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. The present paper develops a reliability analysis method for category I nuclear struc-
~

tures, particularly for reinforced concrete containment structures subjected to various load
combinations. The loads considered here include dead loads, accidental internal pressure and
earthquake ground acceleration. For mathematical tractability, an earthquake occurrence is
assumed to be governed by the Poisson arrival law, while its acceleration history is ideal-
ized as a Gaussian vector process of finite duration. A vector process consists of three
component processes, each with zero mean. The second order statistics of this process are
specified by a three-by-three spectral density matrix with a multiplying factor representing
the overall intensity of the ground acceleration. With respect to accidental internal pres-
sure, the following assumptions are made: (a) it occurs in accordance with the Poisson law.
(b) its intensity and duration are random and (c) its temporal rise and fall behaviors are
such that a quasi-Static structural analysis applies. A dead load is considered to be a de-
teministic constant.

To accomplish the stated purpose, however, the present paper concentrates on the develop-
ment of an analytical procedure which pemits one to estimate the conditional limit state
probability of a containment structure, given that the structure is subjected to a specific
load combination. In this procedure, a particular method of frequency domain reliability
analysis is applied to those cases of load combinations involving earthquake ground accelera-
tion. This reliability analysis procedure is based on the finite element method and on the
theory of random vibrations. The limit state condition recently developed for reinforced
concrete containment structures is also used here. The condition represents the onset of
structural failure: concrete crushing at the extreme fibre or yielding of the reinforcing .
steel bars. The limit state condition thus defined exhibits a closed curve in the membrane
stress s moment stress plane. The conditional limit state probability under the unit dura- '

tion of a specific load combination is then evaluated as the probability that the response,
when it is plotted in the membrane stress s moment stress plane, will reach outside this
closed curve at least once in the unit duration.
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'. 1. Introduction
The purpose of the present paper is to develop a reliability analysis mathod for cate-

gory 1 nuclear structures, particularly for reinforced concrete containment structures sub-
*

jected to various load combinations. The loads considered here include dead loads, acci-
dental internal pressure and earthquake ground acceleration. For mathematical tractability,
an earthquake occurrence is assumed to be governed by the Poisson arrival law, while its ac- -
celeration history is idealized as a Gaussian vector process of finite duration. The vector
process consists of three component processes (e.g., WE, NS and vertical components), each
with zero mean. The second order statistics of the vector process are specified by a three-
by-three spectral density matrix with a multiplying factor representing the overall intensity
of the ground acceleration. With respect to accidental internal pressure, the following as-
sumptions are made: (a) it occurs in accordance with the Poisson law. (b) its intensity and
duration are randon and (c) its temporal rise and fall behaviors are such that a quast-static'

'

structural analysis applies. A dead load is considered to be a deterministic constant.
To accomplish the stated purpose, however, the present paper concentrates on the devel-

opsent of an analytical procedure which permits one to estimate the conditional limit state
probability of a containment structure, given that the structure is subjected to a specific
load combination. In this procedure, a particular method of frequency domain reliability a-
nalysis is applied to those cases of load combinations involving earthquake ground accelera-
tion. The basic analytical procedure associated with this method is presented in a companion
paper by Kako, et al [1] and is based on the finite element method and on the theory of ran-
dom vibrations. The limit state condition recently developed for reinforced concrete con-
t.irunent structures is also used in this method. The condition represents the onset of
structural failure: concrete crushing at the extreme fibre or yielding of the reinforcing
steel bars. The limit state condition thus defined exhibits a closed curve (limit state sur-
face) in the membrane stress s moment stress plane. The detailed derivation of this limit
state condition is presented in a second companion paper by Chang,' et al [2]. The condition-
al limit state probability under the unit duration of a specific load combination is then
evaluated as the probability that the response, when it is plotted in the membrane stress *
moment stress plane, will reach outside this closed curve at least once in the unit duration.
These conditional limit state probabilities, together with other probabilistic characteris-
tics of the loads such as durations and occurrence rates, provide an analytical basis for
developing a probability-based load combination methodology. Such a combinatorial procedure
is presented in the third companion paper by Shinozuka, et al [3]. The numerical evaluation
of the limit state probabilities is carried out with the aid of a computer program called RAS
(Reliability Analysis of Structures) developed at Brookhaven National Laboratory in accord-
ance with the above mentioned reliability analysis method.

