. p oy T 7i%’<r

. T. Kako . K Mo. 7/2

BNL-NUREG-32626

FEM-Rased Random Vibration Analysis
of Nuclear Structures under Seismic Loading

by

2

T. Kako!, M. Shinozuka’, H. Hwang® and M. Reich’

—

Toshiba Corporation, Tokyo, Japan.

"

Columbia University, New York, NY, USA,

w

Brookha.en Natiunal Laboratory, Upton, NY USA.

- . —— —— - - ———

8204220233 830430
PDR RES
8304220283 PDR



T. Kako ) ! Paper K No. 7/2 . :

Figure Captions

1. Limit State Condition in the (v} Space

2. System Limit State Conditions

. .



1. Kako : K No. 7/2

Summary

This paper outlines an analytical and numerical procedure developed for the frequency do-
main finite element analysis of category I nuclear structures, in particular, of reinforced
concrete containment shell structures, subjected to earthquake ground acceleration. Such a
procedure can be conveniently used in the analytical evaluation of the overall seismic safety
of nuclear power plant structures.

Emphasized in this presentation, huwever, is the analytical procedure 2ssociated with the
random vibration analysis. The earthquake ground acceleration is assumed tn be a Gaussian
vector process characterized by a zero mean and three-by-three cross-spectral density matrix
of its three components. A SAP V finite shell element code is used to evaluate the natural
frequencies and modes that are significantly participating. The nodal displacement vector {(u}
is then expressed in terms of a (truncated) wodal expansion involving only those significant
modes. The frequency domain modal analysis then produces a cruss-spectral density matrix of
the generalized coordinate vector {q}, from which the corresponding covariance matrix can be
easily derived. The Cholesky decomposition of the covariance matrix leads to the transforma-
tion of {q} = {q(t)} into a vector {v} = {v(t)} whose covariance matrix [Vw] is the identity
matrix. Furthermore, th2 covariance matrix [va] between {v} = {v(t)! and {v} = {v(t)} and
the covariance matrix [V..] of (%} = (¥(t)) can also be easily derived from the cross-spectral
wnsity matrix of {q}. Since the stress vector (t} is a function of {q}, the vector {1} con-
sisting of three membrane and three moment comperents can also be expressed in terms of {v}.
Therefore, failure conditions (or 1imit state conditions) written in terms of the stress vec-
tor can in turn be written in terms of (v} and these conditions form closed curves when plot-
ted in the {v} plane. The present paper then suggests methods of estimating the expected rate
at which the vector process {v(t)} outcrosses the failure condition for each element. Such
an expected rate is then used to estimate the failure probability of each finite element. The
problems that arise in estimating the failure probability of the containment structure as a
whole are also discussed.
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1. Introduction

The use of more sophisticated load and structural models is increasingly demanded in or-
der to reflect the effects of load-structure interaction more realistically in structural re-
1iability analysis, particularly «hen dealing with such risk-sensitive systems as nuclear pow-
er plant structures To thi: end, loads are often idealized in terms of the random functions
of temporal and/or spatial variavles, and the structural responses are evaluated by means of
advanced rnumerical techniques such as finite element methods. This paper outlines an analy-
tical and numerical procedure developed for the frequency domain finite element analysis of
category I nuclear structures, in particular, of reinforced concrete containment shell struc-
tures, subjected to earthquake ground acceleration. Such a procedur2 can be <onveniently used
in the analytical evaluation of the overall seismic safety of nuclear power plant structures.

