SSIU) tests. Kassner et al.lG suggested that the dependence of CGR on

,

I[0 1 follows an =[O 11/4 relationship over this range of oxygenDO concentration 2 2

concentrations, i.e.. the rates are somewhat less dependent on oxygen concentration. The
empirically detennined decrease in A, corresponding to a decrease in DO from 8 to 0.2 ppm

2
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(Eqs. 5 and 6), is in reasonable agreement with that predicted in Ref.16. It is -1/3 of the
decrease predicted by the model of Ref.15. Both models predict that the environmental
contribution to the CGR should continue to decrease with further reductions in DO or ECP.
However, as shown in Fig. 6 (also note the data of Kawakubo in Fig. 7), the limited data at
lower R values and low DO concentrations (<20 ppb) are consistent with the superposition
model, Eq.1, when the term corresponding to SCC (Eq. 2) is deleted (namely, the curves
denoted as a w/o SCC) with the value of A determined from data obtained in water withsuper
0.2 ppm DO. Hence, in the present model, we assume that low DO and ECP levels -

associated with IlWC eliminate the SCC contribution in the superposition model Eq. (1), but
that the corrosion fatigue term, heny, given by Eq. (4), is still important. As shown in Fig. 6, j

the model of Ford et al.15 which predicts a decrease in the value of A in water with low DO
content, appears to be somewhat nonconservative with respect to the available data.
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Data obtained from Refs. 17-20 for simulated PWR water and unpublished data by
Kawakubo* are shown in Fig. 7, along with the corrosion-fatigue curves developed for water
with 0.2 and 8 ppm DO. Also shown in Fig. 7 is a correlation, similar to that proposed by
Dernard and Slama 21 which increases the CGR in air by a factor of 2.5. This curve bounds
almost all of the data, except for those of Kawakubo. Ilowever, all data (except for
Kawakubo's) represent rather high CGRs (<10-9 m s-1). Until additional data become
available at lower frequencies in simulated PWR water, it seems prudent, when extrapolating
to lower CGRs, to use the curve based on the data obtained in water with 200 ppb DO, but
which does not include an SCC term, because SCC is very unlikely in PWR water with low DO
content.

The correlations proposed here are very similar to those proposed by Gilman et al. 2 1. e. ,
one for water containing 8 ppm DO and another for nonsenstized Type 316NG SS in water

. _ _ _ _ _ _ _ _ . _ _ _ _ _

* T. Kawakubo. Aces. 102486.102487 EDEAC Database. Ihttelle Columbus. Obtained by private communication
from E. Eason. Modehng tk Computer Services. April 1991.
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containing 200 ppb DO. Ilowever, the correlation proposed here for water containing
200 ppb DO is assumed to be applicable to both sensitized and nonsensitized SSs. The
predictions of the models developed in Ref. 2 and those presented here are shown in Fig. 8.
The differences are very small, and superposition of an SCC model with the model of Gilman
et al.2 eliminates any significant differences.
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The correlations and data presented here have focused on water at 288 C. Relatively
few data are available in the literature on corrosion-fatigue CGRs at other temperatures.
SSRT data by Ruther et al.22 and Ford 23 suggest that environmentally assisted CGRs peak at
~200-225 C and that in high-purity (llP) water (conductivity <0.2 S cm-1), CGRs decrease
at both higher and lower temperatures. In tests by Ruther et al.22 at higher impurity levels
(conductivity >0.9 pS cm-1). no decrease was observed at higher temperatures. Because the
tests were performed only with H2SO4 additions, it is not known whether this effect is
associated with specific chemical species or depends only on the overall impurity'

(conductivity) level. In fracture-mechanics CGR tests at R = 0.95, Ruther et al.24 confirmed
that in llP water. CGRs at 320 C were much lower than at 288'C. Andresen25 found that
CGRs in fracture-mechanics specimens of sensitized Type 304 SS were higher by a factor of
10-20 at 200*C than at 288#C and the data also suggest a sharp drop in CGRs at
temperatures >300'C in flP water.
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For convenience, the equations needed to describe corrosion fatigue in aqueous
environments are summarized in Table 1. In most cases, one of the terms in the

,

superposition models is derninant, but the magnitude of each of the terms should be |
'

estimated before a simplified expression is used. Alternatively, because in most cases Ta
and R are fixed the CGR at the lowest AK of interest can be computed and compared to the
corresponding CGR in air. This computation will determine a conservative multiplier that
can be applied to a CGR (or da/dN curve) In air for subsequent calculations. The equations ,

for datr and Aenv can be rewritten in the more familiar da/dN form, as shown in Table 2. I

Ifowever, as in the case of the new curves for ferritic steels proposed for Section XI of the
ASME code, the cyclic crack growth curves in water are dependent on the rise time
(frequency).

