Docket No. 50-423 B14846

Attachment 1

Millstone Unit No. 3

Proposed Revision to Technical Specifications Generic Letter 93-05 and Various Administrative Changes Marked-Up Pages

June 1994

9406140195 940602 PDR ADDCK 05000423 PDR

TABLE OF SECTIONS AND PAGE NUMBERS AFFECTED BY THIS SUBMITTAL

TS Section Number	Title of Section	Page Number(s)	Reason for Change
N/A	Index	ii, ix, x, and xv	Administrative
1.45	The Charging Pump Operability	1-7	Administrative
4.2.3.1.4	Power Distribution Limits	3/4 2-20	Administrative
4.2.3.2.4	Power Distribution Limits	3/4 2-23	Administrative
4.3.1.2	Reactor Trip System Instrumentation	3/4 3-1	Administrative
Table 4.3-1	Reactor Trip System Instrumentation	3/4 3-10 through 12 and 14	Administrative
4.3.2.2	Instrumentation	3/4 3-16	Administrative
Table 4.3-2	Engineered Safety Features Actuation System Instrumentation	3/4 3-36 through 41	Administrative
Table 4.3-3	Radiation Monitoring Instrument	3/4 3-45	Administrative and GL 93-05
Table 4.3-4	Seismic Monitoring Instrumentation	3/4 3-49	Administrative
4.3.3.5.2	Remote Shutdown Instrumentation	3/4 3-53	Administrative
Table 4.3-6	Remote Shutdown Monitoring Instrumentation	3/4 3-58	Administrative
Table 4.3-7	Accident Monitoring Instrumentation	3/4 3-62 and 63	Administrative
4.3.3.8.c	Loose-Part Detection System	3/4 3-68	Administrative
4.4.3.2	Pressurizer	3/4 4-11	GL 93-05
4.4.5.3.a	Steam Generators	3/4 4-16	Administrative

TABLE CONTINUED

TS Section Number	Title of Section	Page Number(s)	Reason for Change
Action Statement b of 3.4.6.1 and 4.4.6.1.b	Leakage Detection Systems	3/4 4-21	Administrative
4.4.6.2.2.b	Operational Leakage	3/4 4-23	GL 93-05
4.4.9.3.1.b	Overpressure Protection System	3/4 4-39	Administrative
4.4.11.1	Reactor Coolant System Vents	3/4 4-43	GL 93-05
4.5.1.1.a and b	Accumulators	3/4 5-1	GL 93-05
4.5.1.2	Accumulators	3/4 5-2	GL 93-05 (Relocate to Technical Requirements Manual)
4.5.2.c.2 4.5.2.d	Emergency Core Cooling Systems	3/4 5-4	GL 93-05 and Administrative
4.6.1.2.d and e	Containment Systems	3/4 6-3	Administrative
4.6.2.1.d	Containment Quench Spray System	3/4 6-12	GL 93-05
4.6.2.2.e	Recirculation Spray System	3/4 6-13	GL 93-05
N/A		3/4 6-16 through 34	Administrative
3.6.4.1 and 4.6.4.1	Hydrogen Monitors	3/4 6-35	Administrative and GL 93-05
3.6.4.2 Electric Hydrogen Recombiners 4.6.4.2 a and b		3/4 6-36	Administrative and GL 93-05
N/A		3/4 6-36a	Administrative

TABLE CONTINUED

TS Section Number	Title of Section	Page Number(s)	Reason for Change		
3/4.6.5	Subatmospheric Pressure Control System	3/4 6-37	Administrative		
3/4.6.6	Secondary Containment	3/4 6-38 through 42	Administrative		
4.7.1.2.1.a and b	Auxiliary Feedwater System	3/4 7-4 and 5	GL 93-05		
4.7.10.e	Snubbers	3/4 7-23	Administrative		
Table 4.7-2	Snubber Visual Inspection	3/4 7-26a and 26b	Administrative		
Figure 4.7-1	Sample Plan 2) for Snubber Functional Test	3/4 7-27	Administrative		
3/4.7.11	Sealed Source Contamination	3/4 7-28 and 29	Administrative		
N/A		3/4 7-30 through 43	Administrative		
3/4.7.14	Area Temperature Monitoring	3/4 7-44	Administrative		
Table 3.7-6	Area Temperature Monitoring	3/4 7-45 through 47	Administrative		
4.8.1.1.2.g. 1	A. C. Sources	3/4 8-5	Administrative		
4.8.1.1.2.g. 10 and 12	A. C. Sources	3/4 8-7	Administrative		
4.8.2.1.c through f	D.C. Sources	3/4 8-12	Administrative		
B3/4.5.2 and B3/4.5.3	ECCS Subsystems	B3/4 5-2	GL 93-05		
B3/4.7.12	Deleted	B3/4 7-7	Administrative		
B3/4.7.13	Deleted	B3/4 7-8	Administrative		
B3/4.7.14	Area Temperature Monitoring	B3/4 7-8	Administrative		

INDEX

DEFINITIONS

SECTION

2

PAGE

(Ly

4

1.32	SLAVE RELAY TEST	1-6
1.33	SOURCE CHECK	1-6
1.34	STAGGERED TEST BASIS	1-5
1.35	THERMAL POWER	1-6
1.36	TRIP ACTUATING DEVICE OPERATIONAL TEST	1-6
1.37	UNIDENTIFIED LEAKAGE	1-6
1.38	UNRESTRICTED AREA	1-6
1.39	VENTING	1-7
1.40	SPENT FUEL POOL STORAGE PATTERNS	2-7
1.41	SPENT FUEL POOL STORAGE PATTERNS	1-7
1.42	CORE OPERATING LIMITS REPORT (COLR)	1-7
1.43	ND	1-7
1.43	ALLOWED POWER LEVELAPL	1-7
	THE CHARGING PUMP OPERABILITY	
1.45	THE CHARGING FUMP OPERATION	1-8
	1.1 FREQUENCY NOTATION	1-0
TABLE	1.2 OPERATIONAL MODES	1-9

10.0

INDEX

LIMITING CONDITIONS FOR OPERATION AND SURVEILLANCE REQUIREMENTS

SECTION	PAGE
	Air Temperature
	Containment Structural Integrity
	Containment Ventilation System
3/4.6.2	DEPRESSURIZATION AND COOLING SYSTEMS
	Containment Quench Spray System
	Recirculation Spray System
	Spray Additive System
3/4.6.3	CONTAINMENT ISOLATION VALVES
3/4.6.4	COMBUSTIBLE GAS CONTROL
	Hydrogen Monitors
	Electric Hydrogen Recombiners
3/4.6.5	SUBATMOSPHERIC PRESSURE CONTROL SYSTEM
	Steam Jet Air Ejector
3/4.6.6	SECONDARY CONTAINMENT
	Supplementary Leak Collection and Release System 3/4 6-38 19
	Secondary Containment Boundary
	Secondary Containment Boundary Structural Integrity
3/4.7 PLANT	SYSTEMS
3/4.7.1	TURBINE CYCLE
	Safety Valves
TABLE 3.7-1	MAXIMUM ALLOWABLE POWER RANGE NEUTRON FLUX HIGH
	SETPOINT WITH INOPERABLE STEAM LINE SAFETY VALVES DURING FOUR LOOP OPERATION
TABLE 3.7-2	MAXIMUM ALLOWABLE POWER RANGE NEUTRON FLUX HIGH SETPOINT WITH INOPERABLE STEAM LINE SAFETY VALVES
	DURING THREE LOOP OPERATION

Amendment No. \$9, \$3, \$7, \$\$,

9-20/25/93

INDEX

LIMITING CONDITIONS FOR OPERATION AND SURVEILLANCE REQUIREMENTS

SECTION		PA	GE
TABLE 3.	7-3 STEAM LINE SAFETY VALVES PER LOOP	3/4	4 7-3
*	Auxiliary Feedwater System		4 7-4
	Demineralized Water Storage Tank		7-6
	Specific Activity		7-7
TABLE 4.1	-1 SECONDARY COOLANT SYSTEM SPECIFIC ACTIVITY SAMPLE	-	
	AND ANALYSIS PROGRAM	3/4	7-8
	Main Steam Line Isolation Valves		7-9
3/4.7.2	STEAM GENERATOR PRESSURE/TEMPERATURE LIMITATION		7-10
3/4.7.3	REACTOR PLANT COMPONENT COOLING WATER SYSTEM		7-11
3/4.7.4	SERVICE WATER SYSTEM		7-12
3/4.7.5	ULTIMATE HEAT SINK	100	7-13
3/4.7.6	FLOOD PROTECTION		7-14
3/4.7.7	CONTROL ROOM EMERGENCY VENTILATION SYSTEM		7-15
3/4.7.8	CONTROL ROOM ENVELOPE PRESSURIZATION SYSTEM		7-18
3/4.7.9	AUXILIARY BUILDING FILTER SYSTEM.	1.1	7-20
3/4.7.10	SNUBBERS	3/4	7-22
All a second sec	7-1 SAMPLE PLAN 2) FOR SNUBBER FUNCTIONAL TEST		7-27.20
3/4.7.11	SEALED SOURCE CONTAMINATION		7-28 4
3/4.7.12	DELETED		30
TABLE 3.7	- DELETED		
TABLE 3.7	S DELETED		
	DELETED		. 1
3/4.7.74	AREA TEMPERATURE MONITORING	3/4	32
	AREA TEMPERATURE MONITORING	-	7-45 33
			18

TABLE 4.7-2 SNUBBER VISMOL INSPECTION INTERVAL 3/4 7-27

MILLSTONE - UNIT 3

Amendment No. 62 ,84

INDEX

3/4.7.11	CEALED COURCE CONTAINANTATION
314-3-30-	SEALED SOURCE CONTAMINATION
3/4.1.12	DELETED
3/4.7.13	
3/4.7.74	AREA TEMPERATURE MONITORING
	ECTRICAL POWER SYSTEMS
3/4.8.1,	3/4.8.2, and 3/4.8.3 A.C. SOURCES, D.C. SOURCES, AND ONSITE POWER DISTRIBUTION
3/4.8.4	ELECTRICAL EQUIPMENT PROTECTIVE DEVICES
2/4 0 00	
3/4.9.1	FUELING OPERATIONS
3/4.9.2	BORON CONCENTRATION
3/4.9.2	INSTRUMENTATION
3/4.9.4	CONTAINNENT DUVIDENCE DEVETORITE
	CONTAINMENT BUILDING PENETRATIONS
3/4.9.5	COMMUNICATIONS
3/4.9.6 3/4.9.7	REFUELING MACHINE
3/4.9.8	CRANE TRAVEL - SPENT FUEL STORAGE AREAS
3/4.9.9	RESIDUAL HEAT REMOVAL AND COOLANT CIRCULATION
	CONTAINMENT PURGE AND EXHAUST ISOLATION SYSTEM
3/4.3.10 6	STORAGE POOL
3/4.9.12	FUEL BUILDING EXHAUST FILTER SYSTEM
3/4.9.13	SPENT FUEL POOL - REACTIVITY
3/4.9.14	
3/4.10 SP	ECIAL TEST EXCEPTIONS
3/4.10.1	SHUTDOWN MARGIN
3/4.16.2	
3/4.10.3	PHYSICS TESTS
3/4.10.4	
3/4.10.5	

BASES

Amendment No. 84, \$\$,

DEFINITIONS

VENTING

1.39 VENTING shall be the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration, or other operating condition, in such a manner that replacement air or gas is not provided or required during VENTING. Vent, used in system names, does not imply a VENTING process.

SPENT FUEL POOL STORAGE PATTERNS:

1.40 Region I spent fuel racks contain a cell blocking device in every 4th location for criticality control. This 4th location will be referred to as the blocked location. A STORAGE PATTERN refers to the blocked location and all adjacent and diagonal Region I cell locations surrounding the blocked location. Boundary configuration between Region I and Region II must have cell blockers positioned in the outermost row of the Region I perimeter, as shown in Figure 3.9-2.

1.41 Region II contains no cell blockers.

CORE OPERATING LIMITS REPORT (COLR)

1.42 The CORE OPERATING LIMITS REPORT (COLR) is the unit-specific document that provides core operating limits for the current operating reload cycle. These cycle-specific core operating limits shall be determined for each reload cycle in accordance with Specification 6.9.1.6. Unit Operation within these operating limits is addressed in individual specifications.

ALLOWED POWER LEVEL

1.43 APLND is the minimum allowable nuclear design power level for base load operation and is specified in the COLR.

1.44 APL^{BL} is the maximum allowable power level when transitioning into base load operation.

THE CHARGING PUMP OPERABILITY

1.45 For Cycle 4 operation only, if the outside air temperature is below 17°F, OPERABILITY of the charging pump is defined as including credit for a temporary heating source in order to maintain at least 32°F within the charging pump/reactor plant component cooling water pump areas of the auxiliary building. Modifications will be implemented, prior to startup for Cycle 5 operation, to remove reliance on a temporary heating source.

MILLSTONE - UNIT 3

POWER DISTRIBUTION LIMITS

LIMITING CONDITION FOR OPERATION

ACTION (Continued)

- b. Within 24 hours of initially being outside the above limits, verify through incore flux mapping and RCS total flow rate that $F_{\Delta H}^{N}$ and RCS total flow rate are restored to within the above limits, or reduce THERMAL POWER to less than 5% of RATED THERMAL POWER within the next 2 hours.
- c. Identify and correct the cause of the out-of-limit condition prior to increasing THERMAL POWER above the reduced THERMAL POWER limit required by ACTION a.2. and/or b., above; subsequent POWER OPERATION may proceed provided that $F^N_{\Delta H}$ and indicated RCS total flow rate are demonstrated, through incore flux mapping and RCS total flow rate comparison, to be within the region of acceptable operation prior to exceeding the following THERMAL POWER levels:
 - 1. A nominal 50% of RATED THERMAL POWER,
 - 2. A nominal 75% of RATED THERMAL POWER, and
 - Within 24 hours of attaining greater than or equal to 95% of RATED THERMAL POWER.

SURVEILLANCE REQUIREMENTS

4.2.3.1.1 The provisions of Specification 4.0.4 are not applicable.

4.2.3.1.2 RCS total flow rate and $F_{\Delta H}^{N}$ shall be determined to be within the acceptable range:

- a. Prior to operation above 75% of RATED THERMAL POWER after each fuel loading, and
- b. At least once per 31 Effective Full Power Days.

4.2.3.1.3 The indicated RCS total flow rate shall be verified to be within the acceptable range at least once per 12 hours when the most recently obtained value of F_{AH}^N obtained per Specification 4.2.3.1.2, is assumed to exist.

4.2.3.1.4 The RCS total flow rate indicators shall be subjected to a CHANNEL CALIBRATION at least once per 18 months(*) The measurement instrumentation shall be calibrated within 7 days prior to the performance of the calorimetric flow measurement.

*Except that the surveillance requirement due no later than June 13, 1993, may be deferred until the next refueling outage, but no later than September 30, 1993, whichever is earlier.

MILLSTONE - UNIT 3

Amendment No. 50,19.

2_June 8, 1993

POWER DISTRIBUTION LIMITS

LIMITING CONDITION FOR OPERATION

ACTION (Continued)

b. Within 24 hours of initially being outside the above limits, verify through incore flux mapping and RCS total flow rate that $F_{\Delta H}^N$ and RCS total flow rate are restored to within the above limits, or reduce THERMAL POWER to less than 5% of RATED THERMAL POWER within the next 2 hours.

A 1993

- c. Identify and correct the cause of the out-of-limit condition prior to increasing THERMAL POWER above the reduced THERMAL POWER limit required by ACTION a.2. and/or b., above; subsequent POWER OPERATION may proceed provided that $F_{\Delta H}^N$ and indicated RCS total flow rate are demonstrated, through incore flux mapping and RCS total flow rate comparison, to be within the region of acceptable operation prior to exceeding the following THERMAL POWER levels:
 - 1. A nominal 32% of RATED THERMAL POWER, and
 - 2. A nominal 50% of RATED THERMAL POWER.

SURVEILLANCE REQUIREMENTS

4.2.3.2.1 The provisions of Specification 4.0.4 are not applicable.

4.2.3.2.2 RCS total flow rate and $F_{\Delta H}^{N}$ shall be determined to be within the acceptable range at least once per 31 Effective Full Power Days.

4.2.3.2.3 The indicated RCS total flow rate shall be verified to be within the acceptable range at least once per 12 hours when the most recently obtained value of $F_{\Delta H}$, obtained per Specification 4.2.3.2.2, is assumed to exist.

4.2.3.2.4 The RCS total flow rate indicators shall be subjected to a CHANNEL CALIBRATION at least once per 18 months. The measurement instrumentation shall be calibrated within 7 days prior to the performance of the calorimetric flow measurement.

4.2.3.2.5 The RCS total flow rate shall be determined by precision heat balance measurement at least once per 18 months. Within 7 days prior to performing the precision heat balance, the instrumentation used for determination of steam pressure, feedwater pressure, feedwater temperature, and feedwater venturi AP in the calorimetric calculations shall be calibrated.

4.2.3.2.6 If the feedwater venturis are not inspected at least once per 18 months, an additional 0.1% will be added to the total RCS flow measurement uncertainty.

Except that the surveillance requirement due no later than June 13, 1993 may be deferred until the next refueling outage, but no later than September 30, 21993, whichever is earlier, MILLSTONE - UNIT 3 3/4 2-23 Amendment No. 27, ββ/\$, 0119

3/4.3 INSTRUMENTATION

3/4.3.1 REACTOR TRIP SYSTEM INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.1 As a minimum, the Reactor Trip System instrumentation channels and interlocks of Table 3.3-1 shall be OPERABLE with RESPONSE TIMES as shown in Table 3.3-2.

APPLICABILITY: As shown in Table 3.3-1.

ACTION:

As shown in Table 3.3-1.

SURVEILLANCE REQUIREMENTS

4.3.1.1 Each Reactor Trip System instrumentation channel and interlock and the automatic trip logic shall be demonstrated OPERABLE by the performance of the Reactor Trip System Instrumentation Surveillance Requirements specified in Table 4.3-1.

4.3.1.2 The REACTOR TRIP SYSTEM RESPONSE TIME of each Reactor trip function shall be demonstrated to be within its limit at least once per 18 months. Each test shall include at least one train such that both trains are tested at least once per 36 months and one channel (to include input relays to both trains) per function such that all channels are tested at least once every N times 18 months where N is the total number of redundant channels in a specific Reactor trip function as shown in the "Total No. of Channels" column of Table 3.3-1.

*Except that the surveillance requirement due no later than June 13, 1993, may be deferred until the next refueling outage, but no later than September 30, \$ 1993, whichever is earlier.

TABLE 4.3-1

REACTOR TRIP SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS

TI I STONE - UNIT	FUNC	TIONAL UNIT	CHANNEL CHECK	CHANNEL CALIBRATION	ANALOG CHANNEL OPERATIONAL TEST	HANNEL DEVICE PERATIONAL OPERATIONAL		MODES FOR WHICH SURVEILLANCE IS REQUIRED
1 3	1.	Manual Reactor Trip	N.A.	N.A.	N.A.	R(14, 20)	N.A.	1, 2, 3*, 4*, 5*
	2.	Power Range, Neutron Flux a. High Setpoint	S	D(2, 4), M(3, 4), Q(4, 6),	Q	N.A.	N.A.	1, 2
		b. Low Setpoint	S	R(4, 5, 20) R(4, 20)	S/U(1)	N.A.	N.A.	1***, 2
3/4 3.	3.	Power Range, Neutron Flux, High Positive Rate	N.A.	R(4, 20)	Q	N.A.	N.A.	1, 2
3-10	4.	Power Range, Neutron Flux, High Negative Rate	N.A.	R(4, 20)	Q	N.A.	N.A.	1, 2
	5.	Intermediate Range	S	R(4, 5)	S/U(1)	N.A.	N.A.	1***, 2
R	6.	Source Range, Neutron Flux	S	R(4, 5)	S/U(1), Q(9)	N.A.	N.A.	2**, 3, 4, 5
Amendment	7.	Overtemperature AT	S	R	Q	N.A.	N.A.	1, 2
	8.	Overpower AT	5	R	Q	N.A.	N.A.	1, 2
No.	9.	Pressurizer PressureLow	S	R (20)	Ç(18)	N.A.	N.A.	1
12.	10.	Pressurizer PressureHigh	S	R (20)	Q(18)	N.A.	N.A.	1, 2
70	11.	Pressurizer Water LevelHigh	S	R (20)	Q.	N.A.	N.A.	1
70.12.	12.		s	R (20)	Q	N.A.	N.A.	1

€ 1e 8, 1993 '

b

REACTOR TRIP SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS

TIONAL UNIT	CHANNEL CHECK	CHANNEL CALIBRATION	ANALOG CHANNEL OPERATIONAL TEST	TRIP ACTUATING DEVICE OPERATIONAL TEST	ACTUATION LOGIC TEST	MODES FOR WHICH SURVEILLANCE IS REQUIRED
Steam Generator Water Level Low-Low	S	R(20)	Q(18)	N.A.	N.A.	1, 2
Low Shaft Speed - Reactor Coolant Pumps	N.A.	R(13)	Q	N.A.	N.A.	1
Turbine Trip						
a. Low Fluid Oil Pressure	N.A.	R	N.A.	S/U(1, 10)****	N.A.	1
b. Turbine Stop Valve Closure	N.A.	R	N.A.	S/U(1, 10)****	N.A.	1
Safety Injection Input from ESF	N.A.	N.A.	N.A.	R	N.A.	1, 2
Reactor Trip System Interlocks a. Intermediate Range		P				Â
Neutron Flux, P-6	N.A.	R(4, 20)	R	N.A.	N.A.	2**
Trips Block, P-7	N.A.	R(4)	R	N.A.	N.A.	1
Flux, P-8	N.A.	R(4, 20)	R	N.A.	N.A.	1
Flux, P-9	N.A.	R(4, 20)	R	N.A.	N.A.	1
Neutron Flux, P-10	N.A.	R(4, 20)	R	N.A.	N.A.	1, 2
Pressure, P-13	N.A.	R	R	N.A.	N.A.	1
	Steam Generator Water Level Low-Low Low Shaft Speed - Reactor Coolant Pumps Turbine Trip a. Low Fluid Oil Pressure b. Turbine Stop Valve Closure Safety Injection Input from ESF Reactor Trip System Interlocks a. Intermediate Range Neutron Flux, P-6 b. Low Power Reactor Trips Block, P-7 C. Power Range Neutron Flux, P-8 d. Power Range Neutron Flux, P-9 e. Power Range Neutron Flux, P-10 f. Turbine Impulse Chamber	LIONAL UNITCHECKSteam Generator Water Level Low-LowSLow Shaft Speed - Reactor Coolant PumpsN.A.Turbine Trip a. Low Fluid Oil PressureN.A.b. Turbine Stop Valve ClosureN.A.b. Turbine Stop Valve ClosureN.A.Safety Injection Input from Flux, P-6N.A.b. Low Power Reactor Trips Block, P-7N.A.c. Power Range Neutron Flux, P-8N.A.d. Power Range Neutron Flux, P-9N.A.e. Power Range Neutron Flux, P-10N.A.f. Turbine Impulse ChamberN.A.	LIONAL_UNITCHECKCALIBRATIONSteam Generator Water Level Low-LowSR(20)Low Shaft Speed - Reactor Coolant PumpsN.A.R(13)Turbine Trip a. Low Fluid Oil PressureN.A.Rb. Turbine Stop Valve ClosureN.A.RSafety Injection Input from SFN.A.N.A.Reactor Trip System Interlocks a. Intermediate Range Neutron Flux, P-6N.A.R(4, 20)b. Low Power Reactor Trips Block, P-7N.A.R(4, 20)c. Power Range Neutron Flux, P-8N.A.R(4, 20)d. Power Range Neutron Flux, P-9N.A.R(4, 20)e. Power Range Neutron Flux, P-10N.A.R(4, 20)f. Turbine Impulse ChamberN.A.R(4, 20)	LIONAL_UNITCHANNEL CHECKCHANNEL CALIBRATIONCHANNEL OPERATIONAL TESTSteam Generator Water Level Low-LowSR(20)Q(18)Low Shaft Speed - Reactor Coolant PumpsN.A.R(13)QLow Shaft Speed - Reactor Coolant PumpsN.A.R(13)QTurbine Trip a. Low Fluid Oil PressureN.A.RN.A.b. Turbine Stop Valve ClosureN.A.RN.A.closureN.A.RN.A.Safety Injection Input from Flux, P-6N.A.R(4, 20)Rc. Power Reactor Trips Block, P-7N.A.R(4, 20)Rc. Power Range Neutron Flux, P-8N.A.R(4, 20)Rd. Power Range Neutron Flux, P-9N.A.R(4, 20)Re. Power Range Neutron Flux, P-9N.A.R(4, 20)Re. Power Range Neutron Flux, P-10N.A.R(4, 20)Rf. Turbine Impulse ChamberN.A.R(4, 20)R	ANALOG CHANNEL CHANNEL CHANNEL 	ANALOG CHANNEL DIVIDEDACTUATING DEVICE OPERATIONAL LASTACTUATION DEVICE OPERATIONAL LOGIC TESTSteam Generator Water Level Low-LowSR(20)Q(18)N.A.N.A.Low Shaft Speed - Reactor Coolant PumpsN.A.R(13)QN.A.N.A.Low Shaft Speed - Reactor Coolant PumpsN.A.R(13)QN.A.N.A.Turbine Trip a. Low Fluid Oil Pressure ClosureN.A.RN.A.S/U(1, 10)****N.A.Safety Injection Input from ESFN.A.RN.A.RN.A.Reactor Trip System Interlocks a. Intermediate Range Neatron Flux, P-6N.A.R(4, 20)RN.A.N.A.Reactor Trip System Interlocks a. Intermediate Range N.A.N.A.R(4, 20)RN.A.N.A.Reactor Trip System Interlocks a. Intermediate Range N.A.N.A.R(4, 20)RN.A.N.A.Reactor Trip System Interlocks a. Intermediate Range N.A.N.A.R(4, 20)RN.A.N.A.Reactor Trip Side Reactor Trips Block, P-7 Flux, P-8N.A.R(4, 20)RN.A.N.A.Reactor Flux, P-9 Flux, P-9N.A.R(4, 20)RN.A.N.A.Reactor Flux, P-10 Flux, P-9N.A.R(4, 20)RN.A.N.A.Reactor Flux, P-10 Flux, P-10N.A.R(4, 20)RN.A.N.A.Reactor Flux, P-10 Flux, P-10N.A.R(4, 20)RN.A.N.A.Re

MILLSTONE - UNIT 3

.