Emphasi ed in this paper, however, 1s the analytical procedure associated with the random
process analysis involving the earthquake ground acceleration which is assumec to be a Gaus-
sian vector process characterized by a zero mean and three-by-three cross-spectral density
matrix of its three components. A SAP V finite shell element -ode is used to evaluate the
natural frequencies and modes that are significantly participating.
2. Moda) Analysis

The equation of motion for an n-degrees-cf-freedom system within the framework of a lin-
ear elastic analysis is written as

(M1GGy + [CI0i) + [Kl(u) = - [M][i](ig) (1)

where [iM], (C] and [K] are the nxn mass, damping and stiffness matrix, respectively, ard {(u}
is the nocz] displacement, [I] is the modified identity matrix given by
TR - - .
(=0, t 1,1 (‘a)
ind the vector (ig) consists of the three slements representing the ground acceleration in the
x, y and z directions, respectively;

- & RN, |
(zg: [zgx gy zqz] (2)
Under the assumption of the existence of normal modes, the modal displacement vector {u}
is expanded into those modes for which the modal participation is significant,

(u} = [sl(q’ (3)
where
(e = [e; ¢ ... 9,] = truncated normalized modal matrix (4)
i T
{q} = generalized coordinates = [q1 L PR q'] (5)
(.J} = j-th normalized modal vector = (.lj ‘ZJ . ‘nJ]T i6)

The modal vectors (011. (02). cenny log) do not necessarily represent the first m modes. Fur-
.hermore, they do not usually indicate a sequence of successive m modes, but rather indicate

those significant modes, arranged in increasing order in terms of their corresponding frequen-
cies.

Substituting eq. (3) into eq. (1, and premultiplying by [0]'. one obtains
. . 2 S o .. - L od J .-
(@ + ()@} + [0%)q) = - (F) Zg, - (F)) 20 - (F,) B, (7)
shere [a] and [a2] are the (mxm diagonal) modal damping and frequency matrices; [a] = diags-
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nal [2¢ Yoy 2gups cunes 2¢,w.] and [02] = diagonal [uf ug. iesab u‘]. respectivcly. and

(F Yo ‘F ) and (F } are the modal participation vectors associated with zgx gy and igz'
respectiveU. .
gl ¥
(F‘) = [¢] [f‘l](la) = Ula fZa fm] CamX,Y,2 (8)

The solution (q) results from eq. (7) as
i = - I I Ega(r) [(t-1)] (F,)dr (9)
In eq. (9), the smtion is with respect to a = x,y a~d z and [h(t)] is the modal impulse

response function matrix = diagonal [hl(t), z(t). hdien h'(t)]. where hj(t‘ = (l/uJ) x

exp(-cjujt)sim't H{t) with uj = the damped modal frequency and H(t) = the Heavisice unit
step fuiction.

The stress vector for element (e), (r(e)}. consisting of p components can then be writ-
ten as

(G)) & [B(e)] (u(e)} - [B(e)] [.(Q)] {q} (10)

where [B(')] is the pxn' matrix that converts the nodal displacelent vector {u(e)} of element
(e) consisting of n' components into the stress vector and [¢ (e) ] represents the n'xm matrix

obtained from %0] deleting all the rows except for those corresponding to the n' rows asso-
ciated with (u'®)} so that

w®) = ) (@) (11)
3. Random Vibratior Analysis

If the ground acceleration vector {Z_} is a zero-mean Gaussian random vector, so is the

generalized coordinate vector {q} by virtue of eq. (9). The density function of {q} s giv~
en by

T -1
£, .({q} ~4(q}' [V } 12
(q,(q) —-77——1-2') |[V T exp [-%4(q [qq] (q}] (12)

where [qu] is the covariance matrix of {q}. Since the covariarce matri. is positive defi-
nite, it can be written in the following form by means of the Cholesky decomposi‘.ion;

. T -1, Ty-1 -1
[qu] [Lq][Lq] or [qu] ([Lq] ) [Lq] (13)
in which [Lq] is tne lower triangular matrix. With the aid of the rw trix [Lq]. the general-
1zed coordinate vector (q} is transformed into {v} so that
(v} = [Lq]"(q) or  {q) = [L 2w} (14)

The density function of f{”((v)) of the transformed generalized coordinate vactor {v} is
then given by

