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Figure Captions*

1. Limit State Condition in the (v) Space

2. System Limit State Conditions
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Surmnary

This paper outlines an analytical and numerical procedure developed for the frequency do-
main finite element analysis of category I nuclear structures, in particular, of reinforced
concrete containment shell structures, subjected to earthquake ground acceleration. Such a
procedure can be conveniently used in the analytical evaluation of the overall seismic safety
of nuclear power plant structures.

Emphasized in this presentation, kwever, is the analytical procedure associated with the
random vibration analysis. The earthquake ground acceleration is assumed tn be a Gaussian
vector process characterized by a zero mean and three-by-three cross-spectral density matrix
of its three components. A SAP V finite shell element code is used to evaluate the natural
frequencies and modes that are significantly participating. The nodal displacement vector {u)

; is then expressed in terms of a (truncated) codal expansion involving only those significant
modes. The frequency domain inodal analysis then produces a cross-spectral density matrix of
the generalized coordinate vector (q), from which the corresponding covariance matrix can be
easily derived. The Cholesky decomposition of the covariance matrix leads to the transforma-

tion of (q) = (q(t)) into a vector (v) = (v(t)) whose covariance matrix-[V,y] is the identity
matrix. Furthermore, the covariance matrix [Vg] between (v) = (v(t)) and (0) = (0(t)} and
the covariance matrix (V ;] of {0) = (0(t)) can also be easily derived from the cross-spectralg

; density matrix of (q). Since the strest vector.(t) is a function of (q), the vector (t} con-
sisting of three membrane and three moment compenents can also be expressed in terms of (v).
Therefore, failure conditions (or limit state conditions) written in terms of the stress vec-
tor can in turn be written in terms of (v) and these conditions farm closed curves when plot-
ted in the (v) plane. The present paper then suggests methods of estimating the expected rate
at which the vector process (v(t)) outcrosses the failure condition for each element. Such
an expected rate is then used to estimate the failure probability of each finite element. The
problems that arise in estimating the failure probability of the containment structure as a
whole are also discussed.
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1. Introduction
.

The use of more sophisticated load and structural models is increasingly demanded in or-
der to reflect the effects of load-structure interaction more realistically in structural re-
liability analysis, particularly Aen dealing with such" risk-sensitive systems as nuclear pow-
er plant structures. To thiz end, loads are often idealized in terms of the random functions
of temporal and/or spatial variaoles, and the structural responses are evaluated by means of
advanced r.umerical techniques such as finite element methods. This paper outlines an analy-
tical and numerical procedure developed for the frequer.cy domain finite element analysis of
category I nuclear structures, in particular, of reinforced concrete containment shell struc-
tures, subjected to earthquake ground acceleration. Such a procedure can be *:onveniently used
in the ar.alytical evaluation of the overall seismic safety of nuclear power plant structures.

Emphasi ed in this paper, however, is the analytical procedure associated with the random
process analysis involving the earthquake ground acceleration which is assumed to be a Gaus-
sian vector process characterized by a zero mean and three-by-three cross-spectral density
matrix of its three components. A SAP V finite shell element code is used to evaluate the
natural frequencies and modes that are significantly participating.
2. flodal Analysis

The equation of motion for an n-degrees-cf-freedom system within the framework of a lin-
ear elastic analysis is written as

[li]{ul+[C]{0)+[K](u)=-[H][i](I) (1)g

where [H], [C] and [K] are the nxn mass, damping and stiffness matrix, respectively, and (u) i

is the nodal displacement. [$) is the modified identity matrix given by

[i]=[I, i i,] ( .' a )y

and the vector {2 ) consists of the three elements representing the ground acceleration in the
g

x, y and z directions, respectively;

zf (2)II I * EI z
g gx gy q

Under the assumption of the existence of nornial modes, the modal displacement vector (u)
is expanded into those modes for which the modal participation is significant.