Table 1. Summm'y of equationsfor corrosionfatigue in DWR
and PWR erwironmentsa

Ascc hsce = 7.O x 10-14 K2.lol 0.2 ppm DO

8 ppm DO
itSCC = 2.1 x 10-13 K2.161

3 ASME Section XI Airhair Uatr = 3.43 x 10-12 S(R)AK 3 / Ta
S(R) = 1 + 1.18R R s 0.8

= -43.35 + 57.97 R R > 0.8

0.5
henv heny = 4.5 x 10-5 Aatr 0.2 ppm DO

da.5 8 ppm DO
0

henv = 1.5 x 104 tr

d Asuper = Ascc + deny + Aair 0.2, 8 ppm DOsuper

d A= deny + Antr IIWC and IWR
l lHall crack growth raten in m C . K in MPa m /2, and Tu in s.

Table 2. Corrosionfatigue curves in DWR and PWR environments in da/dNforma

= 3.43 x 10-12 S(R)AK ASME Section XI Air33da/dNair da / dNair
S(R) = 1 + 1.18 R R 5 0.8

= -43.35 + 57.97 R R > 0.8

da/dNenv da/dN = 1.54 x 10-16S(R)UI'Tf AK '66 0.2 ppm DOI
eny

S(R) = 1 + 1.18 R R s 0.8

= -43.35 + 57.97 R R > 0.8

da/dNenv da / dNenv = 5.13 x 10-16S(R)o.5Td5AK '65 8 ppm DO
S(R) = l + 1.18 R R s 0.8

= -43.35 + 57.97 R R > 0.8

da/dNtotal = Ascc Tu + da/dNeny + da/dNair 0.2, 8 ppm DO
= da/dNeny + da/dNair IIWC and PWR

"All crack growth rates in m cycle-l K in MPa m /2. and Tn in s.l

I
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Appendix A: ANL Crack Growth Data 8ase for Wrought and Cast Austenitic Stainless Steels

Crack growth tests have been conducted on fracture-mechanics specimens of wrought
Types 304, 316NG, and 347 and cast CF-3, CF-3M CF-8, and CF-8M SSs to characterize
the environmental, loading. and material conditions that can produce SCC susceptibility in
these steels. In the case of the cast SSs, CGR data were obtained on material in the
as-received and thennally aged (10.000 h at 400'C and 30,000 h at 350 C) conditions. Data
that have been obtained over the past 10 years (October 1983 to September 1993) are
summarized in Refs. 6 and 7, along with references that contain details of the test methods,
composition of the materials. metallographic and fractographic information. Comparisons of
the data with predictions based on the corrosion-fatigue models given in Table I were also
presented. Agreement between predictions of the models and data for cast SSs was good.

Crack growth results for Type 316NG SS and sensitized (EPR = 2, 8, 20, and
30 C cm-2) and solution-annealed Type 304 SS in lip water containing =200 ppb DO at
289"C are summarized in Table 3. Most of the data were obtained under high-R (0.8-0.95),
low-frequency (8 x 10-2 liz) loading conditions at maximum stress intensity values of
27-46 MPa m U2 Table 4 contains data on sensitized and solution-annealed Type 304 SS in
llP water containing 5-8 ppm DO at 289"C over a wider range of load ratio, frequency, and
stress intensity. Crack growth results for Type 316NG and sensitized and solution--annealed
Type 304 SS at 289"C in water containing =200 ppb DO and ionic impurities (namely, SO3 ,

2CrO(, NO3, and carboxylic acids) are summarized in Table 5. Most of the data were
obtained at a load ratio of 0.95 and a frequency of 8 x 1& 2 Hz. The influence of several
impurity species at concentrations of =6-1000 ppb (conductivity values =0.2-3.7 Scm-1)
on CGRs in the two steels can be obtained from these data. The effect of degree of
sensitization corresponding to EPR values of 0-30 C cm-2 on CORs in Type 304 SS can also
be determined from these data. Table 6 summarizes CGR results for Type 347 SS
specimens with different heat treatment conditions (slow-cooled and water quenched from
the austenittzing temperature). These data were obtained in water containing =200 ppb DO
and 100 ppb SO$~ at 289 C. Table 7 gives the CCR results on specimens of CF-3, CF-3M.
CF-8, and CF-8M grades of cast SS in the as-received and thermally aged conditions.
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Table 4. Summartj of crack growth resultsfor solution-annealed and sensitized
,

Type 304 SS specimens in oxygenated (=5-8 ppm) waterb at 289'C,a'

in which load ratio. frequency.c and stress intensity were varied

'
Potential Type 304 SS

toad Else ANL
Cond. . 304 SS. Ratio Frey.. Time. Kmax . AK,e Rate. EPR. lief. Reportd

pSenr1 mV(SilEl (10-21 I tz s M Pa m W (10-to) mor t Ce m-2 N o. No.

34.0 0 1.20 1.4 59 84-60 til< 0. 2 - i.0 0 -

37.0 0 2.90 1.4 59 84-60 111<0_2 - 1.0 0 a

<0.2 - 1.0 0 38.0 0 4.50 1.4 59 84-60 til
33.0 0 2.20 1.8 59 84-60 til<0.2 - 1.0 0 -

29.0 0 1.80 ilAZ 60 85-75 1(0.2 - 10 0 -

< 0. 2 - 0,95 80 12 28.0 1.40 7.50 20 61 83-85 II
< 0. 2 - 0.95 80 12 34.0 1.70 10.0 20 61 83-85 !!
< 0. 2 - 0.95 8.0 12 35.0 1.75 12.0 20 61 83-85 !!