3/4 3-11

Amendment No. 78,19.

REACTOR TRIP SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS

1	FUNC	TIONAL UNIT	CHANNEL CHECK	CHANNEL CALIBRATION	ANALOG CHANNEL OPERATIONAL TEST	TRIP ACTUATING DEVICE OPERATIONAL TEST	ACTUATION LOGIC TEST	MODES FOR WHICH SURVEILLANCH IS REQUIRED
1	18.	Reactor Trip Breaker	N.A.	N.A.	N.A.	M(7, 11)	N.A.	1, 2, 3*, 4*, 5*
1	19.	Automatic Trip and Interlock Logic ,	N.A.	N.A.	N.A.	N.A.	M(7)	1, 2, 3*, 4*, 5*
:	20.	Three Loop Operation Bypass Circuitry	N.A.	N.A.	N.A.	R(20)	N.A.	1, 2
1	21.	Reactor Trip Bypass Breakers	N.A.	N.A.	N.A.	M(15) R(16)	N.A.	1, 2, 3*, 4*, 5*
:	22.	Shutdown Margin Monitor	N.A.	N.A	Q(19)	N.A.	N.A.	3, 4, 5

3, 4 3-12

MILLSTONE - UNIT 3

TABLE NOTATIONS (Continued)

- (10) Setpoint verification is not applicable.
- (11) The TRIP ACTUATING DEVICE OPERATIONAL TEST shall independently verify the OPERABILITY of the undervoltage and shunt trip attachments of the Reactor Trip Breakers.
- (12) (not used)
- (13) Reactor Coolant Pump Shaft Speed Sensor may be excluded from CHANNEL CALIBRATION.
- (14) The TRIP ACTUATING DEVICE OPERATIONAL TEST shall independently verify the OPERABILITY of the undervoltage and shunt trip circuits for the Manual Reactor Trip Function. The test shall also verify the OPERABILITY of the Bypass Breaker trip circuit(s).
- (15) Local manual shunt trip prior to placing breaker in service.
- (16) Automatic undervoltage trip.
- (17) (not used).
- (18) The surveillance frequency and/or MODES specified for these channels in Table 4.3-2 should be reviewed for applicability.
- (19) Quarterly surveillance shall include verification that the Shutdown Margin Monitor is set per the CORE OPERATING LIMITS REPORT (COLR).

(20) Except that the surveillance requirement due no later than June 13, 1993, A may be deferred until the next refueling outage, but no later than September 30, 1993, whichever is earlier.

INSTRUMENTATION

SURVEILLANCE REQUIREMENTS

4.3.2.1 Each ESFAS instrumentation channel and interlock and the automatic actuation logic and relays shall be demonstrated OPERABLE by performance of the ESFAS Instrumentation Surveillance Requirements specified in Table 4.3-2.

4.3.2.2 The ENGINEERED SAFETY FEATURES RESPONSE TIME of each ESFAS function shall be demonstrated to be within the limit at least once per 18 months. Each test shall include at least one train such that both trains are tested at least once per 36 months and one channel (to include input relays to both trains) per function such that all channels are tested at least once per N times 18 months where N is the total number of redundant channels in a specific ESFAS function as shown in the "Total No. of Channels" column of Table 3.3-3.

*Except that the surveillance requirement due no later than June 13, 1993, may be deferred until the next refueling outage, but no later than September 30, 1993, whichever is earlier.

MILLSTONE - UNIT 3

3/4 3-16

& June 8, 1993

June 8, 1993

TABLE 4.3-2

MILL	ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS									•
MILLSTONE - UNIT	UNCTIONAL UNI	I	CHANNEL CHECK	CHANNEL CALIBRATION	ANALOG CHANNEL OPERATIONAL TEST	TRIP ACTUATING DEVICE OPERATIONAL TEST	ACTUATION LOGIC TEST	MASTER RELAY TEST	SLAVE RELAY <u>TEST</u>	MODES FOR WHICH SURVEILLANCE IS REQUIRED
ω1.	Feedwater 1 Building 1s Initiation	ction (Reactor solation, Con olation (Manu Only), Start I and Service I	trol al Diesel							Y
	a. Manual I	nitiation	N.A.	N.A.	N.A.	R(4)	N.A.	N.A.	N.A.	1, 2, 3, 4
3/4		c Actuation d Actuation	N.A.	N.A.	N.A.	N.A.	M(1)	M(1)	Q	1, 2, 3, 4
3-36	c. Containm High-1	ent Pressure-	S	R	Q	N.A.	N.A.	N.A.	N.A.	1, 2, 3 6
	d. Pressuri Low	zer Pressure-	S	R(4) &	Q	N.A.	N.A.	N.A.	N.A.	1, 2, 3
A	e. Steam L1 Pressure		S	R(4) 2	Q	N.A.	N.A.	N.A.	N.A.	1, 2, 3
Amendment	Containment	Spray								
	a. Manual I	nitiation	N.A.	N.A.	N.A.	R(4)	N.A.	N.A.	N.A.	1, 2, 3, 4
No. #\$,	b. Automati Logic an Relays	c Actuation d Actuation	N.A.	N.A.	N.A.	N.A.	M(1)	M(1)	Q	1, 2, 3, 4
70.16.	c. Containm High-3	ent Pressure-	S	R	Q	N.A.	N.A.	N.A.	N.A.	1, 2, 3, 4

190

9-June 8, 1

MILLSTONE	ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS								
TONE - UNIT 3	FUNCTIONAL UNIT	CHANNEL CHECK	CHANNEL CALIBRATION	ANALOG CHANNEL OPERATIONAL TEST	TRIP ACTUATING DEVICE OPERATIONAL TEST	ACTUATION LOGIC TEST	MASTER RELAY TEST	SLAVE RELAY TEST	MODES FOR WHICH SURVEILLANCE IS REQUIRED
~	3. Containment Isolation								•
	a. Phase "A" Isolation								g
	1) Manual Initiation	N.A.	N.A.	N.A.	R(4)	N.A.	N.A.	N.A	1, 2, 3, 4
3/	2) Automatic Actuation Logic and Actuation Relays		N.A.	N.A.	N.A.	M(1)	M(1)	Q	1, 2, 3, 4
3/4 3-37	 Safety Injection Phase "B" Isolation 	See Item	1. above for	all Safety	Injection Surv	veillance Rec	quirement	s.(4) e	0
	1) Manual Initiation	N.A.	N.A.	N.A.	R(4)) 9	N.A.	N.A.	N.A	1, 2, 3, 4
2	2) Automatic Actuation Logic Actuation Relays	N.A.	N.A.	N.A.	N.A.	M(1)	M(1)	Q	1, 2, 3, 4
Amendment No. 46, 78, 18	3) Containment Pressure-High-3	S	R	Q	N.A.	N.A.	N.A.	N.A.	1, 2, 3, 4
t No	4. Steam Line Isolation								
	a. Manual Initiation								
. 78	1) Individual	N.A.	N.A.	N.A.	R	N.A.	N.A.	N.A.	1, 2, 3, 4
\$ \$ \$.	2) System	N.A.	N.A.	N.A.	R(4) 1	N.A.	N.A.	N.A.	1, 2, 3, 4

June 8, 1993

100

TABLE 4.3-2 (Continued)

MILLSTONE 0122	ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS										
- UNIT	FUNCTIONAL_UNIT	CHANNEL CHECK	CHANNEL CALIBRATION	ANALOG CHANNEL OPERATIONAL TEST	TRIP ACTUATING DEVICE OPERATIONAL TEST	ACTUATION LOGIC TEST	MASTER RELAY TEST	SLAVE RELAY TEST_	MODES FOR WHICH SURVEILLANCE IS REQUIRED		
ω	4. Steam Line Isolation (Con	. Steam Line Isolation (Continued)									
	b. Automatic Actuation Logic and Actuation Relays	N.A.	N.A.	N.A.	N.A.	M(1)	M(1)	Q	1, 2, 3, 4		
	c. Containment Pressure- High-2	S	R	Q	N.A.	N.A.	N.A.	N.A.	1, 2, 3, 4		
3/4 3.	d. Steam Line Pressure-Low	s	R(4) ?	Q	N.A.	N.A.	N.A.	N.A.	1, 2, 3		
3-38	e. Steam Line Pressure- Negative Rate-High	s	R(4) 92	Q	N.A.	N.A.	N.A.	N.A.	3 🕥		
	5. Turbine Trip and Feedwate Isolation	r									
Amendment	a. Automatic Actuation Logic and Actuation Relays	N.A.	N.A.	N.A.	N.A.	M(1)	M(1)	Q	1, 2		
	b. Steam Generator Water Level-High-High	S	R(4)	Q	N.A.	M(1)	M(1)	Q	1, 2, 3		
No. 45, 75,	c. Safety Injection Actuation Logic	N.A.	N.A.	N.A.	R(4) 2	N.A.	N.A.	N.A.	1, 2		
78. 19.	d. T _{ave} Low Coincident with Reactor Trip.(P-4	N.A.)	R	Q	N.A.	N.A.	N.A.	N.A.	1, 2		

WILLSTONE 0122			ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS							
TONE - UNIT 3	FU	NCTIONAL UNIT	CHANNEL CHECK	CHANNEL CALIBRATION	ANALOG CHANNEL OPERATIONAL TEST	TRIP ACTUATING DEVICE OPERATIONAL TEST	ACTUATION LOGIC TEST	MASTER RELAY TEST	SLAVE RELAY TEST	MODES FOR WHICH SURVEILLANCE IS REQUIRED
ω		Auxiliary Feedwater								
		a. Manual Initiation	N.A.	N.A.	N.A.	R	N.A.	N.A.	N.A.	1, 2, 3
		b. Automatic Actuation and Actuation Relays	N.A.	N.A	N.A.	N.A.	M(1)	M(1)	Q	1, 2, 3
3/		c. Steam Generator Water Level-Low-Low	S	R(4)	Q	N.A.	N.A.	N.A	N.A	1, 2, 3
3/4 3-39		d. Safety Injection	See Item	1. above for	r all Safety	Injection Sur	veillance Re	quirement	\$.	
50		e. Loss-of-Offsite Power	See Item	8 below for	all Loss of	Power Surveil	lance.			
		f. Containment Depres- surization Actuation (CDA)	See Item	1 2. above for	r all CDA Sur	veillance Req	uirements.			
R	7.	Control Building Isolat	lon							C
lenda		a. Manual Actuation	N.A.	N.A.	N.A.	R(4)	N.A.	N.A.	N.A.	A11
ent No		b. Manual Safety Injection Actuation	N.A.	N.A.	N.A.	R(4)	N.A.	N.A.	N.A.	1, 2, 3, 4
Amendment No. 10, 19		c. Automatic Actuation Logic and Actuation Relays	N.A.	N.A.	N.A.	N.A.	M(1)	M(1)	Q	1, 2, 3, 4
•		d. Containment Pressure- High-1	- S	R	Q	N.A.	N.A.	N.A.	N.A.	1, 2, 3

ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS

MILLSTONE	ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS										
ONE - UNIT 3	FUNCTIONAL UNIT	CHANNEL CHECK	CHANNEL CALIBRATION	ANALOG CHANNEL OPERATIONAL IEST	TRIP ACTUATING DEVICE OPERATIONAL TEST	ACTUATION LOGIC TEST	MASTER RELAY TEST	SLAVE RELAY <u>TEST</u>	MODES FOR WHICH SURVEILLANCE IS REQUIRED		
	7. Control Building Isolation	7. Control Building Isolation (Continued)									
	e. Control Building Inlet Ventilation Radiation	S	R	Q	N.A.	N.A.	N.A.	N.A.	A11		
	8. Loss of Power										
3/4	a. 4 k∀ Bus Undervoltage (Loss of Voltage)	N.A.	R	N.A	M(3)	N.A.	N.A.	N.A.	1, 2, 3, 4		
3-40	b. 4 kV Bus Undervoltage (Grid Degraded Voltage)	N.A.	R	N.A.	M(3)	N.A.	N.A.	N.A.	1, 2, 3, 4		
	9. Engineered Safety Features Actuation System Interlocks								ط		
Amendment	a. Pressurizer Pressure, P-11	N.A.	R(4) 2	Q	N.A.	N.A.	N.A.	N.A.	1, 2, 3		
dme	b. Low-Low Tavg, P-12	N.A.	R	Q	N.A.	N.A.	N.A.	N.A.	1, 2, 3 0		
	c. Reactor Trip, P-4	N.A.	N.A.	N.A.	R(4) 22	N.A.	N.A.	N.A.	1, 2, 3		
No. 14,	10.Emergency Generator Load Sequencer	N.A.	N.A.	N.A.	N.A.	Q(1, 2)	N.A.	N.A.	1, 2, 3, 4		

TABLE NOTATION

- Each train shall be tested at least every 62 days on a STAGGERED TEST BASIS.
- (2) This surveillance may be performed continuously by the emergency generator load sequencer auto test system as long as the EGLS auto test system is demonstrated operable by the performance of an ACTUATION LOGIC TEST at least once per 92 days.
- (3) On a monthly basis, a loss of voltage condition will be initiated at each undervoltage monitoring relay to verify individual relay operation. Setpoint verification and actuation of the associated logic and alarm relays will be performed as part of the channel calibration required once per 18 months.
- 9 (4) Except that the surveillance requirement due no later than June 13, 1993, 9 may be deferred until the next refueling outage, but no later than 9 September 30, 1993, whichever is earlier.

Amendment No. 45, 74.79,

TABLE 4.3-3

RADIATION MONITORING INSTRUMENTATION FOR PLANT OPERATIONS SURVEILLANCE REQUIREMENTS

EUN	ICTIONAL UNIT	CHANNEL CHECK	CHANNEL CALIBRATION	ANALOG CHANNEL OPERATIONAL <u>TEST</u>	MODES FOR WHICH SURVEILLANCE IS REQUIRED
1.	Containment				
	a. Containment Area Purge and Exhaust Isolation	s	Real	MQ	5, 6
	b. RCS Leakage Detection				
	1) Particulate Radio- activity	S	R	MQ	1, 2, 3, 4
	2) Gaseous Radicoctivity	S	R	MQ	1, 2, 3, 4
2.	Fuel Storage Pool Area Monitors				
	a. Radiation Level	s	R	MQ	•
			TABLE NOTATI	ONS	

* With fuel in the fuel storage pool area.

P** Except that the surveillance requirement due no later than June 13, 1993, may be deferred until the next refueling outage, but no later than September 30, 1993, whichever is earlier.

-06/08/93

3/4 3-45

TABLE 4.3-4

SEISMIC MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

INSTRUMENTS AND SENSOR LOCATIONS	CHANNEL CHECK	CHANNEL CALIBRATION	ANALOG CHANNEL OPERATIONAL TEST
1. Triaxial Time-History Accelerogra	phs		
a. NBE20A	М	RER	SA
Containment Mat (-24'3") b. NBE20B	м	Re	SA
Containment Wall (40'6") c. NBE21 Emer. Generator Enclosure Locat	M	Re	SA
on Mat in Diesel Fuel Oil Vault (4'6") d. NBE22 Aux. Bldg. F-Line Wall Near The Charging Pumps Cooling Surge Ta (46'6")	M ank	R	SA
 Triaxial Peak Accelerographs a. P/A1 Containment Safety Injection 	N.A.	RER	N.A.
Accum. Tank (-4'7") b. P/A2 Safety Injection Accum. Disch.	N.A.	R*	N.A.
Line (-22'10") c. P/A3 Aux. Bldg. Charging Pumps Cooling Surge Tank (46'6")	N.A.	Re	N.A.
3a. Triaxial Seismic Trigger			
Horizontal	м	Re	SA
(Control Room) Vertical (Control Room)	м	Re	SA
3b. Triaxial Seismic Switch Horizontal	м	R*	AZ
(Control Room) Vertical (Control Room)	м	RER	SA
4. Triaxial Response-Spectrum Record	ders		
a. RSA-50 Spectrum Analyzer	м	RE	SA
(Control Room) b. Self-Contained Recorder Steam Generator Support (51'4")	N.A.	Reve	N.A.

Except that the surveillance requirement due no later than June 13, 1993, may be deferred until the next refueling outage, but no later than "September 30, 1993, whichever is earlier.

MILLSTONE - UNIT 3

Amendment No. 19.

INSTRUMENTATION

REMOTE SHUTDOWN INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.3.5 The Remote Shutdown Instrumentation transfer switches, power, controls and monitoring instrumentation channels shown in Table 3.3-9 shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

ACTION:

- a. With the number of OPERABLE remote shutdown monitoring channels less than the Minimum Channels OPERABLE as required by Table 3.3-9, restore the inoperable channel(s) to OPERABLE status within 7 days, or be in HOT SHUTDOWN within the next 12 hours.
- b. With one or more Remote Shutdown Instrumentation transfer switches, power, or control circuits inoperable, restore the inoperable switch(s)/circuit(s) to OPERABLE status within 7 days, or be in HOT STANDBY within the next 12 hours.
- c. Entry into an OPERATIONAL MODE is permitted while subject to these ACTION requirements.

SURVEILLANCE REQUIREMENTS

4.3.3.5.1 Each remote shutdown monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK and CHANNEL CALIBRATION operations at the frequencies shown in Table 4.3-6.

4.3.3.5.2 Each Remote Shutdown Instrumentation transfer switch, power and control circuit including the actuated components, shall be demonstrated OPERABLE at least once per 18 months.

9* Except that the surveillance requirement due no later than June 13, 1993, 9 may be deferred until the next refueling outage, but no later than 9 September 30, 1993, whichever is earlier.

3/4 3-53

Amendment No. 57, 79,

TABLE 4.3-6

REMOTE SHUTDOWN MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

INST	RUMENT	CHANNEL CHECK	CHANNEL CALIBRATION
1.	Reactor Trip Breaker Indication	м	N.A.
2.	Pressurizer Pressure	м	Ret
3.	Pressurizer Level	M	Real
4.	Steam Generator Pressure	м	R**)e
5.	Steam Generator Water Level	м	RANCE
6.	Auxiliary Feedwater Flow Rate	м	R**)2-
7.	Loop Hot Leg Temperature	М	R
8.	Loop Cold Leg Temperature	м	R
9.	Reactor Coolant System Pressure	м	Re*
	(Wide Range)		
10.	DWST Level	м	R
11.	RWST Level	м	R
12.	Containment Pressure	м	R
13.	Emergency Bus Voltmeters	M	R
14.	Source Range Count Rate	M*	R
15.	Intermediate Range Amps	M	R
16.	Boric Acid Tank Level	м	R

When below P-6 (intermediate range neutron flux interlock setpoint).

2 ** Except that the surveillance requirement due no later than June 13, 1993, may be deferred until -

I the next refueling outage, but no later than September 30, 1993, whichever is earlier.

MILLSTONE - UNIT 3

TABLE 4.3-7

ACCIDENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

66/08/93

INS	TRUMENT	CHANNEL CHECK	CHANNEL CALIBRATION
1.	Containment Pressure a. Normal Range b. Extended Range	M	R
2.	Reactor Coolant Outlet Temperature - T _{HOT} (Wide Range)	м	R
3.	Reactor Coolant Inlet Temperature - T _{COLD} (Wide Range)	м	R
4.	Reactor Coolant Pressure - Wide Range	м	Read S
5.	Pressurizer Water Level	м	Here C
6.	Steam Line Pressure	м	Read
7.	Steam Generator Water Level - Narrow Range	м	Ret
8.	Steam Generator Water Level - Wide Range	м	Re**
9.	Refueling Water Storage Tank Water Level	м	R
10.	Demineralized Water Storage Tank Water Level	м	R
11.	Auxiliary Feedwater Flow Rate	м	R***
12.	Reactor Coolant System Subcooling Margin Monitor	м	Rete
13.	Containment Water Level (Wide Range)	м	Read
14.	Core Exit Thermocouples	м	R***
15.	DELETED		n S

MILLSTONE - UNIT 3

3/4 3-62

Amendment No. AB, 14,

William 1. A.

ACCIDENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

INSTRUMENT	CHANNEL CHECK	CHANNEL
16. Containment Area - High Range Radiation Monitor	м	
17. Reactor Vessel Water Level	м	R*, ***)e
18. Containment Hydrogen Monitor	м	R**
19. Neutron Flux		R
	M	R

3/4 3-63

MILLSTONE - UNIT 3

*CHANNEL CALIBRATION may consist of an electronic calibration of the channel, not including the detector, for range decades above 10 R/h and a one point calibration check of the detector below 10 R/h with an installed or portable gamma source.

**Electronic calibration from the ICC cabinets only.

***Except that the surveillance requirements due no later June 13, 1993, may be deferred until the next refueling outage, but no later than September 30, 1993, whichever is earlier.

INSTRUMENTATION

June 8, 1993

COSE-PART DETECTION SYSTEM

LIMITING CONDITION FOR OPERATION

3.3.3.8 The Loose-Part Detection System shall be OPERABLE.

APPLICABILITY: MODES 1 and 2.

ACTION:

- a. With one or more Loose-Part Detection System channels inoperable for more than 30 days, prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within the next 10 days outlining the cause of the malfunction and the plans for restoring the channel(s) to OPERABLE status.
- b. The provisions of Specifications 3.0.3 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.3.8 Each channel of the Loose-Part Detection Systems shall be demonstrated OPERABLE by performance of:

- a. A CHANNEL CHECK at least once per 24 hours,
- b. An ANALOG CHANNEL OPERATIONAL TEST at least once per 31 days, and
- c. A CHANNEL CALIBRATION at least once per 18 months

Except that the surveillance requirement due no later than June 13, 1993,
 may be deferred until the next refueling outage, but no later than
 September 30, 1993, whichever is earlier.

MILLSTONE - UNIT 3

9 JAN 31 1986

3/4.4.3 PRESSURIZER

LIMITING CONDITION FOR OPERATION

3.4.3 The pressurizer shall be OPERABLE with a water volume of less than or equal to 92% (1656 cubic feet), and at least two groups of pressurizer heaters supplied by emergency power each having a capacity of at least 175 kW.

APPLICABILITY: MODES 1, 2, and 3.

ACTION:

- a. With only one group of pressurizer heaters supplied by emergency power OPERABLE, restore at least two groups to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.
- b. With the pressurizer otherwise inoperable, be in at least HOT STANDBY with the Reactor Trip System breakers open within 6 hours and in HOT SHUTDOWN within the following 6 hours.

SURVEILLANCE REQUIREMENTS

4.4.3.1 The pressurizer water volume shall be determined to be within its limit at least once per 12 hours.

4.4.3.2 The capacity of each of the above required groups of pressurizer heaters supplied by emergency power shall be verified by energizing the heaters and measuring circuit current at least once per 92 days.

each refueling interval.

STEAM GENERATORS

SURVEILLANCE REQUIREMENTS (Continued)

4.4.5.3 Inspection Frequencies - The above required inservice inspections of steam generator tubes shall be performed at the following frequencies:

- a. Inservice inspections shall be performed at intervals of not less than 12 nor more than 24 calendar months after the previous inspection. If two consecutive inspections, not including the preservice inspection, result in all inspection results falling into the C-1 category or if two consecutive inspections demonstrate that previously observed degradation has not continued and no additional degradation has occurred, the inspection interval may be extended to a maximum of once per 40 months;
- b. If the results of the inservice inspection of a steam generator conducted in accordance with Table 4.4-2 at 40-month intervals fall in Category C-3, the inspection frequency shall be increased to at least once per 20 months. The increase in inspection frequency shall apply until the subsequent inspections satisfy the criteria of Specification 4.4.5.3a.; the interval may then be extended to a maximum of once per 40 months; and
- c. Additional, unscheduled inservice inspections shall be performed on each steam generator in accordance with the first sample inspection specified in Table 4.4-2 during the shutdown subsequent to any of the following conditions:
 - Primary-to-secondary tubes leak (not including leaks originating from tube-to-tube sheet welds) in excess of the limits of Specification 3.4.6.2, or
 - A seismic occurrence greater than the Operating Basis Earthquake, or
 - A loss-of-coolant accident requiring actuation of the Engineered Safety Features, or
 - A main steam line or feedwater line break.

Except that the surveillance related to the steam generator inspection, due no later than August 21, 1993, may be deferred until the next refueling outage or no later than September 30, 1993, whichever is earlier.

MILLSTONE - UNIT 3

3/4.4.6 REACTOR COOLANT SYSTEM LEAKAGE

LEAKAGE DETECTION SYSTEMS

LIMITING CONDITION FOR OPERATION

3.4.6.1 The following Reactor Coolant System Leakage Detection Systems shall be OPERABLE:

- a. Either the Containment Atmosphere Gaseous or Particulate Radioactivity Monitoring System, and
- The Containment Drain Sump Level or Pumped Capacity Monitoring System

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION:

- a. With both the Containment Atmosphere Gaseous and Particulate Radioactivity Monitors INOPERABLE, operation may continue for up to 30 days provided the Containment Drain Sump Level or Pumped Capacity Monitoring System is OPERABLE and gaseous grab samples of the containment atmosphere are obtained at least once per 12 hours and analyzed for gross noble gas activity within the subsequent 2 hours; otherwise, be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.
- b. With the Containment Drain Sump Level or Pumped Capacity Monitoring System INOPERABLE, operation may continue for up to 30 days provided either the Containment Atmosphere Gaseous or Particularte Radioactivity Monitoring System is OPERABLE; otherwise, be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the followng 30 hours.

SURVEILLANCE REQUIREMENTS

- 4.4.6.1 The Leakage Detection Systems shall be demonstrated OPERABLE by:
 - a. Containment Atmosphere Gaseous and Particulate Radioactivity Monitoring Systems-performance of CHANNEL CHECK, CHANNEL CALIBRATION, and ANALOG CHANNEL OPERATIONAL TEST at the frequencies specified in Table 4.3-3, and
 - b. Containment Drain Sump Level and Pumped Capacity Monitoring Systemperformance of CHANNEL CALIBRATION at least once per 18 months.

Except that the surveillance requirement due no later than June 13, 1993, may be deferred until the next refueling outage, but no later than September 30, 1993, whichever is earlier.

Amendment No. 17, 19.

June 8, 1993

JAN 31 1986-

OPERATIONAL LEAKAGE

SURVEILLANCE REQUIREMENTS

4.4.6.2.1 Reactor Coolant System leakages shall be demonstrated to be within each of the above limits by:

- Monitoring the containment atmosphere (gaseous or particulate) radioactivity monitor at least once per 12 hours;
- Monitoring the containment drain sump inventory and discharge at least once per 12 hours;
- c. Measurement of the CONTROLLED LEAKAGE to the reactor coolant pump seals when the Reactor Coolant System pressure is 2250 ± 20 psia at least once per 31 days with the modulating valve fully open. The provisions of Specification 4.0.4 are not applicable for entry into MODE 3 or 4:
- d. Performance of a Reactor Coolant System water inventory balance it least once per 72 hours; and
- Monitoring the Reactor Head Flange Leakoff System at least once per 24 hours.