- (u) = [c](qi (3)

where

'm] = trur.cated normalized modal matrix (4)[6]=[eg e2
****

(q) = generalized coordinates = [qi q2 9'"* m
'

(, ) = j-th normalized modal vector = [*1j '2j *nj N""

The modal vectors (eg), ($ I' ****' I'm) do not necessarily represent the first m modes. Fur-2
i.hermore, they do not usually indicate a sequence of successive m modes, but rather indicate
those significant modes, arranged in increasing order in terms of their corresponding frequen-

| cies.
Substituting eq. (3) into eq. (1) and premultiplying by [e]T, one obtains

(q) + [a](q) + [n )(q} . . (p l I - (F ) I - (F,) E (7)z
x gx y gy gg

where [a] and [n2] are the (mxm diagonal) modal damping and frequency matrices; [a] = diago-
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nal [2c eg. 2c2"2, .... 2c,w,] and [n ] = diagonal [x{, wj,...... Q], rc.spectiv ;ly, andz* j
(F,), (F,) and (F ) are the modal participation vectors associated with I ,, I and Eg g gy gz'

- respectively; ,

(F,1=[e[[M,)=[f, a=x y,z (8)f I -

g 2a ma
""

The solution (q) results from eq. (7) as
t

(q) * - f, f E ,(t) [h(t-t)] (F,)dt (9)
ga~

In eq. (9), the summation is with respect to a = x.y ami z and [h(t)] is the modal impulse
response function matrix = diagonal [h (t), h (t), ..... h,(t)], where h (t) = (1/sj) =g 2 j

exp(-c3wj )sinwjt H(t) with wj = the damped modal frequency and H(t) = the Heaviside unitt

step function.
The stress vector for element (e), (t ')) consisting of p components can then be writ-I

ten as

(,(e)) , gg(e)) g,(e)) = [B ')] [4 ')] (q) (10)I I

I Iwhere [B 'I] is the pxn' matrix that converts the nodal displacement vector (u ')) of element
I(e) consisting of n' components into the stress vector and [e ')] represents the n'xm matrix

obtained from deleting all the rows except for those corresponding to the n' rows asso-

clated with (u ) so that

(u ' } = [e ')] (q) (11)I I

3. Random Vibration Analysis

If the ground acceleration vector (I ) is a zero-mean Gaussian random vector, so is the
g

generalized coordinate vector (q) by virtue of eq. (9). The density function of {q) is giv-
en by

4**PI'hf9IEYqq) (q)] (12)
gq3((q))= (2w)m/2 y

f

where (Vqq] is the covariance matrix of {q). Since the covarias.ce matrix is positive deft-
nite, it can be written in the following form by means of the Cholesky decomposition;

or [Vqq)-1 , ( )T)-1 g 3-1 {g3)[Vqq] = [L ][L ]Tq g
in which [L ] is the lower triangular matrix. With the aid of the outrix [L ], the general-

q q
ized coordinate vector (q) is transformed into (v) so that

(v)=[L]-l(q) or (q) = [L ](v) (14)g q

The density function of f ,3({v}) of the transformed generalized coordinate vector (v) isg

then given by

exp[-k(v)(v)] (15)f ,3((v)) = m/2g
(2

Eq. 15 suggests that the components v (t) of (v) are N(0,1) or a Gaussian variate with meang

zero and unit variance and are independent of vj(t) (ifj), and that the expected .value vec-
tors E(q) and E(v) of (q) and (v) are zero. Under the furtr.er assumption that (I ) and henceg

qq(t )3 *qq(t )] of (q) is given by [R(v) are stationary, the cross-correlation matrix [R 0 0
E[(q(t))(q(t+t))]. It is well known that the Wiener-Khintchine (W-K) transform of

