Shearon Harris Energy & Environmental Center Carolina Power & Light Company New Hill, North Carolina

44. 1

ENVIRONMENTAL RADIOLOGICAL MONITORING REPORT

FOR

H. B. ROBINSON STEAM ELECTRIC PLANT JANUARY 1, 1982, THROUGH DECEMBER 31, 1982

Prepared By:

4 Don H. Edwards

Senior Specialist - Environmental

Reviewed By:

1hrin Shearin

Project Specialist - Environmental

Approved By:

Principal Specialist - Environmental March 18, 1983

TABLE OF CONTENTS

			Page
1.0	INTRO	DUCTION	1-1
	1.1	Plant and Location	1-1
	1.2	Radiological Impact Considerations	1-1
	1.3	Environmental Monitoring Program	1-1
2.0	PROGR	RAM SUMMARY	2-1
3.0	INTER	RPRETATIONS AND CONCLUSIONS	3-1
	3.1	Air Samples	3-1
	3.2	Aquatic Vegetation and Bottom Sediment	3-9
	3.3	Fish	3-11
	3.4	Vegetation	3-15
	3.5	Groundwater	3-16
	3.6	Milk Samples	3-16
	3.7	Soil Samples	3-17
	3.8	Surface Water	3-18
	3.9	Thermoluminescent Dosimetry Area Monitors	3-26
	3.10	Summary	3-26
4.0	MISSE	D SAMPLES AND ANALYSES	4-1
	4.1	Air Particulate (Weekly)	4-1
	4.2	Fish	4-1
	4.3	Environmental TLDs	4-1

LIST OF TABLES

Table		Page
1-1	Environmental Radiological Monitoring Program	1-5
2-1	Environmental Radiological Monitoring Program Summary	2-2
3-1	Radionuclides Detected During 1982 in Monthly Composited Air Particulate Sample and Fractional Occurrence	3-2
3-2	Average Concentration (pCi/g dry) and Fractional Occurrences of Radionuclides in Bottom Sediment and Aquatic Vegetation	3-9
3-3	Average Concentration of Radionuclides in Fish Flesh	3-11
3-4	Fish in Lake Bee Compared to Fish in H. B. Robinson Lake	3-12
3-5	Average Concentration (pCi/g dry) and Fractional Occurrences of Radionuclides in Cattle Feed and Food Crops	3-15
3-6	Ion Exchange Resin	3-21

LIST OF FIGURES

Figure		Page
1-1	H. B. Robinson Unit No. 2 Environmental Radiological Sampling Points	1-3
1-2	H. B. Robinson Unit No. 2 Environmental Radiological Sampling Points On Site	1-4
3-1	Plot of Air Particulate Gross Beta Activity by Date at Station O2 Versus Control Station Activity	3-3
3-2	Plot of Air Particulate Gross Beta Activity by Date at Station 09 Versus Control Station Activity	3-4
3-3	Plot of Air Particulate Gross Beta Activity by Date at Station 17 Versus Control Station Activity	3-5
3-4	Plot of Air Particulate Gross Beta Activity by Date at Station 34 Versus Control Station Activity	3-6
3-5	Plot of Air Particulate Gross Beta Activity by Date at Station 35 Versus Control Station Activity	3-7
3-6	Plot of Air Particulate Gross Beta Activity by Date at Station 36 Versus Control Station Activity	3-8
3-7	Plot of Surface Water Gross Beta Activity by Date at Station 05 Versus Control Station Activity	3-22
3-8	Plot of Surface Water Gross Beta Activity by Date at Station 08 Versus Control Station Activity	3-23
3-9	Plot of Surface Water Gross Beta Activity by Date at Station 11 Versus Control Station Activity	3-24
3-10	Plot of Surface Water Gross Beta Activity by Date at Station 32 Versus Control Station Activity	3-25

1.0 INTRODUCTION

The following report summarizes the Environmental Radiological Monitoring conducted for the H. B. Robinson Steam Electric Plant during the calendar year 1982. This is the sixth year in which the program's sample analyses and data interpretation have been entirely performed by Carolina Power & Light Company.

1.1 Plant and Location

The H. B. Robinson Steam Electric Plant is located in northeastern South Carolina near Hartsville and approximately 25 miles northwest of Florence. This site includes a fossil-fueled plant, Unit 1, which was placed in service in 1960, and a pressurized water nuclear power reactor, Unit 2, which entered commercial operation on March 7, 1971. The Robinson Impoundment (hereafter referred to as Lake Robinson) on the plant site was created for Unit 1 and is also a cooling reservoir for Unit 2. Lake Robinson has an area of 2,250 acres with plant intake at the south end, adjacent to the dam. Following condenser use, the water is returned by a 4.2-mile canal to the north end of Lake Robinson near the mouth of Black Creek which flows into the lake from the north.

1.2 Radiological Impact Considerations

The most significant mode of population exposure due to plant operation is direct external radiation exposure due to the elevated plume of noble gases. Other potentially important exposure pathways to man are the airborne radioiodine-pasture-milk and consumption of fish from Lake Robinson. Although a relatively insignificant dose is involved, contact with Lake Robinson including fishing, boating, and immersion (swimming) is a secondary dose path to man.

1.3 Environmental Monitoring Program

The significant elements of these exposure pathways were used to establish the present surveillance program. The program, as presently implemented, is an expansion of that required by the H. B. Robinson Environmental Technical Specifications. Table 1-1 details the surveillance program, and Figures 1-1 and 1-2 show the environmental monitoring locations.

A tabulation of the specific methods used in monitoring the various pathways of exposure to man is as follows:

Gaseous Effluent Path

Submersion Dose and other External Dose

Vegetation Path

Inhalation Path

Milk Path

Thermoluminescent Dosimetry Area Monitors

1 1 4 4

Vegetation Samples Soil Samples Air Samples

Air Samples

Milk Samples Feed and Fodder Crop Air Samples

Liquid Effluent Path

Fish Path	Surface Water Samples Bottom Sediment Samples Aquatic Vegetation Samples Fish Samples		
Water and Shoreline Dose	Thermoluminescent Dosimetry Area Monitors Surface Water Samples Bottom Sediment Samples Shoreline Sediment		
Drinking Water Path	Groundwater Samples		

TABLE 1-1

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM H. B. ROBINSON STEAM ELECTRIC PLANT

Sample Type	Sample Type Sampling Point and Description		Sample Size	Sample Analysis	
Air Cartridge (AC)	2-Visitors Center 9-Microwave Tower 17-East Shore of Lake Across from Plant Intake 22-Hartsville ¹ 34-End of Construction Road West of Plant 35-Dam (West End) 36-Florence	Weekly	300 cu.m.	Iodine	
Air Particulate (AP)	<pre>(r 2-Visitors Center inticulate 9-Microwave Tower NP) 17-East Shore of Lake Across from Plant Intake 22-Hartsville¹ 34-End of Construction Road West of Plant 35-Dam (West End) 36-Florence</pre>		300 cu. m.	WeeklyGross Alpha and Gross Beta; Gamma if Gross Beta > 100 pCi/m ³ , Monthly Com- posite Gamma and Sr-89, 90	

Sample Type	Sampling Point and Description	Sampling Frequency	Sample Size	Sample Analysis
Squatic Vegetation (AV)	8-Discharge Canal Outfall 11-Black Creek at Road 1623 21-Bridge at North End of Lake 27-Black Creek at U.S. 1	Quarterly	500 grams	Gross Beta, Gamma, and Sr-89, 90
	32-Prestwood Lake 33-Ditch Behind Visitors Center	Monthly ²	500 grams	Gross Beta, Gamma, and
	50-Ash Pond ³	Quarterly	500 grams	Gamma
Bottom Sediment (SD)	5-Plant Intake 8-Discharge Canal Outfall 11-Black Creek at Road 1623 21-Bridge at North End of Lake 27-Black Creek at U.S. 1	Quarterly	500 grams	Gross Beta, K-40, Gamma, and Sr-89, 90
	32-Prestwood Lake 33-Ditch Behind Visitors Center	Monthly ²	500 grams	Gross Beta, Gamma, and Sr-89, 90
Feed Crop (FO)	39-Lyndales's Farm 40-Fink's Farm	Twice during growing season (started 1977)	500 grams	Gamma
Fish (FH)	38-Site Varies within Lake Robinson	Quarterly	500 grams	FleshGross Beta, K-40, Gamma, and Sr-89, 90, BoneSr-89, 90

Sample Туре	Sampling Point and Description	Sampling Frequency	Sample Size	Sample Analysis
Food Crop (FC)	43-Varies	One tobacco sample during growing season and one sample after it has been cured (started 1977)	500 grams	Gamma
	44-Varies 45-Varies	Twice during growing season (started 1977)	500 grams	Gamma
Groundwater (GW)	22-Hartsville 23-Unit 1 Well near Site Entrance 24-Well at West Side of Unit 2	Quarterly (started 1st quarter, 1977)	4 liters	Gross Alpha, Gross Beta, Tritium, Gamma, and Sr-89, 90
Milk (MK)	39-Lyndale's Farm 40-Fink's Farm	Monthly	8 liters	Iodine, Gamma, and Sr-89, 90

Sample Туре	Sampling Point and Description	Sampling Frequency	Sample Size	Sample Analysis
Soil (SS)	2-Visitors Center 9-Microwave Tower 11-Black Creek at Road 1623 19-East Shore of Lake (North of 18) 22-Hartsville 27-Black Creek at U.S. 1 32-Prestwood Lake 34-End of Construction Road West of Plant 35-Dam (West End) 36-Florence	*Every 3 years Single sample taken at each station, 1 square foot by 1-inch deep	500 grams	Gross Beta, K-40, Gamma, Sr-89, 90, on a composite of each station.
	49-East Shore of Lake at Boat Launch	Semiannual (1 square foot by 1-inch deep)	500 grams	Gross Beta, K-40, Gamma
	50-Ash Pond ³	Semiannual (1 square foot by 1-inch deep)	500 grams	K-40, Gamma

*Two sample locations will be sampled semiannually on a rotating basis.

