September 22, 1982

2CANØ982Ø3

Director of Nuclear Reactor Regulation
ATTN: Mr. Robert A. Clark, Chief
Operating Reactors Branch \#3
Division of Licensing
U. S. Nuclear Regulatory Commission Washington, D. C. 20555

$$
\begin{array}{ll}
\text { Subject: } & \text { Arkansas Nuclear One - Unit } 2 \\
& \text { Docket No. 50-368 } \\
& \text { License No. NPF-6 } \\
& \text { Supporting Information for Technical } \\
& \text { Specification Change Request }
\end{array}
$$

Gent lemen:
The enclosed information is to support our August 23, 1982 Technical Specification Change Request (2CANø882Ø8) regarding Surveillance Requirement 4.8 .2 .5 . This material consists of manufacturer's recommendations for testing of the devices used at ANO-2 for containment penetration overcurrent protection. This material is being supplied at the request of Mr. Jim Lazevnick of NRC's Power Systems Branch.

Guidelines for testing are being forwarded for Westinghouse and Gould I-T-E molded case circuit breakers and for I-T-E air circuit breakers. These are considered representative of the 480 volt and under circuit breakers in service at ANO-2 for containment penetration overcurrent protection and these recommendations will be used in developing our test procedure. Manager, Licensing

JRM/JK/rd
Enclosure

Westinghouse Electric Corporation Low Voltage Breaker Division Beaver, Pennsylvania 15009

May, 1976
Supersedes AD 29-160, pages 1-16 dated January, 1971; pages 16.1-16.2 dated October, 1971: and pages 16.3-16.4 dated February, 1973
Mailed to: E, D, C/1901, 1903, 1928/DB

Standard, SELTRONIC B, MARK 75 B , and TRI-PAC® Designs

Application Data

Page 1

AB De-ION Circuit Breakers

Index

Description

Standard, SELTRONIC and

MARK 75 Circuit Breakers
Ger.eral information
Circuit breaker components and their function
Westinghouse family of molded
case circuit breakers
Characteristic trip curves
Circuit breaker ratings
Underwriters' Laboratorias test requirements
Ratings chart
Application information
Circuit voltage
Circuit frequency
Continuous current rating
Unusual operating conditions
Available short circuit current
Field testing of molded case breakers
Molded case breakers for resistance welding circuits \%Duty cycle vs. during weld amperes

TRI-PAC breakers

General information
Selection guide
Characteristic tripping curves
Basic application in distribution systems
Protection of connected apparatus Operating data

Tables

Table A: AB breaker ratings for motor branch circuits
Table B: Motor terminal amperes at full load
Table C, C-1: Motor application for front-adjustable magnetic-only circuit breakers
Table D: Derating chart for noncompensated thermal magnetic breakers calibrated for $40^{\circ} \mathrm{C}$
Table E: Current limiting fuse ratings Table F: Allowable current-carrying capacities of copper conductors in amperes
Table F-1: Correction factors, room temperatures over $30^{\circ} \mathrm{C}, 86^{\circ} \mathrm{F}^{2}$ Table G: Allow wable current-carry ing capacities of aluminum conductors in amperes

Standard, SELTRONIC and MARK 75 Circuit Breakers

General Circuit Breaker Information

$A B D E-10 N$ molded case circuit breakers are designed to provide circuit protection for low voltage distribution systems. They are described by NEMA as, ". a device for closing and interrupting a circuit between separable contacts under both normal and abnormal conditions," and further as," a breaker assembled as an integral unit in a supporting and enclosing housing of insulating material". The N E.C. describes them as,
A device designed to open and close a circuit by non-automatic means, and to open the circuit automatically on a predetermined overload of current, without injury to itself when properly applied within its rating.

So designed. AB DE-ION circuit breakers protect conductors against overloads and conductors and connected apparatus, such as motors and motor starters, against short circuits.

All Westinahouse molded case circuit
breakers are ouilt to meet the requirements of NEMA Standard AB-1-1975.

Circuit Breaker Components and Their

Functions

Being essentially a high interrupting capacity switch with repetitive elements, AB DE-ION circuit breakers are comprised of three main functional components. These are: trip elements, operating mechanism and arc extinguishers.

Trip Elements

The function of the trip element is to trip the operating mechanism in the event of a prolonged overload or short circuit current. To accomplish this, a thermal-magnetic trip action is provided.

Standard Breakers

Thermal trip action is achieved through the use of a bimetal heated by the load cuttert. On a sustained overload, the bimetal will deflect, causing the operating mechanism to trip. Because bimetals are responsive to the heat emitted by the current flow, they allow a long time delay on light overioads, yet they have a tast response on heavier overioads.

Magnetic trip action is acheved through the use of an electro magnet in series with the load current. This provides an instantaneous
tripping action when the current reaches a predetermined value, Front adjustable magnetic trip elements are supplied as standard on 225 amp frame breaker and above (except CA \& DA) and on the 100 and 150 amp magnetic only breakers, all other thermal magnetic breakers have non-adjustable magnetic trip elements.

SELTRONIC Breakers

Both the thermal type trip action and the magnetic trip of SELTRONIC breakers are achieved by the use of current transformers and solid state circuitry that monitors the current and initiates tripping through a flux transfer shunt trip when an overload or short circuit is present.

All multiple pole circuit breakers have trip elements in each pole and a common trip bar. An abnormal circuit condition in any one pole will cause all poles to open simultaneously

Operating Mechanism

The function of the operating mechanism is to f ovide a means of opening and closing the breaker contacts. All mechanisms are of the quick-make, quick-break type and are "trip free." "Trip free" mechanisms are designed so that the contacts cannot be held closed against an abnormal circuit condition and are sometimes referred to as an "over center toggle mechanism". In addition to indicating whether the breaker is "on" or
"oft", the operating mechanism handle indicates when the breaker is "tripped" by moving to a position midway between the extremes This distinct trip point is particularly advantageous where breakers are grouped, as in panelboard applications, because it clearly indicates the faulty circuit.

Arc Extinguishers

The function of the DE-ION arc extinguisher is to confine. divide and extinguish the arc drawn between opening breaker contacts It consists of specially shaped steel grids isolated from each other and supported by an insulating housing. When the contacts are opened, the arc drawn induces a magnetic field in the grids. which in turn draws the arc from the contacts and into the grids. The arc is thus split into a series of smaffer atcs and the heat generated is quickly dissipated through the metal. These two actions result in a rapid removal 'ions from the arc. which hastens dielectric suild-up between the contacts and results in rapid extinction of the arc.

Westinghouse Family of Molded Case Circuit Breakers

In secondary distribution systems, there ae many varied applications of molded case circuit breakers. To better cover this wide range of applications. Westinghouse offers a family of DE-ION circuit breakers within a given frame size.