2. Finite Element Analysis of Containment

The concrete containment structure considered is illustrated in Fig.1. The containment
consists of a circular cylindrical wall with a hemispherical dome on the top. The dome-cyl-
inder reinforced concrete system is fixed at the base. The thickness of the containment dome

t

is 2'-6" whereas that of the cylindrical wall is 3', The inside radius of the dome is equal
to 62' which matches the inside radius of the cylindrical portion of the containment. The
height of the cylindrical wall is 150'-6", and thus, the total height of the containment is
215'.

-2-

.

9 h- - @096 * M6 -



.
~

!
. 3

bl. Shinozuka M No. S/3*

The containment wall is reinfsrced with hoop and meriditnal rebars which are placed in"
.

two layers, i.e., one layer closer to the inner surface of the containment and the other
closer to the outer surface of the containment. For the cylindrical portion of the contain-
ment, both the hoop and meridional are reinforced with* No.18 rebars spaced twelve inches

.

apart. The hemispherical dome is reinforced with two layers of No.14 rebars spaced twelve
inches apart. These rebars are placed in the orthogonal directions. In the lower half of
the dome, two layers of No.14 hoop rebars with twelve inch spacing are added to the cross-
section, one layer each near the inner and outer surfaces. For most containment structures,
diagonal rebars are used to resist the shear forces. In the present analysis, the diagonal
rebars are disregarded. Also, the steel liner, which is usually located on the inner surface
of the reinforced concrete containment is disregarded as a load carrying structural component
in the analysis. Finally, other comp 1: cations such as penetrations, personal locks and e-
quipment hatches are not included in the study.

A,three-dimensional finite shell element model described in the SAP-V code is used for
the structural analysis of the cnntainment. Each element has 4 nodes, which can have up to 6
degrees-of-freedom. The containment is divided into 19 layers. With the exception of the
top-most layer of the dome, each layer has 24 elements, so that the nodal points are taken
every 15' in the circumferential direction. Inis discretization required a total of 457
nodes and 444 elements.

When a reinforced concrete containment is subjected to static and dynamic loads, its
cross-section will usually produce cracks, the extent of which depends on the load history.
While a linear elastic analysis cannot take into account the temporal variations of the
structural stiffness which result from such a dependence on load history, it will nevc; the-
less, in most instances, yield correct stress resultants for the various sections of the
structure. This is especially the case if the section material properties are adjusted to
reflect the concrete cracking. Because of the complexity of the various load combinations,

I however, it is difficult to predict the crack patterns for all conceivable combinations of
loadings. Therefore, in the present study, the structural stiffness associated with the un-
cracked section was used for all loads and their combinations, thus in fact follows the pro-

cedures recomended in SRP 3.8.1.
The dynamic characteristics of the structures are represented by the natural frequencies

and associated mode shapes. With the aid of the RAS computer progrcm, the first 20 natural
frequencies are evaluated. The two most significant modes (the first and second pairs of
bending modes; modes 1,2,16,17) are at 4.2 Hz and 12.5 Hz. Practically no other modes par-
ticipate under the unidirectional horizontal ground 2:celeration.

3. Material Properties
3With respect to the concrete, the weight density is 150 lb/ft , while Young's modulus

6and Poisson's ratio are 3.6 x 10 psi and 0.2, respectively, and the 91 day compressive
strength f' = 6086 psi. As for the steel reinforcement, both No.18 and No.14 rebars are

6used in the containment structure. Young's modulus and Poisson's ratio are 29.0 x 10 p,9
and 0.3, respectively, while the yield strength is 71.1 kst for both types of rebars. Pos-
sible statistical variations and uncertainties involved in the material properties ought to
be taken into account and indeed have been considered in the analysis. However, the results
of such a statistical and uncertainty analysis will be presented elsewhere due to the limited2

space available here.
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4 Liutt Stat's f'r the Containment.