Sample Туре	Sampling Point and Description	Sampling Frequency	Sample Size	Sample Analysis
Surface Water (SW)	5-Plant Intake 8-Discharge Canal Outfall 32-Prestwood Lake	Weekly	2.5 liters	WeeklyGross Alpha, Gross Beta, and Tritium (Gamma and
	11-Black Creek at Road 1623 27-Black Creek at U.S. 1	Twice Weekly ⁴ Weekly (started on 3/4/77)		Sr-89, 90 if Gross Beta > 100 pCi/1) Monthly Composite Gross Alpha, Gross Beta, Tritium, Gamma, and Sr-89, 90 Quarterly Composite Gross Alpha, Gross Beta, Tritium (Gamma Sr-89, 90 if Gross Beta > 100 pCi/1)
	5-Plant Intake (Ion Exchange Resin) 5-Plant Intake (Glasswool)	Weekly	2,000 liters	Gamma
	50-Ash Pond ⁴	Monthly	2.5 liters	Gamma

Sample Type	Sampling Point and Description	Sampling Frequency	Sample Size	Sample Analysis
External Radiation	1-South Property Line near Construction Road	Monthly	Not Applicable	TLD Readout
Dose (TL)	3-South Property Line near Visitors Center			
	4-South Property Line near Road 1623			
	6-Robinson Unit 1			
	7-Robinson Unit 1			
	9-Microwave Tower			
	10-Picnic Area			
	11-Black Creek at Road 1623			
	12-Intersection of Roads 1623) and 1639			
	13-West Property Line near Construction Road			
	14-Intersection Area for Road 1623 and Route 151			
	15-Pine Ridge Baptist Church and Route 151			
	16-Route 151 - 0.5 mile North of Road 1623			
	17-East Shore of Lake across from Plant Intake			
	18-East Shore of Lake (North of 17)			
	19-East Shore of Lake (North of 18)			

Sample Type	Sampling Point and Description	Sampling Frequency	Sample Size	Sample Analysis
External Radiation	20-East Shore of Lake (North of 19)	Monthly	Not Applicable	TLD Readout
Dose	22-Hartsville*			
(TL)	28-Intersection of Transmission Lines and Route 151			
(cont'd)	29-Intersection of S.C. 200 and Route 151			
	30-Intersection of S.C. 200 and S.C. 53			
	31-Kelly Town			

¹Control Station

1-11

²This particular sampling station is an alternate pathway for low-level liquid releases to the environment. Based on previous results, a more frequent sampling program has been implemented.

³This location was added in 1981 and will be sampled montly for surface water, semiannually for soil, and guarterly for aquatic vegetation.

⁴This location was sampled twice weekly as a result of a directive by the NRC to CP&L due to no composite sampler being available until the week of April 6, 1982.

2.0 PROGRAM SUMMARY

The purpose of the Environmental Radiological Monitoring Program is to measure any release and accumulation of radioactivity in the environment, to determine whether this radioactivity is the result of the operation of the H. B. Robinson Plant, and to interpret the potential dose to off-site populations based on the cumulative measurement of radiation of plant origin.

Control stations are not specified in the technical specifications to the operating license. For this report, the following locations were used as the control locations for the respective measurements and were intended to indicate conditions away from the H. B. Robinson Plant influence:

Hartsville

(Sample Station 22)

Thermoluminescent Dosimetry Area Monitors Air Particulate Samples Charcoal Cartridge Samples - Airborne I-131

Black Creek above Lake Robinson at U.S. #1 (Sample Station 27)

Aquatic Vegetation Bottom Sediment Surface Water

No specific control locations have been designated for food crops, feed crops, soil, milk, fish, and groundwater, since none of the stations sampled are points selected to be unaffected by station effluents.

Table 2-1 summarizes the environmental radiological monitoring data for the entire year of 1982.

6

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

H. B. Robinson Steam Electric Plant Darlington County, Scrth Carolina

Docket Numbers - 50-261 Calendar Year 1982 ۲

Medlum or Pathway Sampled or Measured Unit of Measurement)	Type and Total # of Measurements Performed	Minimum Detectable Activity (MDA) (1)	All Indicator Locations (2) Mean Range	Location w/Higner Name Distance & Direction	st Annual Mean Mean Range (2)	Control Locations Mean Range (2)	∦ of Nonroutine Reported Measurements (3)
ir Cartridgas (pCi/m ³)	1-131(4) 363	7.00E-2	Ali less than MDA	All less than MDA		All less than MUA	
ir Particulate (pCi/m ³)	Gross Alpha 362 ⁽⁴⁾	2.00E-3	1.09E-2 (301/310) 8.25E-4 - 5.55E-2	Visitor's Center 0,2 mi SW	1.33E-2 (52/52) 1.00E-3 - 5.55E-2	1.30E-2 (49/52) 1.12E-3 - 5.59E-2	N/A
	Gross Beta 362 ⁽⁴⁾	3.00€-3	2.89E-2 (309/310) 5.13E-3 - 8.79E-2	Visitor's Center 0,2 mi SW	3.3至-2 (52/52) 7.74E-3 - 8.79E-2	3.01E-2 (52/52) 1.09E-2 - 9.56E-2	N/A
	Sr89 84	1.40E-3	3.73E-3 (3/72) 8.48E-4 - 7.4X-3	End of Con- struction Road - West of Plant 0.2 mi W	7.43E-3 (1/12) (single value)	All less than MDA	N/A
	Sr90 84	9.00E-4	5,99E-3 (1/72) (single value)	Visitor's Center 0.2 ml SW	5,99E-3 (1/12) (single value)	5.93E-4 (1/12) (single value)	N/A

2-2

(1

H. B. Robinson Steam Electric Plant Darlington County, Sorth Carolina

2-3

Docket Numbers - 50-261 Calendar Year 1982 22.

Medium or Pathway	Type and	Minimum	All Indicator	Location w/High	est Annual Mean	Control Locations	# of Nonroutine
Sampled or Measured (Unit of Measurement)	Total ∦ of Measurements Performed	Detectable Activity (MDA) (1)	Locations (2) Mean Range	Name Distance & Direction	Mean Range (2)	Mean Range (2)	Reported Measurements (3)
Air Particulate	Gamma						
(pC1/m ³)	84						
	Cs-137	6.00E-3	5.46E-3 (2/72)	Visitors Center	1.02E-3 (1/12)	All less than MDA	N/A
			3.91E-3 - /.02E-3	0.2 ml SW	(single value)		
Aquatic Vegetation	Gross Beta	4.00E+0	1.46E+1 (28/28)	Prestwood Lake	2.35E+1 (4/4)	6.42E+0 (4/4)	N/A
(pCl/gram) dry	32		1.29E+0 - 4.89E+1	4.9 mi ESE	1.04E+1 - 4.89E+1	2,59E+0 - 1,25E+1	
	Sr-89	1.30E-1	2.02E-1 (5/28)	Bridge at N	3,23E-1 (1/4)	6.78E-! (1/4)	N/A
	32		4.32E-2 - 3.23E-1	End of Lake	(single value)	(single value)	
				4.7 mi N			
	Sr-90	6.10E-2	9.97E-2 (7/28)	Discharge Canal	8,92E-2 (3/4)	8.64E-2 (2/4)	N/A
	32		2.87E-2 - 2.02E-1	Outfall	6.54E-2 - 1.25E-1	8.55E-2 - 8.73E-2	
				3.8 ml N			
	Gamma						
	36						
	Mn-54	6.50E-2	2.75E-1 (5/32)	Discharge Canal	5.28E-2 (2/4)	All less than MDA	N/A
			9.28E-2 - 9.15E-1	Outfall	2.42E-1 - 8.15E-1		
				3.8 mi N			

....

