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Summary

For the overall safety evaluation of seismic category I structures subjected to various
load combinations, a quantitative measure of the structural reliability in terms of a limit
state probability can be conveniently used. For this purpose, the reliability analysis seth-
od for dynamic loads, which has recently been developed by the authors, was combined with the
existing standard reliability analysis procedure for static and quasi-static loads. The sig-
nificant parameters that enter into the analysis are: the rate at which each load (dead load,
accidental internal pres-ure, earthquake, etc.) will occur, its duration and intensity. Alil
these parameters are basically random variables for most of the loads to be considered. For
dynamic loads, the overall intensity ‘s usually characterized not only by their dynamic com-
ponents but also by their static compoiants. The structure considered in the present paper
is a reinforced concrete containment structure subjected to various static and uynamic loads
such as dead loads, accidental pressure, earthquake acceler-ation, etc. Computations are per-
formed to evaluate the limit state probabilities under each load combination separately and
also under all possible combinations of such lcads. Indeed, depending on the limit state con-
dition to be specified, these 1imit state probabilities can indicate which particular load
combination provides the dominant contribution to the overall limit state probability. On
the other hand, .ome of the load combinations contribute very little t: the overall limit
state probability. These observations provide insight into the complex problem of which load
combinations must be ccusidered for design, for which 1imit states aud at what level of limit
state probabilities.
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1. Introduction

For tie overall safety evaluation of seismic catecory ! structures subjected to various
load combinaticns, 2 quantitative meaguce of the structural reliability in tarms of a limit
state probability can be conveniently used. For this purpose, the reliability method for dy-
namic loads, which has recently been developed in a companion paper by Kako, et al (1], was
combined with the existing standard reliability analysis procedure for static and quasi-static
loaus. The significant parameters ‘hat ente- into the analysis are: the rate at which each
load (dead load, accidental foferes; grecsure, earthquake, etc.) will occur, its duration and
intensity. These parame.ers (nvolve urcertainties for most of the loads to be conzidered.
For dynamic loads, the overall intensity is usually characterizad not only by their dynamic
components but a'so by their static components. The structure considered in the present paper
s a reinforced cuncrete containment structure subjected to various stutic and dynamic loads
cuch as dead loads, accidenrai oressure, ea-thquake acceleration, etc. Computaticns are per-
formed and the limit st2te preXsoilities are evaluated under each load combinatinn separately
and also under all possible combinations of such loads. Indeed, it is observed from these
limit state probabilities that, depending on the limit state condition to be specified, one
of the load combinations provides the dominant contribution to the overall 1imit state proba-
bility. It is further observed thas some of the load combinations contribute very littie to
the overall limit state probability. These observations provide insight into the complex
preblem of which load combinations must be consicered for design, for which limit states and
at what level of limit state probabilities. Such insight will be helpful in examining deter-
ministic safety checkiig formats for the probability-besed structural design.

2. Containment Loads

As described in more detail in a second companion raper by Shinozuka, et al [2], four
types of loads are taken into consideration in the present analvsis. They are dead and live
(D/L) loads, the accidental internal pressure (P) load and earthquike ground acceleration (E).
Other loads such as the SRY load will be cunsidered in a future study.

2.1 Dead and Live (D/L) Loads
The dead load is the weight of the deme and the cylindrical wall, The weight density of
the reinforced concrete is taken to be 150 lb/ft3. The dead load is obviously static and as-

sumed to be Jeterministic. sove live loacs act on the containment at the locations where the

floors are connected to the contuinment, The locations and design values of these live loads
are shown as follows:

Elevation 856' 8284’ 803y’ 778’ 755"
Live Load (kip/ft) 0.707 3.00 0.940 1.02 n.930

For the pu-pose of the present analysis, the live load is also assumed to be deterministic
and equal tu tue design values.

2.2 la‘ernal Pressure (P; P, _or Py)

The internal pre=sure is considered a quasi-static load Gisd ibuted uniformly on the con-
tainment wall. Moreover, it is idealized as a rectangular pulse and will occur at a pre-
wcribed expected interval with cicurrence rate iy (per year), mean duration ugp (in seconds)
and intensity P, The intensity P is treated as a Gaussian random variable with mean P and
standard deviation op. Two different kinds of internal pressure are considered. One is the
accidental pressure PL due to a large LOCA, but not fcllowed by a hydrogen burn, and the oth-
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er is the pressure P“ caused by a hydrogen burn (deflagration) following a large LOCA,
For the accidental pressure PL. the nccurrence rate i, and the mean duration ugp, Aare
L L

taken to be 1.0 x lO"/yur and 1.0 x 10‘ seconds, respectively, while the intensity 'L is