The state of structural response is considired to have riached the li;it stata if the
rebars begin to yield (in tension or compression) and/or if the crushing strength of the con-'

crete is reached at the extreme fibre of the containment wall cross-section. The limit state
condition introduced above can be analytically expressed as

I I c 1 8Sf' (1)and/or f 0fs1y-
where f is the stress in the rebars and f the compressive concrete stress at the extreme

s g

fibres. Since the stresses f, and f are functions of the stress vector (t}3 the limit statec
condition in eq. (1) is in general given in the form of g({t)) f,,0 where g(-) is an appropri-
ate function. The equality g({t)) = 0, representing f *I and f = 0.85f', usually indi-

s y c
cates a closed (hyper-) surface or a limit state surface in the (t) space. To be consistent
with the SAP V finite element code used, the stress vector (t) is given by

I(t)=(t T T "xx "yy "xyxx yy xy
where the first three are the membrane stress components and the last three the bending mo-

ment components of the usual definition.
Based on (a) the above definition of the limit state, (b) the assumption of a linear

stress-strain relationship, and (c) the conventional theory of reinforced concrete, which as-
serts that concrete cannot take any tension, the limit state surface in terms of the membrane

stress component ; (e.g. t ,) and the corresponding bending moment component m (e.g. exx) carx
be established for the cross-section at the finite element boundaries as shown by Chang, et
al (2]. Such a limit state surface is schematically shown in Fig. 2 in which point "a" rep-

resents a limit state under pure (uniform) compression and point "g" a limit state under pure
(uniform) tension. Also, straight lines I (ac and ac'), lines II (approximated by ce and
c'e'), lines III (ef and e'f') and lines IV (fg and f'g) indicate those parts of the limit
state sur' ace in which the limit states are reached in concrete crushing with cross-sections
remaining uncracked (lines I), in concrete crushing with partially crr.cked cross-sections
(lines II), in yielding of rebars in tension with partially cracked cross-sections (lines
III) and in yielding of rebars in tension with totally cracked cross-sections (lines IV).
All other possible limit states, such as those based on shear stress or strain are not con-
sidered at this time.

5. Containment loads
A containment structure will be subjected to various static and dynamic loads during its

lifetime. In this study only four types of loads are taken into consideration. They are:
dead load, live load, internal pressure and earthquake ground acceleration. Other loads on
the containment such as the SRV load will be considered in a future study.

5.1 DeadandLiveLoag
The dead load is the weight of the dome and the cylindrical wall. The weight density c:

3the reinforced concrete is taken to be 150 lb/f t . The dead load is obviously static and as-

sumed to be deterministic.
Because several floors are connected to the containment structure, some live loads act

'

a n the containment at the locations where the floors are connected to the containment. The
socations and design values of the corresponding live loads are shown as follows:
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El'.vation 851' 8283s' 0038s' 778' 755'.

LiveLoad(kip /ft) 0.707 3.00 0.940 1.02 0.930,

It is noted that there are some uncertainties as to the actual magnitude of the live load.-

For the purpose of the.present analysis, however, the* live load is assumed to be determinis-
-tic and equal to the design values.

5.2 Internal Pressure
The internal pressure is considered a quasi-static load uniformly distributed on the

containment wall. Moreover, it is idealized as a rectangular pulse and witl occur at a pre-
scribed mean interval during the containment life. Three parameters are used to model the

intern &! pressure: the occurrence rate Ap (per year), the mean duration udp (in secoads) and
the intensity P. The intensity P is treated as a Gaussian random variable.

The containment considered in this study was designed for an internal pressure of 15
psi. For the present reliability analys:s, however, two different kinds of internal pressure
are considered. One is the accidental pressure P dJe to a large LOCA, but not followed by a'

g
hydrogen burn, and the other is the accidental pressure P caused by a hydrogen burn (deflag-

H

ration)followingalargeLOCA.
For the accidental pressure P caused by a large LOCA, the occurrence rate 1 and the

L p

0mean duration "dP are taken to be 1.0 x 10'4/ year and 1.0 x 10 seconds, respecti ely, while
L

the intensity P is Gaussian with a mean value of 15 psi and standard deviation of 3 psi. Ifg
the probability is assumed to be 0.1 for a LOCA to be followed by a hydrogen burn, the occur-
rence rate of the hydrogen burn n - is 1.0 x 10-5 It is further assumed that the mean dura-p

H

tion udP of the pressure resulting from the hydrogen burn is 600 seconds and that its inten-
g

sity P is a Gaussian variable with a mean value of 45 psi and standard deviation of 9 psi.
H

For mathematical simplicity, moreover, the hydrogen accident is assumed to occur independent-
ly of the LOCA without, however, allowing their simultaneous occurrence. Although this sce-
nario is somewhat different f om the actual situation, the limit state probability based
thereupon is expected to be close to that which would follow from the actual sequence of
events.