TABLE 2-1

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

H. B. Robinson Steam Electric Plant Darlington County, Sorth Carolina

2-4

Medium or Pathway	Type and	Minimum	All Indicator	Location w/High	est Annual Mean	Control Locations	# of Nonroutine
Sampled or Measured (Unit of Measurement)	Total # of Measurements Performed	Detectable Activity (MDA) (1)	Locations (2) Mean Range	Name Distance & Direction	Məan Rangə (2)	Mean Range (2)	Reported Measurements (3)
Aquatic Vegatation	Gamma						
(pCi/gram) dry	36						
	Co-58	6.00E-2	6.80E-1 (9/32)	Discharge Canal	1.29E+0 (2/4)	All less than MDA	N/A
			1.85E-1 - 2.13E+0	Outfall	4.44E-1 - 2.13E+0		
				3.8 ml N			
	Co-60	6.50E-2	8.79E-1 (11/32)	Discharge Canal	2.12E+0 (3/4)	All less than MDA	N/A
			5.82E-2 - 5.37E+0	Outfall	4.87E-1 - 5.37E+0		
				3.8 mi N			
	NL-95	6,00E-2	1.68E-1 (1/32)	Bridge at N	1.68E-1 (1/4)	All less than MDA	N/A
			(single value)	End of Lake	(single value)		
				4.7 mł N			
	Cs-134	6.50E-2	3.64E-1 (3/32)	Ditch Behind	3.64E-1 (3/12)	All less than MDA	N/A
			2.59E-1 - 4.25E-1	Visitors Center	2.59E-1 - 4.25E-1		
				0.1 ml SW			

TABLE 2-1

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

H. B. Robinson Steam Electric Plant Darlington County, Sorth Carolina

Medium or Pathway	Type and	Minimum	All Indicator	Location w/Highest Annual Mean		Control Locations	# of Nonroutine
Sampled or Measured (Unlt of Measurement)	Total # of Measurements Performed	Detectable Activity (MDA) (1)	Locations (2) Mean Range	Name Distance & Direction	Mean Range (2)	Mean Range (2)	Reported Measurements (3)
Aquatic Vegetation	Gamma						
(pCi/gram) dry	36						
	Cs-137	7.00E-2	1.03E+0 (28/32)	Ditch Behind	1.86E+0 (12/12)	4.97E-1 (4/4)	N/A
			1.16E-1 - 4.83E+0	Visitors Center	1.47E-1 - 4.83E+0	1.90E-1 - 6.89E-1	
				0.1 mi SW			
	Ce-144	2.65E-1	7.33E-1 (4/32)	Bridge at N	7.70E-01 (1/4)	All less than MDA	N/A
			6.83E-1 - 7.70E-1	End of Lake	(single value)		
				4.7 ml N			
Bottom Sediment	Gross Beta	1.10E-1	1.29E+0 (29/32)	Ditch Behind	2.45E+0 (12/12)	3.43E-1 (4/4)	N/A
(pCi/gram) dry	36		1.06E-1 - 4.44E+0	Visitors Center	6.27E-1 - 4.44E+0	7.02E-2 - 8.84E-1	
				0.1 ml SW			
	Sr-99	5.00E-1	1.00E-1 (1/32)	Plant Intake	1.00E-1 (1/4)	All less than MDA	N/A
	36		(single value)	0.1 mi E	(single value)		
	Sr-90	5.00E-1	2.75E-1 (5/32)	Ditch Behind	2.82E-1 (3/12)	All less than MCA	N/A
	36		9.78E-2 - 4.31E-1	Visitors Center	1.93E-1 - 3.60E-1		
				0.1 mi SW			

H. B. Robinson Steam Electric Plant Darlington County, Sorth Carolina Docket Numbers - 50-261 Calendar Year 1982

1

4

Medium or Pathway	Type and	Minimum	m All Indicator	Location w/Highest Annual Mean		Control Locations	# of Nonroutine
Sampled or Measured (Unit of Measurement)	Total ∦ of Measurements Performed	Detectable Activity (MDA) (1)	Locations (2) Mean Range	Name Distance & Direction	Mean Range (2)	Mean Range (2)	Reported Measurements (3)
Bottom Sediment	Gamma						
(pCl/gram) dry	36						
	K-40	2.30E-1	5.86E+0 (26/32)	Ditch Behind	1.05E+1 (12/12)	4.14E-1 (4/4)	N/A
			2.05E-1 - 2.12E+1	Visitors Center	8.52E-1 - 2.12E+1	2.76E-1 - 6.23E-1	
				0.1 mi SW			
	Co-60	3.00E-2	3.04E+0 (19/32)	Ditch Behind	4,56E+0 (12/12)	All less than MDA	N/A
			1.46E-1 - 1.18E+1	Visitors Center	7.66E-1 - 1.18E+1		
				O.1 mi SW			
	Cs-137	2.80E-2	5.22E-1 (21/32)	Ditch Behind	6.67E-1 (12/12)	1.60E-1 (2/4)	N/A
			3.23E-2 - 1.94E+0	Visitors Center	5.55E-2 - 1.94E+0	2.67E-2 - 2.94E-1	
				0.1 mi SW			
	C- 141	4 305-2	2 235-1 (1/32)	Black Crook	$2.23E_{-1}(1/4)$	All Loss than MDA	NZA
	00-141	4.302-2		at Road 1623	(single value)	The ross man don	
			(single value)		(Single Value)		
				0.0 ml ESE			

2-6

1.

TABLE 2-1

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

H. B. Robinson Steam Electric Plant Darlington County, Sorth Carolina

Medium or Pathway	Type and	Minimum	All Indicator	Location w/Highest Annual Mean		Control Locations	# of Nonroutine
Sampled or Measured (Unit of Measurement)	Total # of Measurements Performed	Detectable Activity (MDA) (1)	Locations (2) Mean Range	Name Distance & Direction	Mean Range (2)	Mean Range (2)	Reported Measurements (3)
Fish Bone	Sr-89	2,00E+0	1.51E+0 (2/3)	Site varies within	1.51E+0 (2/3)	No Control	N/A
(pCi/gram) dry	3 ⁽⁵⁾		9.03E-1 - 2.11E+0	Lake Robinson	9.03E-1 - 2.11E+0		
(Bottom Feeders)							
	Sr-90	2.00E+0	7.19E+0 (3/3)	Site varies within	7.19E+0	No Control	N/A
	3 ⁽⁵⁾		8.16E-1 - 9.88E+0	Lake Robinson	8.16E-1 - 9.88E+0		
Fish Bone	Sr-89	2.00E+0	1.46E+0 (3/4)	Site varies within	1.46E+0 (3/4)	No Control	N/A
(pCi/gram) dry (Free Swimmers)	4		1.49E-1 - 3.66E+0	Lake Robinson	1.49E-1 - 3.66E+0		
	Sr-90	2.00E+0	6.27E+0 (2/4)	Site varles within	6.27E+0 (2/4)	No Control	N/A
	4		5.53E+0 - 7.01E+0	Lake Robinson	5.5%+0 - 7.01E+0		
Fish Flash	Gross Beta	4.00E+0	1.37E+1 (3/3)	Site varies within	1.37E+1 (3/3)	No Control	N/A
(pCi/gram) dry	3 ⁽⁵⁾		1.28E+1 - 9.70E+0	Lake Robinson	1.28E+1 - 9.70E+0		
(Free Swimmers)	Gross Beta	4.00E+0	1.36E+1 (4/4)	Site varles within	1.36E+1 (4/4)	No Control	N/A
	4		1.17E+1 - 1.61E+1	Lake Robinson	1.17E+1 - 1.61E+1		

H. B. Robinson Steam Electric Plant Darlington County, Sorth Carolina

Medium or Pathway	Type and	Minimum	All Indicator	Location w/Highes	st Annual Mean	Control Locations	# of Nonroutine
Sampled or Measured	Total # of	f Detectable	Locations (2) Mean	Name	Mean	Mean	Reported
(Unit of Measurement)	Measurements	Activity		Distance &	Range (2)	Range (2)	Measurements (3)
Fish Flesh	Sr-89	2.00 1	6.10E-1 (1/3)	Site varies within	6.10E-1 (1/3)	No Control	N/A
(a) (and a second state	,(5)		(alasta value)	Laba Dablassa	(aleaster and aleast		
(pol/gram) dry	5		(single value)	Lake Kobinson	(single value)		
Pottom Feeders							
	Sr-90	1.00E-1	4.60E-1 (3/3)	Site varies within	4.60E-1 (3/3)	No Control	N/A
	3 ⁽⁵⁾		2.33E-1 - 6.32E-1	Lake Robinson	2.33E-1 - 6.32E-1		
Free Swimmers	Sc-89	2.00F-1	5.38E-1 (1/4)	Site varies within	5 38E-1 (1/4)	No Control	N/A
100 00100010		2,002 1			5.500 1 (1/4/		17.0
	4		(single value)	Lake Robinson	(single value)		
	Sr-90	1.00E-1	1.84E-1 (3/4)	Site varies within	1.84E-1 (3/4)	No Control	N/A
	4		8.04E-2 - 2.81E-1	Lake Robinson	8.04E-2 - 2.81E-1		
(Bottom Fooders)	Gamma						
1001101110000137	, (5)						
	3						
	K-40	3.00E-1	8.01E+0 (3/3)	Site varies within	8.01E+0 (3/3)	No Control	N/A
			6.92E+0 - 9.12E+0	Lake Robinson	6.92E+0 - 9.12E+0		