Gaussian witi a mean value of 15 psi and standard deviation of 3 psi. If the probability is

assumed to be 0.1 for a LOCA to be r21lowed by a hydrogen burn, the occurrence rate of the

hydrogen bura \p is 1.0 x lO’s. It is fu-ther assumed that the mean duration of P, is
H H

600 seconds and that its intensity is Gaussian with a mean value of 45 psi and standard devi-
ation of 9 psi. For mathematical zimplicity, the hydrogen accident is assumed to cctur inde-
pendently of the LOCA without, however, allowing their simultareous occurrence. Although
this s enario is somewhat different from the actual situation, the 1imit state probability
based thereupon is expected to be close to that which would follow from the actual sequence
of events.

2.3 Earthquake Ground Acceleration (E)

The earthquake ground accelecration is assumed to act only along the horizontal direction.
Morecver, it is idealized as a stationary Gaussian process (of finite duration) with mean
zero and Kanai-Taj ni spectruis;

Sqgunl®) * g1 + 4cd(ulug) ALY = (wfug)'T" + dz3(urug)®) (1)
where the parameter So represents the intensity of the earthquake. The values of “q and ‘g
depend on the soil conditions of the sit=., For the pr=s« .t <tudy, vg <« 9+ =ad,/sec and tq =
0.6 are used., Also, the mean duratio. VdE of the carthquake acce’eration is assumed to be 10
seconds. The peak ground acceleration Al' given an earthquake, is assumed to be A1 B pg°g
where pg is the peak factor which is assumed to be 3.0 and % is the standard deviation of
the ground acceleration such that

“""* /-Tg'(lcg + 17(2:95) /53 (2)

and therefore

A =a /S = .
1 ® %75 with a pg/wug(ﬂg + l/ﬂtg)) (3)
If the earthquake occurs in accordance with the Poisson law at a rate Ag per year, the proba

bility distribution FA(a) of the annu-| peak ground acceleration A is related to ‘=z prohabil-

ity distributies “, (2, of ‘l in the follcwing fashion.
1
Fpla) = exp(oaglt < Fy (1) or Fp @) = 1 ;_E in Fy(a) (4)

Therefore, if 3 indicates tie minimum peak ground :c-celeration for any ground shaking to be
considered an earthquake, Fy(a;) = 0 and hence A\g = -in FA(ao). Rssuming that F,(a) is of
the extreme distribution of Type 11, Fp(a) = exp(-(a/u)™®) with a = 2,61 and u = 0.01. one
finally obtains

Fklh) =1 - (a/ag)™® LR (5)
Under these conditions, one finds that ic = 1.50 x 10"/year provided that ag = 0.055. Com-
bining eqs. (3) and (5! and writing Z for /S, one further obtains the probability distribu-
tion and density functions of Z in the forms, respectively,

Folz) =1 - (agz/ao)"; f(2) = c(og/ao)(agz/lo)'("’” 223g/a, (8)
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Limit State Probcbﬂitios under Combined Loads

As described in detail in a third comparion paper by Thang, et al [3] and alsc outlined
in a paper by Shinozuka, et al [2], the state of structurai response is considered tc “ave
reached the limit state if the rebars begin to yield (In tension or compression) and/or if
the crushing strength of the concrete is reached at the extreme fibre of the wall cross-sec-
tion anywhere in the containment structure; this implies that the structure is in the limit
state if the limit state is reached in at least one of the finite elements. The limit state
condition intruiuced above can be analytically expressed as

fo2f, and/or f. 2 0.85f (7)

where f’ is the stress in the rebars and 'c the compressive concrete stress at the extreme
fibres. Since the stresses f’ and fc are functions of the stress vector {r}, the limit state
condition in eq. (7) is in general given in the form of g({r}) < O where g(-) is an appropri-
ate function. The equality g({t}) = O, representing fs = fy and fc = O.BSf":. usually indi-
cates a closed (hyper-) surface or a limit state surface in the (r} space. To be consister*®
with the SAP V finite element code used, the stress vector {t} is given by

¥ (8)

where the first three are the membrane stress components and the last three th> bending mo-
ment components of the usual definition; Tt rz Tyy? T3t xy® T4 o 15'I and '6"
The i-th stress components rgwl')(e), tp(e) and ‘i(°) in finite element (¢) due, respectively.
to D/L, P and E are schematically shown in Fig. 1 as functions of time.

