Groundwater Restoration Report for RME-Halliburton-Mono Power Nine Mile Lake R&D In Situ Uranium Project

OFFICIAL DOCKET COPY

8210180405 820830 PDR ADDCK 04008380 C PDR

8

.

Ref: UR 82-182

A Subsidiary of Union Pacific Corporation

ENERGY

Mr. Walt Ackerman, Administrator Land Quality Division Department of Environmental Quality 401 West 19th Street Cheyenne, WY 82002

ROCKY MOUNTAIN

Mr. Bill Garland, Administrator Water Quality Division Department of Environmental Quality 1111 E. Lincolnway Cheyenne, WY 82002

Mr. Ross Scarano, Chief Uranium Recovery Licensing Branch Division of Waste Management U.S. Nuclear Regulatory Commission 7915 Eastern Avenue Silver Spring, MD 20910

Dear Sirs:

C

Re: Nine Mile Lake R&D In Situ Project Source Material License SUA-1228; Docket No. 40-8380 DEQ R&D In Situ License TFN 1 5/186 DEQ License to Explore No. LE-4

Attached is Rocky Mountain Energy Company's Groundwater Restoration Report for the Nine Mile Lake R&D in situ uranium mining project. The report describes the operational history and water quality of the acid leach test patterns (Patterns 1,2, and 3) at the Nine Mile Lake site in Matrona County, Wyoming. This report is submitted pursuant to DEQ and NRC requests and in support of RME's position that restoration requirements for the acid patterns have been fulfilled. Restoration of the carbonate leach test (Pattern 4) has been very successful and will be discussed in a separate report.

10 Longs Peak Drive Box 2000 Broomheld: Colorado 60020

OFFICIAL DOCKET COPY

August 30, 1982

RECEIVED SEP 0 9 1982 U.S. Nuclear Regulatory Convergence Mail Election

40-8380

4 1982

DOCKETED

OCT

Mr. Ackerman Mr. Garland Mr. Scarano August 31, 1982 Page Two

As DEQ and NRC personnel know, RME has withdrawn production scale license applications for this project and has no current plans to continue R&D activities. RME has made considerable improvements in developing effective acid restoration techniques as demonstrated by the relative success of Pattern 3 restoration efforts. At this time, RME does not intend to pursue production scale mining, but improvements in current uranium market conditions or further developments in acid restoration technologies could conceivably justify future project development.

Included in the report are: a summary of leaching, restoration and post-restoration activities for each pattern, baseline and post-restoration water quality data for each pattern, evaluations of probable fate of residual groundwater constituents of particular interest, a regional aquifer impact analysis and a discussion of regulatory agency restoration requirements.

RME requests an expedient review of this report by the NRC and Land and Water Quality Divisions of the DEQ in order to implement appropriate management plans for the project. We would encourage a cooperative agency review of the material presented and suggest a joint meeting of Land and Water Quality Divisions to discuss report contents as soon as practical.

We would also welcome phone calls during the initial review period to answer any questions which arise. Because there is a considerable volume of information and data within the report, verbal communications could help focus review efforts.

Sincerely,

Michael R. Neuman

Michael R. Neumann Licensing Specialist

Attachment

cc: Mr. K. Kalman(NRC) Mr. F. Ross(NRC) Ms. K. Ogle(DEQ-LQD) Mr. R. Chancellor (DEQ-LQD, District 4) Mr. A. Mancini (DEQ-WQD) Mr. T. Mueller (DEQ-WQD, District 4)

OFFICIAL DOCKET COPY

Nine Mile Lake Groundwater Restoration Report

TABLE OF CONTENTS

Section

4. 7

Description

Page

	Executive Summary i
	Introduction 1
1.0 1.1 1.2 1.3 1.4	Pattern 1 Operational History 1 Leaching
2.0 2.1 2.2 2.3 2.4	Pattern 2 Operational History24 Leaching
3.0 3.1 3.2 3.3 3.4	Pattern 3 Operational History46 Leaching
4.0	Chemical Migration Analyses69
5.0 5.1 5.2 5.3	Regional Aquifer Impact
6.0 6.1 6.2	Regulatory Compliance

Appendices

 1 8 g ×

Water Quality DataAppendix	A
Chemical Migration AnalysesAppendix	В
Pattern 3 Excursion ReportAppendix	C
Groundwater ClassificationAppendix	D
Regulatory Agency Correspondence Appendix	E

OFFICIAL DOCKET COPY

20723

100

Sec. 18.8

1 3

. .

Nine Mile Lake Groundwater Restoration Report EXECUTIVE SUMMARY

Introduction

The Nine Mile Lake Groundwater Restoration report has been prepared pursuant to license or permit requirements of the Wyoming Department of Environmental Quality (DEQ) and the U.S. Nuclear Regulatory Commission (NRC). The report summarizes results of acid leaching and restoration tests conducted over a six year period at the RME-Halliburton-Mono Power joint venture at the Nine Mile Lake site in Natrona County, Wyoming. Information and analyses presented demonstrate that all groundwater restoration requirements have been fully met.

Report Summary

Sections 1.0, 2.0 and 3.0 discuss operational histories of three acid test patterns and present results of groundwater restoration programs. Data sufficient to evaluate groundwater quality before, during and following restoration of each pattern are included. Post restoration groundwater quality has been thoroughly evaluated on the basis of two laboratory analyses of samples collected from 32 pattern injection, production and monitor wells during February, 1982. Data evaluation confirms that affected groundwaters have been restored to a condition and quality of use consistent with pre-mining use suitability.

Section 4.0 summarizes results of two chemical migration modeling studies conducted by RME personnel and a geohydrologic consultant to estimate the magnitude and extent of potential groundwater contaminant movement from the acid patterns. The most probable and worst case assessments predict that residual contaminants of concern will be reduced to site background concentrations within a distance of less than one half mile of the R&D permit area.

Section 5.0 discusses potential aquifer water quality and use impacts. Ambient background water quality is generally poor and suitable only for industrial use. No wells other than those controlled by RME appropriate groundwater from the host aquifer within a 3 mile radius of the test site. It is, therefore, highly improbable that any existing sources of water supply would be adversely affected by post restoration water quality.

Section 6.0 reviews appropriate licenses, permit conditions and regulations applicable to groundwater restoration requirements for Patterns 1,2, and 3. All permit and license obligations regarding restoration have been fully met as have pertinent regulatory agency requirements.

-1-

OFFICIAL DOCKET COPY

Discussion

Test work at Nine Mile Lake was initiated in 1976 to evaluate the feasibility of an untried technology to recover uranium in a cost effective, environmentally acceptable manner. In situ mining of uranium by means of an acidic leach solution was an innovative technique so knowledge gained through operations provided the only reliable means of obtaining information. As with any research and development endeavor, not all tests were entirely successful, but a great deal of valuable information was obtained. In keeping with the philosophy of an R&D operation, results obtained from initial test work were used to refine and guide subsequent research efforts.

Results of Pattern 1 leaching and restoration efforts conducted from November 1976 through October 1978, were disappointing. Ineffective well completion techniques, equipment failures and an inadequate understanding of formation geochemical reactions contributed to the build up of gypsum deposits within the formation. These deposits thwarted efforts to restore groundwater quality by sweeping the pattern interior with clean formation water and created a source of high calcium and sodium concentrations.

Subsequent restoration programs resulted in considerable water quality improvement within the pattern, however, water quality deterioration occurs rapidly with the dissolution of residual gypsum (CaSO4). Resulting groundwater contaminants, are composed primarily of soluble salts which pose essentially no environmental or health hazard. Previous experience indicates further restoration efforts would be ineffective in achieving permanent water quality improvement.

Pattern 2 test activities, which began in December 1977 and concluded in September 1979, were successful due to experience gained with Pattern 1 and technological improvements. The amenability of the Nine Mile Lake orebody to solution mining with an acid lixiviant was confirmed. Uranium head grades were more than adequate to justify further project development work. Control of solutions within the test pattern was maintained throughout leaching operations and initial restoration results were encouraging.

Stabilization monitoring revealed some deterioration of water quality so additional restoration programs were subsequently conducted. These efforts successfully retrieved "pods" of affected groundwater and restored outlying portions of the pattern apparently not contacted during the initial restoration program. All major parameters and minor constituents except aluminum, vanadium, and zinc were within pattern baseline ranges when restoration was terminated in February 1982.

-ii-

OFFICIAL DOCKET COPY

A third pattern was planned to test the feasibility of simultaneous upper and lower ore zone leaching due to the favorable results of the second acid leach test. Problems with unbalanced injection flow rates were encountered soon after leaching began (September, 1979). Upper ore zone injection flow rates were found to be much greater than lower zone rates which resulted in a temporary loss of solution control. Immediate remedial actions effectively restored solution control while corrective measures designed to allow independent control of upper and lower ore zone injection/production rates were implemented. Corrective measures were not as effective as planned and Pattern 3 leaching efforts were terminated prematurely.

Restoration of Pattern 3 was deferred while testing of a sodium bicarbonate lixiviant was conducted in a fourth pattern. A small production rate from Pattern 3 was maintained during this period to prevent uncontrolled solution movement away from the pattern. Restoration using a modified groundwater sweep process began in August 1981 and was completed February 1, 1982. Restoration results were significantly better than had been previously achieved in Patterns 1 and 2. This improvement is largely attributed to restoration flow rates equal to or greater than leaching flow rates, a relatively short leaching period, and an apparent lack of gypsum buildup in the formation.

Post restoration water quality indicated all parameters were restored to background concentrations except radium and vanadium which were moderately higher in some interior wells. Post restoration monitoring over six months has shown essentially no changes in water quality other than radium levels in one well.

Conclusions

Six years of research work at the Nine Mile Lake site has confirmed the feasibility of recovering uranium from the host formation by means of a sulfuric acid leach solution and in situ mining techniques. A considerable amount of time, effort and money have been expended to develop a groundwater restoration process which would be environmentally acceptable and commercially viable. Although initial groundwater attempts were only partially successful, progressive technological advances have occurred, largely through trial and error, which suggest it may be feasible to meet restoration requirements on a commercial scale basis.

Groundwater within the three acid test patterns has been restored "to a condition such that its quality of use is equal to and consistent with the use for which the water was suitable prior to the commencement of the operation" in accordance with Department of Environmental Quality rules and regulations. Thorough evaluation of post restoration water quality, regional background water quality, and existing aquifer use characteristics indicate the potential for adverse environmental impacts due to residual groundwater contamination is negligible. Further

OFFICIAL DOCKET COPY

restoration attempts using best practicable technology would not cause any significant, permanent improvements in water quality. All license or permit requirements pertinent to groundwater restoration have been fulfilled as have all applicable regulatory agency requirements.

R

NINE MILE LAKE GROUNDWATER RESTORATION REPORT JUNE 21, 1982

Introduction

The purpose of this report is to describe results of the sulfuric acid leach and restoration tests of the Teapot Sandstone at Rocky Mountain Energy's Nine Mile Lake in situ research and development project. The report compares restored groundwater quality in test Patterns 1, 2, and 3 to site and regional background water quality and presents two analyses of the probable fate of key groundwater constituents remaining at levels above background ranges. Also included are a discussion of potential regional aquifer impacts and review of regulatory agency requirements pertinent to groundwater restoration.

This report is intended to demonstrate that RME has fulfilled all appropriate groundwater restoration obligations and that "affected groundwaters have been restored to a condition such that its quality of use is equal to and consistent with the use for which the water was suitable prior to the commencement of the operation," in accordance with Wyoming Department of Environmental Quality Land and Water Quality Division rules and regulations (Land Quality Rules and Regulations, Chapter XXI; Water Quality Rules and Regulations, Chapter VIII).

1.0 Operational History - Pattern 1

Pattern 1 is a seven spot pattern consisting of sixOFFICIAL DOCKET GOPY20723

injection wells equally spaced along a 50-foot radius from a central production well. Figure 1.1 shows the pattern location and approximate well configuration. All wells were completed with screens through the entire <u>upper</u> ore zone (25 feet) of the Teapot Sandstone. Four monitor wells, located at right angles from the pattern interior, were also completed in the upper ore zone.

1.1 Pattern 1 Leaching

Leaching began in November of 1976 using a sulfuric acid (H_2SO_4) leach solution at a strength of 1.5 to 2.0 grams/liter and hydrogen peroxide (H_2O_2) as an oxidant. Leaching continued sporadically at a production rate of about 40 gpm through August of 1977 during which time approximately 8 pore volumes were circulated through the pattern and 200 pounds of yellowcake recovered.

Numerous problems due to well plugging, channeling, and equipment failure plagued leaching operations. Natural geochemical reactions between the leach solution, host formation and ambient groundwate² led to build up of gypsum (CaSO₄) within the formation.

1.2 Pattern 1 Restoration

Initial Pattern 1 restoration efforts consisted of a groundwater sweep at 30 to 46 gpm which began in September of 1977 and continued intermittently for 13 months until October of 1978. Rotating production from the six injection wells and single production well was necessary to maintain adequate flow rates.

OFFICIAL DOCKEZ-COPY

Approximately 12 pore volumes (1 PV = 925,000 gal) of affected groundwater were removed during this restoration phase. Water quality within the pattern interior had been restored to approximately background range except for pH, calcium, sodium, and TDS. Table 1.1 compares water quality in the production and injection wells at the end of phase 1 restoration with baseline ranges.

Table 1.1

Pattern 1 Water Quality Post Restoration October 1978

	Base	line		Well N	umber	
Parameter	Ran	ige	P-1A	<u>1-1</u>	<u>1-3</u>	<u>1-5</u>
pH	6.6 -	7.1	5.9	6.6	6.4	6.3
TDS	2225 -	2780	2074	2628	5326	5469
SO4	1100 -	1450	1850	1410	2400	2250
Ca	71 -	104	66	128	161	140
C1	1.8 -	4.9	38	-	31	43
Na	560 -	- 772	494	711	1250	1280
Mg	46 -	63	48	78	102	135
K	7.0 -	16.2	13	11	13	14
U308	0.002 -	2.00	0.022	0.053	0.155	0.021
V	ND -	0.10	0.03	0.07	0.04	ND

Note: All values reported as mg/l except pH (std. units)

From the fall of 1978 through the spring of 1981, Pattern 1 remained inactive except for periodic pumping for miscellaneous use. Occasional sampling during this period showed substantial water quality deterioration primarily due to dissolution of gypsum within the pattern interior which increased TDS levels. High TDS levels were largely due to sulfate, sodium, magnesium, calcium, chloride, and potassium ions. No significant increases in trace metal concentrations were observed which substantiates the fact that very little mobilization of heavy

OFFICIAL DOCKET COPY

metals, including uranium, occurred during leaching. pH remained fairly constant during this period at about 6.3 to 6.5.

Although not required by license or permit, several restoration attempts were made beginning in April 1981 using a variety of water treatment processes and filtration methods to obtain a product suitable for reinjection. Treatment of affected groundwater by means of a lime and soda ash circuits in various combinations with charcoal and mechanical filtration devices, using different flocculents and sequestering agents for chemical pretreatment, were all unsuccessful.

During May 1981, efforts to restore groundwater with reverse osmosis (RO) treatment were begun. Due to water quality variability within the pattern interior, suitable pretreatment methods to allow reliable RO performance were not developed until. the end of May. From May 31 through June 30, satisfactory RO performance was achieved and restoration continued at about 22 gpm with 20 gpm reinjected. Restoration was discontinued and the pattern shut down to evaluate stability as little or no improvement in water quality was occurring and most constituents had been restored to background range. Water quality deterioration began rapidly so RO restoration was started again July 28 and continued through August 17 when all parameters were again within baseline range with no further improvement occurring. Table 1.2 compares production fluid water quality at shutdown with background water quality.

OFFICIAL DOCKET COPY

Monthly stabilization monitoring of the pattern has again shown a gradual deterioration in water quality from September through December 1981, despite having returned all parameters to baseline range during the last restoration phase. A total of 2.6 pore volumes were recovered from the pattern with 2.2 pore volumes of treated water reinjected from May 1981 through August 1981. Table 1.3 summarizes leaching and restoration injection and production volumes. A total of 13.8 pore volumes of affected water were removed during restoration versus 6.9 pore volumes injected during leaching.

Table 1.2

Pattern 1 Water Quality August 1981

Parameter	Baseli	ne Range	Production Fluid
PH	6.6 -	7.1	6.3
TDS	2225 -	2780	2560
SO4	1100 -	1450	1429
Ca	71 -	104	80
Cl	1.8 -	4.9	37
Na	560 -	772	664
Mg	46 -	63	46
K	7.0 -	16.2	7.7
U_08	0.002 -	2.00	0.10
V	ND -	0.10	0.09

Note: All values reported as mg/l except pH (std. units)

1.3 Pattern 1 Post Restoration Water Quality

Gradual deterioration of water quality has been observed in the pattern interior since the last restoration effort. Table Pl-1 through Pl-11 present well sampling results for all pattern production, injection, and monitor wells as of February 23, 1982. Appendix A presents EPA certified laboratory results for the February sampling. Also included in Tables Pl-1, Pl-2, Pl-8,

OFFICIAL DOCKET COPY

TABLE 1.3

PATTERN 1

WATER BALANCE SUMMARY

OPERATIONAL MODE	PRODUCTION (GAL.)	PORE ¹ VOLUMES	INJECTION (GAL.)	PORE VOLUMES	NET PRODUCTION (GAL.)
Leaching 11/76 - 8/77	7,327,348	7.9	6,386,881	6.9	940,467
Restoration					
Phase 1 (9/77 - 10/78)	10,345,012	11.2			10,345,012
Phase 2 (5/81 - 6/81)	1,954,291	2.1	1,598,905	1.7	355,386
Phase 3 (7/81 - 8/81)	464,415	0.5	405,050		59,365
TOTAL	12,763,718	13.8	2,003,955	1.7	10,759,763
			TOTAL WATER COL	NSUMPTION = 11.7	00.290 gallons

¹ One Pore Volume = 925,276 gallons

20723

Total number of restoration pore volumes = 174% of mining pore volumes

06/22/82 MRN

NINE MILE LAKE PATTERN 1 P-1A

	PATTERN* BASELINE RANGE	PATTERN* BASELINE MEAN	NML. 2/24/82	CDM 2/24/82	NML 3/8/82	NML 4/7/82	NML 5/4/82
pH	6.6-7.1	6.9	6.5	6.9	6.4	6.4	6.3
Conductivity	2860-3650	3162	10300	14000	10500	11000	11000
Major Constituents							
Bicarbonate	271-370	316	354	270	360	362	362
Carbonate	0-0	0	0	0	0	0	0
Alkalinity as CaCO,	222-303	259	290	223	295	297	297
Calcium	71-104	87	397	340	422	337	350
Chloride	1.8-4.9	3.3	113	99	101	124	145
Magnesium	46-63	50	179	161	189	146	190
Potassium	7.0-16.2	12.8	16.2	12	19.2	17.0	18.7
Sodium	560-772	620	2459	2300	2674	2474	2268
Sulfate	1100-1450	1240	0184	6190	6208	6589	5771
TDS	2225-2780	2483	10020	9150	10180	10520	10880
Anion/Cation			97	96	105	97	101
Minor Constituents							
Ammonia as N	0.02-0.42	0.22		\$0.2			
Nitrate as N	0.04-0.48	0.14	-	\$0.05			
Nitrite as N	0.01-0.58	0.12		\$0.05			
Aluminum	< 0.1	<0.1	0.09	\$0.5			
Arsenic	(0.01	<0.01		\$0.005			
Cadmium	0.01-0.04	0.02	0.01	0.011			
Chromium	(0.01	<0.01		0.02			
Copper	ND-0.03	0.015	0.06	0.116			
Fluoride	0.53-0.61	0.58	0.36	0.1			
Iron	ND-1.42	0.68	1.63	1.3	0.79	1.59	0.78
Lead	ND-0.1	0.1	0.14	(0.005			
Mercury	ND-0.037	0.007		<0.0001			
Molybdenum	(0.1	(0.1	LO.06	0.005			
Selenium	ND-0.07	0.022		0.013			
Vanadium	ND-0.1	0.1	0.17	0.139	0.16	0.117	0.04
Zinc	0.05-0.56	0.19	0.07	0.054			
Silicon (SiO ₂)	7.7-9.6	8.4	8.0	6			
Radiochemistry							
Uranium as U_0	0.002-2.00	0.384	0.695	0.542	0.730	0.664	0.700
Radium-226 3 0	0.6-92	37	592	510	580		390
Thor tum-230	ND-2.3	0.7	1.5	1.9			

TABLE P1-1

NOTE: All units expressed in mg/i (ppm) except conductivity (umhos/cm),

pH (standard units) and radionuclides (pCi/l).

*Pattern Baseline sampling contracted to D'Appolonia; one round of samples bailed. Range represents variability among all wells.

20723

42/A32

Major Constituents 2860-3650 31 Major Constituents 271-370 31 Magnesium 1.8-4.9 31 Magnesium 7.0-16.9 31	PATTERN* BASELINE BASELINE 6.9 3162 3162 3162 3162 3162 3162 3163 3162 3162	NML 2/24/82 6.7 8500 8500 232 99 151 14.4 1961 14.4 1961 14.4 1961 14.4 1961 14.4 1961 14.4 1961 14.4 1961 14.4 1961 14.6	CDM 2/24/82 6.7 6.7 6.7 12000 12000 310 190 190 103 154 11 2000 5020 5020 5020	NML. <u>3/8/82</u> 6.4 8500 301 130 15.2 2082 5242 5242 5242	MML. 4/77/82 6.6 9000 309 0 253 325 111 141 15.8 3002 6023 9200	NML 5/4/85 6.3 9600 795 0 242 333 1128 1128 1128 1128 1128 1128 1128
pH 6.6-7.1 6. Conductivity 2860-3650 31 Major Constituents 2860-3650 31 Bicarbonate 271-370 31 Carbonate 271-370 31 Carbonate 271-370 31 Carbonate 271-370 31 Carbonate 222-303 22 Aikalinity as CacO3 71-104 81 Calcium 71-104 81 Magnestum 70-16 31	6.9 3162 316 316 316 259 87 3.3 3.3 50 12.8 620 12.8 50 2483 2483	6.7 8500 8500 8500 8500 0 1666 1666 144.4 1951 144.4 1954 4954 4954 4954 1900	6.7 12000 12000 230 1200 310 190 103 103 103 103 7570 7570	6.4 8500 302 301 301 130 1130 1130 15.2 2082 5242 8500	6.6 9000 309 0 253 325 111 141 141 141 15.8 3002 6023 9200	6.3 9600 795 795 0 242 333 128 1128 1128 1128 1128 1128 1128
Major ConstituentsBicarbonateCarbonate <t< td=""><td>316 0 2559 87 3.3 3.3 50 12.8 620 1240 1240 2483</td><td>203 0 166 232 99 151 14.4 14.4 1961 14.5 1961 1961 1961 1961</td><td>230 230 190 310 103 103 112 2000 5020 5020 5020</td><td>302 302 248 301 301 130 15,2 2082 5242 5242 5242</td><td>309 0 325 325 111 141 15.8 3002 6023 9200</td><td>795 0 242 333 128 160 17.5 1924 1924 5077 7785</td></t<>	316 0 2559 87 3.3 3.3 50 12.8 620 1240 1240 2483	203 0 166 232 99 151 14.4 14.4 1961 14.5 1961 1961 1961 1961	230 230 190 310 103 103 112 2000 5020 5020 5020	302 302 248 301 301 130 15,2 2082 5242 5242 5242	309 0 325 325 111 141 15.8 3002 6023 9200	795 0 242 333 128 160 17.5 1924 1924 5077 7785
Bicarbonate 271-370 31 Carbonate 0-0 0 Aikalinity as CaCO ₃ 222-303 23 Calcium 1.8-4.9 8 Calcium 46-63 56 Magnesium 46-63 56	316 0 259 87 3.3 3.3 620 620 1240 1240 2483	203 0 166 232 232 232 99 151 14.4 14.4 1954 8320 8320	230 230 190 310 103 11 2000 5020 5020 5020	302 0 248 301 85 130 15.2 2082 5242 8500	309 0 253 325 325 325 111 141 15.8 3002 6023 9200	795 0 242 333 128 160 17.5 1924 5077 7785
Carbonate 0-0 0 Aikalinity as CaC03 222-303 23 Aikalinity as CaC03 71-104 83 Calcium 1.8-4.9 33 Magnestum 7.0-16.2 56	0 259 87 3.3 3.3 50 12.8 620 1240 2483	0 1666 232 299 151 14.4 14.4 1961 4954 8320 8320	0 190 310 103 154 11 2000 5020 5020 7570 104	0 248 301 85 130 130 2082 5242 8500	0 253 325 111 141 15.8 3002 9200 9200	0 242 333 128 160 17.5 1924 5077 7785 100
Alkalinity as CaCO3 222-303 25 Calcium 71-104 81 Chloride 1.8-4.9 3 Magnestum 46-63 56	259 87 30.3 50 12.8 620 1240 2483	1666 232 99 151 14.4 1961 4954 8320 8320	190 310 103 154 154 11 2000 5020 7570 104	248 301 85 130 15.2 2082 5242 8500	253 325 111 141 15.8 3002 9200 9200	242 333 128 160 17.5 1924 5077 7785 100
Calcium 7 0-104 07 Chloride 1.8-4,9 3 Magnesium 46-63 56	8. 50 12.8 620 1240 2483	99 99 151 14.4 1961 4954 8320 8320	2000 154 11 2000 2000 7570 104	301 85 130 15.2 2082 5242 8500	111 141 15.8 3002 6023 9200 104	128 160 17.5 1924 5077 7785 100
Magnesium 46-63 50	50 12.8 620 1240 2483	151 14.4 1961 4954 8320 100	154 11 2000 5020 7570 104	130 15.2 2082 5242 8500	141 15.8 3002 6023 9200 104	160 17.5 1924 5077 7785 100
Distantion 7 0-16 7 1	12.8 620 1240 2483	14.4 1961 4954 8320 100	11 2000 5020 7570 104	15.2 2082 5242 8500	15.8 3002 6023 9200 104	17.5 1924 5077 7785 100
Lolassium mission	620 1240 2483	1961 4954 8320 100	2000 5020 7570 104	2082 5242 8500	3002 6023 9200 104	1924 5077 7785 100
Sodium 560-772 62	2483	4954 8320 100	5020 7570 104	8500	9200 104	1785
Sulfate 1100-1450 11	6047	001	104	MACO	104	100
TDS 2225-2760 24				100		
WIION/COLINI						
Winor Constituents						
Ammonta as N 0.02-0.42 0.	0.22		\$0.2			
Nitrate as N 0.04-0.48 0.	0.14		(0.05			
Nitrite as N 0.01-0.58 0.	0.12		60.02			
Aluminum (0.1 (0.	10.01	co.0	500 05			
Cadmium 0.01-0.04 0.	0.02	0.01	0.010			
Chromium (0.01 (0.	(0.01	-	0.03			
Copper ND-0.03 0.	0.015	0.05	0.015			
Fluoride 0.53-0.61 0.	0.58	0.30	(0.1			
Iron ND-1.42 0.	0.1	0.03	20.005	0.40	1.10	1.04
Marcuru ND-0.037 0.	0.007		\$0.001			
Molvbdenum <0.1 <0.	(0.1	0.11	< 0.005			
Selentum ND-0.07 0.	0.022		0.007			
Vanadium ND-0.1 0.	0.1	0.13	0.104	0.04	0.039	0.01
21nc 0.05-0.56 0.	0,19	0.04	0.061			
Silicon (Si0 ₂) 7.7-9.6 8.	8.4	28.9	25			
Radiochemistry						
Urantum as U ₃ O ₈ 0.002-2.00 0.	0.384	0.229	0.248	0.136	0.151	0.174
Radium-226 0.6-92 37 Thortum-230 ND-2-3 0.	37	183	0.3	0.0		22

COPY.

1

OFFICIAL DOCKET

pH (standard units) and radionuclides (pC1/1). *Pattern Baseline sampling contracted to $D^{\dagger}Appolonia;$ one round of samples bailed. Range represents variability among all wells.

l,

A

42/A28

ALC: N

20723.

NINE MILE LAKE PATTERN 1 I-1

		PATTERN* BASELINE RANGE	PATTERN* BASELINE MEAN	NML 2/23/82	CDM 2/23/82
	pH	6.6-7.1	6.9	6.8	7.1
	Conductivity	2860-3650	3162	3200	3900
Maj	or Constituents				
	Bicarbonate	271-370	316	182	135
	Carbonate	0-0	0	0	0
	Alkalinity as CaCO,	222-303	259	149	112
	Calcium	71-104	87	117	110
	Chloride	1.8-4.9	3.3	32	40
	Magnesium	46-63	50	62	62
	Potassium	7.0-16.2	12.8	7.4	6.0
	Sodium	560-772	620	647	630
	Sulfate	1100-1450	1240	1703	1700
	TDS	2225-2780 .	2483	2670	2590
	Anion/Cation			100	99
Min	or Constituents				
	Ammonia as N	0.02-0.42	0.22		0.2
	Nitrate as N	0.04-0.48	0.14		0.07
	Nitrite as N	0.01-0.58	0.12		\$ 0.05
	Aluminum	X 0.1	(0.1	0.05	(0.5
	Arsenic	<0.01	<0.01		<0.005
	Cadmium	0.01-0.04	0.02 -)	< 0.01	0.006
	Chromium	(0.01	<0.01		0.03
	Copper	ND-0.03	0.015	0.02	0.012
	Fluoride	0.53-0.61	0.58		<0.1
	Iron	ND-1.42	0.68	2.66	2.4
	Lead	ND-0.1	0.1	0.07	(0.005
	Mercury	ND-0.037	0.007		< 0.0001
	Molybdenum	<0.1	<0.1	< 0.05	< 0.005
	Selenium	ND-0.07	0.022		0.013
	Vanadium	ND-0.1	0.1	0.09	0.056
	Zinc	0.05-0.56	0.19	0.04	0.041
	Silicon (SiO ₂)	7.7-9.6	8.4	22.3	23
Rad	liochemistry				
	Uranium as U.O.	0.002-2.00	0.384	0.063	0.078
	Radium-226 3 8	0.6-92	37	109	100
	Thorium-230	ND-2.3	0.7	0.0	-0.2

NOTE: All units expressed in mg/l (ppm) except conductivity (umhcs/cm), pH (standard units) and radionuclides (pCi/l).

FFICIAL

*Pattern Baseline sampling contracted to D'Appolonia; one round of samples bailed. Range represents variability among all wells. 20723

2

NINE MILE LAKE PATTERN 1 I-3

	PATTERN* BASELINE RANGE	PATTERN* BASELINE MEAN	NML 2/23/82	CDM 2/23/82
pH	6.6-7.1	6.9	6.8	7.2
Conductivity	2860-3650	3162	11200	16000
Major Constituents				
Bicarbonate	271-370	316	485	389
Carbonate	0-0	0	0	0
Alkalinity as CaCO,	222-303	259	398	322
Calcium	71-104	87	412	370
Chloride	1.8-4.9	3.3	117	115
Magnesium	46-63	50	140	182
Potassium	7.0-16.2	12.8	16.1	12
Sodium	560-772	620	2339	2600
Sulfate	1100-1450	1240	5859	6490
TDS	2225-2780	2483	10560	10100
Anion/Cation			99	101
Minor Constituents				
Ammonia as N	0.02-0.42	0.22		(0.2
Nitrate as N	0.04-0.48	0.14		< 0.05
Nitrite as N	0.01-0.58	0.12		< 0.05
Aluminum	(0.1	(0.1	0.06	(0.5
Arsenic	20.01	(0.01		0.006
Cadmium	0.01-0.04	0.02	0.01	0.014
Chromium	(0.01	(0.01		0.03
Copper	ND-0.03	0.015	0.06	0.017
Fluoride	0.53-0.61	0.58	0.28	<0.1
Iron	ND-1.42	0.68	0.99	0.54
Lead	ND-0.1	0.1	0.14	< 0.005
Mercury	ND-0.037	0.007		0.0005
Molybdenum	40.1	<0.1	0.02	< 0.005
Selenium	ND-0.07	0.022		0.02
Vanadium	ND-0.1	0.1	0.22	0.056
Zinc	0.05-0.56	0.19	0.08	0.062
Silicon (SiO ₂)	7.7-9.6	8.4	13.2	8
Radiochemistry				
Uranium as U.O.	0.002-2.00	0.384	0.255	0.200
Radium-226 3 8	0.6-92	37	189	150
Thorium-230	ND-2.3	0.7	. 0.0	0.4

NOTE: All units expressed in mg/l (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/l).

*Pattern Baseline sampling contracted to D'Appolonia; one round of samples bailed. Range represents variability among all wells. 20723

.

۱

OFFICIAL DOCKEF10-OPY

N	IN	E	MIL	E	LAKE
		PA	TTE	RN	1

		PATTERN* BASELINE RANGE	PATTERN* BASELINE MEAN	NML 2/23/82	CDM 2/23/82
	pH	6.6-7.1	6.9	7.4	7.4
	Conductivity	2860-3650	3162	11,300	16000
laj	or Constituents				
	Bicarbonate	271-370	316	628	481
	Carbonate	0-0	0	0	0
	Alkalinity as CaCO ₃ Calcium	222-303 71-104	259 87	515 367	398 390
	Chloride	1.8-4.9	2.3	107	113
	Magnesium	46-63	50	161	167
	Potassium	7.0-16.2	12.8	16.1	12
	Sodium	560-772	620	2589	2700
	Sulfate	1100-1450	1240	6131	6580
	TDS	2225-2780	2483	9680	10100
	Anion/Cation			97	102
lir	or Constituents				
	Ammonia as N	0.02-0.42	0.22		(0.2
	Nitrate as N	0.04-0.48	0.14		0.53
	Nitrite as N	0.01-0.58	0.12		(0.05
	Aluminum	〈 0.1	(0.1	0.08	(0.5
	Arsenic	(0.01	< 0.01		(0.005
	Cadmium	0.01-0.04	0.02	0.01	0.012
	Chromium	<0.01	<0.01		0.02
	Copper	ND-0.03	0.015	0.06	0.020
	Fluoride	0.53-0.61	0.58	0.24	<0.1
	Iron	ND-1.42	0.68	4.39	2.8
	Lead	ND-0.1	0.1	0.15	<0.005
	Mercury	ND-0.037	0.007		<0.0001
	Molybdenum	(0.1	〈 0.1	0.13	0.005
	Selenium	ND-0.07	0.022		(0.007
	Vanadium	ND-0.1	0.1	0.07	0.056
	Zinc	0.05-0.56	0.19	0.04	0.040
	Silicon (SiO ₂)	7.7-9.6	8.4	15.1	15
Rad	liochemistry				
	Uranium as U_0.	0.002-2.00	0.384	0.050	0.107
	Radium-226 5 0	0.6-92	37	105	110
	Thorium-230	ND-2 3	0.7	0.3	1 2

NOTE: All units expressed in mg/l (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/l).

*Pattern Baseline sampling contracted to D'Appolonia; one round of samples bailed. Range represents variability among all well.

.

20723

-

NINE MILE LAKE PATTERN 1 I-5

		PATTERN* BASELINE RANGE	PATTERN* BASELINE MEAN	NML 2/23/82	CDM 2/23/82
	pH	6.6-7.1	6.9	6.4	6.7
	Conductivity	2860-3650	3162	10,300	15000
1a	jor Constituents				
	Bicarbonate	271-370	316	341	261
	Carbonate	0-0	0	0	0
	Alkalinity as CaCO,	222-303	259	280	216
	Calcium 3	71-104	87	398	370
	Chloride	1.8-4.9	3.3	91	99
	Magnesium	46-63	50	112	176
	Potassium	7.0-16.2	12.8	16.8	13
	Sodium	560-772	620	2139	2500
	Sulfate	1100-1450	1240	5179	6260
	TDS	2225-2780 .	2483	8300	9200
	Anion/Cation			95	103
111	nor Constituents				
	Ammonia as N	0.02-0.42	0.22		(0.2
	Nitrate as N	0.04-0.48	0.14		20.05
	Nitrite as N	0.01-0.58	0.12		10.05
	Aluminum	(0.1	(0.1	C 14	20.5
	Arsenic	\$0.01	(0.01		(0.005
	Cadmium	0.01-0.04	0.02	0.02	0.012
	Chromium	(0.01	(0.01	0.02	0.02
	Copper	ND-0.03	0.015	0.06	0.017
	Fluoride	0.53-0.61	0.58	0.36	0.1
	Iron	ND-1.42	0.68	0.84	0.61
	Lead	ND-0.1	0.1	0.14	(0.005
	Mercury	ND-0.037	0.007		20,0001
	Molybdenum	(0.1	(0.1		(0.005
	Selenium	ND-0.07	0.022		0.011
	Vanadium	ND-0.1	0.1	0.10	0.075
	Zinc	0.05-0.56	0.19	0.08	0.062
	Silicon (SiO ₂)	7.7-9.6	8.4	15.4	14
Rad	diochemistry				
	Uranium as U.O.	0.002-2.00	0.384	0.640	0.770
	Rad1um-226 3 8	0.6-92	37	307	0.448
	Thorium-230	ND-2 3	0.7	1 2	240
		1111 40 8 4	0.1		6 - 11

NOTE: All units expressed in mg/l (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/l). *Pattern Baseline sampling contracted to D'Appolonia; one round of samples bailed.

Range represents variability among all wells.

20723

.

\$

NINE MILE LAKE PATTERN 1 I-6

		PATTERN* BASELINE RANGE	PATTERN* BASELINE MEAN	NML 2/23/82	CDM 2/23/82
	pH .	6.6-7.1	6.9	6.6	6.6
	Conductivity	2860-3650	3162	6700	7200
laj	or Constituents				
	Bicarbonate	271-370	316	-257	198
	Carbonate	0-0	0	0	0
	Alkalinity as CaCO	222-303	259	211	164
	Calcium	71-104	87	224	220
	Chloride	1.8-4.9	3 3	78	80
	Magnesium	46-63	50	93	114
	Potassium	7.0-16.2	12.8	12.2	9.2
	Codium	560-772	620	1270	1400
	Sulfato	1100-1450	1240	2679	2760
	The	1100-1450	1240	5070	5700
	Anion/Cation	2225-2780 ,	2403	105	97
lin	or Constituents				
	Ammonia as N	0.02-0.42	0.22		(0.2
	Nitrate as N	0.04-0.48	0.14		(0.05
	Nitrite as N	0.01-0.58	0.12		(0.05
	Aluminum	(0.1	<0.1	0.02	<0.5
	Arsenic	20.01	(0.01		(0.005
	Cadmium	0.01-0.04	0.02	< 0.01	0.010
	Chromium	\$0.01	<0.01		0.02
	Copper	ND-0.03	0.015	0.04	0.011
	Fluoride	0.53-0.61	0.58	0.21	<0.1
	Iron	ND-1.42	0.68	1.12	0.68
	Lead	ND-0.1	0.1	0.08	(0.005
	Mercury	ND-0.037	0.007		<0.0001
	Molybdenum	20.1	<0.1	0.03	< 0.005
	Selenium	ND-0.07	0.022		0.015
	Vanadium	ND-0.1	0.1	0.08	0.028
	Zinc	0.05-0.56	0.19	0.06	0.050
	Silicon (SiO ₂)	7.7-9.6	8.4	12.2	12
Rad	liochemistry				
	Uranium as U.O.	0.002-2.00	0.384	0.428	6.401
	Radium-226 38	0.6-92	37	88	100
	Thorium-230	ND-2.3	0.7	0.7	0.3

NOTE: All units expressed in mg/l (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/l).

*Pattern Baseline sampling contracted to D'Appolonia; one round of samples bailed. Range represents variability among all wells.

20723

3

NINE MILE LAKE PATTERN 1 M-7

	PATTERN* BASELINE RANGE	PATTERN* BASELINE MEAN	NML. 2/25/82	CDM 2/25/82	NML. 3/14/82	NHL 4/9/82	NML 5/9/82
pH	6.6-7,1	6.9	6.8	7.1	6.7	6.8	6.8
Conductivity	2860-3650	3162	4000	4500	3900	3600	3500
Major Constituents							
Bicarbonate	271-370	316	359	284	360	349	369
Carbonate	0-0	0	0	0	0	0	0
Alkalinity as CaCO	222-303	259	294	234	295	286	302
Calcium	71-104	87	123	140	143	142	169
Chloride	1.8-4.9	3.3	50	37	35	35	48
Magnesium	66-63	50	68	73	60	62	64
Potassium	7.0-16.2	12.8	10.2	8.1	10.5	10.2	9.6
Sodium	560-772	620	755	830	782	819	672
Sulfate	1100-1450	1240	1873	2000	1935	1878	1491
TDS	2225-2780	2483	3320	3130	3160	3118	3120
Anion/Cation			103	104	99	102	106
Minor Constituents				•			
Ammonia as N	0.02-0.42	0.22		<0.2			
Nitrate as N	0.04-0.48	0.14		1.1			
Nitrite as N	0.01-0.58	0.12		50.05			
Aluminum	(0.1	(0.1	0.08	\$0.5			
Arsenic	<0.01	< 0.01		\$0.005			
Cadmium	0.01-0.04	9.02	(0.01	<0.005			
Chromium	<0.01	< 0.01		0.01			
Copper	ND-0.03	0.015	0.02	0.009			
Fluoride	0.53-0.61	0.58	0.42	0.1			
Iron	ND-1.42	0.68	0.09	0.08	0.20	0.06	0.04
Leud	ND-0.1	0.1	0.04	<0.005			
Mercury	ND-0.037	0.007		<0.0001			
Molybdenum	<0.1	< 0.1	0.02	< 0.005			
Selenium	ND-0.07	0.022		0.059			
Vanadium	ND-0.1	0.1	0.14	0.029	0.01	0.065	0.01
Zinc	0.05-0.56	0.19	0.03	0.022 -			
Silic n (Sio ₂)	7.7-9.6	8.4	8.4	8			
Radiochemistry							
Uranium as U ₃ 0 ₂	0.002-2.00	0.384	0.222	0.224	0.133	0.186	0.169
Radium-226	0.6-92	37		8.0			7.9
Thorium-230	ND-2.3	0.7	100.001.001.001.001	0.2			

NOTE: All units expressed in mg/l (ppm) except conductivity (umhos/cm),

pH (standard units) and radionuclides (pCi/l).