4.4.6.2.2 Each Reactor Coolant System Pressure Isolation Valve specified in Table 3.4-1 shall be demonstrated OPERABLE by verifying leakage to be within its limit:

a. At least once per 18 months,

7 days)

- b. Prior to entering MODE 2 whenever the plant has been in COLD SHUTDOWN for 72 hours or more and if leakage testing has not been performed in the previous 9 months,
- c. Prior to returning the valve to service following maintenance, repair or replacement work on the valve,
- d. Within 24 hours following valve actuation due to automatic or manual action or flow through the valve, and
- e. As outlined in the ASME Code, Section XI, paragraph IWV-3427(b).

The provisions of Specification 4.0.4 are not applicable for entry into MODE 3 or 4.

OVERPRESSURE PROTECTION SYSTEM

LIMITING CONDITION FOP OPERATION

ACTION (Continued)

- e. In the event the PORVs, the RHR suction relief valves, or the RCS vent(s) are used to mitigate an RCS pressure transient, a Special Report shall be prepared and submitted to the Commission pursuant to Specification 6.9.2 within 30 days. The report shall describe the circumstances initiating the transient, the effect of the PORVs, the RHR suction relief valves, or RCS vent(s) on the transient, and any corrective action necessary to prevent recurrence.
 - Entry into an OPERATIONAL MODE is permitted while subject to these ACTION requirements.

SURVEILLANCE REQUIREMENTS

4.4.9.3.1 Each PORV shall be demonstrated OPERABLE by:

- a. Performance of an ANALOG CHANNEL OPERATIONAL TEST on the PORV actuation channel, but excluding valve operation, within 31 days prior to entering a condition in which the PORV is required OPERABLE and at least once per 31 days thereafter when the PORV is required OPERABLE;
- b. Performance of a CHANNEL CALIBRATION on the PORV actuation channel at least once per 18 months; and
- c. Verifying the PORV isolation valve is open at least once per 72 hours when the PORV is being used for overpressure protection.

4.4.9.3.2 Each RHR suction relief valve shall be demonstrated OPERABLE when the RHR suction relief valves are being used for cold overpressure protection as follows:

- For RHR suction relief valve 3RHS*RV8708A, by verifying at least once per 12 hours that 3RHS*MV8701A and 3RHS*MV8701C are open;
- b. For RHR suction relief valve 3RHS*RV8708B, by verifying at least once per 12 hours that 3RHS*MV8702B and 3RHS*MV8702C are open; and
- c. Testing pursuant to Specification 4.0.5.

*Except that the surveillance requirement due no later than June 13, 1993, may 9 be deferred until the next refueling outage, but no later than September 30, 9 1993, whichever is earlier.

3/4.4.11 REACTOR COOLANT SYSTEM VENTS

LIMITING CONDITION FOR OPERATION

3.4.11 At least one Reactor Coolant System vent path consisting of two parallel trains with two valves inseries powered from emergency busses shall be OPERABLE and the vent closed* at each of the following locations:

- Reactor vessel head, and 2.
- Pressurizer steam space. b.

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION:

- With one train of the reactor vessel head vent path inoperable, а. STARTUP and/or POWER OPERATION may continue provided the inoperable train is maintained closed with power removed from the valve actuators of all valves in the inoperable train; store the inoperable train to OPERABLE status within 30 da or, be in HOT STANDBY within 6 hours and in COLD SHUTDOWN within the following 30 hours.
- With both trains of the reactor vessel head vent paths inoperable; b. maintain both trains closed with power removed from the valve actuators of all valves in the inoperable trains, and restore at least one of the trains to OPERABLE status within 72 hours or be in HOT STANDBY within 6 hours and in COLD SHUTDOWN within the following 30 hours.
- With any valve(s) of the pressurizer steam space vent path с. inoperable in MODES 1, 2, or 3, follow the ACTION requirements of Specification 3.4.4.
- With any valve(s) of the pressurizer steam space vent path d. inoperable in MODE 4, follow the ACTION requirements of Specification 3.4.9.3.

SURVEILLANCE REQUIREMENTS

4.4.11.1 Each train of the reactor vessel head vent path isolation valve not required to be closed by ACTION a. or b., above, shall be demonstrated OPERABLE at least once per 92 days by operating the valve through one complete cycle of full travel from the control room. - COLD SHUTDOWN, if not performed within the

Previous For an OPERABLE vent path using a power-operated relief valve (PORV) as 92 days 9 the vent path, the PORV block valve is not requird to be closed.

3/4.5 EMERGENCY CORE COOLING SYSTEMS

3/4.5.1 ACCUMULATORS

LIMITING CONDITION FOR OPERATION

3.5.1 Each Reactor Coolant System (RCS) accumulator shall be OPERABLE with:

- a. The isolation valve open and power removed,
- b. A contained borated water volume of between 6618 and 7030 gallons.
- c. A boron concentration of between 2600 and 2900 ppm, and
- d. A nitrogen cover-pressure of between 636 and 694 psia.

APPLICABILITY: MODES 1, 2, and 3*.

ACTION:

- a. With one accumulator inoperable, except as a result of a closed isolation valve, restore the inoperable accumulator to OPERABLE status within 8 hours or be in at least HOT STANDBY within the next 6 hours and reduce pressurizer pressure to less than 1000 psig within the following 6 hours.
- b. With one accumulator inoperable due to the isolation valve being closed, either immediately open the isolation valve or be in at least HOT STANDBY within 6 hours and reduce pressurizer pressure to less than 1000 psig within the following 6 hours.

SURVEILLANCE REQUIREMENTS

4.5.1 Each accumulator shall be demonstrated OPERABLE:

- a. At least once per 12 hours by:
 - that
 - Verifying the contained borated water volume and nitrogen cover-pressure in the tanks to be within the above limits, and are their
 - 2) Verifying that each accumulator isolation valve is open.
- b. At least once per 31 days and within 6 hours after each solution volume increase of greater than or equal to 1% of tank volume by verifying the boron concentration of the accumulator solution; and

This surveillance is not required when the volume increase makeup source is the RWST.

*Pressurizer pressure above 1000 psig.

EMERGENCY CORE COOLING SYSTEMS

SURVEILLANCE REDUIREMENTS (Continued)

c. At least once per 31 days when the RCS pressure is above 1000 psig by verifying that power to the isolation valve operator is disconnected by removal of the breaker from the circuit.

4.5-1-2 Each accumulator water level and pressure channel shall be demon-

a. At least once per 31 days by the performance of an ANALOG CHANNEL OPERATIONAL TEST and

At least once per 18 months by the performance of a CHANNEL CALIBRATION.

& Delete and relocate to the Technical

Requirements Manual

EMERGENCY CORE COOLING SYSTEMS

SURVEILLANCE REQUIREMENTS

4.5.2 Each ECCS subsystem shall be demonstrated OPERABLE:

a. At least once per 12 hours by verifying that the following valves are in the indicated positions with power to the valve operators removed:

Valve Number	Valve Function	Valve Position
351H*MV8806	RWST Supply to SI Pumps	OPEN
A2068VM*HIZE	SI Pump A to Hot Leg Injection	CLOSED
3SIH*MV8802B	SI Pump B to Hot Leg Injection	CLOSED
3SIH*MV8835	SI Cold Leg Master Isolation	OPEN
3SIH*MV8813	SI Pump Master Miniflow Isolation	OPEN
35IL*MV8840	RHR to Hot Leg Injection	CLOSED
3SIL*MV8809A	RHR Pump A to Cold Leg Injection	OPEN
3SIL*MV8809B	RHR Pump B to Cold Leg Injection	OPEN

- b. At least once per 31 days by:
 - Verifying that the ECCS piping, except for the RSS pump, heat exchanger and associated piping, is full of water by venting the ECCS pump casings and accessible discharge piping high points, and
 - Verifying that each valve (manual, power-operated, or automatic) in the flow path that is not locked, sealed, or otherwise secured in position, is in its correct position.

c. By a visual inspection which verifies that no loose debris (rags, trash, clothing, etc.) is present in the containment which could be transported to the containment sump and cause restriction of the pump suctions during LOCA conditions. This visual inspection shall be performed:

- For all accessible areas of the containment prior to establishing CONTAINMENT INTEGRITY, and
- 2) Of the areas affected within containment at the completion of each containment entry when CONTAINMENT INTEGRITY is established.
- d. At least once per 18 months by:
 - Verifying automatic interlock action of the RHR System from the Reactor Coolant System by ensuring that with a simulated or actual Reactor Coolant System pressure signal greater than or equal to 390 psia the interlocks prevent the valves from being opened.

Except that the surveillance requirement due no later than June 13, 1993, 9 may be deferred until the next refueling outage, but no later than 9 September 30, 1993, whichever is earlier.

MILLSTONE - UNIT 3

Amendment No. \$\$, 79,

Of least once daily

9 June 8, 1993

SURVEILLANCE REQUIREMENTS (Continued)

- c. The accuracy of each Type A test shall be verified by a supplemental test which:
 - 1) Contirms the accuracy of the test by verifying that the supplemental test results, L, minus the sum of the Type A and the superimposed leak, L_0 , is equal to or less than 0.25 L_a ;
 - Has a duration sufficient to establish accurately the change in leakage rate between the Type A test and the supplemental test; and
 - Requires that the rate at which gas is injected into the containment or bled from the containment during the supplemental test is between 0.75 L, and 1.25 L.
- d. Type B and C tests shall be conducted with gas at P, 53.27 psia (38.57 psig), at intervals no greater than 24 months(*), except for tests involving:
 - 1) Air locks
- e. The combined bypass leakage rate shall be determined to be less than or equal to 0.042 L by applicable Type B and C tests at least once per 24 months(*) except for penetrations which are not individually testable; penetrations not individually testable shall be determined to have no detectable leakage when tested with soap bubbles while the containment is pressurized to P_a , 53.27 psia (38.57 psig), during each Type A test;
- f. Air locks shall be tested and demonstrated OPERABLE by the requirements of Specification 4.6.1.3;
- g. Purge supply and exhaust isolation valves shall be demonstrated OPERABLE by the requirements of Specifications 4.6.3.2.c and 4.9.9.
- h. The provisions of Specification 4.0.2 are not applicable.

(*) The 24-month interval for Type B and Type C tests has been increased to 34 months for Cycle 4 only.

3/4.6.2 DEPRESSURIZATION AND COOLING SYSTEMS

CONTAINMENT QUENCH SPRAY SYSTEM

LIMITING CONDITION FOR OPERATION

3.6.2.1 Two independent Containment Quench Spray subsystems shall be OPERABLE.

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION:

With one Containment Quench Spray subsystem inoperable, restore the inoperable system to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

4.6.2.1 Each Containment Quench Spray subsystem shall be demonstrated OPERABLE:

- a. At least once per 31 days:
 - Verifying that each valve (manual, power-operated, or automatic) in the flow path that is not locked, sealed, or otherwise secured in position, is in its correct position; and
 - Verifying the temperature of the borated water in the refueling water storage tank is between 40°F and 50°F.
- By verifying, that on recirculation flow, each pump develops a differential pressure of greater than or equal to 114 psid when tested pursuant to Specification 4.0.5;

c. At least once per 18 months during shutdown, by:

- Verifying that each automatic valve in the flow path actuates to its correct position on a CDA test signal, and
- 2) Verifying that each spray pump starts automatically on a CDA test signal.
- d. At least once per § years by performing an air or smoke flow test through each spray header and verifying each spray nozzle is unobstructed.

MILLSTONE - UNIT 3

3/4 6-12

Amendment No. 5, 50,

RECIRCULATION SPRAY SYSTEM

LIMITING CONDITION FOR OPERATION

3.6.2.2 Two independent Recirculation Spray Systems shall be OPERABLE.

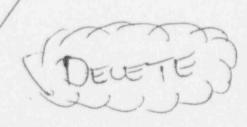
APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION:

With one Recirculation Spray System inoperable, restore the inoperable system to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours; restore the inoperable Recirculation Spray System to OPERABLE status within the next 48 hours or be in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

4.6.2.2 Each Recirculation Spray System shall be demonstrated OPERABLE:


- a. At least once per 31 days by verifying that each valve (manual, power-operated, or automatic) in the flow path that is not locked, sealed, or otherwise secured in position, is in its correct position;
- By verifying, that on recirculation flow, each pump develops a differential pressure of greater than or equal to 130 psid when tested pursuant to Specification 4.0.5;
- c. At least once per 18 months by verifying that on a CDA test signal, each recirculation spray pump starts automatically after a 660 \pm 20 second delay;
- d. At least once per 18 months during shutdown, by verifying that each automatic valve in the flow path actuates to its correct position on a CDA test signal; and
- e. At least once per 5 years by performing an air or smoke flow test through each spray header and verifying each spray nozzle is unobstructed.

MILLSTONE - UNIT 3

3/4 5-13 Amendment No. \$0

December 19, 1988 This page (ntentionally left blank ELE MILUSTONE - UNIT 3 3/4 6-16 Amendmend No. 28

1. h._. E

MILLSTONE - UNIT 3 3/4 6-20 Amendment No. 28

 \hat{v}^{i}

MILLSTONE - UNIT 3

December 19, 1988 This page intentionally left blank MILLSTONE - UNIT 3 3/4 6-22 Amendment No. 28

MILLSTONE - UNIT 3

3/4 6-23 Amendment No. 28

This page intentionally left blank

MILLSTONE - UNIT 3

Amendment No. 28

MILLSTONE - UNIT 3

Amendment No. 28

. . . .

3

MALLSTONE - UNIT 3

MILLSTONE - UNIT 3

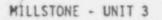
1

Amendment No. 28

E.

MILLSTONE - UNIT 3

No. of


•

*...

MILLSTONE - UNIT 3

3/4 6-32 Amendment No. 28

* .

MILLSTONE - UNIT 3

3/4.6.4 COMBUSTIBLE GAS CONTROL

HYDROGEN MONITORS

LIMITING CONDITION FOR OPERATION

3.6.4.1 Two independent containment hydrogen monitors shall be DPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

ACTION:

- a. With one hydrogen monitor inoperable, restore the inoperable monitor to OPERABLE status within 30 days or be in at least HOT STANDBY within the next 6 hours and in at least HOT SHUTDOWN within the following 6 hours.
- b. With both hydrogen monitors inoperable, restore at least one monitor to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in at least HOT SHUTDOWN within the following 6 hours.
- c. Entry into an OPERATIONAL MODE is permitted while subject to these ACTION requirements.

SURVEILLANCE REQUIREMENTS

92

4.6.4.1 Each hydrogen monitor shall be demonstrated OPERABLE by the performance of a CHANNEL CHECK at least once per 12 hours, an ANALOG CHANNEL OPERATIONAL TEST at least once per 31 days, and at least once per 82 days on a STAGGERED TEST BASIS by performing a CHANNEL CALIBRATION using sample gas containing:

a. One volume percent hydrogen, balance nitrogen, and

each refueling

b. Four volume percent hydrogen, balance nitrogen.

MILLSTONE - UNIT 3

Amendment No. 47, 57,

ELECTRIC HYDROGEN RECOMBINERS

LIMITING CONDITION FOR OPERATION

3.6.4.2 Two independent Hydrogen Recombiner Systems shall be OPERABLE.

APPLICABILITY: MODES 1 and 2.

ACTION:

With one Hydrogen Recombiner System inoperable, restore the inoperable system to OPERABLE status within 30 days or be in at least HOT STANDBY within the next 6 hours.

SURVEILLANCE REQUIREMENTS

- 4.6.4.2 Each Hydrogen Recombiner System shall be demonstrated OPERABLESK at least once each refineling interval by:
 - a. a. PAt least once per 6 months by verifying during a Hydrogen Recombiner System functional test that the minimum reaction chamber gas temperature increases to greater than or equal to 700°F within 90 minutes and is maintained for at least 2 hours and that the purge blower operates for 15 minutes.
 - b. At least once per 18 months by:
 - b 1) Performing a CHANNEL CALIBRATION of all recombiner instrumentation and control circuits,
 - Verifying through a visual examination that there is no evidence of abnormal conditions within the recombiner enclosure (i.e., loose wiring or structural connections, deposits of foreign materials, etc.),
 - Verifying the integrity of all heater electrical circuits by performing a resistance to ground test following the above required functional test. The resistance to ground for any heater phase shall be greater than 10,000 ohms, and
 - Verifying during a recombiner system functional test using containment atmospheric air at an acceptable flow rate as determined in Section 4.6.4.2.b.5 that the gas temperature increases to greater than or equal to 1100°F within 5 hours and is maintained for at least 4 hours.
 - (+5) Verifying during a recombiner system functional test using containment atmospheric air that the blower would be capable of delivering at least 41.52 scfm at containment conditions of 12.47 psia and 130°F.

9 (This page intentionally left blank) DELETE THIS PAGE 3/4 6-36a Amendment No. #7, #1 #8 MILLSTONE - UNIT 3

3/4.6.5 SUBATMOSPHERIC PRESSURE CONTROL SYSTEM

STEAM JET AIR EJECTOR

LIMITING CONDITION FOR OPERATION

3.6.5.1 The inside and outside isolation valves in the steam jet air ejector suction line shall be closed.

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION:

With the inside or outside isolation valves in the steam jet air ejector suction line not closed, restore the valve to the closed position within 1 hour or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

4.6.5.1.1 The steam jet air ejector suction line outside isolation valve shall be determined to be in the closed position by a visual inspection prior to increasing the Reactor Coolant System temperature above 200°F and at least once per 31 days thereafter.

4.6.5.1.2 The steam jet air ejector suction line inside isolation valve shall be determined to be locked in the closed position by a visual inspection prior to increasing the Reactor Coolant System temperature above 200°F.

3/4.6.6 SECONDARY CONTAINMENT

SUPPLEMENTARY LEAK COLLECTION AND RELEASE SYSTEM

LIMITING CONDITION FOR OPERATION

3.6.6.1 Two independent Supplementary Leak Collection and Release Systems shall be OPERABLE with each system comprised of:

- a. one OPERABLE filter and fan, and
- one OPERABLE Auxiliary Building Filter System as defined in Specification 3.7.9.

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION:

With one Supplementary Leak Collection and Release System inoperable, restore the inoperable system to OPERABLE status within 7 days or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SIMVEILLANCE REQUIREMENTS

4.6.6.1 Each Supplementary Leak Collection and Release System shall be demonstrated OPERABLE:

- a. At least once per 31 days on a STAGGERED TEST BASIS by initiating, from the control room, flow through the HEPA filters and charcoal adsorbers and verifying a system flow rate of 7600 cfm to 9800 cfm and that the system operates for at least 10 continuous hours with the heaters operating.
- b. At least once per 18 months or (1) after any structural maintenance on the HEPA filter or charcoal adsorber housings, or (2) following painting, fire, or chemical release in any ventilation zone communicating with the system by:
 - Verifying that the system satisfies the in-place penetration and bypass leakage testing acceptance criteria of less than
 0.05% and uses the test procedure guidance in Regulatory Positions C.5.a, C.5.c, and C.5.d of Regulatory Guide 1.52, Revision 2, March 1978,* and the system flow rate is 7600 cfm to 9800 cfm;

MILLSTONE - UNIT 3

SURVEILLANCE REQUIREMENTS (Continued)

2) Verifying, within 31 days after removal, that a laboratory analysis of a representative carbon sample obtained in accordance with Regulatory Position C.6.b of Regulatory Guide 1.52, Revision 2, March 1978,* meets the laboratory testing criteria of Regulatory Position C.6.a of Regulatory Guide 1.52, Revision 2, March 1978,* for a methyl iodide penetration of less than 0.175%; and

12/08/93

- Verifying a system flow rate of 7600 cfm to 9800 cfm during system operation when tested in accordance with ANSI N510-1980.
- c. After every 720 hours of charcoal adsorber operation, by verifying, within 31 days after removal that a laboratory analysis of a representative carbon sample obtained in accordance with Regulatory Position C.6.b of Regulatory Guide 1.52, Revision 2, March 1978,* meets the laboratory testing criteria of Regulatory Position C.6.a of Regulatory Guide 1.52, Revision 2, March 1978,* for a methyl iodide penetration of less than 0.175%:
- d. At least once per 18 months by:
 - Verifying that the pressure drop across the combined HEPA filters and charcoal adsorber banks is less than 6.25 inches Water Gauge while operating the system at a flow rate of 7600 cfm to 9800 cfm.
 - Verifying that the system starts on a Safety Injection test signal,
 - 3) Verifying that each system produces a negative pressure of greater than or equal to 0.4 inch Water Gauge in the Auxiliary Building at 24'6" elevation within 120 seconds after a start signal, and
 - 4) Verifying that the heaters dissipate 50 ±5 kW when tested in accordance with ANSI N510-1980.

*ANSI N510-1980 shall be used in place of ANSI N510-1975 referenced in Regulatory Guide 1.52, Revision 2, March 1978.

Amendment No. 2. \$7,87

IJ

CONTAINMENT SYSTEMS

SURVEILLANCE REQUIREMENTS (Continued)

- e. After each complete or partial replacement of a HEPA filter bank, by verifying that the cleanup system satisfies the in-place penetration and bypass leakage testing acceptance criteria of less than 0.05% in accordance with ANSI N510-1980 for a DOP test aerosol while operating the system at a flow rate of 7600 cfm to 9800 cfm; and
- f. After each complete or partial replacement of a charcoal adsorber bank, by verifying that the cleanup system satisfies the in-place penetration and bypass leakage testing acceptance criteria of less than 0.05% in accordance with ANSI N510-1980 for a halogenated hydrocarbon refrigerant test gas while operating the system at a flow rate of 7600 cfm to 9800 cfm.

SECONDARY CONTAINMENT BOUNDARY

LIMITING CONDITION FOR OPERATION

3.6.6.2 SECONDARY CONTAINMENT BOUNDARY shall be maintained.

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION:

Without SECONDARY CONTAINMENT BOUNDARY, restore SECONDARY CONTAINMENT BOUNDARY within 24 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENT

4.6.6.2 SECONDARY CONTAINMENT BOUNDARY shall be demonstrated at least once per 31 days by verifying that each door in each access opening is closed except when the access opening is being used for normal transit entry and exit.

Amendment No. 87

SECONDARY CONTAINMENT BOUNDARY STRUCTURAL INTEGRITY

LIMITING CONDITION FOR OPERATION

3.6.6.3 The structural integrity of the SECONDARY CONTAINMENT BOUNDARY shall be maintained at a level consistent with the acceptance criteria in Specification 4.6.6.3.

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION:

With the structural integrity of the SECONDARY CONTAINMENT BOUNDARY not conforming to the above requirements, restore the structural integrity to within the limits within 24 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENT

4.6.6.3 The structural integrity of the SECONDARY CONTAINMENT BOUNDARY shall be determined during the shutdown for each Type A containment leakage rate test (reference Specification 4.6.1.2) by a visual inspection of the exposed accessible interior and exterior surfaces of the SECONDARY CONTAINMENT BOUNDARY and verifying no apparent changes in appearance of the concrete surfaces or other abnormal degradation. Any abnormal degradation of the SECONDARY CONTAINMENT BOUNDARY detected during the above required inspections shall be reported to the Commission in a Special Report pursuant to Specification 6.9.2 within 15 days.

MILLSTONE - UNIT 3 0182 23 3/4 6-42

Amendment No. 81

12/08/93

AUXILIARY FEEDWATER SYSTEM

LIMITING CONDITION FOR OPERATION

3.7.1.2 At least three independent steam generator auxiliary feedwater pumps and associated flow paths shall be OPERABLE with:

- a. Two motor-driven auxiliary feedwater pumps, each capable of being powered from separate emergency busses, and
- b. One steam turbine-driven auxiliary feedwater pump capable of being powered from an OPERABLE steam supply system.

APPLICABILITY: MODES 1, 2, and 3.

ACTION:

- a. With one auxiliary feedwater pump inoperable, restore the required auxiliary feedwater pumps to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.
- b. With two auxiliary feedwater pumps inoperable, be in at least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours.
- c. With three auxiliary feedwater pumps inoperable, immediately initiate corrective action to restore at least one auxiliary feedwater pump to OPERABLE status as soon as possible. Entry into an OPERATIONAL MODE pursuant to Specification 3.0.4 is not permitted with three auxiliary feedwater pumps inoperable.

SURVEILLANCE REQUIREMENTS

4.7.1.2.1 Each auxiliary feedwater pump shall be demonstrated OPERABLE:

- At least once per 31 days on a STAGGERED TEST BASIS by:
 - Verifying that on recirculation flow each motor-driven pump develops a differential pressure of greater than or equal to 1460 psid when tested pursuant to Specification 4.0.5;
 - 2) Verifying that on recirculation flow the steam turbine-driven pump develops a differential pressure of greater than or equal to 1640 psid when the secondary steam supply pressure is greater than 800 psig. The provisions of Specification 4.0.4 are not applicable for entry into MODE 3;

MILLSTONE - UNIT 3

3/4 7-4

AMENDMENT NO. 51

October 25, 1990

PLANT SYSTEMS

SURVEILLANCE REQUIREMENTS (Continued)

- a. At least once per 31 days by:
 - 1 (2) Verifying that each non-automatic value in the flow path that is not locked, sealed, or otherwise secured in position is in its correct position; and
 - 2%) Verifying that each auxiliary feedwater control and isolation valve in the flow path is in the fully open position when above 10% RATED THERMAL POWER.
- C b. At least once per 18 months during shutdown by verifying that each auxiliary feedwater pump starts as designed automatically upon receipt of an Auxiliary Feedwater Actuation test signal.

4.7.1.2.2 An auxiliary feedwater flow path to each steam generator shall be demonstrated OPERABLE following each COLD SHUTDOWN of greater than 30 days prior to entering MODE 2 by verifying flow to each steam generator.