This family of breakers includes Thermal Magnetic (Std and SELTRONIC) Magnetic Only (Std. and SELTRONIC) Ambient Compensating
Saf-T-Vue ${ }^{\text {A }}$
MARK 75 (Std. and SELTRONIC) TRI-PAC

Thermal Magnetic Circuit Breakers

Thermal magnetic breakers are general pur pose devices suitable for the majority of breaker applications and are considered the industry standard. Combining thermal and magnetic trip actions, they provide accurate overload and short circuit protection for conductors and connected apparatus

Magnetic-Only Circuit Breakers

Magnetic-only breakers are similar to stand ard thermal magnetic breakers except that they do not have thermal trip elements. They are equipped with front-adjustable magnetic trip elements and are used where only short circuit protection is required. Because the ad justment feature allows closer short circuit protection, these breakers are commonly preferred for motors and resistance welder circuits.

Ambient Compensating Circuit

Breakers (Standard Breakers Only)
Ambient compensating breakers are similar to standard thermal magnetic breakers in that they are thermal magnetic and provide overload and short circuit protection. The difference is that ambient compensating breakers automatically compensate for variations in ambient temperatu θ. This provides a nearconstant current rating over a wide range of temperatures. In effect, this breaker minimizes the need for derating in higher ambients, and uprating in lower ambients.

Because these breakers will carry their rated current in higher ambients, circurt conductors must be sized accordingly. Generaily, standard thermal magnetic breakers, which derate in about the same ratio as the average conductor ratings, are best suited for conductor protection.

Typical applications of ambient compensating breakers include

1. Conductors net subjected to same temperature changes as the breaker.
a. Wiring located insicte of a buitding having temperature control, but the protecting breaker mounted outside for convenience.
b. Wiring buned underground but breaker exposed such as in some outdoor pump controller applications.
2. Where overload protection of wiring is not of prime importance.
3. In portable engine generator sets, where varied climates and temperatures are encountered and the generator is designed to the anticipated temperature extremes.

Because the above applications are in the minority, ambient compensating is not supplied as standard

SELTRONIC breakers are insensitive to temperature changes. However, they include circuitry to protect the components from abnormally high temperatures.

Saf-T-Vue " Circuit Breakers

Saf-T-Vue breakers are similar to standard molded case breakers except that they are equipped with a window of transparent thermoplastic over the breaker contacts. This allows you to see whether the contacts are open or closed. These breakers fulfill the needs of industrial plants where safety codes require visible contacts as an additional safety precaution for maintenance personnel. They can be supplied with thermal magnetic, magnetic-only or ambient compensating trip elements to cover a wide scope of appli cations. They are not available in M ARK 75 or TRI-PAC breakers.

MARK 75 Circuit Breakers

MARK 75 breakers are similar to standard molded case breakers. They are, however, designed with increased interrupting capacities - up to 75,000 amperes asymmetrical at 240 volts Ac . The improved performance makes these breakers ideally suited for use in network systems and other applications where unusually high fault currents exist. Standard MARK 75 breakers are equipped with thermal magnetic trip actions. Mag-netic-only and ambient compensating(1) trip elements are also available. MARK 75 mold ad cases are of a gray polyester material which easily distinguishes them from standard breakers, which are black.

TRI-PAC Circuit Breakers

TR1.-PAC circuit breakers offer an even higher interrupting capacity than MARK 75 breakers. They are similar to standard ther mal magnetic breakers except that they incor porate a current limiting device. This enables them to be used in secondary distirbution systems where fault currents up to 200,000 symmetrical rms, amperes are avarlable. Thus, as their name implies, they are a triple package of protection - (1) time delay thermal trip for overfoad protection, (2) instantaneous mag. netic trip for normat fautt current protection. and (3) current limiting action for higher fault current protection - combined and coordinated in a single compact and econom
ical device. Because they limit current, TRIPAC b-eakers can be used to protect smaller AB breakers and other connected apparatus in addition to protecting feeder and branch circuits. More specific information on TRIPAC breakers is contained elsewhere in this publication.

Characteristic Trip Curves (Except TRI-PAC)

Characteristic trip curves are found in Application Data 29-161 A WE A which is available on request.
The band curves shown for each breaker type represent current tripping limits for the breaker and are within limits established by the Underwriters' Laboratonies. For a given current, at rated ambient, a breaker will clear the circuit automatically at some total time within the two extreme values defined by "maximum" and "minimum" curves. For example, a 1 pole, 15 ampere Quicklag would trip in not less than 10 seconds and in not more than 150 seconds on a 30 ampere current. Because of this allowed spread, users should not specify exact tripping times.
The upper left portions of these curves show the inverse time delay tripping of the breakers due to thermal action. The lower right segments of these curves portray the magnetic tripping action of the breakers. In the case of the front adjustable thermal-magnetic break. ers, the magnetic tripping elements may be adjusted to trip at values within a specific current range. This adjustment is shown on their respective characteristic tripping curves When these breakers leave the factory their magnetic trip elements are set at the high side of their tripping range. Adjustment downward may be made to fit the requirements of the installation. Currents equal to or greater than these magnetic settings will cause instant tripping. Curves shown are family curves and are suitable for most applications; for more accurate application, a detaited curve of the particular type and ampere rating of the breaker should be requested.
The total time taken by a breaker to clear a fault consists of the mechanical operating time plus the time of actual current interruption. Characteristic family curves show total clearing times. Magnetic only breakers liave no time delay in tripping. The tripping character istics of these breakers are similar to the right hand portion of the standard breakers. except with the vertical lines extended to the top of the curve.

Circuit Breaker Ratings

A circuit breaker is rated in rms amperes, (at a specific ambient) voltage, freguency (usually 60 hertz) , and intertupting capacity (in rms symmetrical and assymmetrical amperes). AB De-ion circuit breakers listed in the 29-000 section of the Westinghouse catalog are rated
(4) Excedt for SELTRONIC brasers.
a maximum of 3000 amperes continuous and 600 volts Ac, 250 volts Dc. For a summary list of ratings, voltages and interrupting capacities. see sclection chart on page 4.

Circuit breakers are not horsepower rated.

Unlike switches, circuit breakers are not horsepower rated because they are able to safely interrupt currents far in excess of the locked rotor value for any motor with which they may be applied. This ability is recognized in the N.E.C. as stated in paragraph $430-109$, and is proven by the Underwriters' tests described in U/L Bulletin number 489, "Standard for Branch Circurt and Service Circuit Breakers".

For example, a breaker must pass the U / L overload test consisting of breaking a current 600% of its ampere ratings. As motor branch circuit breaker ratings are usually 125% to 250% of motor full-load currents, this test establishes the ability of the breaker to more than interrupt locked rotor currents. Following the overload test and others, the breaker is called upon to successfully clear its rated short circuit current which is a minimum of 5000 amperes. This also is many times higher than motor locked rotor current. Because by definition a circuit breaker is required to "open under abnormal conditions ... Without injury to itself", the breaker must still be in operating condition after the test.