1 i B T
f(v)(lv)) = EET'F"Z cxp [~(vi (v}] (15)

fq. 15 suggests that the components v‘(t) of {v} are N(0,1) or a Gaussian variate with mean
zero and unit variance and are independent of vj(t) (i#j), and that the expected value vec-
tors E{q) and E{v) of (q) and {v} are zero. Under the furtner assumption that (Z_) and hence
{v] are statiomry. the cross-correlation matrix (R (to)] of {q} is given by [R (to)] =
E{(q(t)}{q(2 *to)) ] It is well known that the Wiener-khintchine (W-K) transforwr of
[qu(to)] is the cross-spectral density matrix [Sqq(u)] of {(q(t)}. Hence, the following W-K
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transform pair is obtained;

« -1»?6 : - 1ut°

[Sqql)] = 5 [ [Reqltghl e “dtgi  [Rgltgll = [ [Sqledl e © du (16)
The cross-correlation matrix [Rw(to)f and the cross-spectral density matrix [Sw(u)] can be
written in terms of {qu(to)] and [Sqq(u)] espectively;

R, (tg)] = (L) MR (NI ™ 5, (0] = [gi sl ™ an
These quantities are also related through the W-K transform pair.

With the aid of eq. (16) and from the stochastic process theory, one can show that

(Vo) * | Ugqlldus  Dggl = | wilSeq(u)ldus gl =/ tulSeglu)lée  (18)
For the evaluation of these covariances, the following ¢ pression for [Sqq(u)] which :asults
from eq. (7) must be used.

[Sqq()] = () 003 INILTILS 4 ()11 11 LodTH¥(w)] (19)
where H{w)] is the modal frequency response function matrix = diagonal [Hl(u), .~12(u), SR
Hglw)] with Hj(u) = 1/((«:} - w?) ¢ Zicjui...) and [H*{w)] indicating the complex conjugite of

[H(w)]. In eq. (19), the matrix [S”(..) represents the cros: spectral density function ma-
trix of {(Z_ )} or

9
Sgpa(®)  Sggny(@)  Seguz)

[Sgg(u)] - Sggy‘(u) Sggyy(u) Sggyz(u) (20)
Sggzxt®)  Sgazy(8)  Sggzp(w)

The covariance matrices associated with {v)} and {v)} can be derived with the aid of those
associated with {q) and {(q};

Bl ® [Lq].l[\qu]([I.q]'l)T = (1] = mm identity matrix (21)
. “lry.. LT, ] = “iry . -7
Vgl = [Lg) quq]([Lq] ; vl =[] ‘[qu]((Lq] ) (22)

Wwith the aid of egs. (10) and (14), the utress vector for element (e) can be written in
terms of {v} as

1) = N0 iq = 800 J10) (23)

This expression for the element stress vector plays an important role in evaluating the ele-
ment limit -tate probability and eventually the system 1imit state probabi'ity (the limit
state probability for the entire scructure). The expression is essential for the purpose of
evaluating the latter in particular, since it expresses th2 element stress in terms of (q)
which is common to all the finite elements within the structure and hence is the source of
the statistical Jependence between the stress vectors in the different finite elements; such
a statistical dependence must be known for the evaluation of the system limit state probabil-
ity.

In concluding this section, it is pointed out that, in vie of the positive definiteness
of \JW] and [V;;]. a Tinear transformation {w} = [L]{q)} exists such that L B [I.] and at
the same time [V-.+] Secomes diao~nal. Such a transformation can of course be usad in the
present study. The advantage of doing so is not overwhelmirg, however, since one still has
to deal with [Vw-'] which in general cani.ot be diagonzlized simultaneously.
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4. Limit State Probabilities

In ti's study, it 1s assumed that the system 1imit state is defined in terms of the
state of stress in such a way that the limit state is reached if the foliowing inequation is
satisfied anywhere in the structure; ’