<0.2 - 0.95 0.8 124 34.0 1.70 1.20 20 61- 83-85 11
! <0. 2 - 0.95 0.8 124 38.0 1.90 1.50 20 61 83-85 11
| < 0.2 - 0.95 0.8 124 50.0 2.50 4.70 20 61 83-85 11
l <0. 2 - 0.95 0.8 124 61.0 3.04 ! ! .0 20 61 83-85 11

<0.2 - 0.95 0. 8 124 64.0 3.20 17.0 20 6I 83-85 11

<0.2 - 0.95 0.08 1250 28 0 1.40 1.20 20 61 83-85 11
(0. 2 - 0.95 0.08 1250 67.0 3.35 19.0 20 61 83-85 11
<0.2 - 0.95 0.08 1250 70.0 3.50 32.0 20 61 83-85 !!
<0.2 - 0.95 0.08 1250 72.0 3.60 33.0 20 6I 83-85 II

<0. 2 - 0.95 0.2 495 36.0 1.70 1.70 1.4 59 84-60 til
< 0. 2 - 0.95 0.2 495 37.0 1.85 1.50 1.4 59 84-60 Ill
< 0,2 - 0.95 0.2 495 39.0 1.95 2.00 1.4 59 84-60 til

<0 2 - 0.95 0.2 495 40.0 2.00 3.10 1.4 59 84-60 !!!
<0 2 - 0.95 0.2 495 28 0 1.40 2.20 ilAZ 60 8">-75 i

, <0. 2 - 0.94 10.0 5 31.0 1.86 3.10 1.4 59 84-60 til
| <0. 2 - 0.94 10.0 5 32.0 1.92 1.90 1.4 59 84-60 111

(0.2 - 0.94 10.0 5 30.0 1.80 2.10 1.8 59 84-60 !!!

<0 2 - 0.90 0.2 495 28.0 2.80 1.30 IlAZ 60 85-75 I(- <0.2 - 0.80 0.2 495 29.0 5.80 6.60 liAZ 60 85-75 I

l <0.2 - 0.80 0.2 495 31.0 0.20 4.40 1.4 59 84-60 til
| <0.2 - 0 80 0.2 495 32.0 6.39 7.40 1.4 59 84-60 111

<0 2 - 0.79 0.2 495 32.0 6.70 5.50 1.4 59 84-60 til

<0.2 - 0.79 0.2 495 36.0 7.55 5.40 1.4 59 84-60 111

< 0. 2 - 0.70 0.2 495 31.0 9.30 3.40 1.4 59 84-60 til
< 0. 2 - 0.70 02 495 33.0 9.90 5.90 1.4 59 84-60 til

<0.2 - 0.60 0.2 495 29.0 11.60 56 0 1.8 59 84-60 111
<0.2 - 0.00 0.2 495 33.0 13.20 6.60 1.4 59 84-60 lit

<0. 2 - 0.50 0.1 995 32.0 16.00 2.60 1.4 59 84-60 111i

< 0. 2 - 0.50 0.2 495 31.0 15.50 8.90 1.4 59 84-60 til

< 0. 2 - 0.50 0.2 495 33.0 16.50 34.0 1.4 59 84-60 III
< 0. 2 - 0.50 0.2 495 32.0 16 00 28.0 1.8 59 84-60 111

0.12 206 0 95 8.0 12 27.6 1.38 0.05 0 58 92/6
0.12 206 0.95 H.0 12 29.2 1.46 9.2 8 58 92/6
0.12 206 0.95 8.0 12 28.2 1.41 1.0 30 SH 92/6

acompact-tension specimens (ITUD of Type 304 SS with the following heat treatments: Heat No.
10285, solution anneal at 1050"C for 0.5 h plus 700^C/10 min and 450"C/140 h or 450*C/250 h
(EPR = 1.4 C enr2), or 500"C/24 h (EPR = 1.8 C cm-2). Ileat No. 30956 solution anneal at 1050*C
for 0.5 h and quenched (EPR = 0 C-cur 2) followed by 700"C for 0.67 h (EPR = 8 C-cm-2). 700 C for
12 h (EPR = 20 C cur 2), or 700"C for 24 h (EPR = 30 C cnr2). Ileat affected zone (HAZ) specimen
was . fabricated from a weld overlay applied to a 12--in, diam pipe.

bEfiluent DO concentration wan 5-8 ppm.
CPositive sawtooth waveform was used.
dStress In'ensity, Kmax values at the end of a -500-1000-h time period of steady-state crack

growth.
C K = Knm(I - R). where the load rado R = Knun/Kutix.A
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Table 5. Continued
i

iWater Chemistry Potentials '!ype 316NG SS "I)pe 304 SS
Imd Rise ANL ,

Cond., SOf crc} Other. 304 SS. Pt. Ratto Freq. Time. Km,x . A K.e Ratef K d. AK.e Rat e. A EPR. fle f. Report2 d

yS cm-! ppb ppb ppb mV(SilE) 10-2 Elz s MPa mt/2 la to m s-1 M Pa- m t/2 g o.to m rl C cnr2 No. No.
i