*Pattern Baseline sampling contracted to D'Appolonia; one round of samples bailed. Range represents variability among all wells.

42/A31

20723

.

NINE MILE LAKE PATTERN 1 M-8A

	BASELINE RANCE	NML 2/25/82	CDM 2/25/82	NMI. 3/9/82	NML. 4/9/82	NML 5/5/82
pH	6.8-7.2	7.2	7.3	7.0	7.1	6.8
Conductivity	2800-3100	3100	3400	3000	2800	2600
Major Constituents						
Bicarbonate	193-309	336	257	343	340	341
Carbonate	0	0	0	0	0	0
Alkalinity as CaCO,	160-253	275	212	281	279	280
Calcium	86-116	126	120	123	109	133
Chloride	26-33	41	31	32	34	44
Magnesium	40-56	48	53	53	49	48
Potas/ am	6.3-10.0	10.3	8.3	10.3	9.4	9.0
Sodium	504-576	549	530	535	562	507
Sulfate .	1210-1395	1341	1440	1320	1386	1221
TDS	1910-2400	2250	2310	2380	2340	2280
Anion/Cation		101	96	100	98	101
Minor Constituents						
Ammonia as N	ND-0,2		<0.2			
Nitrate as N	ND-0.05	Station and Date	< 0.05			
Nitrite as N	ND-0.05		< 0.05			
Aluminum	0.5-1.1	0.58	0.6			
Arsenic	ND-0,005		(0.005			
Barium	ND-0.2	0.19	<0.2			
Boron	0.2-0.3		0.4			
Cadmium	ND-0.005	\$ 0.01	0.006			
Chromium	ND-0.01		0.01			
Copper	0.03-0.04	0.02	0.008			
Fluoride	ND-0.1	0.50	0.1			
Iron	0.14-1.5	1.33	0.95	0.50	0.62	0.95
Lead	ND-0.005	0.03	\$ 0.005			
Manganese	0.09-0.11	0.12	0.131			
Mercury	0.0001-0.0002		<0.0001			
Molybdenum	0.008-0.010	0.02	<0.005			
Nickel	0.03-0.04	0.11	0.03			
Selentum	ND-0.005		<0.005			
Vanadium	0.005-0.044	0.09	0.009	0.01	0.052	0.04
Zinc	ND-0.024	0.02	0.017		10000	
Silicon as SiO2			8			
Radiochemistry						
Uranium as U_O_	0.148-0.283	0.263	0.224	0.102	0.101	0.079
Rad1um-226 3 8	20-59		18			17
Thortum-230	ND-1.3		0.8			

TABLE P1-9

NOTE: All units expressed in mg/l (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/l).

42/A20

NINE MILE LAKE PATTERN 1 M-9

	PATTERN* BASELINE RANGE	PATTERN* BASELINE MEAN	NML. 2/25/82	CDM 2/25/82	NML 3/9/82	NML. 4/7/82	NML 5/4/82
pH	6.6-7.1	6.9	6.7	7.2	6.7	6.7	6.5
Conductivity	2860-3650	3162	2700	3200	2600	2400	2600
Major Constituents							
Bicarbonate	271-370	315	262	210	268	255	241
Carbonate	0-0	0	0	0	0	0	0
Alkalinity as CaCO,	222-303	259	215	171	220	209	198
Calcium	71-104	87	65	73	67	61	74
Chloride	1.8-4.9	3.3	33	31	32	35	43
Magnesium	46-63	50	50	44	38	39	40
Potassium	7.0-16.2	12.8	9.1	7.2	9.4	8.8	8.6
Sodium	560-772	620	516	490	524	547	532
Sulfate	1100-1450	1240	1148	1200	1147	1197	1229
TDS	2225-2780	2483	1960	1970	2040	2080	2050
Anion/Cation			97	98	101	98	99
Minor Constituents							
Ammonia as N	0.02-0.42	0.22		40.2			
Nitrate as N	0.04-0.48			(0.05			
Nitrite as N	0.01-0.58	0.12	-	(0.65			
Aluminum	(0.1	(0.1	0.06	(0.5			
Arsenic	< 0.01	<0.01		< 0.005			
Cadmium	0.01-0.04	01.02	< 0.01	0.005			
Chromium	20.01	(0.01		0.01		5	
Copper	ND-0.03	0.015	0.02	0.007			
Fluoride	0.53-0.61	0.58	0.52	0.2			
Iron	ND-1.42	0.00	0.39	2.8	0.03	0.24	0.08
Lead	ND-0.1	0.1	0.03	0.014			
Mercury	ND-0 037	0.007		ζ0.0001			
Molybdenum	(0.1	<0.1	0.01	(0.005			
Selenium	ND-0.07	0.022		0.046			
Vanadium	ND-0.1	0.1	0.23	0.085	0.23	0.104	0.18
Zinc	0.05-0.56	0.19	0.02	0.020			
Silicon (SiO ₂)	7.7-9.6	8.4	7.6	8			
Radiochemistry							
Uranium as U ₂ 0 ₀	0.002-2.00	0.384	0.225	0.189	0.284	0.175	0.127
Radium-226	0.6-92	37		58			36
Thorium-230	ND-2.3	0.7		0.6			

NOTE: All units expressed in mg/l (ppm) except conductivity (umhos/cm),

pH (standard vaits) and radionuclides (pCi/1).

*Pattern Baseline sampling contracted to D'Appolonia; one round of samples bailed. Range represents variability among wells.

42/A30

NINE MILE LAKE PATTERN 4 M-54

			BASELINE RANGE	NML 2/2/82	CDM 2/2/82
	pH		6.4-6.8	6.2	
	Conductivity	umhos/cm	5500-7500	7200	
Maj	or Constituents				
	Bicarbonate (HCO.)	mg/1	254-291	225	181
	Carbonate (COH,)	mg/1	0	0	0
	Alkalinity (as CaCO, eq)	mg/l	208-239	184	150
	Calcium	mg/l	190-282	191	210
	Chloride	mg/1	60-118	68	64
	Magnesium	mg/l	100-144	81	130
	Potassium	mg/1	10-14	15	11
	Sodium	mg/1	1107-1709		1300
	Sulfate	mg/1	3133-4603	3449	3850
	TDS	mg/l	5260-6520	6260	5790
	Anion/Cation	mg/1			92
Min	nor Constituents				
	Ammonia as N	mg/1	0.23-0.31		< 0.2
	Nitrate as N	mg/1	40.05		< 0.05
	Nitrite as N	mg/1	(0.05		< 0.05
	Aluminum	mg/1	0.3-3.6	0.09	< 0.5
	Arsenic	mg/1	0.024-0.050		0.022
	Barium	mg/1	0.12-0.14		< 0.2
	Boron	mg/1	0.20-0.30		0.8
	Cadmium	mg/1	0,10-0,20	0.02	0.01
	Chromium	mg/1	0.03-0.05	0.05	0.01
	Copper	mg/1	0.01-0.02		0.01
	Fluoride	mg/1	0.5-0.6	0.52	0.10
	Iron	mg/1	0.4-2.7	0.73	0.63
	Lead	mg/1	0.008-0.170	0.13	0.043
	Manganese	mg/1	0.46-0.52		0.30
	Mercury	mg/1	(0.0001		0.0008
	Molyhdenum	mg/1	0.04-0.09	0.09	(0.005
	Nickel	mg/1	0.05-0.09	0.04	0.07
	Salantum	mg/1	0.002-0.100	0.04	(0.005
	Vanadium	mg/1	0.02-0.15	0.01	0.043
	71nc	mg/1	0.12-0.22	0.07	0.106
	Sio	mg/1	13.0-14.4	10.5	
Rad	liochemistry				
-					
	Uranium as U ₃ 08	mg/1	0.063-0.165	0.147	0.212
	Radium-226	pC1/1	270-520	751	550
	Thorium-230	pC1/1	2.4-15.0	0.5	1.1

OFFICIAL DOCKET_COPY

P1-9, and P1-10 are results of stabilization monitoring of two pattern interior wells (P-1A, I-2) and the perimeter monitor wells for March through May of 1982.

Examination of the data confirms that TDS levels within the pattern interior are fairly high with an average value of 7,960 mg/l in February. Significant variability exists as TDS concentrations range from 2,600 mg/l to about 10,000 mg/l. Dissolved solids consist of soluble salts with sulfate, sodium, calcium, and chloride ions constituting the primary contaminants. Of these ions, all are within baseline values obtained from regional monitor wells completed in the Teapot Sandstone.

Table 1.4 summarizes background water quality for individual test patterns, the R&D project site and the Teapot Sandstone aquifer as characterized by regional monitor wells. Pattern 1 baseline data was not included in the table because baseline was established from one round of bailed samples in 1977 and is of questionable validity. The table shows that baseline water quality within the Teapot Sand exceeds 12,000 mg/1 TDS and sulfate, sodium, calcium, and chloride levels respectively exceed 6,000; 2,600; 420 and 390 mg/1. Thus, groundwater in the pattern falls within the prior use suitability (industrial) category.

Other than soluble salts, all parameters have been restored to site baseline ranges (Table 1.4). Potentially toxic elements such as arsenic, selenium, lead, and mercury are within

OFFICIAL DOCKETSCOPY

TABLE 1.4

NINE MILE LAKE

BASELINE WATER QUALITY

DATA SUMMARY

	Pattern 2 Range			Pattern 3 Range			Pattern 4 Range			Sice Range ³			Regional Monitors		
PARAMETER	Low		High	Low		High	Low		High	Low		High	Low		High
Field Measurements				1.000						1.1.1.1					
pH (std. units)	6.4	-	6.9	6.4		7.2	6.3		7.1	6.3	~	7.2	5.5	-	8.1
Conductivity (umhos/cm)	1950	-	4000	1375	-	3500	2400		3700	1375		4000	1150		11600
Bicarbonate	256	-	315	224		426	278		333	224	-	426	160		492
Carbonate	0	-	0	0	-	0	0	-	0	0	-	0	0		0
Alkalinity (as CaCO3)	210	~	258	184		349	228	-	273	184	-	349	95	-	403
Major Constituents															
Calcium	50	*	160	41	~	135	57	-	153	41	-	160	24		429
Chloride	9	-	80	20	-	55	27	-	65	9	-	80	6	-	390
Magnesium	12	-	129	13		71	34	-	96	12		129	5.5	·	250
Polassium	7.5	-	30	5.9		16	5.6	-	10.4	5.6	-	25	4.0	1.000	46
Sodium	520	-	840	310	-	863	393	-	735	310		863	130	-	2620
Sulfate	1120	-	2800	628	~	2826	1116	-	2015	628	-	2826	294	-	6180
TDS	2028	-	3486	1380	-	3320	1800	-	3180	1380	-	3486	796		12264
Minor Constituents															
Ammonia (as N)	ND	-	0.48	0.10	-	0.33	<0.05		0.31	ND	~	0.48	0.01		4.4
Nitrate (as N)	ND	-	1.5	0.10		0.93	<0.05	-	0.78	ND	-	1.5	0.1	-	1.8
Nitrite (as N)	ND	-	0.1	0.02		0.06	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		ND	ND	-	0.1	0.001	-	0.13
Aluminum	ND		0.5	0.05	-	0.88	0.07		2.23	ND		2.23	0.02		0.52
Arsenic	ND	-	0.01	0.01	-	0.04	0.008		0.10	ND	-	0.10	0.004	-	0.074
Barium	ND	-	0.05	0.05	-	0.10	0.02	-	0.10	ND	-	0.10	0.02	-	0.30
Boron	ND		0.9	0.05	~	0.49	0.20	-	0.30	ND	-	0.90	0.01		1.96
Cadmium	ND	-	0.01	ND	-	0.01			<0.01	ND	-	0.01	0.001	-	0.08
Chromium	ND		0.04	0.01		0.03	0.01	-	0.14	ND	-	0.14	0.003	~	0.08
Copper	ND		0.028	ND	-	0.02	0.01	-	0.02	ND	· · · ·	0.028	0.001	-	0.08
Fluoride	0.04	-	0.60	0.10	-	1.07	0.5	-	0.6	0.04	-	1.07	0.13	-	1.60
Iron	ND		1.11	0.01	-	4.10	0.04		0.80	ND	-	4.10	0.06	-	89
Lead	ND		0.05	0.01	-	0.05	0.002	-	0.140	ND		0.140	0.01	-	0.06
Manganese	0.10		0.34	0.03		0.87	0.10	-	0./2	0.03	-	0.87	0.01		1.80

TABLE 1.4 (CONCLUDED) NINE MILE LAKE BASELINE WATER QUALITY

DATA SUMMARY

	Pattern 2 Range			Patt	Pattern 3 Range			rn	4 Range	Sit	e Ra	nge	Regional Monitors		
PARAMETER	Low		High	Low		High	Low		High	Low	High		Low		High
									1.5						
				1000		1.1.1.1.1						a di Statu			
Minor Constituents (cont'd)				FIGS I			1 (1 (1)								
Mercury	ND	-	0.0001	ND	-	0.0005		-	<0.0001	ND	-	0.0005	0.0001	-	0.001
Molybdenum	ND	-	0.01	ND	-	0.01	0.005	-	0.210	ND	-	0.210	0.001		0.090
Nickel	ND	-	0.02	0.01	-	0.19	0.01	-	0.07	ND	-	0.19	0.008	-	0.10
Selenium	ND	-	0.01	0.01	-	0.04	0.00	-	0.180	ND	~	0.18	0.002		0.03
Vanadium	ND	-	0.05	0.01	-	0.45	0.02	-	0.32	ND		0.45	0.01		2.1
Zinc	ND	-	0.04	0.01	-	0.04	0.01	-	0.05	ND		0.05	0.001	-	0.16
Silicon	3.0	-	8.0	1.0	-	15	8.0	-	11.3	1.0	-	15	3.6	-	13.1
Radiochemistry	11.1			1			1.25			1.1					
Uranium (as U30g)	0.015	-	0.750	0.002	-	0.200	0.041	-	0.392	0.002	100	0.750	0.001	-	1.7
Radium-226 (pCi/1)	19	-	717	1.5	-	274	15	-	360	1.5		717	0.5	-	213
Thorium-230 (pCi/1)	ND	-	5.1	0.5	-	41.9	0	-	11	0	-	41.9	0.4	-	24.6

¹All units expressed in mg/l'except as noted.

²All data for field measurement parameters taken from Nine Mile Lake (NML) analyses.

³Site range composite of Patterns 2,3 and 4 baseline data.

baseline ranges and/or below the limits of detection. Radium levels in the production well are somewhat high (500 pCi/l), but the average of all interior wells is 211 pCi/l which is well within the site baseline range. Also, stabilization monitoring of wells P-lA and I-2 indicates a decline in radium levels of greater than 100 pCi/l since the February sampling. Other than soluble salts, all parameters have been restored to site baseline ranges (Table 1.4).

Analysis of water quality data from Pattern 1 monitor wells and other wells down gradient of the pattern suggests that an area of affected groundwater extends from the pattern interior down gradient to well M-54 and dissipates in the vicinity of well WF-74 (see Figure 1.1). Wells WF-74, WF-75, and M-8A were completed in December 1981 to define the area and nature of affected groundwater adjacent to Pattern 1. Subsequent sampling of the wells indicated that M-8A and WF-75 were unaffected by leach solution. Well WF-74 yielded a slightly elevated TDS level which indicates the well may be on the leading edge of a comtaminant plume originating from Pattern 1. Table 1.5 describes key water quality parameters for the three new wells and monitor well M-54.

-21-

Table 1.5

Pattern 1 Water Quality - New Wells February 1982

Parameter	Baseline Range	<u>M-8 A</u>	WF-74	WF-75	<u>M-54</u>
pH	6.6 - 7.1	7.2	6.2	7.0	6.2
Cond.	2860 - 3650	3100	4700	3250	7200
Ca	71 - 104	126	255	102	191
C1	1.8 - 4.9	41	56	37	68
Mg	46 - 63	48	118	57	81
K	7.0 - 16.2	10.3	14.7	11.9	15
Na	560 - 772	549	802	575	1300
SO4	1100 - 1450	1341	2419	1485	3449
TDS	2225 - 2780	2250	3800	2407	6260
V	ND - 0.10	0.09	0.048	0.076	0.01
U308	0.002 - 2.00	0.263	0.354	0.283	0.147
Ra-226	0.6 - 92	18	200	70	550

The data confirms that elevated TDS concentrations in WF-74 and M-54 are largely due to calcium, sodium, sulfate, and magnesium. Comparison of water quality in wells Pl-A, M-54 and WF-74 clearly shows the effects of dilution as a function of distance from Pattern 1. Figure 1.2 illustrates that sodium sulfate and TDS levels all approach Pattern 1 baseline values within a distance of 230 feet from P-1A and are well within site baseline ranges. As with the pattern interior, downdip residual contaminants consist of major ions which pose essentially no environmental or health hazard.

1.4 Pattern 1 - Conclusions

OFFICIAL DOCKET COPY, -22-

Groundwater within Pattern 1 has been restored to background water use category limitations for all parameters of concern. Residual contaminants consist of soluble salts which pose no significant environmental or health hazard and are within

natural ranges recorded for the aquifer. Radium concentrations in some interior and down gradient wells exceed Pattern 1 baseline values but are within overall site baseline range. Independent evaluations regarding the ultimate fate of radium conclude that radium concentrations will greatly diminish within a short travel distance due to ion exchange reactions with formation clays as well as dilution and mixing as natural groundwater flow is reestablished.

Based on previous experience, it would appear that further restoration efforts would be ineffective in achieving permanent water quality improvement. Results of the last two restoration programs, both using best available technology, have shown temporary improvements in water quality, but rapid deterioration and stabilization at a high level of TDS. Well monitoring since the last restoration effort indicates stabilization has occurred at a point which would not constitute a degradation of premining water use suitability.

OFFICIAL DOCKET COPY_23-

2.0 Operational History - Pattern 2

Pattern 2 is a five-spot pattern consisting of a central production well ringed by four injection wells on a 50-foot radius and four monitor wells located 100 feet from the injection wells. Wells were completed in the <u>lower</u> ore zone of the Teapot Sandstone with screened completion intervals in the monitor wells and water jet perforations in the production and injection wells.

An extensive baseline water quality analytical program was conducted in an attempt to accurately characterize background water quality and compare analytical variability among commercial laboratories. One round of samples were split and sent to five different commercial laboratories for analyses with duplicate and coded samples included. Analyses revealed substantial differences for identical samples from lab to lab as well as within individual laboratories as seen in Table 2.1. The observed variability illustrated the difficulty of establishing valid baseline conditions, particularly for trace elements present at concentrations approaching the limits of detection.

2.1 Pattern 2 Leaching

OFFICIAL DOCKET CODY

Like Pattern 1, leaching was conducted with a sulfuric acid lixiviant at concentrations up to four grams/liter and hydrogen perioxide as the oxidant. Leaching began in December 1977 and was very successful as uranium headgrades peaked at about 300 ppm before well plugging problems due to fungus growth and chemical precipitation were encountered in April 1978. A combination of mechanical and chemical treatments reduced the

-24-

NINE MILE LAKE

		1	PRODUCTION WELL #				#15		MONITOR WELL #20							1	OR WELL #	LL #2		
		RMGC	CBG	CEP	WAMCO	NML	EBER	AVG	RMGC	C&G	CEP	WAMCO	NML.	EBER	AVG	RMGC		CEP	WAMCO	NML
]	pH, UNITS	28	23.	- 73 7-2	7.5* 7.8	6.6		7.340.4	6.9 8.3 0.4 -	2.4 7.8 5.6	73 73	7.6	8.9 6.9 6.7		2.314	12	25	11	24 ⁴ 28	5.8 6.4 6.8
1	Eh. MILLIVOLTS	+279	+270	18	+82 [*] +83	+334		14514126	+1000 +140 +105 *	+295 +295	+59 763	+80° 174	+240) +411 - 318		1864126	. 82	*276	152 188	+7.6	+ 400 + 310
CONDU	CTIVITY, MICROMHOS	3500	3650	2090 3000	3700 × 3680	3000	-	3157+343	4600 7200 + 4300 +	4000 4003	3610 3700	3970	4000 37'00 3200		18.44=424	1500	28.50	7410 7230	2800 * 2850	1906 3 100
TOTAL DIS	SOLVED SOLIDS (TDS)	3230	312.2	2914* 3005	3272 3348*			3151-169	3.390 3.390 *	3218 3200	1260 3153	2486 3725			3303404	22.65	2162	2078 2078 2068.*	2344* 2528 2277	
ALKA	LINITY AS CaCO2 (AIK)		210		218* 212			2(3.8)3		210 210 250		756			23142500		230		228 * 224	_
		-	-				1	1.1	L	la.c.	L	1								
1	AMMONIA (NH3)	ND(0.01)	0.04	0.06* 0.03 0.03	ND(0.1)*	Ċ,		0.0540.03	0.01 NDI 01 NDI 01	0.16 0.15 0.15 0.15	0.02 0.03	019			0.0810.08	ND(0.05)	1210	03 045 041 041 041	012 072	
1	BORON (B)	0.19	ND(1.0)	10* 0.5 0.4	NDCO 11			0.5410.39	0.29	ND(10) ND	0) 02	ND(0.1)			341.38	9.22	ND-307	6.4. 0.4 (3.9.4	N/D(10.1)	
ORDAN ULA WYO	BICARBONATE (HCO)	(58	256	229 221	259 263*	241		744332	205 213 213	305 301	263 263	297 307 313	256 296 299		121-19	214	245	241 240 35.*	273 278.*	291 296
T Ne T	CADMIUM (Cd)	ND(0.01)	ND(0 002	NDIO 001	1.1.1		1	(20.4	ND(0.02)	NDCO.011	ND(0.000) ND				0.01+ 0.01	N010.016	NEPTO.0012	ND-0.0851 ND		
MICAL CORP MICAL CORP A POLUTION A POLUTION UN NAM	CALCIUM (Ca)	128	921	100 * 97 88	125	GAT:		186.1416	107 174 107 125 125	215 124 -77	102 11.0	12	134 149 135		190.727	74	25	34 * 30 73	764	47 112 123
International States of the second states of the second states with the second states of the	CHLORIDE (CI)	29	40	30 40.*	50 84.*	40 37 39		4045,3	50 86 58 67	#0 75 60	63	12	80 51		5479	38	40	40 39 38 *	48. 54.*	33 79
MOUN A GRU FOR D FOR D FOR D HARL RABLE TANDA	CHROMIUM (Cr)	ND(0.04)	NDIQ 01	ND-0.000 ND	1			0.0140.02	9.647	NO(0.00					0.0110.001	N(0)(0.04)	ND(0:01)	ND(0.001		
NAME A NAME A NA	FLUORIDE (F)	ND(0.07)	ND(0.01)	0.019				0.005	0.004	NEX(0,00)				L	0.004	ND,SIDE	ND(.0.01)	0.000 9.000		
Renoc - e Renoc - o Caro - or Caro - or Caro - or Man, - na Non, - na Non, - nor Avo - nor Vuis	TOTAL IRON (Fe)	0.32	0.57	0.23 0.89* 0.79 0.79	0.41* 6.30			0 8110 22	0.32 NDL041 NDL041	0.44 0.40 0.40	0.31 0.71 0.71	0.08 0.15			6.324.25 3.354.25	0.60	\$36	0.26 0.75 0.50* 0.61 0.61	ND(0.03) ND(0.02) 0.45	
T	LEAD (Pb)	ND(0.04)	ND(0-05)	ND(0.001			ļ	034.02	0.032	ND(0/15)	NO(0.00V)			the state of	0.0240.03	NOCTOR	NOIDOS	0.160		
DETICIANI	MAGNESIUM (Mg)	94	93	ND 94 93	10.* (29	94		102.154	42 85 85 85*	75 72 71	ND 83 83	107	90. 105 58 102		00123	a	32	6.000 49* 53 53	45 * 80	6.8 50 41
	MANGANESE (Mn)	0.26	0.50	0.4* 0.24 0.24				0.22×01	0.21	0.16 0.16	0.29 0.29				0 22 = 0.07	sto	130	074 074 015*		
10010000000000000000000000000000000000	NITRATE (NO2)	ND(0-1)	0.16	0.8* 0.2 0.2	ND(g.1) ND*			9.2640.27	0.6 0.3 NDI0.0*	0.063 0.32 0.30	02 07	NDIG II ND			0.264679	NO(0.1)	5.23	6.9 5.2 6.1 *	0.5.* ND:0.11	
HIE FARAMETINE FILE FARAMETINE FILE FARAMETINE FILE FOR TO 20 00 MOLY 1990 MOLY 10 0 MOLY 10 01 MARTHAN TO 10 00 MARTHAN 20 01 MARTHAN 20 00 MARTHAN 20 00 MARTHAN 20 00 MARTHAN 20 00 MARTHAN 20 00	NITRITE (NO2)	ND(0 0)	ND(0.0)	ND(0.1)*	NDIO OII			0.0	ND(D.OI) ND(D.OI)	NO(0.0) NO	ND(G.I) ND				Ø	NERG DI	ND(3.01)	NDIG.); ND ND 1	ND(p.pl) ND X	
1	PHOSPHATE (PU4)	ND(0.3)		03 03				\$ 37 + 6.12			01				021014	NOSON		41		
	POTASSIUM (K)	9	12	и* 19 11	10 *			11.342.6	13 54 50 * 50 *	59 58 10	13 59	57 58 79			43,720.	- 14	28	19+ 17- 36	54 * 14 17 17	
1 3	SILICA (SiO2)	3	6.3	62				\$\$117	40	43	6.5				3.2114		6.4	83		
0	SODIUM (Na)	713	745	840 * 840 668	77.5* 775			7183.48	733 780 770 780 * 780 *	775 765 992	213 215	840 835 730			787171	540.	355	539* 573 536	560 * 580 345 535	
KEI	SULFATE (SO4)	1950	1980	1930* 1994 1890	1670 1800 *	2790		1938-078	2800 1800 2000 +	1930 1925 2450	19.46 2001	1810	22.30 7.240 1810 2090		10637789	1450	1300	1291 1263 1293	1260 1260 *	18.10 1260
- DOC	URANIUM (U3O6)	0.253	\$ 230	0.213 * 0.197 0.216	0.400 0.340*			0.26 + 0.38	0.750 0.608 0.588 0.618 0.55.	0.500 0.964	0.511 0.430	0.105	0.600 0.740		0.51+0.22	0.127	O NDIO	0.542* 0.006 0.725	0.170 0.135 0.120 0.064 0.180 *	
AL	VANADIUM (V2O5)	0.005	ND(0.05)	10.0 10.0	ND(0.05) NO *			0.02*0.02	ND(0.004) ND(0.004) ND(0.004)	NDIG 021 ND ND	ND[0.01] NG	NOSC OSI			0.01×0.02	0.954	NETO 53	0.01 0.01	ND(0.05) ND *	
G	ZINC (Zn)	0.0X	0.08	9.01 9.01				0.02+0.01	6.029	0.02	ND:0-08				0.0140.01	0.82	0.01	6.62 0.03		
I	GROSS ALPHA	540	399 ± 97	1240+70 1280±70			790 = 50	\$50+400	540450	1290120	738×53 807±55			370740	7691335		275469	600148 355146		
	LEAD 210 Ph 210	820 ND	902 8 199	165 ± 5 179 ± 5		-	1000 # 100	451.5	1410.0	26416	12624			610120	3211222		463187	6813 6913		
	RADIUM 226 (Ra 226)	ND	45.7210.4	31.3 # 1.7		-	330 + 10	440* 311 5	270+50	22019	11.541.7 94.5×3.3			720/10	178782	NO	791126	9.3811 279.50		
Т	ORIUM-230 (TH-230)	ND	51,2491	717 + 21 ND(0.6) ND			2.811.6	18 7 = 28.6	415	ND(0.6)	84.417.5 ND(0.6) ND			1,840.4	1,841.6	NO	17.493.7	2.66/11 ND(0.6) ND		

BLIND SAMPLE SPLIT

WELL ANALYSIS MONITOR WELL #22 MONITOR WELL #23 MONITOR WELL #24 EBER TOTAL LINE EBER EBER AVG RMGC WAMCO RMGC C&G C & G NML AVG WAMCO NM AVG AVG. CEP CEP RMGC C&G CEP WAMCO NML AVERAGI 69* 697 87 73 87 6.4 8.5 7.0110.4 71 + 71 + 6.0 6.9 6.9 T(A|A)8.89 8.99 1.33 7.7 7.3 7.176.7 20 67 5.4 87 74.4 +285 +305 +305 +295 +295 +275 •310 •310 •310 •310 +75 +293 +283 +389 +360 178:114 +293 +399 +375 +280 +310 +310 +310 +310 +294 +405 +385 2324724 +40 +112 +89 +110 相 185 28.) 124 2187133 76418 +110 3225 3225 3225 3225 3225 3225 3050 2700 2700 2700 2700 3000 2950 2400 2500 2500 2460 2758242 1950 2950 2100 2775 2760 2760 275 2800 3900 3800 2800 3200 3350 3200 3287-121 1200 1000 1200 2850 28.27 + 2 31487428 3500 2850 2730 2840 2800 2500 2343 2774 2188 2094 2094 2094 2238415 2460* 2504* 2550 2580 2538 7858 2746 2738 2452 2087 * 2/50 * 2.312 327.4 3550 2154 2490 2403 2300 2300 2850 26791 1 248.2 2321 2285 2019 2019 2642 2703 308 2264 2600 215.3 222.4 234 270⁹ 208* 230 230 200 220 220 240 240 227.17 216 230 230 230 230 230 * 230 240 . 22855 0124 08 195.2 ND(0.5 NDIO S NDIDS 0.15 0.10 ND10.0 ND * 0.03 2.10 0.01 0.01 0.01 0.10 19.02 Git (07 0.06 NDI 01 NOI 00 ND(0.01 N010 01 N010-01 0.06.10 0.12 0.48 * ND(0.0 0.0810 NET-C ND * ND 00 ND * ND * 258 281 281 281 281 ND111 ND ND 281 288 250 281 281 ND(1 0) ND* ND* ND* 244 268* 168* 29.1 Q.9 NDIO ND 38+43 2.4 NOIGI NOIDI NUMBER ND(0) ND 113 296 299 207 290 274145 273 102 280 240 220 198 203 243 245 345 193 226. 225 25924 240 792 302.* NO 10 NO 10 90 .004 0073 ND10-001 ND10-007 87 87 H0 003 0.007 0.903 NDEO OCT 101 94 97 95 95 95 104 107 106 19) 45 • 91 • 75 × 81 × 84 126 197 149 114 135 138 96129 91 100118 82+23 114.821 95 83 84 138 54 127 80 82 × 12 35 84 89 140 30 * 45 * 40 70 50 40 50 40 50 40 45 校政计计》 18 28 35 50 53 34 30 40 44.812 3678.3 41. 38 52 * 18 30 30 29 40 442.27 46 47 6.014 0.014 ND10.000 ND10.000 NDIDO 0.0(4 ND ja a 9 014 0 014 0 75 ND 0.028 0.028 0.23 ND/0.01 5.008 NDIGO NOTO 0.25 0.20 0.75 0.28 0.74 0.23 0.22° 0.75° 0.73 0.73 0.48 0.2 0.2 0.70 0.40 0.35 0.42 0.42 0.12 NDI 0.4 NDI 0.4 0.38 0.02 0.04 0.04 0.04 ND(0.05) 0.32 NO(.04) NO(.04) 0.25 0.25 0.52 0.12* 0.12* 0 4810 7 241.25 1510 00 1100 0 0 0 0.038 NERGI 0.003 ND(0.00 ND(0.00 50 * 44 * 48 48 43 27.532053 50. 50. 31. 50. 31. 53* 54 58 56 55 55 41 89 80.7272 新あ7日 会 40 AP 55 54 6.18 6.18 0.07 6.13 0.13 NDr0.0 ND 0.16 0.16 0.12 0.12 1.5 0.9 0.9 ND:0.01 ND:0.01 0.24 0.12 * 0.58 18:10. 0.29 NDIG II NDIG II 01 ND:01 0.4* 0.2 0.3 ND(0 II NOID. (1-95 ND10.05) ND10.01* ND10.01* ND10.07* 10.01 0.01 NO(0.01 ND(0.01 ND:0.0 ND ND* ND* ND:01 ND N0 N0 N0 ND(0 ND ¹⁴ 0.01 NDL00 NDL00 NDIO O 10.0.0 0.04 NDI 01 NE(6.) NE(6.) NC ND10 08 10 10 10 10 122222 -12 15 15 15 14 0.4 11:272.8 30 4 19 17 30 10112 10.6=2. 10 10 10 9 9 9 11 # 7.5 1 H H 1 1 5 157 45 6 23101 3.941.9 19 526* 538 581 * 610 * 724 608 620 521 550 586 579 565 540 530 545 545 545* 507 530 615 585 585 590 525 525 590 680 580 520 560 547:815 631938 552124 585 1500 * 1430 * 1850 1350 1510 1200 * 1130 * 5490 1800 1500 1350 * 1210 1230 1500 1280* 1307* 1327 1240 120 1543 1720 1890 1870 1870 1298 148718 1549:117 1750 5100 0.080 0.750 0.016 1.030 0.026 0.056 0.050 0.016 0.375 0.35* 0.060 0.065 121.09 0.099 0.072 0.052 0.052 0.052 0.079 0.037 0.035 0.047 0.075 0.027 6 HB 6,081 5.062 0.080 N0:0 02 N0 ND/0.0 ND * ND(0.004) 0.004* NE-10.91 1.004 NDIG C 0.01 10000 0.01 ND . ND(0.02 0.004 02+00 ND * ND * ND 0.01 ND OO 601 0.08 0.036 NDIO OF ND(0.0 0.08 ND 010160 593=267 584147 652150 415+49 840140 180-4 4534153 380+30 179128 167:117 69+28 340120 136411.1 451208 00140 9212 9324 380+7 77x3 9623 10.5±12 99:±13 198:±10 8411.5 14.618 9.217 8 11.6-11.4 7.9/14.7 0.4109 11.639 6.010.9 28:172 33554 815.4 599+14 531215 NDID 61 342=29 2544117 190110 150+20 14313 287714 540+70 2)10.4 1614123 182+27 9811 200140 18878 ND(0.6 287.554 ND(0.6) 053 4.876.8 ND-D 6 1,2:40.5 445 NDID 6 0.90±0.28 62197 224 1.4715 4810.3
plugging problem sufficiently to allow mining to continue. Leaching was conducted from December 1, 1977, through September of 1978 during which time approximately 13 pore volumes of groundwater were produced from the pattern. Pattern 2 mining results confirmed the feasibility of mobilizing and recovering uranium from the Nine Mile Lake ore body using an acidic leach solution. The test also indicated vanadium was sufficiently mobilized to warrant consideration as a recoverable by-product during (proposed) production scale mining.

2.2 Pattern 2 Restoration - Phase 1

During the spring and summer of 1978, restoration research test work conducted for RME by Stearns-Roger and Hazen Research indicated a combination of chemical treatment followed by reverse osmosis (RO) would most effectively restore groundwater. While the RO restoration circuit was being designed and installed, a modified groundwater sweep with reinjection of process and raffinate (barren production fluid) water was conducted. Uranium recovery by means of ion exchange (IX) resin was continued. This restoration phase began in early September 1979 and continued through mid-January 1978 when uranium levels in the production fluid were reduced to 16 ppm and a 33 gpm RO unit was brought on line.

Restoration using sequential lime and soda ash (Na₂CO₃) precipitation steps followed by RO treatment began in mid-January 1979. Figure 2.1 shows the restoration circuit. The circuit produced a "clean" RO permeate which was blended with process

-25-

OFFICIAL DOCKET COPY,

20723

water and reinjected while the RO brine and precipitated solids were discharged to the lined evaporation pond. During this time, ongoing bench test work at the University of Texas suggested that reinjection of a high TDS solution might speed restoration. Research indicated hydrogen ions om the sulfuric acid lixiviant were strongly absorbed by colloidal clay particles within the host formation keeping groundwater pH at low levls. The low pH (2.5 to 3.5) caused parameters whose solubility is controlled by pH levels, such as uranium, vanadium, iron, etc. to remain in solution at concentrations well above baseline. In order to raise the pH, hydrogen ions absorbed on formation clays had to be exchanged with calcium, sodium, or other cations. It was thought that reinjecting a high pH (9.0 to 10.0) calcium rich solution would cause the desired ion exchange reactions to occur.

A test of the high TDS reinjection was started February 12, 1979, but discontinued after three days when a precipitate began to form in the injection tank. Analysis of the precipitate proved it to be gypsum (CaSO₄). The gypsum was formed when calcium ions combined with naturally high sulfate levels (>1,000 mg/l) in the groundwater. It was feared continued injection of the calcium rich solution could cause gypsum buildup within the formation with resultant well plugging, therefore, reinjection was discontinued.

OFFICIAL DOCK-26-COPY

Restoration was halted following the high TDS

reinjection test due to lack of pond capacity and did not resume until mid-May 1979. In the interim, different high pH, high TDS solutions were tested with varying degrees of success. A solution containing sodium hydroxide (NaOH) at a pH of 9-10 proved to be most effective at maintaining high TDS levels while minimizing heavy metal mobilization and well plugging problems. From May through August 14, 1979, injection of a high pH, high sodium hydroxide solution at about 30 gpm was maintained. Table 2.2 compares production fluid water quality prior to and following reinjection of sodium hydroxide.

Table 2.2

Pattern 2 Water Quality NaOH Restoration

		Product	ion Fluid
Parameter	Baseline Range	Apr11 '79	Aug. '79
Ca	50-160	114	62
SO4	1,120-2,800	2,930	1,440
U308	0.015-0.750	4.4	1.6
V	0.05	32.2	18.1
Fe	ND-1.11	12.1	7.0
pH	6.4-6.9	4.2	5.5

Note: All values reported as mg/l except pH (std. units)

OFFICIAL DOCKET COPY

The data indicates the high pH NaOH solution effectively increased pH levels by replacing hydrogen ions absorbed on clays with sodium ions, without causing undesirable mobilization of heavy metal ions. By mid-August, sulfate and calcium levels were within baseline range and no significant water quality improvement was occurring so NaOH injection was terminated. A final sweep of the pattern interior by injecting "clean" formation water and recovering "affected" groundwater from the production well continued until September 4, 1979, when the pattern was shut down to evaluate restoration stability. At that time, all major parameters had been restored to baseline ranges (see Table 2.3). Parameters remaining at greater than baseline levels were iron, vanadium and radium; parameters whose solubility is largely pH dependent.

Table 2.3

Pattern 2 Water Quality Post Restoration (Sept. 4, 1979)

Parameter	Baseline Range	Production (11/3/78)	Fluid (9/4/79)
pН	6.4-6.9	1.5	6.1
TDS	2,028-3,846	6,750	2,360
Ca	50-149	128	60
SO4	1,120-2,290	5,745	1,380
Fe	0.20-0.89	154	3.6
V	0.05	430	11.4
U308	0.015-0.750	43	0.6
Ra-226	46-717	6,060*	1,300

Note: All values reported as mg/l except pH (std. units) and radium-226 (pCi/l). *Sample taken June 1978.

Monthly stabilization sampling of pattern monitor wells following restoration indicated some water quality deterioration, particularly in well M-21 located down gradient from Pattern 2. Additional sampling of injection wells combined with computer modeling of leaching and restoration flow nets suggested some outlying areas around the pattern interior were not adequately swept during restoration. Leaching was conducted at an average injection flow rate of about 40 gpm while restoration flow rates averaged about 20 gpm injection and 21 gpm production. Although the total number of pore volumes produced during phase 1 restoration (11.5 P.V.) nearly equaled that for mining (13.3 P.V.), the lower restoration flow rates resulted in a smaller drawdown cone and area of influence than during leaching.