SURVEILLANCE REQUIREMENTS (Continued)

type that may be generically susceptible; and (2) the affected snubber is functionally tested in the as-found condition and determined OPERABLE per Specification 4.7.10.f. All snubbers found connected to an inoperable common hydraulic fluid reservoir shall be counted as unacceptable for determining the next inspection interval. A review and evaluation shall be performed and documented to justify continued operation with an unacceptable snubber. If continued operation cannot be justified, the snubber shall be declared inoperable and the ACTION requirements shall be met.

d. Transient Event Inspection

An inspection shall be performed of all snubbers attached to sections of systems that have experienced unexpected, potentially damaging transients as determined from a review of operational data and a visual inspection of the systems within 6 months following such an event. In addition to satisfying the visual inspection acceptance criteria, freedom-of-motion of mechanical snubbers shall be verified using at least one of the following: (1) manually induced snubber movement; or (2) evaluation of in-place snubber piston setting; or (3) stroking the mechanical snubber through its full range of travel.

e. Functional Tests

During the first refueling shutdown and at least once per 18 months thereafter during shutdown, a representative sample of snubbers of each type shall be tested using one of the following sample plans. The sample plan for each type shall be selected prior to the test period and cannot be changed during the test period. The NRC Regional Administrator shall be notified in writing of the sample plan selected for each snubber type prior to the test period or the sample plan used in the prior test period shall be implemented:

 At least 10% of the total of each type of snubber shall be functionally tested either in-place or in a bench test. For each snubber of a type that does not meet the functional tes acceptance criteria of Specification 4.7.10f., an additional 5 of that type of snubber shall be functionally tested until n more failures are found or until all snubbers of that type hav been functionally tested; or

*Except that the surveillance requirement due no later than January 22, 1993
*may be deferred until the next refueling outage, but no later than
September 30, 1993, whichever is earlier.

MILLSTONE - UNIT 3 0109 Amendment \$2.78

& September 3, 1991

TABLE 4.7-2 SNUBBER VISUAL INSPECTION INTERVAL

	NUMBER OF UNACCEPTABLE SNUBBERS				
Population	Column A	Column B	Column C		
or Category	Extend Interval	Repeat Interval	Reduce Interval		
(Notes 1 and 2)	(Notes 3 and 6)	(Notes 4 and 6)	(Notes 5 and 6)		
1	0	0	1		
80	0	0	2		
100	0	1	4		
150	0	3	8		
200	2	5	13		
300	5	12	25		
400	8	18	36		
500	12	24	48		
750	20	40	78		
1000 or greater	29	56	109		

- Note 1: The next visual inspection interval for a snubber population or category size shall be determined based upon the previous inspection interval and the number of unacceptable snubbers found during that interval. Snubbers may be categorized, based upon their accessibility during power operation, as accessible or inaccessible. These categories may be examined separately or jointly. However, the licensee must make and document that decision before any inspection and shall use that decision as the basis upon which to determine the next inspection interval for that category.
- Note 2: Interpolation between population or category sizes and the number of unacceptable snubbers is permissible. Use next lower integer for the value of the limit for Columns A, B, or C if that integer included a fractional value of unacceptable snubbers as determined by interpolation.
- Note 3: If the number of unacceptable snubbers is equal to or less than the number in Column A, the next inspection interval may be twice the previous interval but no greater than 48 months.
- Note 4: If the number of unacceptable snubbers is equal to or less than the number in Column B but greater than the number in Column A, the next inspection interval shall be the same as the previous interval.
- Note 5: If the number of unacceptable snubbers is equal to or greater than the number in Column C, the next inspection interval shall be two-thirds of the previous interval. However, if the number of unacceptable snubbers is less than the number in Column C but greater than the number in Column B, the next interval shall be reduced proportionally by interpolation, that is, the previous interval shall be reduced by a factor that is one-third of the ratio of the difference between the number of unacceptable snubbers found during the previous interval and the number in Column B to the difference in the numbers in Columns B and C.

MILLSTONE - UNIT 3

3/4 7-262 27

Amendment No. #2

TABLE 4.7-2 SNUBBER VISUAL INSPECTION INTERVAL

Note 6: The provisions of Specification 4.0.2 are applicable for all inspection intervals up to and including 48 months.

l September 3, 1991

80

9 April 7, 1988-

1.

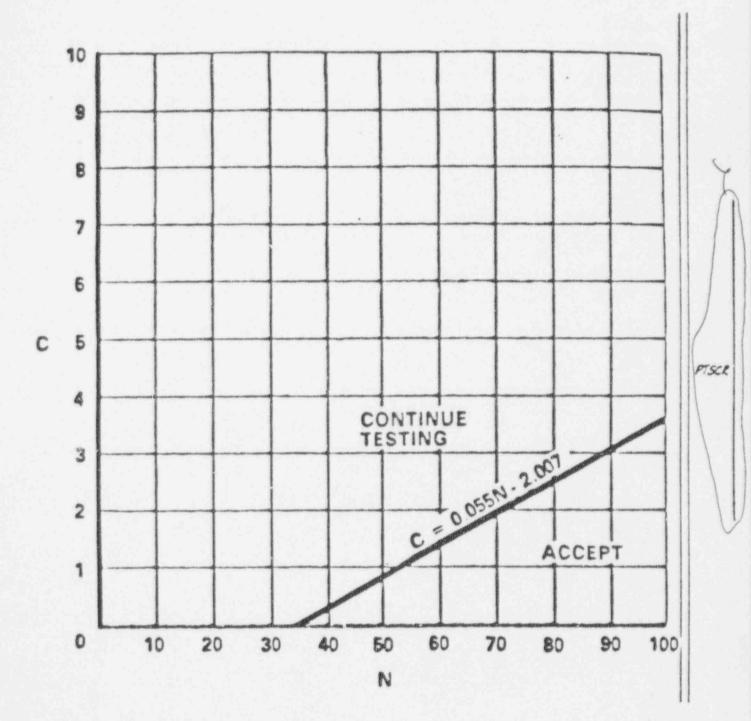


FIGURE 4.7-1 SAMPLE PLAN 2) FOR SNUBBER FUNCTIONAL TEST

MILLSTONE - UNIT 3

8

3/4 7-22

Amendment No. 16

PLANT SYSTEMS

3/4.7.11 SEALED SOURCE CONTAMINATION

LIMITING CONDITION FOR OPERATION

3.7.11 Each sealed source containing radioactive material either in excess of 100 microCuries of beta and/or gamma emitting material or 5 microCuries of alpha emitting material shall be free of greater than or equal to 0.005 microCurie of removable contamination.

APPLICABILITY: At all times.

ACTION:

- a. With a sealed source having removable contamination in excess of the above limits, immediately withdraw the sealed source from use and either:
 - 1. Decontaminate and repair the sealed source, or
 - Dispose of the sealed source in accordance with Commission Regulations.
- b. The provisions of Specification 3.0.3 are not applicable.

SURVEILLANCE REQUIREMENTS

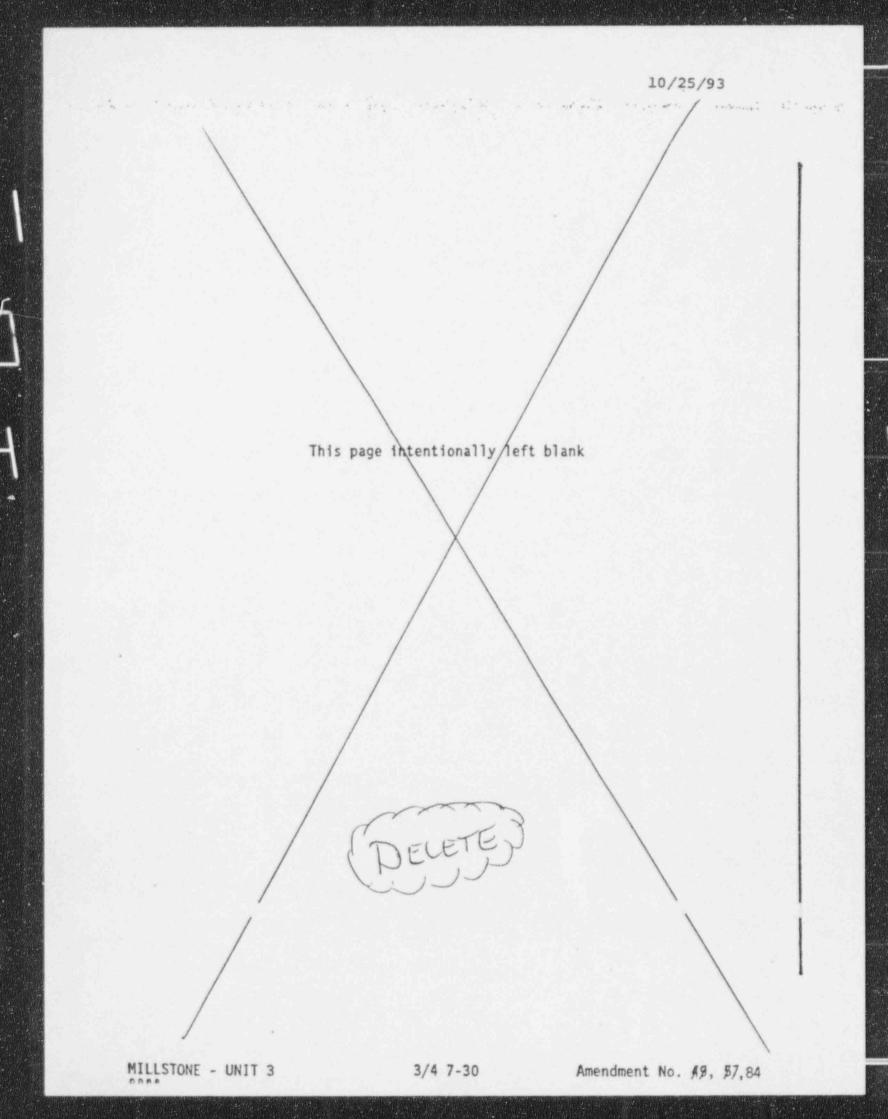
4.7.11.1 Test Requirements - Each sealed source shall be tested for leakage and/or contamination by:

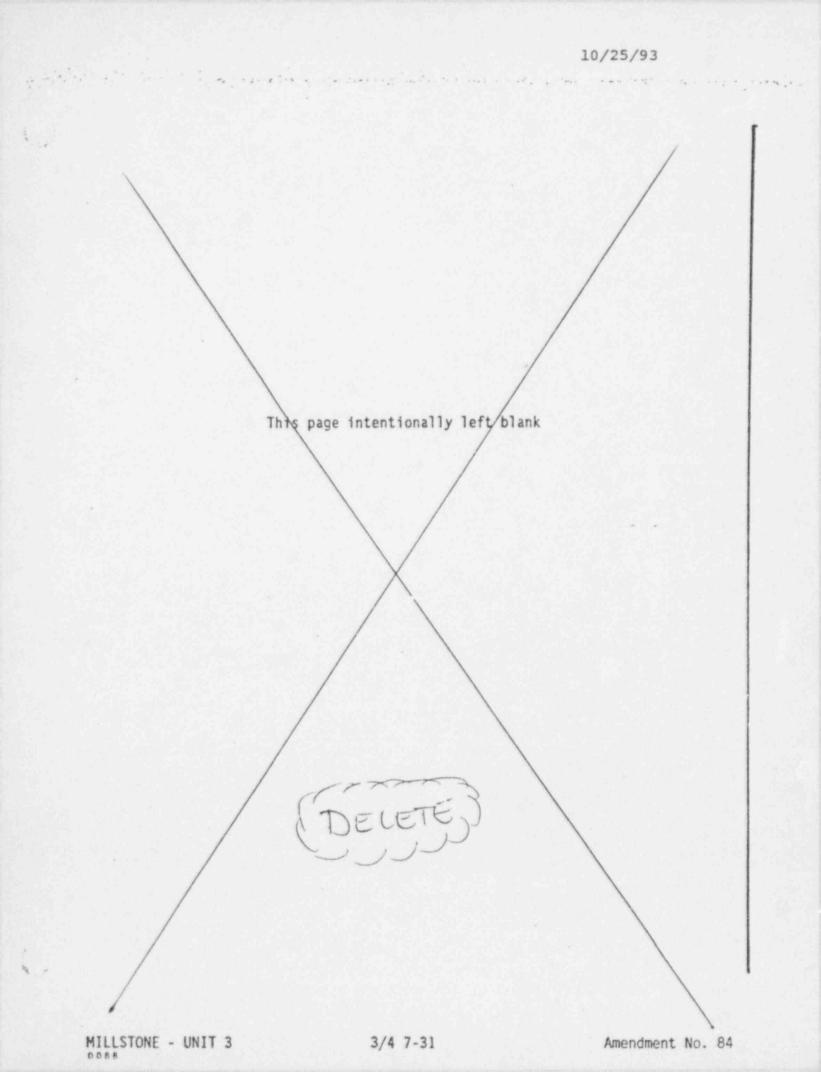
- a. The licensee, or
- Dther persons specifically authorized by the Commission or an Agreement State.

The test method shall have a detection sensitivity of at least 0.005 microCurie per test sample.

4.7.11.2 Test Frequencies - Each category of sealed sources (excluding startup sources and fission detectors previously subjected to core flux) shall be tested at the frequency described below.

- a. Sources in use At least once per 6 months for all sealed sources containing radioactive materials:
 - With a half-life greater than 30 days (excluding Hydrogen 3), and
 - 2) In any form other than gas.


SURVEILLANCE REQUIREMENTS (Continued)


b. Stored sources not in use - Each sealed source and fission detector shall be tested prior to use or transfer to another licensee unless tested within the previous 6 months. Sealed sources and fission detectors transferred without a certificate indicating the last test date shall be tested prior to being placed into use; and

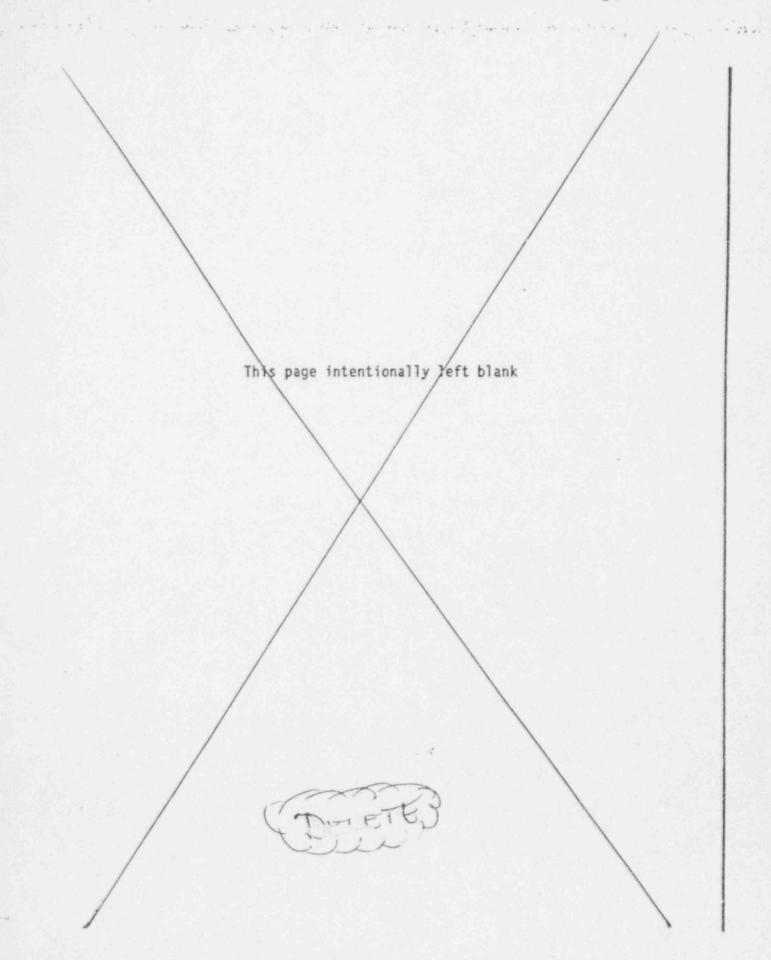
Jenusry 31, 1986-

c. Startup sources and fission detectors - Each sealed startup source and fission detector shall be tested within 31 days prior to being subjected to core flux or installed in the core and following repair or maintenance to the source.

4.7.11.3 Reports - A report shall be prepared and submitted to the Commission on an annual basis if sealed source or fission detector leakage tests reveal the presence of greater than or equal to 0.005 microCurie of removable contamination.

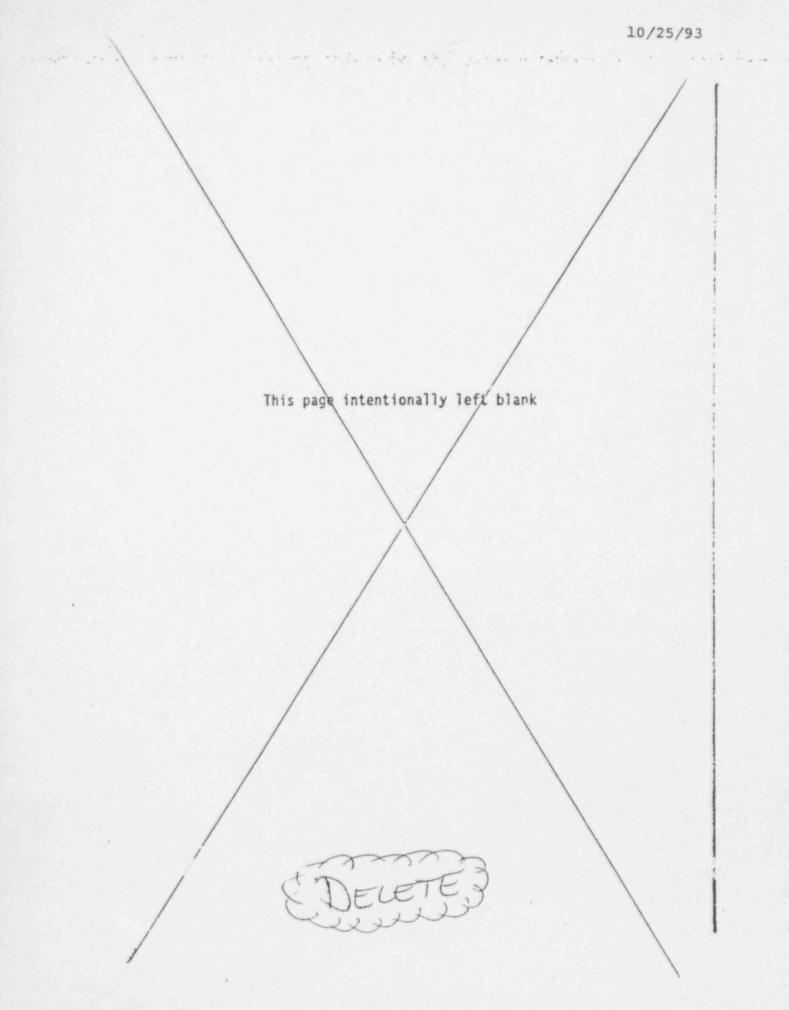
10/25/93

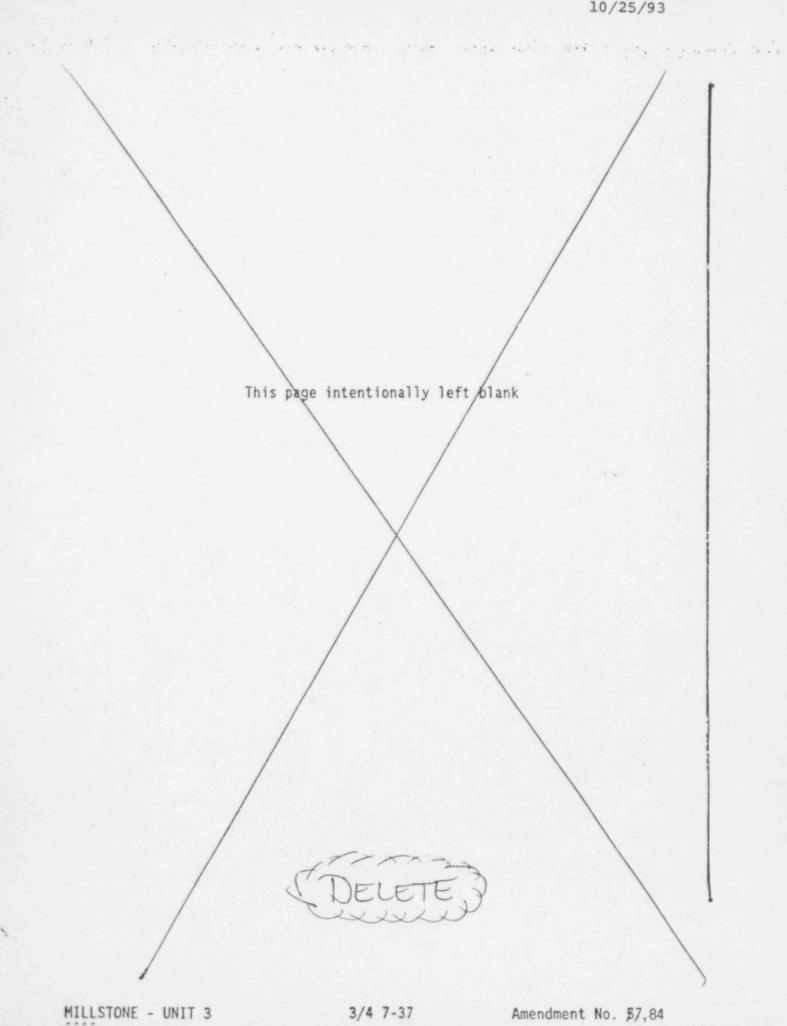
100


Sec. B. State

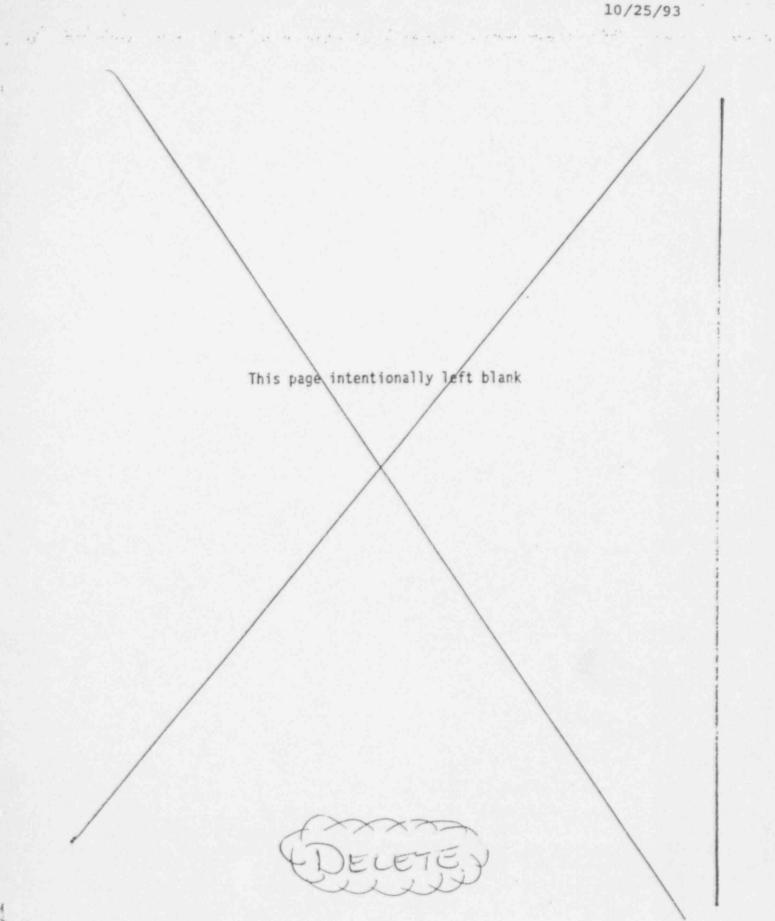
This page intentionally left blank

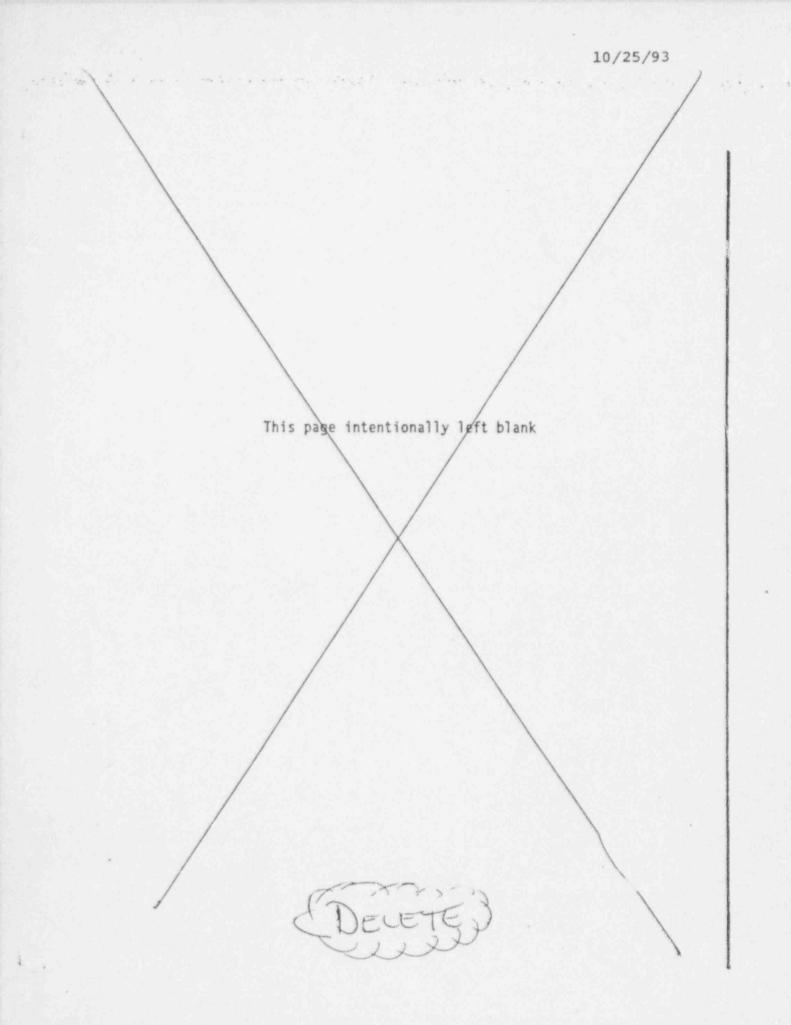
. . . .