O.44 15 50 - 37 107 0.95 8 12 - - - 27.9 ' .39 0.06 0 58 92/6 )
0.44 15 50 - 37 107 0.95 8 12 - - - 36.2 i.81 0.28 8 58 92/6
0.44 15 50 - 37 107 0.95 8 12 - - - 30.1 1.50 0.11 30 58 92/6

1
'1.70 100 200 - 10d 142 0.95 8 12 - - - 27,9 1.39 0.05 0 58 92/6

1.70 100 200 - 108 142 0.95 8 12 - - - 37.9 1.89 3.00 8 58 92/6
1.70 100 200 - 108 142 0.95 8 12 - - - 30.7 1.53 l.70 30 58 92/6 ;

1.32 50 200 - 14 39 0.95 8 12 - - - 27.9 1.3d 0.05 0 58 92/G
1.32 50 200 - 14 39 0.95 8 12 - - - 38.2 1.91 0.18 8 58 92/6
1.32 50 200 - 14 39 0.95 8 12 - - - 30.9 1.S4 0.18 30 58 92/6 |

acompact-tension specimens (lTCIl of Type 316NG SS (lleat No. P91576) and Type 304 SS (!! cat No. 30956) with the following heat treatments: ,

!i solution anneal at IO50'C for O.S h plus 650*C for 24 h for the Type 316NG SS (EPR = 0 C em -2), and solution anneal at IO50'C for 0.5 h (EPit = 0 C cm-2j
folknved by 700'C for O.25 h plus SOO*C for 24 h (EPR = 2 C cm-2). 700'C for O.67 h (EPR = 8 C-cm-2),700"C for 12 h (EPR = 20 C cm-2), or 700 'C for 24 h

$ (EPR = 30 Com-2) for theType 344 SS. I

bEffluent DO c6 centration was 200-300 ppb. Teethvater oxygen concentration was approximately a factor tf 2 higher to compensate for o :,gec depletion ;

by corrosion d 4 %c autociave systems.
!CPositive sawt soth waveform was used.,

dStress intensity. Kmax, values at the end of a = IOOO-h time period of steady-state crack growth.
'

c K = Kmax(1 - R). where the load ratio R = Kmin/Kmax.o
ICracking was transgnmular, i.e.. TGSCC.
ECracking was intergranular. 5 c.. IGSCC.

hCompact-tension specimens (0.7FCll of Type 316NG SS (!Ical No. [1440104) with the following heat treatment: solution anneal at 1050 C for 0.5 h plus,

650*C for 24 h (EPR = 0 C-cm-2),

ISine waveform was used.

(
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#
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Table G. Swnmaryt of crack growllt resultsfor 7M>c 347 SS specimensa in oxygenated
water at 289*C, in witicliload ratioh and stress intensity were varied

Water Chemistry Patentials ccR Data
I.oad IUw ANL

0 SO[ . 304 SS. Pt , Raou l' req., Ti me, Km..'. A K.4 Rate. Ref. ReportCond. . 2

pfi c nr i ppb ppt mV(SilE) lo-2ile s MPa inin 10- 80 m r1 No. No.

Slow-Cooled Spectmen
0.92 200 100 147 200 0.90 M 12 19.9 1 99 0.85 62 90/48
0.92 200 100 121 159 0.90 M 12 22.3 2.23 3.40 G2 90/48
0 95 200 100 174 22'l 0.95 N 12 22 4 1.12 0.09 62 90/48
0.96 200 100 185 211 0 95 H 12 27 G 1.38 1.70 62 90/4H
0.92 200 100 176 210 0 95 H 12 30.7 1.53 3.00 G2 90/48
0.H9 200 100 13H 174 1 00 0 31.1 0 0 H9 G2 90/48.-

Water-Quenthed Specimen
0.93 200 100 150 20H 0 50 M 12 19 8 9.90 30.0 62 90/48
0.92 200 LOC 147 200 0 90 M 12 19.H 1.9M 0 09 62 90/48
0 92 200 100 121 159 0.90 H 12 22.0 2 20 1.30 G2 90/48
0.95 200 100 174 223 0 95 H I2 22.I 1.1 I O OM G2 90/48
0 9G 200 100 iHb 211 0 95 n 12 27.0 1.35 0.00 G2 90/48
0 92 200 100 170 210 0 95 N L2 29 H 1 49 0.60 62 90/48
0 89 200 100 13M 174 1 00 o - 30 0 0 0 01 02 90/48

"Compart-tension sperimens (lTCr) were fabricated from Ilcul No. 4G113.
b uttive siwtooth waveform was owd.l

cStress intenstly, Kmm. value at the end of rarh time peruxL

daK = Kma(1 - R) where the load ratio R = Knun/Kmm -

Table 7. Stanman) of crack growth resultsJor cast SS specisnensa in water al
280'C, in witicit load ratioh and stress intensity were lxtried7

Water ChemNry Pulcu t uls CGR Data

_ __ lamiti luw AN!,

Cond, 02, Sol 301 55. I't . Ratin l'rcq , Time. Km d , A K.d Rate. Report

pSrm-l ppm ppb niV(SilC) 10411x % M Pa m in 1&lo m s-1 No.