Continued monitoring during late 1979 and early 1980 confirmed scattered areas of affected groundwater were present around the pattern interior and slowly migrating down dip. Limited pond capacity and Pattern 3 leaching operations precluded immediate full scale corrective actions until August of 1980.

Pattern 2 Restoration - Phase 2

In August, pumping was resumed in the downdip injection well (I-17) and continued through early November 1980 while a second restoration program was developed. The second restoration phase was designed to: (1) further improve water quality within the pattern interior by raising pH and reducing trace metal concentrations, particularly vanadium and (2) draw outlying areas of affected groundwater back into the pattern interior. The plan was to pump affected water to the plant, reduce radionuclide and heavy metal concentrations through a lime/barium chloride precipitation process, and reinject the lime overflow product. Production and injection was rotated among all pattern interior wells in order to sweep outlying areas of the pattern contacted OFFICIAL DOCKET COPY during leaching.

This restoration phase continued from mid-November through February 25, 1981, at a production rate of 15 to 17 gpm with injection rates of 14 to 16 gpm. Total production was about 3.5 million gallons or 3.4 pore volumes. Substantial volumes of affected groundwater were recovered from areas which were apparently only partially swept previously. Attempts to reduce vanadium concentrations by means of ion exchange and/or activated charcoal, zeolite, and mechanical filtration were only partially successful. Table 2.4 compares production fluid water quality prior to phase 2 restoration and shortly before restoration was discontinued.

Table 2.4

Pattern 2 Water Quality Phase 2 Restoration

		Product	ion Fluid
Parameter	Baseline	9/4/80	2/4/81
рH	6.4-6.9	5.6	5.8
TDS	1,028-3,846	3,060	2,960
Ca	50-149	89	136
504	1,120-2,290	2,058	2,017
Fe	0.20-0.89	4.7	4.2
V	0.05	4.4	3.8
U308	0.015-0.750	0.97	0.38

Note: All values reported as mg/l except pH (std. units).

Data analysis shows little improvement within the pattern interior occurred as water quality remained within ranges observed during the previous 10 months of stability monitoring.

Monitoring during March, April, and May of 1981 indicated some deterioration of water quality was recurring, OFFICIAL DOCKET COPY -30-20723 particularly in the vicinity of monitor well M-21. The source of contaminated groundwater was believed to be diluted "pods" of affected water from outlying areas which were drifting downdip due to natural groundwater flow. A decision was made to drill a new well, PL-73, between the injection well (I-17) and a monitor well (M-21) on the downdip side of the fattern. Figure 2.2 shows well PL-73 in relation to other Pattern 2 wells.

Restoration - Phase 3

On May 17, 1981, production from the newly completed well and well I-17 started in order to draw affected groundwater downdip of the pattern back toward the pattern interior. Initially, well PL-73 was pumped at 10 gpm and I-17 at 5 gpm with production fluid routed to the lime treatment circuit. As water quality began to approach baseline conditions in M-21 and show substantial improvement in PL-73, production from PL-73 was discontinued. Pumping rates were increased from 5 to 10 gpm in well I-17 in mid-July and maintained through the end of the month. Table 2.5 describes key water quality indicator parameters during this time period.

Significant water quality improvement occurred as affected groundwater was recovered from the area downdip of the pattern. Vanadium concentrations in well PL-73 were reduced from nearly 10 mg/l to less than 1 mg/l. Iron dropped from 4 mg/l to less than 1. Water quality within the pattern interior (I-17) showed little change although TDS levels were reduced 400 to 500

OFFICIAL DOCKET COPY

mg/l. Generally, parameters remained within ranges observed previously during stabilization monitoring periods.

Table 2.5

Pattern 2 Water Quality Phase 3 Restoration Production Fluid

Well I-17	pH	TDS	<u>SO4</u>	Fe	<u>U308</u>	Ā
5/20/81	-	3,000	1,845	0.40	0.17	1.9
6/3/81	6.6	2,700	1,635	0.17	0.12	3.6
6/17/81	6.2	2,760	1,579	0.40	0.09	3.3
6/30/81	6.0	2,600	1,609	0.30	0.09	2.4
7/9/81	6.2	2,480	1,672	0.51	0.09	2.2
7/22/81	5.9	2,540	1,551	1.00	0.13	2.3
7/28/81	5.9	2,480	1,610	0.77	0.21	2.4
Well PL-73						
5/20/81		3,480	2,185	4.2	0.45	8.6
6/3/81	6.1	3,040	1,981	1.8	0.31	2.2
6/17/81	6.2	2,960	1,719	0.50	0.31	1.4
6/30/81	6.2	3,000	1,634	0.60	0.21	0.9
7/9/81	6.4	2,900	1,812	0.17	0.26	0.5

Note: All values reported as mg/l excepth pH (standard units).

Restoration - Phase 4

OFFICIAL DOCKET COPY

Production from the pattern was resumed in November of 1981 in an attempt to retrieve any remaining "pods" of unrestored groundwater and to prevent interference with Pattern 3 restoration efforts. Initial production was 20 gpm evenly split from wells P-15 and I-17 then switched entirely to I-17 for a month and a half and back to P-15 for a final sweep of the pattern interior. Restoration was terminated on February 1, 1982, after removal of 1.6 million gallons of affected groundwater from the central and downdip areas of the pattern. Table 2.6 presents the water

-32-

Pattern 2 Water Balance Summary

Operational Mode	Production (gal.)	Pore Volumes	Injection (gal.)	Pore Volumes	Net Production (gal.)
Leaching (12/77-9/78)	13,834,274	13,3	12,371,300	11.9	1,462,974
Restoration Phase 1 (10/78-9/79)	11,943,934	11.5	9,756,709	9.4	2,187,225
Phase 2 (9/80-2/81)	3,494,050	3.4	1,611,607	1.5	
Phase 3 (5/81-7/81)	1,358,004	1.3	0	-	1,358,004
Phase 4 (11/81-2/82)	1,580,620	1.5	0	-	1,580,620
Restoration TOTAL	18,376,608	17.7	11,368,316	10.9	5,125,849
			TOTAL WAT	ER CONSUMPTION	6,588,823
Total number of	restoration pore	e volumes =	133% of mining	pore volumes	

lone Pore Volume = 1,043,000 gallons

balance summary for Pattern 2 leaching and restoration operations. The total restoration effort produced 18.4 million gallons (17.7 PV) of affected groundwater during 22 months versus 13.8 million gallons (13.3 PV) produced during leaching.

2.3 Pattern 2 Post Restoration Water Quality

Samples obtained in February 1982 immediately following restoration termination show that all major constituents had been restored to pattern baseline range for the interior wells (P-15, I-16A, I-17, I-18, and I-19). Tables P2-1 through P2-9 present well sampling results from all Pattern 2 production, injection, and monitor wells as of February 1982. Copies of EPA certified laboratory results are included in Appendix B. The data indicates that in addition to all major constituents, trace elements had also been restored to pattern baseline range with the exception of iron and silicon. Aluminum, vanadium, and zinc concentrations were slightly above baseline in some of the interior wells with an average value of 3.4 mg/l iron and 0.7 mg/l vanadium for all production and injection wells.

Pattern monitor wells were also well within baseline range for all major and minor parameters except silicon (SiO₂) and vanadium in well M-21. There are no federal or state standards for silicon in groundwater, regardless of use category. Final restoration efforts were successful in restoring groundwater in the vicinity of monitor well M-21 to near baseline conditions. All parameters but silicon, aluminum, and vanadium were within Pattern 2 baseline ranges. Aluminum concentrations were 0.6 mg/1

-34-

DEFICIAL DOCKET COPY

	P-	15							
	PATTERN BASELINE RANGE	PATTERN BASELINE MEAN	NML 2/2/82	(BLIND SPLIT) NML 2/2/82	CDM 2/2/82	NML . 3/8/82	NML 4/8/82	NML 5/9/82	PATTERN AVE. 2/2/82
рН	5.4-6.9	6.7	5.7	5.7	6.6	6.0	6.0	6.0	
Conductivity	1950-4000	3339	3750	3750	3210	3400	3400	3500	
Major Constituents									
Bicarbonate	256-315	257	60	60	70	121	108	129	
Carbonate	0-0	0	0	0	0	0	0	0	
Alkalinity as CaCO	210-258	228	49	49	58	99	89	106	
Calcium	50-160	111	119	104	110	165	124	153	
Chloride	9-80	46	36	39	35	41	44	58	
Magnesium	12-129	76	48	52	62	64	59	64	
Potassium	7.5-30.0	14.8	11.9	11.7	8.7	15.7	11.2	10.8	
Sodium	520-840	674	723	667	680	715	658	500	
Sulfate	1120-2800	1769	1824	1775	1840	1894	1761	1452	1575
TDS	2028-3486	2852	3020	2960	2790	2840	2710	2300	2610
Anion/Cation		102	96	101	100	103	100	101	
Minor Constituents									
Ammonia as N	ND-0.48	0.08			0.2				
Nitrate as N	ND-0.6	0.26			0.05				
Nitrite as N	ND-0.04	0.05	-		0.05				
Aluminum	ND-0.2	0.13	1.2	1.2	1.3				
Arsenic	ND-0.01	0.01	-		0.034				
Barium	ND-0.05	0.05			0.2				
Boron	ND-1.0	0.29			0.2				
Cadmium	ND-0.01	0.01	0.02	0.01	0.009				
Chromium	ND-0.014	0.006	0.03	0.04	0.01				
Copper	ND-0.028	0.015			0.027				
Fluoride	0.04-0.60	0.32	0.4	0.4	0.1				
Iron	ND-1.11	0.42	3.31	3.33	2.0	2.05	3.10	1.80	3.43
Lead	ND-0.05	0.010	0.10	0.12	0.005				
Manganese	0.10-0.34	0.22		0.17	0.11				
Mercury	0.0001	0.0001			0.0001				
Molybdenum	0.01	0.004			0.005				
Nickel	Not Taken	An 181 181 181	0.05	0.03	0.03				
Selenium	ND-0.01	0.01			0.005				244
Vanadium	ND-0.05	0.05	3.4	2.9	4.0	2.94	2.119	0.85	./00
Zinc	ND-0.04	0.02	0.26	0.27	0.36				
Silicon (S10 ₂)	3.0-8.0	5.7	29	29	31				
Radiochemistry									
Uranium as U_O_	0.015-0.750	0.239	0.271	0.247	0.283	0.147	0.174	0.114	
Rad1um-226 3 8	19-717	233	876		730	974		540	
Thor tum-230	ND-5_1	3.4	18.6		41	26.6			

.

NINE MILE LAKE PATTERN 2

NOTE: All units expressed in mg/l (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/l).

, 42/A15

0

20723

	PATTERN BASELINE RANCE	PATTERN BASELINE MEAN	NML 2/10/82	CDM 2/10/82	NML 3/8/82	NML 4/8/82	NML 5/6/82
pii Conductivity	6.4-6.9	6.7	6.5	7.2	6.4	6.5	6.3
Major Constituents							
Reserves	256 215	167	244	105		224	220
Bicarbonate	250-315	257	240	195	231	234	228
Carbonate	0-0	0	202	0	0	0	107
Calatin Calatin	210-258	220	202	101	189	192	187
Chlorida	0-90	46	22	26	23	26	64
Chioride	9-00	40	23	20	54	30	40
Potagatum	7 5-30 0	16.8	10 4	7 3	9.7	9.6	0.2
Coddum	520-840	674	511	480	551	5/8	600
Sulfate	1120-2800	1769	1177	1250	1360	1321	1408
The	2028-2486	2952	2100	1230	1355	2540	2490
Anion/Cation	2020-3400	102	97	104	99	102	99
Minor Constituents							
Ammonta as N	ND-0.48	0.08		102			
Nitrata as N	ND-0.6	0.26		10.05			
Nitrite as N	ND-0.04	0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(0.05			
Aluminum	ND-0.2	0.13	0.34	10.5			
Areento	ND-0.01	0.01	0.34	0.007			
Bastim	ND-0.05	0.05		10.2			
Boron	ND-1.0	0.29		0.3			
Cadmium	ND-0.01	0.01	10.01	0.006			
Chronium	ND-0.014	0.006	10.01	10.01			
Copper	ND-0.028	0.000	0.005	0.010			
Fluoride	0.04-0.60	0.32	0.55	0.1			
Iron	ND-1.11	0.42	1.17	0.74	0.85	1.73	1.44
Lead	ND-0.05	0.010	0.04	(0.005	0.03		
Manganese	0 10-0 34	0.22	0.13	0.12			
Mercury	10.0001	0.0001	0.13	0.0002			
Molyhdenum	20.01	0.004		(0.005			
Nickel	Not Taken	0.004	0.04	0.05			
Selenfum	20.01	0.01	0.04	(0.005			
Vanadium	ND-0.05	0.05	0.79	0.48	0.18	0.236	0.05
Zinc	ND-0.04	0.02	0.05	0.052	0.10	0.234	0.05
Silicon (SiO ₂)	3.0-8.0	5.7	10.8	11.0			
Radiochemistry							
Urantum as U.O.	0.015-0.750	0.239	0.149	0.177	0.133	0 139	0.106
Radium-226 3 8	19-717	233	250	230	325	5	180
Thor fum-230	ND-5.1	3.4	1.7	1.8	0.6		

NOTE: All units expressed in mg/l (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/l).

42/A9

Æ,

	PATTERN BASELINE RANGE	PATTERN BASELINE MEAN	NML 2/10/82	CDM 2/10/82	
pH Conductivity	6.4-6.9 1950-4000	6.7 3339	6.7 2900	7.2 3000	
Major Constituents					
	256-315	257	281	228	
Bicarbonate	250-515	0	0	0	
Carbonate	210 259	228	230	188	
Alkalinity as caco ₃	50-160	111	86	87	
Calcium	0-100	46	35	29	
Chloride	9-60	40	49	51	
Magnesium	12-129	14 9	0 0	7.4	
Potassium	7.5-30.0	676	570	500	
Sodium	520-840	1760	1334	1350	
Sulfate	1120-2800	1/09	2360	2130	
TDS	2028-3480	2052	2300	05	
Anion/Cation		102 -	99	95	
Minor Constituents					
Ammonia as N	ND-0.48	0.08		<0.2	
Nitrate as N	ND-0.6	0.26		<0.05	
Nitrite as N	ND-0.04	0.05		< 0.05	
Aluminum	ND-0.2	·0.13	0.23	40.5	
Arsenic	ND-0.01	0.01		0.013	
Barium	ND05	0.05		<0.2	>
Boron	ND-1.0	0.29		0.4	4
Cadmium	ND-0.01	0.01	<0.01	0.005	^o
Chromium	ND-0.014	0.006		<0.01	0
Copper	ND-0.028	0.015	0.007	0.011	-
Fluoride	0.04-0.60	0.32	0.36	<0.1	4
Tron	ND-1.11	0.42	2.77	2.0	X
Lead	ND-0.05	0.010	0.05	< 0.005	0
Manganese	0.10-0.34	0.22	0.15	0.14	0
Marcury	0.0001	0.0001		<0.0001	0
Molyhdenum	0.01	0.004	0.02	< 0.005	
Nickel	Not Taken		0.04	0.08	$\overline{\nabla}$
Salanium	0.01	0.01		<0.005	0
Vanadium	ND-0.05	0.05	0.03	0.128	T.
Zinc	ND-0.04	0.02	0.02	0.033	L
Silicon (SiO ₂)	3.0-8.0	5.7	21.6	20.0	0
Radiochemistry					
	0.015-0.750	0 239	0.065	0,110	
Uranium as 0.008	10-717	233	92	36	
Radium-226	ND-5 1	3.4	7.7	5.5	
inorium-230	MD-3.1	5.4			

NOTE: All units expressed in mg/l (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pC1/l).

42/A10

•

I-18

	PATTERN BASELINE	PATTERN BASELINE	NML.	CDM
	RANGE	MEAN	2/10/82	2/10/82
pH	6.4-6.9	6.7	6.0	6.2
Conductivity	1950-4000	3339	3400	3200
Major Constituents				
Bicarbonate	256-315	257	115	80
Carbonate	0-0	0	0	0
Alkalinity as CaCO	210-258	228	94	66
Calcium	50-160	111	120	110
Chloride	9-80	46	41	33
Magnesium	12-129	76	55	55
Potassium	7.5-30.0	14.8	11.7	7.7
Sodium	520-840	674	690	670
Sulfate	1120-2800	1769	1747	1711
TDS	2028-3486	2852	2720	2500
Anion/Cation		102	97	96
Minor Constituents				
Ammonia as N	ND-0.48	0.08		0.3
Nitrate as N	ND-0.6	0.26		<0.05
Nitrite as N	ND-0.04	0.05		< 0.05
Aluminum	ND-0.2	0.13	0.55	<0.5
Arsenic	ND-0.01	0.01 .		0.032
Barium	ND-0.05	0.05		<0.2
Boron	ND-1.0	0.29		0.3
Cadmium	ND-0.01	0.01	<0.01	0.005
Chromium	ND-0.014	0.006		0.01
Copper	ND-0.028	0.015	0.006	0.011
Fluoride	0.04-0.60	0.32	0.27	(0.1
Iron	ND-1.11	0.42	5.89	5.9
Lead	ND-0.05	0.010	0.03	0.005
Manganesc	0.10-0.34	0.22	0.18	0.17
Mercury	\$0.0001	0.0001		< 0.0001
Molybdenum	\$0.01	0.004		<0.005
Nickel	Not Taken		0.08	0.09
Selenium	ND-0.01	0.01		<0.005
Vanadium	ND-0.05	0.05	0.18	0.25
Stiller (StC.)	ND-0.04	0.02	0.31	0.26
SIIIcoli (Si0 ₂)	5.0-0.0	5./	41.0	30.0
Radiochemistry				
Uranium as U30g	0.015-0.750	0.239	0.031	0.053
Radum-226	19-717	233	146	71
Thorium-230	ND-5.1	3.4	26	5.1

NOTE: All units expressed in mg/l (ppm) except conductivity (umhos/cm) pH (standard units) and radionuclides (pCi/l).

42/A8

٠

I-19

	PATTERN BASELINE RANGE	PATTERN BASELINE MEAN	NML 2/10/82	CDM 2/10/82	
pH	6.4-6.9	6.7	6.8	7.3	
Conductivity	1950-4000	3339	3500	3250	
Major Constituents					
Bicarbonate	256-315	257	136	107	
Carbonate	0-0	0	0	0	
Alkalinity as CaCO	210-258	228	111	88	
Calcium	50-160	111	136	130	
Chloride	9-80	46	64	51	
Magnesium	12-129	76	55	58	
Potassium	7.5-30.0	14.8	11.8	8.6	
Sodium	520-840	674	610	620	
Sulfate	1120-2800	1769	1714	1770	
TDS .	2028-3486	2852	2660	2580	
Anion/Cation		102	104	104	
Minor Constituents					
Ammonia as N	ND-0.48	0.08		3.9	
Nitrate as N	ND-0.6	0.26		<0.05	
Nitrite as N	ND-0.04	0.05		< 0.05	
Aluminum	ND-0.2	0.13	0.11	<0.5	
Arsenic	ND-0.01	0.01		0.005	
Barium	ND-0.05	0.05		<0.2	
Boron	ND-1.0	0.29		0.3	
Cadmium	ND-0.01	0.01	<0.01	<0.005	
Chromium	ND-0.014	0.006		0.01	
Copper	ND-0.028	0.015	0.002	0.012	
Fluoride	0.04-0.60	0.32	0.37	<0.1	2012 - ALEAN
Iron	ND-1.11	0.42	5.04	5.2	õ
Lead	ND-0.05	0.010	0.02	<0.005	0
Manganese	0.10-0.34	0.22	0.18	0.19	()
Mercury	0.0001	0.0001		<0.0001	
Molybdenum	0.01	0.004		<0.005	and the second se
Nickel	Not Taken		0.02	0.05	3
Selenium	0.01	0.01		<0.005	5
Vanadium	ND-0.05	0.05	0.09	0.074	6
Zinc	ND-0.04	0.02	0.02	0.021	- A
Silicon (SiO ₂)	3,0-8.0	5.7	20.6	26.0	_
Radiochemistry					CiA
Uranium as U_0_	0.015-0.750	0.239	0.011	0.038	E
Radium-226 3 8	19-717	233	13	11	L
Thorium-230	ND-5.1	3.4	0.2	2.2	4
NOTE: All units expressed	in mg/l (ppm) ex	cept conducti	ivity (umbos)	(cm).	20723

.

NOTE: All units expressed in mg/l (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/l).

42/A7

		PATTERN BASELINE RANGE	PATTERN BASELINE MEAN	NM1. 2/8/82	CDM 2/8/82	NML. 3/9/82	NML 4/8/82	NML 5/6/82
	pH Conductivity	6.4-6.9 1950-4000	6.7 3339	6.8 3100	7.2 3200	6.6 3500	6.8 3600	6.4 3600
	Major Constituents							
	Bicarbonata	256-315	257	279	246	304	297	290
	Carbonate	0-0	0	0	0	0	0	0
	Alkalinity as CaCO	210-258	228	229	204	249	243	238
	Calcium	50-160	111	88	89	111	109	118
	Chlorida	9-80	46	30	29	35	35	49
1 C	> Magnastum	12-129	76	56	61	73	72	73
-may	1 Potasetum	7.5-30.0	14.8	10.9	8.0	31.6	11.4	11.3
1	I Sodium	520-840	674	558	570	710	748	694
	Sulfate	1120-2806	1769	1379	1490	1857	1728	1921
	TDS	2028-3486	2852	2220	2330	2860	2849	3120
	Anion/Cation		102	102	104	98	103	96
1						· •		
	Minor Constituents							
1	Ammonia as N	ND-0.48	0.08		<0.2			
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Nitrate as N	ND-0.6	0.26		< 0.05			
1 - 1	Nitrite as N	ND-0.04	0.05		< 0.05			
40	Aluminum	ND-0.2	0.13	0.42	< 0.5			
1 137	Arsenic	ND-0.01	0.01		< 0.005			
and the second	Barium	ND-0.05	0.05		<0.2			
	Boron	ND-1.0	0.29		0.3			
	Cadmium	ND-0.01	0.01	<0.01	0.005			
in the second	Chromium	ND-0.014	0.006		0.01			
	Copper	ND-0.028	0.015	0.017	0.010			
0	Fluoride	0.04-0.60	0.32	0.57	0.2	and a second		
	Iron	ND-1.11	0.42	0.48	0.33	0.37	0.62	0.43
	Lead	ND-0.05	0.010	0.07	<0.005			
	Manganese	0.10-0.34	0.22	0.14	0.14			
	Mercury	0.0001	0.0001		< 0.0001			
	Molybdenum	0.01	0.004		< 0.005			
	Nickel	Not Taken		0.02	0.04			
	Selenium	0.01	0.01		< 0.005			
	Vanadium	ND-0.05	0.05	0.03	0.25	0.01	0.013	0.03
	Zinc	ND-0.04	0.02	0.01	0.026			
	Silicon (SiO ₂)	3.0-8.0	5.7	7.2	8.0			
De	Radiochewistry							
0				0.020	0.000	0.000	0.000	0 300
-1	Uranium as U ₃ O ₈	0.015-0.750	0.239	0.279	0.283	0.326	0.339	0.389
2	Radium-226	19-717	233	146	130			180
•	Thorium-230	ND-5.1	3.4	1.4	0.6			

NOTE: All units expressed in mg/l (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pC1/l).

2

20723

-

		PATTERN BASELINE RANGE	PATTERN BASELINE MEAN	NML 2/3/82	CDM 2/3/82	NML 3/10/82	NML 4/8/82	NML 5/6/82
	pH Conductivity	6.4-6.9	6.7	6.6 2750	7.0	6.7 2600	6.7 2600	6.4 2700
Ma	ior Constituents							
ria .	or constituents							
	Bicarbonate	256-315	257	283	239	287	281	281
	Carbonate	0-0	0	0	0	0	0	0
	Alkalinity as CaCO	210-258	228	232	198	235	230	230
	Calcium 3	50-160	111	87	80	88	88	113
	Chloride	9-80	46	29	26	32	35	46
	Magnesium	12-129	76	47	51	47	57	58
	Potassium	7.5-30.0	14.8	9.6	7.0	9.8	9.5	9.3
	Sodium	520-840	674	564	550	524	544	533
	Sulfate	1120-2800	1769	1332	1300	1263	1253	1427
	TDS	2028-3486	2852	2200	2060	2120	2175	2260
	Anion/Cation		102	101	98	99	102	97
Min	nor Constituents							
	Ammonia as N	ND-0.48	0.08		(0.2			
	Nitrate as N	ND-0.6	0.26		\$0.05			
	Nitrite as N	ND-0.04	0.05		\$0.05			
	Aluminum	ND-0.2	0.13	0.52	0.6			
	Arsenic	ND-0.01	0.01		< 0.005			
	Barium	ND-0.05	0.05		<0.2			
	Boron	ND-1.0	0.29		0.4			
	Cadmium	ND-0.01	0.01	0.01	<0.005			
	Chromium	ND-0.014	0.006	0.03	0.01			
	Copper	ND-0.028	0.015		0.010			
	Fluoride	0.04-0.60	0.32	0.7	0.2			
	Iron	ND-1.11	0.42	0.56	0.26	0.29	0.46	0.36
	Lead	ND-0.05	0.010	0.07	<0.005			
	Manganese	0.10-0.34	0.22		0.13			
	Mercury	<0.0001	0.0001		\$ 0.0001			
	Molybdenum	<0.01	0.004		< 0.005			
	Nickel	Not Taken		0.01	0.06			
	Selenium	ND-0.01	0.01		0.005			
	Vanadium	ND-0.05	0.05	1.10	1.6	0.91	1.573	1.92
	Zinc	ND-0.04	0.02	0.06	0.10			
	Silicon (Si0 ₂)	3.0-8.0	5.7	7.8	8.0			
Rad	liochemistry							
	Uranium as U_0_	0.015-0.750	0.239	0.198	0.165	0.150	0.122	0.181
	Radium-226 38	19-717	233	286	270			280
	Thorium -230	ND-5.1	3.4	12	2.3			

NOTE: All units expressed in mg/l (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/l).

42/A13

TABLE P2-7

	PATTERN BASELINE RANGE	PATTERN BASELINE MEAN		NML 2/5/82	CDM 2/5/82	NML. 3/10/82	NML. 4/8/82	NML 5/6/8
pH Conduct fullty	6.4-6.9	6.7		6.6	7.1	6.7	6.7	6.6
conductivity	1930-4000	1111		5100	1000	3000		
Major Constituents								
Bicarbonate	256-315	257		262	214	273	260	268
Carbonate	0-0	0		0	0	0	0	0
Alka, inity as CaCO	210-258	228		215	177	224	213	220
Calcium 3	50-160	111		96	95	107	101	116
Chloride *	9-80 46		31	26	32	35	42	
Magnesium	12-129	76		68	66	57	68	68
Potassium	7.5-30.0	14.8		10.9	8.1	11.0	10.3	10.1
Sodium	520-840	674		606	600	545	556	581
Sulfate	1120-2800	1769		1546	1500	1408	1277	1468
TDS	2028-3486	2852		2540	2310	2294	2175	2460
Anion/Cation		102		101	97	99	105	101
Minor Constituents								
Ammonia as N	ND0.48	0.08			\$0.2			
Nitrate as N	ND-0.6	0.26			<0.05			
Nitrite as N	ND-0.04	0.05			(0.05			
Aluminum	ND-0.2	0.13		0.32	(0.5			
Arsenic	ND-0.01	0.01			< 0.005			
Factum	ND-0.05	0.05			\$0.2			
Boron	ND-1.0	0.29			0.1			
Cadmium	ND-0.01	0.01		₹ 0.01	0.005			
Chromium	ND-0,014	0.006			0.01			
Copper	ND-0.028	0.015		0.017	0.013			
Fluoride	0.04-0.60	0.32		0.62	0.2			
Iron	ND-1.11	0.42		0.55	0.38	0.33	0.56	0.45
Lead	ND-0.05	0.010		0.05	C 0.005			
Manganese	0.10-0.34	0.22		0.18	0.17			
Mercury	50.0001	0.0001			₹0.0001			
Molybdenum	< 0.01	0.004			0.005			
Nickel	Not Taken	0.02		0.03	(0.07			
Selenium	\$0.01	0.01			\$ 0.005			
Vanadium	ND-0.05	0.05		0.17	0.20	0.01	0.013	0.05
Zinc	ND-0.04	0.02		0.01	0.018			
Silicon (SiO ₂)	3.0-8.0	5.7		7.9	9.0			
Radiochemistry								
Uranium as U ₂ O ₂	0.015-0.750	0.239		0.016	0.032	0.023	0.008	0.035
Radium-226	19-717	233		372	220			210
Thorium-230	ND-5,1	3.4		0.5	0.8			

NOTE: All units expressed in mg/l (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/l).

42/A12

OFFICIAL DOCKET COPY -42-

		PATTERN BASELINE RANGE	PATTERN BASELINE MEAN	NML 2/5/82	CDM 2/5/82	NML 3/10/82	NML. 4/8/82	NML 5/7/82
	рН	6.4-6.9	6.7	6.7	7.0	6.7	6.7	6.1
	Conductivity	1950-4000	3339	2700	2800	2000	2500	2900
Majo	r Constituents							
	Bicarbonate	265-315	257	277	232	289	282	139
	Carbonate	0-0	0	0	0	0	0	0
	Alkalinity as CaCO.	210-258	228	227	192	237	231	114
	Calcium 3	50-160	111	74	72	87	79	144
	Chloride	9-80	46	31	25	32	35	49
	Magnesium	12-129	76	44	48	52	48	47
	Potassium	7.5-30.0	14.8	9.5	6.9	9.9	9.5	10.9
	Sodium	520-840	674	526	460	513	517	490
	Sulfate	1120-2800	1769	1215	1220	1210	1235	1480
	TDS	2028-3486	2852	2100	1930	2040	2063	2460
	Anion/Cation		102	101	107	101	99	97
Mino	r Constituents			· · · · ·				
	Ammonia as N	ND-0.48	0.08		50.2			
	Nitrate as N	ND-0.6	0.26		\$ 0.05			
	Nitrite as N	ND-0.04	0.05		\$ 0.05			
	Aluminum	ND-0,2	0.13	0.14	\$0.5			
	Arsenic	ND-0.01	0.01		(0.005			
	Barium	ND-0.05	0.05		<0.2			
	Boron	ND-1.0	0.29		0.1			
	Cadmium	ND-0.01	0.01	₹0.01	\$ 0.005			
	Chromium	ND-0.014	0.006		0.01			
	Copper	ND-0.028	0.015	0.005	0.013			
	Fluoride	0.04-0.60	0.32	0.60	0.2			
	Iron	ND-1.11	0.42	0.28	0.38	0.16	0.27	3.54
	Lead	ND-0.05	0.010	0.06	0.005			
	Manganese	0.10-0.34	0.22	0.11	0.17			
	Mercur	CO.0001	0.0001		\$0.0001			
	Molybdenum	< 0.01	0.004		< 0.005			
	Nickel	Not Taken		0.03	0.07			
	Selenium	€0.01	0.01		< 0.005			
	Vanadium	0.05	0.05	0.34	0,20	0.14	0.102	0.03
	Zinc	0.04	0.02	0.02	0.018			
	Silicon (Si0 ₂)	3.0-8.0	5.7	8.3	9.0			
Radi	ochemistry							
	Uranium as U.O.	0.015-0.750	0.239	0.224	0.271	0.253	0.250	0.055
	Radium-226 3 8	19-717	233	301	220		21220	18
	Thorium-230	ND-5.1	3.4	1.3	1.0			

NOTE: All units expressed in mg/l (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/l).

42/A21

TABLE P2-9

which is below DEQ standards of 5 mg/l for Class II and III groundwater Vanadium levels were reduced to less than 2 mg/l which is within the baseline range calculated from regional monitor wells completed in the Teapot sandstone (see Table 1.4).

Well monitoring since February 1982 confirms that water quality within the pattern interior has remained fairly stable over a four month period. Sodium, sulfate, TDS, iron, vanadium, and uranium levels actually appear to be decreasing in the central production well, P-15 (see Table P2-1). Injection well I-17 has shown an apparent increase in sodium, sulfate, TDS, and iron concentrations suggesting that the process of chemical equilibrium is occurring in the pattern interior. Data analysis indicates no significant trends and all parameters remain within baseline ranges.

Samples obtained from monitor well M-21 over a four month period following final restoration also indicate stability. Calculations performed prior to the phase 4 restoration program indicated that 90 to 95 percent of all leaching induced contamination had been removed by the first three restoration attempts. Computer modeling of leaching restoration flow nets implied residual contaminants were concentrated in small pods which gradually migrated downdip during shutdown periods. Stabilization monitoring of monitor wells M-21 and M-22 through May 1982 indicates a substantial volume of residual affected groundwater was recovered in the final restoration phase. Any

OFFICIAL THAT COLORY

remaining "pods" of affected groundwater would, therefore, constitute less than 5 percent of total groundwater volume affected by leaching.

2.4 Pattern 2 Conclusions

Results of Pattern 2 groundwater restoration efforts clearly represent a substantial improvement in acid restoration technology from the first test pattern. Nearly all major parameters were restored to premining ranges during the initial restoration program. In fact, restoration was believed to be successful enough to fulfill regulatory agency demonstrated restoration requirements for a commercial scale facility.

In September of 1979 when initial restoration was complete, DEQ and NRC had no definitive restoration criteria for R&D uranium solution mining operations. Approval to begin Pattern 3 leaching was contingent upon submittal of data "showing that restoration (of Pattern 2) is close." On September 21, 1979, written authorization to proceed with Pattern 3 testing was received from the DEQ based on information and water quality data concerning Pattern 2 restoration presented to the DEQ in a September 6, 1979, meeting. It was RME's understanding that this action constituted DEQ approval of Pattern 2 restoration. See Section 6.1 and Appendix E for referenced materials.

Subsequent Pattern 2 restoration activities were conducted entirely through RME initiative and were designed to

supplement the original program by addressing portions of the pattern previously considered restored. The data presented in this report confirms that remedial actions were generally quite effective and have resulted in restoration of affected groundwater to a condition and quality consistent with premining use suitability.

3.0 Operational History - Pattern 3

10

Favorable results of Pattern 2 leaching and restoration tests warranted additional investigation as to the feasibility of mining the Teapot on a production scale basis with an acidic leach solution. The ore body at Nine Mile Lake frequently occurs as "stacked" ore zones separated by a semipermeable lignite-shale zone within the host sandstone. A primary purpose of the Pattern 3 test was to evaluate the feasibility of simultaneous upper and lower ore zone production. Secondary objectives were to test different well completion procedures and the effectiveness of a seven spot pattern using greater well spacing intervals.

The pattern was constructed with six injection wells surrounding two central production wells at a radius of 60 feet. Injection wells were completed by selective hydraulic perforation and slotting in both ore zones. Production wells were completed independently with one in the upper ore zone (well P-53) and another in the lower ore zone (well P-50).

69

Monitor wells were completed by screening the lower zones and perforating in the upper ore zone. Segregation of well 20723 OFFICIAL DOCKET COPY -46completion intervals was not considered necessary as previous experience and preliminary Pattern 3 hydrologic studies indicated a negligible potential for leakage between upper and lower zones. through the lignite-shale zone. Monitor wells were installed approximately 100 feet from the injection well ring. The close proximity of injection and monitor wells was necessary due to permit area restrictions; ideally monitor wells should have been at least 150 to 200 feet from the injection well ring.

3.1 Pattern 3 Leaching

Following a short period of pretreatment, leaching began the first week of September 1979 using a sulfuric acid lixiviant. Total injection flow rates were set at 58 gpm with the flow evenly split among the 6 injection wells. Injection streams were controlled with one flow and pressure monitoring system per well. Because upper and lower ore zone permeabilities were very similar, injection flow streams were expected to split evenly between upper and lower ore zones. Production rates were initially maintained at 60 gpm with half the flow coming from the upper ore zone (well P-53) and half from the lower ore zone (well P-50).

By late September, uranium head grades were rising rapidly in P-50 (lower zone) production fluid but not the upper zone (P-53) which suggested injection flow rates were possibly imbalanced. The pattern was shut down October 1 for additional hydrology testing.

> Vertical flow profile tests had been planned prior to OFFICIAL DOCKET COPY 20723

leaching but not performed due to equipment availability. During the first week of October, necessary equipment arrived on site and vertical flow profile tests were conducted on all wells. Test results revealed that injection flow rates were not balanced between upper and lower ore zones in all injection wells. Flow rates into the upper ore zone were found to be significantly greater than those into the lower ore zone.

Plans were made to isolate upper and lower ore zone injection streams. Packers and flow measuring equipment were ordered while dual zone injection continued as before. By October 24, packing equipment had arrived and installation began.

The lower ore zone was isolated by installing mechanical packers at the top of the ore interval and running two inch heavy duty PVC piping through the packers for injection purposes. Upper zone injection was accomplished by running a two inch stringer through the well head and injecting between the five inch casing and lower zone injection piping.

Almost immediately after resuming dual zone injection, wells began pressuring up in the lower ore zone. After several days, injection was discontinued, packers were pulled, and the wells airlifted. Material removed during airlifting indicated a fungus growth had plugged up the lower zone completion interval causing wells to pressure up and most of the injection flow to go into the upper ore zone. This period of unbalanced injection flow probably reinforced earlier injection flow patterns resulting in -48-OFFICIAL DOCKET COPY an expanded upper ore flow net.

Routine sampling of pattern monitor wells showed evidence of an excursion occurrence in two wells. M-40 and M-43, on November 13, 1979. Figure 3.1 shows the location and configuration of Pattern 3 wells. Repeat sampling confirmed the presence of excursion indicator parameters at concentrations above upper control limits and notification of excursion status given to the NRC and DEQ on November 16.

Injection rates had been reduced in three injection wells on the M-40 (northeast) side of the pattern following the November 13 sampling. On the 15th, all injection was stopped and production from both ore zones increased while M-40 and M-43 were resampled. Selective ore zone sampling of both wells indicated only the upper ore zone was in excursion status which was later confirmed by additional sampling and the completion of two new monitor wells. Appendix C contains a detailed chronology of excursion confirmation and corrective actions taken.

For the purposes of this report, it is adequate to know that the excursion occurrence was confined to the upper ore zone and remedial actions were effective in controlling the event. By early December, water quality in wells M-40 and M-43 had improved considerably as had groundwater in the new upper ore zone monitor well (M-40B). Limited production from the lower ore zone was resumed December 6 with total injection flows of about 20 gpm and

OFFICIAL DOCKET COPY-49-

no injection on the M-40 side of the pattern. A pumping rate of 5 to 20 gpm was maintained from the upper ore zone (P-53) throughout November and December to retrieve outlying flow streams.

A variety of oxidants were tested in the lower ore zone during the first quarter of 1980. Sporadic problems were encountered with well plugging, frozen lines, and equipment failures. Although uranium head grades from the lower ore zone were satisfactory, they were substantially lower than average Pattern 2 head grades. Upper ore zone headgrades averaged only 20 to 30 ppm uranium.

Attempts to resume an upper/lower ore zone production balance met with little success. Throughout January of 1980, pumping from the upper zone was maintained at 5 gpm with no injection while lower ore zone production averaged 22 gpm. During February and March, production from the lower zone continued while different oxidants were tested. By March 24, all acid injection was discontinued and on April 1, 1980, all injection into the pattern was terminated. Production continued at 5 gpm from each ore zone in order to maintain a hydraulic gradient while project development alternatives were considered.

Because of difficulties experienced with restoration of previous acid test patterns, it was decided to test a carbonate leach solution in a new test pattern. A request to d fer Pattern 3 restoration was granted by the DEQ and NAC with the understanding that RME would restore the pattern following the 20723 carbonate leach test. RME proposed to restore Pattern 3 by means of a groundwater sweep if the carbonate test (Pattern 4) proved successful or by some procedure suitable for a production scale operation if the test were unsuccessful. Consequently, Pattern 3 was placed in a "hold" mode which continued from April 1, 1980, until August 1981. During this time, an average bleed of 10 gpm was maintained with occasional adjustments to control solution migration.

3.2 Pattern 3 Restoration

Disappointing results from the carbonate leach test prompted a reevaluation of the geologic resource at Nine Mile Lake as well as the feasibility of a commercial mine. In June of 1981, RME concluded that a viable project would be questionable considering uranium market conditions, technological limitations of restoration techniques, and regulatory agency requirements for demonstrating restoration. License applications for a production scale facility were withdrawn and Pattern 3 restoration plans developed.

Computer modeling of proposed restoration schemes indicated groundwater would be rescored most effectively by using a modified groundwater sweep combined with reinjection of treated water.