9({r}) £ 0 (24)

where g{{t}) is an sbbreviated form indicating s function of the stress components. The gen-
er21 nature of the function g({r}) is such that the so-calied limit state equation g({t}) =
0 usually represents a closed (hyper-) surfaca known as the [imi: state surface and that
glir}) < C indicates the domain outside the 1imit state surface. As a possible form of g(+),
consider the limit state condition specified by the domain in which at l2ast one of the fol-
lowing set of k i.2qualities, each representing a hyper-plane, is satisfied;

g5(r)) = R; - (AJ;Ym <0 (371,250 .. ,K) (25)

where (Aj) are constant vectors. The corresponding limit state equation represents a closed
hyper-surface constructed out of appropriate parts of the k hyper-planes in eq. (25) so as to
enclose the smallest hyper-volume D‘ zantaining tne origin {t} = {0} in the stress component
space, For example, if eq. (25) involves only two components, say L1 and T of the stress
vector for all values of j, then the corresponding 1imit state equation represents the small-
est closed area that can be constructed out of the k straight lines R‘j - (AJ)T(r) =0 (j=1,
2,...,k). It is pointed cut that the hyper-polyhedral limit state surface associated with
eq. (25) can be used with relative ease to approximate a limit state surface of any shape
either by inscribing or by circumscribing the surface.

Rewriting eq. (25) for element (e),

n§°’ 5 (Af,")’{x(") <0 (§51,2,. .. k) (26)
and substituting eq. (23) intc eq. (26), one obtains

ng" . (I}”)’(v) <0 (3=1,25....k) (27)
where

(N'(’E)}T = Age)}:[a(e)][’(e)]["q] (28)

1f the equality is ccncidered in eq. (28), the equation represents a hyper-plane ng) in the
{v! space. Note that {v} is the transformed generalized coordinate vector whose dimension is
equal to the aumber of significant modes used in the structural amalysis and is in general
not very large. The transformation of eq. (26) into eq. (27) involves a linear transforma-
tion and therefore a hyper-plane in the {r} space remains a hyper-plane in the {v} space. Of
crucial importance, however, is the fact that, with eq. (27), the limit state conditions for
all the fizite elements are specified in the zame {v} space. Recall the hyper-volume D_ de-
fined in the preceding paragraph. If (v} consists of two componunts vy ana vy, the domain D‘
is mapped into the domain = of quadrilateral shape in the two-dimensional (v} “pace as shown
in Fig. 1, assuming that'k = 4, The limit state surface in the {r)} space is also transformed
into the corresponding limit state surface Fo in the {v} space through the transformation.
One can rewrite eq. (27) in the following form.

{n;e),Y(v) = r}e) (29)

vhere (n‘(“)} is the unit outward vector normal to Ng’);
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o & ()
and r§0) is the sh- “test distance betwe=n the origin {v} = {0} and ugt);

. 8 Gl .y (31)

It can be show: (Ditlevsen [1], Veneziano, et al [2], Kako, et al [3] and Shinozuka [4])

that the rate v((’e) for the vector pracess {v} to out-cross the limit state surfaca FD'
sociated with eisment (e) is approxinted by

( (.))
(&) yi § o,
VDC .FJZI Mj (32)
in which a'(‘:; is given by
m [0
o JaL oy " ng5 Mgy ELTyiy] (33)

Ir eq. (33), n (e) and ul(’e) are, respectively, the a and b components of (n(')) Usually, the
summztion in eq. (32) is dominated by the one term associated with the hyper-plane with the

shortest distance ;")‘ (r( e in Fig. 1) to the origin. Furthermore, if one considers the

crossing rate out of a hyper-sphere with a center at the origin and with a radius r'sm)' (r{e)

in Fig, 1), this crossing rate may ve used as an upper bound for vé‘). The crossing rate can

be shown to be (Kako, et al [3])

(e},?
=g 3 -1
vge (r(e) m-1 1 izl ) (rﬂﬂﬂ) /2-'- 2 r(%’) (34)
in which
$) = erig(o)) - 5 IRCIRGACHY (35)

Note that E[Gi(t)] and E[vJ(t)Gi(t)] in eq. (35) are the i-i and j-i components of the covar-
iance matrices [VWJ and (v“-']. respectively, as described in eq. (22).