Underwriters' Laboratories Test Requirements

Standard Tests

1. The tripping mechanism shall be enclosed to prevent tampering.
2. The mechanism shall trip free of the handle on overload.
3. All breakers shall be calibrated to carry their continuous rating in an ambient temperature of $40^{\circ} \mathrm{C}$. (1)
4. 200% calibration check.
5. 135% calibration check.
6. Overload tests at 600% normal current at rated voltage.

Up to 1600 Amperes: 50 operations 2000, 2500 Amperes: 25 operations 3000, 4000 Amperes: Three operations at 600% followed by 25 operations at 200%
7. Temperature rise check at 100% ated load continuously without exceeding specified temperature limits.
8. Endurance test:

Ampere Rating	Operations		
	Full Load	No Load	Per Minute
$0-100$	6000	4000	6
$101-225$	4000	4000	5
$226-600$	1000	5000	4
$601-800$	500	3000	1
$801-2500$	500	2000	1
$2501-4000$	400	1100	1

9. After endurance test, the breaker must again pass a calibration test at the 200% and 135% ratings.
10. It must next pass short circuit tests at its rated voltage at the value shown in the following chart.

Breaker Rating		Test Circuit For Three Pole Breakers		
Volts	Amps	Indi- vidual Poles Amps	Common Poles Amps	Total No. of Tests
250 \& Below	100 \& Below	4,330	5.000	7
Above 250	1008 Below	8,660	10,000	7
Any	101 - 800	8.650	10,000	7
Any	801-1200	12,120	14.000	7
Any	1201-1600	14,000	20,000	8
Any	1601-2000	14,000	25,000	8
Any	2001-2500	20,000	30,000	8
Any	2501-3000	25,000	35,000	8
Any	3001-4000	30,000	45,000	8

11. After the short circuit test, the breaker must again pass a calibration test at 200% of its rating.
12. Successful breakers passing all of the above tests must then pass a dielectric withstand for one minute without breakdown. The test consists of a 60 hertz potential of 1000 volts plus twice the rated voltage between line and load terminals with the breaker open and in the "tripped" positicn, between terminals of opposite polarity with the breaker closed and between live parts and the enclosure with the breaker open and closed.
13. A sample lot of breakers, as defined by U.L., INC., must pass the above sequence of tests without failure to achieve the initial standard U.L. listing. Once standard listing is achieved then higher interrupting ratings may be obtained by submitting sample lots of breakers to additional interrupting tests conducted for the particular rating desired. These additional tests will be conducted in accordance with the following sequence:

High Interrupting Capacity Tests

1. 200% Calibration Check.
2. Short circuit interruption. Two three-phase tests, one "open" followed by a "close-open" at the desired rating.

3. 250% Calibration check.

4. Finally, a dielectric withstand similiar to the one described above must be passed. The voltage for this test is twice rated but not less than 900 voits.