As-ro civnl CF-3M S w s iincii (llcat No F5524) Containing 5 0% FerriteI

O f.'O O2 100 13G 120 0 95 77 12 22 6 1.13 1.90 90/4
0 90 02 100 106 bb o 2f7 10 0 5 20.7 15 50 35.0 90/4
0 90 02 100 M1 41 0.95 77 12 24 0 1.20 2.50 90/4
1.10 02 100 131 95 I 00 0 24 1 0 0.32 90/4-

Avrecened Cli:1 Specimen (llcal No l*2] Containing 15.6% Ferrite
0 93 02 100 150 20M O 50 77 12 19 G 9 MO 27.0 90/48
0.92 02 100 147 200 0 90 7. 7 12 19.7 1.97 0 09 90/4H
0 92 0.2 100 121 159 0 9U 77 12 21 H 2. lH 0.40 90/48
0 92 02 100 176 210 0 95 77 12 29 2 1.46 0.11 90/48

Avturival Ll%M 5|n unen (llcal No 75) Containing 27.8% Ferrtle
0 13 62 0 25H 3 12 0 45 7. 7 12 25 3 1.26 <0.02 93/2
0.10 53 0 240 317 0 95 77 12 34.7 1.73 1.6 93/2
0 14 70 0 242 296 0 95 77 12 35 2 1.7G 1.8 93/2
O 13 (0 002 0 .-5GO -5MO 0 95 7.7 12 35 2 1.7G <0 02 93/2
O 1H 03 0 19M 2 83 0 95 77 12 3G 4 1. M2 1.4 03/2
0.11 11 0 21G 2h0 0 45 77 12 3G H I M4 1.5 93/2

; 0.11 09 0 20G 257 10 0 3G H 0 cO.02 93/2*.

1 0 to 72 0 2 17 lol 0 95 77 12 45 6 2 2M 2.5 93/2
|
.

I5
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Table 7. Continued

Water Chemistry l'utendals CCR Data
Iml the ANL

Corxl , Og, 50} 304 SS. I't . Itallo Fn q., Time. K ,g. AK d Rate. Report '

pS e nr 1 ppm ppb mVISill:1 10 21 Le s MPa mla l O- 10 m s-1 No.

Agedi CF-MM S ntmen (llcut No. 75) Containing 27.8% Ferritei
0.13 0.2 0 258 332 0 95 7. 7 12 24.7 1.23 4.4 93/2
0 16 5.3 0 240 317 0.95 7.7 12 37.2 1.8G 8.1 93/2
0.14 70 0 242 29G 0 95 7.7 12 46.0 2.30 19.6 93/2
0.13 <0 0020 -560 -580 0 95 7.7 L2 46.0 2.30 <0.02 93/2
0.18 0.3 0 198 243 0.95 7.7 12 47.5 2.38 1.1 93/2
0.11 1.1 0 216 200 0 95 7. 7 12 53.6 2.68 7.3 93/2
0.ll 09 0 200 257 10 0 01.4 0 20.8 93/2=

Agedg CF-MM Sgrotmen (llrat No. 751 Containing 27.8% Ferrite
0 07 44 0 256 2MO 0 80 7.7 12 31.8 6.30 58.0 93/27
0 08 43 0 237 243 0 90 7.7 12 33.1 3.31 16.2 93/27
0.07 4.2 0 247 30i 0 70 7. 7 12 34.9 10.47 122.0 93/27
0 07 4.5 0 252 3.17 0.30 7.7 12 38.2 26.74 349.0 93/27
0.11 0 43 0 205 2|M 0 90 7.7 12 40 6 4.00 15.9 93/27
0.07 0 60 0 214 223 0.70 7.7 12 4 3.H 13.14 l ! O.O 93/27
0.11 0.50 0 205 211 0.30 7.7 12 52.5 3G.75 666.0 93/27

A .-rcerived CF-M Sgwrnurn (llrat No. GH) Containing 27.8% Ferrtte
0.07 44 0 25U 2MO O MO 7.7 12 30 2 0.04 16.9 93/27
0.08 4.3 0 237 243 0 90 77 12 30.5 3.05 3.9 93/27
0 07 4.2 0 247 301 0 70 7.7 12 30.9 9.27 39.2 93/27
0 07 4.5 0 252 337 0.30 7.7 12 32.0 22.40 170.0 93/27
0. ! ! 0.43 0 205 21M 0 90 7.7 12 32.4 3.24 2.9 93/27
0.07 0 60 0 214 223 0.70 7.7 12 33.1 9 93 32.8 93/27
0.11 0 50 0 205 211 04to 7.7 12 34.4 24.08 157.0 93/27

A3p IICF-N Sportmen llical Nu. 68) Containing 27.8% Ferrite
0.13 62 0 V5h .13 2 0 95 7.7 12 20.0 1.30 <0.02 93/2
0.16 53 0 240 317 0.95 7.7 12 35 0 1.75 0 42 93/2
0.14 7.0 0 242 290 0.95 7.7 12 36.9 1.85 4.6 93/2
0.13 <0 0020 -560 -5MO 0.95 7.7 12 30.9 1.85 <0.02 93/2
0.18 0.3 0 198 243 0.95 7. 7 12 37.4 1.87 0.93 93/2
0.11 1.1 0 216 2bo 0 95 7.7 12 37.8 1.89 1.4 93/2