0

[Rqq(t)]isthecross-spectraldensitymatrix[Sqq(w)] of (q(t)). Hence, the following W-K0
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. _ transform pair is cbtained;
'

ist-int - ---

qq(w)]=hf[Rqq(th)]_e k dt b E qq(t I3 " [ EIqq(w)]e de (16)[S O 0

The cross-correlation mattrix [R,,(t J] and the cross-spectral density matrix [Sg(u)]canbe04

qq(t )] and (Sqq(w)] respectively;written in terms of [R 0, ,

qq "I3IEl l~lI III) -;f Iqq *0I3IEl l I ESvy "Il " Il ES
'

I[R,,(tIl"El EE q0 q q q

h- These quantities are also related through the W-K transform pair.
With the aid of eq. (16) and from the stochastic process theory, one can show that

w [S (w)]dw; [V g] = f tw(Sqq(w)]de (18)a[V l = f [Sqq(w)]du; [V44]=qq

For the evaluation of these covariances, the following expression for [Sqq(w)] which results
from eq. (7) must be used.

[Sqq(w)]=[H(w)][0][M][i][Sgg(w)][i][H]T[*][H*(w)] (19)

! where [H(w)] is the nodal frequency response function matrix = diagonal [H (w). H (")* **** *g 2 .

.

H,(w)] with H (w) = 1/((w] - w ) + 2icjujw) and [H*(w)] indicating the complex conjugate of2j,

j [H(w)]. In eq. (19), the matrix [Sgg(v)] represents the cross-spectral. density function me-
trix of (z ) or; g _ _

'

gg,/w) Sgg,,(w)gg,,(w) 'S S

ggyz(w) (20)ggyy(u)[Sgg(w)] = Sggy,(w) S S
'

8 I Sggzy "I Iggzz ")I I
f _ ggzx "I

The covariance matrices associated with (v) and (0) can be derived with the aid of those
associated with (q) and (q);

[V,,)=[L]~I(Vqq]([L ]~I)T , (g ] = mxm identity matrix (21);
g q m

[V;;] = [L T [V44]([L]~I)T; [V,;] = [L ]~I(Vq4]([L]'I)T (22) ;q g q g.

[
With the aid of eqs. (10) and (14), the stress vector for element (e) can be written in

' terms of (v) as ,

(t ')} = [B 'I][e ')]{q) = [B ')][o 'I][L ]{v) (23)I I I I I
4 q

This expression for the element stress vector plays an important role in evaluating the ele - ,

ment limit state probability and eventually the system limit state probabi'ity (the limit
state probability for the entire structure). The expression is essential for the purpose of ;i

evaluating the latter in particular, since it expresses the element stress in terms of (q)
,

which is common to all the finite elements within the structure and hence is the source of,

i the statistical dependence between the stress vectors in the different finite elements; 'such -
a statistical dependence must be known for the evaluation of the system limit state probabil-

i ity.

In concluding this section, it is pointed out that, in view of the positive definiteness

of [l ,] and [V ;l, a linear. transformation (w) = [E]{q) exists such that [V,] = [1,] and at -
~

y .

thesametime(Vg]becomesdiapanal. Such a transformation can of. course'be used in the,

|. present study. The advantage of doing so is not overwhelming, howaver, since one still has
.

to deal with [Vg] which in general cant,at be diagonalized simultaneously.I

!
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4. Livit State Probabilitits.
n

? In this study, it is assumed that the system 1telt state is defined in terms of the
state of stress in such a way that the limit state is reached if the following inequation is*

*
i satisfied anywhere in the structure;

$ g({t)) 1 0 (24)
,

where g((t)) is an abbreviated form indicating a function of the stress components. The gen-
eral nature of the function g({t)) is such that the so-called limit state equation g({t)) =

;