As indicated earlier, the reliability of a structure as a whole is defined Uy the proba-
bility that the limit state surface is out-crossed somewhere in the structure during the
structure's expected service life. In terms of a finite element analysis, this implies that
the system reliability is equal to the probability that the out-crossing will occur within at
least one finite element among all the elements of the stru-ture. For ease of discussion,
consider a structure which is divided into four finite elements (a), (b), (c) and (d) and as-
sume that (v} is comprised of two elements. Fig. 2 schematically shows such a case in which
a limit state surface of quadrilateral hape is indicated for each of these fuur elements.
Furthermore, Fig. 2 indicates that eiemen’ (a) is most severely stressed, element (b) . 2
lesser degree, element (c) to an even lesser degree and elem t (d) to the least. The limit
state condition Tor the structure as a whole is then defined as the probability that {v) will
out-cross the svstem limit surface S which defines the shaded domain °S' In the domain Dg
complementary tu °S' the 1imit state condition is reached in at least one of the finite ele-
ments. Using the approximation given in eq. (32) with r{ 2) denoting the distance between the
origin and the closest hyper-plane Hi‘) and also using eq. (34), one obtains
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(e

(a)y2 m
§ (rld)) 1
w ko ¢ 7 <@ﬂwﬂ§jﬁﬂo"‘ W2 @ (36),

Let D'(e) and 0(') denote the domains where the limit state condition is respectively satis-
fied and not satisfied faor element (e) in the {v} space. Also, let rga) denote the shortest
jistance between the origin {v} = (0} and the system limit state surface. Then, eq. (36) is
,alid for the general case in which the structure consists of an arbitrary number of finite
elements. The system limit state surface is here defined as the interface between Ds - no"’
and Dg. .
Referring to Fig. 2, the fo.lcwing observation is in order; First, assume that the sys-
tem 1imit stat: is reached when the states of stress in elements (a), (b) and (c) simultane-
ously reach tne 1imit state defined in eq. (26). Then, the approximation and upper bound for
ihe vy associated with this system limit state are obtained respectively from eq. (36) by

S
replacing r{" with rgc) (see Fig. 2). Obviously, this results in an out-crossing rate VDS

smaller than that for the system limit state defined earlier in a more sonservative sense.
The implica.ion of this observation is that, in general, not only the - ;item limit state can
be defined in terms of the state of structural response in which a specific set of finite el-
ements will reach the limit state simultaneously thus producing a mode of structural failure,
but also the out-crossing rate associated with such a system limit state can be estimated.

Finally, if the earthquake occurs in accordance with a Poisson process with an arrival
rate i and if its duration is “p each time it occurs, then the structural reliabiiity L(T)
can be evaluated in approximation as

L(T) = exp(-ATvDSuD) (37)

where T is the expected service life of the structure. Since 0 “D*Fo is an upper bound ‘ar
S

(v} 10 out-cross the system limit state surface S at least once during the duration up 2
shown by Shinozuka [5] and Shinozuka and Yao [6], one has the following lower bound for L(T);

UM 23 = ATl g * Fo) (38)

where F0 is the probability that the structure is initially in .. limit state.

5. Conclusion

A method has been devcloped for the estimatior of the structural reliability when a
structure is subjected to loads thai cen be idealir ¢ ‘n .-ms of a Gaussian random vector
process. An earthquake ground motion is taxen as a iypical example of such a Toad. The iim-
it state condition considered in this study is that which pertains to a hyper-polyhedral 1im-
it state surface. The finite <’ement method has been used for the structural response eval-
uz*ion within the framework of the modal analysis. Also, observations have been made as to
how the probabilities of various modes of structural failure can be estimated in conjunction
with the finite element analysis. With the aid of the method developed above, a reliability
analysis has indeed been performed on a reinforced concrete containment structure. The re-
sults are precented in companion papers by Shinozuka, et al [7], Shinozuka, et al [8] and
Chang, et al [9].
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