3/4.5 EMERGENCY CORE COOLING SYSTEMS

3/4.5.1 ECCS - OPERATING

LIMITING CONDITION FOR OPERATION

- 3.5.1 The emergency core cooling systems shall be OPERABLE with:
 - a. The core spray system (CSS) consisting of two subsystems with each subsystem comprised of:
 - 1. Two OPERABLE CSS pumps, and
 - 2. An OPERABLE flow patch capable of taking suction from the suppression chamber and transferring the water through the spray sparger to the reactor vessel.
 - b. The low pressure coolant injection (LPCI) system of the residual heat removal system consisting of four subsystems with each subsystem comprised of:
 - 1. One OPERABLE LPCI pump, and
 - 2. An OPERABLE flow path capable of taking suction from the suppression chamber and transferring the water to the reactor vessel.
 - c. The high pressure coolant injection (HPCI) system consisting of:
 - 1. One OPERABLE HPCI pump, and
 - 2. An OPERABLE flow path capable of taking suction from the suppression chamber and transferring the water to the reactor vessel.
 - d. The automatic depressurization system (ADS) with at least five OPERABLE ADS valves.

APPLICABILITY: OPERATIONAL CONDITION 1, 2* ** #, and 3* ** ## ###.

- *The HPCI system is not required to be OPERABLE when reactor steam dome pressure is less than or equal to 200 psig.
- **The ADS is not required to be OPERABLE when the reactor steam dome pressure is less that or equal to $100~\mathrm{psig}$.

#See Special Test Exception 3.10.6.

- ##Two LPCI subsystems of the RHR system may be inoperable in that they are aligned in the shutdown cooling mode when reactor vessel pressure is less than the RHR Shutdown cooling permissive setpoint.
- ###During the 14 day extended AOT period allowed for installation of the common ESW and RHRSW system Modifications P-0166, P0167, and P0168 during the Unit 2 third refueling outage (2R03), in addition to the inoperable 'B' and 'D' LPCI subsystems of the RHR system and the inoperable 'B' CSS subsystem, the 'A' LPCI subsystem of the RHR system may be inoperable in that it is aligned in the shutdown cooling mode when reactor vessel pressure is less than the RHR Shutdown cooling permissive setpoint.

EMERGENCY CORE COOLING SYSTEMS LIMITING CONDITION FOR OPERATION (Continued) ACTION:

- a. For the core spray system:
 - 1. With one CSS subsystem inoperable, provided that at least two LPCI subsystems are OPERABLE, restore the inoperable CSS subsystem to OPERABLE status within 7 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.#
 - 2. With both CSS subsystems inoperable, be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.

b. For the LPCI system:

- 1. With one LPCI subsystem inoperable, provided that at least one CSS subsystem is OPERABLE, restore the inoperable LPCI pump to OPERABLE status within 30 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- 2. With one RHR cross-tie valve (HV-51-182 A or B) open, or power not removed from one closed RHR cross-tie valve operator, close the open valve and/or remove power from the closed valves operator within 72 hours, or be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.
- 3. With no RHR cross-tie valves (HV-51-182 A, B) closed, or power not removed from both closed RHR cross-tie valve operators, or with one RHR cross-tie valve open and power not removed from the other RHR cross-tie valve operator, be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.
- 4. With two LPCI subsystems inoperable, provided that at least one CSS subsystem is OPERABLE, restore at least three LPCI subsystems to OPERABLE status within 7 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.#
- 5. With three LPCI subsystems inoperable, provided that both CSS subsystems are OPERABLE, restore at least two LPCI subsystems to OPERABLE status within 72 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- 6. With all four LPCI subsystems inoperable, be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.*
- c. For the HPCI system, provided the CSS, the LPCI system, the ADS and the RCIC system are OPERABLE:
- 1. With the HPCI system inoperable, restore the HPCI system to OPERABLE status within 14 days or be in at least HOT SHUTDOWN within the next 12 hours and reduce reactor steam dome pressure to \leq 200 psig within the following 24 hours.