0 usually represents a closed (hyper-) surfaca known as the limit state surface and that
g((r)) < C indicates the domain outside the limit state surface. As a possible form of g(.),

f consider the limit state condition specified by the domain in which at least one of the fol-

i lowing set of k it. equalities, each representing a hyper-plane, is satisfied; ,

sj((t)) = R) - (A ) Tit) 1 0 (j=1,2,...,k) (25)
j

where (A ) are constant vectors. The corresponding limit state equation represents a closed'

j

I hyper-surface constructed out of appropriate parts of the k hyper-planes in eq. (25) so as to ,

enclose the smallest hyper-volume D, containing the origin (t) = (0) in the stress component
space. For example, if eq. (25) involves only two components, say 21 and v2, of the stress *

,

vector for all values of j then the corresponding limit state equation represents the small-;

est closed area that can be constructed out of the k straight lines R3 - (A }T(t) = 0 (j=1,j,

2,...,k). It is pointed out that the hyper-polyhedr91 limit state surface associated with
eq. (25) can be used with relative ease to approximate a limit state surface of any shape 6

1

| either by inscribing or by circumscribing the surface.
i Rewriting eq. (25) for element (e),
:

R 'I - (A 'I)T ,(e)) 1g 0 (j=1,2,... k) (26)

i and substituting eq. (23) inte eq. (26), one obtains

R 'I - ( 'I}T(v) 1 0 (j=1,2....sk) (27)i

i where
( 'I)T , zg e))f[g(e))[,(e)][L ] (28)g

If the equality is ccnsidered in eq. (28), the equation represents a hyper-plane H *} in the
(v) space. Note that (v) is the transformed generalized coordinate vector whose dimension is
equal to the number of significant modes used in the structural analysis and is in general '

i

} not very large. The transformation of eq. (26) into eq. (27) involves a linear transforma-

k tion and therefore a hyper-plane in the (t) space remains 'a hyper-plane in the (v) space. Of

{ crucial importance, however, is the fact that, with eq. (27), the limit state conditions for
.

all the ff31te elements are specified in the :ame (v) space. Recall the hyper-volume D, de-
fined in the preceding paragraph. If (v) consists of-two components v ano v , che domain D .g 2

|
1s mapped into the domain G of quadrilateral shape in the two-dimensional' {v} ipace as shown -
in Fig. 1, assuming that k = 4.' The limit state surface in the (t) space is also transformed-
into the corresponding limit state surface F in the (v) space through the transformation.

D

One can rewrite eq. (27) in the following fonn.'

(n ' }T(v) = r (29);

where (nj'I) is the unit outward vector nonnal to H I;4

4

-5-
,

'

|

<
,- ._..c__. _ . _ . . ;. ._ ..<

4

-- ,v , , - - . , .,.



* K No. 7/2 - -h rako

(nf}}e (K[(I} (30)
*

and rf) is the she.-test, distance between the origin (w) = (0} and H ');
Id') (31)r ') =I *

j gg(e)g J

It can be shown (Ditlevsen [1], Veneziano, et al [2], Kako, et a1 [3] and Shinozuka [4])

that the rate v for the vector pr) cess (v} to out-cross the limit state surfaca Fh'}as-
sociated with ele.!ent (e) is approximated by

(r ))
~

vh') a h
2

, e (32)

inwhichof'isgivenby

EG,0] (33)= n n'n b
g g

are, raspectively, the a and b components of (nj'}}.I I Usually, theIr.eq.(33),n and n

sumation in eq. (32) is dominated by the one term associated with the hyper-plane with the

(rf'I in Fig. 1) to the origin. Furthermore, if one f.onsiders theshortest distance r
crossing rate out of a hyper-sphere with a center at the origin and with a radius r (rf*}
inFig.1),thiscrossingratemayueusedasanupperboundforvh'I.Thecrossingratecan
be shown to be (Kako, et al [3])

v0 1 II )m-1 ) , D (e))2 min /(/27 2r(y)} (34)

m

in which

=E(0{(t)]- (E[vj(t)v (t)]} (35)c g
j=1

Note that E[vg(t)] and E[vj(t)i (t)] in eq. (35) are the 1-1 and j-1 components of the covar-g