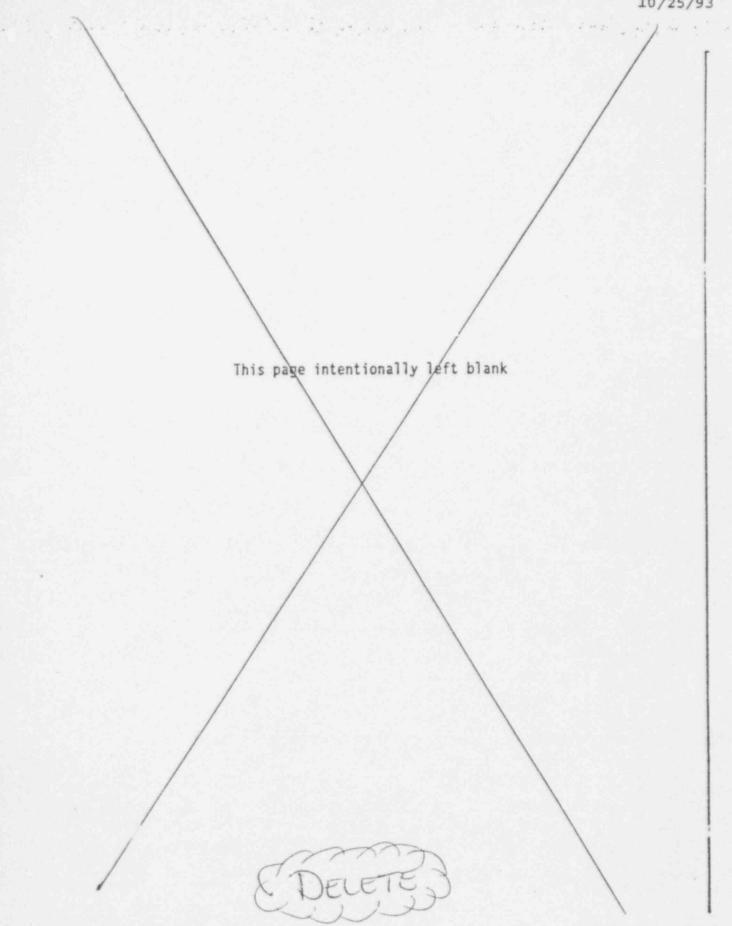

and interest in the second company and

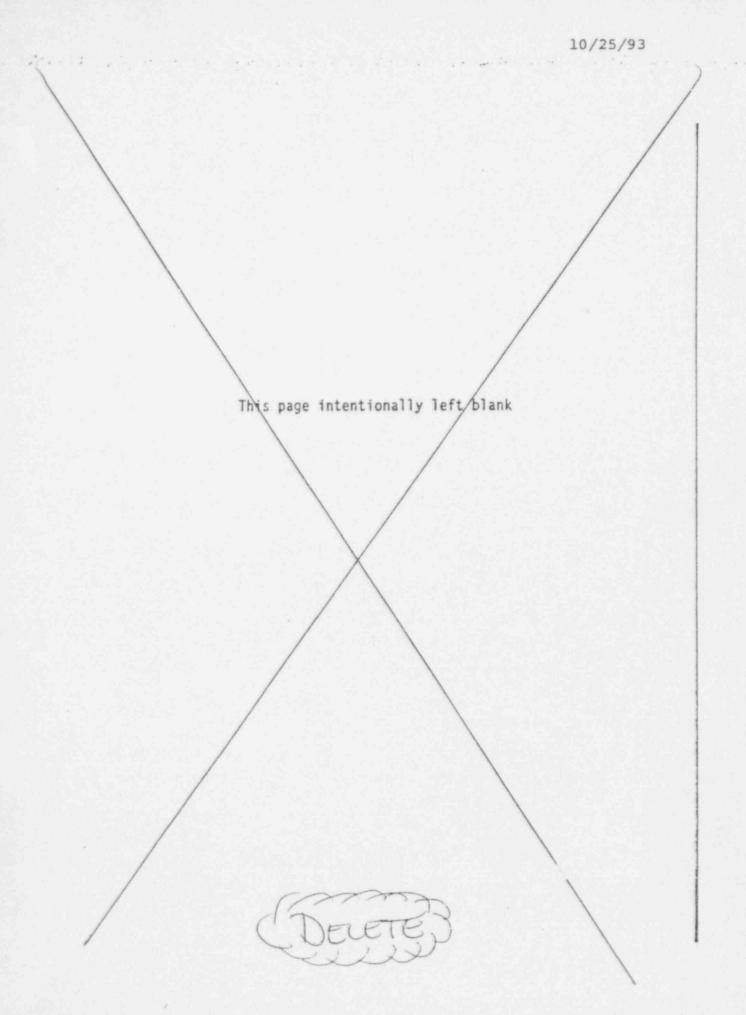


This page intentionally left blank






in almost the any my stream of the end and a second a second state of the second state of the second state of the



This page intentionally left blank

PLANT SYSTEMS

12

3/4.7.14 AREA TEMPERATURE MONITORING

LIMITING CONDITION FOR OPERATION

3.7.14 The temperature limit of each area shown in Table 3.7-16 shall not be exceeded.

APPLICABILITY: Whenever the equipment in an affected area is required to be OPERABLE.

ACTION:

With one or more areas exceeding the temperature limit(s) shown in Table 3.7-6:

- a. By less than 20°F and for less than 8 hours, record the cumulative time and the amount by which the temperature in the affected area(s) exceeded the limit(s).
- b. By less than 20°F and for more than 8 hours, prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report that provides a record of the cumulative time and the amount by which the temperature in the affected area(s) exceeded the limit(s) and an analysis to demonstrate the continued OPERABILITY of the affected equipment. The provisions of Specification 3.0.3 are not applicable.
- c. With one or more areas exceeding the temperature limit(s) shown in Table 3.7-6 by more than 20°F, prepare and submit a Special Report as required by ACTION b. above and within 4 hours either restore the area(s) to within the temperature limit(s) or declare the equipment in the affected area(s) inoperable.

SURVEILLANCE REQUIREMENTS

12

4.7.14 The temperature in each of the areas shown in Table 3.7-6 shall be determined to be within its limit at least once per 12 hours.

MILLSTONE - UNIT 3

3/4 7-44

AMENDMENT NO. 57

TABLE 3.7-

AREA TEMPERATURE MONITORING

AREA

TEMPERATURE LIMIT (°F)

1. AUXILIARY BUILDING

AR-02	VCT and Boric Acid Transfer Pump		
ND UL,	Area, El 43'6"	≤	120
AB-03,	Charging Pump Area, El 24'6"	\leq	110
AB-04,	General Area, El 66'6"	<	120
AB-06,	General Area, El 43'6"	\leq	120
AB-07,	General Area, El 4'6"	\leq	120
AB-08,	General Area (East), El 4'6"	<u><</u>	120
AB-09,	General Area (South), El 4'6"	<	120
AB-10,	General Area, El 4'6"	\leq	120
AB-11,	General Area, El 43'6"	<	120
AB-13,	General Area (North), El 4'6"	<	120
AB-16,	Supplemental Leak Collection Filter Area, El 66'6"	<1	120
AB-19,	MCC/Rod Drive Area, El 24'6"	<	120
AB-21,	MCC Air Conditioning Room, El 66'6"	<	120
AB-22,	Rod Drive Area, El 43'6"	<	120
AB-25,	Charging Pump Area, El 24'6"	<	110
AB-26,	RPCCW Pump Area, El 24'6"	<	110
AB-29,	General Area (Southeast), El 24'6"	\$	120
AB-33,	Boric Acid Tank Area, El 43'6"	<	120
AB-35,	Boric Acid Tank Area, El 43'6"	<	120
AB-39,	Fuel Building and Auxiliary Building Filter Area, El 66'6"	<	120

MILLSTONE - UNIT 3

33 3/4 7-45

Amendment No.

Q October 3, 1988

.

4 <u>Table 3.7-8</u> (Continued)

AREA TEMPERATURE MONITORING

AREA	MPERATURE LIMIT (°F)
2. <u>CONTROL BUILDING</u>	
CB-01, Switchgear and Battery Rooms, El 4'6"	< 104
CB-02, Cable Spreading Room, El 24'6"	≤ 110
CB-03, Control and Computer Rooms, El 47'6"	5 95
CB-04, Chiller Room, El 64'6"	≤ 104
CB-05, Mechanical Equipment Room, El 64-6"	5104
3. CONTAINMENT	
CS-01, Inside Crane Wall, El all except CS-03 and CS-04	<u>< 120</u>
CS-02, Outside Crane ₩all, El all	<u>≤120</u>
CS-03, Pressurizer Cubicle, El all	<u>≤130</u>
CS-04, Inside Crane wall, El 51'4" except CS-03 and steam generator enclosures	≤120
4. INTAKE STRUCTURE	
CW-01, Entire Building	≤ 110
5. DIESEL GENERATOR BUILDING	
DG-01, Entire Building	<u><120</u>
6. ESF BUILDING	
ES-01, HVAC and MCC Area, El 36'6"	≤110
ES-02, SIH Pump Area, El 21'6"	<u>< 110</u>
ES-03, Pipe Tunnel Area, El 4'6"	∠ 110
ES-04, RHS Cubicles, El all	≤110
ES-05, RSS Cubicles, El all	≤ 110
ES-06, Motor Driven Auxiliary Feedwater Pump Area, El 24'-6"	≤ 110
ES-07, Turbine Driven Auxiliary Feedwater Pump Area, El 24'6"	≤ 110
2/1	

MILLSTONE - UNIT 3

3/4 7-36

Amendment No. Ab,

TABLE 3.7-6 (Continued)

2 JAN 32 1985

AREA TEMPERATURE MONITORING

AREA	TEMPERATURE	LIMIT (°F)
7. FUEL BUILDING		
FB-02, Fuel Pool Pump Cubicles, El 24'6"	5	110
FB-03, General Area, El 52'4"	<u><</u>	104
8. FUEL OIL VAULT		
FV-01, Diesel Fuel Oil Vault	<u><</u>	95
9. HYDROGEN RECOMBINER BUILDING		
HR-01, Recombiner Skid Area, El 24'6"	<u><</u>	125
HR-02, Controls Area, El 24'6"	<	110
HR-03, Sampling Area, El 24'6"	<u><</u>	110
HR-04, HVAC Area, El 37'6"	<	110
10. MAIN STEAM VALVE BUILDING		
MS-01, Entire Building	<u><</u>	120
11. TURBINE BUILDING		
TB-01, Entire Building	<u><</u>	115
12. TUNNEL		
TN-02, Pipe Tunnel-Auxiliary, Fuel and ESF Building	<	112
13. YARD		
YD-01, Yard	<u><</u>	115

3/4 7-47

Amendment No.

ELECTRICAL POWER SYSTEMS

SURVEILLANCE REQUIREMENTS (Continued)

b) A kinematic viscosity at 40°C of greater than or equal to 1.9 centistokes, but less than or equal to 4.1 centistokes (alternatively, Saybolt viscosity, SUS at 100°F of greater than or equal to 32.6, but not less than or equal to 40.1), if gravity was not determined by comparison with the supplier's certification;

9-12/23/92

- c) A flash point equal to or greater than 125°F; and
- A clear and bright appearance with proper color when tested in accordance with ASTM-D4176-82.
- 2) By verifying within 30 days of obtaining the sample that the other properties specified in Table 1 of ASTM-D975-81 are met when tested in accordance with ASTM-D975-81 except that the analysis for sulfur may be performed in accordance with ASTM-D1552-79, ASTM-D2622-82 or ASTM-D4294-83.
- f. At least once every 31 days by obtaining a sample of fuel oil in accordance with ASTM-D2276-78, and verifying that total particulate contamination is less than 10 mg/liter when checked in accordance with ASTM-D2276-78, Method A;
- g. At least once per 18 months, during shutdown, by:
 - Subjecting the diesel to an inspection in accordance with procedures prepared in conjunction with its manufacturer's recommendations for this class of standby service;
 - 2) Verifying the generator capability to reject a load of greater than or equal to 595 kW while maintaining voltage at 4160 \pm 420 volts and frequency at 60 \pm 3 Hz;
 - Verifying the generator capability to reject a load of 4986 kW without tripping. The generator voltage shall not exceed 4784 volts during and following the load rejection;
 - Simulating a loss-of-offsite power by itself, and:
 - Verifying deenergization of the emergency busses and load shedding from the emergency busses, and
 - b) Verifying the diesel starts on the auto-start signal, energizes the emergency busses with permanently connected loads within 11 seconds, energizes the auto-connected shutdown loads through the load sequencer and operates for greater than or equal to 5 minutes while its generator is loaded with the shutdown loads. After energization, the steady-state voltage and frequency of the emergency busses shall be maintained at 4160 \pm 420 volts and 60 \pm 0.8 Hz during this test.

Except that the Surveillance Requirement inspection due no later than > December 25, 1992 may be deferred until the next refueling outage, but no > later than September 30, 1993 or whichever is earlier.

MILLSTONE - UNIT 3

3/4 8-5 /

Amendment No. 4, 10, 64, 13

ELECTRICAL POWER SYSTEMS

SURVEILLANCE REQUIREMENTS (Continued)

- 8) Verifying that the auto-connected loads to each diesel generator do not exceed the 2000-hour rating of 5335 kW;
- Verifying the diesel generator's capability to:
 - a) Synchronize with the offsite power source while the generator is loaded with its emergency loads upon a simulated restoration of offsite power,
 - b) Transfer its loads to the offsite power source, and
 - c) Be restored to its standby status.
- 10) Verifying^(k) that with the diesel generator operating in a test mode, connected to its bus, a simulated Safety Injection signal overrides the test mode by: (1) returning the diesel generator to standby operation, and (2) automatically energizing the emergency loads with offsite power;
- Verifying that the fuel transfer pump transfers fuel from each fuel storage tank to the day tank of each diesel via the installed cross-connection lines;
- 12) Verifying that the automatic load sequence timer is OPERABLE with the interval between each load block within ± 10% of its design interval; and
- 13) Verifying that the following diesel generator lockout features prevent diesel generator starting:
 - a) Engine overspeed,
 - b) Lube oil pressure low (2 of 3 logic),
 - c) Generator differential, and
 - d) Emergency stop.
- h. At least once per 10 years or after any modifications which could affect diesel generator interdependence by starting both diesel generators simultaneously, during shutdown, and verifying that both. diesel generators accelerate to at least 508 rpm in less than or equal to 11 seconds; and
- 1. At least once per 10 years by:
 - Draining each fuel oil storage tank, removing the accumulated sediment and cleaning the tank using a sodium hypochlorite solution, and

* Except that the surveillance requirement due no leter than June 13, 1993, > may be deferred until the next refueling outage, but no later than > September 30, 1993, whichever is earlier.

MILLSTONE - UNIT 3 3/4 8-7 Amendment No. \$4, 7\$,

June 8, 1993

ELECTRICAL POWER SYSTEMS

SURVEILLANCE REQUIREMENTS (Continued)

- b. At least once per 92 days and within 7 days after a battery discharge with battery terminal voltage below 110 volts, or battery overcharge with battery terminal voltage above 150 volts, by verifying that:
 - 1) The parameters in Table 4.8-2a meet the Category B limits.
 - There is no visible corrosion at either terminals or connectors, or the connection resistance of these items is less than 150 x 10⁻⁶ ohm, and
 - The average electrolyte temperature of six connected cells is above 60°F.
- c. At least once per 18 months by verifying that:
 - The cells, cell plates, and battery racks show no visual indication of physical damage or abnormal deterioration,
 - The cell-to-cell and terminal connections are clean, tight, and coated with anticorrosion material,
 - 3) The resistance of each cell-to-cell and terminal connection is less than or equal to 150 x 10⁻⁶ ohm, and
 - 4) Each battery charger will supply at least the amperage indicated in Table 4.8-2b at 125 volts for at least 24 hours.
- d. At least once per 18 months, during shutdown, by verifying that the battery capacity is adequate to supply and maintain in OPERABLE status all of the actual or simulated emergency loads for the design duty cycle when the battery is subjected to a battery service test;
- e. At least once per 60 months, during shutdown, by verifying that the battery capacity is at least 80% of the manufacturer's rating when subjected to a performance discharge test. Once per 60-month interval this performance discharge test may be performed in lieu of the battery service test required by Specification 4.8.2.1d.; and
- f. At least once per 13 months, during shutdown, by giving performance discharge tests of battery capacity to any battery that shows signs of degradation or has reached 85% of the service life expected for the application. Degradation is indicated when the battery capacity drops more than 10% of rated capacity from its average on previous performance tests, or is below 90% of the manufacturer's rating.

Except that the surveillance requirement due no later than June 13, 1993, may be deferred until the next refueling outage but no later than September 30, 1993, whichever is earlier.

MILLSTONE - UNIT 3

3/4 8-12

EMERGENCY CORE COOLING SYSTEMS

Q JAN 31 1986

BASES

ECCS SUBSYSTEMS (Continued)

The limitation for a maximum of one centrifugal charging pump and one safety injection pump to be OPERABLE and the Surveillance Requirement to verify all charging pumps and safety injection pumps except the required OPERABLE charging pump to be inoperable below 350°F provides assurance that a mass addition pressure transient can be relieved by the operation of a single PORV.

The Surveillance Requirements provided to ensure OPERABILITY of each component ensures that at a minimum, the assumptions used in the safety analyses are met and that subsystem OPERABILITY is maintained. Surveillance Requirements for throttle valve position stops and flow balance testing provide assurance that proper ECCS flows will be maintained in the event of a LOCA. Maintenance of proper flow resistance and pressure drop in the piping system to each injection point is necessary to: (1) prevent total pump flow from exceeding runout conditions when the system is in its minimum resistance configuration, (2) provide the proper flow split between injection points in accordance with the assumptions used in the ECCS-LOCA analyses, and (3) provide an acceptable level of total ECCS flow to all injection points equal to or above that assumed in the ECCS-LOCA analyses.

LINSERT A

3/4.5.4 REFUELING WATER STORAGE TANK

The OPERABILITY of the refueling water storage tank (RWST) as part of the ECCS ensures that a sufficient supply of borated water is available for injection by the ECCS in the event of a LOCA. The limits on RWST minimum volume and boron concentration ensure that: (1) sufficient water is available within containment to permit recirculation cooling flow to the core, and (2) the reactor will remain subcritical in the cold condition following mixing of the RWST and the RCS water volumes with all control rods inserted except for the most reactive control assembly. These assumptions are consistent with the LOCA analyses.

The contained water volume limit includes an allowance for water not usable because of tank discharge line location or other physical characteristics.

The limits on contained water volume and boron concentration of the RWST also ensure a pH value of between 7.0 and 7.5 for the solution recirculated within containment after a LOCA. This pH band minimizes the effect of chloride and caustic stress corrosion on mechanical systems and components.

The maximum/minimum solution temperatures for the RWST in MODES 1, 2, 3 and 4 are based on analysis assumptions.

MILLSTONE - UNIT 3

Amendment Nb.

Surveillance requirement 4.5.2.6.2 requires that the visual inspection of the containment sump be performed at least once daily if the containment this been entered that day and when the final containment entry is made. This will reduce the number of unnecessary inspections and also reduce personnel expresses.

PLANT SYSTEMS

BASES

3/4.7.11 SEALED SOURCE CONTAMINATION (Continued)

plutonium. This limitation will ensure that leakage from Byproduct, Source, and Special Nuclear Material sources will not exceed allowable intake values.

Sealed sources are classified into three groups according to their use, with Surveillance Requirements commensurate with the probability of damage to a source in that group. Those sources which are frequently handled are required to be tested more often than those which are not. Sealed sources which are continuously enclosed within a shielded mechanism (i.e., sealed sources within radiation monitoring or boron measuring devices) are considered to be stored and need not be tested unless they are removed from the shielded mechanism.

2 3/4.7.12 Deleted

9 10/25/93-

PLANT SYSTEMS

BASES

2 3/4.7.13 Deleted

3/4.7.14 AREA TEMPERATURE MONITORING

The area temperature limitations ensure that safety-related equipment will not be subjected to temperatures in excess of their environmental qualification temperatures. Exposure to excessive temperatures may degrade equipment and can cause a loss of its OPERABILITY. The temperature limits include an allowance for instrument error of $\pm 2.2^{\circ}F$.

Docket No. 50-423 B14846

Attachment 2

Millstone Unit No. 3

Proposed Revision to Technical Specifications Generic Letter 93-05 and Various Administrative Changes Retyped Pages

June 1994

DEFINITIONS

SECTIO	<u>DN</u>	PAGE
1.32	SLAVE RELAY TEST	1-6
1.33	SOURCE CHECK	1-6
1.34	STAGGERED TEST BASIS	1-6
1.35	THERMAL POWER	1-6
1.36	TRIP ACTUATING DEVICE OPERATIONAL TEST	1-6
1.37	UNIDENTIFIED LEAKAGE	1-6
1.38	UNRESTRICTED AREA	1-6
1.39	VENTING	1 - 7
1.40	SPENT FUEL POOL STORAGE PATTERNS	1-7
1.41	SPENT FUEL POOL STORAGE PATTERNS	1 - 7
1.42	CORE OPERATING LIMITS REPORT (COLR)	1-7
1.43	ALLOWED POWER LEVEL APL ND	1-7
1.44	ALLOWED POWER LEVEL APL BL	1-7
TABLE	1.1 FREQUENCY NOTATION	1-8
TABLE	1.2 OPERATIONAL MODES	1-9

Amendment No. 39, \$9, \$9, 72, 89,

11

LIMITING CONDITIONS FOR OPERATION AND SURVEILLANCE REQUIREMENTS

SECTION	PAGE
	Air Temperature
	Containment Structural Integrity
	Containment Ventilation System
3/4.6.2	DEPRESSURIZATION AND COOLING SYSTEMS
	Containment Quench Spray System
	Recirculation Spray System
	Spray Additive System
3/4.6.3	CONTAINMENT ISOLATION VALVES
3/4.6.4	COMBUSTIBLE GAS CONTROL
	Hydrogen Monitors
	Electric Hydrogen Recombiners
3/4.6.5	SUBATMOSPHERIC PRESSURE CONTROL SYSTEM
	Steam Jet Air Ejector
3/4.6.6	SECONDARY CONTAINMENT
	Supplementary Leak Collection and Release System 3/4 6-19
	Secondary Containment Boundary
	Secondary Containment Boundary Structural Integrity
3/4.7 PLANT	SYSTEMS
3/4.7.1	TURBINE CYCLE
	Safety Valves
TABLE 3.7-1	MAXIMUM ALLOWABLE POWER RANGE NEUTRON FLUX HIGH SETPOINT WITH INOPERABLE STEAM LINE SAFETY VALVES DURING FOUR LOOP OPERATION
TABLE 3.7-2	MAXIMUM ALLOWABLE POWER RANGE NEUTRON FLUX HIGH SETPOINT WITH INOPERABLE STEAM LINE SAFETY VALVES DURING THREE LOOP OPERATION

LIMITING CONDITIONS FOR OPERATION AND SURVEILLANCE REQUIREMENTS

SECTION		PAGE
TABLE 3.7-3	STEAM LINE SAFETY VALVES PER LOOP	3/4 7-3
	Auxiliary Feedwater System	3/4 7-4
	Demineralized Water Storage Tank	3/4 7-6
	Specific Activity	3/4 7-7
TABLE 4.7-1	SECONDARY COOLANT SYSTEM SPECIFIC ACTIVITY SAMPLE	
	AND ANALYSIS PROGRAM	3/4 7-8
	Main Steam Line Isolation Valves	3/4 7-9
3/4.7.2	STEAM GENERATOR PRESSURE/TEMPERATURE LIMITATION	3/4 7-10
3/4.7.3	REACTOR PLANT COMPONENT COOLING WATER SYSTEM	3/4 7-11
3/4.7.4	SERVICE WATER SYSTEM	3/4 7-12
3/4.7.5	ULTIMATE HEAT SINK	3/4 7-13
3/4.7.6	FLOOD PROTECTION	3/4 7-14
3/4.7.7	CONTROL ROOM EMERGENCY VENTILATION SYSTEM	3/4 7-15
3/4.7.8	CONTROL ROOM ENVELOPE PRESSURIZATION SYSTEM	3/4 7-18
3/4.7.9	AUXILIARY BUILDING FILTER SYSTEM	3/4 7-20
3/4.7.10	SNUBBERS	3/4 7-22
TABLE 4.7-2	SNUBBER VISUAL INSPECTION INTERVAL	3/4 7-27
FIGURE 4.7-1	SAMPLE PLAN 2) FOR SNUBBER FUNCTIONAL TEST	3/4 7-29
3/4.7.11	SEALED SOURCE CONTAMINATION	3/4 7-30
3/4.7.12	AREA TEMPERATURE MONITORING	3/4 7-32
TABLE 3.7.4	AREA TEMPERATURE MONITORING	3/4 7-33

х

SECTION				PAGE
3/4.7.11	SEALED SOURCE CONTAMINATION	į,	В	3/4 7-1
3/4.7.12	AREA TEMPERATURE MONITORING		В	3/4 7-1
3/4.8 E	LECTRICAL POWER SYSTEMS			
3/4.8.1,	3/4.8.2, and 3/4.8.3 A.C. SOURCES, D.C. SOURCES, AND ONSITE POWER DISTRIBUTION		В	3/4 8-
3/4.8.4	ELECTRICAL EQUIPMENT PROTECTIVE DEVICES		В	3/4 8-3
3/4.9 RI	EFUELING OPERATIONS			
3/4.9.1	BORON CONCENTRATION		В	3/4 9-
3/4.9.2	INSTRUMENTATION	١.	В	3/4 9-
3/4.9.3	DECAY TIME	\times	В	3/4 9-
3/4.9.4	CONTAINMENT BUILDING PENETRATIONS		В	3/4 9-
3/4.9.5	COMMUNICATIONS		В	3/4 9-
3/4.9.6	REFUELING MACHINE		В	3/4 9-3
3/4.9.7	CRANE TRAVEL - SPENT FUEL STORAGE AREAS		В	3/4 9-1
3/4.9.8	RESIDUAL HEAT REMOVAL AND COOLANT CIRCULATION		В	3/4 9-1
3/4.9.9	CONTAINMENT PURGE AND EXHAUST ISOLATION SYSTEM	÷	В	3/4 9-1
3/4.9.10	and 3/4.9.11 WATER LEVEL - REACTOR VESSEL AND STORAGE POOL		в	3/4 9-3
3/4.9.12	FUEL BUILDING EXHAUST FILTER SYSTEM		В	3/4 9-3
3/4.9.13	SPENT FUEL POOL - REACTIVITY		В	3/4 9-3
3/4.9.14	SPENT FUEL POOL - STORAGE PATTERN		В	3/4 9-3
3/4.10	SPECIAL TEST EXCEPTIONS			
3/4.10.1	SHUTDOWN MARGIN		B 3	/4 10-
3/4.10.2	GROUP HEIGHT, INSERTION, AND POWER DISTRIBUTION LIMITS		B 3	/4 10-
3/4.10.3	PHYSICS TESTS	×	B 3	/4 10-
3/4.10.4	REACTOR COOLANT LOOPS	.*	B 3	/4 10-
3/4.10.5	POSITION INDICATION SYSTEM - SHUTDOWN	γ.	B 3	/4 10-

3

1

 BASES

1

DEFINITIONS

VENTING

1.39 VENTING shall be the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration, or other operating condition, in such a manner that replacement air or gas is not provided or required during VENTING. Vent, used in system names, does not imply a VENTING process.