The 1imit state probability Pf for the stiucture is defined as the probability that the
structural response will reach the 1imit state durii; i%s expected service life T and written

as

{r} = [Tl o3 T T 16]

by = P:DILvPL) . p:D/LoP") g p‘D/L’E) . P:D/LfPL+E) . PiD/L¢PH¢E) -
In eq. (9), the first term of the right-hand side is the 1imit state probability of the struc-
ture under the action of D/L and PL only, the second undzr D/L and PH only, and so forth.
Eq. (9) follows from the fact that, at aay time instant, the structure is subjec‘ed tc one of
the following mutually exclusive load combinations: D/L, D/L*PL. D/L+P,. D/L+E, D/UPL#E.
and D/LOPNW and from the assumption that the 1imit state probability under C/L alone is zero.
Tre individual terms in eq. (9) can in turn be written as

R (10)

in which x(') is the rate of occurrence of the load combination (:) while P(') is the condi-
t.onal limit state probability given the load combination (-). Following Wer [4], if the

structure is subjected t¢ independent loads LI'LZ' oly which can occur simultaneou<ly and
if load Li arrives in accordance with the Poisson law with an expected as-rivn rate iy and
each occurrence lasts on the av:-~age gy then the expected rate 1 of cthe lcad combi-
nation Li#L, (1)) is

Ly,

A lfij(u‘“ + u“) (11)
Similarly, the expected arrival rate for the load combinations L‘ﬂ.j*Lk (i#3,i7k,k#1) is

(L‘0L30Lt) L

A Mk (givag * vagiae * vaktai) (12)

ke
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The obvious extension of eqs. (11) and (i2) is also valid. On the other hand, according to
Shinozuka and Tan [5], the probability PO'Pf'PiOJ'Pi0jvk""' that at any time instant the
structure is subjected, respectively, to none of the loads, the load L1 alone, the load com-
bination L'OLJ (i#j), the comuination L‘*LJ+Lk (i#i.j#%,x#1), .... are given by

] N
Po‘ll‘gl(l*on). Pi'nilmgl(l0o'). Pi*J‘“iaj/uﬂl(x*‘l)' P1+J*i‘°1°1°k/mgi(l’°m)""’ (13)
where o ®Aiu e Throughout, py are assumed to be p; << 1, while N is not large.

Using eqs. (11), (12) and (13), the expected duration of each occurrence of L (and L,
alone) is, as expected, given by

Vim (7.0 /(th ) * ug (14)
tom
where t is the length of time)in which the structure is subjected to the lvading environment.
L+l
The expected duration u, 1737 of each occurrence of the 1o:d combinatisn li’Lj i
L) (Ly*Ly)
ll‘ ' j 1 11. (tp‘,")/(tl 1 j ) - ud‘um/(udi + de) (15)
Similarly,
(LVL,*L( .
ug vaivasrar’ (Maivag * vagiax * vakvai) (16)

and so forth. For simplicity, let Li'LJ and L, denote D/L, P \PL or P“) and E, respectively.
Since the D/L loads are always acting on the structure, and only P and E occur in accordance
with the Poisson law with respective mean durations, P PD/L = Po. pi+j - PD/L+P 3 Pi#k =
pD/L*E and P10j+k = PDIR‘P+E' Referring to Fig., 1, the frequency interpretation of these
prubabilities are;

: oL, O/, .
UIL lin (t te sae ME
D/L*P o )i- (tD/L*P gltéP + e Wt o
T lim (:D/L’E AE, '
- D/L~P+£ (D/L+P+E ;
PD/L* o l!m (t ty T oovie JE )
Also, x( ) in eq. (10) can be written as
(D/LOPL) (0/L+P,) (D/L+E) B
A B Ap s A * Ap * & + g
L H
(D/L+P, +E)
' i lPL“E(“dPL tuy) - (18)
(D/L+P4E)
) b2y elugp * ugg)
ST, . (D/$P)  (O/L4P,)
In ‘he paper “y Shinozuka, et al [2], the conditional probabilities Pe v Pg -
(D/L+P, +E) (D/L+P +E)

P and Pf are obtained fc- the 1imit state defined earlier and with the aid
of the analytical models and parameter values also indicated earlier and summarized in Tabl:
1. Substitutiag eq. (18) into eq. (10) and u.‘ng these conditional limit state probabilities,
one obtains tiaz (overall) lifetime limit sta .. probability (7.92 x 10'4) for the structure as
shown in Table 2. :