iance matrices [V;;] and [V,;], respectively, as described in eq. (22).
As indicated earlier, the reliability of a structure as a whole is defined by the proba-

bility that the limit state surface is out-crossed somewhere in the structure during the
structure's expected service life. In terms of a finite element analysis, this implies that
the system reliability is equal to the probability that the out-crossing will occur within at
least one finite element among all the elements of the structure. For ease of discussion,
consider a structure which is divided into four finite elements (a), (b), (c) and (d) and as-
sume that (v} is comprised of two elements. Fig. 2 schematically shows such a case in which
a limit state surface of quadrilateral thape is indicated for each of thesa fuur elements.
Furthermore, Fig. 2 indicates that 61emen! (a) is most severely stressed, element (b) N a
lesser degree, element (c) to an even lesser degree and eierat (d) to the least. The limit
state condition for the structure as a whole is then defined as the probability that (v) will

. out-cross the s.vstem limit surface 5 which defines the shaded domain D . In the domain Dj3
complementary to 0 , the limit state condition is reached in at least one of the finite ele-

3

Usingtheapproximationgivenineq.(32)withrf*I denoting the distance between thements.

origin and the closest hyper-plane H{a) and also using eq. (34), one obtains

-6-
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(r{a))2 2 ,

o*hof'n{e <(rfa))m-
) , * (e)I

.

I/(6 2 r(j)) (36), I1
w

Let D*I'I and D 'I denote the domains where the limit state condition is respectively satis-I

fied and not satisfied for element (e) in the (v) space. Also,letrfa)denotetheshortest
distance between the origin (v) = (0) and the system limit state surface. Then, eq. (36) is
valid for the general case in which the structure consists of an arbitrary number of finite

1D'II
elements. The system limit state surface is here def'ined as the interface between DS = (e.

andDj.
Referring to Fig. 2, the fo'.lewing observation is in order; First, assume that the sys-

ten limit stats is reached when the states of stress in elements (a), (b) and (c) simultane-
ously reach tne limit state defined in eq. (26). Then, the approximation and upper bound for

i.he vD ass ciated with this system limit state are obtained respectively from eq. (36) by
'

replacngrfa)withrfCI(seeFig.2). Obviously, this results in an out-crossing rate vD
3

smaller than that for the system limit state defined earlier in a more r.onservative sense.
The implication of this observation is that, in general, not only the + ptem limit state can
be defined in terms of the state of structural response in which a specific set of finite el-
ements will reach the limit state simultaneously thus producing a mode of structural failure,
but also the out-crossing rate associated with such a system limit state can be estimated.

Finally, if the earthquake occurs in accordance with a Poisson process with an arrival

rate A and if its duration is uD each time it occurs, then the structural reliability L(T)
can be evaluated in approximation as

L(T) = exp(-ATvD"D) (37)
3

where T is the expected service life of the structure. Since vD W +F is an upper bound for
D 0

3

(v) to out-cross the system limit state surface S at least once during the duration 90 as

shown by Shinozuka [5] and Shinozuka and Yao [6], one has the following lower bound for L(T);

L(T) y,1 - AT(vD "O &F) (38)
D

3

where F is the probability that the structure is initially in th limit state.
0

5. Conclusion
A method has been developed for the estimation of the structural reliability when a

structure is subjected to loads that can b6 ideali M in te ms of a Gaussian random vector
process. An earthquake ground motian is tanen as a typical example of such a load. The lim-
it state condition considered in this study is that which pertains to a hyper-polyhedral lim-
it state surface. The finite dement method has been used for the structural response eval-
u: tion within the framework of the modal analysis. Also, observations have been made as to

!
how the probabilities of various modes of structural failure can be estimated in conjunction
with the finite element analysis. With the aid of the method developed above, a reliability
analysis has indeed been performed on a reinforced concrete containment structure. The re-
suits are presented in companion papers by Shinozuka, et al [7] Shinozuka, et al [8] and
Chang, et al [9].
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