SPENT FUEL POOL STORAGE PATTERNS:

1.40 Region I spent fuel racks contain a cell blocking device in every 4th location for criticality control. This 4th location will be referred to as the blocked location. A STORAGE PATTERN refers to the blocked location and all adjacent and diagonal Region I cell locations surrounding the blocked location. Boundary configuration between Region I and Region II must have cell blockers positioned in the outermost row of the Region I perimeter, as shown in Figure 3.9-2.

1.41 Region II contains no cell blockers.

CORE OPERATING LIMITS REPORT (COLR)

1.42 The CORE OPERATING LIMITS REPORT (COLR) is the unit-specific document that provides core operating limits for the current operating reload cycle. These cycle-specific core operating limits shall be determined for each reload cycle in accordance with Specification 6.9.1.6. Unit Operation within these operating limits is addressed in individual specifications.

ALLOWED POWER LEVEL

1.43 APLND is the minimum allowable nuclear design power level for base load operation and is specified in the COLR.

1.44 APL^{BL} is the maximum allowable power level when transitioning into base load operation.

Amendment No. 39, \$9, \$9, 72,

POWER DISTRIBUTION LIMITS

LIMITING CONDITION FOR OPERATION

ACTION (Continued)

- b. Within 24 hours of initially being outside the above limits, verify through incore flux mapping and RCS total flow rate that $F_{\Delta H}^{N}$ and RCS total flow rate are restored to within the above limits, or reduce THERMAL POWER to less than 5% of RATED THERMAL POWER within the next 2 hours.
- c. Identify and correct the cause of the out-of-limit condition prior to increasing THERMAL POWER above the reduced THERMAL POWER limit required by ACTION a.2. and/or b., above; subsequent POWER OPERATION may proceed provided that $F_{\Delta H}^{N}$ and indicated RCS total flow rate are demonstrated, through incore flux mapping and RCS total flow rate comparison, to be within the region of acceptable operation prior to exceeding the following THERMAL POWER levels:
 - 1. A nominal 50% of RATED THERMAL POWER,
 - 2. A nominal 75% of RATED THERMAL POWER, and
 - Within 24 hours of attaining greater than or equal to 95% of RATED THERMAL POWER.

SURVEILLANCE REQUIREMENTS

4.2.3.1.1 The provisions of Specification 4.0.4 are not applicable.

4.2.3.1.2 RCS total flow rate and $F_{\Delta H}^N$ shall be determined to be within the acceptable range:

- Prior to operation above 75% of RATED THERMAL POWER after each fuel loading, and
- b. At least once per 31 Effective Full Power Days.

4.2.3.1.3 The indicated RCS total flow rate shall be verified to be within the acceptable range at least once per 12 hours when the most recently obtained value of $F_{\Delta H}^N$, obtained per Specification 4.2.3.1.2, is assumed to exist.

4.2.3.1.4 The RCS total flow rate indicators shall be subjected to a CHANNEL CALIBRATION at least once per 18 months. The measurement instrumentation shall be calibrated within 7 days prior to the performance of the calorimetric flow measurement.

Amendment No. #Ø. 79.

POWER DISTRIBUTION LIMITS

LIMITING CONDITION FOR OPERATION

ACTION (Continued)

- b. Within 24 hours of initially being outside the above limits, verify through incore flux mapping and RCS total flow rate that $F_{\Delta H}^N$ and RCS total flow rate are restored to within the above limits, or reduce THERMAL POWER to less than 5% of RATED THERMAL POWER within the next 2 hours.
- c. Identify and correct the cause of the out-of-limit condition prior to increasing THERMAL POWER above the reduced THERMAL POWER limit required by ACTION a.2. and/or b., above; subsequent POWER OPERATION may proceed provided that $F_{\Delta H}$ and indicated RCS total flow rate are demonstrated, through incore flux mapping and RCS total flow rate comparison, to be within the region of acceptable operation prior to exceeding the following THERMAL POWER levels:
 - 1. A nominal 32% of RATED THERMAL POWER, and
 - 2. A nominal 50% of RATED THERMAL POWER.

SURVEILLANCE REQUIREMENTS

4.2.3.2.1 The provisions of Specification 4.0.4 are not applicable.

4.2.3.2.2 RCS total flow rate and $F_{\Delta H}^{N}$ shall be determined to be within the acceptable range at least once per 31 Effective Full Power Days.

4.2.3.2.3 The indicated RCS total flow rate shall be verified to be within the acceptable range at least once per 12 hours when the most recently obtained value of $F_{\Delta H}$, obtained per Specification 4.2.3.2.2, is assumed to exist.

4.2.3.2.4 The RCS total flow rate indicators shall be subjected to a CHANNEL CALIBRATION at least once per 18 months. The measurement instrumentation shall be calibrated within 7 days prior to the performance of the calorimetric flow measurement.

4.2.3.2.5 The RCS total flow rate shall be determined by precision heat balance measurement at least once per 18 months. Within 7 days prior to performing the precision heat balance, the instrumentation used for determination of steam pressure, feedwater pressure, feedwater temperature, and feedwater venturi ΔP in the calorimetric calculations shall be calibrated.

4.2.3.2.6 If the feedwater venturis are not inspected at least once per 18 months, an additional 0.1% will be added to the total RCS flow measurement uncertainty.

3/4.3 INSTRUMENTATION

3/4.3.1 REACTOR TRIP SYSTEM INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.1 As a minimum, the Reactor Trip System instrumentation channels and interlocks of Table 3.3-1 shall be OPERABLE with RESPONSE TIMES as shown in Table 3.3-2.

APPLICABILITY: As shown in Table 3.3-1.

ACTION:

As shown in Table 3.3-1.

SURVEILLANCE REQUIREMENTS

4.3.1.1 Each Reactor Trip System instrumentation channel and interlock and the automatic trip logic shall be demonstrated OPERABLE by the performance of the Reactor Trip System Instrumentation Surveillance Requirements specified in Table 4.3-1.

4.3.1.2 The REACTOR TRIP SYSTEM RESPONSE TIME of each Reactor trip function shall be demonstrated to be within its limit at least once per 18 months. Each test shall include at least one train such that both trains are tested at least once per 36 months and one channel (to include input relays to both trains) per function such that all channels are tested at least once every N times 18 months where N is the total number of redundant channels in a specific Reactor trip function as shown in the "Total No. of Channels" column of Table 3.3-1.

TABLE 4.3-1

REACTOR TRIP SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS

- UNIT 3	FUNC	TIONAL UNIT	CHANNEL CHECK	CHANNEL CALIBRATION	ANALOG CHANNEL OPERATIONAL TEST	TRIP ACTUATING DEVICE OPERATIONAL TEST	ACTUATION LOGIC TEST	MODES FOR WHICH SURVEILLANCE IS REQUIRED
	1.	Manual Reactor Trip	N.A.	N.A.	N.A.	R(14)	N.A.	1, 2, 3*, 4*,
	2.	Power Range, Neutron Flux a. High Setpoint	S	D(2, 4), M(3, 4), Q(4, 6), R(4, 5) R(4)	Q	N.A.	N.A.	1, 2
		b. Low Setpoint	S	R(4, 5) R(4)	S/U(1)	N.A.	N.A.	1***, 2
3/4	3.	Power Range, Neutron Flux, High Positive Rate	N.A.	R(4)	Q	N.A.	N.A.	1, 2
3-10	4.	Power Range, Neutron Flux, High Negative Rate	N.A.	R(4)	Q	N.A.	N.A.	1, 2
	5.	Intermediate Range	S	R(4, 5)	S/U(1)	N.A.	N.A.	1***, 2
	б.	Source Range, Neutron Flux	S	R(4, 5)	S/U(1), Q(9)	N.A.	N.A.	2**, 3, 4, 5
Amendment	7.	Overtemperature ∆T	S	R	Q	N.A.	N.A.	1, 2
dmer	8.	Overpower &T	S	R	Q	N.A.	N.A.	1, 2
t N	9.	Pressurizer PressureLow	S	R	Q(18)	N.A.	N.A.	1
No.	10.	Pressurizer PressureHigh	S	R	Q(18)	N.A.	N.A.	1, 2
12.	11.	Pressurizer Water LevelHigh	S	R	Q	N.A.	N.A.	1
79, 79,	12.	Reactor Coolant FlowLow	S	R	Q	N.A.	N.A.	1

MILLSTONE - UNIT 3

REACTOR TRIP SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS

FUNC	TIONAL UNIT	CHANNEL CHECK	CHANNEL CALIBRATION	ANALOG CHANNEL OPERATIONAL TEST	TRIP ACTUATING DEVICE OPERATIONAL TEST	ACTUATION LOGIC TEST	MODES FOR WHICH SURVEILLANCE IS REQUIRED	
13.	Steam Generator Water Level Low-Low	S	R	Q(18)	N.A.	N.A.	1, 2	
14.	Low Shaft Speed - Reactor Coolant Pumps	N.A.	R(13)	Q	N.A.	N.A.	1	
15.	Turbine Trip							
	a. Low Fluid Oil Pressure	N.A.	R	N.A.	S/U(1, 10)**	**N.A.	1	
	b. Turbine Stop Valve Closure	N.A.	R	N.A.	S/U(1, 10)**	**N.A.	1	
16.	Safety Injection Input from ESF	N.A.	N.A.	N.A.	R	N.A.	1, 2	
17.	Reactor Trip System Interlocks							1
	a. Intermediate Range Neutron Flux, P-6	N.A.	R(4)	R	N.A.	N.A.	2**	
	b. Low Power Reactor Trips Block, P-7	N.A.	R(4)	R	N.A.	N.A.	1	
	c. Power Range Neutron Flux, P-8	N.A.	R(4)	R	N.A.	N.A.	1	-
	d. Power Range Neutron Flux, P-9	N.A.	R(4)	R	N.A.	N.A.	1	1
	e. Power Range Neutron Flux, P-10	N.A.	R(4)	R	N.A.	N.A.	1, 2	-
	f. Turbine Impulse Chamber Pressure, P-13	N.A.	R	R	N.A.	N.A.	1	

3/4 3-11

REACTOR TRIP SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS

FUNC	TIONAL UNIT	CHANNEL CHECK	CHANNEL CALIBRATION	ANALOG CHANNEL OPERATIONAL TEST	TRIP ACTUATING DEVICE OPERATIONAL TEST	ACTUATION LOGIC TEST	MODES FOR WHICH SURVEIL! ANCE IS REQUIRED
18.	Reactor Trip Breaker	N.A.	N.A.	N.A.	M(7, 11)	N.A.	1, 2,*, 4*, 5**,
19.	Automatic Trip and Interlock Logic	N.A.	N.A.	N.A.	N.A.	M(7)	1, 2, 3*, 4*, 5*
20.	Three Loop Operation Bypass Circuitry	N.A.	N.A.	N.A.	R	N.A.	1, 2
21.	Reactor Trip Bypass Breakers	N.A.	N.A.	N.A.	M(15) R(16)	N.A.	1, 2, 3*, 4*, 5*
22.	Shutdown Margin Monitor	N.A.	N.A	Q(19)	N.A.	N.A.	3, 4, 5

3/4 3-12

MILLSTONE - UNIT 3

TABLE NOTATIONS (Continued)

- (10) Setpoint verification is not applicable.
- (11) The TRIP ACTUATING DEVICE OPERATIONAL TEST shall independently verify the OPERABILITY of the undervoltage and shunt trip attachments of the intervoltage Trip Breakers.
- (12) (not used)
- (13) Reactor Coolant Pump Shaft Speed Sensor may be excluded from CHANNEL CALIBRATION.
- (14) The TRIP ACTUATING DEVICE OPERATIONAL TEST shall independently verify the OPERABILITY of the undervoltage and shunt trip circuits for the Manual Reactor Trip Function. The test shall also verify the OPERABILITY of the Bypass Breaker trip circuit(s).
- (15) Local manual shunt trip prior to placing breaker in service.
- (16) Automatic undervoltage trip.
- (17) (not used).
- (18) The surveillance frequency and/or MODES specified for these channels in Table 4.3-2 should be reviewed for applicability.
- (19) Quarterly surveillance shall include verification that the Shutdown Margin Monitor is set per the CORE OPERATING LIMITS REPORT (COLR).

INSTRUMENTATION

SURVEILLANCE REQUIREMENTS

4.3.2.1 Each ESFAS instrumentation channel and interlock and the automatic actuation logic and relays shall be demonstrated OPERABLE by performance of the ESFAS Instrumentation Surveillance Requirements specified in Table 4.3-2.

4.3.2.2 The ENGINEERED SAFETY FEATURES RESPONSE TIME of each ESFAS function shall be demonstrated to be within the limit at least once per 18 months. Each test shall include at least one train such that both trains are tested at least once per 36 months and one channel (to include input relays to both trains) per function such that all channels are tested at least once per N times 18 months where N is the total number of redundant channels in a specific ESFAS function as shown in the "Total No. of Channels" column of Table 3.3-3.

TABLE 4.3-2

ENGINEERED	SAFETY	FEATURES	ACTUATION	SYSTEM	INSTRUMENTATION
		SURVEILLA	NCE REQUIR	EKENTS	

MILLSTONE 0240			ENG	INEERED S	AFETY FEATURE SURVEILL	ACTUATION		MENTATION						
FONE - UNIT 3		NCT	IONAL_UNIT	CHANNEL CHECK	CHANNEL CALIBRATION	ANALOG CHANNEL OPERATIONAL TEST	TRIP ACTUATING DEVICE OPERATIONAL TEST	ACTUATION LOGIC_TEST	MASTER RELAY TEST	SLAVE RELAY TEST	FOR	RVEI	HICH LLAN QUIF	VCE
	1.	Fe Bu In	fety Injection (Reactor Trip edwater Isolation, Control ilding Isolation (Manual itiation Only), Start Diesel nerators, and Service Water)											
		a.	Manual Initiation	N.A.	N.A.	N.A.	R	N.A.	N.A.	N.A.	1,	2,	3,	4
3/4		b.	Automatic Actuation Logic and Actuation Relays	N.A.	N.A.	N.A.	N.A.	M(1)	M(1)	Q	1,	2,	3,	4
3-36		c.	Containment Pressure- High-1	S	R	Q	N.A.	N.A.	N.A.	N.A.	1,	2,	3	
		d.	Pressurizer Pressure- Low	÷ .	R	Q	N.A.	N.A.	N.A.	N.A.	1,	2,	3	
M		е.	Steam Line Pressure-Low	S	R	Q	N.A.	N.A.	N.A.	N.A.	1,	2,	3	1
nend	2.	Co	ntainment Spray											
ment		a.	Manual Initiation	N.A.	N.A.	N.A.	R	N.A.	N.A.	N.A.	1,	2,	3,	4
Amendment No. \$\$, 79, 79,		b.	Automatic Actuation Logic and Actuation Relays	N.A.	N.A.	N.A.	N.A.	M(1)	M(1)	Q	1,	2,	3,	4
8, 79.		с.	Containment Pressure- High-3	S	R	Q	N.A.	N.A.	N.A.	N.A.	1,	2,	3,	4
79,														

ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS

FUNCTIO	DNAL UNIT	CHANNEL CHECK	CHANNEL CALIBRATION	ANALOG CHANNEL OPERATIONAL TEST	TRIP ACTUATING DEVICE OPERATIONAL TEST	ACTUATION LOGIC TEST	MASTER RELAY <u>TEST</u>	SLAVE RELAY TEST	MODES FOR WHIC SURVEILL IS REQUI	LANCE	
3. Cont	tainment Isolation										
a. P	Phase "A" Isolation										
1	l) Manual Initiation	N.A.	N.A.	N.A.	R	N.A.	N.A.	N.A	1, 2,	3, 4	1
2	2) Automatic Actuation Logic and Actuation Relays	N.A.	N.A.	N.A.	N.A.	M(1)	M(1)	Q	1, 2,	3, 4	
3	3) Safety Injection	See Item	n 1. above fo	r all Safety	Injection Sur	veillance R	equirem	ents.			1
b. F	Phase "B" Isolation										
1	l) Manual Initiation	N.A.	N.A.	N.A.	R	N.A.	N.A.	N.A	1, 2,	3, 4	1
2	2) Automatic Actuation Logic Actuation Relays	N.A.	N.A.	N.A.	N.A.	M(1)	M(1)	Q	1, 2,	3, 4	
3	3) Containment Pressure-High-3	S	R	Q	N.A.	N.A.	N.A.	N.A.	1, 2,	3, 4	ł
4. Stea	am Line Isolation										
a. M	Manual Initiation										
1	l) Individual	N.A.	N.A.	N.A.	R	N.A.	N.A.	N.A.	1, 2,	3, 4	ł.
2	2) System	N.A.	N.A.	N.A.	R	N.A.	N.A.	N.A.	1, 2,	3, 4	•

MILLSTONE - UNIT 3

3/4 3-37

Amendment No. \$\$, 79, 79,

ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS

FU	NCT	IONAL_UNIT	CHANNEL CHECK	CHANNEL CALIBRATION	ANALOG CHANNEL OPERATIONAL TEST	TRIP ACTUATING DEVICE OPERATIONAL TEST	ACTUATION LOGIC TEST	MASTER RELAY TEST	SLAVE RELAY TEST	MODES FOR W SURVE IS REE	ILLA	NCE
4.	St	eam Line Isolation (Continue	ed)									
	b.	Automatic Actuation Logic and Actuation Relays	N.A.	N.A.	N.A.	N.A.	M(1)	M(1)	Q	1,	2, 3	, 4
	с.	Containment Pressure- High-2	S	R	Q	N.A.	N.A.	N.A.	N.A.	1,	2, 3	, 4
	d.	Steam Line Pressure-Low	S	R	Q	N.A.	N.A.	N.A.	N.A.	1,	2, 3	۱
	e.	Steam Line Pressure- Negative Rate-High	S	R	Q	N.A.	N.A.	N.A.	N.A.	3		
5.		rbine Trip and Feedwater olation										
	a.	Automatic Actuation Logic and Actuation Relays	N.A.	N.A.	N.A.	N.A.	M(1)	M(1)	Q	1,	2	
	b.	Steam Generator Water Level-High-High	S	R	Q	N.A.	M(1)	M(1)	Q	1,	2, 3	
	с.	Safety Injection Actuation Logic	N.A.	N.A.	N.A.	R	N.A.	N.A.	N.A.	1,	2	
	d.	T _{ave} Low Coincident with Reactor Trip (P-4)	N.A.	R	Q	N.A.	N.A.	N.A.	N.A.	1,	2	

MILLSTONE - UNIT 3

3/4 3-38

ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS

FUN	CTIONAL UNIT	CHANNEL CHECK	CHANNEL CALIBRATION	ANALOG CHANNEL OPERATIONAL TEST	TRIP ACTUATING DEVICE OPERATIONAL TEST	ACTUATION LOGIC TEST	MASTER RELAY <u>TEST</u>	SLAVE RELAY TEST	MODES FOR WHICH SURVEILLANCE IS REQUIRED
6.	Auxiliary Feedwater								
	a. Manual Initiation	N.A.	N.A.	N.A.	R	N.A.	N.A.	N.A.	1, 2, 3
	 Automatic Actuation and Actuation Relays 	N.A.	N.A	N.A.	N.A.	M(1)	M(1)	Q	1, 2, 3
	c. Steam Generator Water Level-Low-Low	S	R	Q	N.A.	N.A.	N.A	N.A	1, 2, 3
	d. Safety Injection	See Item	n 1. above for	r all Safety	Injection Sur	veillance R	equirem	ents.	
	e. Loss-of-Offsite Power	See Item	n 8 below for	all Loss of	Power Surveil	lance.			
	f. Containment Depres- surization Actuation (CDA)	See Item	n 2. above for	r all CDA Sur	veillance Rec	uirements.			
7.	Control Building Isolation								
	a. Manual Actuation	N.A.	N.A.	N.A.	R	N.A.	N.A.	N.A.	A11
	b. Manual Safety Injection Actuation	N.A.	N.A.	N.A.	R	N.A.	N.A.	N.A.	1, 2, 3, 4
	c. Automatic Actuation Logic and Actuation Relays	N.A.	N.A.	N.A.	N.A.	M(1)	M(1)	Q	1, 2, 3, 4
	d. Containment Pressure High-1	S	R	Q	N.A.	N.A.	N.A.	N.A.	1, 2, 3

3/4 3-39

ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS

ONE - UNIT 3	FUI	NCTIONAL UNIT	CHANNEL CHECK	CHANNEL CALIBRATION	ANALOG CHANNEL OPERATIONAL TEST	TRIP ACTUATING DEVICE OPERATIONAL TEST	ACTUATION LOGIC TEST	MASTER RELAY <u>TEST</u>	SLAVE RELAY TEST	MODES FOR V SURVE	HIC	ANC	
	7.	Control Building Isolation (Co	ntinued)										
	8.	e. Control Building Inlet Ventilation Radiation Loss of Power	S	R	Q	N.A.	N.A.	N.A.	N.A.	A11			
		a. 4 kV Bus Undervoltage (Loss of Voltage)	N.A.	R	N.A	M(3)	N.A.	N.A.	N.A.	1,	2,	3,	4
3/4 3-40		b. 4 kV Bus Undervoltage (Grid Degraded Voltage)	N.A.	R	N.A.	M(3)	N.A.	N.A.	N.A.	1,	2,	3,	4
0	9.	Engineered Safety Features Actuation System Interlocks											
Amend		a. Pressurizer Pressure, P-11	N.A.	R	Q	N.A.	N.A.	N.A.	N.A.	1,	2,	3	1
Amendment N		b. Low-Low T _{avg} , P-12 c. Reactor Trip, P-4	N.A. N.A.	R N.A.	Q N.A.	N.A. R	N.A. N.A.	N.A. N.A.	N.A. N.A.		2, 2,		1
No. 14. 45.	10.	Emergency Generator Load Sequencer	N.A.	N.A.	N.A.	N.A.	Q(1, 2)	N.A.	N.A.	1,	2,	3,	4
, 79, 79,													

MILLSTONE - UNIT 3 0240

TABLE NOTATION

- Each train shall be tested at least every 62 days on a STAGGERED TEST BASIS.
- (2) This surveillance may be performed continuously by the emergency generator load sequencer auto test system as long as the EGLS auto test system is demonstrated operable by the performance of an ACTUATION LOGIC TEST at least once per 92 days.
- (3) On a monthly basis, a loss of voltage condition will be initiated at each undervoltage monitoring relay to verify individual relay operation. Setpoint verification and actuation of the associated logic and alarm relays will be performed as part of the channel calibration required once per 18 months.

TABLE 4.3-3

RADIATION MONITORING INSTRUMENTATION FOR PLANT OPERATIONS SURVEILLANCE REQUIREMENTS

FUN	CTIONAL UNIT	CHANNEL CHECK	CHANNEL CALIBRATION	ANALOG CHANNEL OPERATIONAL TEST	MODES FOR WHICH SURVEILLANCE IS REQUIRED
1.	Containment				
	a. Containment Area Purge and Exhaust Isolation	S	R	Q	5, 6
	b. RCS Leakage Detection				
	 Particulate Radio- activity 	S	R	Q	1, 2, 3, 4
	2) Gaseous Radioactivity	S	R	Q	1, 2, 3, 4
2.	Fuel Storage Pool Area Monitors				
	a. Radiation Level	S	R	Q	*

TABLE NOTATIONS

* With fuel in the fuel storage pool area.

TABLE 4.3-4

SEISMIC MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

INSTRUMENTS AND SENSOR LOCATIONS	CHANNEL	CHANNEL CALIBRATION	ANALOG CHANNEL OPERATIONAL TEST
 Triaxial Time-History Accelerographs NBE20A NBE20A 	м	R	SA
Containment Mat (-24'3") b. NBE20B	м	R	SA
Containment Wall (40'6") c. NBE21 Emer. Generator Enclosure Located on Mat in Diesel Fuel Oil	м	R	SA
Vault (4'6") d. NBE22 Aux. Bldg. F-Line Wall Near The Charging Pumps Cooling Surge Tank (46'6")	M	R	SA
 Triaxial Peak Accelerographs a. P/A1 Containment Safety Injection 	N.A.	R	N.A.
Accum. Tank (-4'7") b. P/A2 Safety Injection Accum. Disch. Line (-22'10")	N.A.	R	N.A.
C. P/A3 A.R. Fldg. Charging Pumps Co. Yny Surge Tank (46'6")	N.A.	R	N.A.
3a. Triaxial Seismic Trigger Horizontal	м	R	SA
(Control Room) Vertical (Control Room)	м	R	SA
3b. Triaxial Seismic Switch Korizontal (Control Room)	м	R	SA
Vertical (Control Room)	м	R	SA
 Triaxial Response-Spectrum Recorders a. RSA-50 Spectrum Analyzer (Control Room) 	м	R	SA
b. Self-Contained Recorder Steam Generator Support (51'4")	N.A.	R	N.A.

INSTRUMENTATION

REMOTE SHUTDOWN INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.3.5 The Remote Shutdown Instrumentation transfer switches, power, controls and monitoring instrumentation channels shown in Table 3.3-9 shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

ACTION:

- a. With the number of OPERABLE remote shutdown monitoring channels less than the Minimum Channels OPERABLE as required by Table 3.3-9, restore the inoperable channel(s) to OPERABLE status within 7 days, or be in HOT SHUTDOWN within the next 12 hours.
- b. With one or more Remote Shutdown Instrumentation transfer switches, power, or control circuits inoperable, restore the inoperable switch(s)/circuit(s) to OPERABLE status within 7 days, or be in HOT STANDBY within the next 12 hours.
- c. Entry into an OPERATIONAL MODE is permitted while subject to these ACTION requirements.

SURVEILLANCE REQUIREMENTS

4.3.3.5.1 Each remote shutdown monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK and CHANNEL CALIBRATION operations at the frequencies shown in Table 4.3-6.

4.3.3.5.2 Each Remote Shutdown Instrumentation transfer switch, power and control circuit including the actuated components, shall be demonstrated OPERABLE at least once per 18 months.