TABLE 2-1

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

H. B. Robinson Steam Electric Plant Darlington County, Sorth Carolina

Medium or Pathway Sampled or Measured (Unit of Measurement)	Type and Total # of Measurements Performed	Minimum Detectable Activity (MDA) (1)	All Indicator Locations (2) Mean Range	Location w/Highe Name Distance & Direcolon	st Annual Mean Mean Range (2)	Control Locations Mean Range (2)	<pre># of Nonroutin Reported Measurements (3)</pre>
Fish Flesh	Gamma						
(pCl/gram) dry	3 ⁽⁵⁾						
(Bottom Feeders)	Cs-137	7.0%-2	5.75E-1 (3/3)	Site varies within	5.758-1 (3/3)	No Control	N/A
			3.21E-1 - 8.29E-1	Lake Robinson	3.21E-1 - 8.29E-1		
Free SwImmers	Camma						
	4						
	K-40	3.00E-1	6.51E+0 (4/4)	Site varies within	6.51E+0 (4/4)	No Control	N/A
			7.34E-1 - 9.83E+0	Lake Robinson	7.34E-1 - 9.83E+0		
	Cs-137	7.00E-2	6.98E-1 (4/4)	Site varies within	6.98E-1 (4/4)	No Control	N/A
			9.86E-2 - 1.30E+0	Lake Robinson	9.86E-2 - 1.30E+0		
	Gamma						
Fodder and Feed	4						
(pCi/gram) dry	Cs-137	7.00E-2	2.65E-1 (3/4)	Lyndale's Farm	2.98E-1 (2/2)	No Control	N/A
			1.98E-1 - 3.52E-1	11.3 ml SSW	2.45E-1 - 3.52E-1		
	Gamma						
Food Crop ⁽⁶⁾	6						
(pCI/gram) dry	Cs-137	7.00E-2	3,52E-1 (3/6)	Howle's Farm	4.60E-1 (2/2)	No Control	N/A
			1.36E-1 - 5.36E-1	5.0 mi ESE	3.84E-1 - 5.36E-1		

H. B. Robinson Steam Electric Plant Darlington County, Sorth Carolina

2-10

Medicas or Pathway	Type and	Minimum	All Indicator	Location w/Highe	st Annual Mean	Control Locations	# of Nonroutine
Sampled or Measured (Unit of Measurement)	Total ∦ of Measurements Performed	Detectable Activity (MDA) (1)	Locations (2) Mean Range	Name Distance & Direction	Mean Range (2)	Mean Range (2)	Reported Measurements (3)
Groundwater	Gross Alpha	2.00E-1	9.74E-1 (8/12)	Well at West	1.03€ >0 (2/4)	No Control	N/A
(pCi/liter)	12		6.57E-1 - 140E+0	Side - Unit 2	6.57E-1 - 1.40E+0		
				0,1 ml SW			
	Gross Beta	8.20E-1	9.445-1 (9/12)	Unit 1 Well Near	1.06E+0 (4/4)	No Control	N/A
	12		4.56E-1 - 2.03E+0	Site Entrance	5.7至-1 - 2.0至+0		
				0.1 mi SSE			
	Sr-89	5.00E+0	All less than MDA	All less than MDA		No Control	N/A
	12						
	Sr-90	1.20E+0	All lass than MDA	All less than MDA		No Control	N/A
	12						
	Tritium	3.50E+2	2.11E+2 (2/12)	Hartsville	3.17E+2 (1/4)	No Control	N/A
	12		1.60E+2 - 3.17E+2	5.8 ml ESE	(single value)		

H. B. Robinson Steam Electric Plant Darlington County, Sorth Carolina

Medium or Pathway Sampled or Measured (Unit of Measurement)	Type and Total # of Measurements Performed	Minimum Detectable Activity (MDA) (1)	All Indicator Locations (2) Mean Range	Location w/Hig Name Distance & Direction	hest Annual Mean Mean Range (2)	Control Locations Mean Range (2)	<pre># of Nonroutine Reported Measurements (3)</pre>
	Gamma						
Groundwater	12						
(pCi/liter)	Cs-137	8.00E+0	7.35E+0 (2/12)	Well at West	7.51E+0 (1/4)	No Control	N/A
			7.19E+0 - 7.51E+0	Side of Unit 2	(single value)		
				0.1 mi SW			
MIIK	1-131	1.50E-1	6.91E-1 (3/24)	Lyndalø's Farm	6.91E-1 (3/12)	No Control	N/A
(pCi/liter)	24		4.90E-1 - 9.60E-1	11.3 ml SSW	4.90E-1 - 9.60E-1		
	Sr-89	3.00E+0	3.65E+0 (4/24)	Lyndale's Farm	3.97E+0 (2/12)	No Control	N/A
	24		1.97E+0 - 4.70E+0	11.3 mi SSW	3.79E+0 - 4.16E+0		
	Sr-90	2.00E+0	2.37E+0 (8/24)	Fink's Farm	2.48E+0 (4/12)	No Control	N/A
	24		1.38E+0 - 3.76E+0	7.0 ml SE	1.38E+0 - 3.76E+0		
	Gamma						
	24						
	K-40	3.00E+2	9.00E+2 (24/24)	Fink's Farm	1.08E+3 (12/12)	No Control	N/A
			1.20E+2 - 1.46E+3	7.0 ml SE	1.20E+2 - 1.46E+3		

H. B. Robinson Steam Electric Plant Darlington County, Sorth Carolina

Docket Numbers - 50-261 Calendar Year 1982

.

Medium or Pathway	Type and	Minimum	All Indicator	Location w/Highe	st Annual Mean	Control Locations	# of Nonroutine
Sampled or Maasured (Unit of Measurement)	Total # of Measurements Performed	Detectable Activity (MDA) (1)	Locations (2) Mean Range	Name Distance & Direction	Mean Range (2)	Mean Range (2)	Reported Measurements (3)
	Gamma						
Milk	24						
(pCi/liter)	Cs-137	9,00E+0	7.55E+0 (5/24)	Fink's Farm	7.56E+0 (2/12)	No Control	N/A
			4.47E+0 - 1.03E+1	7.0 ml SE	6.50E+0 - 8.63E+0		
Soft	Gross Beta	9.00E-2	5.06E-1 (6/6)	Hartsville	1.48E+0	No Control	N/A
(pCi/gram) dry	6		9.88E-2 - 1.48E+0	5.8 mi ESE	(single value)		
	Sr-89	2.70E-1	All less than MDA	All less than MDA		No Control	N/A
	4						
	Sr-90	1.30E-1	3.68E-1 (1/4)	Black Creek	3.68E-1 (1/1)	No Control	N/A
	4		(single value)	at US 1	(single value)		
				5.1 mi ESE			
	Gamma						
	8						
	K-40	2.30E-1	1.34E+0 (6/8)	Ash Pond	3.27E+0 (2/2)	No Control	N/A
			1.26E-1 - 4.47E+0	.9 ml NNW	2.08E+0 - 4.47E+0		