*Whenever both shutdown cooling subsystems are inoperable, if unable to attain COLD SHUTDOWN as required by this ACTION, maintain reactor coolant temperature as low as practical by use of alternate heat removal methods.

[#]The Allowed Outage Times (AOTs) of the 'B' Core Spray subsystem and the 'B' and 'D' LPCI subsystems may be extended up to 14 days to allow for installation of the common ESW and RHRSW system Modifications P-0166, P-0167, and P-0168 during the Unit 2 third refueling outage (2R03).

CONTAINMENT SYSTEMS

SUPPRESSION POOL SPRAY

LIMITING CONDITION FOR OPERATION

- 3.6.2.2 The suppression pool spray mode of the residual heat removal (RHR) system shall be OPERABLE with two independent loops, each loop consisting of:
 - a. One OPERABLE RHR pump, and
 - b. An OPERABLE flow path capable of recirculating water from the suppression chamber through an RHR heat exchanger and the suppression pool spray sparger(s).

APPLICABILITY:

OPERATIONAL CONDITIONS 1, 2, and 3.

ACTION:

- a. With one suppression pool spray loop inoperable, restore the inoperable loop to OPERABLE status within 7 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.#
- b. With both suppression pool spray loops inoperable, restore at least one loop to OPERABLE status within 8 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN* within the following 24 hours.

SURVEILLANCE REQUIREMENTS

- 4.6.2.2 The suppression pool spray mode of the RHR system shall be demonstrated OPFRABLE:
 - a. At least once per 31 days by verifying that each valve (manual, power-operated, or automatic) in the flow path that is not locked, sealed, or otherwise secured in position, is in its correct position.
 - b. By verifying that each of the required RHR pumps develops a flow of at least 500 gpm on recirculation flow through the RHR heat exchanger and the suppression pool spray sparger when tested pursuant to Specification 4.0.5.

^{*}Whenever both RHR subsystems are inoperable, if unable to attain COLD SHUTDOWN as required by this ACTION, maintain reactor coolant temperature as low as practical by use of alternate heat removal methods.

[#]The Allowed Outage Time (AOT) of the 'B' loop of the suppression pool spray mode of the RHR system may be extended up to 14 days to allow for installation of the common ESW and RHRSW system Modifications P-0166, P-0167, and P-0168 during the Unit 2 third refueling outage (2R03).

CONTAINMENT SYSTEMS

SUPPRESSION POOL COOLING

LIMITING CONDITION FOR OPERATION

3.6.2.3 The suppression pool cooling mode of the residual heat removal (RHR) system shall be OPERABLE with two independent loops, each loop consisting of:

- a. One OPERABLE RHR pump, and
- b. An OPERABLE flow path capable of recirculating water from the suppression chamber through an RHR heat exchanger.

APPLICABILITY:

OPERATIONAL CONDITIONS 1, 2, and 3.

ACTION:

- a. With one suppression pool cooling loop inoperable, restore the inoperable loop to OPERABLE status within 72 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.#
- b. With both suppression pool cooling loops inoperable, be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN* within the next 24 hours.

SURVEILLANCE REQUIREMENTS

- 4.6.2.3 The suppression pool cooling mode of the RHR system shall be demonstrated OPERABLE:
 - a. At least once per 31 days by verifying that each valve (manual, power-operated, or automatic) in the flow path that is not locked, sealed, or otherwise secured in position, is in its correct position.
 - b. By verifying that each of the required RHR pumps develops a flow of at least 10,000 gpm on recirculation flow through the flow path including the RHR heat exchanger and its associated closed bypass valve, the suppression pool and the full flow test line when tested pursuant to Specification 4.0.5.

^{*}Whenever both RHR subsystems are inoperable, if unable to attain COLD SHUTDOWN as required by this ACTION, maintain reactor coolant temperature as low as practical by use of alternate heat removal methods.