TABLE 4.3-6

REMOTE SHUTDOWN MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

INST	RUMENT	CHANNEL CHECK	CHANNEL CALIBRATION
1.	Reactor Trip Breaker Indication	М	N.A.
2.	Pressurizer Pressure	М	R
3.	Pressurizer Level	М	R
4.	Steam Generator Pressure	М	R
5.	Steam Generator Water Level	М	R
6.	Auxiliary Feedwater Flow Rate	М	R
7.	Loop Hot Leg Temperature	М	R
8.	Loop Cold Leg Temperature	M	R
9.	Reactor Coolant System Pressure	м	R
	(Wide Range)		
10.	DWST Level	М	R
11.	RWST Level	М	R
12.	Containment Pressure	М	R
13.	Emergency Bus Voltmeters	М	R
14.	Source Range Count Rate	M*	R
15.	Intermediate Range Amps	М	R
16.	Boric Acid Tank Level	М	R

MILLSTONE - UNIT 3 0244

3/4 3-58

*

When below P-6 (intermediate range neutron flux interlock setpoint).

TABLE 4.3-7

ACCIDENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

INS	TRUMENT	CHANNEL CHECK	CHANNEL CALIBRATION
1.	Containment Pressure a. Normal Range b. Extended Range	M	R R
2.	Reactor Coolant Outlet Temperature - T_{HOT} (Wide Range)	м	R
3.	Reactor Coolant Inlet Temperature - T _{COLD} (Wide Range)	м	R
4.	Reactor Coolant Pressure - Wide Range	м	R
5.	Pressurizer Water Level	м	R
6.	Steam Line Pressure	м	R
7.	Steam Generator Water Level - Narrow Range	м	R
8.	Steam Generator Water Level - Wide Range	м	R
9.	Refueling Water Storage Tank Water Level	м	R
10.	Demineralized Water Storage Tank Water Level	м	R
11.	Auxiliary Feedwater Flow Rate	м	R
12.	Reactor Coolant System Subcooling Margin Monitor	м	R
13.	Containment Water Level (Wide Range)	М	R
14.	Core Exit Thermocouples	м	R
15			

15. DELETED

MILLSTONE - UNIT 3

3/4 3-62

ACCIDENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

INST	RUMENT	CHANNEL CHECK	CHANNEL CALIBRATION
16.	Containment Area - High Range Radiation Monitor	м	R*
17.	Reactor Vessel Water Level	м	R**
18.	Containment Hydrogen Monitor	М	R
19.	Neutron Flux	м	R

3/4 3-63

MILLSTONE - UNIT 3 0246

* CHANNEL CALIBRATION may consist of an electronic calibration of the channel, not including the detector, for range decades above 10 R/h and a one point calibration check of the detector below 10 R/h with an installed or portable gamma source.

** Electronic calibration from the ICC cabinets only.

INSTRUMENTATION

LOOSE-PART DETECTION SYSTEM

LIMITING CONDITION FOR OPERATION

3.3.3.8 The Loose-Part Detection System shall be OPERABLE.

APPLICABILITY: MODES 1 and 2.

ACTION:

- a. With one or more Loose-Part Detection System channels inoperable for more than 30 days, prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within the next 10 days outlining the cause of the malfunction and the plans for restoring the channel(s) to OPERABLE status.
- b. The provisions of Specifications 3.0.3 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.3.8 Each channel of the Loose-Part Detection Systems shall be demonstrated OPERABLE by performance of:

- a. A CHANNEL CHECK at least once per 24 hours,
- b. An ANALOG CHANNEL OPERATIONAL TEST at least once per 31 days, and
- c. A CHANNEL CALIBRATION at least once per 18 months.

3/4.4.3 PRESSURIZER

LIMITING CONDITION FOR OPERATION

3.4.3 The pressurizer shall be OPERABLE with a water volume of less than or equal to 92% (1656 cubic feet), and at least two groups of pressurizer heaters supplied by emergency power each having a capacity of at least 175 kW.

APPLICABILITY: MODES 1, 2, and 3.

ACTION:

- a. With only one group of pressurizer heaters supplied by emergency power OPERABLE, restore at least two groups to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.
- b. With the pressurizer otherwise inoperable, be in at least HOT STANDBY with the Reactor Trip System breakers open within 6 hours and in HOT SHUTDCWN within the following 6 hours.

SURVEILLANCE REQUIREMENTS

4.4.3.1 The pressurizer water volume shall be determined to be within its limit at least once per 12 hours.

4.4.3.2 The capacity of each of the above required groups of pressurizer heaters supplied by emergency power shall be verified by energizing the heaters and measuring circuit current at least once each refueling interval.

STEAM GENERATORS

SURVEILLANCE REQUIREMENTS (Continued)

4.4.5.3 <u>Inspection Frequencies</u> - The above required inservice inspections of steam generator tubes shall be performed at the following frequencies:

- a. Inservice inspections shall be performed at intervals of not less than 12 nor more than 24 calendar months after the previous inspection. If two consecutive inspections, not including the preservice inspection, result in all inspection results falling into the C-1 category or if two consecutive inspections demonstrate that previously observed degradation has not continued and no additional degradation has occurred, the inspection interval may be extended to a maximum of once per 40 months;
- b. If the results of the inservice inspection of a steam generator conducted in accordance with Table 4.4-2 at 40-month intervals fall in Category C-3, the inspection frequency shall be increased to at least once per 20 months. The increase in inspection frequency shall apply until the subsequent inspections satisfy the criteria of Specification 4.4.5.3a.; the interval may then be extended to a maximum of once per 40 months; and
- c. Additional, unscheduled inservice inspections shall be performed on each steam generator in accordance with the first sample inspection specified in Table 4.4-2 during the shutdown subsequent to any of the following conditions:
 - Primary-to-secondary tubes leak (not including leaks originating from tube-to-tube sheet welds) in excess of the limits of Specification 3.4.6.2, or
 - 2) A seismic occurrence greater than the Operating Basis Earthquake, or
 - A loss-of-coolant accident requiring actuation of the Engineered Safety Features, or
 - 4) A main steam line or feedwater line break.

3/4.4.6 REACTOR COOLANT SYSTEM LEAKAGE

LEAKAGE DETECTION SYSTEMS

LIMITING CONDITION FOR OPERATION

3.4.6.1 The following Reactor Coolant System Leakage Detection Systems shall be OPERABLE:

- a. Either the Containment Atmosphere Gaseous or Particulate Radioactivity Monitoring System, and
- The Containment Drain Sump Level or Pumped Capacity Monitoring System

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION:

- a. With both the Containment Atmosphere Gaseous and Particulate Radioactivity Monitors INOPERABLE, operation may continue for up to 30 days provided the Containment Drain Sump Level or Pumped Capacity Monitoring System is OPERABLE and gaseous grab samples of the containment atmosphere are obtained at least once per 12 hours and analyzed for gross noble gas activity within the subsequent 2 hours; otherwise, be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.
- b. With the Containment Drain Sump Level or Pumped Capacity Monitoring System INOPERABLE, operation may continue for up to 30 days provided either the Containment Atmosphere Gaseous or Particulate Radioactivity Monitoring System is OPERABLE; otherwise, be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the followng 30 hours.

SURVEILLANCE REQUIREMENTS

- 4.4.6.1 The Leakage Detection Systems shall be demonstrated OPERABLE by:
 - a. Containment Atmosphere Gaseous and Particulate Radioactivity Monitoring Systems-performance of CHANNEL CHECK, CHANNEL CALIBRATION, and ANALOG CHANNEL OPERATIONAL TEST at the frequencies specified in Table 4.3-3, and
 - b. Containment Drain Sump Level and Pumped Capacity Monitoring Systemperformance of CHANNEL CALIBRATION at least once per 18 months.

OPERATIONAL LEAKAGE

SURVEILLANCE REQUIREMENTS

4.4.6.2.1 Reactor Coolant System leakages shall be demonstrated to be within each of the above limits by:

- Monitoring the containment atmosphere (gaseous or particulate) radioactivity monitor at least once per 12 hours;
- Monitoring the containment drain sump inventory and discharge at least once per 12 hours;
- c. Measurement of the CONTROLLED LEAKAGE to the reactor coolant pump seals when the Reactor Coolant System pressure is 2250 ± 20 psia at least once per 31 days with the modulating valve fully open. The provisions of Specification 4.0.4 are not applicable for entry into MODE 3 or 4;
- d. Performance of a Reactor Coolant System water inventory balance at least once per 72 hours; and
- e. Monitoring the Reactor Head Flange Leakoff System at least once per 24 hours.

4.4.6.2.2 Each Reactor Coolant System Pressure Isolation Valve specified in Table 3.4-1 shall be demonstrated OPERABLE by verifying leakage to be within its limit:

- a. At least once per 18 months,
- b. Prior to entering MODE 2 whenever the plant has been in COLD SHUTDOWN for 7 days or more and if leakage testing has not been performed in the previous 9 months,
- c. Prior to returning the valve to service following maintenance, repair or replacement work on the valve,
- d. Within 24 hours following valve actuation due to automatic or manual action or flow through the valve, and
- e. As outlined in the ASME Code, Section XI, paragraph IWV-3427(b).

The provisions of Specification 4.0.4 are not applicable for entry into MODE 3 or 4.

OVERPRESSURE PROTECTION SYSTEM

LIMITING CONDITION FOR OPERATION

ACTION (Continued)

- e. In the event the PORVs, the RHR suction relief valves, or the RCS vent(s) are used to mitigate an RCS pressure transient, a Special Report shall be prepared and submitted to the Commission pursuant to Specification 6.9.2 within 30 days. The report shall describe the circumstances initiating the transient, the effect of the PORVs, the RHR suction relief valves, or RCS vent(s) on the transient, and any corrective action necessary to prevent recurrence.
- f. Entry into an OPERATIONAL MODE is permitted while subject to these ACTION requirements.

SURVEILLANCE REQUIREMENTS

4.4.9.3.1 Each PORV shall be demonstrated OPERABLE by:

- a. Performance of an ANALOG CHANNEL OPERATIONAL TEST on the PORV actuation channel, but excluding valve operation, within 31 days prior to entering a condition in which the PORV is required OPERABLE and at least once per 31 days thereafter when the PORV is required OPERABLE;
- b. Performance of a CHANNEL CALIBRATION on the PORV actuation channel at least once per 18 months; and
- c. Verifying the PORV isolation valve is open at least once per 72 hours when the PORV is being used for overpressure protection.

4.4.9.3.2 Each RHR suction relief valve shall be demonstrated OPERABLE when the RHR suction relief valves are being used for cold overpressure protection as follows:

- For RHR suction relief valve 3RHS*RV8708A, by verifying at least once per 12 hours that 3RHS*MV8701A and 3RHS*MV8701C are open;
- b. For RHR suction relief valve 3RHS*RV8708B, by verifying at least once per 12 hours that 3RHS*MV8702B and 3RHS*MV8702C are open; and
- c. Testing pursuant to Specification 4.0.5.

3/4.4.11 REACTOR COOLANT SYSTEM VENTS

LIMITING CONDITION FOR OPERATION

3.4.11 At least one Reactor Coolant System vent path consisting of two parallel trains with two valves inseries powered from emergency busses shall be OPERABLE and the vent closed* at each of the following locations:

- a. Reactor vessel head, and
- b. Pressurizer steam space.

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION:

- a. With one train of the reactor vessel head vent path inoperable, STARTUP and/or POWER OPERATION may continue provided the inoperable train is maintained closed with power removed from the valve actuators of all valves in the inoperable train; restore the inoperable train to OPERABLE status within 30 days, or, be in HOT STANDBY within 6 hours and in COLD SHUTDOWN within the following 30 hours.
- b. With both trains of the reactor vessel head vent paths inoperable; maintain both trains closed with power removed from the valve actuators of all valves in the inoperable trains, and restore at least one of the trains to OPERABLE status within 72 hours or be in HOT STANDBY within 6 hours and in COLD SHUTDOWN within the following 30 hours.
- c. With any valve(s) of the pressurizer steam space vent path inoperable in MODES 1, 2, or 3, follow the ACTION requirements of Specification 3.4.4.
- d. With any valve(s) of the pressurizer steam space vent path inoperable in MODE 4, follow the ACTION requirements of Specification 3.4.9.3.

SURVEILLANCE REQUIREMENTS

4.4.11.1 Each train of the reactor vessel head vent path isolation valve not required to be closed by ACTION a. or b., above, shall be demonstrated OPERABLE at least once per COLD SHUTDOWN, if not performed within the previous 92 days, by operating the valve through one complete cycle of full travel from the control room.

^{*}For an OPERABLE vent path using a power-operated relief valve (PORV) as the vent path, the PORV block valve is not required to be closed.

3/4.5 EMERGENCY CORE COOLING SYSTEMS

3/4.5.1 ACCUMULATORS

LIMITING CONDITION FOR OPERATION

3.5.1 Each Reactor Coolant System (RCS) accumulator shall be OPERABLE with:

a. The isolation valve open and power removed,

- b. A contained borated water volume of between 6618 and 7030 gallons,
- c. A boron concentration of between 2600 and 2900 ppm, and
- d. A nitrogen cover-pressure of between 636 and 694 psia.

APPLICABILITY: MODES 1, 2, and 3*.

ACTION:

- a. With one accumulator inoperable, except as a result of a closed isolation valve, restore the inoperable accumulator to OPERABLE status within 8 hours or be in at least HOT STANDBY within the next 6 hours and reduce pressurizer pressure to less than 1000 psig within the following 6 hours.
- b. With one accumulator inoperable due to the isolation valve being closed, either immediately open the isolation valve or be in at least HOT STANDBY within 6 hours and reduce pressurizer pressure to less than 1000 psig within the following 6 hours.

SURVEILLANCE REQUIREMENTS

4.5.1 Each accumulator shall be demonstrated OPERABLE:

- a. At least once per 12 hours by:
 - 1) Verifying that the contained borated water volume and nitrogen cover-pressure in the tanks are within their limits, and
 - 2) Verifying that each accumulator isolation valve is open.
- b. At least once per 31 days and within 6 hours after each solution volume increase of greater than or equal to 1% of tank volume by verifying the boron concentration of the accumulator solution. This surveillance is not required when the volume increase makeup source is the RWST.

*Pressurizer pressure above 1000 psig.

EMERGENCY CORE COOLING SYSTEMS

SURVEILLANCE REQUIREMENTS (Continued)

c. At least once per 31 days when the RCS pressure is above 1000 psig by verifying that power to the isolation valve operator is disconnected by removal of the breaker from the circuit.

EMERGENCY CORE COOLING SYSTEMS

SURVEILLANCE REQUIREMENTS

- 4.5.2 Each ECCS subsystem shall be demonstrated OPERABLE:
 - a. At least once per 12 hours by verifying that the following valves are in the indicated positions with power to the valve operators removed:

Valve Number	Valve Function	Valve Position
3SIH*MV8806 3SIH*MV8802A 3SIH*MV8802B 3SIH*MV8835 3SIH*MV8813	RWST Supply to SI Pumps SI Pump A to Hot Leg Injection SI Pump B to Hot Leg Injection SI Cold Leg Master Isolation SI Pump Master Miniflow Isolation	
3SIL*MV8840 3SIL*MV8809A	RHR to Hot Leg Injection RHR Pump A to Cold Leg	CLOSED OPEN
3SIL*MV8809B	Injection RHR Pump B to Cold Leg Injection	OPEN

- b. At least once per 31 days by:
 - Verifying that the ECCS piping, except for the RSS pump, heat exchanger and associated piping, is full of water by venting the ECCS pump casings and accessible discharge piping high points, and
 - Verifying that each valve (manual, power-operated, or automatic) in the flow path that is not locked, sealed, or otherwise secured in position, is in its correct position.
- c. By a visual inspection which verifies that no loose debris (rags, trash, clothing, etc.) is present in the containment which could be transported to the containment sump and cause restriction of the pump suctions during LOCA conditions. This visual inspection shall be performed:
 - For all accessible areas of the containment prior to establishing CONTAINMENT INTEGRITY, and
 - At least once daily of the areas affected (during each day) within containment by containment entry and during the final entry when CONTAINMENT INTEGRITY is established.
- d. At least once per 18 months by:
 - Verifying automatic interlock action of the RHR System from the Reactor Coolant System by ensuring that with a simulated or actual Reactor Coolant System pressure signal greater than or equal to 390 psia the interlocks prevent the valves from being opened.

Amendment No. \$9, 79.

SURVEILLANCE REQUIREMENTS (Continued)

- c. The accuracy of each Type A test shall be verified by a supplemental test which:
 - Confirms the accuracy of the test by verifying that the supplemental test results, L_c, minus the sum of the Type A and the superimposed leak, L_c, is equal to or less than 0.25 L_s;
 - Has a duration sufficient to establish accurately the change in leakage rate between the Type A test and the supplemental test; and
 - 3) Requires that the rate at which gas is injected into the containment or bled from the containment during the supplemental test is between 0.75 L, and 1.25 L.
- d. Type B and C tests shall be conducted with gas at P_e, 53.27 psia (38.57 psig), at intervals no greater than 24 months except for tests involving:

1) Air locks

- e. The combined bypass leakage rate shall be determined to be less than or equal to 0.042 L by applicable Type B and C tests at least once per 24 months except for penetrations which are not individually testable; penetrations not individually testable shall be determined to have no detectable leakage when tested with soap bubbles while the containment is pressurized to P_a , 53.27 psig (38.57 psig), during each Type A test;
- f. Air locks shall be tested and demonstrated OPERABLE by the requirements of Specification 4.6.1.3;
- g. Purge supply and exhaust isolation valves shall be demonstrated OPERABLE by the requirements of Specifications 4.6.3.2.c and 4.9.9.
- h. The provisions of Specification 4.0.2 are not applicable.

3/4.6.2 DEPRESSURIZATION AND COOLING SYSTEMS

CONTAINMENT QUENCH SPRAY SYSTEM

LIMITING CONDITION FOR OPERATION

3.6.2.1 Two independent Containment Quench Spray subsystems shall be OPERABLE.

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION:

With one Containment Quench Spray subsystem inoperable, restore the inoperable system to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

4.6.2.1 Each Containment Quench Spray subsystem shall be demonstrated OPERABLE:

- a. At least once per 31 days:
 - Verifying that each valve (manual, power operated, or automatic) in the flow path is not locked, sealed, or otherwise secured in position, is in its correct position; and
 - Verifying the temperature of the borated water in the refueling water storage tank is between 40°F and 50°F.
- By verifying, that on recirculation flow, each pump develops a differential pressure of greater than or equal to 114 psid when tested pursuant to Specification 4.0.5;
- c. At least once per 18 months during shutdown, by:
 - Verifying that each automatic valve in the flow path actuates to its correct position on a CDA test signal, and
 - Verifying that each spray pump starts automatically on a CDA test signal.
- d. At least once per 10 years by performing an air or smoke flow test through each spray header and verifying each spray nozzle is unobstructed.

Amendment No. 5, 59,

RECIRCULATION SPRAY SYSTEM

LIMITING CONDITION FOR OPERATION

3.6.2.2 Two independent Recirculation Spray Systems shall be OPERABLE.

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION:

With one Recirculation Spray System inoperable, restore the inoperable system to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours; restore the inoperable Recirculation Spray System to OPERABLE status within the next 48 hours or be in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

- 4.6.2.2 Each Recirculation Spray System shall be demonstrated OPERABLE:
 - At least once per 31 days by verifying that each valve (manual, power-operated, or automatic) in the flow path is not locked, sealed, or otherwise secured in position, is in its correct position;
 - By verifying, that on recirculation flow, each pump develops a differential pressure of greater than or equal to 130 psid when tested pursuant to Specification 4.0.5;
 - c. At least once per 18 months by verifying that on a CDA test signal, each recirculation spray pump starts automatically after a 660 ±20 second delay;
 - d. At least once per 18 months during shutdown, by verifying that each automatic valve in the flow path actuates to its correct position on a CDA test signal; and
 - e. At least once per 10 years by performing an air or smoke flow test through each spray header and verifying each spray nozzle is unobstructed.

MILLSTONE - UNIT 3

added to

3/4 6-13

Amendment No. \$0.

3/4.6.4 COMBUSTIBLE GAS CONTROL

HYDROGEN MONITORS

LIMITING CONDITION FOR OPERATION

3.6.4.1 Two independent containment hydrogen monitors shall be OPERABLE.

APPLICABILITY: MODES 1, 2, and 3.

ACTION:

- a. With one hydrogen monitor inoperable, restore the inoperable monitor to OPERABLE status within 30 days or be in at least HOT STANDBY within the next 6 hours and in at least HOT SHUTDOWN within the following 6 hours.
- b. With both hydrogen monitors inoperable, restore at least one monitor to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in at least HOT SHUTDOWN within the following 6 hours.
- c. Entry into an OPERATIONAL MODE is permitted while subject to these ACTION requirements.

SURVEILLANCE REQUIREMENTS

4.6.4.1 Each hydrogen monitor shall be demonstrated OPERABLE by the performance of a CHANNEL CHECK at least once per 12 hours, an ANALOG CHANNEL OPERATIONAL TEST at least once per 92 days, and at least once each refueling interval by performing a CHANNEL CALIBRATION using sample gas containing:

- a. One volume percent hydrogen, balance nitrogen, and
- b. Four volume percent hydrogen, balance nitrogen.

ELECTRIC HYDROGEN RECOMBINERS

LIMITING CONDITION FOR OPERATION

3.6.4.2 Two independent Hydrogen Recombiner Systems shall be OPERABLE.

APPLICABILITY: MODES 1 and 2.

ACTION:

With one Hydrogen Recombiner System inoperable, restore the inoperable system to OPERABLE status within 30 days or be in at least HOT STANDBY within the next 6 hours.

SURVEILLANCE REQUIREMENTS

4.6.4.2 Each Hydrogen Recombiner System shall be demonstrated OPERABLE at least once each refueling interval by:

- a. Verifying during a Hydrogen Recombiner System functional test that the minimum reaction chamber gas temperature increases to greater than or equal to 700°F within 90 minutes and is maintained for at least 2 hours and that the purge blower operates for 15 minutes.
- Performing a CHANNEL CALIBRATION of all recombiner instrumentation and control circuits,
- c. Verifying through a visual examination that there is no evidence of abnormal conditions within the recombiner enclosure (i.e., loose wiring or structural connections, deposits of foreign materials, etc.),
- d. Verifying the integrity of all heater electrical circuits by performing a resistance to ground test following the above required functional test. The resistance to ground for any heater phase shall be greater than 10,000 ohms, and
- e. Verifying during a recombiner system functional test using containment atmospheric air at an acceptable flow rate as determined in Section 4.6.4.2.b.5 that the gas temperature increases to greater than or equal to 1100°F within 5 hours and is maintained for at least 4 hours.
- f. Verifying during a recombiner system functional test using containment atmospheric air that the blower would be capable of delivering at least 41.52 scfm at containment conditions of 12.47 psia and 130°F.

Amendment No. \$7. \$3,

3/4.6.5 SUBATMOSPHERIC PRESSURE CONTROL SYSTEM

STEAM JET AIR EJECTOR

LIMITING CONDITION FOR OPERATION

3.6.5.1 The inside and outside isolation valves in the steam jet air ejector suction line shall be closed.

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION:

With the inside or outside isolation valves in the steam jet air ejector suction line not closed, restore the valve to the closed position within 1 hour or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

4.6.5.1.1 The steam jet air ejector suction line outside isolation valve shall be determined to be in the closed position by a visual inspection prior to increasing the Reactor Coolant System temperature above 200°F and at least once per 31 days thereafter.

4.6.5.1.2 The steam jet air ejector suction line inside isolation valve shall be determined to be locked in the closed position by a visual inspection prior to increasing the Reactor Coolant System temperature above 200°F.

3/4.6.6 SECONDARY CONTAINMENT

SUPPLEMENTARY LEAK COLLECTION AND RELEASE SYSTEM

LIMITING CONDITION FOR OPERATION

3.6.6.1 Two independent Supplementary Leak Collection and Release Systems shall be OPERABLE with each system comprised of:

- a. one OPERABLE filter and fan, and
- b. one OPERABLE Auxiliary Building Filter System as defined in Specification 3.7.9.

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION:

With one Supplementary Leak Collection and Release System inoperable, restore the inoperable system to OPERABLE status within 7 days or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

4.6.6.1 Each Supplementary Leak Collection and Release System shall be demonstrated OPERABLE:

- a. At least once per 31 days on a STAGGERED TEST BASIS by initiating, from the control room, flow through the HEPA filters and charcoal adsorbers and verifying a system flow rate of 7600 cfm to 9800 cfm and that the system operates for at least 10 continuous hours with the heaters operating.
- b. At least once per 18 months or (1) after any structural maintenance on the HEPA filter or charcoal adsorber housings, or (2) following painting, fire, or chemical release in any ventilation zone communicating with the system by:
 - Verifying that the system satisfies the in-place penetration and bypass leakage testing acceptance criteria of less than 0.05% and uses the test procedure guidance in Regulatory Positions C.5.a, C.5.c, and C.5.d of Regulatory Guide 1.52, Revision 2, March 1978,* and the system flow rate is 7600 cfm to 9800 cfm;

SURVEILLANCE REQUIREMENTS (Continued)

- 2) Verifying, within 31 days after removal, that a laboratory analysis of a representative carbon sample obtained in accordance with Regulatory Position C.6.b of Regulatory Guide 1.52, Revision 2, March 1978,* meets the laboratory testing criteria of Regulatory Position C.6.a of Regulatory Guide 1.52, Revision 2, March 1978,* for a methyl iodide penetration of less than 0.175%; and
- Verifying a system flow rate of 7600 cfm to 9800 cfm during system operation when tested in accordance with ANSI N510-1980.
- c. After every 720 hours of charcoal adsorber operation, by verifying, within 31 days after removal that a laboratory analysis of a representative carbon sample obtained in accordance with Regulatory Position C.6.b of Regulatory Guide 1.52, Revision 2, March 1978,* meets the laboratory testing criteria of Regulatory Position C.6.a of Regulatory Guide 1.52, Revision 2, March 1978,* for a methyl iodide penetration of less than 0.175%:
- d. At least once per 18 months by:
 - Verifying that the pressure drop across the combined HEPA filters and charcoal adsorber banks is less than 6.25 inches Water Gauge while operating the system at a flow rate of 7600 cfm to 9800 cfm,
 - Verifying that the system starts on a Safety Injection test signal,
 - 3) Verifying that each system produces a negative pressure of greater than or equal to 0.4 inch Water Gauge in the Auxiliary Building at 24'6" elevation within 120 seconds after a start signal, and
 - Verifying that the heaters dissipate 50 ±5 kW when tested in accordance with ANSI N510-1980.