TABLE 2-1

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

H. B. Robinson Steam Electric Plant Darlington County, Sorth Carolina

Docket Numbers - 50-261 Calendar Year 1982

Type and	N almum	Ail Indicator	Location w/Highest Annual Mean		Control Locations	# of Nonroutine
Total # of Measurements Performed	Detectable Activity (MDA) (1)	Locations (2) Mean Range	Name Distance & Direction	Mean Range (2)	Mean Range (2)	Reported Measurements (3)
Gamma						
8						
Co-60	3.00E-2	2,02E+0 (2/8)	Ash Pond	2.02 +0 (2/2)	No Control	N/A
		6.37E-1 - 3.40E+0	0.9 ml NNW	6.37E-1- 3.40E+0		
Cs-137	2.80E-2	2.97E-1 (5/8)	Hartsville	7.70E-1 (1/1)	No Control	N/A
		8.83E-2 - 7.70E-1	5.8 mi ESE	(single value)		
Gross Alpha	2.00E-1	1.22E+0 (117/221)	Prestwood Lake	1.33£+0 (34/52)	1.10E+0 (24/52)	N/A
273 ⁽⁷⁾		4.42E-1 - 3.66E+0	4.9 ml ESE	5.27E-1 - 3.66E+0	4.50E-1 - 2.37E+0	
Gross Beta	8.20E-1	1.59E+0 (193/221)	Black Creek	1.68E+0 (55/65)	1.19E+0 (42/52)	N/A
273(7)		5.42E-1 - 5.13E+0	at Road 1623	7.93E-1 - 5.13E+0	4.938-1 - 2.338+0	
			0.6 ml ESE			
Tritium	3.50E+2	7.19E+2 (160/221)	Discharge Canal	7.81E+2 (40/52)	4.10E+2 (8/52)	N/A
273(7)		3.24E+2 - 2.58E+3	Outfall	3.51E+2 - 2.26E+3	3.31E+2 - 4.94E+2	
			3.8 mi N			
	Type and Total # of Measurements Performed Gamma 8 Co-60 Cs-137 Gross Alpha 273 ⁽⁷⁾ Gross Beta 273 ⁽⁷⁾	Type and Total # of Measurements PerformedNaimum Detectable Activity (MDA) (1)Gamma8Co-603.00E-2Cs-1372.80E-2Gross Alpha 273 (7)2.00E-1Gross Beta 273 (7)8.20E-1Tritlum 273 (7)3.50E+2	Type and Total # of Netsertable MeasurementsN almum Detectable Activity Mean RangeAil Indicator Locations (2) Mean RangeParformed Gamma(MDA) (1)Range8Co-60 $3.00E-2$ $2.02E+0$ (2/8) $6.37E-1 - 3.40E+0$ Cs-137 $2.80E-2$ $2.97E-1$ (5/8) $8.83E-2 - 7.70E-1$ Gross Alpha $273^{(7)}$ $2.00E-1$ $1.22E+0$ (117/221) $4.42E-1 - 3.66E+0$ Gross Beta $273^{(7)}$ $8.20E-1$ $1.59E+0$ (193/221) $5.42E-1 - 5.13E+0$ Tritium $273^{(7)}$ $3.50E+2$ $7.19E+2$ (160/221) $3.24E+2 - 2.58E+3$	Type and Total # of DetectableNaimum Locations (2)Location Name Distance & Distance & DirectionModsurements Activity Parformed GammaActivity Mean RangeName Distance & DirectionGamma8Co-60 $3.00E-2$ $2.02E+0$ (2/8) $6.37E-1 - 3.40E+0$ Ash Pond 0.9 mi NNWCs-137 $2.80E-2$ $2.97E-1$ (5/8) $8.83E-2 - 7.70E-1$ Hartsville 5.8 mi ESEGross Alpha $2.00E-1$ $1.22E+0$ (117/221) $4.42E-1 - 3.66E+0$ Prestwood Lake 4.9 mi ESEGross Beta $273^{(7)}$ $8.20E-1$ $1.59E+0$ (193/221) $5.42E-1 - 5.13E+0$ 0.6 mi ESETritium $273^{(7)}$ $3.50E+2$ $7.19E+2$ (160/221) $3.24E+2 - 2.58E+3$ $0utfall3.8 mi N$	Type and Total # of Nasuroments Activity Parformed (MOA) (1)Ail Indicator Locations (2) Mean RangeLocation w/Highest Annual Mean Name Distance & Distance & Direction8Co-603.00E-22.02E+0 (2/8) 6.37E-1 - 3.40E+0Ash Pond 0.9 ml NNM2.02E+0 (2/2) 6.37E-1 - 3.40E+0Cs-1372.80E-22.97E-1 (5/8) 8.83E-2 - 7.70E-1Hartsville 5.8 mi ESE7.70E-1 (1/1) 5.8 mi ESEGross Alpha 2732.00E-11.22E+0 (117/221) 5.42E-1 - 3.66E+0Prestwood Lake 4.9 ml ESE1.33E+0 (34/52) 5.27E-1 - 3.66E+0Gross Bata 2738.20E-11.59E+0 (195/221) 5.42E-1 - 5.13E+0 0.6 ml ESEBlack Creek at Road 1623 7.93E-1 - 5.13E+0 0.6 ml ESETritium 2733.50E+27.19E+2 (160/221) 3.24E+2 - 2.58E+3 3.8 ml NBlack reek at Na	Type and Total # of Detactable Modauraments ActivityAii Indicator Locations (2) Mean BangeLocation $\frac{\sqrt{H1ghest Annual Mean}}{Mean}$ Distance & Distance & Distance & Distance & Distance & Distance & Distance & Range (2)Control Locations Mean Range (2)Control Range (2)Control63.00E-22.02E+0 (2/8) A.37E-1 - 3.40E+0Ash Pond A.37E-1 - 3.40E+02.02E+0 (2/2) A.32E+0 - 3.40E+0No ControlCs-1372.80E-22.97E-1 (5/8) A.88E-2 - 7.70E-1Hartsville S.6 mi ESE7.70E-1 (1/1) A.50E+1 - 2.37E+0No ControlGross Alpha 2.00E-12.00E-11.22E+0 (117/221) A.42E+1 - 3.66E+0Hartsville A.98E-1 - 3.66E+01.38E+0 (34/52) A.50E+1 - 2.37E+01.10E+0 (42/52) A.50E+1 - 2.37E+0Gross Bata 2.32E+28.20E-11.59E+0 (193/221) S.42E+1 - 5.13E+0Black Creek A.66E+0 (55/65)1.19E+0 (42/52) A.98E-1 - 2.33E+0 A.98E-1 -

2-13

\$,

H. B. Robinson Steam Electric Plant Darlington County, Sorth Carolina

Type and	Minimum	All Indicator	Location w/Highest Annual Mean		Control Locations	# of Nonroutine
Total # of Measurements Performed	Detectable Activity (MDA) (1)	Locations (2) Mean Range	Name Distance & Direction	Mean Range (2)	Mean Range (2)	Reported Measurements (3)
Gross Alpha	2.005-1	1.165+0.(29/48)	Prestwood Lake	1 215+0 (7/12)	1.015+0.(3/12)	N/A
60	2.002	4.69E-1 - 2.27E+0	4.9 ml ESE	5.74E-1 - 1.73E+0	6, 39E-1 - 1, 32E+0	1/0
	0.005.1	1 555-0 42401/				
60	8.20E-1	6.59E-1 - 2.30E+0	O.1 ml E	6.49E-1 - 2.30E+0	5.35E-1 - 2.02E+0	N/A
Sr-89	5.00E+0	2.00E+0 (1/48)	Plant Intake	2,00E+0 (1/12)	All less than MDA	N/A.
60		(single value)	0.1 mi E	(single value)		
Sr-90	1.20E+0	5,56E+0 (3/48)	Black Creek	8,61E+0 (1/12)	3.21E+0 (1/12)	N/A
60		3.80E+0 - 8.6 ⁺ +0	at Road 1623 0.6 ml ESE	(single value)	(single value)	
Tritium	3.50E+2	6.54E+2 (43/48)	Discharge Canal	7.51E+2 (11/12)	3.69E+2 (2/12)	N/A
00		4.51672 - 1.50675	3.8 mi N	4,49072 - 1,90049	J. 29ET2 - 4.10ET2	
	Type and Total # of Measurements Performed Gross Alpha 60 Gross Beta 60 Sr-89 60 Sr-90 60 Tritium 60	Type and Total # of Measurements PerformedMinimum Detectable Activity (MDA) (1)Gross Alpha 602.00E-1Gross Beta 608.20E-1Sr-89 605.00E+0Sr-90 601.20E+0Go3.50E+2	Type and Total # of MeasurementsMinimum Detectable Activity Mean (MDA) (1)All Indicator Locations (2) Mean RangeGross Alpha2.00E-11.16E+0 (29/48) 4.69E-1 - 2.27E+0Gross Bata 608.20E-11.55E+0 (47/48) 6.59E-1 - 2.30E+0Gross Bata 608.20E-11.55E+0 (47/48) 6.59E-1 - 2.30E+0Sr-89 605.00E+02.00E+0 (1/48) (single value)Sr-90 601.20E+05.56E+0 (3/48) 3.80E+0 - 8.61 +0Tritium 603.50E+26.54E+2 (43/48) 4.31E+2 - 1.36E+3	Type and Total # of Detectable Measurements ActivityAll Indicator Locations (2) Mean RangeLocation w/High Name Distance & DirectionGross Alpha 602.00E-11.16E+0 (29/48) 4.69E-1 - 2.27E+0Prestwood Lake 4.9 mi ESEGross Beta 608.20E-11.55E+0 (47/48) 6.59E-1 - 2.27E+0Plant Intake 0.1 mi EGross Beta 608.20E-11.55E+0 (47/48) 6.59E-1 - 2.30E+0Plant Intake 0.1 mi ESr-89 605.00E+02.00E+0 (1/48) (single value)Plant Intake 0.1 mi ESr-90 601.20E+05.56E+0 (3/48) 3.80E+0 - 8.61 +0 0.6 mi ESEBlack Creek at Road 1623 0.6 mi ESETriftium 603.50E+26.54E+2 (43/48) 4.31E+2 - 1.36E+3Discharge Canal 0.411 3.8 mi N	Type and Total # of Masurements Minimum Activity All Indicator Locations (2) Location w/Highest Annual Mean Name Mean Distance & Distance & Direction Gross Alpha 2.00E-1 1.16E+0 (29/48) Prestwood Lake 1.21E+0 (7/12) 60 4.69E-1 = 2.27E+0 4.9 ml ESE 5.74E-1 = 1.73E+0 Gross Beta 8.20E-1 1.55E+0 (47/48) Plant Intake 1.67E+0 (12/12) 60 6.59E-1 = 2.39E+0 0.1 ml E 6.49E-1 = 2.30E+0 Sr-89 5.00E+0 2.00E+0 (1/48) Plant Intake 2.00E+0 (1/12) 60 (single value) 0.1 ml E (single value) Sr-90 1.20E+0 5.56E+0 (3/48) Black Creek 8.61E+0 (1/12) 60 3.80E+0 = 8.61 +0 at Road 1623 (single value) 0.6 ml ESE 1.41E+2 = 1.36E+3 0.6 ml ESE	Type and Total # of Detectable Masurement 60Minimum Locations (2) ManAll Indicator Locations (2) Man RangaLocation w/Highest Annual Mean Mean Distance & DirectionControl Locations Mean Range (2)Gross Alpha 602,00E-11,16E+0 (29/48) 4.69E-1 - 2,27E+0Prestwood Lake 4.9 mi ESE1,21E+0 (7/12) 5,74E-1 - 1,73E+01,01E+0 (3/12) 6,39E-1 - 1,32E+0Gross Beta 608,20E-11,55E+0 (47/48) 6.59E-1 - 2,30E+0Plant Intake 0.1 mi E1,67E+0 (12/12) 6,49E-1 - 2,30E+01,31E+0 (11/12) 5,35E-1 - 2,02E+0Gross Beta