37.8 0 <0.02 93/20.11 0.9 0 206 257 1.0 0 -

0.10 7.2 0 247 301 0.95 7.7 12 52.5 2.62 11.3 93/2

Agrtl4 CF-M 51rrimen (lient No. GN1 Containing 27.8% Ferrite
0 07 4.4 0 256 280 0.80 7.7 12 30.9 6,18 31.9 93/27
0 08 4.3 0 237 243 0.90 7.7 12 31.3 3.13 5.4 93/27
0.07 42 0 247 301 0.70 7,7 12 32.1 9.63 53.7 93/27
0.07 4.5 0 252 337 0 30 7. 7 12 33.0 23.10 157.0 93/27
0. ! ! O.43 0 205 21H 0.90 7. 7 12 33.6 3.3G 4.2 93/27
0.07 0 00 0 214 223 0.70 7.7 |2 34.4 10.32 32.4 93/27
0.11 0 50 0 205 2Ii 0.30 7,7 12 35.8 25.00 191.0 93/27

acompact-tension specimens were fabriented from lleat NO. F5524 (0.71rl) and (1TCT)
from licat Nos. IU,68, and 75.

bPositive sawtooth waveform was used.
CStress Intensity, Km.w. value at the end of each time period.
daK = Kmea(1 - R), where the load mtio it = Knun/Kme
CSine waveform was used.
ISpecimens aged for 10.000 h at 400"C.
RSpwimens aged for 30.000 h at 350 C.

I6
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Appendix B: Effects of Water Chemistry on CGRs of Austenitic Stainless Steels
|

The correlations in Eqs.1-6 are primarily based on DO concentration in water although
the CGR data in the Figs.1-7 were obtained in both HP water (<0.2 pS cm-1) and in water

,

containing s100 ppb of vanous ionic impurities (s1.0 S cm-1). It is well known that lonic )
impurities (SO3~, Cl , etc.) at low concentrations increase susceptibility of these steels to |
SCC (decrease the threshold stress intensity for cracking) and also increase the CGRs <

through a power-law dependence on concentration (e.g., ISOj-]z, where experimental and
predicted values of z are =0.5 and 1.8 respectively).24 To mitigate SCC of sensitized Type i

304 SS in BWR recirculation system piping. plant operators have made significant !

improvements in water quality over the past several years. Because the ingress of ionic
impurities into the coolant system from leaks in condenser tubes and from lon-exchange
resins (including resin fines) in the reactor water cleanup system (RWCS) is maintained at
very low levels, soluble corrosion products from system materials are the major species

,

'present in BWR water. Examples include Cu+ and Cu2+ in plants with copper alloy condenser
tubes and/or feedwater heaters and HCrOi from corrosion of Types 304 SS feedwater
heaters, Type 430 SS moisture separator vanes and Type 410 SS high-pressure turbine
rotor blades. The austenttic SS piping. weld cladding on the interior of the reactor vessel,
and internal components fabricated from this material are relatively minor sources of
HCroi. Because only a small fraction of the recirculation water in BWRs passes through the
RWCS, the concentration of corrosion-product lons in the reactor water can be considerably
greater than in the feedwater (e.g.. -25-35 ppb versus <1 ppb HCrOi, respectively).
Consequently, in plants that operate with optimum water chemistry, HCrOi and the
counterbalancing hydronium cation (H3O+) are major contributors to water conductivity,
with minor contributions from SO3 and other anions.

Role of Chromate and Sulfate in SCC

We conducted fracture-mechanics CGR experiments to determine the effect of HCrOi
2additions to simulated BWR water (without and with low levels of SO() on SCC of Type 304

SS.26 Specimens were heat treated to produce a solution-anneale'd condition and low,
moderate, and high levels of sensitization corresponding to electrochemical potentiokinetic
reactivation (EPR) values of O. 2, 8. and 30 C cm-2, respectively.

The solution-annealed specimen (EPR 0 C cm-2) exhibited very low CGRs=

(<5 x 10-12 m-s-1) under all water chemistry conditions. In the case of the specimens with
moderate and high degrees of sensitization (EPR = 8 and 30 C cm-2), the specimen with the
lower EPR value exhibited the highest CGRs under each test condition. This level of
sensitization produced maximum SCC susceptibility in SSRT tests at 289*C in oxygenated
water without and with 100 ppb SOjn20 The results for the sensitized specimens can be
summarized. In oxygenated water. 50-200 ppb HCrOi has a beneficial effect, as indicated
by the low CGRs (<7 x 10-11 m s-1). In water containing 50 ppb HCrOi, low levels of SO3~
(6 or 15 ppb) did not lead to high CGRs. In water containing 50 ppb HCrOi and 25 or
100 ppb SOI, CGRs of the moderately sensitized specimen (EPR = 8 C cm-2) increased
significantly (to >3 x 10-W m s-1), whereas the heavily sensitized specimen exhibited this
rate in water containing 100 ppb SO3 At a higher HCroi concentration (e.g., 200 ppb) in i

oxygenated water containing 100 ppb SOI, the CGRs of the sensitized specimens were
high (>l x 10-10 m s-1). However, after decreasing the SO3 concentration to 50 ppb, the
CGRs of the sensitized specimens decreased to <2 x 10-11 m s-1