AB DE-ION * Circuit Breaker Interrupting Ratings

Circuit Breaker Ratings				Fed Spec. W.C. 375 a Class	U. L. Listed Interrupting Capacities-RMS Symmetrical Amps						
Type	Cont Amp. Aating	No Poles	Voits Ac		Ac Rating Voits		277	480	600	De Rating Voits (5)	
					\$20/240	240				125	250
Lighting Circuit Breakers											
QC, HQP, BAB	$\begin{aligned} & 10.70 \\ & 15.125 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 120 / 240 \\ & 120 / 240 \end{aligned}$	$\begin{aligned} & 1 \mathrm{a} \\ & 1 \mathrm{a} \end{aligned}$	$\begin{aligned} & 10,000 \\ & 10,000 \end{aligned}$		H.e.	$\%$	\ldots $\quad . .1$. ${ }^{\text {a }}$
HQC. HONP. IA	$\begin{aligned} & 15.50 \\ & 15.100 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{r} 240 \\ 240 \end{array}$	$\begin{aligned} & \text { 1b } \\ & 1 \mathrm{~b} \end{aligned}$		$\begin{aligned} & 10,000 \\ & 10,000 \end{aligned}$	K.ut		-kens	.	
8A	15.30	1	277	2 a	, 65,000	20.6.7	10.000	Cusi:	...e...	+......
QHP, QHC, HBA	$\begin{aligned} & 15.30 \\ & 15.20 \end{aligned}$	$\frac{1.2}{3}$	$\begin{gathered} 120 / 240 \\ 240 \end{gathered}$	(8)	65,000	65.000					
QPGF, QBGF QPHGF, QBHGF	$\begin{aligned} & 15.30 \\ & 15.30 \end{aligned}$	$\frac{1.2}{1}$	$\begin{aligned} & 120 / 240 \\ & 120 / 240 \end{aligned}$	(1)	$\begin{array}{r} 10,000 \\ 22.000 \\ \hline \end{array}$		arker	.6.	*wat.	+... ${ }^{\text {a }}$	
$\triangle \mathrm{OPH}, \mathrm{OCH}, \mathrm{OBH}$	$\begin{aligned} & 15-70 \\ & 15.100 \\ & 15-100 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{gathered} 120 / 240 \\ 120 / 240 \\ 240 \\ \hline \end{gathered}$	(1)	$\begin{array}{r} 22,000 \\ 22,000 \\ \hline \end{array}$	W... 22.000					
$\begin{aligned} & \text { CA } \\ & \text { CAH } \end{aligned}$	$\begin{aligned} & 125.225 \\ & 125-225 \end{aligned}$	$\begin{aligned} & 2-3 \\ & 2-3 \end{aligned}$	$\begin{aligned} & 240 \\ & 240 \end{aligned}$	(1)		$\begin{aligned} & 10,000 \\ & 22,000 \end{aligned}$		 $\cdots \cdots$	N.....	
DA	$250-400$	2-3	240	(c)	+1...	22.000	+x.8\%	*.....	*.....	10,000(4)
Industrial Circuit Breakers											
EB Standard	$\begin{aligned} & 15.100 \\ & 15.100 \end{aligned}$	$\begin{gathered} 1 \\ 2 \cdot 3 \end{gathered}$	$\begin{aligned} & 120 \\ & 240 \end{aligned}$	$\begin{aligned} & 2 \mathrm{~b} \\ & 2 c \end{aligned}$	$10,000(1)$	10.000	-	3-2006	\cdots	5,000	$5.000(2)$
EHB Standard	$\begin{aligned} & 15 \cdot 100 \\ & 15-100 \\ & 15.100 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 277 \\ & 480 \\ & 480 \end{aligned}$	$\begin{aligned} & 2 \mathrm{a} \\ & 2 \mathrm{~d} \\ & 2 \mathrm{~d} \end{aligned}$		$\begin{aligned} & 18.000 \\ & 18.000 \end{aligned}$	$14,000$	$\begin{aligned} & 14,000 \\ & 14,000 \end{aligned}$	\cdots	10.000	10.000
FB(3) Standard	$\begin{aligned} & 15-150 \\ & 15-150 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 2 d \\ & 2 d \end{aligned}$		$\begin{aligned} & 18,000 \\ & 18,000 \end{aligned}$		$\begin{aligned} & 14.000 \\ & 14.000 \end{aligned}$	$\begin{aligned} & 14,000 \\ & 14,000 \end{aligned}$,	10,000
J8. K8 Standard	$\begin{array}{r} 70.250 \\ 70.250 \end{array}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 600 \\ & 500 \end{aligned}$	$\begin{aligned} & 3 \mathrm{~b} \\ & 3 \mathrm{~b} \end{aligned}$		$\begin{aligned} & 25,000 \\ & 25,000 \end{aligned}$		$\begin{aligned} & 22.000 \\ & 22.000 \end{aligned}$	$\begin{aligned} & 22,000 \\ & 22,000 \end{aligned}$		10.000
LB.LBE Standard	$\begin{aligned} & 70.400 \\ & 70.400 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 4 b \\ & 4 b \end{aligned}$		$\begin{aligned} & 42,000 \\ & 42.000 \end{aligned}$		$\begin{aligned} & 30,000 \\ & 30.000 \end{aligned}$	$\begin{aligned} & 22.000 \\ & 22.000 \end{aligned}$	4.8.e.	10.000
LA Standard	$\begin{aligned} & 250600 \\ & 250-600 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 4 \mathrm{~b} \\ & 4 \mathrm{~b} \end{aligned}$		$\begin{aligned} & 42,000 \\ & 42,000 \end{aligned}$		$\begin{aligned} & 30,000 \\ & 30,000 \end{aligned}$	$\begin{aligned} & 22,000 \\ & 22.000 \end{aligned}$		$10,000$
LC Seltranic	75-600	2.3	600	4b	…"...	42,000	…4.4	30.000	22.000	-ax+	7-120.
MC Seitronic	400-800	2.3	600	5 a	ctokes	42.000	\ldots	30.000	22.000	, .a. ${ }^{\text {a }}$.	9x.0x.
NC Seltronic	500.1200	2.3	600	53	[a....	42,000	- 4	30.000	22,000	\ldots
PC Seltronic	1000-3000	2.3	600	(8)	-	125.000	+80.t.	100,000	100,000	8x+200	107...
PCC(6) Seitronic	1000-3000	2.3	600	(\%)	\ldots	125,000	*-...*	100,000	100.000	(xais.	v......
High Interrupting Capacity Circuit Breakers											
HFB Mark 75	$\begin{aligned} & 15.30 \\ & 40.100 \\ & 15.150 \\ & 15.150 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 277 \\ & 277 \\ & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & \bar{D} \\ & \frac{D}{2 t} \\ & 21 \end{aligned}$	\#......	65,000 65.000	$\begin{aligned} & 65,000 \\ & 25,000 \end{aligned}$	$\begin{aligned} & 25,000 \\ & 25,000 \end{aligned}$	$\begin{aligned} & 18,000 \\ & 18,000 \end{aligned}$	$\begin{array}{r} 10.000 \\ 10.000 \end{array}$	10,000
HK8 Mark 75	$\begin{array}{r} 70-250 \\ 70.250 \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	(-	$\begin{aligned} & 65,000 \\ & 65,000 \end{aligned}$		$\begin{array}{r} 25,000 \\ 25,000 \end{array}$	$\begin{array}{r} 22.000 \\ 22.000 \end{array}$		10,000
HL. $\mathrm{B}_{\text {Mark } 75}$	$\begin{aligned} & 125.400 \\ & 125.400 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 4 c \\ & 4 c \end{aligned}$		$\begin{aligned} & 65,000 \\ & 65,000 \end{aligned}$		$\begin{aligned} & 35.000 \\ & 35.000 \end{aligned}$	$\begin{aligned} & 25.000 \\ & 25,000 \end{aligned}$	\cdots	10,000
HLA Mark 75	$\begin{aligned} & 250-600 \\ & 250-600 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 4 c \\ & 4 c \end{aligned}$		$\begin{aligned} & 65,000 \\ & 65,000 \end{aligned}$		$\begin{aligned} & 35,000 \\ & 35,000 \end{aligned}$	$\begin{aligned} & 25.000 \\ & 25.000 \end{aligned}$		10,000
HLC Mark 75	75.600	2.3	600	4 c	\cdots	65.000	, it.	35.000	25.000	~......
HMC Mark 15	$\begin{aligned} & 400 \cdot 800 \\ & 400.800 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	$\begin{aligned} & 50 \\ & 56 \end{aligned}$	$\ldots \times \cdots$	$\begin{aligned} & 65,000 \\ & 65,000 \end{aligned}$		$\begin{aligned} & 50,000 \\ & 50,000 \end{aligned}$	$\begin{aligned} & 25,000 \\ & 25,000 \end{aligned}$	x+....	2...a.s
HNC Mark 75	$600 \cdot 1200$	2-3	600	5 b	$\cdots \cdot \cdots$	65,000	180	50,000	25,000	~.....	x.e. .
FB Tri-pac	15.100	2.3	600	2 e	\%...1.	200.000	-	200,000	1200.000	\cdots	(6)
LA Th.Pac	70.400	2.3	600	3c/4a	200,000	4.a...	200.000	$200.0 n 0$	- $2+\cdots$	(8)
NB Tri.Pac	300.800	2.3	600	6	-1...	200.000	200.000°	200.0.	\ldots
P8 Ti-Pac	600-1600	2.3	600	(3		200,000	200.000	200,000 ${ }^{-1}$		

[^0]
Application Information

Selection of an AB breaker, with proper circuit protective characteristics, involves consideration of the following factors:

1. Circuit Voltage

2. Circuit Frequency
3. Continuous Current Rating
4. Unusual Operating Conditions
5. Available Short Circuit Current

The following discussion of these application considerations is based on National Electric Code and NEMA requirements.

1. Circuit Voltage

Molded case circuit breakers are rated by voltage class and should be applied onlv to system: voltages within their rating.

Note: On all three phase Delta. grounded B phase applications, refer to Westinghouse

2. Circuit Frequency

Most standard moided case circuit breakers up to 600 amps can be applied to frequencies from Dc up to 120 hertz without derating. On higher frequency applications, however, the increased effect of eddy currents and iron losses causes greater heating within the thermal trip elements necessitating that the breakers either be especially calit'ated for the specific frequenc; or be derated accordingly. The amount of derating depends upon the frame size and ampere rating as well as the current frequency. In general, the higher the ampere rating in a given frame size, the greater the derating required.