H. B. Robinson Steam Electric Plant Darlington County, Sorth Carolina Docket Numbers - 50-261 Calendar Year 1982

Modlum or Pathway	Type and	Minimum	All Indicator	Location w/Hig	hest Annual Mean	Control Locations	# of Nonroutine
Sampled or Measured (Unit of Measurement)	Total # of Measurements Performed	Detectable Activity (MDA) (1)	Locations (2) Mean Range	Name Distance & Direction	Mean Range (2)	Mean Range (2)	Reported Measurements (3
	Gamma						
Surface Water	72						
(pCi/liter)	Cs-137	9.00E+0	5.29E+0 (4/60)	Black Creek	5.84E+0 (1/12)	All less than MDA	N/A
(Monthly Composite)			4.44E+0 - 5.84E+0	at Road 1623	(single value)		
				0.6 ml ESE			
Surface Water	Gross Alpha	2.00E-1	8,70E-1 (13/16)	Prestwood Lake	1.00E+0 (4/4)	6.79E-1 (3/4)	N/A
(pCi/liter)	20		3.16E-1 - 1.30E+0	4.9 ml ESE	8.06E-1 - 1.26E+0	3.09E-1 - 1.31E+0	
(Quarterly							
Composite)							
	Gross Beta	8,20E-1	1.67E+0 (16/16)	Prestwood Lake	1.76E+0 (4/4)	1.30E+0 (4/4)	N/A
	20		9.73E-1 - 2.30E+0	4.9 ml ESE	1.31E+0 - 2.20E+0	9.40E-1 - 1.95E+0	
	Tritlum	3.50E+2	6,59E+2 (12/16)	Discharge Canal	8.24E+2 (3/4)	All less than MDA	N/A
	20		5.29E+2 - 1.06E+3	Outfall	6.80E+2 - 1.06E+3		
				3.8 ml N			
	Gamma						
Surface Water	52						
(pC1/llter)	Mn-54	8.00E-3	3.77E-2 (8/52)	Plant Intake	3.77E-2 (8/52)	No Control	N/A
(Ion Exchange			1.57E-2 - 8.03E-2	0.1 mi E	1.57E-2 - 8.03E-2		

Resin)

TABLE 2-1

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM SUMMARY

H. B. Robinson Steam Electric Plant Darlington County, Sorth Carolina

Type and	Minimum	All Indicator	Location w/Highe	ast Annual Mean	Control Locations	# of Nonroutine
Total # of Measurements Performed	Detectable Activity (MDA) (1)	Locations (2) Mean Range	Name Distance & Direction	Mean Range (2)	Mean Range (2)	Reported Measurements (3)
Gamma						
52						
Co-58	9.00E-3	1.01E-1 (32/52)	Plant Intake	1.01E-1 (32/52)	No Control	N/A
		6.61E-3 - 2.50E-1	0.1 ml E	6.61E-3 - 2.50E-1		
Co~60	9.00E-3	1.61E-1 (32/52)	Plant Intake	1.61E-1 (32/52)	No Control	N/A
		1.08E-2 - 4.36E-1	0.1 ml E	1.08E-2 - 4.36E-1		
Cs-137	9.00E-3	1.12E-1 (37/52) 2.71E-2 - 4.07E-1	Plant intake 0.1 mi E	1.12E-1 (37/52) 2.71E-2 - 4.07E-1	No Control	N/A
Gamma 52	N/A	All less than MDA	All less than MDA		No Control	N/A
TLD 261 ⁽⁸⁾	3.00E-1	1.91E+0 (249/249) 6.00E-1 - 7.30E+0	Robinson Unit 1 .02 mi E	4.65E+0 (12/12) 2.90E+0 - 7.30E+0	1.61E+0 (12/12) 1.10E+0 - 2.40E+0	N/A
	Type and Total # of Measurements Performed Gamma 52 Co-58 Co-60 Cs-137 Gamma 52 TLD 261 ⁽⁸⁾	Type and Total # of MeasurementsMinimum Detectable Activity (MDA) (1)Gamma52Co-589.00E-3Co-609.00E-3Cs-1379.00E-3GammaS2Cs-1379.00E-3TLD3.00E-1261	Type and Total # of Measurements Minimum Activity All Indicator Locations (2) Mean Performed (MDA) (1) Range Gamma 52 Co-58 9.00E-3 1.01E-1 (32/52) 6.61E-3 - 2.50E-1 Co-60 9.00E-3 1.61E-1 (32/52) 1.08E-2 - 4.36E-1 Cs-137 9.00E-3 1.12E-1 (37/52) 2.71E-2 - 4.07E-1 Gamma N/A All less than MDA 52 3.00E-1 1.91E+0 (249/249) 6.00E-1 - 7.30E+0	Type and Total # of Measurements Minimum Activity All Indicator Locations (2) Location #/Highe Name Measurements Activity Mean Distance & Direction Genmu 52 Co-58 9.00E-3 1.01E-1 (32/52) Plant Intake 6.61E-3 - 2.50E-1 0.1 ml E 6.61E-3 - 2.50E-1 0.1 ml E Co-60 9.00E-3 1.61E-1 (32/52) Plant Intake - 1.08E-2 - 4.36E-1 0.1 ml E - Cs-137 9.00E-3 1.12E-1 (37/52) Plant Intake 2.71E-2 - 4.07E-1 0.1 ml E - Gamma N/A All less Than MDA All less than MDA 52 - - - - Cs-137 9.00E-3 1.91E+0 (249/249) Robinson Unit 1 52 - - - - - 52 - - - - - -	Type and Total # of Measurements Minimum Detectable Activity All Indicator Locations (2) Mean Location w/Highest Annual Mean Name Mean Performed (MOA) (1) Range Distance & Distance & Range Range (2) Genmu (MOA) (1) Range Distance & Distance & Range Range (2) 52 (MOA) (1) Range Distance & Distance & Range Name Mean 52 (MOA) (1) Range Distance & Distance & Range 1,01E-1 (32/52) Plant Intake 1,01E-1 (32/52) Co-58 $9.00E-3$ $1.61E-1$ (32/52) Plant Intake $1.61E-1$ (32/52) Co-60 $9.00E-3$ $1.61E-1$ (32/52) Plant Intake $1.61E-1$ (32/52) Co-137 $9.00E-3$ $1.12E-1$ (37/52) Plant Intake $1.12E-1$ (37/52) $2.71E-2 - 4.07E-1$ 0.1 ml E $2.71E-2 - 4.07E-1$ 0.1 ml E $2.71E-2 - 4.07E-1$ Gamma N/A All less than MDA All less than MDA 52 TLD $3.00E-1$ $1.91E+0$ (249/249) Robinson Unit 1 $4.65E+0$ (12/12) $261^{(6)}$ <td>Type and Total # of Measurements Activity All indicator Locations (2) Mean Location w/Highest Annual Mean Mean Control Locations Mean Measurements Performed All indicator (MOA) (1) Locations (2) Mean Name Mean Mean Mean S2 Co-58 9.00E-5 1.01E-1 (32/52) Plant Intake 1.01E-1 (32/52) No Control 6.61E-3 - 2.50E-1 0.1 ml E 6.61E-3 - 2.50E-1 No Control Co-60 9.00E-5 1.61E-1 (32/52) Plant Intake 1.61E-1 (32/52) No Control Co-60 9.00E-5 1.61E-1 (32/52) Plant Intake 1.61E-1 (32/52) No Control Co-60 9.00E-5 1.61E-1 (32/52) Plant Intake 1.61E-1 (32/52) No Control Co-60 9.00E-5 1.12E-1 (37/52) Plant Intake 1.22E-1 (37/52) No Control Cs-137 9.00E-5 1.12E-1 (37/52) Plant Intake 1.12E-1 (37/52) No Control S2 1.12E-2 - 4.07E-1 0.1 ml E 2.71E-2 - 4.07E-1 No Control S2 1.91E+0 (249/249) Robinson Unit 1 <td< td=""></td<></td>	Type and Total # of Measurements Activity All indicator Locations (2) Mean Location w/Highest Annual Mean Mean Control Locations Mean Measurements Performed All indicator (MOA) (1) Locations (2) Mean Name Mean Mean Mean S2 Co-58 9.00E-5 1.01E-1 (32/52) Plant Intake 1.01E-1 (32/52) No Control 6.61E-3 - 2.50E-1 0.1 ml E 6.61E-3 - 2.50E-1 No Control Co-60 9.00E-5 1.61E-1 (32/52) Plant Intake 1.61E-1 (32/52) No Control Co-60 9.00E-5 1.61E-1 (32/52) Plant Intake 1.61E-1 (32/52) No Control Co-60 9.00E-5 1.61E-1 (32/52) Plant Intake 1.61E-1 (32/52) No Control Co-60 9.00E-5 1.12E-1 (37/52) Plant Intake 1.22E-1 (37/52) No Control Cs-137 9.00E-5 1.12E-1 (37/52) Plant Intake 1.12E-1 (37/52) No Control S2 1.12E-2 - 4.07E-1 0.1 ml E 2.71E-2 - 4.07E-1 No Control S2 1.91E+0 (249/249) Robinson Unit 1 <td< td=""></td<>

FOOTNOTES:

- Calculated based on three standard deviations above background, using typical sample size in a given counting time. Due to counting statistics and varying volumes, occasionally lower minimum detectable activities are achieved.
- Mean and range are based on detectable measurements only. The fractions of detectable measurements at specific locations are indicated in parentheses.
- Measurements in excess, at the 99.5 percent confidence level of ten times the control station value or ten times the minimum detectable activity (MDA)--whichever is larger. Present environmental technical specifications do not require such reports.
- 4. Air particulate and charcoal cartridges are collected weekly for a possible 364 samples. However, samples collected on January 18 and April 5 at Station 17 and Station 35 were unavailable due to burned-out compressor and to wind blowing air filter into creek.
- 5. Third quarter bottom feeder flesh and bone samples were lost in analysis.
- 6. Tobacco samples (cured and uncured) are considered to be food crops.
- 7. Surface water was sampled twice a week at Station 11 during the first quarter of 1982 as a result of not having a composite sample. There was a total of 273 samples collected during 1982 of which 26 samples were for the first quarter at Station 11, plus 39 samples for the remaining three quarters, plus 4 other stations times 52 weeks.
- 8. Three TLDs were reported as missing in the field: Stations 11, 30, and 12 for the month of October, September, and June, respectively.