^{*}ANSI N510-1980 shall be used in place of ANSI N510-1975 referenced in Regulatory Guide 1.52, Revision 2, March 1978.

SURVEILLANCE REQUIREMENTS (Continued)

- e. After each complete or partial replacement of a HEPA filter bank, by verifying that the cleanup system satisfies the in-place penetration and bypass leakage testing acceptance criteria of less than 0.05% in accordance with ANSI N510-1980 for a DOP test aerosol while operating the system at a flow rate of 7600 cfm to 9800 cfm; and
- f. After each complete or partial replacement of a charcoal adsorber bank, by verifying that the cleanup system satisfies the in-place penetration and bypass leakage testing acceptance criteria of less than 0.05% in accordance with ANSI N510-1980 for a halogenated hydrocarbon refrigerant test gas while operating the system at a flow rate of 7600 cfm to 9800 cfm.

SECONDARY CONTAINMENT BOUNDARY

LIMITING CONDITION FOR OPERATION

3.6.6.2 SECONDARY CONTAINMENT BOUNDARY shall be maintained.

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION:

Without SECONDARY CONTAINMENT BOUNDARY, restore SECONDARY CONTAINMENT BOUNDARY within 24 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENT

4.6.6.2 SECONDARY CONTAINMENT BOUNDARY shall be demonstrated at least once per 31 days by verifying that each door in each access opening is closed except when the access opening is being used for normal transit entry and exit.

SECONDARY CONTAINMENT BOUNDARY STRUCTURAL INTEGRITY

LIMITING CONDITION FOR OPERATION

3.6.6.3 The structural integrity of the SECONDARY CONTAINMENT BOUNDARY shall be maintained at a level consistent with the acceptance criteria in Specification 4.6.6.3.

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION:

With the structural integrity of the SECONDARY CONTAINMENT BOUNDARY not conforming to the above requirements, restore the structural integrity to within the limits within 24 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENT

4.6.6.3 The structural integrity of the SECONDARY CONTAINMENT BOUNDARY shall be determined during the shutdown for each Type A containment leakage rate test (reference Specification 4.6.1.2) by a visual inspection of the exposed accessible interior and exteric. surfaces of the SECONDARY CONTAINMENT BOUNDARY and verifying no apparent changes in appearance of the concrete surfaces or other abnormal degradation. Any abnormal degradation of the SECONDARY CONTAINMENT BOUNDARY detected during the above required inspections shall be reported to the Commission in a Special Report pursuant to Specification 6.9.2 within 15 days.

AUXILIARY FEEDWATER SYSTEM

LIMITING CONDITION FOR OPERATION

3.7.1.2 At least three independent steam generator auxiliary feedwater pumps and associated flow paths shall be OPERABLE with:

- Two motor-driven auxiliary feedwater pumps, each capable of being powered from separate emergency busses, and
- b. One steam turbine-driven auxiliary feedwater pump capable of being powered from an OPERABLE steam supply system.

APPLICABILITY: MODES 1, 2, and 3.

ACTION:

- a. With one auxiliary feedwater pump inoperable, restore the required auxiliary feedwater pumps to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.
- b. With two auxiliary feedwater pumps inoperable, be in at least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours.
- c. With three auxiliary feedwater pumps inoperable, immediately initiate corrective action to restore at least one auxiliary feedwater pump to OPERABLE status as soon as possible. Entry into an OPERATIONAL MODE pursuant to Specification 3.0.4 is not permitted with three auxiliary feedwater pumps inoperable.

SURVEILLANCE REQUIREMENTS

4.7.1.2.1 Each auxiliary feedwater pump shall be demonstrated OPERABLE:

- a. At least once per 31 days by:
 - Verifying that each non-automatic valve in the flow path that is not locked, sealed, or otherwise secured in position is in its correct position; and
 - Verifying that each auxiliary feedwater control and isolation valve in the flow path is in the fully open position when above 10% RATED THERMAL POWER.

AMENDMENT NO. \$7.

SURVEILLANCE REQUIREMENTS (Continued)

- b. At least once per 92 days on a STAGGERED TEST BASIS by:
 - Verifying that on recirculation flow each motor-driven pump develops a differential pressure of greater than or equal to 1460 psid when tested pursuant to Specification 4.0.5;
 - 2) Verifying that on recirculation flow the steam turbine-driven pump develops a differential pressure of greater than or equal to 1640 psid when the secondary steam supply pressure is greater than 800 psig. The provisions of Specification 4.0.4 are not applicable for entry into MODE 3;
- c. At least once per 18 months during shutdown by verifying that each auxiliary feedwater pump starts as designed automatically upon receipt of an Auxiliary Feedwater Actuation test signal.

4.7.1.2.2 An auxiliary feedwater flow path to each steam generator shall be demonstrated OPERABLE following each COLD SHUTDOWN of greater than 30 days prior to entering MODE 2 by verifying flow to each steam generator.

SURVEILLANCE REQUIREMENTS (Continued)

type that may be generically susceptible; and (2) the affected snubber is functionally tested in the as-found condition and determined OPERABLE per Specification 4.7.10.f. All snubbers found connected to an inoperable common hydraulic fluid reservoir shall be counted as unacceptable for determining the next inspection interval. A review and evaluation shall be performed and documented to justify continued operation with an unacceptable snubber. If continued operation cannot be justified, the snubber shall be declared inoperable and the ACTION requirements shall be met.

d. Transient Event Inspection

An inspection shall be performed of all snubbers attached to sections of systems that have experienced unexpected, potentially damaging transients as determined from a review of operational data and a visual inspection of the systems within 6 months following such an event. In addition to satisfying the visual inspection acceptance criteria, freedom-of-motion of mechanical snubbers shall be verified using at least one of the following: (1) manually induced snubber movement; or (2) evaluation of in-place snubber piston setting; or (3) stroking the mechanical snubber through its full range of travel.

e. Functional Tests

During the first refueling shutdown and at least once per 18 months thereafter during shutdown, a representative sample of snubbers of each type shall be tested using one of the following sample plans. The sample plan for each type shall be selected prior to the test period and cannot be changed during the test period. The NRC Regional Administrator shall be notified in writing of the sample plan selected for each snubber type prior to the test period or the sample plan used in the prior test period shall be implemented:

 At least 10% of the total of each type of snubber shall be functionally tested either in-place or in a bench test. For each snubber of a type that does not meet the functional test acceptance criteria of Specification 4.7.10f., an additional 5% of that type of snubber shall be functionally tested until no more failures are found or until all snubbers of that type have been functionally tested; or

TABLE 4.7-2 SNUBBER VISUAL INSPECTION INTERVAL

	NUMBER OF UNACCEPTABLE SNUBBERS			
Population or Category (Notes 1 and 2)	Column A Extend Interval (Notes 3 and 6)		Column C Reduce Interval (Notes 5 and 6)	
1	0	0	1	
80	0	0	2	
100	0	1	4	
150	0	3	8	
200	2	5	13	
300	5	12	25	
400	8	18	36	
500	12	24	48	
750	20	40	78	
1000 or greater	29	56	109	

Note 1: The next visual inspection interval for a snubber population or category size shall be determined based upon the previous inspection interval and the number of unacceptable snubbers found during that interval. Snubbers may be categorized, based upon their accessibility during power operation, as accessible or inaccessible. These categories may be examined separately or jointly. However, the licensee must make and document that decision before any inspection and shall use that decision as the basis upon which to determine the next inspection interval for that category.

- Note 2: Interpolation between population or category sizes and the number of unacceptable snubbers is permissible. Use next lower integer for the value of the limit for Columns A, B, or C if that integer included a fractional value of unacceptable snubbers as determined by interpolation.
- Note 3: If the number of unacceptable snubbers is equal to or less than the number in Column A, the next inspection interval may be twice the previous interval but no greater than 48 months.
- Note 4: If the number of unacceptable snubbers is equal to or less than the number in Column B but greater than the number in Column A, the next inspection interval shall be the same as the previous interval.
- Note 5: If the number of unacceptable snubbers is equal to or greater than the number in Column C, the next inspection interval shall be two-thirds of the previous interval. However, if the number of unacceptable snubbers is less than the number in Column C but greater than the number in Column B, the next interval shall be reduced proportionally by interpolation, that is, the previous interval shall be reduced by a factor that is one-third of the ratio of the difference between the number of unacceptable snubbers found during the previous interval and the number in Column B to the difference in the numbers in Columns B and C.

TABLE 4.7-2 SNUBBER VISUAL INSPECTION INTERVAL

Note 6: The provisions of Specification 4.0.2 are applicable for all inspection intervals up to and including 48 months.

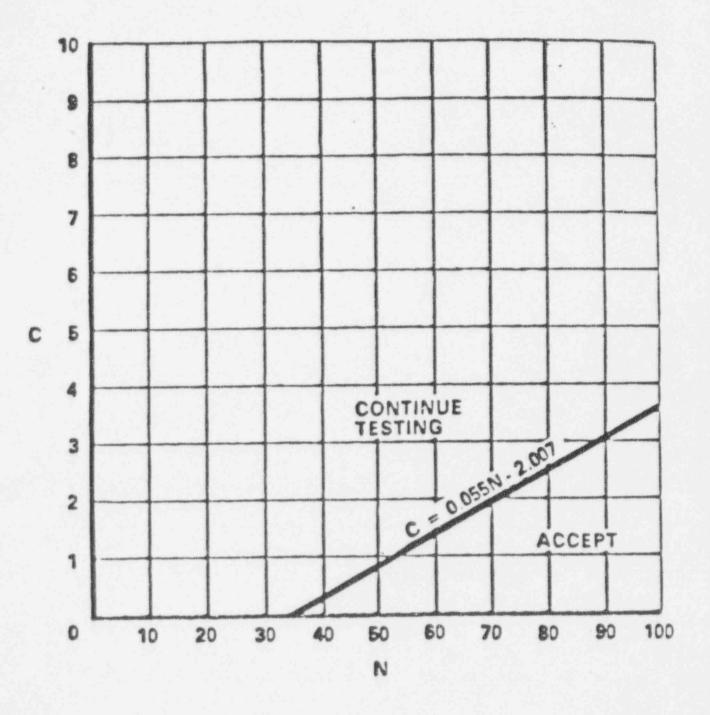


FIGURE 4.7-1 SAMPLE PLAN 2) FOR SNUBBER FUNCTIONAL TEST

Amendment No. 16,

3/4.7.11 SEALED SOURCE CONTAMINATION

LIMITING CONDITION FOR OPERATION

3.7.11 Each sealed source containing radioactive material either in excess of 100 microCuries of beta and/or gamma emitting material or 5 microCuries of alpha emitting material shall be free of greater than or equal to 0.005 microCurie of removable contamination.

APPLICABILITY: At all times.

ACTION:

- a. With a sealed source having removable contamination in excess of the above limits, immediately withdraw the sealed source from use and either:
 - 1. Decontaminate and repair the sealed source, or
 - Dispose of the sealed source in accordance with Commission Regulations.
- b. The provisions of Specification 3.0.3 are not applicable.

SURVEILLANCE REQUIREMENTS

4.7.11.1 Test Requirements - Each sealed source shall be tested for leakage and/or contamination by:

- a. The licensee, or
- Other persons specifically authorized by the Commission or an Agreement State.

The test method shall have a detection sensitivity of at least 0.005 microCurie per test sample.

4.7.11.2 Test Frequencies - Each category of sealed sources (excluding startup sources and fission detectors previously subjected to core flux) shall be tested at the frequency described below.

- a. Sources in use At least once per 6 months for all sealed sources containing radioactive materials:
 - With a half-life greater than 30 days (excluding Hydrogen 3), and
 - In any form other than gas.

SURVEILLANCE REQUIREMENTS (Continued)

- b. Stored sources not in use Each sealed source and fission detector shall be tested prior to use or transfer to another licensee unless tested within the previous 6 months. Sealed sources and fission detectors transferred without a certificate indicating the last test date shall be tested prior to being placed into use; and
- c. Startup sources and fission detectors Each sealed startup source and fission detector shall be torted within 31 days prior to being subjected to core flux or instanced in the core and following repair or maintenance to the source.

4.7.11.3 Reports - A report shall be prepared and submitted to the Commission on an annual basis if sealed source or fission detector leakage tests reveal the presence of greater than or equal to 0.005 microCurie of removable contamination.

3/4.7.12 AREA TEMPERATURE MONITORING

LIMITING CONDITION FOR OPERATION

3.7.12 The temperature limit of each area shown in Table 3.7-4 shall not be exceeded.

<u>APPLICABILITY</u>: Whenever the equipment in an affected area is required to be OPERABLE.

ACTION:

With one or more areas exceeding the temperature limit(s) shown in Table 3.7-4:

- a. By less than 20°F and for less than 8 hours, record the cumulative time and the amount by which the temperature in the affected area(s) exceeded the limit(s).
- b. By less than 20°F and for more than 8 hours, prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report that provides a record of the cumulative time and the amount by which the temperature in the affected area(s) exceeded the limit(s) and an analysis to demonstrate the continued OPERABILITY of the affected equipment. The provisions of Specification 3.0.3 are not applicable.
- c. With one or more areas exceeding the temperature limit(s) shown in Table 3.7-4 by more than 20°F, prepare and submit a Special Report as required by ACTION b. above and within 4 hours either restore the area(s) to within the temperature limit(s) or declare the equipment in the affected area(s) inoperable.

SURVEILLANCE REQUIREMENTS

4.7.12 The temperature in each of the areas shown in Table 3.7-4 shall be determined to be within its limit at least once per 12 hours.

TABLE 3.7-4

AREA TEMPERATURE MONITORING

AREA

TEMPERATURE LIMIT ("F)

1. <u>AUX</u>	ILIARY BUILDING	
AB-02,	VCT and Boric Acid Transfer Pump Area, El 43'6"	≤ 120
AB-03,	Charging Pump Area, El 24'6"	≤ 110
AB-04,	General Area, El 66'6"	≤ 120
AB-06,	General Area, El 43'6"	<u>≤</u> 120
AB-07,	General Area, El 4'6"	≤ 120
AB-08,	General Area (East), El 4'6"	<u>≤</u> 120
AB-09,	General Area (South), El 4'6"	≤ 120
AB-10,	General Area, El 4'6"	≤ 120
AB-11,	General Area, El 43'6"	≤ 120
AB-13,	General Area (North), El 4'6"	≤ 120
AB-16,	Supplemental Leak Collection Filter Area, El 66'6"	≤ 120
AB-19,	MCC/Rod Drive Area, El 24'6"	≤ 120
AB-21,	MCC Air Conditioning Room, El 66'6"	≤ 120
AB-22,	Rod Drive Area, El 43'6"	≤ 120
AB-25,	Charging Pump Area, El 24'6"	≤ 110
AB-26,	RPCCW Pump Area, El 24'6"	≤ 110
AB-29,	General Area (Southeast), El 24'6"	≤ 120
AB-33,	Boric Acid Tank Area, El 43'6"	≤ 120
AB-35,	Boric Acid Tank Area, El 43'6"	≤ 120
AB-39,	Fuel Building and Auxiliary Building Filter Area, El 66'6"	≤ 120

TABLE 3.7-4 (Continued)

AREA TEMPERATURE MONITORING

AREA

TEMPERATURE LIMIT (* F)

2. <u>CC</u>	NTROL BUILDING			
CB-01,	Switchgear and Battery Rooms, El 4'6"	\leq	104	
CB-02,	Cable Spreading Room, El 24'6"	\leq	110	
CB-03,	Control and Computer Rooms, El 47'6"	<u><</u>	95	
CB-04,	Chiller Room, El 64'6"	\leq	104	
CB-05,	Mechanical Equipment Room, El 64-6"	\leq	104	
3. <u>CC</u>	NTAINMENT			
CS-01,	Inside Crane Wall, El all except CS-03 and CS-04	\leq	120	
CS-02,	Outside Crane Wall, El all	<u> </u>	120	
CS-03,	Pressurizer Cubicle, El all	<u><</u>	130	
CS-04,	Inside Crane wall, El 51'4" except CS-03 and steam generator enclosures	\leq	120	
4. <u>IN</u>	ITAKE STRUCTURE			
CW-01,	Entire Building	<	110	
5. <u>D1</u>	ESEL GENERATOR BUILDING			
DG-01,	Entire Building	\leq	120	
6. <u>ES</u>	FBUILDING			
ES-01,	HVAC and MCC Area, El 36'6"	\leq	110	
ES-02,	SIH Pump Area, El 21'6"	\leq	110	
ES-03,	Pipe Tunnel Area, El 4'6"	<u> </u>	110	
ES-04,	RHS Cubicles, El all	\leq	110	
ES-05,	RSS Cubicles, El all	\leq	110	
	Motor Driven Auxiliary Feedwater Pump Area, El 24'-6"	<	110	
ES-07,	Turbine Driven Auxiliary Feedwater Pump Area, El 24'6"	\leq	110	

MILLSTONE - UNIT 3

TABLE 3.7-4 (Continued)

AREA TEMPERATURE MONITORING

AREA	TEMPERATURE LIMIT ("F)
7. FUEL BUILDING	
FB-02, Fuel Pool Pump Cubicles, El 24'6"	<u>≤</u> 110
FB-03, General Area, El 52'4"	≤ 104
8. FUEL OIL VAULT	
FV-01, Diesel Fuel Oil Vault	≤ 95
9. HYDROGEN RECOMBINER BUILDING	
HR-01, Recombiner Skid Area, El 24'6"	≤ 125
HR-02, Controls Area, El 24'6"	≤ 110
HR-03, Sampling Area, El 24'6"	≤ 110
HR-04, HVAC Area, El 37'6"	≤ 110
10. MAIN STEAM VALVE BUILDING	
MS-01, Entire Building	≤ 120
11. TURBINE BUILDING	
TB-01, Entire Building	≤ 115
12. <u>TUNNEL</u>	
TN-02, Pipe Tunnel-Auxiliary, Fuel and ESF Building	≤ 112
13. <u>YARD</u>	
YD-01, Yard	≤ 115

ELECTRICAL POWER SYSTEMS

SURVEILLANCE REQUIREMENTS (Continued)

- b) A kinematic viscosity at 40°C of greater than or equal to 1.9 centistokes, but less than or equal to 4.1 centistokes (alternatively, Saybolt viscosity, SUS at 100°F of greater than or equal to 32.6, but not less than or equal to 40.1), if gravity was not determined by comparison with the supplier's certification;
- c) A flash point equal to or greater than 125°F; and
- A clear and bright appearance with proper color when tested in accordance with ASTM-D4176-82.
- 2) By verifying within 30 days of obtaining the sample that the other properties specified in Table 1 of ASTM-D975-81 are met when tested in accordance with ASTM-D975-81 except that the analysis for sulfur may be performed in accordance with ASTM-D1552-79, ASTM-D2622-82 or ASTM-D4294-83.
- f. At least once every 31 days by obtaining a sample of fuel oil in accordance with ASTM-D2276-78, and verifying that total particulate contamination is less than 10 mg/liter when checked in accordance with ASTM-D2276-78, Method A;
- g. At least once per 18 months, during shutdown, by:
 - Subjecting the diesel to an inspection in accordance with procedures prepared in conjunction with its manufacturer's recommendations for this class of standby service;
 - 2) Verifying the generator capability to reject a load of greater than or equal to 595 kW while maintaining voltage at 4160 \pm 420 volts and frequency at 60 \pm 3 Hz;
 - 3) Verifying the generator capability to reject a load of 4986 kW without tripping. The generator voltage shall not exceed 4784 volts during and following the load rejection;
 - 4) Simulating a loss-of-offsite power by itself, and:
 - Verifying deenergization of the emergency busses and load shedding from the emergency busses, and
 - b) Verifying the diesel starts on the auto-start signal, energizes the emergency busses with permanently connected loads within 11 seconds, energizes the auto-connected shutdown loads through the load sequencer and operates for greater than or equal to 5 minutes while its generator is loaded with the shutdown loads. After energization, the steady-state voltage and frequency of the emergency busses shall be maintained at 4160 \pm 420 volts and 60 \pm 0.8 Hz during this test.

Amendment No. 4, 10, \$4, 73,

ELECTRICAL POWER SYSTEMS

SURVEILLANCE REQUIREMENTS (Continued)

- Verifying that the auto-connected loads to each diesel generator do not exceed the 2000-hour rating of 5335 kW;
- 9) Verifying the diesel generator's capability to:
 - a) Synchronize with the offsite power source while the generator is loaded with its emergency loads upon a simulated restoration of offsite power,
 - b) Transfer its loads to the offsite power source, and
 - c) Be restored to its standby status.
- 10) Verifying that with the diesel generator operating in a test mode, connected to its bus, a simulated Safety Injection signal overrides the test mode by: (1) returning the diesel generator to standby operation, and (2) automatically energizing the emergency loads with offsite power;
- Verifying that the fuel transfer pump transfers fuel from each fuel storage tank to the day tank of each diesel via the installed cross-connection lines;
- 12) Verifying that the automatic load sequence timer is OPERABLE with the interval between each load block within \pm 10% of its design interval; and
- 13) Verifying that the following diesel generator lockout features prevent diesel generator starting:
 - a) Engine overspeed,
 - b) Lube oil pressure low (2 of 3 logic),
 - c) Generator differential, and
 - d) Emergency stop.
- h. At least once per 10 years or after any modifications which could affect diesel generator interdependence by starting both diesel generators simultaneously, during shutdown, and verifying that both diesel generators accelerate to at least 508 rpm in less than or equal to 11 seconds; and
- i. At least once per 10 years by:
 - Draining each fuel oil storage tank, removing the accumulated sediment and cleaning the tank using a sodium hypochlorite solution, and

ELECTRICAL POWER SYSTEMS

SURVEILLANCE REQUIREMENTS (Continued)

b.	disc over	At least once per 92 days and within 7 days after a battery discharge with battery terminal voltage below 110 volts, or battery overcharge with battery terminal voltage above 150 volts, by verify- ing that:			
	1)	The parameters in Table 4.8-2a meet the Category B limits,			
	2)	There is no visible corrosion at either terminals or connectors, or the connection resistance of these items is less than 150×10^{-6} ohm, and			
	3)	The average electrolyte temperature of six connected cells is above 60°F.			
С.	At 1	east once per 18 months by verifying that:			
	1)	The cells, cell plates, and battery racks show no visual indication of physical damage or abnormal deterioration,			
	2)	The cell-to-cell and terminal connections are clean, tight, and coated with anticorrosion material,			
	3)	The resistance of each cell-to-cell and terminal connection is less than or equal to 150×10^{-6} ohm, and			
	4)	Each battery charger will supply at least the amperage indi- cated in Table 4.8-2b at 125 volts for at least 24 hours.			
d.	batt	east once per 18 months, during shutdown, by verifying that the ery capacity is adequate to supply and maintain in OPERABLE us all of the actual or simulated emergency loads for the design cycle when the battery is subjected to a battery service test;			
e.	batt subj inte	east once per 60 months, during shutdown, by verifying that the ery capacity is at least 80% of the manufacturer's rating when ected to a performance discharge test. Once per 60-month rval this performance discharge test may be performed in lieu of battery service test required by Specification 4.8.2.1d.; and			
f.	disc of d the drop	east once per 18 months, during shutdown, by giving performance harge tests of battery capacity to any battery that shows signs egradation or has reached 85% of the service life expected for application. Degradation is indicated when the battery capacity s more than 10% of rated capacity from its average on previous ormance tests, or is below 90% of the manufacturer's rating.			

EMERGENCY CORE COOLING SYSTEMS

BASES

ECCS SUBSYSTEMS (Continued)

The limitation for a maximum of one centrifugal charging pump and one safety injection pump to be OPERABLE and the Surveillance Requirement to verify all charging pumps and safety injection pumps except the required OPERABLE charging pump to be inoperable below 350°F provides assurance that a mass addition pressure transient can be relieved by the operation of a single PORV.

The Surveillance Requirements provided to ensure OPERABILITY of each component ensures that at a minimum, the assumptions used in the safety analyses are met and that subsystem OPERABILITY is maintained. Surveillance Requirements for throttle valve position stops and flow balance testing provide assurance that proper ECCS flows will be maintained in the event of a LOCA. Maintenance of proper flow resistance and pressure drop in the piping system to each injection point is necessary to: (1) prevent total pump flow from exceeding runout conditions when the system is in its minimum resistance configuration, (2) provide the proper flow split between injection points in accordance with the assumptions used in the ECCS-LOCA analyses, and (3) provide an acceptable level of total ECCS flow to all injection points equal to or above that assumed in the ECCS-LOCA analyses.

Surveillance Requirement 4.5.2.C.2 requires that the visual inspection of the containment sump be performed at least once daily if the containment has been entered that day and when the final containment entry is made. This will reduce the number of unnecessary inspections and also reduce personnel exposure.

3/4.5.4 REFUELING WATER STORAGE TANK

The OPERABILITY of the refueling water storage tank (RWST) as part of the ECCS ensures that a sufficient supply of borated water is available for injection by the ECCS in the event of a LOCA. The limits on RWST minimum volume and boron concentration ensure that: (1) sufficient water is available within containment to permit recirculation cooling flow to the core, and (2) the reactor will remain subcritical in the cold condition following mixing of the RWST and the RCS water volumes with all control rods inserted except for the most reactive control assembly. These assumptions are consistent with the LOCA analyses.

The contained water volume limit includes an allowance for water not usable because of tank discharge line location or other physical characteristics.

The limits on contained water volume and boron concentration of the RWST also ensure a pH value of between 7.0 and 7.5 for the solution recirculated within containment after a LOCA. This pH band minimizes the effect of chloride and caustic stress corrosion on mechanical systems and components.

The maximum/minimum solution temperatures for the RWST in MODES 1, 2, 3 and 4 are based on analysis assumptions.

BASES

3/4.7.11 SEALED SOURCE CONTAMINATION (Continued)

plutonium. This limitation will ensure that leakage from Byproduct, Source, and Special Nuclear Material sources will not exceed allowable intake values.

Sealed sources are classified into three groups according to their use, with Surveillance Requirements commensurate with the probability of damage to a source in that group. Those sources which are frequently handled are required to be tested more often than those which are not. Sealed sources which are continuously enclosed within a shielded mechanism (i.e., sealed sources within radiation monitoring or boron measuring devices) are considered to be stored and need not be tested unless they are removed from the shielded mechanism.

BASES

.

3/4.7.12 AREA TEMPERATURE MONITORING

The area temperature limitations ensure that safety-related equipment will not be subjected to temperatures in excess of their environmental qualification temperatures. Exposure to excessive temperatures may degrade equipment and can cause a loss of its OPERABILITY. The temperature limits include an allowance for instrument error of ± 2.2 °F.