Some 600 amp breakers and all higher ratings have a transformer-heated bimetal, and are suitable for 60 hertz $A c$ maximum, with special calibration available for 50 hertz Ac minimum.

In the smaller frames-Quicklags, BA, CA, EB, EHB and FB - higher frequencies require more current to trip the breakers magnetically. In the larger frames - JA and larger - magnetic trip elements constructed with laminated magnets have similar trip characteristics at frequencies of either 60 hertz or 400 hertz.

For specific derating information or information regarding application to frequencies higher than 400 cycles, consult factory. SELTRONIC breakers are suitable for $50 / 60 \mathrm{Hertz} \mathrm{AC}$ circuits only.

3. Continuous Ampere Rating

Molded case crrcuit breakers are rated in $\mathrm{r} . \mathrm{m} . \mathrm{s}$ amperes at a specific ambient. This ampere rating is the continuous current they will carry in the ambient temperature for which they are calibrated. Westinghouse thermal magnetic breakers are calibrated for an ambient temper-
ature $40^{\circ} \mathrm{C}$ which is the average temperature within an enclosure; thus, they minimize the need for derating. If the enclosure ambient is known to exceed $40^{\circ} \mathrm{C}$, the breaker used should either be especially calibrated for that ambient or be derated accordingly. (Refer to Item 4, Unusual Operating Conditions, for specific information).

The selection of a specific ampere rating for a given application is dependent upon the type of toad and duty cycle, and is governed by the National Electric Code. In general, the N.E.C. requires overcurrent protection at the supply and at points where wire sizes are reduced. It further states that the conductors be protected in accordance with their current carrying capacity, but lists exceptions for applications such as motor circuits where a larger rating is often required to override motor inrush currents.

The following paragraphs outline pertinent information from the N. E.C. according to the type of loa 1 and duty cycle.

A. Service

A service iticludes the conductors and equipment for delivering electrical energy from the st pply system to the wifing system of the prent ises served.
N.E.C. Article 230-1 through $230 \cdot 98$ contains the many requirements for services of 600 volts of less including the sizing, location and over-current protection of conductors, disconnect means, permissable number of disconnects, rating of disconnects, grounding of conductors and ground fault protection requirements of service equipment.

B. Feeder Circuits

A feeder is composed of the conductors of a wiring system between the service equipment or the generator switchboard of an isolated plant and the branch circuit over-current device.
N.E.C. Article 220-10 (b): Where a feeder supplies loads or any combination of continuous and noncontinuous load, neither the ampere rating of the overcurrent device nor the ampacity of the feeder conductors shall be less than the noncontinuous load plus 125 percent of the continuous load.

Exception: Where the assembly including the overcurrent devices protecting the feeder(s) are listed for operation at 100 percent of their rating, neither the ampere rating of the overcurrent device nor the ampacity of the feeder conductors shall be less than the sum of the continuous load plus the noncontinuous load

Only breakers listed for 100% application, and so labeled, can be applied under the exception (for example, type PCC). Breakers without 100% application listing and label are applied under (b) above, or at 80% of rating.

N E.C. Article 430-63: Breakers for feeders having mixed loads, i.e. heating (lighting and heat appliances) and motors, should have ratings suitable for carrying the heating loads plus the capacity required by the motor loads
N.E.C. Article 430-62: Breakers for motor feeders shall have a rating not greater than the sum of the highest breaker rating of any of its branches and the full load currents of all other motors served by the feeder.

C. Branch Circuits

A branch circuit is the portion of a wiring system extending beyond the final overcurrent device protecting the circuit.

1. Lighting Circuits (N.E.C. Tables 310-16 through 19). These are protected in accordance with the conductor ratings as given. High wattage incandescent lamp loads may result in abnormally high inrush currents that must be taken into account to avoid nuisance tripping. The lamp manufacturer should be consulted for data relative to the inrush currents.
2. Motor Circuits (N.E.C. Article 430-51): Breakers are primarily intended for the protection of conductors, motor control apparatus and motors against short circuits and ground fiult conditions.

On motor overioads, the motor overcurrent device will open the circuit before the correctly applied breaker. Currents higher than the locked rotor value will be interrupted by the breaisers, protecting the circuit from these heavy fault currents. The breaker must not trip on normal motor starting.

While breakers may be applied for motor running overcurrent protection when the requirements of Article 430 of the N.E.C. are met, these applications are not recommended for Type AB breakers and, therefore, this discussion is confined to the use of a breaker as a circuit protector.

For many applications, particularly those where the starting behavior if the motor is unknown, the N.E.C. maximum rules are followed. Usually, lower rated breakers can be used successfully. This is further discussed under motor circuit application and motor application tables.

Motor Circuit Application (N.E.C. Article

 430-110): The breaker must have a continuous rating of not less than 115% of the motor full load current. Before applying a breaker, one should check to determine the effect of any of the following conditions: High ambient temperature, heating within breaker enclosure due to grouping of current consuming devices, frequent motor starting. lengthy motor acceleration period.Breaker Rating or Setting (N.E.C.) Article 430 52): The motor branch circuit over-current device shall be capable of carrying the start ing current of the motor. The required protection shall be considered as being obtained when the overcurrent device has a rating or setting not exceeding the values given in Table A, page 9 (reference N.E.C. tables $430-$ 152).

An instantaneous trip circuit breaker (without time delay) shall be used only if adjustable and if part of a combination controller having overcurrent protection in each conductor and the combination is especially approved for the purpose. In the event a breaker chosen on this basis still does not allow motor starting a higher rating is permitted by the code See exceptions listed with Table A, page 9.

Due to the infinite number of motor-and-load combinations and because comparable breakers of different manufacture have different tripping characteristics, N.E.C. motor-circuit breaker rules are of a general nature and are set up as maximum boundaries. Protection is considered satisfactory if the breaker rating does not exceed the figure allowed by the N.E.C. requirements. Although Westinghouse breakers rated less than the N.E.C. maximum values may be applied in most cases. Many operating engineers select breakers on the basis of the N.E.C. maximum rules simply because consideration of other factors is not usualiy necessary, or to insure motor starting when the starting behavior of the motor is not known. Tables A and B, page 9 are adapted from Article 430-147 through 152 of N.E.C.

When a certain motor is standard for a given job, as on a volume produced machine tool, it is practical (and often more economical) to select a breaker for closer protection than one chosen on the basis of N.E.C. maximum rules.
D. Capacitor Protection (460-8 N.E.C.) In normal applications, breakers rated about 150% of capacitor rated currents are recommended. This factor allows for switching surges, and possible overcurrent due to overvoltage and harmonic currents Such selection fully meets the N.E.C. requirement in $460-8$ for a conductor and disconnect to be rated not less than 135% capacitor rating. Where the operating currents exceed 135% of rated current due to harmonic components, service conditions may require the selection of a breaker with a higher current rating.