3.0 IN TRPRETATION AND CONCLUSIONS

3.1 Air Samples

Air samples collected during 1982 contained no unusual levels of radioactivity. Gross alpha concentrations were measurable in 301 of 310 samples, averaging 1.09 E-2 pCi/m³, compared to the control station average of 1.30 E-2 pCi/m³. Measurable gross beta concentrations were observed in 309 of 310 samples, averaging 2.39 E-2 pCi/m³, compared to the control station average of 3.01 E-2 pCi/m³. These levels are consistent with preoperational data obtained for the H. B. Robinson Plant. Graphs of the individual air sampling station (gross beta activity) compared to control station gross beta activity are included as Figures 3-1 through 3-6 to demonst ate that all stations were comparable to the control station with no large deviation at any single location.

The monthly composite gamma and radiostrontium analyses for air particulate samples revealed only three radionuclides during 1982 as summarized in Table 3-1.

Table 3-1

Radionuclides Detected During 1982 in Monthly Composited Air Particulate Samples and Fractional Occurrence

Month	Location	Radionuclides (pCi/m ³)
February	Florence (1/12)	Sr-89
		2.90 E-3
March	Microwave Tower (1/12)	Sr-89
		8.48 E-4
Мау	Visitors Center (1/12)	Sr-90
		5.99 E-3
May	Hartsville - Control (1/12)	Sr-90
		5.93 E-4
May	End of Construction Road	Sr-89
	West of Plant (1/12)	7.43 E-3
October	Visitors Center (1/12)	Cs-137
0000001		7.02 E-3
October	Microwaya Towar (1/12)	Cc-137
occober	HICTOWAVE TOWET (1/12)	3 01 5-3
		J.JI L=J

The concentrations and sporadic appearances of these radionuclides are consistent with ambient levels observed in recent years. In general, these radionuclides do not indicate the Robinson Plant as their source since other shorter-lived fission products would likewise be detected in these samples.

3-3

Figure 3-1

3-5

Figure 3-3

Figure 3-4

DATE

3.2 Aquatic Vegetation and Bottom Sediment

Aquatic vegetation and bottom sediment samples are taken quarterly at five locations to monitor the expected effluent path from the Robinson Plant. An additional bottom sediment sample is taken quarterly at the plant intake. Monthly bottom sediment and aquatic vegetation samples are taken from the open ditch (Station 33) near the Visitors Center in order to monitor any liquid effluent from those locations where only low-level activity concentrations are expected.

Gamma analyses revealed the continued presence of several radionuclides predominant in plant liquid effluent as well as fission products attributed to old debris from nuclear testing. These radionuclides are summarized in Table 3-2.

Table 3-2

Average Concentration (pCi/g dry) and Fractional Occurrences of Radionuclides in Bottom Sediment and Aquatic Vegetation

BOTTOM SEDIMENT

Isotope	Annual Average (pCi/g dry)	Location with Highest Annual Mean
Co-60	3.040 (19/32)	SD-33
Sr-89	0.100 (1/32)	SD-5
Sr-90	0.275 (5/32)	SD-33
Cs-137	0.522 (21/32)	SD-33
Ce-141	0.223 (1/32)	SD-11

Table 3-2

(Continued)

AQUATIC VEGETATION

	Annual Average	Location with Highest
Isotope	(pCi/g dry)	Annual Mean
Ma 54	0 275 (5/32)	0V-8
Co-58	0.680 (9/32)	AV-8
Co-60	0.879 (11/32)	AV-8
Sr-89	0.202 (5/28)	AV-21
Sr-90	0.099 (7/28)	AV+8
Nb-95	0.168 (1/32)	AV-21
Cs-134	0.364 (3/32)	AV-33
Cs-137	1.030 (28/32)	AV-33
Ce-144	0.733 (4/32)	AV-21

Most occurrences of activity observed were at Station 33. The activity at this location <u>is lower than previous years</u> and is within the confines of the plant. It discharges just below the spillway where the general public has minimum access. The samples collected at Station 11, located approximately 200 yards downstream from the discharge point of Station 33, showed no significant increases in comparison to previous data. Bottom sediments and aquatic vegetation are not consumed by man but are useful for documentation of trends in plant effluent. Review of past data indicates that there is no continuous increase in the concentrations observed at any sampling locations.

3.3 Fish

Fish samples are analyzed quarterly for radiostrontium and gamma-emitting radionuclides. Strontium-89 was observed once in free swimmers during the fourth quarter of 1982 and once in bottom feeders during the first quarter of 1982 at the concentration of 0.538 pCi/g (dry) and 0.610 pCi/g (dry), respectively. The concomitant dose to man is insignificant (<0.001 mrem/year).

The strontium-90 and cesium-137 continued to manifest itself in fish flesh as summarized in Table 3-3.

Table 3-3

Average Concentration of Radionuclides in Fish Flesh (pCi/gram dry)

Radionuclide	Bottom Feeders	Free Swimmers
Sr-90	0.460 (3/3)	0.184 (3/4)
Cs-137	0.575 (3/3)	0.698 (4/4)

It is worthy of note that strontium-90 and cesium-137 concentrations are lower in comparison to previous years.

During the fourth quarter of 1982, a special study was performed to evaluate the strontium-90 and cesium-137 activity in fish samples. Samples were collected from Lake Bee (9.0 miles NW) which is totally unaffected by nuclear operations of H. B. Robinson. These special samples, as well as the usual quarterly Lake Robinson samples, were separated by species and analyzed for strontium-90 and cesium-137. These results are compared in Table 3-4.

Table 3-4 Fish in Lake Bee Compared to Fish in H. B. Robinson Lake (pCi/kg wet)

Collection			н	. B. Robinson
Date	Species	Radionuclide	Lake Bee	Lake
10/18/82	Chub Sucker	Cs-137	133.0	290.0
		Sr-90	344.0	227.0
10/18/82	Sun Fish	Cs-137	116.0	311.0
		Sr-90	732.0	150.0
10/18/82	Large Mouth Bass	Cs-137	259.0	No Sample
		Sr-90	120.0	No Sample
10/18/82	Pickeral	Cs-137	No Sample	336.0
		Sr-90	No Sample	359.0
10/18/82	Yellow Bull Head	Cs-137	346.0	231.0
		Sr-90	49.1	80.8
11/10/82	Spotted Sucker	Cs-137	No Sample	37.2
		Sr-90	No Sample	117.0

Table 3-4 - (Continued) Fish in Lake Bee Compared to Fish in H. B. Robinson Lake (pCi/kg wet)

Collection				H. B. Robinson
Date	Species	Radionuclide	Lake Bee	Lake
11/10/82	Chub Sucker	Cs-137	*173.0	72.1
		Sr-90	*353.0	89.0
11/10/82	Sunfish	Cs-137	*184.0	No Sample
		Sr-90	*504.0	No Sample
11/10/82	Pickeral	Cs-137	*394.0	309.0
10/10/01	- roner ur	Sr-90	*368.0	66.4
12/01/82	Bass	Cs-137	318.0	No Sample
		Sr-90	178.0	No Sample

*Collected on 12/01/82

A statistical t-test* was performed on cesium-137 and strontium-90 data for bottom feeders and free swimmers to determine if fish from Lake Robinson exhibited significantly higher concentrations of these radionuclides than those observed in fish from Lake Bee. At the 95 percent confidence level, no significant difference was determined to exist.

^{*}This test was performed as described by Section 3-3.2, Page 3-4, <u>Experimental Statistics</u>, Handbook 91, United States Department of Commerce, Hational Bureau of Standards, August 1, 1963.

3.4 Vegetation

Cattle feed (FO) and locally grown food crops (FC) were sampled and analyzed for gamma-emitting radionuclides. The only radionuclide detected was cesium-137 as summarized in Table 3-5. The low-level cesium-137 activity detected is believed to be attributable to contamination of the Ge(Li) detectors at the time of analysis.

Table 3-5

Average Concentration (pCi/g dry) and Fractional Occurrences of Radionuclides in Cattle Feed and Food Crops

Cattle Feed (FO)

Isotope	Annual Avg. (pCi/g)	Fractional Occurrence
Ca 127	0.265	2/4
65-13/	0.205	3/4

Food Crop (FC)

Isotope	Annual Avg. (pCi/g)	Fractional Occurrence
Cs-137	0.352	3/6

3.5 Groundwater

Quarterly groundwater samples for all three sampling stations showed no indication of plant-contributed radioactivity.