17
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Although SSRT tests indicated that chromate at concentrations >100 ppb in oxygenated
water contributes to intergranular (IG) SCC in a manner similar to that of other

oxyanions,24.26 the present CGR results suggest that this species has a mitigating effect on;

ICSCC at lower concentrallons, provided that the ratio of chromate concentration to sulfate
concentration is 23. Figure 9 shows the CGRs of the moderately sensitized specimen
(EPR = 8 C cm-2) as a function of the ratio of the concentrations of chromate and sulfate in
the feedwater. For the purpose of obtaining the ratios in Fig. 9, when these species were
not added to the feedwater, their concentrations were assumed to be -1 ppb. The limited
data suggest that the CGRs are in the low regime if the (CrO3-)/(SO]~) ratio in the
feedwater is 23. Chromate concentrations in feedwater and effluent water were determined
by colorimetric analyses (Cr+G) on grab samples. The measured feedwater concentrations
were in excellent agreement with the amounts added to the water; however, the effluent
values were lower by a factor of >5 because of the low flow velocity and reaction with the
large surface area of SS in the autoclave system at 289 C. The feedwater and effluent sulfate
concentrations were virtually the same in all experiments.

To further explore the dependence of CGR on impurity concentration ANL CGR data for
sensitized Type 304 SS were separated into three conductivity regimes, i.e., 0.88-1,1,

0.28-0.54, and <0.2 S cm-1, and the rates were compared tvith values obtained from the
ASME Section XI conelation for crack growth in air under the particular loading conditions.
The data obtained at load ratios 20.95 and 50.92 are shown in Figs.10 and 11, respectively.
The results at the three conductivity levels in water containing =200 ppb DO fall within a
wide scatter band and it is difficult to deduce a clear influence of water purity on the CGRs.
Figure 12 shows CGR results for Type 304 SS with different levels of sensitization at an R
value of 0.95 in water containing =200 ppb DO and different chromate and sulfate
concentrations in which the (CrO3-)/(SO3-) ratio was >3 The conductivity of the water in
these tests was 0.2-1.3 pS cm-1, i.e., the same range as in the data in Figs.10 and 11. In
contrast to the latter results, the CGRs in Fig.12 lie near the ASME air line and are an order
of magnitude lower than the corrosion-fatigue curve for high-temperature water obtained
from Eqs. I and 2.

Because chromate concentrations in BWR recirculation water are =25-35 ppb, these
results suggest that sulfate concentration would have to be maintained at <10 ppb to
mitigate IGSCC. Typically, values of ~5 ppb can be achieved. Consequently, these water
chemistry conditions would place sensitized Type 304 SS In the low-CGR regime. Because
laboratory corrosion-fatigue testing facilities typically employ once-through water flow
systems, chromate levels due to corrosion of the autoclave and piping are not high enough to
reflect the potentially beneficial effect observed when chromate is added to feedwater
containing low-sulfate concentrations. Consequently, most CGR data obtained in HP
oxygenated water will lie above the air line, as shown in Figs,10 and 11. Hence, the,

laboratory test results, although conservative, may not be representative of CGRs in
recirculation piping exposed to a BWR water chemistry with low sulfate levels (<10 ppb)
where the chromate level is =25-35 ppb. Water chemistry data that includes both the
chromate and sulfate concentration is available for a number of BWRs. An assessment of
appropriate CGRs for plants that have a (CrO3')/(SO3-) ratio >3 can be made on a case-by-
case basis. A factor of 10-20 in the expected CCRs for a shallow crack in the HAZ of a weld
could provide significant relief in inspection intervals and influence piping repair and
replacement decisions. Also, efforts to remove chromate from recirculation loop water to

_
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decrease the water conductivity and mitigate SCC (without decreasing the critical sulfate
level) would be counterproductive.

Effect of Organic Substances in Oxygenated Water on SCC

'lypical chemicals at power plants include paint products, glycol, hydraulle fluids,
lubricants, detergents, chemical cleaners, laundry chemicals, freons, diesel fuel, and ion-
exchange resin regeneration chemicals. Potential chemical contaminants 27 and possible
pathways 28 for entry of various substances into BWR coolant systems have been evaluated.
Some of the long-lived products that may exist in BWR water due to organic intrusions are
carboxylic acids, alcohols, phenolics, aromatic hydrocarbons, hydrogen halides, sulfuric and
sulfonic acids, amines, and other substances.27 These organic impurities and their
decomposition products are a potential concern in BWR water and PWR secondary-system
water in terms of increased susceptibility to localized corrosion and SCC of piping and heat-
exchanger tube materials.