For application in ambients higher than the rated ambient of the breaker, the breaker derating table on page 11 should be checked to determine the rating of the breaker required to meet the minimum of 135% capacitor rating. In focations where temperatures vary greatly, ambient compensating breakers may be desireable.

For automatic switching, motor-operated $A B$ breakers are economical devices.

E. Transformer Protection (450-3b

 N.E.C.)(1) Primary. Each transformer 600 volts or less shall be protected by an individual overcurrent device on the primary side. Rated or set at not more than 125 percent of the rated primary current of the transformer.

Exception No. 1: Where the rated primary current of a transformer is 9 amperes or more and 125 percent of this current does not correspond to a standard rating of a fuse or nonadjustable circuit breaker, the next higher standard rating described in Section 240-6 shall be permitted. Where the rated primary current is less than 9 amperes, an overcurrent device rated or set at not more than 167 percent of the primary current shall be permitted.

Where the rated primary current is less than 2 amperes, an over-current device rated or set at not more than 300% shall be permitted.

Exception No. 2: An individual over-current device shall not be required where the primary circuit overcurrent device provides the protection specified in this Section.

Exception No. 3: As provided in (b) (2) below.
(2) Primary and Secondary. A transformer 600 volts or less having an over-current device on the secondary side rated or set at not more than 125 percent of the rated secondary current of the transformer shall not be required to have an individual overcurrent device on the primary side if the primary feeder overcursent device is rated or set at a current value not more than 250 percent of the rated primary current of the transformer.

A transformer 600 volts or less, equipped with coordinated thermal overload protection by the manufacturer and arranged to interrupt the primary current, shall not be required to have an individual overcurrent device on the primary side if the primary feeder overcurrent device is rated or set at a current value not more than 6 times the rated currant of the transformer for transformers having more than 6 percent impedance and not more than 4 times the rated current of the transformer for transformers having more than 6 but not more than 10 percent impedance.

Exception: Where the rated secondary curent of a transformer is 9 amperes or more and 125 percent of this current does not correspond to a standard rating of a fuse or nonadjustable circuit breaker, the next higher standard rating described in Section 240-6 shall be permitted

Where the rated secondary current is less than 9 amperes, an overcurrent device rated or set at not more than 167 percent of the rated secondary current shall be permitted.

Closer protection can be provided by break. ers having shunt trips actuated by a temperature sensing device imbedded in transformer windings.

4. Unusual Operating Conditions
 A. High Ambient Temperatures

Because standard thermal magnetic breakers are temperature sensitive and are calibrated for a specific ambient of $40^{\circ} \mathrm{C}$ (average enclosure temperature), the presence of an ambient higher than $40^{\circ} \mathrm{C}$ will cause the breaker to carry less current than its nameplate rating, or in other words, will cause the breaker to "derate" (see Table D). Similarly, the safe current carrying capacity of a circuit conductor is based upon an ambient temperature of $30^{\circ} \mathrm{C}$ (average air temperature) and the presence of a higher ambient will reduce its safe current carrying capacity causing it to "derate" (see Table F). Thus, it can be seen from Tables D and F that in the presence of a fluctuating temperature, a thermal magnetic breaker will derate nearly parallel with its connected circuit conductors and maintain close circuit protection.

If the application temperature exceeds $40^{\circ} \mathrm{C}$ and is known, either a breaker especially calibrated for the higher ambients or one oversized according to Table D can be selected. It shouid be noted that in a case such as this, the circuit conductors should be oversized also according to the correction factors in Table F-1.

SELTRONIC breakers are insensitive to temperature changes. However, they do include circuitry to protect the components from abnormally high temperatures.

B. Moisture-Corrosion

For atmospheres having high moisture content and/or where fungus growth is prevalent, a special treatment of breakers to resist moisture and fungi is recommended.

Whare the air is heavily laden with corrosive elements, breakers made with special corro-sion-resistant finishes are recommended.

C. Altitude

At altitudes above 6,000 feet, breakers must be progressively derated for interrupting insulating (voltage), current-carrying ability and interrupting ability. (Refer to Westinghouse).
D. Shock

Where high shock is an anticipated condition. hi-shock Navy type breakers are recommended.

E. Maritime

ABS, USCG, CG-259, and IEEE-45 requirements for maritime breakers are met by using $A B$ breakers similiar to standard except calibrated for $50^{\circ} \mathrm{C}$ ambients.

5. Available Short Circuit Current A standard, MARK 75 or TRI-PAC circuit

 breaker should be applied oniy where their published interrupting capacity exceeds the available short circuit current (including motor contributions)at the point of application. Since there are many considerations involved in determining short circuit currents. a special brochure (s B-8674, "How to Calculate Fault Currents") has been prepared to simplify this procedure (copies are available on request). It includes an explanation of the factors and circuit characteristics used to determine short-circuit values.Current limiters in series with $A B$ breakers: if the available short circuit current at the point of application exceeds the published interrupt ing capacity of the breaker, current limiting devices can be installed in the circuit in series with the breaker, however, before this solution is chosen, full consideration should be given to the use of TRI-PAC circuit break. ers, or breakers with current limiter attach. ment.

Table E on page 12 lists the recommended current limiting fuse ratings to be used with thermal magnetic breakers in such applications.

TRI-PAC Breakers

General Information

The increase in demand for electrical power in modern commercial and industrial buildings has resulted in electricel services becoming substantially larger. In some low voltage distribution systems, available short circuit currents can exceed 100,000 symmetrical rms amperes. Fauit currents of this intensity may exceed the interrupting ratings of molded case breakers. As a result, larger expensive circuit interrupting devices which could withstand the thermat and magnetic stresses associated with currents of this value have had to be used. High interrupting capacity current limiting devices have been developed which will restrict short circuit current. It applied correctly, they may be used in conjunction with the molded case circuit breakers to provide adequate and economical protection.

Because of this fact, Westinghouse developed the TRI-PAC breaker, so named because it affords TRIple-PACkage protection with (1) time delay thermal trip, (2) instantaneous magnetic trip and (3) current limiting protection, combined and coordinated in a compact and economical device. These protective actions are so coordinated that overcurrents and low magnitude faults are cleared by the thermal action; normal short circuits are
cleared by the magnetic action; and abnormal short circuits, above an esbablished value, are cleared by the current limiting device. Thus, unless a severe short circuit occurs, the current limiter is unaffected and its replacement is held to a minimum.