Gross alpha activity was observed in 8 of 12 samples averaging 9.74 E-1 pCi/1. Gross beta activity was detected in 9 of 12 samples averaging 9.44 E-1 pCi/1. This average is comparable to data obtained during preoperational surveillance. Radiostrontium analyses revealed no measurable activity. Tritium was detected in 2 of 12 analyses at an average concentration of 211 pCi/1 with high relative counting errors. This average is considerably lower than the normal minimum detectable activity of 350 pCi/1. Gamma analyses revealed cesium-137 activity at an average concentration of 7.35 pCi/1 in 2 of 12 samples. This is not possible since it is 7 times higher than the gross beta analysis. Again, contamination is suspected. Subsequent samples contained no detectable levels of cesium-137.

3.6 Milk samples

Monthly milk samples were taken at two locations and analyzed for radioiodine, radiostrontium, and gamma-emitting radionuclides.

Radiochemical determination of I-131 yielded measurable activity in 3 of 24 samples analyzed. For the collection periods of 4/19/82, 5/10/82, and 9/13/82, iodine-131 activity concentrations were 0.49 pCi/1, 0.96 pCi/1, and 0.623 pCi/1, respectively. The samples collected on 4/19/82 and 9/13/82 were counted by a low-beta counter. These activities were at or below the required minimum detectable activity of 0.5 pCi/1 and appears to be statistical artifacts. The sample collected on 5/10/82 was counted by a beta-gamma coincidence system. This system was recalibrated using a new detector and standard on 5/3/82. It appears in retrospect that this sample was analyzed immediately following a QC check and may be attributed to contamination of the detector.

Radiostrontium analyses of milk revealed Sr-89 in 4 of 24 samples averaging 3.65 pCi/l. Strontium-90 was detected in 8 of 24 samples averaging 2.37 pCi/l. These concentrations are in agreement with averages from previous years and do not indicate that the Robinson operation affects the milk pathway to man during 1982.

Gamma isotopic analyses detected Cs-137 in 5 of the 24 samples averaging 7.55 pCi/l. These levels of Cs-137 in milk are representative of data obtained over the last several years and reflect the accumulation of debris from old and recent nuclear weapons testing.

3.7 Soil Samples

Ten sampling locations are sampled every three years. Two sample locations are sampled semiannually on a rotating basis. During 1982, Station 2 (Visitors Center), Station 9 (Microwave Tower), Station 22 (Hartsville), and Station 24 (Black Creek at U.S. 1) were sampled and analyzed for gross beta, strontium, and gamma emitters.

Station 49 (East Shore of Lake at Boat Launch) is sampled semiannually as shoreline sediment and is analyzed for gross beta and gamma emitters. In addition, Station 50 (Ash Pond) was added to the sampling program in 1981. This station is sampled semiannually and analyzed for gamma-emitting radionuclides. Station 50 is located within the site boundary and was added to the environmental program as a directive from the Company's Nuclear Safety and Research Department. Gross beta activities were detected in 6 of 6 samples analyzed averaging 5.06 E-1 pCi/g. This is in agreement with gross beta activities observed on the same sample type during preoperational surveillance. Gamma analyses revealed cesium-137 in 5 of 8 samples analyzed. All concentrations observed were comparable to previous data reported for the area.

Low levels of Co-60 and Cs-137 were detected at Station 50. Since this is a new station, there is no previous data with which to compare the activities measured. The results are comparable to those observed in bottom sediment sampled at Station 33 which is also located on site.

3.8 Surface Water

Gross alpha and gross beta activities in weekly surface water samples were generally consistent with previous surveillance data. Gross alpha concentrations were measurable in 117 of 221 samples analyzed. The average of 1.22 E+O pCi/l was comparable to the control station average of 1.10 E+O pCi/l. Measurable gross beta concentrations were reported in 193 of 221 samples averaging 1.59 E+O pCi/l. These gross beta activities are comparable to the average of 4.08 E+O pCi/l reported during preoperational surveillance. These activities were consistent at all stations, with no one station showing significant deviation as shown in Figures 3-7 through 3-10.

Monthly composites of the weekly samples showed measurable gross alpha and beta activities in 29 of 48 and 47 of 48 cases, respectively. The average concentration for gross alpha and gross beta in these samples was 1.16 E+0 pCi/l and 1.55 E+0 pCi/l, respectively. These compare favorably with the control station averages of 1.01 E+0 pCi/l and 1.31 E + 0 pCi/l for gross alpha and gross beta, respectively.

Quarterly composites of the monthly composites revealed measurable alpha and beta activities similiar to the monthly samples. Gross alpha activity was detected in 13 of 16 samples, averaging 8.70 E-1 pCi/l compared to 6.79 E-1 pCi/l at the control station. Measurable gross beta activity was observed in 16 of 16 samples averaging 1.67 E+0 pCi/l. This is comparable to 1.30 E+0 pCi/l detected at the control location.

Tritium activity concentrations were determined in weekly samples, monthly composites, and quarterly composites. The tritium measured in the composites was consistent with that reported in samples from which the composites were made. All activities are comparable to previous data revealing no increase in activity. The tritium data is summarized by station below:

Tritium Concentrations (pCi/1)

Weekly Samples	SW-5	SW-8	SW-11	SW-32
Average	703	781	729	650
Range	337-1830	351-2260	324-2580	331-1590
Monthly Composite				
Average	652	751	598	614
Range	484-911	445-1360	431-794	431-1150
Quarterly Composite				
Average	632	824	636	497
Range	507-766	680-1060	435-808	329-665

Specific isotopic analyses of monthly surface water composites were accomplished through high resolution gamma spectrometry. In 68 of 72 samples analyzed, no fission or activation products were measurable. The four exceptions are given below:

Contractor Companies	Cs-137	pCi/l
September composite	SW-11	5.84 ± 1.28
November Composite	SW-05 SW-08 SW-50	5.26 ± 1.24 4.44 ± 1.26 5.64 ± 1.53

The sporadic appearance of cesium-137 in several isolated cases does not clearly indicate the Robinson Plant as the source. The activities observed are below the typical minimum detectable activity of 9.0 pCi/l with high relative counting errors.

Radiostrontium analyses of monthly composited surface water samples revealed a single incidence of Sr-89 activity at the concentration of 2.00 pCi/l during May at Station 5. Strontium-90 activity was quantified in 3 of 60 analyses at an average concentration at Station 5 at a concentration of 5.56 pCi/l. The sporadic appearance of strontium-90 in surface water does not clearly indicate the Robinson Plant as the source.

The measurement of very low levels of fission and activation products in lake water was also performed during the year. Weekly samples on the order of several thousand liters were concentrated on mixed bed ion exchange resin (for ion collection) and glasswool (for suspended particulate collection). Thus, the analytical sensitivity for gamma isotopic analyses was improved sufficiently to allow measurement of many fission and activation products. The radionuclides measured by this method are listed in Table 3-6.

Table 3-6

Ion Exchange Resin (pCi/1)

Radionuclide	Occurrence	Average	High	Low	
		(pCi/1)	(pCi/1)	(pCi/1)	
Mn-54	8/52	3.77 E-2	8.03 E-2	1.57 E-2	
Co-58	32/52	1.01 E-1	2.50 E-1	6.61 E-3	
Co-60	32/52	1.61 E-1	4.36 E-1	1.08 E-2	
Cs-137	37/52	1.12 E-1	4.07 E-1	2.71 E-2	

Comparison of radionuclide concentrations collected on the resin and glasswool indicates a much greater fraction of the radionuclides appear in ionic form rather than as suspended particulates.

3-22

Figure 3-7

Figure 3-9

3.9 Thermoluminescent Dosimetry Area Monitors

The average dose rate from all indicator stations 1.91 mrem/wk which is comparable to the control station average of 1.61 mrem/wk. The only significantly higher reading was observed at Station 7 (Robinson Unit 1). This station has traditionally exhibited higher readings and shows no significant change from previous years.

3.10 Summary

In summary, the following statements can be made in regard to all radioactive effluents (air particulate, gaseous, and liquid) from the H. B. Robinson Steam Electric Plant:

- All detectable radioactivities have been below the levels set forth in the Code of Federal Regulations, Title 10, Part 20.
- The radioactivity released from the H. B. Robinson Steam Electric Plant has not significantly increased the amount of radioactivity detected in the environs surrounding the plant.
- 3. The environmental analyses performed during 1982 demonstrate that the H. B. Robinson Steam Electric Plant and the environment can exist in harmony and produce electricity safely while ensuring the safety of the general public.

4.0 MISSED SAMPLES AND ANALYSES

4.1 Air Particulate (Weekly)

Samples collected January 18, 1982, and April 5, 1982, at Station 17 and Station 35 were unavailable due to a burned out compressor and due to wind blowing air filter into creek, respectively.

4.2 Fish

Third quarter bottom feeder flesh and bone samples were lost in analysis.

4.3 Environmental TLDs

The following thermoluminescent dosimeter results were missing in 1982:

Month	Sample Station	Reason		
January	12	Badge Lost in Field		
September	30	Badge Lost in Field		
October	11	Badge Lost in Field		