TABLE 2 2-1

REACTOR TRIP SYSTEM INSTRUMENTATION TRIP SETPOINTS

FUNCTIONAL UNIT 1. Manual Reactor Trip	TOTAL ALLOWANCE (TA) N.A.	Z N.A.	SENSOR ERROR (S) N.A	TRIP SETPOINT	ALLOWABLE VALUE N.A.
Power Range, Neutron Flux a. High Setpoint	7.5	4.56	0	<109% of RTP*	<112.3% of RTP*
b. Low Setpoint	8.3	4.56	0	≤25% of RTP*	<28.3% of RTP*
Power Range, Neutron Flux, High Positive Rate	2.4	0.5	0	<4% of RTP* with a time constant >2 seconds	6.3% of RTP* with a time constant ≥2 seconds
Power Range, Neutron Flux, High Negative Rate	2.4	0.5	0	<pre><4% of RTP* with a time constant >2 seconds</pre>	<6.3% of RTP* with a time constant >2 seconds
Intermediate Range, Neutron Flux	17.0	8.41	0	≤25% of RTP*	≤35.3% of RTP*
6. Source Range, Neutron Flux	17.0	10.01	0	≤10 ⁵ cps	<1.6 x 10 ⁶ cps
7. Overtemperature ΔT	7.0	5.39	1.67	See Note 1	See Note 2
8. Overpower AT	4.6	2.02	0.14	See Note 3	See Note 4
9. Pressurizer Pressure-Low	3.7	0.71	2.49	≥1915 psig	≥1906 psig
10. Pressurizer Pressure-High	7.5	0.71		≤2385 psig	<2400 psig
11. Pressurizer Water Level-High	8.0	2.18	د.	<92% of instrument span	<93.9% of instrument span

^{*}RTP = RATED THERMAL POWER

^{**}Loop design flow - 93,600 gpm

Attachment IV to VT 94-0006 Page 3 of 3

TABLE 2.2-1 (Continued)

TABLE NOTATIONS (Continued)

NOTE 1: (Continued)

T' ≤ 586.5°F (Nominal Tava at RATED THERMAL POWER);

 $K_3 = 0.000671;$

P = Pressurizer pressure, psig;

P' = 2235 psig (Nominal RCS operating pressure);

S = Laplace transform operator, s⁻¹;

and $f_1(\Delta I)$ is a function of the indicated difference between top and bottom detectors of the power-range neutron ion chambers, with gains to be selected based on measured instrument response during plant STARTUP tests such that:

- (i) for q_t q_b between -2325%)and + 5%, $f_1(\Delta I)$ = 0, where q_t and q_b are percent RATED THERMAL POWER in the top and bottom halves of the core respectively, and q_t + q_b is total THERMAL POWER in percent of RATED THERMAL POWER;
- (ii) for each percent that the magnitude of g_t = g_b exceeds -2325%, the ΔT Trip Setpoint shall be automatically reduced by 2.271.8%) of its value at RATED THERMAL POWER; and
- (iii) for each percent that the magnitude of q₁ = q₃ exceeds +5%, the ΔT Trip Setpoint shall be automatically reduced by 1.841.384% of its value at RATED THERMAL POWER.

NOTE 2: The channel's maximum Trip Setpoint shall not exceed its computed Trip Setpoint by more than 1.31.8% of ΔT span.