The first program objective was to consolidate peripheral groundwater affected during mining within the pattern interior. This was done by simultaneous injection of "clean" 20723 -51water in wells located beyond areas affected during mining and pumping affected groundwater from the pattern interior. A series of new wells (WF-69 through WF-72) were completed in both ore zones along an arc bordering the northeast quadrant of the pattern forming a "water fence." Refer to Figure 1.1 in Section 1 for well locations. Monitor wells M-40A and M-40B were also incorporated in the water fence to provide overlapping injection flow nets, thus prevently any outward movement of affected groundwater. In addition to sweeping down gradient portions of the pattern contaminated during leaching, the water fence wells were designed to create a hydraulic barrier between Patterns 3 and 4.

Restoration began August 25, 1981, and continued through January 1982. Production was started at about 40 gpm and gradually increased to 70 gpm during the first month of operation. Production was primarily from wells P-50 and P-53, but injection wells were also pumped on a rotating basis. Production fluid was routed to an RO unit, the product combined with "clean" formation water and reinjected in the water fence wells at a rate of 7 to 8 gpm per well. Figure 3.2 shows the water treatment circuit which incorporated a lime precipitation/reaction process, in addition to the RO unit, for treating RO reject and Pattern 2 production fluid prior to discharge. Table 3.1 describes Pattern 3 water quality for key parameters before restoration began.

Note that lower zone water quality shows greater effects of prolonged contact with acid lixiviant (e.g., low pH, high van-20723

-52-

NINE MILE LAKE PILOT PROJECT **REVERSE OSMOSIS - LIME CIRCUITS** FINAL RESTORATION

2072

W N adium, and uranium) than the upper zon which would be expected since upper zone leaching was terminated earlier than lower zone.

Table 3.1

Pattern 3 Water Quality Prerestoration (August 1981)

			Well Number							
Par	ameter	Baseline Range	Px50 (lower)	P-53 (upper)	I-45 (injector)	M-40 (monitor)				
	рН	6.4-7.2	4.6	5.1	5.4	6.5				
	Ca	41-135	49	82	_	89				
	Fe	0.01-4.10	2.9	3.4	2.3	0.37				
	Na	310-863	354	486	-	543				
	SO4	628-2,826	964	1,371	1,532	1,244				
	TDS	1,380-3,320	1,640	2,260	2,420	2,080				
	V	0.01-0.45	7.2	3.8	2.9	0.79				
	U308	0.002-0.200	0.876	0.295	0.280	0.195				

Note: All values reported as mg/l except pH (standard units).

Restoration continued from September through December using the water fence wells for injection while pumping from various combinations of the 2 production and 6 injection wells. Pumping from the pattern interior was continually adjusted to facilitate clean up of heavily contaminated areas by frequently monitoring production fluid and monitor well water quality. By early December, it appeared that affected groundwater around the pattern edges had been effectively drawn into the pattern interior by the push-pull sweep action.

During the second half of December, the water fence was shut down except wells M-40 and M-40B. Injection lines were moved to interior wells I-44, I-46, I-47, and I-49 to facilitate an effective sweep of the pattern interior. Production was continued

from wells P-50, P-53, and whichever injections wells were not being used as producers. This operational mode continued at a production rate of 55 to 70 gpm until February 2, 1982, when restoration was terminated.

A total of 14.6 million gallons (5.8 PV) were produced from the pattern during restoration; nearly identical to production during leaching (5.6 PV). Table 3.2 summarizes the water balance during leaching, "hold" and restoration operations. Although more than 7 million gallons were produced during the "hold" phase, limited clean up of the pattern resulted due to the very low (5 to 10 gpm) pumping rates.

The entire restoration program was far more successful than previous efforts. The modified groundwater sweep using the water fence injection wells performed as predicted by computer modeling. Restoration of affected groundwater to the goal of original use suitability was accomplished with a number of pore volumes similar to that for mining, within a time period of less than six months.

3.3 Post Restoration Water Quality

All groundwater constituents have been restored to pattern baseline levels or better except vanadium and radium in some interior wells. Table P3-1 through P3-13 present assay results from the February sampling of all pattern wells.

OFFICIAL DOCKET COPY

20723

ð

. 2

Table 3.2

Pattern 3 Water Balance Summary

PRODUCTION (GAL.)	PORE1 VOLUMES	INJECTION (GAL.)	PORE VOLUMES	NET PRODUCTION (GAL.)
14,092,084	5.6	11,032,772	4.4	3,447,522
7,404,709	2.9	0	0	7,404,709
14,680,577	_5.8	11,800,916	4.7	2,880,241 .
36,177,370 = 2,527,000 gallons	14.3	22,833,688	9.1	13,732,472
	PRODUCTION (GAL.) 14,092,084 7,404,709 <u>14,680,577</u> 36,177,370 2,527,000 gallons	PRODUCTION (GAL.) PORE1 VOLUMES 14,092,084 5.6 7,404,709 2.9 <u>14,680,577</u> <u>5.8</u> 36,177,370 14.3 2,527,000 gallons.	PRODUCTION (GAL.) PORE ¹ VOLUMES INJECTION (GAL.) 14,092,084 5.6 11,032,772 7,404,709 2.9 0 14,680,577 5.8 11,800,916 36,177,370 14.3 22,833,688 2,527,000 gallons.	PRODUCTION (GAL.) PORE ¹ VOLUMES INJECTION (GAL.) PORE VOLUMES 14,092,084 5.6 11,032,772 4.4 7,404,709 2.9 0 0 14,680,577 5.8 11,800,916 4.7 36,177,370 14.3 22,833,688 9.1

Total number of restoration pore volumes = 107% of mining pore volumes.

NINE MILE LAKE PATTERN 3 PRODUCTION WELL 50

	PATTERN BASELINE	PATTERN BASELINE	NML NML PRE-FENCE POST-FENCE		NML CDM POST-SWEEP POST-SWEEP		NML	NML	NML.
	RANGE	MEAN	08/27/81	12/15/81	02/02/82	02/02/82	03/08/82	04/15/82	05/09/82
Field									
pH	6.4-7.2	6.9	4.6	6.1	6.4	7.7	6.3	6.3	6.5
Conductivity	1375-3500	2381	2700	2100	1600	2000	1600	1640	1600
Major Constituents									
Bicarbonate	224-426	328	17	40	104	81	121	131	134
Carbonate	0	0	0	0	0	0	0	0	0
Alkalinity as CaCO.	184-349	270	14	33	85	67	98	107	110
Calcium	41-135	74	49	58	21	30	34	36	35
Chloride	20-55	35	29	27	20	25	23	27	32
Magnesium	13-71	35	36	29	22	22	23	20	20
Potassium	5.9-16.0	10.4	9.0	7.6	6.9	5.0	7.1	6.7	6.0
Sodium	310-863	506	354	320	310	280	321	290	287
Sulfate	628-2826	1244	964	770	675	664	651	615	656
TDS	1380-3320	2034	1640	1520	1200	1060	1118	1059	1100
Anion/Cation					99	104	105	102	98
Minor Constituents									
	0.10.0.22	0.15	1244			10.2			
Ammonia as N	0.10-0.33	0.15				0.05			
Nitrate as N	0.10-0.93	0.02				10.05			
Nitrite as N	0.02-0.00	0.02	0.95		0.21	10.5			
Aluminum	0.03-0.88	0.10	0.95			0.008			
Arsenic	0.01-0.04	0.02	51.4		1992 - Maria	(0.2			
Barium	0.05-0.10	0.03	1.1			0.2			
Boron	0.05-0.49	10.00	10.01		0.01	(0.005			
Cadmium	0.01	0.02	0.04		0.01	0.01			
Chromium	0.01-0.03	60.01	0.00			0.005			
Copper	0.01-0.02	0.61	0.01		0.5	0.1			
Fluoride	0.10-1.07	0.64	2.0	0.0	0.3	0.46	0.60	0.76	0.89
Iron	0.01-4.10	1.02	2.9	0.0	0.05	10.005	0.03	0.74	0.07
Lead	0.01-0.05	0.02	0.04		0.05	0.049			
Manganese	0.03-0.87	0.22	0.11		0.38	10.0001			
Mercury	\$0.0001	X0.0001	0.10			0.0001			
Molybdenum	\$ 0.01	Q 0.01	0.49		0.05	0.000			
Nickel	0.01-0.19	0.02	0.05		0.05	0.03			
Selenium	0.01-0.04	0.02		1.0	0.61	0.045	5 00	2 225	0.65
Vanadium	0.01-0.45	0.18	1.2	1.8	0.61	0.057	5.90	6.213	0.03
Zinc	0.01-0.04	0.92	0.30		0.04	0.067			
Silicon (SiO ₂)	1.0-15.0				18.7	18			
Radiochemistry									
Uranium as U_0_	0.002-0.200	0.060	0.876	0.350	0.163	0.212	0.263	0.123	0.114
Radium-226 3 8	1.5-274	100	682	596	666	560	3460		3400
Thorium-230	0.5-41.9	6	21.0	21	2.7	6.8	28.1		

NOTE: All units expressed in mg/l (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/l). 41/B1

1.00
NINE MILE LAKE PATTERN 3 PRODUCTION WELL 53

	PATTERN BASELINE RANGE	PATTERN BASELINE MEAN	NML PRE-FENCE <u>08/27/81</u>	NML POST-FENCE 12/15/81	NML POST-SWEEP 02/02/82	(SPLIT) NML POST-SWEEP 02/02/82	CDM POST-SWEEP 02/02/82	NML 03/09/82	NML 04/15/82	NML 05/06/8
Field										
pH Conductivity	6.4-7.2 1375-3500	6.9 2381	5.1 2200	5.4 1975	6.0 1450	(6.0) (1450)	7.4 1800	5.8 1625	5.7 1575	5.6 1550
Major Constituents										
Bicarbonate	224-426	328	33	Trace	51	(51)	36	57	57	54
Carbonate	0	0	0	0	0	(0)	0	0	0	0
Alkalinity as CaCO ₃	184-349	270	27	Trace	42	(42)	30	48	48	44
Calcium	41-135	74	82	46	24	(23)	24	25	26	26
Chloride	20-55	35	33	31	18	(18)	20	21	27	31
Magnesium	13-71	35	51	19	21	(20)	20	16	16	18
Potassium	5.9-16.0	10.4	11.4	7.3	6.7	(6.6)	5.0	6.5	6.8	6.0
Sodium	310-863	506	486	295	288	(318)	290	283	291	278
Sulfate	628-2826	1244	1371	807	694	(707)	662	644	694	728
TDS	1380-3320	2034	2260	1400	1140	(1100)	1010	1000	1090	1160
Anion/Cation					101	96	99	100	98	94
Minor Constituents										
Ammonia as N	0.10-0.33	0.15					0.2			
Nitrate as N	0.10-0.93	0.21					0.06			
Nitrite as N	0.02-0.06	0.02					0.05			
Aluminum	0.05-0.88	0.18	3.75		0.35	(0.45)	0.5			
Arsenic	0.01-0.04	0.02					0.018			
Barium	0.05-0.10	0.05					0.2			
Boron	0.05-0.49	0.20					0.2			
Cadmium	\$0.01	<0.02	<0.01		0.01	(0.01)	0.005			
Chromium	0.01-0.03	0.01	0.06		0.01	(0.04)	0.01			
Copper	0.01-0.02	<0.01	40.01	- 1 A A A A A A A A A A A A A A A A A A			0.005			
Fluoride	0.10-1.07	0.64			0.30	(0 32)	0.1			
Iron	0.01-4.10	1.02	3.4	0.5	0.25	(0.47)	0.25	1 49	3.16	2.60
Lead	0.01-0.05	0.02	0.09		0.05	(0.02)	0.005	1.45	3.10	2.00
Mang Jese	0.03-0.87	0.22	0.26		0.49	(0.53)	0.045			
Mercury	<0.0001	< 0.0001				/	0.0001			
Molybdenum	\$0.01	\$ 0.01	0.17				0.005			
Nickel	0.01-0.19	0.02	0.10		0.08	(0.02)	0.03			
Selenium	0.01-0.04	0.02			0.00	(0.02)	0.126			
Vanadium	0.01-0.45	0.18	3.84	1.4	0.99	(1.10)	1 38	1 77	2 370	1.40
Zinc	0.01-0.04	0.02	0.39		0.08	(0,06)	0.099		6.319	1.40
Silicon (Si0 ₂)	1.0-15.0		0.37		12.1	(12.1)	13			
Radiochemistry										
Uranium as U_0_	0.002-0.200	0.060	0.295	0.1000	.067	(0.085)	0.071	0.115	0.141	0.140
Radium-226	1.5-274	100	457	469	466	****	310	613		710
Thorium-230	0.5-41.9	6	37.4	12	2.9		7.2	25.7		

NOTE: All units expressed in mgl/ (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/i). 41/B2

LINE DUNNET &

5

1000

-57-

NINE MILE LAKE PATTERN 3 I-46

		PATTERN	PATTERN					
		BASELINE	BASELINE	NML	CDM	NML	NML	NML
		RANCE	MEAN	2/24/82	2/24/82	3/10/82	4/9/82	5/9/82
	pH	6.4-7.2	6.9	7.1	7.1	7.0	6.9	6.9
	Conductivity	1375-3500	2381	1800	2200	1950	1920	1825
Maj	or Constituents							
								1.00
	Bicarbonate	224-426	328	207	162	218	284	199
	Carbonate	0	0	0	0	0	0	0
	Alkalinity as CaCo ₃	184-349	270	170	134	179	167	163
	Calcium	41-135	74	40	51	6/	54	5/
	Chloride	20-55	35	20	18	20	27	31
	Magnesium	13-/1	35	30	30	33	29	34
	Potassium	5.9-10.0	10.4	0.0	4.4	1.6	0.9	0.4
	Sodium	310-863	200	297	300	3/2	345	330
	Sulfate	028-2820	1244	/10	/19	343	111	1320
	TDS	1380-3320	2034	1222	1170	1020	1340	1320
	Anion/Cation			100	100	101	100	101
111	or Constituents							
	Ammonia as N	0.10-0.33	0.15		<0.2			
	Nitrate as N	0.10-0.93	0.21		<0.05			
	Nitrite as N	0.02-0.06	0.02	-	<0.05			
	Aluminum	0.05-0.88	0.18	0.55	0.9			
	Arsenic	0.01-0.04	0.02		<0.005			
	Barium	0.05-0.10	0.05	0.18	< 0.2			
	Boron	0.05-0.49	0.20		0.2			
	Cadmium	20.01	0.02	0.01	<0.005			
	Chromium	0.01-0.03	0.01		<0.01			
	Copper	0.01-0.02	0.01	0.011	0.005			
	Fluoride	0.10-1.07	0.64	0.25	< 0.1			
	Iron	0.01-4.10	1.02	2.55	2.1	1.55	2.25	1.22
	Lead	0.01-0.05	0.02	0.08	0.020			
	Manganese	0.03-0.87	0.22	0.18	0.120			
	Mercury	20.0001	0.0001		<0.0001			
	Molybdenum	<0.01	0.01		< 0.005			
	Nickel	0.01-0.19	0.02	0.04	0.02			
	Selenium	0.01-0.04	0.02		0.014			
	Vanadium	0.01-0.45	0.18	0.47	0.37	0.31	0.13	0.16
	Zinc	0.01-0.04	0.02	0.07	0.058			
	Silicon (SiO ₂)	1.0-15.0		11.5	12			
ad	iochemistry							
	Uranium as U_0_	0.002-0.200	0.060	0.049	0.058	0.228	0.040	0.017
	Radium-226 38	1.5-274	100	311	320			280
	Thor tum-230	0.5-41.9	6	86.3	120			

NOTE: All units expressed in mgl/ (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/l).

42/E6

TABLE P3-4

NINE MILE LAKE PAITERN 3 I-44

	PATTERN BASELINE RANGE	PATTERN BASELINE MEAN	NML 2/19/82	CDM 2/19/82
pH Conductivity	6.4-7.2 1375-3500	6.9 2381	7.0 2700	7.0 3000
Major Constituents				
Bicarbonate	224-426	328	257	180
Carbonate	0	0	0	0
Alkalinity as CaCO ₂	184-349	270	211	145
Calcium	41-135	74	54	89
Chloride	20-55	35	43	25
Magnesium	13-71	35	54	55
Potassium	5.9-16.0	10.4	8.3	6.6
Sodium	310-863	506	478	430
Sulfate	628-2826	1244	1080	1100
TDS	1380-3320	2034	1846	1770
Anion/Cation			99	105
Minor Constituents				
Ammonia as N	0.10-0.33	0.15		\$0.2
Nitrate as N	0.10-0.93	0.21		\$0.05
Nitrite as N	0.02-0.06	0.02		\$0.05
Aluminum	0.05-0.88	0.18	0.07	\$0.5
Arsenic	0.01-0.04	0.02		\$0.005
Barium	0.05-0.10	0.05	0.15	<0.2
Boron	0.05-0.49	0.20		0.2
Cadmium	<0.01	< 0.02	0.01	0.007
Chromium	0.01-0.03	0.01		0.01
Copper	<0.01-0.02	< 0.01	0.019	0.006
Fluoride	0.10-1.07	0.64	0.48	0.1
Iron	0.01-4.10	1.02	0.06	0.38
Lead	0.01-0.05	0.02	0.05	0.027
Manganese	0.03-0.87	0.22	0.21	0.1/8
Mercury	<0.0001	<0.0001		0.0001
Molysdenum	-0.01	0.01	0.04	0.005
Nickel	0.01-0.19	0.02	0.04	0.04
Vanadium	0.01-0.04	0.02	0.12	0.010
Vanadium	0.01-0.45	0.10	0.15	0.19
Silicon (SiO ₂)	1.0-15.0	0.02	10.7	10
Radiochemistry				
Uranium as U ₂ 0 ₀	0.002-0.200	0.060	0.089	0.099
Radium-226	1.5-274	100	319	200
Thorium-230	0.5-41.9	6	5.6	5.4

NOTE: All units expressed in mgl/ (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/l).

-59-

42/E8

a ...

NINE MILE LAKE PATTERN 3 I-45

		PATTERN BASELINE RANGE	PATTERN BASELINE MEAN	NML 2/24/82	CDM 2/24/82
	pH	6.4-7.2	6.9	6.4	6.7
	Conductivity	1375-3500	2381	1550	1800
Ma	jor Constituents				
	Bicarbonate	224-426	328	104	77
	Carbonate	0	0	0	0
	Alkalinity as CaCO,	184-426	270	85	63
	Calcium	41-135	74	30	33
	Chloride	20-55	35	23	18
	Magnesium	13-71	35	19	17
	Potassium	5.9-16.0	10.4	9.4	7.7
	Sodium	310-863	506	258	260
	Sulfate	628-2826	1244	599	615
	TDS	1380-3320	2034	990	974
	Anion/Cation			102	100
Min	nor Constituents				
	Ammonia an N	0 10-0 33	0.15		10.2
	Nitrata as N	0.10-0.03	0.21		(0.05
	Nitrate as N	0.02-0.06	0.02		(0.05
	Aluminum	0.02-0.08	0.02	0.28	(0.5
	Arconic	0.01-0.04	0.10	0.20	0.007
	Arsenic	0.01-0.04	0.02	0.23	10.2
	Barran	0.05-0.49	0.20	0.23	0.2
	Codedum	0.03-0.49	10.02	10.01	10.005
	Channium	0.01-0.03	0.01	0.01	() 01
	Corpor	0.01-0.03	(0.01	0.008	0.005
	Copper	0.01-0.02	0.64	0.50	10.1
	Fluoride	0.10-1.07	1.02	1.42	21
	Iron	0.01-4.10	0.02	0.02	0.020
	Lead	0.01-0.03	0.02	0.02	0.020
	Manganese	10.0001	10.0001	0.05	(0.0001
	Melahdanum	20.0001	20.01		(0.005
	Molybdenum	0.01-0.10	0.02	0.04	0.02
	NICKEI	0.01-0.19	0.02	0.04	0.014
	Selenium	0.01-0.04	0.02	0.52	0.37
	Vanadium	0.01-0.45	0.10	0.05	0.058
	Silicon (SiO)	1.0-15.0	0.02	15.1	12
	5111con (510 ₂)	1.0-13.0			
Ra	diochemistry				
	Uranium as U ₂ 0 _e	0.002-0.200	0.060	0.114	0.087
	Radium-226	1.5-274	100		500
	Thorium-230	0.5-41.9	- 6		15

NOTE: All units expressed in mgl/ (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/l).

20723

42/E7

I

NINE MILE LAKE PATTERN 3 I-47

		PATTERN BASELINE RANGE	PATTERN BASELINE MEAN	NML 2/24/82	CDM 2/24/82
	pH	6.4-7.2	6.9	7.0	7.2
	Conductivity	1375-3500	2381	3200	3500
Maj	or Constituents				
	Bicarbonate	224-426	328	308	248
	Carbonate	0	0	0	0
	Alkalinity as CaCO ₂	184-349	270	252	205
	Calcium	41-135	74	90	110
	Chloride	20-55	35	32	36
	Magnesium	13-71	35	67	62
	Potassium	5.9-16.0	10.4	9.8	7.7
	Sodium	310-863	506	528	510
	Sulfate	628-2826	1244	1350	1440
	TDS	1380-3320	2034	2231	2210
	Anion/Cation			103	96
Min	or Constituents				
	Ammonia as N	0.10-0.33	0.15		<0.2
	Nitrate as N	0.10-0.93	0.21		<0.05
	Nitrite as N	0.02-0.06	0.02		<0.05
	Aluminum	0.05-0.88	0.18	0.08	<0.5
	Arsenic	0.01-0.04	0.02		0.0007
	Barium	0.05-0.10	0.05		<0.2
	Boron	0.05-0.49	0.20		0.2
	Cadmium	<0.01	< 0.02	<0.01	0.005
	Chromium	0.01-0.03	0.01		<0.01
	Copper	<0.01-0.02	< 0.01	0.051	0.007
	Fluoride	0.10-1.07	0.64	0.44	0.2
	Iron	0.01-4.10	1.02	4.89	3.5
	Lead	0.01-0.05	0.02	0.10	0.016
	Manganese	0.03-0.87	0.22	0.35	0.243
	Mercury	<0.0001	<0.0001		0.0003
	Molybdenum	<0.01	40.01		<0.005
	Nickel	0.01-0.19	0.02	0.10	0.05
	Selenium	0.01-0.04	0.02		0.006
	Vanadium	0.01-0.45	0.18	0.12	0.15
	Zinc	0.01-0.04	0.02	0.31	0.123
	Silicon (SiO ₂)	1.0-15.0		10.5	10
Rad	iochemistry				
	Uranium as U.O.	0.002-0.200	0.060	0.137	0.153
	Radium-226 38	1.5-274	100	142	94
	Thorium-230	0.5-41.9	6	6.8	9.3

NOTE: All units expressed in mgl/ (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/l).

OFFICIAL DOSKET COPY,

42/E5

-

ľ

.

NINE MILE LAKE PATTERN 3 I-48A

	PATTERN BASELINE RANGE	PATTERN BASELINE MEAN	NML 2/24/82	CDM 2/24/82
pH Conductivity	6.4-7.2 1375-3500	6.9 2381	6.4 1850	6.5
Major Constituents				
Bicarbonate	224-426	229	125	00
Carbonate	0	0	135	99
Alkalinity as CaCO	184-349	270	111	0
Calcium 3	41-135	74	24	62
Chloride	20-55	35	24	30
Magnesium	13-71	35	30	26
Potassium	5.9-16.0	10.4	7.0	5 5
Sodium	310-863	506	315	310
Sulfate	628-2826	1244	703	742
TDS	1380-3320	2034	1400	1180
Anion/Cation			100	99
Minor Constituents				
Ammonia as N	0.10-0.33	0.15		<0.2
Nitrate as N	0.10-0.93	0.21		<0.05
Nitrite as N	0.02-0.06	0.02		<0.05
Aluminum	0.05-0.88	0.18	1.30	1.2
Arsenic	0.01-0.04	0.02		0.031
Barium	0.05-0.10	0.05		<0.2
Boron	0.05-0.49	0.20		0.2
Cadmium	<0.01	<0.02	<0.01	< 0.005
Chromium	0.01-0.03	0.01		< 0.01
Copper	<0.01-0.02	< 0.01	0.13	0.005
Fluoride	0.10-1.07	0.64	0.62	0.1
Iron	0.01-4.10	1.02	1.22	1.0
Lead	0.01-0.05	0.02	0.06	< 0.005
Manganese	0.03-0.87	0.22	0.13	0.086
Mercury	<0.0001	< 0.0001		0.0001
Molybdenum	<0.01	< 0.01	0.05	0.008
Nickel	0.01-0.19	0.02	0.04	0.02
Selenium	0.01-0.04	0.02		< 0.005
Vanadium	0.01-0.45	0.18	1.25	1.14
Zinc	0.01-0.04	0.02	0.07	0.061
Silicon (Si0 ₂)	1.0-15.0		15.3	15
Radiochemistry				
Uranium as U308	0.002-0.200	0.060	0.148	0.130
Radium-226	1.5-274	100	451	400
Thorium-230	0.5-41.9	6	30.9	58

NOTE: All units expressed in mgl/ (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/l).

OFFICIAL DOGKET COPY

42/E4

.

NINE MILE LAKE PATTERN 3 I-49

		PATTERN BASELINE RANGE	PATTERN BASELINE MEAN	NML 2/24/82	CDM 2/24/82
	pH	6.4-7.2	6.9	7.1	7.1
	Conductivity	1375-3500	2381	3200	3500
1a	jor Constituents				
	Bicarbonate	224-426	328	279	212
	Carbonate	0	0	0	0
	Alkalinity as CaCO,	184-349	270	229	175
	Calcium	41-135	'4	88	110
	Chloride	20-55	35	50	38
	Magnesium	13-71	35	64	62
	Potassium	5.9-16.0	10.4	9.2	7.3
	Sodium	310-863	506	621	520
	Sulfate	628-2826	1244	1492	1400
	TDS	1380-3320	2034	2720	2240
	Anion/Cation			100	98
Min	nor Constituents				
					10.0
	Ammonia as N	0.10-0.33	0.15		<0.2
	Nitrate as N	0.10-0.93	0.21		<0.05
	Nitrite as N	0.02-0.06	0.02		<0.05
	Aluminum	0.05-0.88	0.18	0.32	<0.5
	Arsenic	0.01-0.04	0.02		<0.005
	Barium	0.0.0-0.10	0.05		<0.2
	Boron	0.05-0.49	0.20		0.2
	Cadmin	< 0.01	<0.02	< 0.01	<0.005
	Chromium	0.01-0.03	0.01		<0.01
	Copper	<0.01-0.02	< 0.01	0.019	0.007
	Fluoride	0.10-1.07	0.64	0.65	0.2
	Iron	0.01-4.10	1.02	3.67	2.9
	Lead	0.01-0.05	0.02	0.07	0.010
	Manganese	0.03-0.87	0.22	0.37	0.247
	Mercury	<0.0001	<0.0001		0.0016
	Molybdenum	<0.01	< 0.01		<0.005
	Nickel	0.01-0.19	0.02	0.13	0.06
	Selenium	0.01-0.04	0.02		0.017
	Vanadium	0.01-0.45	0.18	0.20	0.16
	Zinc	0.01-0.04	0.02	0.14	0.116
	Silicon (SiO ₂)	1.0-15.0		11.6	12
Ra	diochemistry				
	Uranium co U O	0.002-0.200	0.060	0 144	0 200
	Paddum 226 38	1 5-274	100	0.144	350
	Thornium 220	0.5-41.0	6		32
	Inorium-230	0. 3-41.9	0		54

NOTE: All units expressed in mgl/ (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/1). FFICIAL DUCKET COPY

20723

42/E1

NINE MILE LAKE PATTERN 3 M-40

	PATTERN BASELINE RANGE	PATTERN BASELINE MEAN	NML 2/18/82	CDM 2/18/82	NML 5/8/82
pH Conductivity	6.4-7.2 1375-3500	6.9 2381	7.1 2400	7.2 2800	7.1
Major Constituents					
Bicarbonate	224-426	328	255	198	207
Carbonate	0	0	0	0	0
Alkalinity as CaCO,	184-349	270	209	163	170
Calcium	41-135	74	77	76	48
Chloride	20-55	35	29	26	28
Magnesium	13-71	35	53	47	30
Potassium	5.9-16.0	10.4	7.9	5.8	5.2
Sodium	310-863	506	516	430	289
Sulfate	628-2826	1244	1244	1070	704
TDS	1380-3320	2034	1990	1770	1180
Anion/Cation			100	101	96
Minor Constituents					
Ammonia as N	0.10-0.33	0.15		10.2	
Nitrate as N	0.10-0.93	0.21		40.05	
Nitrite as N	0.02-0.06	0.02		40.05	
Aluminum	0.05-0.88	0.18	0.28	<0.5	
Arsenic	0.01-0.04	0.02		<0.005	
Bariun	0.05-0.10	0.05		<0.2	
Boron	0.05-0.49	0.20		<0.2	
Cadmium	<0.01	<0.02	<0.01	0.006	
Chromium	0.01-0.03	0.01		< 0.01	
Cupper	0.01-0.02	<0.01	0.014	0.011	
Fluoride	0.10-1.07	0.64	0.50	0.1	
Iron	0.01-4.10	1.02	0.06	3.1	0.99
Lead	0.01-0.05	0.02	0.05	0.097	
Manganese	0.03-0.87	0.22	0.33	0.422	
Mercury	\$0.0001	<0.0001		< 0.0001	
Molybdenum	\$0.01	<0.01	0.02	0.006	
Nickel	0.01-0.19	0.02	0.06	0.06	
Selenium	0.01-0.04	0.02		0.012	
Vanadium	0.01-0.45	0.18	0.04	0.072	0.04
Zinc	0.01-0.04	0.02	0.48	0.042	
Silicon (SiO ₂)	1.0-15.0		6.5	6	
Radiochemistry					
Uranium as U_0.	0.002-0.200	0.060	0.091	0.116	0.092
Radium-226 5 8	1.5-274	100	34.7	25	19
Thorium-230	0.5-41.9	6	2.1	1.7	

NOTE: All units expressed in mgl/ (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/1). OFFICIA-6 POOVET COPY

20723

42/E12

NINE MILE LAKE PATTERN 3 M-41

		PATTERN BASELINE RANGE	PATTERN BASELINE MEAN	NML 2/18/82	CDM 2/18/82	NML 3/10/82	NML 4/9/82	NML 5/9/82
	pH	6.4-7.2	6.9	6.9	7.3	7.0	7.0	7.0
	Conductivity	1375-3500	2381	1680	2000	1690	1630	1580
Maj	or Constituents							
	Bicarbonate	224-426	328	187	196	223	206	218
	Carbonate	0	0	0	0	0	0	0
	Alkalinity as CaCO,	184-349	270	153	121	183	169	179
	Calcium	41-135	74	34	40	45	36	45
	Chloride	20-55	35	20	25	21	25	29
	Magnestum	13-71	35	29	25	27	21	27
	Potassium	5.9-16.0	10.4	7.8	6.1	7.7	6.9	7.2
	Sodium	310-863	506	292	280	321	290	286
	Sulfate	628-2826	1244	670	653	700	596	667
	TDS	1380-3320	2034	1130	1070	1100	1076	1180
	Anion/Cation			98	98	100	99	97
4in	or Constituents							
	Ammonia as N	0,10-0,33	0.15		X 0.2			
	Nitrate as N	0.10-0.93	0.21		0.05			
	Nitrite as N	0.02-0.06	0.02		< 0.05			
	Aluminum	0.05-0.88	0.18	0.31	(0.5			
	Arsenic	0.01-0.04	0.02		< 0.005			
	Barium	0.05-0.10	0.05		<0.2			
	Boron	0.05-0.49	0.20		0.2			
	Cadmium	\$0.01	(0.02	(0.01	0.005			
	Chromium	0.01-0.03	0.01		<0.01			
	Copper	0.01-0.02	< 0.01	0.005	0.011			
	Fluoride	0.10-1.07	0.64	0.96	0.2			
	Iron	0.01-4.10	1.02	0.08	0.11	3.48	1.09	4.56
	Lead	0.01-0.05	0.02	0.03	<0.005			
	Mangane	0.03-0.87	0.22	0.06	0.056			
	Mercury	(0.0001	<0.0001		<0.0001			
	Molybdenum	(0.01	< 0.01	0.37	0.005			
	Nickel	0.01-0.19	0.02	0.04	0.05			
	Selenium	0.01-0.04	0.02		0.032			
	Vanadium	0.01-0.45	0.18	0.21	0.134	0.62	0.169	0.25
	Zinc	0.01-0.04	0.02	0.03	0.027			
	Silicon (Si02)	1.0-15.0		6.9	6			
tad	iochemistry							
	Urantum as U O	0.002-0.200	0.060	0.041	0,066	0.095	0.069	0.114
	Rad 1um-226 3 8	1.5-274	100	34.5	30	arres .		45
	Thor fum-230	0.5-41.9	6	0.7	0.1			
	a state at a second the of the			PD. 8. 1				

NOTE: All units expressed in mgl/ (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/l). 42/E3

OFFICIAL DOCKET COPY -65-

TABLE P3-11

		PATTERN	PATTERN					
		BASELINE	BASELINE	NML	CDM	NML	NML.	NML.
		RANGE	MEAN	2/18/82	2/18/82	3/8/82	4/7/82	5/6/82
	pH	6.4-7.2	6.9	6.6	6.9	6.5	6.6	6.4
	Conductivity	1375-3500	2381	2800	3400	3000	2960	2800
ajo	or Constituents							
	Bicarbonate	224-426	328	265	203	265	266	257
	Carbonate	0	0	0	0	0	0	0
	Alkalinity as CaCO.	184-349	270	217	167	217	218	211
	Calcium 3	41-135	74	90	90	96	94	102
	Chloride	20-55	35	30	37	35	38	43
	Magnesium	13-71	35	53	57	63	59	61
	Potassium	5.9-16.0	10.4	9.7	7.2	9.2	9.4	9.9
	Sodium	310-863	506	561	530	520	518	567
	Sulfate	628-2826	1244	1417	1370	1337	1325	1377
	TDS	1380-3320	2034	2200	2090	2190	2174	2216
	Anion/Cation			104	99	99	99	101
ind	or Constituents							
	Ammonia as N	0.10-0.33	0.15		(0.2			
	Nitrate as N	0.10-0.93	0.21		0.09			
	Nitrite as N	0.02-0.06	0.02	And and the	<0.05			
	Aluminum	0.05-0.88	0.18	0.35	1.2			
	Arsenic	0.01-0.04	0.02		0.023			
	Barium	0.05-0.10	0.05		0.2			
	Boron	0.05-0.49	0.20		0.2			
	Cadmium	<0.01	< 0.02	< 0.01	0.005			
	Chromium	0.01-0.03	0.01		< 0.01			
	Copper	0.01-0.02	< 0.01	0.004	0.010			
	Fluoride	0.10-1.07	0.64	0.57	0.2			
	Iron	0.01-4.10	1.02	0.21	7.3	1.25	2.54	1.98
	Lead	0.01-0.05	0.02	0.04	(0.005			
	Manganese	0.63-0.87	0.22	0.13	0.170			
	Mercury	<0.0001	< 0.0001		< 0.0001			
	Molybdenum	< 0.01	< 0.01		₹0.005			
	Nickel	0.01-0.19	0.02	0.01	0.03			
	Selenium	0.01-0.04	0.02		0.105			
	Vanadium	0.01-0.45	0.18	0.17	0.70	0.09	0.247	0.10
	Zinc	0.01-0.04	0.02	0.25	0.043			
	Silicon (S10 ₂)	1.0-15.0		8.3	8			
adi	lochemistry							
	Uranium as U_0,	0.002-0.200	0.060	0.068	0.130	0.086	0.110	0.131
	Radium-226	1.5-274	100	80	84	70		52
	Thorium-230	0.5-41.9	6	2.3	9.2	3.4		

NOTE: All units expressed in mgl/ (ppm) except conductivity (umhos/cm),

pH (standard units) and radionuclides (pCi/l).

42/E2

M

OFFICIAL DOCKET COPY -66-

NINE MILE LAKE PATTERN 3 M-43

		PATTERN BASELINE RANGE	PATTERN BASELINE MEAN	NML 2/18/82	CDM 2/18/82	NML 3/8/82	NML 4/9/82	NML 5/5/82
	pH	6.4-7.2	6.9	6.9	7.4	7.0	7.0	5.9
	Conductivity	1375-3500	2381	1720	2000	1700	1700	1750
laj	or Constituents							
	Bicarbonate	224-426	328	210	158	217	214	209
	Carbonate	0	0	0	0	0	0	0
	Alkalinity as CaCO,	184-349	270	172	130	178	175	171
	Calcium	41-135	74	37	41	29	43	47
	Chloride	20-55	35	20	21	21	24	29
	Magnesium	13-71	35	28	25	16	25	27
	Potassium'	5.9-16.0	10.4	7.5	5.5	5.3	6.9	6.7
	Sodium	310-863	506	297	290	232	303	332
	Sulfate	628-2826	1244	645	653	650	636	739
	TDS	1380-3320	2034	1120	1090	1040	1145	1240
	Anion/Cation			101	100	85	106	99
fin	or Constituents							
	Ammonia as N	0.10-0.33	0.15		(0.2			
	Nitrate as N	0.10-0.93	0.21	ALC: 10.00	< 0.05			
	Nitrite as N	0.02-0.06	0.02		(0.05			
	Aluminum	0.05-0.88	0.18	0.17	<0.5			
	Arsenic	0.01-0.04	0.02		< 0.005			
	Bartum	0.05-0.10	0.05		< 0.2			
	Boron	0.05-0.49	0.20		0.2			
	Cadmium	LO.01	X0.02	< 0.01	0.005			
	Chromium	0.01-0.03	0.01		(0.01			
	Copper	0.01-0.02	< 0.01	0.004	0.006			
	Fluoride	0.10-1.07	0.64	0.96	0.3			
	Iron	0.01-4.10	1.02	0.03	0.25	0.75	1.05	1.21
	Lead	0.01-0.05	0.02	0.03	\$ 0.005			
	Manganese	0.03-0.87	0.22	0.04	0.045			
	Mercury	< 0.0001	<0.0001		\$0.0001			
	Molybdenum	<0.01	<0.01		\$ 0.005			
	Nickel	0.01-0.19	0.02	0.02	0.02			
	Selenium	0.01-0.04	0.02		0.096		1.1.1.1	
	Vanadium	0.01-0.45	0.18	0.43	0.36	0.36	0.117	0.05
	Zinc	0.01-0.04	0.02	0.02	0.028			
	Silicon (Si0 ₂)	1.0-15.0		7.4	1			
ad	iochemistry							
	Uranium as U_0_	0.002-0.200	0.060	0.292	0.341	0.254	0.252	0.226
	Rad1um-226 3 8	1.5-274	100	94	70	131		110
	Thorium-230	0.5-41.9	6	0.2	0.9	2.6		

NOTE: All units expressed in mgl/ (ppm) except conductivity (umhos/cm), pH (standard units) and radionuclides (pCi/l).

42/E9

4

TABLE P3-13

Average vanadium concentrations for all interior wells is 0.57 mg/l with a high value of 1.38 mg/l. Average radium concentration is 342 pCi/l which is slightly above Pattern 3 baseline range, but well below the high site baseline value of 714 pCi/l (Table 1.4). All other parameters including uranium, arsenic, selenium, cadmium, chromium, etc. are within baseline ranges. Average TDS levels for all interior wells is about 1600 mg/l which is lower than the baseline mean of 2034.

Monitor well data suggests that affected groundwater in outlying portions of the pattern, particularly in the vicinity of wells M-40 and M-43, was retrieved during restoration. Both M-40 and M-43 yielded samples containing several mg/l uranium and vanadium during leaching. These constituents were reduced to baseline levels as were all other parameters of concern.

Stabilization monitoring results since February 1982 have been extremely encouraging. Unlike Patterns 1 and 2, little, if any, deterioration of water quality has been observed, (see Tables P3-1 and P3-2). The one notable exception is radium in the lower ore production zone well (P-50). Some increase in radium levels would be expected in the lower ore zone due to the length of contact with leaching solution, but the March sample result of 3400 pCi/l seems anomalously high. Results of the final six month stabilization monitoring samples (August 1, 1982) should clarify the situation.

OFFICIAL DOOVET ONDV

-68-

3.4 Pattern 3 Conclusions

Post restoration groundwater quality is sufficient to warrant consideration as proof of demonstrated restoration of an acid leach test pattern. Substantial improvement over previous acid restoration attempts is obvious. The successful results are primarily due to restoration flow rates equal to or greater than leaching flow rates and the effectiveness of water fence injection wells and an abbreviated leaching period.

4.0 Contaminant Migration Models

Two contaminant migration models were used to estimate the magnitude and extent of groundwater constituent movement from Patterns 1,2 and 3 at Nine Mile Lake (see Appendix B). One model, developed by Rocky Mountain Energy evaluated the dual effects of dispersion/dilution and partial clay ion adsorption on the downdip movement of radium-226 from Pattern 1 and Pattern 3. other model, developed by a consultant, was used to The investigate the possible fates of radium, uranium, vanadium, iron and lead for all three acid patterns (Patterns 1,2 and 3). It utilized a mass transport dispersion equation and did not consider ion adsorption except as a reversible temporary retardent. To keep models simple, neither evaluation considered the migrationinhibiting effects of natural formation tendencies to reduce groundwater oxygen content or neutralize solutions.