5.3 Earthquake Ground Acceleration

The earthquake ground acceleration is assumed to act only along the global x (horizon-
tal) direction. It is further assumed that the ground acceleration can be idealized as a
segment of finite duration of a stationary Gaussian process with mean zero and Kanai-Tajimi
spectrum;

gg,,(w)=5(1+4cj(w/w)}/([1-(w/w)] +4cg(w/w)) (3)S
0 g g g

where the parameter 5 represents the intensity of the earthquake and w and c are the domi.0 g g
nant ground frequency and the ground damping ratio, respectively. The values of w and c

g g
depend on the soil conditions of the chosen site. For the present study, w = 9 rad /see anc

g

c = 0.6 are used. Also, the mean duration "dE of the earthquake acceleration is assumed tog

be 10 seconds. The peak ground acceleration A , given an earthquake, is assumed to be A3=g

po where p is the peak factor which is assumed to be 3.0 and o is the standard deviation
g g g

of the ground acceleration such that

= /ww (2c + 1/(2c }} % (4)o g g gg

-5-
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* p hw (Zc + 1/(2c )) (5)Ag=o% with o
g g g g g g

If the earthquake occurs in accordance with the Poisson law at a rate 1E per year, it is easy
to show that the probability distribution F (a) of the annual peak ground acceleration A is

A

related to the probability distribution Fg}(a)ofA in the following fashion.
g

A(a)=1+hinF(a) (6)F (a) = exp(-1 (1 - Fg(a)]) or F gA E
1 1 E

indicates the minimum peak ground acceleration for any ground shaking to beTherpore,ifa0
Aja)=0andhenceAE = -tn F (a ). Assuming that F (a) is ofconsidered an earthquake, F

0 A 0 A

the extreme distribution of Type 11, F (a) = exp[-(a/u)**] with a = 2.61 and u = 0.01, one
A

finally obtains

IIIFA (a) = 1 - (a/a ) a y, a00
g

Under these conditions, one finds that AE = 1.50 x 10-2/ year provided that a = 0.05g. Com-0
bining eqs. (5) and (7) and writing Z for %, one further obtains the probability distribu-
tion and density functions of Z in the forms, respectively,

*?a /*g (8)I I*I * "I /a II*g /a IF I*I * I - I*g /a I zz 0Z g 0 0Z 0

6. Conditional Limit State Probabilities
The limit state surface is expressed in terms of the segments of the following eight

straight lines which define the octagonal area shown in Fig. 2.

R) - (A )T ,(e)) = 0 (j*1,2,... 8) (9)g
j

Iwhere (t ' ) is the element stress vector, and R and (A ) are constants and constant vectors,
j j

The vector (t 'I) is at most the sum of three vectors; (t 1 ' I' andIrespectively. 0 P

(t 'I}d respectively representing the stresses due to the dead and live (D/L) loads, due toI

the accidental internal pressure (P) and due to the earthquake acceleration (E). The vector

I'I)0 is time-invariant and deterministic since so are the D/L loads, while (t('})p can be(t
I Iwritten as P.(t 'I)p,g where (t 'I)p,g is the stress due to the unit internal pressure P = 1

pst and P is a Gaussian random variable with mean F and standard deviation o . On the other
p*I) =Z[B'I]I Ihand, as shown by Kako, et a1 [1] the vector (t 'I) has been shown to be (tI

.[c'I][L](v). In this expression [B ')] and [e I]aresuchthat(t'I)=[D'I](u'I)I I I I
0

with (u ' ) being the element nodal displacement vector and (u 'I) = [6 ')](q) with (q) beingI I I

the generallZed coordirst, vector, respectively. The vector (v ) is obtained from a linear0