Organic importtles are also a concern in PWR secondary-coolant water systems because |

organic acids increase cation conductivity, which complicates secondary water monitoring
and control. A survey of organic acids, total organic carbon, and inorganic anions in the
secondary water cycles of 13 PWRs indicated that organic acids were responsible for a major
fraction of the cation conductivity in many of the plants.29 Acetic and formic were the most
common acids: however, lactic, propionic, and butyric acids were also present in some of
the systems. Make-up water was the major source of the organic impurities, some of which
were in colloidal, nonionic form.29

,

The role of organic oxygen scavengers and other organic species in SCC susceptibility of
sensitized Type 304 SS was investigated in SSRT tests. Subsequently, the influence of
several carboxylle acids (acetic, formic, lactic, oxalic, propionic, butyric, and valeric) on the
SCC behavior of the steel was determined in cyclic loading tests on fracture-mechanics-type
specimens in oxygenated water. These organic acids are among those species found in BWR

| and PWR coolant systems at low concentrations because of ingress and decomposition of
organic substances used in the plants. The beneficial effect of some of these substances on
SCC of austenttic SSs can be rationalized in terms of the well-known influence of low-

20
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oxygen concentration on the ECP.30-35 Although the organic acids could scavenge oxygen,
other mechanisms can, in principle, account for their effect on SCC of sensitized Type 304
SS in high-temperature water.lG 3G

i Fracture-mechanics CGR tests were perfonned on sensitized Type 304 SS in HP water
containing -200 ppb DO, in oxygenated water with 0.1 and 1.0 ppm propionic or butyric
acid, and in water with 1.0 ppm butyric acid and either 100 ppb sulfate or chloride.36 A
baseline CGR of 2.9 x 10-10 m s-1 was obtained in HP water. The addition of 0.1 ppm
propionic acid had no effect on the CCR; however, an increase in concentration to 1.0 ppm
caused a decrease in the CGR by an order of magnitude. When propionic acid was no longer
added to the feedwater, the CGR returned to the inillal baseline value.

When 1.0 ppm butyric acid was added to the oxygenated feedwater, no crack growth
was observed over a time interval of -1150 h under low-frequency, high-R loading at a Kmax
value of -34 MPa m /2 A decrease in the butyric acid concentration from 1.0 to 0.1 ppml

eventually caused the CGR to increase to a value of 1.9 x 10-10 m s-1 after -500 h. The lower
concentration of the acid was not sufficient to inhibit crack growth, as was the case with
0.1 ppm propionic acid in the feedwater.

In oxygenated water containing 1 ppm butyric acid and 0.1 ppm sulfate (as H2SO4), the
CGR increased significantly to a value of 7.4 x 10-10 m s-l. When sulfate was removed from
the feedwater, the CGR once again decreased to zero over a period of -600 h. Similarly,
when 0.1 ppm chloride (as Nacl) was added to the oxygenated feedwater containing
1.0 ppm butyric acid. the CGR of the steel increased to a value of -1.5 x 10-10 m s-1 over an
interval of = 1150 h. When chloride was not added to the feedwater, the CGR again

decreased to zero. even at the relatively high stress intensity factor of -40 MPa ml/2 The
results clearly ludicate that the organic acid was not effective in inhibiting crack growth in
the steel when either sulfate or chloride was present in the oxygenated water at the
0.1 ppm level.

It is possible that organic acids can inhibit SCC in oxygenated water even though the
ECP regime of the steel is conducive to cracking (>-250 mV iSHEl at 289 C). Many organic
substances such as aliphatic alcohols and acids. carboxylic acids, and others adsorb on metal
and oxide electrodes at very high potentials associated with oxygen evolution at ambient
temperature.37-41 The rate constant for oxygen evolution is independent of the presence of
the inhibitor, i.e., the effect of the inhibitor was mainly to block active reaction sites.37 The
adsorbability of the various substances increases as the molecular weight increases.38 39 and
the adsorption follows a logarithmic isothenn at concentrations 210-5 M (2 1 ppm).39-41 It
is plausible that carboxylle acids, at a similar concentration in the water, adsorb on the oxide
surface of Type 304 SS and inhibit oxygen reduction, which is the cathodic partial process
that couples with anodic dissolution at the crack tip in a slip-dissolution mechanism of
crack growth.

The influence of organic species in normal UWR water on CCRs of recirculation system
piping is difficult to quantify. As in the case of chromate when the sulf ate levels are very low
(<l5 ppb), organic acids (and their precursors that do not contribute to conductivity and are
difficult to detect), in fact. may not be deleterious. These species may, in part, account for
the large scatter in the CGR data (i.e.. the low values in the scatter band of CGR data in
Figs.1-51 in llP oxygenated water. In corrosion-fatigue testing systems, organic substances
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can be present in the feedwater and pass through the water purification system, or be
introduced into the feedwater through the cover gas that is typically used to adjust the DO
concentration of the water. When this occurs, CGRs can lie in the lower range of the scatter
band.

These subtle experimental features can obscure the true effects of DO and impurity
concentrations on CGRs and complicate application of laboratory data to predictions of crack
growth in piping systems with unique water chemistries that contain corrosion products
and impurilles at very low concentrations. In some instances, water chemistries (e.g., high
chromate / sulfate ratios but with low conductivities, indicative of low concentrations of other
Ionic species) may produce CCRs below the upper-bound crack-growth curve. Similarly,
CGR data obtained in HP oxygenated water containing organic species at low levels can
produce low values near the ASME Section XI air line. These data also contribute to the
large scatter band.
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