In summary, migration calculations performed by Rocky Mountain Energy estimate that radium from Pattern 1, in the area

OFFICIAL DOCKET COPY

20723

-69-

near monitor well M-54, will migrate approximately 93 feet before concentrations will reach maximum background levels recorded for the pattern. Pattern 3 modeling results suggest 51 feet will be required to lower radium levels to pattern background conditions. The model prepared by the consultant predicted maximum radium travel distances of 3800 feet for Pattern 1, 0 feet for Pattern 2 and 4150 feet for Pattern 3.

1

Results of modeling performed by the consult of for uranium, vanadium, iron and lead were different then those obtained for radium. All constituents except vanadium in Pattern 2 will disperse to pattern baseline within one mile of travel. Vanadium will disperse to a level similar to Pattern 2 baseline with eight miles, but will more rapidly approach the highest baseline recorded for all patterns; this is estimated to occur within 1600 feet. Slow groundwater movement and retardation effects due to clay ion adsorption/desorption effects results in especially long travel times for all parameters (decades to centuries).

Of the two models presented, information from the RME model should be considered most representative of actual conditions. It assumes a very minor amount of clay ion adsorption and reasonable dilution. The consultant model, on the other hand, provides information useful in evaluating the absolutely worst conditions which may occur, i.e. dilution with no permanent clay ion adsorption. Ultimate contaminant movement will probably be

DEELOPPEDOOVET OODV

much less than described in either model. Acid neutralizing capacity of the formation and the reducing environment in the groundwater will play a major role in retarding constituent migration. Again, geochemical reactions which could greatly inhibit contaminant movement were not considered in the consultant model.

Both contaminant migration analyses are presented in their entirety in Appendix B.

5.0 Regional Aquifer Impact

Post restoration water quality has been thoroughly evaluated to determine whether any undesirable or potentially hazardous aquifer impacts might occur from residual groundwater contaminants. As discussed, RME and a geohydrologic consultant have performed independent analyses of the probable fate of groundwater constituents of particular concern within the aquifer.

A literature review and field inspection of groundwater wells known to be located within a 3½ mile radius of the R&D permit area has been conducted. Regional aquifer water quality has been evaluated based upon water sampling data collected over a period of several years from more than 14 wells completed in the Teapot sandstone.

OFFICIAL DOUNET COPY

-71-

5.1 Aquifer Water Quality

Results of these investigations suggest the potential adverse environmental or health impacts due to post for restoration water quality is negligible. Groundwater constituents which could conceivably pose some health hazards are limited to high radium and vanadium concentrations. Although concentrations of these parameters now exceed baseline ranges for some Pattern 1,2, and 3 wells, it must be emphasized that baseline radium concentrations were 20 to 50 times greater than DEQ maximum permissible levels for Class I, II or III groundwaters (DEQ Water Quality Rules and Regulations, Chapter VIII, Quality Standards for Wyoming Groundwaters). Similarly, site baseline vanadium concentrations as high as 0.45 mg/l (Pattern 3) were recorded, which exceeds Class II and III standards (0.1 mg/1) by a factor of greater than 4. Sampling of regional monitor wells completed in the Teapot Sandstone have yielded baseline vanadium concentrations as high as 2.1 mg/l.

In fact, use of Teapot Sand groundwater for anything other than industrial purposes (DE2 Class IV) would require extensive treatment. Baseline sampling of 18 Pattern 2,3, and 4 wells showed that at least 7 parameters exceeded DEQ Class III standards while at least 10 parameters exceeded maximum allowable Class II standards. Tables 5.1 and 5.2 compare Patterns 2 and 3 baseline water quality with DEQ use category standards. Parameters which exceed Class II or III standards include such potentially toxic elements as arsenic, chromium, lead and selenium (see Appendix C).

OFFICIAL DOCKET COPY

TABLE 5.1

**

GROUNDWATER CLASSIFICATION ANALYSIS

NINE MILE LAKE

PATTERN 2 (Wells P-15, M-20, M-21, M-22, M-23, M-24) BASELINE

USE CATEGORY	I (DOMESTIC)				II (AGRICULTURE)			III (LIVESTOCK)			IV (INDUSTRIAL)		
PARAMETER	DEQ Std.	Pattern x Exceeds Standard	No. of Wells with Assays と Standard	DEQ Std.	Pattern x Exceeds Standard	No. of Wells with Assays ≥Stat ford	DEQ Std.	Pattern x Exceeds Standard	No. of Wells with Assays ≥ Standard	DEQ Std.	Pattern x Exceeds Standard	No. of Wells Above Standard	
				5.0	11125		5.0		0				
Aluminum (Al)		-	ā	3.0	1.1.1.1.1.1.1.1.1		-				1.1.1.1.1.1.1.1.1		
Amaonia (NH)	0.5		0	0.1	100 C 000 pt	0	0.2		0	-			
Arsenic (As)	0.05		0	0.1	10. State 11							1	
Barium (Ba)	1.0			0.75			5.0		0	-		1.	
Boron (B)	0.75	un (0.02)	2	0.75	ND (0.02)	:	0.05		0	-			
Cadmium (Cd)	0.01	ND (0.02)		1 100.0	1 40 (0.02)		2000	1.1.1.1.1.1.1.1	0	-			
Chloride (Cl)	250		0	100.0			0.05	10.00	0	-		Contraction of the second	
Chromium (Cr)	0.05		6	0.1			1.0		NA	1.1.2.1			
Cobalt (Co)	-	-		0.05	NA	NA	0.5	nn I	na				
Copper (Cu)	1.0			0.2		2	0.5		0				
Fho ride (F)	2.4		0		-		1						
Iron (Fe)	0.3	×	6	5.0	1.1.1.1.1.1	0	0.1			1.1	1.1		
Lead (Pb)	0.05	1.10	0	5.0	State 1 1 1 1 1 1	6	0.1	1.1.1.1.1.1	0				
Manganese (Mn)	0.05	×	6	0.2	Contraction of the second		0 00005	-	ī		1. State 16	10 A 10 A 10 A 10 A	
Mercury (Hg)	0.002		0		-		0.00003		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.	10 C	
Nickel (N1)			-	0.2	NA	NA	-	ND (.0001)	6	10.01	11 - C - C - C	14 C 1 C 1 C 1	
Nitrate (NO ₂)	10.0		0	-			1	-			1.1.1.1.1.1.1		
Nitrite (NO.)	1.0		0	-	10 m 10 m	ā	10.0	Chief and State	0		12 - Sec. 24		
Selenium (Sé)	0.01		0	0.02	10 C 10 C 10	0	0.05		0	-			
Sulfate (SO,)	250	x	6	200	×	6	3000		0	1.1	1 - C - C - C - C - C - C - C - C - C -	1. 1 1 1 A A A A	
Total Dissolved	1				1.504.51			1 A S			1 St. 1993	10 - A C A H	
Solids (TDS)	500	x	6	2000	x	6	5000		0		1	and a standard to	
Uranium (U)	5.0		0	5.0		0	5.0		0		1.000	Mar Share The	
Vanadium (V)	-			0.1	10 A 10 A 10	0	0.1	1.000	0	1.1			
$7 \ln c (2n)$	5.0		0	2.0		0	25.0	No. of the set	0		Barris and	11 2 ALC: 1	
pll	6.5-9.0	-	5	1.5-9.0*		0	6.5-8.5*	Sec. 1997	5		121112-00	10 H G G G G	
8 226 +					10.000				100000000000000000000000000000000000000		10. 1 M M		
228	54	x	6	54	x	6	5*	×	6				
Cross Aloha	154	×	6	15*	x	6	15*	×	6	-		100 B 100 B	
artiss uspie													
Total No. of Parameters Exceeding	-	6	2 43	-	4	2.85	-	2	2 17	-	0	0	

*All units in mg/l except pH (std. units), Ra (pC1/1) and Gross Alpha (pC1/1) NA=Not Assayed ND=Non Detectable

20723

TABLE 5.2 GRANNANTER CLASSIFICATION NUL/SIS NINE MILE LAKZ

PATTERN 3 (Wells M-40, M-41, M-42, M-43, P-50, P-53, USM-52) BASELINE

	-											
ARAHETER	DEQ Std.	Pattern x Exceeds Standard	No. of Weils with Assays 2 Standard	DEQ Std.	Pattern x Exceeds Standard	No. of Weils with Assays 2 Standard	DEQ Std.	Pattern x Exceeds Standard	No. of Wells with Assays 2 Standard	DEQ Std.	Pattern x Exceeds Standard	No. of Wells Above Standard
(A1) mutum		,	1	5.0		0	5.0		0	4		
(HN) alnow	0.5		0	1			1	1		1		
rsentc (As)	0.05		0	0.1		0	0.2		0	1		
vrium (Ba)	1.0		0	1	,			1		1		
vron (8)	0.75		0	0.75		0	2.0		0	1		
idmium (Cd)	0.01		0	0.01		0	0.02		0	x		
itoride (CI)	250		0	100.0		•	2000	1	0	2		
iromium (Cr)	0.05		0	0.1		0	0.05		0	1		
shalt (Co)	1	,	,	0.05	NA	NA	1.0	NA	NA	,		
(a) reper	1.0		0	0.2		0	0.5		0			
ouride (F)	2.4		0	1								
on (Fe)	0.3	×	1	5.0		0		ļ		1		
(d4) pe:	0.05		-	5.0		0	0.1		0			
inganese (Mn)	0.05	×	1	0.2	×	5				1		
rcury (Hg)	0.002		0	2	,		0.00005	(C000.) ON	-			
ckel (NI)	1	,		0.2		0	1					
trate (NO ₁)	10.0		0	1	1			,				
trite (NO3)	1.0		0				10.0	Ì				
·lenium (Sê)	0.01	×	~	0.02	×	~ *	CO.0					
Ifate (SOA)	250	×	1	200	×	-	3000		>			
tal Dissolved												
Solids (TDS)	200	×		2000	×	~ ~	nonc					
antum (U)	5.0		0	2.0			0.0					
(V) multum	1			0.1	×		0.1					
inc (2n)	5.0		0	2.0			0.02			1		
_	6.5-9.0		2	*0.9.0*		0	········			1		
dium 226 +							-					
228	5*	×	-	5*	×		5*	×		1		
ross Alpha	15*	×	1	15*	×		15*	×		1		
stal No. of												
arameters	1	1	2 50	,	1	2 42	4	3	222			0
sceeding												

OFFICIAL-TACIT

COPY

.

ND-Non Detectabl *All units in mg/l except pH (std. units). Ra (pCi/l) and Gross Alpha (pCi/l) NA-Not Assayed est.

The logical conclusion is that both baseline and post restoration groundwater is of such poor quality that it is only suitable for industrial use (Class IV) unless costly, technologically complex water purification processes could successfully remove undesirable elements.

5.2 Contaminant Migration Results

1

Results of both the most probable and worst case analyses of probable residual contaminant fate conclude that vanadium and radium concentrations should be reduced to site baseline ranges within a relatively short distance. Based on post restoration water quality, as defined by the February well sampling results, RME predicts elevated radium concentrations downdip of Pattern 1 and within Pattern 3 would decrease to respective baseline levels within 100 ft. travel distance. The worst case analysis, which assumes no adsorption of radionuclides by formation clays, predicts Patterns 1 and 3 radium levels will diminish to less than200 pCi/1 within one quarter mile travel distance. Regional monitor wells indicate radium concentrations up to 213 pCi/1 while site baseline concentrations exceed 700 pCi/1.

Consultant modeling of ion dispersion predicts a worst case requirement of about 1600 ft. travel distance for Pattern 2 vanadium levels (\bar{x} =0.79 mg/l) to reach site upper baseline range limits (0.45 mg/l). Again, regional monitor well sampling has resulted in values greater than 2 mg/l vanadium which is five times the maximum concentration level assumed to represent site

OFFICIAL DOCKET COPY

baseline. It would therefore appear that aquifer use suitability would not be impaired as a result of high post restoration vanadium or radium concentrations.

5.3 Regional Aquifer Use

State Engineer records and field inspections provide reasonable evidence that there are no existing wells within a distance of four miles downgradient of the test site wells which appropriate groundwater from the Teapot.

As shown in Table 5.3 and on Drawing No. 50-13-140-71 (map pocket: Figure 5.1) the nearest downdip well completed in the Mesaverde formation is number 26050, located approximately 4 miles southeast of the R&D permit area. Field inspections conducted in June of 1978 and 1982 found no evidence of the well suggesting that it has either been abandoned or was never completed. Even if the well did exist, the supposed location, reported depth to static water and total depth would all suggest the well was completed in the Parkman member of the Mesaverde Formation rather than the Teapot member. The two sand units are separated by 300 to 500 feet of the Pumpkin Buttes shale which forms an effective aquatard between them.

The only other well of record completed in the Mesaverde Formation downdip of the project is well number 13221, located more than seven miles southeast of the R&D permit area. Like the

-76-

OFFICIAL DOCKET COPY

TABLE 5.3 NINE MILE LAKE REGIONAL WELLS OF INTEREST

Well Number ¹	Formation ²	Description ³	from R&D Sit	ie e
16819	Fox Hills	T.D. = 204'; W.L. = 76'	7,000 ft.	SE
16800	Wind Blown Sand	T.D. = 170'; W.L. = 15'; Not Found	16,500 ft.	E NE
16818	Lewis Shale (?)	T.D. = 175'; W.L. = 15'	17,700 ft.	NE
16810	Fox Hills	T.D. = 175'; W.L. = 40'	22,000 ft.	Е
29657	Fox Hills	T.D. = 80'; W.L. = 30'; Not Found	21,000 ft.	E SE
2930	Fox Hills	T.D. = 98'; W.L. = 40'	23,000 ft.	E SE
26050	Mesa Verde	T.D. = 420'; W.L. = 260'; Not Found	21,000 ft.	SE
2926	Wind Blown Sand	T.D. = 20'; W.L. ' 4'; Not Found	30,000 ft.	SE
13221	Mesa Verde(?)	T.D. = 100'; W.L. = 50'; Not Found	39,000 ft.	SE
21889	'Teapot (?)	T.D. = 294'; W.L. = 252'	19,500 ft.	NW
21890	Teapot (?)	T.D. = 175'; W.L. = 149'	26,000 ft.	NW
15507	Mesa Verde	T.D. = 488'; W.L. = 75'	10,200 ft.	WNW

-77-

1Well number designated by Wyoming State Engineer.

MARKET

²Geologic formation from which groundwater is appropriated.

³T.D. = total depth of well; W.L. = depth to static water level, not found means well could not be located in the field.

Source of Data: Wyoming State Engineer's Office and field reconnaissance (June 1978, June 1982)

DOCUMENT/ PAGE PULLED
AND. Baio180405
REASON PAGE RLEGIBLE. HARD COPY FILED AT. POR CF OTHER
D BETTER COPY REDUESTED ON
FILMED ON APERTURE CARD NO SELLO180405-01

well previously discussed, efforts to locate the well in the field were unsuccessful.

All other known wells within four miles downdip of the project area are reportedly completed in strata overlying the Teapot Sandstone.

Within a three mile radius of the test site, only two additional wells other than RME wells, are known to be completed in the Teapot. They are wells number 21889 and 21890 which are located approximately 3.7 and 4.9 miles northeast of the test site. The strike of the Teapot Sandstone is northwest to southeast and the dip is east-northeast at 6 to 7 degrees which controls the direction of groundwater flow; that is easterly toward the central axis of the Powder River Basin. It is highly improbable that water quality in any well located four miles up strike from the project site could possibly be affected by site groundwater conditions, particularly since regional groundwater flow and velocity were computed to be 19 ft./yr. in the direction of the dip of the formation.

There are no public water supply wells of record within three miles of the property. Homes located west of Interstate Highway I-25 and the western outcrop of the Teapot Sandstone (known as "The Reefs" and shown on Figure 5.1) obtain water from private wells in the Parkman Sandstone.

20723

OFFICIAL-78-OCKET CO

In conclusion, evaluation of regional aquifer use implies that no existing sources of water supply within a distance of greater than four miles of the site will be affected by residual contaminants from test mining activities.

6.0 Regulatory Compliance

Regulations of the Land and Water Quality Divisions of the Wyoming Department of Environmental Quality applicable to groundwater classification and restoration requirements for R & D facilites have been thoroughly reviewed, as have DEQ and NRC license or permit requirements, to determine RME compliance status.

6.1 License and Permit Compliance

To properly evaluate restoration compliance status it is necessary to first recognize that test activities began at the Nine Mile Lake site in November, 1976. At that time, the Wyoming DEQ had no regulations specifically governing solution mining. Initial test work was authorized by DEQ through the issuance of a License to Explore by Dozing (No. LE-4, issued May 15, 1975) and by NRC through an amendment (October 15, 1976) to Source Material License SUA-1228 which was originally issued for in situ research work at RME's Bear Creek property. Neither license specifically addressed the topic of groundwater restoration requirements or restoration criteria.

In an amendment request dated August 31, 1977, RME proposed that "pumping of the production well will continue until the

DEFICIAL DOCKET COPY

20723

chemistry returns to that of pre-leach condition." No numerical restoration criteria were ever proposed by RME or stipulated by license, as was also the case with post restoration stabilization monitoring. In October of 1978, restoration of Pattern 1 to "preleach conditions" was thought to have been accomplished so the pattern was shut down as restored.

Subsequent attempts to improve Pattern 1 water quality were conducted entirely through RME initiative and were not required by regulatory agencies through either permit or license conditions. Initial leaching and restoration activities were completed at least 18 months before the Wyoming Department of Environmental Quality promulgated rules and regulations regarding in situ uranium solution mining (Land Quality Division In Situ Mining Act, W.S. 35-11-426 through W.S. 35-11-436, adopted May 1980 and Water Quality Division Rules and Regulations, Chapters VIII and IX, adopted September, 1980).

0

Pattern 2 leaching activities were begun in December 1977, also prior to promulgation of the above referenced regulations. Activities were again authorized by NRC through Source Material License SUA-1228 and DEQ via License to Explore No. LE-4. No license amendments were required as original license applications contained plans for additional test patterns following Pattern 1 leaching. As with Pattern 1, no specific restoration criteria goals or numerical target values were ever proposed by RME or required by DEQ and NRC regulations or

DEFICIAL BOCKET COPY

licenses.

Leaching activities in Pattern 3 were also initiated prior to adoption of stringent regulations specifying groundwater restoration requirements. Approval for Pattern 3 leaching activities, which began in September 1979, was contingent upon demonstrating restoration of Patterns 1 and 2 (see letter, dated May 9, 1978 from Doyl Fritz, DEQ District IV Engineer to A.D. Luck, RME; in Appendix E).

On August 8, 1979 RME requested DEQ approval to initiate test work in Pattern 3 (DEQ "Note to the File" from Dennis Morrow, District IV Engineer; Appendix E). Subsequent to the request, a meeting was held with DEQ personnel to review Pattern 2 restoration status on September 6, 1979. Present at the meeting were RME's project environmental specialist and project superintendent, the DEQ District IV Engineer and Land Quality Division chief hydrologist. Based on DEQ's review of Pattern 2 restoration data, verbal approval to proceed with Pattern 3 testing was granted (Appendix E). This approval was confirmed in writing on September 21, 1979 in a letter, also in Appendix E, from the District Engineer to RME.

On October 11, 1979 RME provided a written summary of Pattern 2 restoration, Pattern 3 baseline water quality data and proposed Pattern 3 restoration plans to the DEQ (Appendix E). In that submittal, RME committed to "return Pattern 3 groundwater to

OFFICIAL DOCKET COPY

baseline use category as was established prior to leaching" (RME Nine Mile Lake Project, In Situ Leaching Research and Development Application, page R-2).

Groundwater in Pattern 3 has now been restored to baseline use category and approved conditions for restoration have been fulfilled.

6.2 Compliance with DEQ Regulations

In addition to having complied with all license and permit requirements regarding groundwater restoration, RME has met the requirements of DEQ rules and regulations concerning groundwater restoration promulgated in recent years.

Land Quality Division Rules and Regulations pertinent to in situ mining are enumerated in Chapter XXI and were adopted pursuant to W.S. 35-11-426 through W.S. 35-11-436. Section 4 of Chapter XXI, which specifically addresses Research and Development License Applications, states the application shall:

"4.a.Demonstrate that the operation is designed to:

(1) Evaluate the mineability or workability of a mineral deposit using in situ mining techniques.

(2) Affect the land surface, surface waters and groundwater of the state to the minimum extent necessary.

-82-

(3) Provide premining, operational and post mining data, information and experience that will be used for developing reclamation techniques for in situ mining."

OFFICIAL DOCKET COPY

All test work at Nine Mi'e Lake has been conducted in accordance with both the letter and intent of these regulations. It is RME's understanding that legislation and subsequent regulations authorizing R&D in situ mining operations were developed upon the premise that not all R&D operations would prove to be successful. Furthermore, it is RME's belief that regulatory agencies issue R&D licenses for the express purpose of allowing companies to test proposed mining and restoration techniques at a scale which would not create unacceptable environmental impacts should the test be less than successful.

Section 2.a. of Land Quality Division Chapter XXI also states "Applicable sections of Chapters VIII and IX, Water Quality Division Rules and Regulations shall also apply to in situ mining operations." Although WQD Chapters VIII and *IX* were not adopted until September of 1980 or one year after Pattern 3 testing began, RME has reviewed all project activities from a Chapter VIII and IX compliance perspective.

Section 5.a. of Water Quality Division Chapter VIII states:

"5.a. <u>Classification</u> of groundwater of the state <u>shall</u> <u>be based on the water quality standards</u> of this chapter; <u>excepting</u> <u>a Class I Groundwater</u> of the state <u>shall be classified by ambient</u> <u>water quality and the technical practibility and economic</u> <u>reasonableness of treating ambient water quality to meet use</u> <u>suitability standards."</u> (emphasis added)

Section 5.b. states:

"5.b. Underground water quality shall be classified for an aquifer which is or may be affected by a subsurface discharge or other activity identified in Section 4.a. of these regulations." (<u>emphasis</u> added)

These regulations clearly require that groundwater in any aquifer which was being affected by a subsurface discharge should have been classified at the time the regulations became effective. Section 4.b of Chapter VIII states "Groundwaters of the state are classified by use, and by ambient water quality." Because there was no prior use of groundwater within the Nine Mile Lake permit area, before appropriation for industrial miscellaneous use by RME, classification should have therefore been based on prior use (industrial) and ambient water quality.

Ambient water quality exceeds at least twelve Class I standards, ten Class II standards and seven Class III standards. It is apparent then that groundwater should have been classified as Class IV, Industrial Use on the basis of either prior use or ambient water quality. To date, no groundwater classification has been given to RME by the DEQ although RME has requested such action (see Appendix E - letter from RME to DEQ dated 2/11/82).

Section 4.d. (7) (c) of WQD Chapter VIII requires that "A discharge into an aquifer containing Class IV (A) or IV (B) Groundwater of the State shall not result in the water being unfit for its intended use." The intended use of groundwater from the

OFFICIAL DOCKET COPY

aquifer at the Nine Mile Lake project was for the purpose of mineral production. Testing activities have not resulted in the water being unfit for that use.

Finally, Section 4.d.(7)(f) of Chapter VIII states:

4.d(7)(f) "<u>A discharge</u> into an aquifer with Class IV (A) Groundwater of the State <u>shall not result</u> in biological, hazardous, toxic or potentially toxic materials...in concentrations or amounts which exceed maximum allowable concentrations...or which exceed background concentrations of the underground water, whichever is greater, <u>at any place or places of</u> withdrawal or natural flow to the surface." (emphasis added)

Previously related analyses (Sections 4.0 and 5.0) imply that even if hazardous or potentially toxic materials are now present in restored groundwater at levels which exceed background concentrations, it is highly improbable that they would exceed background levels <u>at any place or places of withdrawal</u>.

It is RME's contention that all permit and license obligations regarding restoration requirements have been fully met as have pertinent regulatory agency requirements.

OFFICIAL DOCKET COPY

-85-

NINE MILE LAKE GROUNDWATER RESTORATION REPORT

I

1

-

APPENDICES

Water Quality DataAppendix	A
Chemical Migration AnalysesAppendix	в
Pattern 3 Excursion ReportAppendix	С
Groundwater ClassificationAppendix	D
Regulatory Agency Correspondence	E

CFFICIAL DOCKET COPY

APPENDIX A

NINE MILE LAKE

WATER QUALITY DATA FOR PATTERNS 1, 2, & 3

Section		201	ntent			
A-1	Pattern	1	Water	Quality	Data	
A-2	Pattern	2	Water	Quality	Data	
A-3	Pattern	3	Water	Quality	Data	

Note: When comparing analytical results between Nine Mile Lake (NML) and CDM laboratories, some discrepancies will be evident. Based on previous experience, RME suggests that NML values for field and major constituent parameters are more accurate than CDM values. CDM analytical results for minor constituents (trace metals) are generally more reliable than NML data due to lower detection limits and more sensitive analytical equipment.

CDM

environmental engineers, scientists, planners, & management consultants

March 24, 1982 Page 1 of 6

Pat Spieles Rocky Mountain Energy Co. P.O. Box 3719 Casper, WY 82602

RE: 700-14031-14

P.O. AP2-1483, Rel. 604 Date Samples Rec'd 2-26-82

REPORT OF ANALYSIS

	Lab Designation Sponsor Designation	700-14031-14-1 NM-I1 2-23-82	700-14031-14-2 NM-P1A 2-24-82	700-14031-14-3 NM-I2 2-24-82	700-14031-14-4 NM-I3 2-23-82	700-14031-14-5 NM-I4 2-23-82
	Determination (mg/L)					
	pH	7.1	6.9	6.7	7.2	7.4
	Conductivity, umhos/cm	3900	14000	12000	16000	16000
	Bicarbonate (as HCO ₃)	135	270	230	389	481
	Carbonate (as CO ₃)	0	0	0	0	0
	Alkalinity (as CaCO ₂)	112	223	190	322	398
	Calcium, total	110	340	310	370	390
	Chloride	40	99	103	115	113
	Manganese, total	62	161	154	182	167
	Potassium, total	6.0	12	11	12	12
	Sodium, total	630	2300	2000	2600	2700
	Sulfate (as SOA)	1700	6190	5020	6490	6580
	TDS (at 180°C)	2590	9150	7570	10,100	10,100
	Anion/Cation	0.99	0.96	1.04	1.01	1.02
ep	Ammonia (as N)	<0.2	<0.2	<0.2	<0.2	<0.2
5						

These samples are scheduled to be disposed of 30 days after the date of this report.

.

723

CAMP DRESSER & MCKEE INC.

11455 West 48th Avenue Wheat Ridge. Colorado 80033 303 422-0469

Pat Spieles March 24, 1982 Page 2 of 6

RE: 700-14031-14 P.O. AP2-1483, Rel. 604 Date Samples Rec'd 2-26-82

Lab Designation Sponsor Designation	700-14031-14-1 NM-I1 2-23-82	700-14031-14-2 NM-P1A 2-24-82	700-14031-14-3 NM-12 2-24-82	700-14031-14-4 NM-I3 2-23-82	700-14031-14-5 NM-14 2-23-82	-
Determination (mg/L)						
Nitrate (as N)	0.07	<0.05	<0.05	<0.05	0.53	
Nitrite (as N)	<0.05	<0.05	<0.05	<0.05	<0.05	
Aluminum, total	<0.5	<0.5	<0.5	<0.5	<0.5	
Arsenic, total	<0.005	<0.005	<0.005	0.006	<0.005	
Barium, total	<0.2	<0.2	<0.2	0.2	<0.2	
Boron	0.3	0.2	0.4	0.4	0.4	
Cadmium, total	0.006	0.011	0.010	0.014	0.012	
Chromium, total	0.03	0.02	0.03	0.03	0.02	
Copper, total	0.012	0.116	0.015	0.017	0.020	
Fluoride	<0.1	0.1	<0.1	<0.1	<0.1	
Iron, total	2.4	1.3	0.52	0.54	2.8	
Lead, total	<0.005	<0.005	<0.005	<0.005	<0.005	
Manganese, total	0.228	0.278	0.307	0.300	0.388	
Mercury, total	<0.0001	<0.0001	<0.0001	0.0005	<0.0001	
Molybdenum, total	<0.005	<0.005	<0.005	<0.005	<0.005	
Nickel, total	0.05	0.12	0.10	0.15	0.12	
Selenium, total	0.013	0.013	0.007	0.020	0.007	
v_dadium, total	0.056	0.139	0.104	0.056	0.056	
Zinc, total	0.041	. 0.054	0.061	0.062	0.040	
Silica (as SiO ₂)	23	6	25	8	15	

REPORT OF ANALYSIS

These samples are scheduled to be disposed of 30 days after the date of this report.

\$

Pat Spieles March 24, 1982 Page 3 of 6

RE: 700-14031-14

P.O. AP2-1483, Rel. 504 Date Samples Rec'd 2-26-82

*Lab Designation Sponsor Designation	700-14031-14-6 NM-I5 2-23-82	700-14031-14-7 NM-M6 2-23-82	700-14031-14-8 NM-M7 2-25-82	700-14031-14-9 M-8A 2-25-82	700-14031-14-10 NM-M9 2-25-82
Determination (mg/L)					
pH	6.7	6.6	7.1	7.3	7.2
Conductivity, µmhos/cm	15,000	7,200	4,500	3,600	3,200
Bicarbonate (as HCO ₃)	261	198	284	257	210
Carbonate (as CO ₃)	0	0	0	0	0
Alkalinity (as CaCO ₂)	216	164	234	212	171
Calcium, total	370	220	140	120	73
Chloride ·	99	80	37	31	31
Manganese, total	176	114	73	53	44
Potassium, total	13	9.2	8.1	8.3	7.2
Sodium, total	2500	1400	830	530	4.90- 490
Sulfate (as SO_A)	6260	3760	2000	1440	1200
TDS (at 180°C)	9200	5580	3130	2310	1970
Anion/Cation	1.03	0.97	1.04	0.96	0.98
Ammonia (as N)	<0.2	<0.2	<0.2	<0.2	<0.2
Nitrate (as N)	<0.05	<0.05	1.1	<0.05	<0.05
Nitrite (as N)	<0.05	<0.05	<0.05	<0.05	<0.05
Aluminum, total	<0.5	<0.5	<0.5	0.6	<0.5
Arsenic, total	<0.005	<0.005	<0.005	<0.005	<0.005
Barium, total	<0.2	<0.2	<0.2	<0.2	<0.2

REPORT OF ANALYSIS

 $\stackrel{\text{O}}{\scriptstyle J}$ These samples are scheduled to be disposed of 30 days after the date of this report. $\stackrel{\text{O}}{\scriptstyle \nu}$

agne

Pat Spieles March 24, 1982 Page 4 of 6

RE: 700-14031-14

P.O. AP2-1483, Rel. 604 Date Samples Rec'd 2-26-82

Lab Designation Sponsor Designation	700-14031-14-6 NM-15 2-23-82	700-14031-14-7 NM-M6 2-23-82	700-14031-14-8 NM-M7 2-25-82	700-14031-14-9 M-8AA 2-25-82	700-14031-14-10 NM-M9 2-25-82
Determination (mg/L)					
Boron	0.2	0.3	0.2	0.4	0.2
Cadmium, total	0.012	0.010	<0.005	0.006	0.005
Chromium, total	0.02	0.02	0.01	0.01	0.01
Copper, total	0.017	0.011	0.009	0.008	0.007
Fluoride	0.1	<0.1	0.1	0.1	0.2
Iron, total	0.61	0.68	0.08	0.95	2.8
Lead, total	<0.005	<0.005	<0.005	<0.005	0.014
Manganese, total	0.381	0.320	0.181	0.131	0.119
Mercury, total	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum, total	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel, total	0.12	0.06	0.04	0.03	0.03
Selenium, total	0.011	0.015	0.059	<0.005	0.046
Vanadium, total	0.075	0.028	0.029	0.009	0.085
Zinc, total	0.062	0.050	0.022	0.017	0.020
Silica (as SiO ₂)	14	12	8	9	8

. ,)

REPORT OF ANALYSIS

These samples are scheduled to be disposed of 30 days after the date of this report.

-
Pat Spieles March 24, 1982 Page 5 of 6

RE: 700-14031-14

P.O. AP2-1483, Rel. 604 Date Samples Rec'd 2-26-82

Lab Designation	700-14031-14-11	700-14031-14-12	700-14031-14-13	700-14031-14-14
Sponsor Designation	NM-M11 2-24-82	NM-M12 2-24-82	WF-74 2-25-82	WF-75 2-25-82
Determination (mg/L)		And the second second		
рН	6.5	6.8	7.1	7.1
Conductivity, umhos/cm	8,800	4,200	5,000	3,700
Bicarbonate (as HCO ₃)	174	221	203	212
Carbonate (as CO ₃)	0	0	0	0
Alkalinity (as CaCO ₃)	144	182	167	175
Calcium, total	310	110	240	110
Chloride	83	36	51	34
Manganese; total	158	75	105	54
Potassium, total	12	8.8	12	9.4
Sodium, total	178	730	860	590
Sulfate (as SO ₄)	4800	1830	2510	1510
TDS (at 180°C)	7380	2760	3780	2330
Anion/Cation	1.01	1.02	1.02	1,00
Ammonta (as N)	<0.2	<0.2	<0.2	<0.2
Nitrate (as N)	<0.05	0.90	<0.05	0.09
Nitrite (as N)	<0.05	<0.05	<0.05	<0.05
Aluminum, total	<0.5	<0.5	1.5	0.8
Arsenic, total	<0.005	<0.005	<0.005	<0.005
Barium, total	<0.2	<0.2	0.2	<0.2

DEDODT OF ANALYSIS

*

MULTIUNE I

Pat Spieles March 24, 1982 Page 6 of 6

FRICKL NOCKET COPY

POZZ CS/srf

RE: 700-14031-14 P.O. AP2-1483, Rel. 604 Date Samples Rec'd 2-26-82

Lab Designation Sponsor Designation	700-14031-14-11 NM-M11 2-24-82	700-14031-14-12 NM-M12 2-24-82	700-14031-14-13 WF-74 2-25-82	700-14031-14-14 WF-75 2-25-82
Determination (mg/L)				
Boron	0.2	0.2	0.3	0.3
Cadmium, total	0.007	0.007	0.012	0.008
Chromium, total	0.02	0.01	0.02	0.01
Copper, total	0.010	0.005	0.010	0.005
Fluoride	0.1	0.2	0.1	0.1
Iron, total	0.25	0.40	2.7	0.88
Lead, total	<0.005	<0.005	<0.005	<0.005
Manganese, total	0.307	0.168	0.232	0.084
Mercury, total	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum, total	<0.035	<0.005	<0.005	<0.005
Nickel, total	0.11	0.07	0.06	0.02
Selenium, total	0.016	0.066	<0.005	0.019
Vanadium, total	0.117	0.056	0.048	0.076
Zinc, total	0.039	0.26	0.040	0.018
Silica (as SiO ₂)	9	7	8	6

REPORT OF ANALYSIS

These samples are scheduled to be disposed of 30 days after the date of this report.

BY n

Chris Shugarts () Water Laboratory Supervisor

environmental engineers, scientists, planners, & management consultants

March 31, 1982 Page 1 of 3

DM

Pat Spieles Rocky Mountain Energy Co. P.O. Box 3719 Casper, WY 82602

RE: 700-14031-14 P.O. AP2-1483, Rel. 604 Date Samples Rec'd 2-26-82

REPORT OF ANALYSIS

Lab Designation Sponsor Designation	700-14031-14-1 NM-I1 2-23-82	700-14031-14-2 NM-P1A 2-24-82	700-14031-14-3 NM-12 2-24-82	700-14031-14-4 NM-I3 2-23-82	700-14031-14 5 NM-14 2-23-82
Determination					
Uranium (as U) dissolved, mg/L	0.066	0.46	0.21	0.17	0.091
Radium-226, dissolved, pC ± counting error	i/L 100 ± 10	510 ± 10	190 ± 10	150 ± 10	110 ± 10
<pre>Thorium-230, dissolved, p ± counting error</pre>	-0.2 ± 0.3	1.9 ± 0.9	0.3 ± 0.7	0.4 ± 1.1	1.2 ± 0.8

*Variability of the radioactive disintegration process (counting error) at the 95% confidence level, 1.960. These samples are scheduled to be disposed of 45 days after the date of this report.

20723

CAMP DRESSER & MCKEE INC.

11455 West 48th Avenue Wheat Ridga, Colorado 80033 303 422-0469

Pat Spieles March 31, 1982 Page 2 of 3

RE: 700-14031-14 P.O. AP2-1483, Rel. 604 Date Samples Rec'd 2-26-82

REPORT OF ANALYSIS

Lab Designation Sponsor Designation	700-14031-14-6 NM-15 2-23-82	700-14031-14-7 NM-M6 2-23-82	700-14031-14-8 NM-M7 2-25-82	700-14031-14-9 M-8A 2-25-82	700-14031-14-10 NM-M9 2-25-82
Determination					
Uranium (as U) dissolved, mg/L Radium-226 dissolved p(i)	0.38	0.34	0.19	0.19	0.16
± counting error	240 ± 10	100 ± 10	8.0 ± 1.1	18 ± 2	58 ± 4
± counting error	2.0 ± 0.8	0.3 ± 0.6	0.2 ± 0.5	0.8 ± 0.6	0.6 ± 0.6

*Variability of the radioactive disintegration process (counting error) at the 95% confidence level, 1.960.

These samples are scheduled to be disposed of 45 days after the date of this report.

Pat Spieles March 31, 1982 Page 3 of 3

8.2

NELIVINI DUCKT

RE: 700-14031-14 P.O. AP2-1483, Rel. 604 Date Samples Rec'd 2-26-82

REPORT OF ANALYSIS

Lab Designation Sponsor Designation	700-14031-14-11 NM-M11 2-23-82	700-14031-14-12 NM-M12 2-23-82	700-14031-14-13 WF-74 2-25-82	700-14031-14-14 WF-75 2-25-82
Determination				
Uranium (as U) dissolved, mg/L	0.075	0.12	0.30	0.24
Radium-226, dissolved, pCi/L ± counting error	100 ± 10	16 ± 2	200 ± 10	70 ± 4
Thorium-230, dissolved, pCi 'L ± counting error	0.6 ± 0.7	0.2 ± 0.4	6.5 ± 1.2	2.1 ± 0.8

*Variability of the radioactive disintegration process (counting error) at the 95% confidence level, 1.960.

These samples are scheduled to be disposed of 45 days after the date of this report.

BY

Bud Summers Radiochemistry Supervisor

BS/srf

CDM

environmental engineers, scientists, planners, & management consultants

March 17, 1982 Page 1 of 6

Pat Spieles Nocky Mountain Energy Co. F.O. Box 3719 Casper, WY 82602

RE: 700-14005-13 P.O. AP2-1483, Rel. 602 Date Samples Rec'd 2-23-82

REPORT OF ANALYSIS

Lab Designation Sponsor Designation	700-14005-13-1 P-15 2-2-82	700-14005-13-2 M-20 2-8-82	700-14005-13-3 M-21 2-3-82	700-14005-13-4 M-22 2-5-82	700-14005-13-5 M-23 2-5-82
Determination (mg/L)					
pH	6.6	7.2	7.0	7.1	7.0
Conductivity, umhos/cm	3210	3200	2800	3000	2800
Bicarbonate (as HCO ₃)	70	246	239	214	232
Carbonate (as CO ₂)	0	0	0	0	0
Alkalinity (as CaCO ₂)	58	204	198	177	192
Calcium, total	110	89	80	95	72
Chloride	35	29	26	26	25
Manganese, total	62	61	51	66	48
Potassium, total	8.7	8.0	7.0	8.1	6.9
Sodium total	680	570	550	600	460
Sulfate (as SOA)	1840	1490	1300	1500	1220
TDS (at 180°C)	2790	2330	2060	2310	1930
Anion/Cation	1.0	0.96	1.02	1.03	0.93
Ammonia (as N)	<0.2	<0.2	<0.2	<0.2	<0.2

These samples are scheduled to be disposed of 30 days after the date of this report.

CAMP DRESSER & MCKEE INC.