Tripped status of the breaker is shown by the center handle "trip" position. in addition the cause of tripping is also indicated in the following ways:

1. If after tripping the breaker cannot be reset immediately, thermal tripping due to an overload or a high resistance fault is indicated.
2. If the breaker can be immediately reset a "normal" fault current has been interrupted by instantaneous magnetic action.
3. If the TRI-PAC cannot be reset, then fault current interruption by the current limiter has taken place.

In the latter case, one or more new limiters must be installed. Since these devices are especially designed for use with TRI-PAC breakers, they can be purchased only from Westinghouse.

TRI-PAC breakers are built to the same exacting design standards and methods as used with standard molded case breakers. They are available in ratings from 15 through 1600 amperes. TRI-PAC breakers have a U/L listed interrupting capacity of 200,000 amperes at up to 600 volts Ac, and based on NEMA test procedures, have an interrupting capacity of 100.000 amps . at up to 250 volts Dc. Basically, the circuit breaker portion of the TRI-PAC breaker is of the same design as a standard moided case breaker of comparative ampere rating, except to have specially designed current limiters located within an added housing separated from the sealed trip unit of the breaker for easy access.
An interiock is provided which insures the opening of the breaker contacts before the limiter housing can be removed. Each current limiting device is constructed with a spring loaded plunger which is ejected durinig the operation, initiating simultaneous opening of all poles of the breaker. Therefore, the possibility of single phasing is eliminated.

The TRI-PAC breaker has many advantages over other means of high current fault protection. To mention a few, the TRI-PAC breaker ...

1. Provides complete protection in one compact device.
2. Prevents the use of improper fuses.
3. Averts single phasing
4. Saves space.
5. Installed cost is generally lower.
6. Gives an indication of the magnitude of the overcurrent.

7. Is thoroughly tested.

Thus, in the TRI-PAC breaker all the advantages of the economical molded case breaker and the current limiter are retained, while the disadvantages of separately mounted devices are eliminated.

Selection Guide

TRI-PAC breakers are compact. only a little larger than a standard molded case breaker. They can be applied as main breakers for the protection of branch and feeder circuits and connected apparatus. They are suitable for use in switchboards, control centers. panelboards, combination starters, bus duct plug-in devices and aiso as separately enclosed TRI-PAC breakers, when the calculated fault current exceeds the interrupting ratings of standard molded case breakers.
Since TRI-PAC breakers have thermal and magnetic trips similar to standard molded case breakers, they can be applied in much the same manner. TRI-PAC continuous current ratings are chosen in the same manner as standard molded case breakers.

In general, it is recommended that standard thermal magnetic breakers be considered fully before selecting TRI-PAC breakers. Attention should be given to the possibility of using larger frame size standard moided case breakers to obtain the required interrupting capacity. When standard molded case breakers or MARK 75 breakers do not have adequate ratings to handle the calculated fault currents. TRI-PAC breakers have many salient features which should receive next consideration.

The selection of TRI-PAC breakers should be made carefully. They should be applied in strict accordance with the general rules as described in the paragraphs under "basic application in distribution systems" and in accordance with the characteristic tripping curves.

Characteristic Trip Curves

TRI-PAC characteristic tripping curves in Application Data 29-162 A WE A present a complete picture of the breaker operation and point out the coordination between the thermal, magnetic, and current limiting actions. Percentage current curves such as those used for standard $A B$ breakers are impractical in this case and therefore TRI-PAC curves are direct reading in amperes. Curves are presented showing maximum and minimum trip characteristic for each rating.

The upper segment of each curve represents the thermal (time delay) tripping of the breaker as a result of an overload condition.

Page 8

The abrupt break and vertical segment of the curves represents the magnetic (instantaneous tripping of the breaker because of short circuit currents. The iower part of the TRI-PAC characteristic curve represents the meximum interrupting time of short circuit currents which exceed the magnitude of the magnetic trip setting. The point at which the current limiter curve crosses the lower portion of the breaker characturistic curve is called the "cross-over point" and the magnitude of the short circuit current at this point is called the "cross-over current". At values of current less than the cross-over current, the breaker will interrupt the fault without operation of the current limiter. At values of current greater than cross-over current, the current limiter and the breaker will clear the fauit. The current limiters are not seriously affected by the breaker interrupting faults of lesser values than indicated by the cross-over currents.

Basic Application in Distribution

Systems

There are three basic applications for TRI PAC circuit breakers. Certain procedures outlined in the following paragraphs must be followed in these applications to insure safe, well coordinated, and soundiy engineered systems.

(1) Individual TRI-PAC Breakers in Distribution Systems

When a single TRi-PAC circuit breaker, in its own enclosure, is used to protect electrical equipment it is applied in the same manner as a standard molded case breaker. TRI-PAC can be connected directly to any low voltage distribution system where available fault currents may reach values as high as 200,000 symmetrical rms amperes. It has been proven by test that TRI-PAC will have adequate interrupting capacity.
Figure 1

(II) Combination of TRI-PAC Circuit Breakers in Distribution Systems If alt the circuit breakers in the system are TRI-PAC breakers, no applications problem exists because all of the breakers are self-protecting. Current ratings are selected in the same manner as standard moided case breakers.
Figure 2

(III) TRI-PAC Main Breaker Feeding Standard Mc/ded Case Breakers in

 Distribution SystemsWherl a TRI-PAC circuit breaker is used for back up protection for standard molded case circuit breakers, see Figs. 3 and 4 . They shouid be applied using the rules for protection and coordination of connected apparatus found with the Application Data for the specific TRI-PAC breaker involved.

Figure 3

Figure 4

Panelboards

TRI-PAC breakers may be used in panelboards as branch and feeder circuit protection devices or as main breakers. Rules as outlined in paragraphs II and III apply. Figure 5 represents a panelboard made up of TRI-PAC breakers which presents no application problem. However, if the panelboard is made up of standard molded case breakers with a TRI-PAC main, as shown in Figure 6, the application should be made carefully as outlined in the rules of paragraph III.

Consideration should also be given to the matter of circuit contmuity. For example in figure 6 , a high fault could trip the main breaker interrupting power to all the circuits When continuity of service is a prime requirement, it is recommended that each circuit be protected by TRI-PAC breakers as illustrated in Figure 5.

Figure 5

Figure 6

Switchboards or Substations

TRI-PAC breakers may be used in low voltage switchboards or substations where available currents do not exceed 200,000 symmetrical rms amperes. They may be connected directly to the secondary bus or grouped behind main low voltage circuit breakers. (Figures 7 and 8 .)

Figure 7

Figure 8

Control Centers

TRI-PAC breakers may be used in control centers as protection for main bus, as a main disconnect, and as branch protective devices. However, due to the special problems encountered in control centers, it is recommended that the application be referred to the control center manufacturer.