I * El 3I'0) such that the covariance matrix [V'O'Otransformation (q0 q

[I ] = mxm identity matrix (m = number of modes considered). The vector (q0) is the general.
Thus,(t'I)d=Z[Ch(v)where[CI8I]I

iz d coordinate vector when Z = % = 1/in /sec .
2 s

0

=[B ][e ][L]andg

(t 'I) = (t 'I)0 + P - (t 'Il,g+Z[b](v) (10)I I I
j p 0

Substituting eq. (10) into eq. (9) and writing Rj = R) - (A )T ,(e)Ig one obtains
j O

r 'I - dj'I - Z(n 'I)T '0) = 0 (11)Rj - 0 'I - ZIM'I)T '0) = 0 P IP I or
j

where 0 'I = (A l g,(e)I
=1' = (A )kCb, f = Rj/h'I|, d 'I = D *)/|M'IlandT

j P j j j j
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(n'I)=(h))/l'I|. It can be shown (Kako, ct a1 (1]) that the probability distribution-

of X = max |(n*)TIVO)]in0tydE is given in approximation by1
I vjj)=,)(x)*1-v$udE exp(- x2) with n,j bj [0 0n E 3/I2'IIIIIF 0a 0b

sti

j , wherexy,/2tnvj{IudE' "a is the a-component of (nfI) and E(00a Ob] is the a-b component'I

V;0;0]of(4(t)}. The conditional limit state probabilities are
' ' of the covariance matrix 0

then obtained as the probabilities that the left-hand side of eq. (11) becomes negative. In

eq. (11), it is assumed that Rj>0. This implies that the D/L loads alone will not produce
the stresses in the limit state. When the structure is subjected to D/L and P but not to E

|

(hence (v }=(01), the conditional limit state probability given this load combination becomes '

0

D/L+P)(e)=e{-(r*)/dj' - F)/o ) if d > 0; = 0 if d 'I < 0 (13)P p

where 6(-) is the standardized Gaussian distribution function. Eq. (13) can be used for both
~

?cases in which the internal pressure P=P and =P provided of course that the corresponding
L H

values of F and o are used. When the structure is subjected to D/L and E but not to P, thep

conditional probability for this load combination is given by, using eq. (12), '

z

D/L+E)(,) , y * , ), D/L+E) exp(-g(rj'I /z) }f (z)dz (14)p
7

z inm

/where u * udE. Finally, when the structure is under the simultaneous action of D/L, P
and E, the conditional probability is '

z

D/L+P+E)(,) , j " g e)(z) f (z)dz (15)P g
Zmin

where

G'(2)=c-(-1)**I[(6*(z)-F)/op)t

}u D/L+P+E)(6f'I(z))*bexp(-(of*I(z)-(6f'I(z))*/6f*I(z)}/(2cp)]+v
,

(1-c)-(-1)*4[((6f'(2))b (2) - 6 *}(z)/(6 (z))b}/op) (16)6=

with c=1 if d 'I>0, c=0 if dj'I<0, ufD/L+P+E) , IWdP*" DEI /IDdP'"dE)and

(z) = (r '} - z/2tn(v IfD/L+P+E)))/d'I; 6 'I(z) = 1 + (d 'Iep/z)6 u

6 (z)=P*+(r op/z) ; of'I(z)=F+rj')dj'I(op/z)*
For the load combination D/L+P, the maximum value of eq. (13) with respect to j and (e) :,

is evaluated as the conditional limit state probability for the entire structure. However,
Ifor the load combinations D/L+E and D/L+P+E, the maximum values of P *I(e) = P*I(e)with

j respect to (e) are used as the upper bound of the conditional limit state probabilities. The
*

computations carried out using the parameter values indicatej in the preceding s_ections re-
(D/L+P) (D/L+P )

sulted in P = numerically zero, P = 0.172, P(D/L+E) = 1.21 x 10-3,g g

(D/L+P+E) (D/L+P +E)
P = 1.15 x 10 3 and P = 0.424. The finite element location at whichL H

these maximum values are obtained usually depends on the load combination.
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