11455 West 48th Avenue Wheat Ridge, Colorado 80033 303 422-0469

N

20

with a

OFFICIAL DURINE VUT

Pat Spieles March 17, 1982 Page 2 of 6

RE: 700-14005-13 P.O. AP2-1483, Rel. 602 Date Samples Rec'd 2-23-82

Lab Designation Sponsor Designation	700-14005-13-1 P-15 2-2-82	700-14005-13-2 M-20 2-8-82	700-14005-13-3 M-21 2-3-82	700-14005-13-4 M-22 2-5-82	700-14005-13-5 M-23 2-5-82
Determination (mg/L)					
Nitrate (as N) Nitrite (as N) Aluminum, total Arsenic, total Barium, total Barium, total Boron Cadmium, total Chromium, total Copper, total Fluoride Iron, total Lead, total Manganese, total Mercury, total Molybdenum, total Nickel, total Selenium, total Vanadium, total	$\begin{array}{c} < 0.05 \\ < 0.05 \\ 1.3 \\ 0.034 \\ < 0.2 \\ 0.2 \\ 0.009 \\ 0.01 \\ 0.027 \\ 0.1 \\ 2.0 \\ < 0.005 \\ 0.11 \\ < 0.005 \\ 0.11 \\ < 0.005 \\ 0.03 \\ < 0.005 \\ 4.0 \\ 0.36 \end{array}$	$\begin{array}{c} < 0.05 \\ < 0.05 \\ < 0.5 \\ < 0.005 \\ < 0.2 \\ 0.3 \\ 0.005 \\ 0.01 \\ 0.010 \\ 0.2 \\ c.33 \\ < 0.005 \\ 0.14 \\ < 0.005 \\ 0.14 \\ < 0.005 \\ 0.04 \\ < 0.005 \\ 0.25 \\ 0.026 \end{array}$	<0.05 <0.05 0.6 <0.005 <0.2 0.4 <0.005 0.01 0.010 0.2 0.26 <0.005 0.13 <0.0001 <0.005 0.06 <0.005 1.6 0.10	<0.05 <0.05 <0.5 <0.2 0.1 0.005 0.01 0.013 0.2 0.38 <0.005 0.17 <0.0001 <0.005 0.07 <0.005 0.20 0.018	<0.05 <0.05 <0.5 0.009 <0.2 0.2 0.005 0.01 0.011 0.2 0.17 <0.005 0.11 <0.0001 <0.005 0.06 <0.005 0.25 0.019
6 STITCA (as STU2)	31	8	8	9	8

REPORT OF ANALYSIS

20723

These samples are scheduled to be disposed of 30 days after the date of this report.

Pat Spieles March 17, 1982 Page 3 of 6

RE: 700-14005-13 P.O. AP2-1483, Rel. 602 Date Samples Rec'd 2-23-82

Lab Designation Sponsor Designation	700-14005-13-6 M-24	700-14005-13-7 08-1	700-14005-13-8 08-3	700-14005-13-9 I-16A	700-14005-13-10 I-17
	2-3-82	2-8-82	2-8-82	2-10-82	2-10-82
Determination (mg/L)					
pH	8.0	6.7	7.0	7.2	7.2
Conductivity, umhos/cm	2700	3800	2800	3000	2750
Bicarbonate (as HCO ₃)	242	181	165	228	195
Carbonate (as CO ₃)	0	0	0	0	0
Alkalinity (as CaCO ₃)	200	150	136	188	161
Calcium, total	87	150	110	87	73
Chloride	26	36	29	29	26
Manganese, total	52	75	54	51	48
Potassium, total	6.9	9.5	8.4	7.4	7.3
Sodium, total	480	670	550	590	480
Sulfate (as SO_A)	1220	1900	1480	1350	1250
TDS (at 180°C)	1930	2850	2260	2130	1940
Anion/Cation	0.99	0.99	0.99	1.05	0.96
Ammonia (as N)	<0.2	<0.2	<0.2	<0.2	<0.2
Nitrate (as N)	<0.05	<0.05	<0.05	<0.05	<0.05
Nitrite (as N)	<0.05	<0.05	<0.05	<0.05	<0.05
Aluminum, total	<0.5	0.6	<0.5	<0.5	<0.5
Arsenic, total	<0.005	0.023	0.017	0.013	0.007
Barium, total	<0.2	<0.2	<0.2	<0.2	<0.2

REPORT OF ANALYSIS

These samples are scheduled to be disposed of 30 days after the date of this report.

Pat Spieles March 17, 1982 Page 4 of 6

RE: 700-14005-13

P.O. AP2-1483, Rel. 602 Date Samples Rec'd 2-23-82

Lab Designation Sponsor Designation	700-14005-13-6 M-24 2-3-82	700-14005-13-7 08-1 2-8-82	700-14005-13-8 08-3 2-8-82	700-14005-13-9 I-16A 2-10-82	700-14005-13-10 I -17 2-10-82
Determination (mg/L)					
Boron	0.3	0.2	0.4	0.4	0.3
Cadmium, total	0.005	<0.005	0.005	0.005	0.006
Chromium, total	0.01	0.01	0.01	<0.01	<0.01
Copper, total	0.012	0.012	0.011	0.011	0.010
Fluoride	0.2	0.1	0.1	<0.1	0.1
Iron, total	1.9	4.4	0.89	2.0	0.74
Lead, total	0.006	<0.005	0.039	<0.005	<0.005
Manganese, total	0.14	0.18	0.15	0.14	0.12
Mercury, total	<0.0001	<0.0001	<0.0001	<0.0001	0.0002
Molybdenum, total	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel, total	0.05	0.07	0.06	0.08	0.05
Selenium, total	<0.005	<0.005	<0.005	<0.005	<0.005
Vanadium, total	0.070	1.2	0.20	0.128	0.48
Zinc, total	0.37	0.13	0.072	0.033	0.052
Silica (as SiO ₂)	8	18	20	20	11

REPORT OF ANALYSIS

These samples are scheduled to be disposed of 30 days after the date of this report.

Pat Spieles March 17, 1982 Page 5 of 6

RE: 700-14005-13

P.O. AP2-1483, Rel. 602 Date Samples Rec'd 2-23-82

	and the state of the	2-10-82
6.2 3200 80 0 66 110 33 55 7.7 670 1711 2500 1.04 0.3 <0.05 <0.05 <0.05 <0.032	7.3 3250 107 0 88 130 61 58 8.6 620 1770 2580 0.96 3.9 <0.05 <0.05 <0.05 <0.5 0.005	7.9 18,000 516 0 426 400 150 226 17 3600 8770 13,800 1.00 <0.2 0.78 <0.05 31 0.025
	6.2 3200 80 0 66 110 33 55 7.7 670 1711 2500 1.04 0.3 <0.05 <0.05 <0.05 <0.032 <0.2	

REPORT OF ANALYSIS

These samples are scheduled to be disposed of 30 days after the date of this report.

**

Pat Spieles March 17, 1982 Page 6 of 6

RE: 700-14005-13

P.O. AP2-1483, Rel. 602 Date Samples Rec'd 2-23-82

Lab Designation Sponsor Designation	700-14005-13-11 I-18 2-10-82	700-14005-13-12 I-19 2-10-82	700-14005-13-13 SM-68 2-16-82
Determination (mg/L)			
Boron	0.3	0.3	0.5
Cadmium, total	0.005	<0.005	0.022
Chromium, total	0.01	0.01	0.06
Copper, total	0.011	0.012	0.048
Fluoride	<0.1	<0.1	<0.1
Iron, total	5.9	5.2	39
Lead, total	<0.005	<0.005	0.052
Manganese, total	0.17	0.19	0.46
Mercury, total	<0.0001	<0.0001	0.0001
Molybdenum, total	<0.005	<0.005	<0.005
Nickel, total	0.09	0.05	0.23
Selenium, total	<0.005	<0.005	<0.005
Vanadium, total	0.25	0.074	0.75
Zinc, total	0.26	0.021	0.41
Silica (as SiO ₂)	36	26	10

REPORT OF ANALYSIS

These samples are scheduled to be disposed of 30 days after the date of this report.

P CS/srf

OFFICIAL DOCKET COPY

Shugart BY

Chris Shugarts Water Laboratory Supervisor

CDM

environmental engineers, scientists, planners, & management consultants

March 15, 1982 Page 1 of 3

Pat Spieles Rocky Mountain Energy Co. P.O. Box 3719 Casper, WY 82602

RE: 700-14005-13 P.O. AP2-1483, Rel. 602 Date Samples Rec'd 2-23-82

REPORT OF ANALYSIS

Lab Designation Sponsor Designation	700-14005-13-1 P-15 2-2-82	700-14005-13-2 M-20 2-8-82	700-14005-13-3 M-21 2-3-82	700-14005-13-4 M-22 2-5-82	700-14005-13-5 M-23 2-5-82
Determination					
Uranium (as U) total, mg/L Radium-226, total, pCi/L	0.24	0.24	0.14	0.027	0.23
± counting error	730 ± 10	130 ± 10	270 ± 10	220 ± 10	220 ± 10
Thorium-230, total, pCi/L ± counting error	41 ± 3	0.6 ± 0.6	2.3 ± 0.8	0.8 ± 0.6	1.0 ± 0.6

*Variability of the radioactive disintegration process (counting error) at the 95% confidence level, 1.96G. These samples are scheduled to be disposed of 45 days after the date of this report.

CAMP DRESSER & MCKEE INC.

11455 West 48th Avenue Wheat Ridge, Colorado 80033 303 422-0469

Pat Spieles March 15, 1982 Page 2 of 3

RE: 700-14005-13 P.O. AP2-1483, Rel. 602 Date Samples Rec'd 2-23-82

REPORT OF ANALYSIS

Lab Designation Sponsor Designation	700-14005-13-6 M-24 2-3-82	700-14005-13-7 08-1 2-8-82	700-14005-13-8 08-3 2-8-82	700-14005-13-9 I-16A 2-10-82	700-14005-13-10 I-17 2-10-82
Determination					
Uranium (as U) total, mg/L Radium-226, total, pCi/l	0.055	0.057	0.12	0.094	0.15
± counting error	450 ± 10	220 ± 10	280 ± 10	36 ± 2	230 ± 10
Thorium-230, total, pCi/L ± counting error	0.5 ± 0.6	13 ± 2	6.2 ± 1.2	5.5 ± 1.2	1.8 ± 0.8

*Variability of the radioactive disintegration process (counting error) at the 95% confidence level, 1.960. These samples are scheduled to be disposed of 45 days after the date of this report.

Pat Spieles March 15, 1982 Page 3 of 3

RE: 700-14005-13 P.O. AP2-1483, Rel. 602

Date Samples Rec'd 2-23-82

REPORT OF ANALYSIS

Lab Designation Sponsor Designation	700-14005-13-11 I-18 2-10-82	700-14005-13-12 I-19 2-10-82	700-14005-13-13 SM-68 2-16-82
Determination			
Uranium (as U) total, mg/L Radium-226, total, pCi/L	0.045	0.032	0.074
± counting error	71 ± 4	11 ± 1	10 ± 1
± counting error	5.1 ± 1.1	2.2 ± 0.8	7.1 ± 6.3

*Variability of the radioactive disintegration process (counting error) at the 95% confidence level, 1.96c.

These samples are scheduled to be disposed of 45 days after the date of this report.

BY

Bud Summers Radiochemistry Supervisor

BS/srf. 20723

CDM

environmental engineers, scientists, planners, & management consultants

March 24, 1982 Page 1 of 6

Pat Spieles Rocky Mountain Energy Co. P.O. Box 3719 Casper, WY 82602

RE: 700-14032-14

P.O. AP2-1483, Rel. 603 Date Samples Rec'd 2-26-82

REPORT OF ANALYSIS

Lab Designation Sponsor Designation	700-14032-14-1 NM-M40 2-18-82	700-14032-14-2 NM-M40A 2-19-82	700-14032-14-3 NM-M40B 2-19-82	700-14032-14-4 NM-M41 2-18-82	700-14032-14-5 NM-M42 2-18-82
Determination (mg/L)					
pH	7.2	8.1	7.0	7.3	6.9
Conductivity, umhos/cm	2800	1600	3400	2000	3400
Bicarbonate (as HCO ₃)	198	155	216	146	203
Carbonate (as CO ₂)	0	0	0	0	0
Alkalinity (as CaCO ₂)	163	128	179	121	167
Calcium, total	76	36	92	40	90
Chloride	26	20	38	25	37
Manganese, total	47	17	58	25	57
Potassium, total	5.8	5.8	7.2	6.1	7.2
Sodium, total	430	240	500	280	530
Sulfate (as SOA)	1070	505	1350	653	1370
TDS (at 180°C)	1770	854	2170	1070	2090
Anion/Cation	1.01	1.01	0.96	0.98	0.99
Ammonia (as N)	<0.2	<0.2	<0.2	<0.2	<0.2

These samples are scheduled to be disposed of 30 days after the date of this report.

20723

DEFICIAL DOCKET COPY

CAMP DRESSER & McKEE INC.

11455 West 48th Avenue Wheat Ridge, Colorado 80033 303 422-0469 Pat Spieles March 24, 1982 Page 2 of 6

DEPICIAL DOCKET COPY

RE: 700-14032-14

P.O. AP2-1483, Rel. 603 Date Samples Rec'd 2-26-82

Lab Designation Sponsor Designation	700-14032-14-1 NM-M40 2-18-82	700032-14-2 NM-M40A 2-19-82	700-14032-14-3 NM-M40B 2-19-82	700-14032-14-4 NM-M41 2-18-82	700-14032-14-5 NM-M42 2-18-82
Determination (mg/L)					
Nitrate (as N)	<0.05	<0.05	0.09	0.05	0.09
Nitrite (as N)	<0.05	<0.05	<0.05	<0.05	<0.05
Aluminum, total	<0.5	<0.5	<0.5	<0.5	1.2
Arsenic, total	<0.005	<0.005	<0.005	<0.005	0.023
Barium, total	<0.2	<0.2	<0.2	<0.2	<0.2
Boron	0.2	0.2	0.2	0.2	0.2
Cadmium, total	0.006	<0.005	<0.005	0.005	0.005
Chromium, total	<0.01	<0.01	<0.01	<0.01	<0.01
Copper, total	0.011	<0.005	0.010	0.011	0.010
Fluoride	0.1	<0.1	0.1	0.2	0.2
Iron, total	3.1	0.43	0.76	0.11	7.3
Lead, total	0.097	<0.005	0.180	<0.005	<0.005
Manganese, total	0.422	0.462	0.420	0.056	0.170
Mercury, total	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum, total	0.006	0.009	<0.005	0.005	<0.005
Nickel, total	0.06	<0.02	0.10	0.05	0.03
Selenium, total	0.012	0.015	0.018	0.032	0.105
Vanadium, total	0.072	0.028	0.040	0.134	0.70
Zinc, total	0.42	0.009	0.470	0.027	0.043
Silica (as SiO ₂)	6	5	6	6	8

REPORT OF ANALYSIS

W These samples are scheduled to be disposed of 30 days after the date of this report.

Pat Spieles March 24, 1982 Page 3 of 6

RE: 700-14032-14

P.O. AP2-1483, Rel. 603 Date Samples Rec'd 2-26-82

Lab Designation Sponsor Designation	700-14032-14-6 NM-M43 2-18-82	700-14032-14-7 NM-M44 2-19-82	700-14032-14-8 I-45 2-24-82	700-14032-14-9 I-46 2-24-82	700-14032-14-1 I-47 2-24-82
Determination (mg/L)					
pH	7.4	7.0	6.7	7.1	7.2
Conductivity, umhos/cm	2000	3000	1800	2200	3500
Bicarbonate (as HCO ₃)	158	180	77	162	248
Carbonate (as CO ₃)	0	0	0	0	0
Alkalinity (as CaCO ₃)	130	145	63	134	205
Calcium, total	41	89	33	51	110
Chloride	21	25	18	18	36
Manganese, total	25	55	17	30	62
Potassium, total	5.5	6.6	7.7	4.4	7.7
Sodium, total	290	430	260	300	510
Sulfate (as SO ₄)	653	1100	615	719	1440
TDS (at 180°C)	1090	1770	974	1170	2210
Anion/Cation	1.0	1.05	1.0	1.0	0.96
Ammonia (as N)	<0.2	<0.2	<0.2	<0.2	<0.2
Nitrate (as N)	<0.05	<0.05	<0.05	<0.05	<0.05
Nitrite (as N)	<0.05	<0.05	<0.05	<0.05	<0.05
Aluminum, total	<0.5	<0.5	<0.5	0.9	<0.5
Arsenic, total	<0.005	<0.005	0.007	<0.005	0.007
Barium, total	<0.2	<0.2	<0.2	<0.2	<0.2

REPORT OF ANALYSIS

These samples are scheduled to be disposed of 30 days after the date of this report.

DITIONAL DUCKET CULD

W

Pat Spieles March 24, 1982 Page 4 of 6

RE: 700-14032-14

P.O. AP2-1483, Rel. 603 Date Samples Rec'd 2-26-82

Lab Designation Sponsor Designation	700-14032-14-6 NM-M43 2-18-82	700-14032-14-7 NM-M44 2-19-82	700-14032-14-8 I-45 2-24-82	700-14032-14-9 I-46 2-24-82	700-14032-14-10 I-47 2-24-82
Determination (mg/L)					
Boron Cadmium, total Chromium, total Copper, total Fluoride Iron, total Lead, total Manganese, total Mercury, total Molybdenum, total Nickel, total Selenium, total Vanadium, total Zinc, total	0.2 0.005 <0.01 0.006 0.3 0.25 <0.005 0.045 <0.0001 <0.005 0.02 0.096 0.36 0.028	0.2 0.007 <0.01 0.006 0.1 0.38 0.027 0.178 <0.0001 <0.005 0.04 0.010 0.19 0.105	0.2 0.005 <0.01 0.006 0.2 0.95 <0.005 0.035 0.0021 0.007 0.03 0.019 0.49 0.046	0.2 <0.005 <0.01 0.005 <0.1 2.1 0.020 0.120 <0.0001 <0.005 0.02 0.014 0.37 0.058	0.2 0.005 <0.01 0.007 0.2 3.5 0.016 0.243 0.0003 <0.005 0.05 0.05 0.006 0.15 0.123
Silica (as SiO ₂)	7	10	15	12	10

REPORT OF ANALYSIS

 $\stackrel{\text{$\mathcal{V}$}}{\underset{\text{$\mathcal{V}$}}{\overset{\text{$\mathcal{V}$}}{\underset{$\mathcal{V}$}}{\overset{\text{$\mathcal{V}$}}{\underset{$\mathcal{V}$}}{\overset{{$\mathcal{V}}{\underset{\mathcal{V}}}{\underset{\mathcal{V}}}{\overset{{$\mathcal{V}}{\underset{$\mathcal{V}}}{\underset{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\underset{\mathcal{V}}}{\overset{{$\mathcal{V}}}{\underset{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\underset{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\underset{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\underset{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\underset{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\underset{$\mathcal{V}}}{\underset{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\underset{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\underset{$\mathcal{V}}}{\underset{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\underset{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\underset{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\underset{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\underset{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\underset{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\underset{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\underset{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\underset{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\underset{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\overset{{$\mathcal{V}}}}{\overset{{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\overset{{$\mathcal{V}}}{\overset{$

Pat Spieles March 24, 1982 Page 5 of 6

RE: 700-14032-14 P.O. AP2-1483, Rel. 603 Date Samples Rec'd 2-26-82

0		KLFORT	OF ANALISIS		
FFICH	Lab Designation Sponsor Designation	700-14032-14-11 I-48A 2-24-82	700-14032-14-12 I-49 2-24-82	700-14032-14-13 P-50 2-2-82	700-14032-14-1 P-53 2-2-82
	Determination (mg/L)				
ğ	рН	6.5	7.1	7.7	7.4
X	Conductivity, umhos/cm	2100	3500	2000	1800
	Bicarbonate (as HCO ₃)	99	212	81	36
	Carbonate (as CO ₃)	0	0	0	0
	Alkalinity (as CaCO ₃)	82	175	67	30
	Calcium, total	41	110	30	24
	Chloride	30	38	25	20
Magnesium	Hanganese; total	26	62	22	20
/	Potassium, total	5.5	7.3	5.0	5.0
	Sodium, total	310	520	280	290
	Sulfate (as SOA)	742	1400	664	662
	TDS (at 180°C)	1180	2240	1060	1010
	Anion/Cation	0.99	0.98	1.04	0.99
	Ammonia (as N)	<0.2	<0.2	<0.2	<0.2
	Nitrate (as N)	<0.05	<0.05	<0.05	0.06
	Nitrite (as N)	<0.05	<0.05	<0.05	<0.05
	Aluminum, total	1.2	<0.5	<0.5	(0.5
19	Arsenic, total	0.031	<0.005	0.008	0.018
20	Barium, total	<0.2	<0.2	<0.2	<0.2
N					

REPORT OF ANALYSIS

N These samples are scheduled to be disposed of 30 days after the date of this report.

W

Pat Spieles March 24, 1982 Page 6 of C

RE: 700-14032-14

P.O. AP2-1483, Rel. 603 Date Samples Rec'd 2-26-82

Lab Designation Sponsor Designation	700-14032-14-11 I-48A 2-24-82	700-14032-14-12 I-49 2-24-82	700-14032-14-13 P-50 2-2-82	700-14032-14-1 P-53 2-2-82
Determination (mg/L)				
Boron	0.2	0.2	0.2	0.2
Cadmium, total	<0.005	<0.005	<0.005	<0.005
Chromium, total	<0.01	<0.01	<0.01	<0.01
Copper, total	0.005	0.007	<0.005	<0.005
Fluoride	0.1	0.2	0.1	<0.1
Iron, total	1.0	2.9	0.46	0.25
Lead, total	<0.005	0.010	<0.005	<0.005
Manganese, total	0.086	0.247	0.049	0.045
Mercury, total	0.0001	0.0016	<0.0001	<0.0001
Molybdenum, total	0.008	<0.005	0.008	<0.005
Nickel, total	0.02	0.06	0.03	0.03
Selenium, total	<0.005	0.017	0.045	0.126
Vanadium, total	1.14	0.16	0.83	1.38
Zinc, total	0.061	0.116	0.067	0.099
Silica (as SiO ₂)	15	12	18	13

REPORT OF ANALYSIS

These samples are scheduled to be disposed of 30 days after the date of this report.

2072 W CS/tew

hus thugat BY

Chris Shugarts O Water Laboratory Supervisor

OFFICIAL DOCKET COPY

CDM

environmental engineers, scientists, planners, & management consultants

March 31, 1982 Page 1 of 3

Pat Spieles Rocky Mountain Energy Co. P.O. Box 3719 Casper, WY 82602

RE: 700-14032-14 P.O. AP2-1483, Rel. 603 Date Samples Rec'd 2-26-82

REPORT OF ANALYSIS

Lab Designation Sponsor Designation	700-14032-14-1 NM-M40 2-18-82	700-14032-14-2 NM-M40A 2-19-82	700-14032-14-3 NM-M40B 2-19-82	700-14032-14-4 NM-M41 2-18-82	700-14032-14-5 NM-M42 2-18-82
Determination					
Uranium (as U) dissolved, mg/L	0.098	0.041	0.15	0.056	0.11
Radium-226, dissolved, pCi ± counting error	/L 25 ± 2	12 ± 1	37 ± 2	30 ± 2	84 ± 4
Thorium-230, dissolved, pC ± counting error	i/L 1.7 ± 0.8	0.2 ± 0.5	1.1 ± 0.6	0.1 ± 0.5	9.2 ± 1.4

*Variability of the radioactive disintegration process (counting error) at the 95% confidence level, 1.960. These samples are scheduled to be disposed of 45 days after the date of this report.

20723

CAMP DRESSER & MCKEE INC.

11455 West 48th Avenue Wheat Ridge, Colorado 80033 303 422-0469

Pat Spieles March 31, 1982 Page 2 of 3

۰.

RE: 700-14032-14

P.O. AP2-1483, Rel. 603 Date Samples Rec'd 2-26-82

REPORT OF ANALYSIS

Lab Designation Sponsor Designation	700-14032-14-6 NM-M43 2-18-82	700-14032-14-7 NM-M44 2-19-82	700-14032-14-8 I-45 2-24-82	700-14032-14-9 I-46 2-24-82	700-14032-14-10 I -47 2-24-82
Determination					
Uranium (as U) dissolved, mg/L	0.29	0.084	0.074	0.049	0.13
Radium-226, dissolved, pC ± counting error	i/L 70 ± 3	200 ± 10	500 ± 10	320 ± 10	94 ± 4
Thorium-230, dissolved, p(± counting error	Ci/L 0.9 ± 0.6	5.4 ± 1.2	15 ± 2	120 ± 10	9.3 _ 1.4

*Variability of the radioactive disintegration process (counting error) at the 95% confidence level, 1.96G. These samples are scheduled to be disposed of 45 days after the date of this report.

2072

W

Pat Spieles March 31, 1982 Page 3 of 3

RE: 700-14032-14

P.O. AP2-1483, Rel. 603 Date Samples Rec'd 2-26-82

REPORT OF ANALYSIS

Lab Designation Sponsor Designation	700-14032-14-11 I-48A 2-24-82	700-14032-14-12 I-49 2-24-82	700-14032-14-13 P-50 2-2-82	700-14032-14-14 P-53 2-2-82	
Determination					
Uranium (as U) dissolved, mg/L	0.11	0.17	0.18	0.060	
Radium-226, dissolved, pCi/L ± counting error	400 ± 10	350 ± 10	560 ± 10	310 ± 10	
± counting error	58 ± 3	32 ± 3	6.8 ± 1.2	7.2 ± 1.2	

*Variability of the radioactive disintegration process (counting error) at the 95% confidence level, 1.960.

These samples are scheduled to be disposed of 45 days after the date of this report.

BY Bud Summers

Radiochemistry Supervisor

..

OFFICIAL DOCKET COPY

APPENDIX B

.

Nine Mile Lake

Contaminant Migration Analyses

Section	Content
B-1	Comparison of Rocky Mountain Energy and Consultant Evaluations
B-2	RME Radium Absorption Calculations
B-3	M.A. Hulbert Report: Potential Migration of Ground Water Constituents from Patterns 1,2, and 3

OFFICIAL DOCKET COPY

.

APPENDIX B-1

100

res i

 Date
 June 14, 1982

 To
 M. R. Neumann

 From
 J. E. Lankenau JL

 Subject
 Nine Mile Lake Contaminant Migration Review

Memorandum

In response to your request, the following are my comments regarding the Nine Mile Lake contaminant migration study conducted by M. A. Hulburt:

- The model used by M. A. Hulburt is a straight dilution model. In general, the use of a model which only incorporates diffusion of ions in the surrounding groundwater would have to be considered the absolute worst case.
- In defining the proper ion transport mechanism, theory would dictate that the mechanism which yields the shortest distance is the most appropriate.
- There are three primary mechanisms which should be considered for groundwater ion migration:
 - 1) Geochemical

pH, Eh, reaction of contaminants with the changes in groundwater through migration.

2) Ion Exchange

.

The formation clays generally exhibit absorption characteristics for different ion contaminants.

- 3) Dilution/Dispersion
- 4. A direct comparison can be made for radionuclide migration estimates made by RME and M. A. Hulburt. RME used an ion exchange approach rather than the dilution method. Since RME obtained a shorter distance, the ion exchange mechanism should be the controlling factor. M. A. Hulburt considered a retardation coefficient; this coefficient assumes complete IX reversibility. Thus, this method is the same as assuming no IX capacity for the clays, which

2072.3

M. R. Neumann June 14, 1982 Page Two

1

,

.

has been proven not to be the case; clays do absorb ions from solution. RME's approach assumed a very small, conservative IX capacity; I feel that these results more adequately describe the actual controlling mechanism.

5. Judging from the distances given by M. A. Hulburt for the other ions (V, Pb, Fe, U) not included in the RME IX study, I feel that the simple dilution mechanism is again inappropriate. All of the other contaminants are affected by pH, Eh, and other ions in the surrounding water. Although hard data (experimental) proof is not available, it is my belief that the migration distances via dilution are overstated by an order of magnitude due to the neglected geochemical effects.

VEFICIAL DOCKET COPY

JEL/mr

cc: P. J. Bosse R. E. Iwanicki J. A. Yellich J. A. Yopps Nine Mile Lake Calculation of Radium Absorption by Formation Clays January 29, 1982

Assumptions

- The clays in the Nine Mile Lake formation consist primarily of kaolinite. (J. P. Moran, Wellfield Geologist, geologic logs; Halliburton Pattern 4 Well Completion Study)
- The clays at Reno consist primarily of montmorillonite. (J. C. Milbourne, Metallurgist; IX Clay Study)
- The surface clays at NML consist primarily of illite which is similar in absorptive capacity to montmorillonite.
 (J. C. Milbourne, Metallurgist; RSE Study)
- 4) The tested total CEC's (cation exchange capacity) for Reno and NML are about 30 and 20 respectively. (J. C. Milbourne)
- 5) The incremental absorption capacity of the soils study for further radium intake is 4 pCi/gram clay at the incremental radium levels. This is very conservative. (J. E. Lankenau, Chemical Engineer; Retention of Isotopes Study, Hazen Research)
- 6) If the soils radium CEC is 4 pCi/gram, then Reno formation, due to similar clays as the soils, is also 4 pCi/gram; therefore, comparing the overall total CEC's in assumption 4 (Reno/NML = 1.5/1.0), the NML formation (incremental) radium CEC is 2.6667 pCi/gram. (J. E. Lankenau)
- 7) The clay content at NML is about 9% with a formation (solid) SG = 2.70.
- Two contaminant pods will be considered: 1) the area around M-54, and 2) Pattern 3.
- 9) Radium levels:

		Actual	Baseline	
M-54		1,000 pCi/1	500	
Pattern	3	550	270	

- 10) Volume of contamination around M-54 is 1.3 x 10⁶ gallons consisting of an area 100 ft radius, 20 ft thick, 28% porosity.
- Volume of contamination around Pattern 3 is equivalent to the area of the pattern interior: 60 ft radius, 52 ft thick, 28% porosity.
- 12) The pods will migrate in one direction and will narrow to the width of the radius. 20723

TOTAL DOCKET CODY

Nine Mile Lake Calculation of Radium Absorption by Formation Clays January 29, 1982

Pattern 3 Migration/Absorptions

Total Volume of Fluids

(Υ r²) (thickness) (porosity) = fluid volume (η) (60 ft)² (52) (0.28) = 164,669.7 ft³ (164,669.7 ft³) (7.48 ga1/ft³) (3.785) = 4,662,095.6 liters

Incremental Radium Absorption

600 - 270 = 330 pCi/l (actual) (baseline)

Total Radium

(330 pCi/l) (4,662,095.6 1) = 1,538,491,500 pCi

Amount of Clay Required

1,538,491,500 pCi/2.6667 pCi/gram clay = 576,927,100 grams

Volume Encompassed by Clay Required

(576,927,100 grams) (2.7 gm/cm³) = 213,676,700 cm³ (213,676,700 cm³) (3.531 x 10-5 ft³/cm³) = 7,521 ft³ clay 7,521 ft³/0.09 = 83,567 ft³ solid formation 83,567 ft³/1-0.28 = 116,065 ft³ actual formation

OFFICIAL DOCKET COPY

Migration Distance Calculation

116,065 ft³/52 ft thick = 2,232 ft² area 2,232 ft²/60 ft wide = 37.20 ft movement

Nine Mile Lake Calculation of Radium Absorption by Formation Clays January 29, 1982 M-54 Migration/Absorption Total Volume 1.3 x 106 gallons x 3.785 = 4.9205 x 106 liter Incremental Radium to be Absorbed 1,000 pCi/l - 500 = 500 pCi/l (actual) (baseline) Total Radium to be Absorbed (10 pCi/l) (4.9205 x 106 liters) = 2,460,250,000 pCi Amount of Clay Required 2,460,250,000 pCi/2.6667 pCi/gram clay = 922,582,217 grams Volume Encompassed by Clay Required $(922, 582, 217 \text{ gram}) / (2.7 \text{ gm/cm}^3) = 341,697,118 \text{ cm}^3$ $(341,697,118 \text{ cm}^3)(3.531 \times 10^{-5} \text{ ft}^3/\text{cm}^3) =$ 12,065 ft3 of clay 12,065 ft³ of clay = 134,059 ft³ solid formation 0.09 ft³ clay ft3 formation $\frac{134,059}{1-0.28} = 186,193$ ft³ actual formation Migration Distance Calculation 186,193 ft $^3/20$ ft thickness = 9,309 ft 2 surface area 9,309 ft²/100 ft wide = 93.09 ft migration

OFFICIAL DOCKET OOPY

Nine Mile Lake Calculation of Radium Absorption by Formation Clays January 29, 1982

References

F

- Current Status of Nine Mile Lake Groundwater IOM from P. R. Spieles, January 19, 1982.
- Halliburton Service Study of Pattern 4, February 17, 1981.
- 3) A Report on the Ion Exchange Behavior of Reno Creek and Nine Mile Lake Clays IOM from J. C. Milbourne, November 19, 1980.
- Retention of Radioisotopes and Other Soluble Species on Clay and Sand Sample, consultant report--Hazen Research, Inc., August 30, 1979.
- Preliminary Soil Investigation for Nine Mile Lake, consultant report--Chen and Associates, August 31, 1978.
- Geotechnical Investigation and Hydrologic Study, consultant report--RSE Geotechnical, July 20, 1979.

20723

HAZEN RESEARCH, INC.

I

I

4601 INDIANA STREET GOLDEN. COLORADO • 80401 TELEPHONE 303/279-4501

5

RETENTION OF RADIOISOTOPES AND OTHER SOLUBLE SPECIES ON CLAY AND SAND SAMPLES

for

Rocky Mountain Energy Company 4704 Harlan Street Denver, CO 80212

August 30, 1979

HRI Project No. 4740 Copy No. _2___

RETENTION OF RADIOISOTOPES AND OTHER SOLUBLE SPECIES ON CLAY AND SAND SAMPLES

Prepared by:

a UZ

D. E. Hyatt, Ph.D. Project Engineer Approved by:

D. N. Goens Project Manager

20723

TABLE OF CONTENTS

1

,

I

	Page No.
Introduction	1
Summary	2
Experimental	3
Results	10
Conclusions	17

OFFICIAL DOCKET COPY

20723

hri

INTRODUCTION

Work reported here was performed for Rocky Mountain Energy Company under Professional Services Agreement dated June 14, 1979.

The primary objective of this project was to evaluate the sorptive capacity of several substrates (clay and sand) for Ra^{226} , Th^{230} , Pb^{210} , As, Ba, Se, V, U, Ca, and sulfate. The design considerations for the construction of containment ponds to hold solutions containing radio-isotopes and other constituents include consideration of the sorptive capacity of contacting clays, sand, soil, etc., for solution components. Evaluation of sorptive properties of these materials allows projections of sealing capabilities of the containment area to be made.

The specific laboratory program followed diverges from the original proposal (Hazen Research Proposal 79-92, June 6, 1979) in two particulars, both at the request of Rocky Mountain Energy Company. First, test solution was prepared by blending solutions designated as Bear Creek and Nine Mile; the original proposal anticipated the availability of a single feed solution not requiring blending. Second, a pH regime of 6, 9, and 12 was specified to be of interest rather than the originally proposed 4, 6, and 8.

OFFICIAL DOCKET COPY

hri

SUMMARY

- 2 -

The removal of radioisotopes (Ra^{226} , Th^{230} , and Pb^{210}) and of other scluble species in a blended pH adjusted combination of Nine Mile and Bear Creek solutions has been studied.

Removal of Th^{230} , Pb^{210} , As, V, U₃O₈, and Se by coprecipitationscavenging upon pH adjustment to 6, 9, and 12 was observed. Removal efficiencies by this route exceeded 95% for Th^{230} , Pb^{210} , As, and V.

Sorption of radioisotopes on clay (TP-1) and sand (S-8 and HS-5/S-12) substrates was significant at all pH levels evaluated. Concentration factors for Th²³⁰ and Pb²¹⁰ were generally higher than for Ra²²⁶; Ra²²⁶ was most concentrated by clay TP-1 while sand S-8 provided highest concentration factors for Th²³⁰ and Pb²¹⁰.

All three substrates evaluated contribute little leachable components to contacting solutions in the pH range of 6 to 12. Sand HS-5/S-12 provides some leachable Se (increasing with increasing pH); sand S-8 and clay TP-1 exhibit similar but less marked behavior relative to Se release.

EXPERIMENTAL

- 3 -

Samples of the following substrates were provided in glass bottles by Rocky Mountain Energy Company:

Clay	No.	TP-1	
Sand	No.	S-8	
Sand	No.	HS-5 and S-12	

The clay TP-1 represents the proposed clay material which could be used to line the commercial evaporation reservoir at Nine Mile Lake. Sand S-8 is a sample of a clayey sand which would be directly below the reservoir. The remaining sands, HS-5 and S-12, are sandier type sands which lie beneath S-8.

All samples were dried in an air oven at 110°C for 24 hours. Clay TP-1 and sand S-8 exhibited 17% weight loss and clay HS-5/S-12 exhibited 14% weight loss under these conditions. The dried materials were stored in closed polyethylene bottles for use in the sorptive tests described in this report.

Two solution samples designated Nine Mile solution (approximately 5 gallons) and Bear Creek solution (approximately 1/2 gallon) were supplied by Rocky Mountain Energy Company for use in blending a test solution for the sorption tests. These solutions were analyzed for components of interest prior to blending and pH adjustment required for the sorption tests. Analytical data on the component solution is shown in Table 1.

Feed solutions for sorption tests at pH levels of 6, 9, and 12 were prepared by blending one part of Bear Creek tailings solution with five parts of Nine Mile solution to yield a solution containing an appropriate level (about 200 pCi/L) of Ra²²⁶. This was necessary because Nine Mile Lake solution of appropriate strength was not available. The pH of this initial mixture was 2.9; mixing resulted in no appreciable formation of

OFFICIAL DOCKET COPY
solids. Equal portions of the blended solution (approximately 2 liters each) were then pH-adjusted by the addition of 10 M NaOH with vigorous stirring. Subsequent to attainment of the chosen pH levels, the solutions were allowed to stand for 48 hours (with infrequent stirring) and then filtered through $0.45-\mu$ membrane filters under pressure to provide the final pH adjusted feed solutions for the sorption tests. Significant amounts of solids precipitated from all solutions upon the adjustment of pH. Analytical data for the pH adjusted sorptive capacity feed solutions are summarized in Table 2.

- 4 -

Equilibration of substrates and pH adjusted feed solutions was accomplished by mixing of varying weights (1, 10, and 40 grams) of each substrate with 200-ml aliquots of each pH adjusted solution. Mixing was performed in sealed polyethylene bottles on a roller mill for a period of 24 hours. Subsequent to the equilibration period, each slurry was filtered through a 0.45- μ membrane filter under pressure (approximately 100 psig). Filtrates were analyzed for components of interest, and solids were sealed in plastic containers for later analysis and studies aimed at eluting sorbed species.

Analytical data for filtrates from the 27 equilibration tests (three substrate addition levels at each of three pH levels) are summarized in Tables 3, 4, and 5 for pH levels of 6, 9, and 12, respectively.

Stripping experiments in which sorbed radioisotopes were subjected to elution by 0.2 M ammonium acetate (200 ml of solution; 24-hour equilibration on roller mill) were performed on solids from the pH 6 equilibration test with clay TP-1. Analytical data from this equilibrium test are presented in Table 6.

OFFICIAL DOCKET COPY

Table 1

Component	Nine Mile Solution	Bear Creek Solution
Ra226	45 ± 5 pC1/L	1120 ± 90 pCi/L
Th ²³⁰	13 ±4 pCi/L	124,000 ± 1000 pCi/L
Pb210	3.7 ± 3.0 pC1/L	20,000 ±200 pC1/L
As	<0.1 mg/L	1.0 mg/L
Ba	<2 mg/L	<2 mg/L
Ca	453 mg/L	426 mg/L
Se	6 µg/L	80 µg/L
SO4-2	10.3 g/L	12.6 g/L
V	21 mg/L	42 mg/L
U308	1.5 mg/L	41.5 mg/L

Component Solution Analytical Data

Table 2

Analytical Data for pH Adjusted Solutions

Component	pH 6	рН 9	pH 12
Ra226	170 pC1/L	25 pCi/L	85 pC1/L
Th230	210 pCi/L	20 pCi/L	0 pCi/L
Pb210	96 pC1/L	26 pCi/L	98 pCi/L
As	<0.01 mg/L	<0.01 mg/L	<0.01 mg/L
Ba	0.1 mg/L	<0.1 mg/L	<0.1 mg/L
Ca	410 mg/L	332 mg/L	7.14 mg/L
Se	<5 µg/L	<5 µg/L	<5 µg/L
s04 ⁻²	11.0 g/L	6.96 g/L	10.3 g/L
V	<0.2 mg/L	<0.2 mg/L	<0.2 mg/L
U308	1.5 mg/L		1.9 mg/L

OFFICIAL DOCKET COPY

.

hri

- 5 -

- 6 -

Table 3

Analytical Data Equilibration Test Filtrates - pH 6

		Grams of Substrate		
Component	Substrate	1	10	40
Ra ²²⁶ (pC1/L)	Clay TP-1	99 ±29	6 ± 15	0 ± 12
Th230 (pC1/1)		98 ± 55	0 ± 32	0 ± 32
Pb210 (pC1/L)		45 ± 52	0 ± 32	34 ± 46
As (mg/L)		0.01	0.01	0.01
Ba (mg/L)		0.2	0.2	0.2
Ca (mg/L)		478	546	448
Se (µg/L)	영상 영향이 .	< 5	< 5	< 5
SO4-2 (g/L)		12.6	12.3	10.8
V (mg/L)		14		
U3O8 (mg/L)		0.2	0.1	0.2
Ra ²²⁶ (pC1/L)	Sand S-8	110 ±30	0 ± 12	0 ± 12
Th ²³⁰ (pCi/L)		66 ±48	11 ± 34	5 ± 32
Pb210 (pC1/L)		2 ±52	40 ± 52	0 ±48
As (mg/L)		<0.01	0.01	0.01
Ba (mg/L)		0.2	0.2	0.2
Ca (mg/L)		482	442	400
Se (µg/L)		52	60	45
SO4-2 (g/L)		11.4	12.0	-
V (mg/L)		-		
U3O8 (mg/L)		0.2	0.2	•
Ra ²²⁶ (pCi/L)	Sand HS-5/S-12	160 ± 40	44 ±26	5 ± 17
Th ²³⁰ (pC1/L)		200 ± 70	22 ± 37	11 ± 34
Pb ²¹⁰ (pC1/L)		59 ± 48	31 ± 49	16 ±49
As (mg/L)		0.02	0.01	0.02
Ba (mg/L)		0.1	0.1	0.2
Ca (mg/L)		478	514	478
Se (µg/L)		162	45	107
SO4-2 (g/L)		11.6	12.5	12.5
V (mg/L)		-	-	-
U308 (mg/L)		0.2	0.3	0.2

OFFICIAL DOCKET COPY

20723

4

.