[#]The Allowed Outage Time (AOT) of the 'B' loop of the Suppression Pool Cooling mode of the RHR system may be extended up to 14 days to allow for installation of the common ESW and RHRSW system Modifications P-0166, P-0167 and P-0168 during the Unit 2 third refueling outage (2RO3).

- 3.7.1.1 At least the following independent residual heat removal service water (RHRSW) system subsystems, with each subsystem comprised of:
 - a. Two OPERABLE RHRSW pumps, and
 - b. An OPERABLE flow path capable of taking suction from the RHR service water pumps wet pits which are supplied from the spray pond or the cooling tower basin and transferring the water through one Unit 1 RHR heat exchanger,

shall be OPERABLE:

- a. In OPERABLE CONDITIONS 1, 2, and 3, two subsystems.
- b. In OPERABLE CONDITIONS 4 and 5, the subsystem(s) associated with systems and components required OPERABLE by Specification 3.4.9.2, 3.9.11.1, and 3.9.11.2.

APPLICABILITY:

OPERATIONAL CONDITIONS 1, 2, 3, 4, and 5.

ACTION:

- a. In OPERATIONAL CONDITION 1, 2, or 3:
 - 1. With one RHRSW pump inoperable, restore the inoperable pump to OPERABLE status within 30 days, or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
 - 2. With one RHRSW pump in each subsystem inoperable, restore at least one of the inoperable RHRSW pumps to OPERABLE status within 7 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
 - 3. With one RHRSW subsystem otherwise inoperable, restore the inoperable subsystem to OPERABLE status with at least one OPERABLE RHRSW pump within 72 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.#
 - 4. With both RHRSW subsystems otherwise inoperable, restore at least one subsystem to OPERABLE status within 8 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN* within the following 24 hours.

^{*}Whenever both RHRSW subsystems are inoperable, if unable to attain COLD SHUTDOWN as required by the ACTION, maintain reactor coolant temperature as low as practical by use of alternate heat removal methods.

[#]The Allowed Outage Time (AOT) of the 'B' RHRSW subsystem may be extended up to 14 days to allow for installation of the common ESW and RHRSW system Modifications P-0166, P-0167, and P-0168 during the Unit 2 third refueling outage (2R03).

PLANT SYSJEMS

EMERGENCY SERVICE WATER SYSTEM - COMMON SYSTEM

LIMITING CONDITION FOR OPERATION

3.7.1.2 At least the following independent emergency service water system loops, with each loop comprised of:

- a. Two OPERABLE emergency service water pumps, and
- b. An OPERABLE flow path capable of taking suction from the emergency service water pumps wet pits which are supplied from the spray pond or the cooling tower basin and transferring the water to the associated Unit 1 and common safety-related equipment,

shall be OPERABLE:

- a. In OPERATIONAL CONDITIONS 1, 2, and 3, two loops.
- b. In OPERATIONAL CONDITIONS 4, 5, and *, one loop.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, 3, 4, 5, and *.

ACTION:

- a. In OPERATION CONDITION 1, 2, or 3:
 - 1. With one emergency service water pump inoperable, restore the inoperable pump to OPERABLE status within 45 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
 - 2. With one emergency service water pump in each loop inoperable, restore at least one inoperable pump to OPERABLE status within 30 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
 - 3. With one emergency service water system loop otherwise inoperable, declare all equipment aligned to the inoperable loop inoperable**, restore the inoperable loop to OPERABLE status with at least one OPERABLE pump within 72 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.#

loop shall be declared inoperable and the actions of 3.8.1.1 taken.

^{*}When handling irradiated fuel in the secondary containment.

**The diesel generators may be aligned to the OPERABLE emergency service water system loop provided confirmatory flow testing has been performed. Those diesel generators no aligned to the OPERABLE emergency service water system

[#]The Allowed Outage Time (AOT) of the 'B' loop of the Emergency Service Water system may be extended up to 14 days to allow for installation of the common ESW and RHRSW system Modifications P-0166, P-0167, and P-0168 during the Unit 2 third refueling outage (2R03).