Table 2 indicates that the majo~ contribution to the overall limit state probability
comes from the combination D/L+E (7.23 x 20"). The second largest contribution comes from
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the combination D/L+P, (6.88 x 10°%). The combinations D/L+P +E and D/L+Py+E produce limit
state probabilities a few orders of magnitude smaller than those resulting from D/L+E and b/L

in spite of the fact thu the conditional limit state probabilities under 0/L+P +£ and
D/LoF +E are as large as’ 10 and 10’1. respectively. This is due to the cxtmly small ex-
pected number of simultaneous occurrences of PL*t (1.90 x 10 6) and of P +E (1.16 x 10'1 )
during the expected service 1i::. Also, in Table 2, the critical finite elmm:s 97-120 un-
der D/UP and D/L+P, are located at the same elevation level (36%' above tie base) and have
the same Huit stave nrohability due to the structural and ‘ocading symmetry. Critical ele-
vents 6, 7, 18 and 19 under "/L+E and D/L+P, +E are located in the Towest finite element Tayer
and (mmediately adjacent o the axis along which the earthquake ground acceleration acts.
Finally, criticy. elements 102, 103, 114 and 115 are located at a level 36%' »bove the base,
and immediately adjacent to the axis of the earthquake ground acceleration (when projected on-
to the horizontal plare) for the load combination D/L*Pnft.

4, Conc uding Remarks

A reliability analy.'s method for seismic category | structures subjected to various load
combinations is developed and numerical examples are worked out under various assumptions and
idealizations. The method essentially uses the frequency domain analysis when dealing with
the seismic load. In this respect, it is important to confirm more carefully the validity of
the assumed analytical form of the spcctral density of the earthquake ground acceleration.
The adequacy of the assumpticn that the acceleration can be idealized as a stationary Gaussian
process of finite duration is, however, generally accepted. The importance of the task of
taking into consideration in the analysis the uncertain and probabilistic nature of the other
analytical models and paramete: values used ic recogniiad. However, the limited amount of
time and resources made available to the authors prevented them from accomplishing tne task
at this time. In this regard, statistical and sensitivity analyses t~ reinforce and comple-

went the r-liabiliiy analysis presented here :-e currently underway at Brookhaven National
Laboratory.
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Table !. Load Parameters (Expected Lifetime T = 40 Years)

Load r

Lcad Parameters

Dead & Live Loads (D/L) |*

Deterministic and time invariant

Internal Pressure (PL) l'
Due tc a LO(A

X
|

Occurrence rate Ap = 1.0 x 10"/yur

Mean duration “pp L. !0c seconds

P, = Gaussian with P, = 15 psi and o5, = 3 psi
L L PL

Internal Pressure (P") *
due to Hydrogen Burn &

*

Occurrence rate Ap = 1.0 x lO's,’yur
Mean duration pp - 600 seconds
Py = Gaussian with B, = 45 psi and o, = 9 psi

Earthquake Lcad (E) .

g

*

59911

Stationary random r-ocess (a segment of 10 seconds)
with a Kanai-Tajimi spectrum

1+ 4(;(0/111)2
So +* 3 w,=9n rad/sec|
- (u/ug)zl + ‘C;(u/ug)z 9

(w)
= 0.6

Distribution function of Z = /53

Fpz) =1 - (agz/ao)“’; ag = 0.05g and o = 2.61

where =5
%" g

Occurrence rate g = 1.50 x lO'Z/year

/wug(l/(2:g) #71;97 with Py * 3.0

Mean duration upg * 10 seconds

M. Shinozuka
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Table 2 Lifetime Limit State Probabilities (T = 40 Years)

Expected Number | (ONIEION] || init State Critical
Load of Occurrences Probabilities Probabilities Finite
Combination nt) (+) pl-) Elements

P g
D/L Always Acting 0 0 =
D/L + P, 4.00 x 1072 Numerically Zero 97,98,...,120
O/ + Py 4.00 x 107 1.72 x 167} | 6.38 x 10 | 97,98,...,120
O/L + E .00 x 107} .20 x 100 | 7.23x 107 6,7,18,19
o/L+€+P | 1.90x 10 1.15 x 1073 | 2.20 x 1072 6,7,18,19
on+Esp | 116x1070 | 420 x100 | 492 x 101 |102,103,114,115
Overall o . 7.92 x 107% ot
M. Shinozuka
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