١

5

1

Table 4

Analytical Data Equilibration Test Filtrates - pH 9

		Grams of Substrate		
Component	Substrate	1	10	40
Ra ²²⁶ (pCi/L)	Clay TP-1	2 ± 11	0 ± 8	0 ± 8
Th ²³⁰ (pCi/L)		11 ± 41	0 ± 33	0 ± 8
Pb210 (pCi/L)		53 ±38	59 ± 41	10 ± 43
As (mg/L)		0.02	<0.01	0.02
Ba (mg/L)	같이 있는 것이	<0.1	<0.1	0.2
Ca (mg/L)		380	461	525
Se (µg/L)		76	64	71
SO4-2 (g/L)		12.4	11.8	16.5
V (mg/L)		-		<0.2
U3O8 (mg/L)				1.2
Ra ²²⁶ (pC1/L)	Sand S-8	6 ± 10	6 ± 10	0 ± 6
Th ²³⁰ (pCi/L)		130 ± 60	110 ± 60	
Pb210 (pC1/L)		70 ± 40	36 ± 40	57 ±39
As (mg/L)		0.02	0.01	0.01
Ba (mg/L)		0.2	0.2	0.1
Ca (mg/L)		407	401	403
Se (µg/L)		33	38	S
SO4-2 (g/L)		10.9	11.3	13.1
V (mg/L)		-	1. A 1. A	-
U308 (mg/L)		0.13	1.30	0.39
Ra ²²⁶ (pC1/1)	Sand HS-5/S-12	23 ± 15	0 ± 6	0 ± 9
Th ²³⁰ (pCi/L)		11 ± 41	0 ± 35	6 ± 40
Pb210 (pCi/L)		2 ±41	55 ±38	83 ± 40
As (mg/L)		0.02	0.12	0.04
Ba (mg/L)		0.1	0.3	<0.1
Ca (mg/L)		370	353	391
Se (µg/L)		560	58	76
504-2 (g/L)		11.4	12.2	-
V (mg/L)		-	-	-
U308 (mg/L)		3.53	0.70	-

OFFICIAL DOCKET COPY

hri

Table 5

Grams of Substrate 10 40 Component Substrate Ra²²⁶ (pCi/L) 0 ± 6 0 ± 6 0 ± 6 Clay TP-1 Th230 (pCi/L) 0 ± 6 0 ± 6 0 ± 33 Pb210 (pC1/L) 10 ± 43 43 ± 37 19 ± 36 0.07 0.01 0.12 As (mg/L) 0.2 0.2 <0.1 Ba (mg/L) 4.96 -Ca (mg/L) 4.71 78 107 78 Se $(\mu g/L)$ SO4-2 (g/L) 12.2 17.5 12.6 <0.2 <0.2 V (mg/L) 0.04 + U308 (mg/L) Ra226 (pC1/L) 0 ± 6 0 ± 6 0 ± 6 Sand S-8 Th230 (pC1/L) 56 ± 51 78 ± 56 27 ± 33 Pb210 (pCi/L) 40 ± 37 84 ± 40 49 ± 37 0.04 0.06 0.03 As (mg/L) <0.1 <0.1 0.1 Ba (mg/L) 5.42 4.47 Ca (mg/L) 9.69 -64 59 Se $(\mu g/L)$ SO4-2 (g/L) 10.8 12.4 16.1 -V (mg/L) --0.46 4.05 U308 (mg/L) -Ra226 (pC1/L) Sand HS-5/S-12 23 ± 10 0 ± 9 0 ± 6 Th230 (pCi/L) 0 ± 35 6 ± 40 0 ± 33 Pb210 (pCi/L) 63 ± 38 30 ± 37 4 ± 36 0.20 0.09 2.12 As (mg/L) <0.1 <0.1 <0.1 Ba (mg/L) 9.65 13.0 8.66 Ca (mg/L) 580 58 214 Se $(\mu g/L)$ 504-2 (g/L) 12.0 12.6 11.0 ---V (mg/L) 3.74 0.71 U308 (mg/L)

OFFICIAL DOCKET COPY

Analytical Data Equilibration Test Filtrates - pH 12

20723

1.3

Table 6

Analytical Data Ammonium Acetate Leach 1/ of Clay TP-1 (pH 6 Loading)

	Range	
Component	of Recover	
Ra ²²⁶	49-257%	
Th ²³⁰	2-45%	

1/ 200 ml of 2 M ammonium acetate contacted with solids on roller mill for 24 hours.

OFFICIAL DOCKET COPY

20723

1

ζ

ľ

RESULTS

- 10 -

In conducting the experimental program described above and reviewing the analytical data pertinent to blending, pH adjustment, and sorption segments, it is clear that various soluble species are removed by sorption on solids precipitating during pH adjustment as well as by sorption on the tested substrates. While the objective of this program was to evaluate component removal by substrate sorption on clays and sands, the observed removal (coprecipitation) during neutralization also deserves comment.

In the absence of coprecipitation or scavenging by precipitated solids, upon pH adjustment, component levels in the blended Nine Mile-Bear Creek test solution should be calculable by simple dilution calculations. Departures from these component levels in the blended, pH adjusted solution provides a qualitative measure of the binding capacity of the precipitate for species in solution. Tables 7, 8, and 9 summarize analytical data in terms of expected and observed component levels in the equilibration test solutions at pH 6, 9, and 12, respectively.

While the removal mechanism (sorption, formation of filterable solid phase, etc.) is not identifiable in these experiments, it is never-theless apparent that a consequence of pH adjustment is the formation of nonfilterable $(0.45 \ \mu)$ associations for many of the components of interest. To the extent that similar neutralization reactions occur in a full scale pond, accumulation of some components in precipitated solids may be anticipated. These findings support the earlier findings and projections by In-Situ Consulting (1978) regarding scavenging of soluble species by Fe(OH)₃ formed during neutralization of tailings solution at the Bear Creek site.

OFFICIAL DOCKET COPY

-	1.		-
	•	-	

1

Table 7

Component	Levels Expec Test Solution	at pH 6	
 Expe	ected	Analytical	R

Component	Expected Concentration 1/	Analytical Concentration	Removal, %
Ra226	195 pCi/L	170 pCi/L	11
Th230	20,678 pC1/L	210 pCi/L	99
Pb210	3336 pC1/L	96 pC1/L	97
As	0.25 mg/L	<0.01 mg/L	> 96
Ba	<2 mg/L	0.1 mg/L	
Ca	449 mg/L	410 mg/L	9
Se	18 µg/L	<5 µg/L	> 72
SO4-2	10.7 g/L	11.0 g/L	•
v	24.5 mg/L	<0.2 mg/L	> 99
U308	8.2 mg/L	1.5 mg/L	82

1/ Based on 5:1 dilution.

Table 8

Component Levels Expected and Observed in Test Solution at pH 9

Component	Expected Concentration 1/	Analytical Concentration	Removal, %
Ra226	195 pC1/L	25 pCi/L	87
Th230	20,678 pC1/L	20 pCi/L	> 99
Pb210	3336 pC1/L	26 pCi/L	> 99
As	0.25 mg/L	<0.01 mg/L	> 96
Ba	<2 mg/L	<0.1 mg/L	-
Ca	449 mg/L	332 mg/L	26
Se	18 µg/L	<5 µg/L	> 72
SO4-2	10.7 g/L		-
v	24.5 mg/L	<0.2 mg/L	> 99
U308	8.2 mg/L	-	-

1/ Based on 5:1 dilution.

OFFICIAL DUUNEI COPY

hri

Table 9

Component	Levels	Expected	and	Observed
in	Test So	lution at	pH 1	2

Component	Expected Concentration 1/	Analytical Concentration	Removal, %
Ra ²²⁶	195 pC1/L	85 pC1/L	56
Th230	20,678 pC1/L	0 pCi/L	> 99
Pb210	3336 pC1/L	98 pC1/L	97
As	0.25 mg/L	<0.01 mg/L	> 96
Ba	<2 mg/L	<0.1 mg/L	
Ca	449 mg/L	7.14 mg/L	98
Se	18 µg/L	<5 µg/L	> 72
s04-2	10.7 g/L	10.3 g/L	4
v	24.5 mg/L	<0.2 mg/	> 99
U308	8.2 mg/L	1.9 mg/L	77

1/ Based on 5:1 dilution.

e

Z

OFFICIAL DOCKET COPY

hm

-

*

A review of the analytical data on component levels remaining in the test solutions after equilibration with varying amounts of each substrate may be augmented by graphic data display. Residual levels of Ra^{226} and Th^{230} are plotted with respect to calculated solids uptake of these components on the three substrates at pH 6 (Figures 1 and 2). Similar curves are not presented for pH 9 and pH 12 systems or for Pb²¹⁰ due to the overall low level of radioisotopes in these feed solutions and the large error bar associated with analyses in small solution volumes at these ultratrace levels. Estimated maximum radioisotope sorptive capacities of the three substrates at pH 6 are summarized in Table 10.

The radioisotope removal curves at pH 6 and the analytical data on all substrates at pH 6, 9, and 12 suggest that clay (TP-1) and sand (S-8) substrates have significantly more capacity than the (lower) clay designated HS-5/S-12. Significant interaction of all substrates at all pH levels with U₃O₈ was noted. No substantial contribution to levels of any analyzed components was noted by the substrates tested at the pH levels of 6, 9, and 12 with the exception of Se. Low levels of Se appear in solutions equilibrated with all substrates and increase with pH.

OFFICIAL POOVER CODY

hri

Ra226 UPTAKE FROM pH 6 TEST SOLUTION

-

FIGURE 1

hri

OFFICIAL DOCKET COPY

20723

0

- 14 -

FIGURE 2

OFFICIAL DOCKET COPY

20723

."

- 15 -

		-	
-			_
		~	

Table 10

Estimated 1/ Substrate Sorptive Capacity for Ra²²⁶, Th²³⁰, and Pb²¹⁰

		Ra2	26	Th230)	Pb2	.0
Substrate	pH	pC1/kg	CF 2/	pC1/kg	CF	pC1/kg	CF
Clay TP-1	6	14,200	143	22,400	229	10,200	226
Sand S-8	6	12,000	109	28,800	436	18,800	>361
Sand HS-5/S-12	6	2,000	13	2,000	10	7,400	125

1/ Maximum based on sorptive level of 1 gram of substrate exposed to 200 ml of solution.

1

 $2/CF = \text{concentration factor} = \frac{pCi/kg \text{ of radioisotope in solids}}{pCi/L \text{ of radioisotope in equilibrated solution}}$

OFFICIAL DOCKET COPY

hri

CONCLUSIONS

- 17 -

Based on the test program described above and upon the data presented, the following conclusions are offered:

- pH adjustment of the test solution prepared by blending Nine Mile and Bear Creek samples results in significant reduction in the levels of Th²³⁰, Pb²¹⁰, and other low level components of the solution in the pH range 6-12.
- Clay TP-1 and sand S-8 exhibit marked capacity for radioisotope and U₃O₈ removal from solutions at pH 6-12. Sand S-12 exhibits measurable but lower capacity.
- 3. Efforts to strip sorbed Ra²²⁶ and Th²³⁰ from clay TP-1 (loaded at pH 6) resulted in radioisotope recovery levels of 49-257% for Ra²²⁶ and 3-45% for Th²³⁰. This indicates that the clay TP-1 binds Th²³⁰ more strongly than Ra²²⁶ and may even contain low levels of exchangeable (soluble) Ra²²⁶ in 2 M ammonium acetate. Quantitative data and conclusions based upon data at the ultratrace analytical levels involved here must be viewed with reserve.
- Sand HS-5/S-12 and, to a lesser degree, sand S-8 and clay TP-1 contribute increasing amounts of Se upon increasing pH of contacting solutions.

OFFICIAL DOGNET COPY

Margery A. Hulburt

Geohydrologist

Majestic Blog., Suite 425 1603 Capitol Avenue Cheyenne, WY 82001 (307) 634-3237

Potential Migration of Ground Water Constituents from Patterns 1, 2, and 3 at the Rocky Mountain Energy Co. Nine Mile Lake Test Site

Prepared for:

Rocky Mountain Energy Co. P.O. Box 2000 Broomfield, Colorado 80020

May 28, 1982

OFFICIAL DOCKET COPY

Potential Migration of Ground Water Constituents from Patterns 1, 2, and 3 at the Rocky Mountain Energy Co. Nine Mile Lake Test Site

Introduction

At the request of Rocky Mountain Energy Company, an analysis was undertaken of the potential distance and rate of migration of several ground water constituents present at the Nine Mile Lake test site. Specifically, the fate of radium (Ra-226), uranium (U_3O_8) , vanadium (V), iron (Fe), and lead (Pb) were investigated. The analysis was conducted for the three acid patterns at the site, patterns 1, 2, and 3.

Migration of the ground water constituents was described using a mass transport and dispersion equation. Where a distribution coefficient could be calculated from available on-site test data, the retardation of constituent movement due to adsorption was included in the analysis. Where a site-specific distribution coefficient could not be obtained, the ion was assumed to migrate at the same rate as the ground water.

For each parameter and test pattern, the distance to the ion front, the distance to the peak concentration, and the value of the peak concentration were calculated over time. These values are considered to represent a worst case due to several assumptions underlying the migration calculations. A major assumption of the mass transport equation is that the adsorption reaction is completely reversible. This is probably not the case for all of the ions of interest. Secondly, the equation does not take into account other geochemical reactions which may be occurring, such as

coprecipitation of these ions with other chemical species in the ground water. Therefore the presence of any geochemical activity in the aquifer would reduce the migration distances given in this report. The data taken from Hazen Research, Inc. (1979) represent conditions of pH 6 and a sandy substrate. These seemed most representative of the Nine Mile Lake site; however any elevation in aquifer pH or clay content of the substrate would further reduce migration distance.

Finally, an evaluation was made of existing Rocky Mountain Energy Company predictions of radium migration. Conclusions were based on comparison with the mass transport/dispersion results and on examination of the assumptions and input parameters of the analysis.

Mass Transport Equation

The mass transport equation used to describe the movement of ground water constituents at the Nine Mile Lake site was originally described by Baetsle (1969) and presented in Freeze and Cherry (1979). As a contaminant mass is transported through a flow system, the concentration distribution within that mass at any time t is given by:

 $C(x,y,z,t) = \frac{M}{8(\pi t)^{3/2} \sqrt{DxDyDz}} \exp(-\frac{x^2}{4Dxt} - \frac{y^2}{4Dyt} - \frac{z^2}{4Dzt})$

where M is the mass of contaminant introduced at a point source; Dx, Dy, and Dz are the coefficients of dispersion in the x, y, and z directions; and X, Y, and Z are the distances from the center of gravity of the contaminant mass in the x, y, and z 2n723

DEFICIAL DUGALT COPY

-2-

directions. X = x - vt, Y = y, and Z = z. Theoretically, the contaminant input occurs at a point and therefore has mass but no volume. In practice, the mass M is approximated by C_0V_0 , where C_0 is the initial concentration and V_0 is the initial volume.

This equation assumes no retardation of ion movement due to adsorption; that is, the ion is assumed to migrate at the same rate as the ground water flow. Testing conducted by Hazen Research, Inc. (1979) on Nine Mile Lake site materials showed that radium and uranium are adsorbed onto the aquifer materials. Data were not presented for the other ions of interest to the present study. In order to account for the effects of adsorption in the mass transport equation, the parameter t was replaced by $\tau = t(\bar{v}_c/\bar{v})$, where \bar{v} is the rate of ground water movement and \bar{v}_c is the rate of ion movement (Freeze and Cherry, 1979).

The retardation factor for ion migration is given by:

$$\frac{\vec{v}}{\vec{v}_{o}} = 1 + \frac{\rho_{b}}{n} \cdot K_{d}$$

where $\rho_{\rm b}$ is the bulk mass density, n is the porosity. and K_d is the distribution coefficient.

Input Parameters

The parameters \tilde{v} , n, ρ_b , Dx, Dy, and Dz in the above equations are properties of the aquifer and can therefore le treated as constants throughout the mass transport analysis. The parameters K_d and \bar{v}_c depend on the ion as well as the aquifer characteristics and therefore will vary with the ground water constituent.

OFFICIAL DOCKET COPY

20723

-3-

Finally, the parameters C_{0} and V_{0} are specific to each ion and test pattern combination.

-4-

The natural ground water flow velocity in the vicinity of the Nine Mile Lake site was provided by Rocky Mountain Energy Company as approximately 20 ft/yr in an E25°S direction. The value of 6.10 m/yr was used in the calculations. Rocky Mountain Energy Company also provided a local porosity of 28%.

The bulk mass density was approximated from the average mass density of minerals that constitute unconsolidated deposits, taken as 2.65 g/cm³. The average mass density was multiplied by the percentage of solid materials in the aquifer (1 - 0.28) to yield a bulk density of 1.91 g/cm³.

The coefficients of dispersion, Dx, Dy, and Dz, were taken from a plot of flow velocity versus dispersion for a sand of 22% porosity (Freeze and Cherry, 1979). The resulting values were $Dx = 2.84 \text{ m}^2/\text{yr}$, $Dy = Dz = 0.22 \text{ m}^2/\text{yr}$, and $\sqrt{DxDyDz} = 370 \text{ L/yr}^{3/2}$. The 22% porosity curves were the most representative dispersion data readily available. Because these reflect a slightly lower porosity than is found at the Nine Mile Lake site, longitudinal dispersion may be slightly underestimated while transverse dispersion may be overestimated. With all other factors held constant, this would result in a slight underprediction of concentrations and migration distances. The 6% difference in porosity is probably not significant. A sample calculation using radium data for pattern 1 shows that even if the longitudinal dispersion is doubled and the transverse dispersion is halved, a change much greater than that expected, after 500 years the OFFICIAL DOCKET 20723 peak concentration would be 483 pCi/L rather than 478 pCi/L and the distance to the front would be 200 feet rather than 177 feet.

Distribution coefficients, K_d, were calculated for radium and uranium from on-site data collected by Hazen Research, Inc. (1979). By definition, the distribution coefficient is the mass of solute adsorbed onto solid materials per unit mass of solids divided by the concentration of solute in solution. The mass of solute on the solid phase was computed from the Hazen study by simply subtracting the final solute concentration and multiplying by the solute volume. The concentration of solute in solution was the final solute concentration. Data were taken from the Hazen study for the case where the pH of the initial solution was equal to 6 and the substrate was sand HS-5/S-12. For radium:

initial solute concentration = 170 pCi/L
final solute concentration = 160 pCi/L
volume of solute = 0.2 L
mass of solute on solid phase = 260 mg/kg
K_d = 12.5 L/kg

For uranium:

initial solute concentration = 1.5 mg/L
final solute concentration = 0.2 mg/L
volume of solute = 0.2 L
mass of solute on solid phase = 260 mg/kg
K_d = 1300 L/kg

The clay content of sand HS-5/S-12 was not provided in the Hazen report. The ore sand at the Nine Mile Lake site contains up to 15% clay, which may indicate slightly higher K_d values than used here.

The velocity of the ions, \bar{v}_c , was calculated for radium and uranium using the retardation equation given above. For radium,

OFFICIAL DOCKET COPY

20723

-5-

 $\bar{v}_{c} = 7.01 \times 10^{-2}$ m/yr, and for uranium, $\bar{v}_{c} = 6.87 \times 10^{-4}$ m/yr.

The initial ion concentration, C, and volume, V, were determined for each ion and test pattern combination. Water quality data for February 1982 were examined for each pattern, and the region within which each ion remained above baseline was delineated to the extent possible, by interpolation between wells. The affected area was then multiplied by the aquifer thickness and porosity to obtain the initial volume of contamination. The present ion concentration was taken as the average of the reported concentrations within the affected area. The initial concentration, C_{o} , was then obtained by subtracting the baseline concentration from the present concentration. Table 1 gives the affected area, aquifer thickness, baseline concentration, C_{o} , and V_{o} for each ion and test pattern combination. Analysis of the water quality data indicated that uranium and lead concentrations were not elevated above baseline in pattern 2 and that uranium was not elevated in pattern 3.

Analysis of Ion Migration

Once the input parameters were identified, the migration of each ion away from the three test patterns was characterized. The peak concentration within the contaminant plume at any time t can be obtained from the mass transport equation by setting X, Y, and Z equal to 0. The resulting equation is:

$$C_{\text{max}} = \frac{C_0 V_0}{V_0 + 8(\pi t)^{3/2} \sqrt{D x D y D z}}$$

The term V has been added to the denominator in this form of the

OFFICIAL DOCKET COPY

20723

-6-

equation. This is necessary due to the very large initial ion volumes used in this application. The volumes are so large that they cannot be considered negligible, as required in theory. The equation divides the initial mass by the incremental increase in volume due to dispersion at time t to obtain the peak concentration. Because of the large volumes used, the increase in volume is much less than the initial volume for most values of t, resulting in peak concentration values much larger than the initial concentration. The addition of V_0 to the denominator simply adds the increase in volume to the initial volume to give a realistic peak concentration.

-7-

This equation can be rearranged to determine the time it will take for the plume to disperse to any given peak concentration C (i.e: baseline):

$$t = \left(\frac{\frac{C_{o}V_{o}}{C} - V_{o}}{8 \sqrt{DxDyDz}}\right) \frac{1}{\pi}$$

The distance which we plume will move before dispersing to baseline is size ...

 $d = \overline{v}t$

I

Again, when an ion is known to move more slowly than the ground water flow, t is replaced by $\tau = \tau(\bar{v}_c/\bar{v})$ in the above equations.

For each ion and test pattern, the above equations were used to determine the time it would take for the contaminant to disperse to baseline and the distance the concentration peak would travel before dispersing. To gain a broader picture of the character of ion migration is each case, the peak concentration and distance to the peak were computed for several selected times during 20723 migration. The mass transport equation was then used, in a rearranged form, to compute the distance to the ion front at the same time intervals. In all of these calculations dispersion to baseline was considered to be complete when the contaminant had been reduced to a concentration less than 10% of the baseline reported for the pattern.

Results

I

A.

Tables 2 through 13 present the peak concentration, distance to the peak, and distance to the ion front at intervals during plume migration for each ion and test pattern combination. Table 14 summarizes the times and distances required for complete dispersal.

Table 14 shows that all constituents, with the exception of vanadium in pattern 2, can be expected to disperse to baseline within one mile of their origin. Radium in pattern 2 will disperse within 350 feet. Vanadium, however, is expected to travel nearly 8 miles from pattern 2 before dispersing to baseline. (Vanadium dispersal will occur over much shorter distances from patterns 1 and 3). The reason that such a large distance is required for vanadium dispersal from pattern 2 is the low baseline level (0.05 mg/L) reported for this pattern. Dispersal to the most stringent Wyoming ground water quality standard for vanadium (0.1 mg/L) will occur within approximately 2 miles.

The time required for dispersal to baseline varies widely, from 30 years for lead in pattern 1 to 1.8 million years for

OFFICIAL DOCKET COPY

uranium. The time frame is partially dependent on the baseline and present concentrations of each constituent in the three patterns. The most significant factor, however, is the level of retardation due to adsorption. The very large time frames for radium and uranium are due to the retardation factor included in the mass transport equation for these ions; while the other ions were assumed to migrate at the same velocity as the water. The time frames given for vanadium, iron, and lead should be considered minimum values. Any retardation of these constituents due to adsorption would significantly increase travel times. To put the movement of radium and uranium in perspective, at the end of ten human generations, or 1000 years, radium will have migrated 308 feet from pattern 1, 260 feet from pattern 2, and 310 feet from pattern 3 and uranium will have migrated about 2 feet from pattern 1.

It should also be noted that each test pattern is treated as an instantaneous contaminant source. That is, over time each constituent will move away from the pattern as a slug which expands slowly in the up- and down-gradient directions. The result of this type of movement is that the pattern area can be expected to restore itself to baseline at some point before the contaminant mass has completely dispersed. Because the peak concentration is always located at the center of mass of the contaminant plume, the distance from the pattern to the back end of the migrating plume can easily be calculated from the distance to the peak and the distance to the front at any time. For example, after 1000 years of migration, the distance to the peak radium concentration **DEFICIAL DOCINET COPY** 2072.3

-9-

from pattern 1 is 230 feet, and the distance to the front is 308 feet. The distance from pattern 1 to the back of the radium plume is 230 - (308 - 230) = 152 feet.

Evaluation of RME Radium Analysis

The Rocky Mountain Energy Company analysis of radium migration, based on cation exchange capacities, predicted a migration distance of 93 feet for pattern 1 and 37 feet for pattern 3. These results are significantly less than those obtained using the mass transport method for the same initial conditions.

The difference can be explained by examination of one major assumption. The cation exchange capacity method assumes that once the radium is adsorbed onto the aquifer materials, it will not go back into solution. The mass transport method assumes that all adsorbed radium will eventually go back into solution. Therefore the cation exchange capacity method predicts much shorter migration distances than the mass transport method. The mass transport method clearly produces worst-case results. Because the radium is being adsorbed within a dynamic flow system, some degree of desorption would be expected when baseline quality water re-enters the region and changes the chemical equilibrium of the system. Whether or not the adsorption reaction would be completely reversible at Nine Mile Lake requires further study.

Conclusions

The distances which radium, uranium, vanadium, iron, and lead can be expected to travel from patterns 1, 2, and 3 before

20723

OFFICIAL DOCKET COPY

dispersing to baseline concentrations have been calculated under worst-case conditions. All constituents, except for vanadium in pattern 2, will disperse to baseline within one mile of travel. Vanadium in pattern 2 will require nearly 8 miles. Where retardation due to adsorption was taken into account, for radium and vanadium, travel times are extremely long. Travel times for vanadium, iron, and lead should be considered minimum values.

The nearest water well completed in the Mesa Verde Formation down-gradient is located approximately 20,500 feet (3.9 miles) from the boundary. Therefore, under worst-case predictions, all constituents except vanadium are expected to be reduced to baseline concentrations before reaching this well. The peak increase in vanadium concentration expected in this well is 0.016 mg/L. If the baseline concentration in this well is 0.05 mg/L as it is in pattern 2, then the maximum expected vanadium level would be 0.066 mg/L. This is within the 0.1 mg/L standard for vanadium.

These worst-case travel distances may be significant overpredictions due to the assumption of complete reversibility of adsorption reactions. Further definition of distribution coefficients and reversibility of adsorption reactions for the five constituents could provide more realistic travel distances.

OFFICIAL DOCKET COPY

20723

-11-

.

ſ

References

Baetsle, L.H. (1969), Migration of Radionuclides in Porous Media, Progress in Nuclear Energy, Series XII, Health Physics, O.M.L. Duhamel (ed.), Pergamon Press, Elmsford, N.Y.

Freeze, R.A. and J.A. Cherry (1979), Groundwater, Prentice-Hall, Englewood Cliffs, N.J.

.

Hazen Research, Inc. (1979), Retention of Radioisotopes and Other Soluble Species on Clay and Sand Samples, prepared for Rocky Mountain Energy Company, Denver, CO

OFFICIAL DOCKET COPY

A CT1	T 3 3	1 17	
TA	н.		
7 7 7	10	1111	

Ion	Pattern	Affected Area (m ²)	Aquifer Thickness (m)	Baseline Concentration	Present Concentra' <u>a</u>	Initial Concentration	Initial ••Volume (L)
Radium	1	2919	6.10	500 pCi/L	1000 pCi/L	500 pCi/L	4.92 x 10 ⁶
	2	183	6.10	700	974	274	3.12 x 10 ⁵
	3	1051	18.29	270	600	330	4.66 x 10 ⁶
Uranium	1	1140	6.10	0.2 mg/L	0.77 mg/L	0.57 mg/L	1.95 x 10 ⁶
Vanadium	1	285	6.10	0.1 mg/L	0.17 mg/L	0.07 mg/L	4.87 x 10 ⁶
	2	7127	6.10	0.05	0.79	0.74	1.22 x 107
	3	1051	18.29	0.45	0.79	0.34	5.38 x 10 ⁶
Iron	1	1140	6.10	1.42 mg/L	2.89 mg/L	1.47 mg/L	1.95 x 10 ⁶
ii on	2	730	6.10	1.11	4.17	3.06	6.23 x 10 ⁵
	3	730	18.29	4.10	4.89	0.79	3.74 x 10 ⁶
Lead	1	570	6.10	0.1 mg/L	0.14 mg/L	0.04 mg/L	9.75 x 10 ⁵
	3	526	18,29	0.05	0.10	0.05	2.69 x 10 ⁶

Initial Ion Concentration and Volume

*Initial Concentration (C_o) = Present Concentration - Baseline Concentration

OFFICIAL DOCKET COPY

Time (yrs)	Peak Concentration (pCi/L)	Distance to Peak (ft)	Distance to Front (ft)
10	499	2	15
100	498	23	56
150	496	35	74
250	492	58	105
500	478	115	177
1,000	442	230	308
5,000	202	1150	1266
10,000	97	2300	2411
16,500	50	3795	3848

Radium Migration, Pattern 1

Site Baseline Range 1.5 - 717

ľ

i

.

OFFICIAL DOCKET COPY

20723

Radium Migration, Pattern 2

Time (yrs)	Peak Concentration (pCi/L)	Distance to Peak (ft)	Distance to Front (ft)
10	273	2	13
20	272	5	18
50	268	12	31
100	257	23	47
150	244	35	62
250	217	58	89
500	158	1.15	149
1000	89	230	260
1460	59	336	347

Site Baseline Range 1.5 - 717 Pattern 2 Range 19 - 717

é,

OFFICIAL DOCKET COPY

Radium Migration, Pattern 3

Time (yrs)	Peak Concentration (pCi/L)	Distance to Peak (ft)	Distance to Front (ft)
10	330	2	15
100	329	23	57
150	328	35	74
250	325	58	106
500	315	115	178
1,000	290	230	310 Pattern 3
5,000	129	1150	1271High = 274 pCi,
10,000	61	2300	2420
15,000	36	3450	3544
18,500	27	4255	4305

Site Baseline Range 1.5 - 717

OFFICIAL DOCKET COPY

20723

-

Uranium Migration, Pattern 1

Time (yrs)	Concentration (mg/L)	Distance to Peak (ft)	Distance to Front (ft)
10	0.57	0.03	2
10,000	0.56	23	56.
20,000	0.55	45	89
100,000	0.43	225	304
500,000	0.12	1127	1247
1,000,000	0.05	2254	2373
1,800,000	0.02	4057	4119

Site Baseline Range 0.002 - 0.750

OFFICIAL DOCKET COPY

69

Vanadium Migration, Pattern 1

Time (yrs)	Peak Concentration (mg/L)	Distance to Peak (ft)	Distance to Front (ft)
1	0.16	20	48
5	0.12	100	148
10	0.08	200	258
20	0.04	400	465
30	0.03	600	664
50	0.01	1001	1047
60	0.01	1201	1225

Site Baseline Range ND-0.45

G

I

I

I

I

-0

-

*

OFFICIAL DUUNEI OUP1

20723

B

LADL	12	1

Vanadium Migration, Pattern 2

Time (yrs)	Peak Concentration (mg/L)	Distance to Peak (ft)	Distance to Front (ft)	
1	0.74	20	58	
3	0.73	60	121	
10	0.71	200	300	
20	0.66	400	532	
50	0.50	1001	1188	
100	0.31	2001	2241 /	<u> </u>
150	0.21	3002	3276	TTE DANCE
250	0.12	5003	5322	LIE RANGE
500	0.05	10,007	10,380	v
1000	0.02	- 20,013	20,403	
2000	0.006	40,026	40,248	
2200	0.005	44,209	44,155	

Site Baseline ND-0.45 Range

8

ŀ

1

1

1

I

1

OFFICIAL DOCKET COPY, 20723

.

Vanadium Migration, Pattern 3

ġ.

1

I

1

I

.

I

I

I

I

Time (yrs)	Concentration (mg/L)	Distance to Peak (ft)	Distance to Front (ft)
1	0.34	20	51
3	0.33	60	108
10	0.31	200	273
20	0.27	400	490
50	0.16	1001	1110
100	0.08	2001	2106
120	0.07	2402	2498
140	0.06	2802	2884
150	0.05	3002	3075
1,60	0.047	3202	3264
170	0.044	3402	3449

Site Baseline Range ND-0.45

Pattern 3 Baseline Range 0.01 - 0.45

DEFICIAL DOCKET COPY

Iron Migration, Pattern 1

Time (yrs)	Peak Concentration (mg/L)	Distance to Peak (ft)	Distance to Front (ft)
1	1.46	20	50
3	1.41	60	105
5	1.34	100	154
10	1.16	200	267
20	0.84	400	480
50	0.37	1001	1088
70	0.25	1401	1481
100	0.16	2001	2053
110	0.14	2201	2233

Site Baseline Range ND-4.10

1

I

1

1

I

1

OFFICIAL DOCKET COPY 20723

a
Iron Migration, Pattern 2

<u>Time (yrs)</u>	Peak Concentration (mg/L)	Distance to Peak (ft)	Distance to Front (ft)
1	2.98	20	49
3	2.69	60	104
5	2.36	100	153
10	1.67	200	266 Pattern 2
20	0.91	400	478 High = 1.11 mc
50	0.30	1001	1082
70	0.19	1401	1472
95	0.12	1901	1940
100	0.11	2001	2026

Site Baseline Range ND-4.10

29

OFFICIAL DOCKET COPY

20723

ę

Iron Migration, Pattern 3

<u>Time (yrs)</u>	Peak Concentration (mg/L)	Distance to Peak (ft)	Distance to Front (ft)
1	0.79	20	47
3	0.77	60	100
5	0.75	100 .	147
10	0.69	200	257
20	0.57	400	463
30	0.46	600	660
35	0.41	700	757

Site Baseline Range ND-4.10

1

1

m

Pattern 3 Baseline Range 0.01 - 4.10

OFFICIAL DOCKET COPY

Lead Migration, Pattern 1

Time (yrs)	Peak Concentration (mg/L)	Distance to Peak (ft)	Distance to Front (ft)
1	0.04	60	97
5	0.03	100	143
20	0.02	400	449
30	0.01	600	637
1 5 20 30	0.04 0.03 0.02 0.01	60 100 400 600	97 143 449 637

Site Baseline Range ND-0.140

¢

I

1

I

1

.

1

I

I

I

I

3/

. .

.

.

OFFICIAL DOCKET COPY 20723

Lead Migration, Pattern 3

Time (yrs)	Peak Concentration (mg/L)	Distance to Peak (ft)	Distance Front	e to (ft)
5	0.05	100	155	Pattern 3
10	0.04	200	270	High=0.05 mg/
20	0.03	400	485	
50	0.02	1001	1097	
75	0.01	1501	1593	
100	0.007	2001	2079	
110	0.006	2201	2270	
130	0.005	2602	2641	

OFFICIAL DOCKET COPY.

. .

Site Baseline Range ND-0.140

1

-

1

I

-

20723

\$

'Summary of Ion Dispersal

Ion	Pattern	Time to Disperse(yrs)	Travel Distance(ft)	Concentration
Radium	1	16,500	3,800	50 pCi/l
	2	1,460	350	59 pCi/l
	3	18,500	4,300	27 pCi/l
Uranium	1	1.8 x 10 ⁶	4,100	0.02 mg/l
Vanadium	1	58	1,150	0.01 mg/l
	2	2,085	41,700	0.005 mg/l
	3	170	3,400	0.045 mg/l
Iron	1	110	2,200	0.15 mg/l
	2	100	2,000	0.12 mg/l
	3	35	700	0.43 mg/l
Lead	1	30	600	0.01 mg/1
	3	130	2,600	0.005 mg/1

Site Baseline Range

Radium	1.5 - 717 pCi/l
Uranium	0.002 - 0.750 mg/l
Vanadium	ND - 0.45 mg/1
Iron	ND - 4.10 mg/l
Lead	ND - 0.140 mg/l

OFFICIAL DOCKET COPY

APPENDIX C

PATTERN 3 EXCURSION REPORT

OFFICIAL DOCKET COPY

APPENDIX C

PATTERN III EXCURSION DISCUSSION

One of the basic reasons for the operation of Test Pattern III was to test the principle of dual ore zone open injection wells. All six injection wells were perforated in the upper and lower ore zones with one flow and pressure monitoring system per injection well. The concept was: since upper and lower ore zone permeabilities were nearly identical, the injection flow should split evenly between upper and lower ore zones.

Vertical flow profile tests were planned before leaching and uranium recovery began, but could not be done because the highly specialized equipment was not ready. Full flow uranium recovery from Pattern III began in September of 1979.

The vertical flow profile equipment was not ready until late September and the profiles were not run until the end of the first week in October. Test results indicated that flows were not balanced between upper and lower ore zones in all injection wells, and that flow into the upper ore zone was significantly greater than that into the lower ore zone.

Plans were made to begin packing off and isolating the upper and lower ore zones and orders were placed for packers and flow measuring equipment. Meanwhile, Pattern III operation continued as before, that is, with dual zone injection. Packing efforts began on October 24, 1979, with a two inch, heavy-duty PVC string and packer for lower zone injection, and upper zone injection into the five inch, heavy-duty PVC casing annulus.

After initial packing, the upper and lower ore zone injection ports were plumbed together because the flow measuring devices had not yet arrived by late November. It was noted that the packed injection wells were pressuring up almost as soon as they were packed and brought on-line. After a few days' operation (in early November), the packers were pulled and the wells airlifted. Airlift product indicated that while inserting the packers, fungus sludge had been wiped off the casing walls and pushed to the lower ore zone. When the wells were started up, the loose sludge plugged off the lower ore zone, causing the wells to pressure up and probably almost all the flow to be directed to the upper ore zone perforations. These last few days of unbalanced injection flow probably reinforced the excursion flow nets, resulting in contamination of Monitor Wells M-40 and M-43. The excursion was detected during the monthly sampling of the wells on November 13th.

After analysis on November 15, 1979, injection rates into the three wells closest to the affected monitor wells were reduced while production contined at 42 gpm. Sampling of all four monitor wells the following day again showed elevated levels of uranium, conductivity, and sulfate with low pH values for Monitor Wells M-40 and M-43. At this time, injection into all wells was discontinued, and production from the Pattern was increased to about 50 gpm.

OFFICIAL DOCKE

20723

On November 16th, all Pattern III monitor wells were sampled again, and excursion status was confirmed for Wells M-40 and M-43. Verbal notification of the confirmed excursion was given immediately to the proper NRC and Wyoming DEQ authorities. Monitor Wells M-41 and M-42 were found to be within upper control limits for excursion control parameters, and selective sampling of the upper and lower ore zones in Wells M-40 and M-43 indicated that the excursion was confined to the upper ore zone. Installation of the packers on all injection wells was completed in order to allow independent control of flows into the upper and lower ore zones. In addition, plans were made to install a packer in Well M-40 for the purpose of determining which ore zone(s) was in excursion status.

As of November 17th, the production rate from Well M-50 (lower ore zone) was reduced to 5 gpm, and installation of two new monitor wells began. It was decided to install the wells about 25 feet out from Well M-40, with one well to be completed in the upper ore zone and one in the lower ore zone. Two days later, production from the upper ore zone (Well P-53) was also cut back to 5 gpm after a six day period of over-production.

Sampling of Well M-40 on November 21, 1979, indicated that the Pattern was responsive to the period of over-production, as values for pH, conductivity, sulfate, and uranium were beginning to return toward baseline (background) levels.

The following week, installation of the new monitor wells continued, as did production from the upper and lower ore zones at 5 gpm each, for a total production rate of 10 gpm. During the week, Well M-43 was again sampled and found to be within baseline ranges for pH, conductivity, and sulfate, although uranium and other metals remained at slightly elevated levels. This confirmed that the net withdrawal of 10 gpm was effectively drawing lixiviant back to the pattern interior. By November 27, 1979, a packer had been installed in Well M-40 to allow selective sampling of the upper and lower ore zones, and the new lower ore zone monitor well (M-40A) had been completed. Sampling of Well M-40 indicated that the excursion was confined to the upper ore zone, which was confirmed by sampling of the new lower zone monitor well (M-40A) on November 29, 1979. Results of the M-40A sampling showed essentially background levels for pH, conductivity, sulfate, uranium, and vanadium. Figure II shows the location of Pattern III monitor wells.

On December 4, 1979, all Pattern III monitor wells were sampled, and Wells M-41, M-42, and M-40A showed values within baseline ranges. Well M-43 was also back to baseline ranges with the exception of slightly elevated values for metals, including uranium. Well M-43 showed considerable improvement with the excursion parameters beginning to return to the upper control limits (UCL).

OFFICIAL DOCKET COPY

The following day; selective injection into the lower ore zone was resumed at a rate of 20 gpm, while production was maintained at 21 gpm for an injection/production ratio of 1:1.05. Production from the upper ore zone continued at 5 gpm with no injection.

On December 7th, the new upper ore zone monitor well (M-40B) was completed and sampled. Sample results revealed slightly elevated (with respect to Pattern background ranges) values for conductivity, sulfate, and metals which, again, indicated that the excursion was confined to the upper ore zone. All M-40B parameters were below upper control levels.

.

Sampling of the monitor wells on December 10th showed an appreciable deterioration of water quality in Well M-40. In order to increase the water withdrawal ratio from the M-40 side of the Pattern, Injection Well I-45 was put into production. The intent was to sweep M-40 with unaffected water drawn toward the Pattern interior. Problems with pump failures hindered these efforts, but, by December 31st, this action was showing positive results. M-40 was sampled and revealed significant improvement for all excursion parameters with values again approaching baseline ranges. The January 2nd sampling confirmed that M-40 was greatly improved. Values for pH, conductivity, and sulfate had returned to baseline ranges for all wells, including M-40.

Believing that the upper zone excursion had been effectively retrieved and stabilized, production from Well I-45 was terminated and injection into the lower ore zone resumed on January 4th. Sampling of Well M-40 the following week (January 11, 1980) again showed substantial deterioration of water quality, indicating that hydraulic communication between the upper and lower ore zones was occurring. The "pressuring up" of the lower ore zone probably caused recontamination of M-40. Injection into Well I-45 was curtailed. A potassium chloride solution was injected into Well M-40B (upper ore zone) in order to prepare a tracer test.

The following day, injection of process water into Well M-40B at 5 gpm was initiated, and I-45 was put back into production at 18 gpm. This action was taken to introduce "clean" water into the affected area, while simultaneously producing from the nearest injection well. The purpose of this action was to force the affected groundwater in the vicinity of M-40 toward the Pattern interior. Sampling of M-40 two days later (January 14th), indicated that the corrective action was producing the desired effect, as considerable improvement for the M-40 excursion parameters were noted.

Throughout the rest of January and February, this mode of operation, with occasional modification, continued. The basic strategy was to maintain production from the lower ore zone while producing, without any injection, from the upper ore zone to maintain a hydraulic gradient toward the Pattern interior. Repeated sampling of all monitor wells during January confirmed the effectiveness of this approach. On January 21st, sampling of Well M-40 resulted in baseline range values for all excursion parameters except uranium, which was less than 0.5 mg/l. This was the fourth consecutive sampling

OFFICIAL DOCKET COPY

indicating improvement, and the excursion was officially termed controlled. The attached graphs display excursion parameter values for the Pattern III monitor wells during the period prior to excursion confirmation through June, 1980.

Production from the lower ore zone continued until the end of March, at which time all injection into the Pattern was halted. On March 31, 1980, both the upper (P-53) and lower (P-50) ore zone production wells were set to produce at 5 gpm for a net production of 10 gpm from the Pattern. This mode of operation is continuing, and will be maintained until restoration of the Pattern begins.

Summary and Conclusions

As was stated earlier, one of the primary goals of the Pattern III test program was to evaluate the feasibility of dual ore zone production by means of open injection wells and selectively completed recovery wells. Because of a difference in ore sand permeabilities and well completion efficiencies, injection rates into the upper and lower ore zones became unbalanced, resulting in an upper zone horizontal excursion.

A factor which indirectly, but strongly, contributed to the excursion problem was the placement of monitor wells only 100 feet from the Pattern perimeter. Balanced flow in a 60-foot radius pattern would have produced normal flow nets closely approaching the monitor wells. A slight injection imbalance was apparently enough to push lixiviant an extra few feet and cause the excursion.

The excursion proved to be a valuable learning experience, as the situation presented an opportunity to evaluate theoretical corrective procedures in an operational environment. The following conclusions can be drawn as a direct result of Pattern III experience.

- The principle of open well, dual zone injection may still be valid; however, injection/production ratios should be closely monitored for both ore zones.
- Monitor wells located at 100-feet with a 60-foot radius pattern are too close to serve as valid monitor wells, and should be more properly described as trend wells. For a 60-foot radius test facility pattern, monitor wells should be a minimum of 200-feet from the injection wells.
- 3. The method of determining upper control limits (UCL) for excursion parameters used at Nine Mile Lake (UCL = $\bar{x} + 2(s) + 10\%$) effectively allows detection of a pattern excursion. Although this method may need some refinement for commercial scale operations, it has been proven to be simple and effective to use for major groundwater constituents.

OFFICIAL DOCKET COPY

- 4. When using an acid lixiviant, vanadium and iron are good early indicators of an excursion, and should be considered as potential excursion control parameters.
- Over-production and selective conversion of injection wells to production wells can be considered demonstrated corrective procedures for controlling an excursion.

OFFICIAL DOCKET COPY

20723

* .

APPENDIX D

I

1

I

•

I

I

I

1

.

GROUNDWATER CLASSIFICATION ANALYSIS

OFFICIAL DOCKET COPY

20723

one dury of on Pacific Corporation

OCKY MOUNTAIN

February 11, 1982

Mrs. Kathy Ogle DEQ Land Qyality Division 401 W. 19th Street Cheyenne, WY 82002

Dear Kathy:

Re: TFN 1 5/186 Nine Mile Lake Project

Enclosed are materials intended to facilitate the Department's assessment of groundwater quality at RME's Nine Mile Lake R and D project. Copies are also being provided to the Water Quality Division with the expectation that a joint determination of baseline water quality use category can be resolved for this project.

APPENDIX D

A parameter by parameter comparison of baseline water quality with the quality standard for Wyoming groundwaters (DEQ Water Quality Rules and Regulations, Chapter VIII) clearly demonstrates the proper-classification for these groundwaters is Class IV-A, industrial use.

Table 1 summarizes baseline data for Patterns 2, 3, and 4. Pattern 1 baseline data was not included, as "baseline" was originally established on the basis of one round of bailed samples taken by a consultant and is therefor of questionable validity. The table illustrates that twelve (12) Class I standards were exceeded by at least one sample from one well; ten (10) Class II standards exceeded and seven (7) Class III standards by at least one sample from one well.

Reading down the columns on Table 1, it is evident that a minimum of 138 sample analyses exceeded Class I quality standards, 110 analyses exceeded Class II standards, and at least 64 samples exceeded Class III standards. Tables 2,3, and 4 provide a detailed breakdown of these data by pattern, representing at least three samples from 18 production and monitor wells. Figure 1 shows pattern and well locations.

Also included are final baseline data for patterns 2,3, and 4 giving the mean and range for each parameter both for individual wells and for the pattern. These data are presented in Appendices A-2, A-3, and A-4.

Warte 80020

Presumably, all of the constituents which exceed

Kathy Ogle February 11, 1982 Page Two

respective classification standards are toxic, potentially toxic, or hazardous to either plants, animals, or man at baseline concentrations. The overwhelming conclusion is that ambient baseline water quality of the Teapot Sandstone within the project area is suitable only for industrial use.

Should you have any questions concerning this data or the conclusion drawn, please call at the earliest opportunity.

Sincerely,

Michael R. Neumann

M.R. Neumann Licensing Specialist

/sje

cc: W. Ackerman (LQD)
A. Mancini (WQD)
R. Chancellor (LQD)
F. Ross (NRC)
E.C. Gibbs
J.A. Yellich
J.A. Yopps

OFFICIAL DOCKET COPY

TABLE 1 NINE MILE LAKE BASELINE WATER QUALITY C ASSIFICATION SUMMARY

No. of Wells with at least one assay 2 Class Standard

Parameter	Class I	<u>Class II</u>	Class III	Class IV-A	No. Assays 2 Std.
As	1	1	0	o	2
B	2	2	0	0	4
C1	ō	2	0	0	2
Cr	3	2	3	0	8
Cu	0	2	0		2
Fe	17	ō	-	0	17
Pb	6	0	3	0	9
Mn	18	11		0	29
Se	10	10	3	0	23
SO/	18	18	0	0	36
TDS	18	16	0	0	36
V	-	10	10	0	20
pH	9	0	9	0	18
Ra-226	18	18	18	0	54
Gross	18	18	18	•: 0	54
No. of Parameters Exceeding Standard	<u>12</u>	<u>10</u>	_7	_0	<u>310</u>
No. of Wells Exceeding Standard	138	110	64	0	

3)

Sec. -

Note: Data represents samples from 18 wells (minimum of 3 samples per well) in Patterns 2,3, and 4. Individual wells may have several sample assays exceeding standard, but only one per well recorded.

OFFICIAL DOCKET COPY

20723

.

USE CATEGORY		1 (DOMESTIC) 14 (AGRICULTURS)				CULTURE)	1.1.2	III (LIVES	TOCK)	IV (INDUSTRIAL)			
PARAMETER	DEQ Std.	Pattern x Exceeds Standard	No. of Wells with Assays ≥ Standard	DEQ Std.	Pattern x Exceeds Standard	No. of Wells with Assays ≥Standard	DEQ Std.	Pattern x Exceeds Standard	No. of Wells with Assays ≥ Standard	DEQ Std.	Pattern x Exceeds Standard	No. of Wells Above Standard	
Aluminum (Al)	-		1000	5.0		0	5.0		0		1.		
Amaonia (NH)	0.5	10.00	0		-	-		-		100 1			
Arsenic (As)	0.05	1.	0	0.1		0	0.2		0	0.0	100 100 100		
Barium (Ba)	1.0	17. A. S.	0		-							Sector Sector Sector	
Boron (B)	0.75	1.1.1.1.1.1.1	2	0.75		2	5.0		0				
Cadmium (Cd)	0.01	ND (0.02)	?	0.01	ND (0.02)	?	0.05		0				
Chloride (Cl)	250	100 To 100 To 100	0	100.0		2	2000		0			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
Chromium (Cr)	0.05	1.000	0	0.1		0	0.05		0				
Cobalt (Co)			-	0.05	NA	NA	1.0	NA	NA				
Copper (Cu)	1.0		0	0.2		2	0.5		0			1	
Fluo ride (F)	2.4		0		-		-						
I con (Fe)	0.3	×	6	5.0		0	-	-	-				
Lead (Pb)	0.05		0	5.0		0	0.1		0			100 C 100 C 100 C	
Manganese (Mo)	0.05	×	6	0.2		5						and the second	
Mercury (Hg)	0.002		0	-			0.00005		7				1+1
Nickel (NI)	-	1	-	0.2	NA	NA		ND (.0001)					a
Nitrate (NO.)	1 10.0		0	1	-			-	100 A 100 A			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1º
Nitrite (NO.)	1.0		0	-			10.0		0		1.000		n
Selentum (Se)	0.01		0	0.02		0	0.05		0				IN
Sullate (SO)	250		6	200		6	3000		0	-		1	
Total Dissolved		1						1000			1.1.1.1.1.1.1.1	and the second	
Solide (TDS)	500		6	2000		6	5000	10000	0		1		
Uranium (II)	5.0	1	0	5.0		0	5.0	in the second	0		10000		
Vanadium (V)	-		-	0.1			0.1	1000	0	1.1			
7100 (70)	50		0	2.0		. 0	25.0	10.00 C 10.00	0		Contract of the second		
Alle (All)	6 5-9 0		5	4.5-9.0*		0	6.5-8.5*	1	5	1.1.1.	10.00	1 - C - C - C - C - C - C - C - C - C -	1
Parliam 226 1										1		10 10 10 10 10 10 10 10 10 10 10 10 10 1	·
220	1 54		6	5*	× .	6	5*		6	1.1	10,000		
Gross Alpha	15*	x	6	15*	x	6	15*	x	6	-			
Total No. of													
Parameters		6	2 43		4	2 35 .		2	2 17	1.1	0	0	
Exceeding	1							100 C 100 C					1
Criteria	1						10.0		1 1 1 1 1 1 2 T 1				

PATTERN 2 (Wells P-15, M-20, M-21, M-22, M-23, M-24) BASELINE

VI.10

LAS

NINE MILE LAKE

*All units in mg/l except pH (std. units), Ra (pC1/1) and Gross Alpha (pCi/1) NA=Not Assayed ND=Non Detectable

OFFICIAL DOCKET COPY 20723

1.5.7	8282	141	17.85		7 82
- 24 3	LINE.	-81	1.2	LAI	15

GR

PATTERN 3 (Wells M-40, M-41, M-42, M-43, P-50, P-53, HEM-52) BASELINE

ATEL SIF SON A SIS

USE CATEGORY		I (DOMESTIC)			II (AGRICULTURE)			III (LIVESTOCK)			IV (INDUSTRIAL)		
PARAMETER	DEQ Std.	Pattern x Exceeds Standard	No. of Wells with Assays ≥ Standard	DEQ Std.	Pattern x Exceeds Standard	No. of Wells with Assays ≥Standard	DEQ Std.	Pattern x Exceeds Standard	No. of Wells with Assays ≥ Standard	DEQ Std.	Pattern x Exceeds Standard	No. of Wells Above Standard	
							5.0						
(1A) munimulA	1.5	-		5.0	1.1.1.1.1.1.1	0	3.0		0				
Amaonia (NH)	0.5		0		-		1		-			The second second	
Arsenic (As)	0.05		0	0.1		0	0.2	1	0	1.1.2.1			
Bartum (Ba)	1.0	1. S.	0		-		5.0	-	-		Sec. Sec. 1.	100 March 100 M	
Boron (B)	0.75		0	0.75	1.00	0	5.0		0	12.00			
Cadmium (Cd)	0.01		0	0.01		0	0.05	1	0			17 10 State	
Chloride (Cl)	250		0	100.0		0	2000		0		1.1.1.1.1.1.1	12 - C (12 - D)	
Chromium (Cr)	0.05		0	0.1		0	0.05		0				
Cobalt (Co)	-			0.05	NA	NA	1.0	NA	NA	1.0.7			
Copper (Cu)	1.0	1. Sec. 1. Sec. 1.	0	0.2		0	0.5		0	1.1	A		
Flouride (F)	2.4	and the second second	0	-	-	-	-	-	-				
Iron (Fe)	0.3	x	1	5.0		0	-		-				
Leave (Pb)	0.05		1	5.0		0	0.1		U				
Manganese (Ma)	0.05	x	7	0.2	×	5	-	-		-		The second second	
Mercury (Hg)	0.002		0	-		100 B 100	0.00005	ND (.0005)	1	1.1	-V		
Nickel (NI)		-	-	0.2	1.	0	-		-			State of the second	
Nitrate (NO.)	10.0		0				-	1.15.00		- *			
Nitrite (NO_)	1.0		0	-			10.0	1.	0		1	and the second	- 19
Selentum (Se)	6.01	×	5	0.02	×	5	0.05	1.	0		1.11.11.11.11	And the second s	
Sulfate (SO.)	250	×	7	200	x	7	3000		0			the second s	
Total Dissolved		1000				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1					1
Solide (TDS)	500	×	1	2000	x	5	5000		0			Lot in the second	
Heantum (II)	5.0		0	5.0		0	5.0		0	1. 1. 1		1.1.1.1.1.1.1.1.1	
Vanadium (V)	1.0	-	-	0.1	x	6,	0.1	×	6		A second second	1. Barris 1. March 1.	
Zino (Za)	5.0		0	2.0	1	0	25.0		0	1 m .			
7.10C (20)	6 5-9 0		2	4.5-9.0*		0	6.5-8.5*	10.000	2				. 1
pn	1						11	1.					
220 1	1	×	7	54	x	7	5*	x	7	A. S. Harris			
Gross Alpha	15*	x	7	15*	x	7	15*	x	7	-			
Total No. of							1.2		222		0	0	
Parameters Exceeding Criteria		7	2 50		7	2 42 .		3	244				

All units in mg/l except pll (std. units), Ra (pCl/l) and Gross Alpha (pCl/l) NA=Not Assayed ND=Non Detectable

				PA	TTERN & (U	NINE HILE LAK	Е M-56 М	-57 08-67)	BASELINE				
USE CATEGORY	1	I (DOMES	ric)	11 (AGRICULTURE)			1	III (LIVESTOCK)			IV (INDUSTRIAL)		
PARAHETER	DEQ Std.	Pattern x Exceeds Standard	No. of Wells with Assays ≥ Standard	DEQ Std.	Pattern x Exceeds Standard	No. of Wells with Assays ≥Standard	DEQ Std.	Pattern x Exceeds Standard	No. of Wells with Assays ≥ Standard	DEQ Std.	Pattern x Exceeds Standard	No. of Wells Above Standard	
Al				5.0		0	5.0		0				
ATUMINUM (AI)	0.5					-	-	1.1.1		1.1	1.1.1.1.1.1.1.1		
Ammonia (MH)	0.5	1.		0.3			0.2		0		1. 1. 1. 1. 1. 1.		
Aisenic (As)	0.05	1.000					-						
Bartum (Ba)	1.0	1.1.1.1.1.1.1.1	0	0.1		0	5.0		0		1.		
Boron (B)	0.75		0	0	1	0	0.05	1.	0			A State of the second second	
Cadmium (Cd)	0.01		0	1 100 0		0	2000		0	1.1	1.1		
Chloride (Cl)	250		0	100.0		2	0.05		3	1.1.1.1	1.		
Chromium (Cr)	0.05	×	1 3	0.1			1 1 0		NA NA	1.1	1.1.1.1.1.1.1		
Cobalt (Co)	1 -		-	0.05	NA	0	0.5	10	0				
Copper (Cov	• 1.0		0	0.2			0.5				1.1.1.1.1.1	States and the states of	
Flouride	, 2.4		0	1		0				1.1.2			
11	0.3	×	4	5.0		0	0.1		1			A Contract of the Contract	
La and (Pb)	0.05	×	2	5.0			0.1						
Manganese (Mn)	0.05	×	2	0.2			0 00005	10 0001	2				
Hercury (llg)	0.002	1.	0		-		0.00005	1.0.0001					
Nickel (NI)				0.2	1.000			1.1.1.1.1.1.1.1			1.1.1.1.1.1.1.1	1	
Nitrate (NO ₂)	10.0	1.1.1	0	-			1.0.0	1.0.0	0			4	
Nitrite (NO2)	1.0		0	-			10.0	1000	3			0	
Selenium (Se)	0.01	×	5	0.02	×	5	0.05	10. A.				0	
Sulfate (SO,)	250	×	5	200	×	5	3000		0			4	
Total Dissolved	1 '				×		10000	19. H (19. H)	0		1.00 10 202		
Solids (TDS)	500	×	5	2000	×	5	5000		0				
Drantum (U)	5.0	1	0	5.0		0	5.0		6		1.		
Vuradium (V)	-	-	-	0.1	×		0.1		0				
Zinc (Zn)	5.0		0	2.0		, . 0	25.0		2			a second second	
pli	6.5-9.0*		2	4.5-9.0*	No. I State 14	0	6.5-8.5*	1.			1. SC		
Radium 226 +								1	1				
228	5*	×	5	5*	x	5	5*	×	5	1.1.1	1. A		
Gross Alpha	15*	×	5	15*	×	5	15*	x	5				
Total No. of Pirameters Esceeding Criteria	-	9	> 45	-	6	213		4	2 25		u	0	

W. Saw

2 31

.

#All units is mult excent all (std units). Ra (nC1/1) and Gross Alpha (nC1/1)

1 14 7

20723 OFFICIAL DOCKET COPY

a....

20

1

APPENDIX E

.

ŀ

Regulatory Agency Correspondence reference Groundwater Restoration of Patterns 1, 2, and 3 at Nine Mile Lake

Section	Content
E-1	Letter; 5/9/78 from DEQ to RME
E-2	Memo; DEQ Note to the File
E-3	Letter; 9/7/79 from RME to DEQ
E-4	Letter; 9/21/79 from DEQ to RME
E-5	Letter; 10/11/79 from RME to DEC

OFFICIAL DOCKET COPY

APPENDIX E-1

File 96.6.2.12 CC J Show D McCreal ED HERSCHLER, GOVERNOR

SHERIDAN, WYOMING 82801

Department of Environmental Quality

LAND QUALITY DIVISION DISTRICT IV OFFICE TELEPHONE 307-672-6488

BO EAST GRINNELL STREET

May 9, 1978

Mr. A.D. Luck Project Environmental Specialist Rocky Mountain Energy Company 4704 Harlan Denver, CO 80212

RE: Kanewal of Exploration License No. 4-Al

Dear Mr. Luck:

Pursuant to your request of April 28, 1978, this license is renewed through May 6, 1979. Your renewal letter mentions a Well Pattern #3. No work is authorized on a third well pattern until restoration is demonstrated on Patterns 1 and 2 as we discussed by phone.

If you have any questions please do not hesitate to contact this office. We will be contacting you soon to arrange for a mutually convenient time for an inspection.

Sincerely,

Sol

Doyl Frit

DF/sh

cc: W.C. Ackerman

20723

DOCKET COPY

THE STATE

APPENDIX E-2

ED HERSCHLER GOVERNOR

Department of Environmental Quality

LAND QUALITY DIVISION DISTRICT IV OFFICE TELEPHONE 307-672-6488

30 EAST GRINNELL STREET

NOTE TO THE FILE

SHERIDAN, WYOMING 82801

· 18

TO: File, Rocky Mountain Energy, Nine Mile Lake ISL Site, LE #31

FROM: Dennis Morrow, District IV Engineer Day

DATE: August 8, 1979

SUBJECT: Request for Permission to Initiate Third Test Site

Al Luck called this afternoon to request permission to initiate testing at Site #3. Reasons are as follows:

1. Pattern #1 is restored.

 Pattern #2 is almost restored; final data write-up will take approximately two months.

3. Pattern #3 is drilled and ready to ge .

The present approved plan for this license specifies that testing of Pattern #3 will follow restoration of Pattern #2. Al is requesting to bring in the current data from Pattern #2 to show that restoration is close. This would support his request to start testing at the third site.

OFFICIAL DOCKET COPY

cc: Al Luck

ENVIRONMENTAL SERVICES

September 7, 1979

Department of Environmental Quality Land Quality Division District IV 30 East Grinnell Sheridan, Wyoming 82801

ATTENTION: Mr. Dennis Morrow

Gentlemen:

Re: Nine Mile Lake ISL Pattern III Start-up License to Explore 4-AL

Pursuant to discussions of September 6, 1979, between A. D. Luck and K. W. Loest of Rocky Mountain Energy Company (RMEC), and D. Morrow and M. A. Hulbert of Wyoming DEQ regarding the restoration status of Nine Mile Lake ISL well field Pattern II and the proposed production start-up of Pattern III, this letter is a request for written authorization to proceed with Pattern III activities. In conjunction with this request, RMEC will provide within the month a written summary of Pattern II restoration data; Pattern III baseline ranges of water quality; a well field map; and a monitoring, excursion control, and restoration summary for Pattern III.

As discussed, RMEC will proceed with Pattern III activities as verbally authorized. Your review in this matter is appreciated. If there are any questions or concerns, please advise.

OFFICIAL DOCKET COPY

Sincerely, Stut

4704 HARLAN STREET, DENVER, COLORADO 80212 (303) 433-6641

A. D. Luck Environmental Specialist

20723

ADL: sh

cc: M. A. Hulbert (DEQ) R. A. Shaffer (DEQ) K. W. Loest, R. D. Andrews, R. E. Hynes File: 86.6.2.12

RECEIVED SEP 2 4 1975

APPENDIX E-4

ED HERSCHLER GOVERNOR

Department of Environmental Quality 26.6.2.12

LAND QUALITY DIVISION DISTRICT IV OFFICE TELEPHONE 307-672-6488

30 EAST GRINNELL STREET

September 21, 1979

SHERIDAN, WYOMING 82801

20723

Mr. Al Luck Project Environmental Specialist Rocky Mountain Energy Company 4704 Harlan Denver, Colorado 80212

RE: Nine Mile Lake ISL Test, LE4

Dear Mr. Luck:

In response to your letter of September 7, 1979, permission is granted to proceed with the Pattern III Test. We will expect to receive the written reports we discussed in our September 6, 1979, meeting by the end of the month.

If you should have any questions, please do not hesitate to contact this office.

Sincerely,

Dennis Morrow District IV Engineer

DM/1s

cc: Margie Hulburt

OFFICIAL DOCKET COPY

APPENDIX E-5 ESD 7 334

ROCHY MOUNTRIN ENERGY COMPANY

October 11, 1979

ENVRONMENTAL SERVICES

Department of Environmental Quality Land Quality Division District IV 30 East Grinnell Sheridan, Wyoming 82801

Attention: Mr. Dennis Morrow

Gentlemen:

Re: Nine Mile Lake; Pattern II Restoration, Pattern III Description

Please pardon the delay in forwarding to you the information promised in Mr. A.D. Luck's letter of September 7, 1979 (ESD 79-790) to the DEQ. As you probably know, Mr. Luck is no longer with Rocky Mountain Energy Company (RMEC). I am presently pursuing the tasks related to RMEC's Nine Mile Lake Project in which Mr. Luck was engaged.

Enclosed with this letter are descriptions of: Demonstrated Restoration of Pattern II (Attachment A), Well Field Map (Attachment B), Pattern III Baseline Water Quality (Attachment C), and a Summary of Pattern III (Attachment D).

Should you have any questions upon review of this material, please don't hesitate to give me a call.

Sincerely,

OFFICIAL DOCKET COPY

Michael R. Newmann

M.R. Neumann Reclamation Specialist

20723

Attachment

cc: M.A. Hulbert (DEQ) R.A. Shaffer (DEQ) K.W. Loest R.D. Andrews R.E. Hynes File 86.6.2.12' Attachment A

Demonstrated Restoration - Pattern 2

As part of the Nine Mile Lake (NML) pilot testing program, the test programs were restored after leaching. Test pattern 1 was restored with a clean Teapot formation water sweep. This restoration method, which was water intensive, resulted in a significant amount of formation water lost to the evaporation pond. In order to evaluate alternatives to the groundwater sweep method, pattern 2 was restored by producing, treating and reinjecting a high percentage of affected water.

The leaching phase of pattern 2 lasted from December, 1977 through September, 1978. Since demonstration of restoration was an important part of the test program, pattern 2 leaching was shut down in mid-September (1978) so that restoration efforts could begin. Tables A and 3 summarize important parameters at the close of pattern 2 leaching.

The initial sweep of pattern 2 was made by injection of local well water (process). Concurrent with the process water sweep, construction began on a pilot restoration circuit. The restoration circuit was designed to treat affected water from pattern 2 and produce a clean water suitable for reinjection. The test restoration circuit was designed from bench scale test results to serve as a prototype for the proposed commercial restoration circuit. The basic circuit flowsheet calls for:

- production of affected water from pattern production well;
- addition of lime to neutralize acid and precipitate heavy metals and radionuclides;
- a liquid/solids separation, with solids going to the evaporation reservoir and the liquor advancing to a calcium removal step; 20723

OFFICIAL DOCKET COPY

PATTERN 2 INTERIOR WELL DATA

Table A

	pH	TDS	Ca	SO4	Fe	۷	U.,08	AL .	As	Se	Mn	Mo	Zn	Cu	230 Th	226 Ra
Pattern 2 Production Well Baseline	6.9- 7.7	2890- 3300	90- 130	1760- 2120	.39- .83	.01	.18-	.03-	<.01	<.01	.12-	<.01	.01-	.01-	18.2t 28.6	44.0 [±] 114
Pattern 2 Production Well Early Stage Restoration in Nov. 1978	1.52	6750	200	5745	154	430	58	81	2.6	.08	1.3	0.01	40	1.6	184.00 [±] 600	1000 [±]
Pattern 2 Production Well at Termination of Restoration Phase September 1979	6.3	2360	60	1380	3.6	10	0.3	1.6	0.35	0.02	0.05	0.02	0.54	0.01	1 [±] .8 ¹	76 [±] .20 ²
Observation Well 1 On 9/3/79 Restora- tion	6.2	2200	54	1410	1.32	4	<0.1	0.2	0.05	0.02	0.12	0.02	0.42	0.01		230*10
Observation Well 3 On 9/3/79 Restora- tion	5.9	2150	48	1480	5.15	9	<0.1	3.6	0.1	0.01	0.13	0.02	1.57	0.01		190-10
Proposed Guidelines For Stockwater	6.0- 9.0	5000		3000	.5- 20	.1	5	5.0	0.2-	0.5	10.0		25.0	0.5		5
1) Data from June	. 1979 :	Sampli	ng			1	Č, pr									
2) Data from 8/14	/79 Sa	mpling	•							•						
b																

OFFICIAL DOCKET COPY

PATTERN 2 MONITOR WELL DATA

Description	pH	TDS	Ca	504	Fe	v	U308	As	Se	Th 230	Ra 226
Monitor Well #20											120*02
Baseline	7.3	3844	130	2081	0.31	0.01	0.51	0,01	0.01	1.8-1.0	1/8-83
Sept. 1978	6.8	3200	115	1960	1.4	0.06	0.30	0.02	0.01	«1 +·	184-3
Aug. 1979	6.7	3000	72	1310	0.38	0.06	0.20	0.01	0.01	2.9-1	135~15
Monitor Veli 121					* *						
Baseline	7.1	2238	82	1295	0.43	0.02	0.13	0.01	0.01	6.2-9.7	101-123
Sept. 1978	6.5	2258	89	1250	0.95	0.06	0.11	0.01	0.01	«1 +	131-6
Aug. 1979	6.7	2280	65	1379	0.26	0.06	0.11	0.01	0.01	1.25	165-15
Monitor Well 122											
Baseline	7.0	2679	114	1649	0.48	0.02	0.02	0.01	0.01	1.10	182-21
Sept. 1978	7.1	4262	334	2930	0.92	0.06	<0.02	0.01	0.01	<1	27-4
Aug. 1979	6.6	2520	88	1340	. 1.09	0.08	<0.02	0.01	0.01	8.9-1.6	185-20
Monitor Well 123											
Baseline	7.1	2308	96	1348	0.24	0.02	0.12	0.01	0.01	1.4-1.5	221-71
Sept. 1978	6.4	2130	79	1150	1.0	0.06	0.08	0.01	0.01	<1 +	17677
Aug. 1979	6.6	2120	64	1156	0.24	0.13	0.18	0.01	0.01	2.7-1	210-20
Monitor Well 124											
Baseline	7.1	2299	100	1391	0.32	0.01	0.07	0.01	0.01	.4832	342-291
Sept. 1978	6.5	2258	89	1250	0.45	0.06	0.10	0.01	0.01	41,	30-8
Aug. 1979	6.5	3000	73	998	2.5	<0.01	0.08	0.01	0.01	1.27	210-20

Table B

*

-

.

4) removal of calcium by precipitation with CO₂ and Na₂CO₃;

-2-

- 5) a liquid/solids separation with the liquor (at this point consisting mostly of sodium sulfate) going to reserve osmosis (R.O.); and
- 6) reverse osmosis to concentrate Na2SO4 into a brine stream for disposal in the evaporation reservoir and a clean water stream for reinjection. The pilot circuit was constructed at the NML test facility and began operation in late November, 1978.

In order to limit the amount of discharge to the evaporation pond, the well water sweep of pattern 2 was operated at a reduced level until the restoration circuit could be functionally implemented. The restoration circuit began operation in mid-November, 1978, however, because of various equipment and operational problems, did not achieve full scale operation until the end of March.

During the interim period, pattern 2 restoration proceeded at reduced flow rates. By the middle of December, 19789, Ca and SO4 has returned to near baseline conditions. The pH however, and parameters more dependent on pH for solubility (Fe, U₃O8, etc.), plateaued, as shown in Plates 1 to 12. Analysis of bench scale tests performed at the University of Texas indicated that a high pH/TDS injection water actually speeded restoration by neutralizing and exchanging with H⁺ ions absorbed on clay lattices. Therefore, an injection solution with a high pH and TDS content was used on pattern 2.

Injection of pH 9-10 Na₂CO₃ solutions at about 6,000 ppm TDS began at the end of March, 1979 and after five days, the pattern 2 production liquor showed a sharp increase in pH from 3.7 to 4.4. High pH/TDS injection was stopped after 41/2 days to allow pH to stabilize. High pH/TDS injection was resumed in mid-May, utilizing NaOH and continued through June, 1979. NaOH was used to avoid problems with uranium and vanadium mobilization which occured during Na₂CO₃ addition. Injection of near netural water, low in TDS, was resumed in late June as pattern 2 neared restoration.

-3-

0 1

The final stage of pattern 2 restoration began on 8/14/79 when Teaport formation water injection was resumed. By the first week of September, all parameters had returned to original use category and pattern 2 was shut down and restored.

Pattern 2 restoration was accomplished with about 7 million gallons of reinjection water versus about 13.8 million gallons used for mining. This corresponds well with bench test data indicating that about one half the leaching pore volumes are required to restore. The apparent long time period involved in pattern 2 restoration is a result of comparatively low flow rates from the restoration circuit equipment.

Table B presents restoration data for pattern 2 production well P-15 and surrounding monitoring wells. As noted, Ca, SO4 and TDS levels are actually substantially below baseline ranges and well within the proposed values for stockwater use.

Pattern 2 water quality has been returned to its original use category with several parameters actually lower than baseline. The test program demonstrated that mining mode residual (affected) formation water could be successfully restored by the selected water treatment methods. The test program also served to generate design information for the projected commercial restoration circuit.

DEFICIAL DOCKET COPY

20723

- Alt

Attachment C

Pattern III Water Quality Baseline Ranges

Attached is the preliminary water quality data for Pattern III. Some results from recent samplings are pending. When all data has been received, a final report will be issued. From the available data, RMEC determined the range and calculated range for the pattern as a whole. The calculated range (x - 2 S.D. + 10%) serves as the upper and lower control limits.

The data presented in the report represents the average Pattern III water quality based upon analyses of individual wells. The values given in the Range column represent the highest and lowest values detected for an individual well within the pattern, therefore, actual data for any given well falls within the range denoted for that particular parameter.

OFFICIAL DOCKET COPY

ROCKY MOUNTAIN ENERGY

NINE MILE LAKE

Pattern 3 Water Quality

Preliminary Report 9/14/79

D	Pango	Calculated Range				
Parameter	Kange -	(x - 2 5. 0. + 100)				
H	6.40-7.64	5.96-7.90				
Conductivity, umhos/cm	1200-3500	554-4207				
Alkalinity (as CaCO3) mg/1	144-416	68-471				
Bicarbonate, mg/1	176-507	83-573				
Carbonate, mg/1	0	0				
Calcium, mg/l	41-135	12-136				
Chloride, mg/l	20-55	7-62				
Magnesium, mg/1	13-71	0-75				
Manganese, mg/1	0.03-0.87	0.0-0.72				
Hardness (as CaCO3), mg/1	253-550	175-544				
Nitrate (as N), mg/1	0.10-0.93	0-0.74				
Sodium mg/l	310-863	167-845				
Potassium mg/l	5.9-16.0	2.4-18.4				
Sulfate mg/1	628-2826	0-2522				
Uranium (U30g) mg/l	0.002-0.200	0190				
TDS mg/1	880-3320	404-3664				
Iron mg/l	0.01-4.10	0-3.98				
Vanadium mg/l	0.01-0.45	0-0.59				
Aluminum mg/l	0.05-0.88	0-0.77				
Ammonia (as N) mg/l	0.10-0.33	0-0.38				
Arsenic mg/l	0.01-0.04	0-0.04				
Barium mg/l	0.05-0.10	0.0.09				
Boron mg/1	0.05-0.49	0-0.61				
Cadmium mg/l	0-0.002 (LLD)	0-0.002 (LLD)				
Chromium mg/l	0.01-0.03	0-0.02				
Copper mg/1	0-0.01 (LLD)	0-0.01 (LLD)				
Fluoride mg/l	0.10-1.07	0-1.29				
Lead mg/1	0.01-0.05	0-0.04				
Mercury mg/1	0-0.0005 (LLD)	n-0.0005 (LLD)				
Molybdenum mg/1	0-0.05 (LLD)	0-0.05 (LLD)				
Nickel mg/l	0.01-0.19	0-0.13				
Nitrite (as N) mg/1	0.02-0.06	0-0.13				
Selenium mg/1	0.01-0.04	0-0.04				
Silver mg/1	0-0.01 (LLD)	0-0.01 (LLD)				
Silicon (SiO ₂) mg/1	1.0-15.0	0-14.4				
Zinc mg/1	0.01-0.04	0-0.04				
Lead-210 pC1/1	0.5-41.0	0-40.5				
Polonium-210 pCi/1	0.5-62.0	0-05.8				
Radium-226 pCi/1	1.5-2/4.0	0-302.9				
Thorium-230 pCi/1	0.5-41.9	0.0-33.8				

LLD = lower limit of detection

OFFICIAL DOCKET COPY 20723

Attachment D

Pattern 3 Summary

Restoration

Pattern 3 restoration plans will be based on pattern 2 restoration experiences. Two main problems were encountered during pattern restoration re: 1) high initial vanadium levels in the recirculating liquor made it difficult to return to low vanadium levels at final restoration 2) pH levels plateaued because of adsorbed H⁺ and improved slowly as ion exhcange/neutralization reactions took place. These problems hindered restoration efforts and resulted in a lengthy restoration process. In order to complete pattern 3 restoration in an efficient manner, there will be some changes from pattern 2 restoration philosophy.

7anadium, in the recirculating liquor, will be removed to fairly low levels at the close of the uranium testwork and. before restoration begins. This will simulate commercial plant vanadium removal plans and should result in much lower vanadium levels in the restored pattern.

After free acid has been flushed from pattern 3, high TDS/pH solutions will enhance H⁺ ion exchange/neutralization reactions and should speed pH restoration. When pH has been returned to near baseline use category, low TDS/neutral pH solutions will be injected <u>in order to return pattern 3 groundwater to base-</u> line use category.

Pattern 3 restoration will utilize pattern 2 restoration experiences and parallel commercial restoration plans. The water treatment equipment used for pattern 3 will be similar to that used for pattern 2. Plans are now underway to modify the circuit to

OFFICIAL DUCKET COPY

increase efficiency and flow rate which should shorten the time required to restore the pattern.

-2-

Monitoring

. f

а 11 г. Monitor wells are designed to serve a two-fold function. They define an area of solution mining containment and also represent the surveillance mechanism to detect leachate migration. Monitor wells will be sampled monthly for pH, conductivity, water level, uranium and sulfate.

Excursion Verification Procedure

Each monitor well will have an Upper Control Limit (UCL) defined for those constituents considered most indicative of a well field excursion. For Pattern III, those parameters are; pH, conductivity, sulfate and uranium. UCL's for each parameter are determined by taking the average well field value (X) for the particular parameter, adding 2 S.D. (Standard Deviation) plus 10%." If a monthly monitor well analysis exceeds the UCL for any two of the three lead indicators, a second sample will be taken within 48 hours. Analysis of the second sample will be done within 24 hours of sampling. If the second analysis shows that two parameters exceeded the UCL, a third sample will be taken as above for that well. If UCLs are again exceeded, an excursion status for that well will be established. Appropriate corrective action, as outlined below, will be taken and the appropriate state and federal agency will be notified of the excursion by phone within 48 hours. A letter stating the time that corrective action was initiated will follow.

A monitor well in excursion status will be sampled every week. If a subsequent assay falls below the UCL, a second and then

a third sample will be taken. If the analysis shows that the excursion indicator did not exceed the UCL, at the end of the third sampling, the excurison will be considered over. A letter declaring an end to the excursion, including assay results, will be sent to the appropriate state and federal agency. If an excursion persists beyond a reasonable time, additional monitor wells will be drilled, if deemed necessary, to identify the limits of the excursion. During an excursion, analysis will also be performed for arsenic, selenium and uranium.

Excursion Control and Correction Plan

Water Quality Parameters Necessary for Excursion

In the event of a confirmed excursion, the plant manager will take immediate action to halt the spread of lixiviant. This action could include balance of the well field, reducing or stopping injection, ceasing both injection and production pumping, or initiation of restoration. These methods may be applied locally to a few wells, parts of an entire production cell, or the entire well field as the situation dictates. At the discretion of the plant manager, several methods may be employed simultaneously if considered necessary. In no event will leaching continue in an area if an excursion persists for more than 120 days.

OFFICIAL DOCKET COPY

20723

-3-