Bus Duct Distribution Systems

TRI-PAC breakers may be used in bus duct systems as a main protective device for low impedance and plug-in duct. They may also be used in the plug-in units feeding specific loads. Again, the previous rules as outlined in paragraphs II and III apply.

Protection of Connected Apparatus

Although greatly restraining the magnitude of fault currents, the current limiters must necessanily allow some current to pass for a short period of time in order to cause it to function. Figure 9 illustrates the operating characteristic of the current limiter used with TRI-PAC breaker.

Operating Data
Tables have been prepared from actual test data of bolted faults on the load side of TRIPAC breakers. These tables are found with the specific TRI-PAC involved. Installations made on basis of these tables allow a margin of safety because any other additional apparatus inserted into the distribution system furthei limits the short circuit current.

It can be seen from the tables that with a TRI-PAC breaker in the system, fault currents are limited before reaching possible peak currents. This action reduces the let-through currents and thus reduces substantiaily the thermal and magnetic stresses.

Under short circuit conditions any failure of apparatus will be due to excessive magnetic or thermal stresses. Magnetic stress is proportional to the product of the peak currents in two adjacent conductors. Thermal stress is proportional to the square of the rms letthrough current multipied by time ($1^{2} \mathrm{t}$.) When the thermal and magnetic capabilities of the connected apparatus are known, then the data in the above mentioned tables can be used in designing complete systems.

Table A: AB Breaker Ratings for Motor Branch Circuits

Motor Type and Method of Starting Maximum Rating (2) in
\% of Full Load Current $\frac{\text { \% of Fuil Load Current }}{\text { Thermal }} \frac{\text { Magnetic }}{\text { Magne }}$ Magnetic Only Breakers Breakers Breakers Type) (instantaneous Type)

For Motors Marked With a Code Letter

All Ac single phase and polyphase squirrel-cage and synchronous motors with full voltage, resistor, or reactor starting:

Code letter A

150	700
200	700
250	700
150	700
200	700
200	700
250	700
250	700
200	700
250	700
200	700
150	700
150	250
150	175

Code letters B to E
Code letters F to V .
All Ac squirtel cage and synchronous motors with autotranstormer starting
Code letter A
Code letters B to E
Code letters F to V.
For Motors Not Marked With a Code Letter
Single-phase, all types
Squirrel-cage and synchronous motors (full voltage, resistor and reactor starting) Squirrel.cage and synchronous motors (autotransformer starting)
High reactance squirrel cage
not more than 30 amperes
more than 30 amperes.
Wound rotor
Direct-current
hot more than 50 HP
more than 50 HP
,
neous Type)
(2) Exception: Where the overcutrent protection soecified in tables is not sultictent for starting current of motor Exceptron: Where the owercutrent protection soecitied in tables is rot suftith in no case exceed (1) 400% of the full load curents of 100 amps or fess and (2) $300{ }^{\circ}$ for full load currents greater than 100 amps
uilload curfents of 100 amps or 1055 and (2) 300 por (witnout time delav) mav be incteased over 700 per cent but b. The setting of an instantaneous thp circuit breaker (without time

Table B: Motor Terminal Amperes At Full Load ${ }^{\text {D }}$
Average Values For All Speeds and Frequencies

HP	Single Phase Ac		Polyphase Ac (Induction Type) Squirrel-Cage and Wound-Rotor								DirectCurcent	
	115 Volts	$\begin{aligned} & 23015 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 115 \mathrm{~V} \\ & 1 . \mathrm{Ph} \end{aligned}$	$\begin{aligned} & \text { 2ls } \\ & \text { 2-Ph(4) } \\ & \text { 4-Wire } \end{aligned}$	$\begin{aligned} & 230 \mathrm{Vh} \\ & 3 . \mathrm{Ph} \end{aligned}$	$\begin{aligned} & \text { oits (5) } \\ & \text { 2.Ph(4) } \\ & \text { 4-Wire } \end{aligned}$	460 V ${ }_{\text {3-Ph }}$	$\begin{aligned} & \text { sits } \\ & \text { 2. Ph } 4 \\ & \text { 4. Wire } \end{aligned}$	575 V 3.Ph	$\begin{aligned} & \text { vits } \\ & \text { 2. Ph 4 } \\ & \text { 4. Wire } \end{aligned}$	$\begin{aligned} & 120 \\ & \text { Voits } \end{aligned}$	$\begin{aligned} & 240 \\ & \text { Voits } \end{aligned}$
$\begin{aligned} & 1 / \\ & 1 / 2 \\ & 1 / \\ & 1 / 2 \\ & 1 / 4 \end{aligned}$	$\begin{array}{r} 44 \\ 5.8 \\ 72 \\ 98 \\ 138 \end{array}$	$\begin{aligned} & 2.2 \\ & 29 \\ & 36 \\ & 49 \\ & 69 \end{aligned}$	${ }_{5}^{4} .6$	${ }_{4}^{4} .8$	${ }_{2}^{2} .8$	$\frac{2}{2.4}$	1.4	1.2	8 1.1	1^{8}	$\begin{aligned} & 3.1 \\ & 4.1 \\ & 5.4 \\ & 7.6 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2.0 \\ & 27 \\ & 3.8 \end{aligned}$
$\begin{aligned} & 1 \\ & 1 / 1 / 2 \\ & 2 \\ & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 16 \\ & 20 \\ & 24 \\ & 34 \\ & 56 \end{aligned}$	$\begin{array}{r} 8 \\ 10 \\ 12 \\ 17 \\ 28 \end{array}$	$\begin{array}{r} 7.2 \\ +0.4 \\ 6 \end{array}$	$\begin{array}{r} 6.4 \\ 90 \\ 11.8 \end{array}$	3.6 5.2 6.8 9.6 15.2	$\begin{array}{r} 3.2 \\ 45 \\ 59 \\ 8.3 \\ 13 . \end{array}$	$\begin{aligned} & 1.8 \\ & 26 \\ & 3.4 \\ & 4.8 \\ & 7.6 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2.3 \\ & 3 \\ & 4.2 \\ & 6.6 \end{aligned}$	14 21 27 39 61	$\begin{aligned} & 13 \\ & 18 \\ & 24 \\ & 33 \\ & 53 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 13.2 \\ & 17 \\ & 25 \\ & 40 \end{aligned}$	$\begin{array}{r} 47 \\ 66 \\ 85 \\ 122 \\ 20 \end{array}$
$\begin{aligned} & 7 \% \\ & 10 \\ & 15 \\ & 20 \\ & 25 \end{aligned}$	80 100	40 .50		. \cdots \cdots \cdots	$\begin{aligned} & 22 \\ & 28 \\ & 42 \\ & 54 \\ & 68 \end{aligned}$	$\begin{aligned} & 19 \\ & 24 \\ & 36 \\ & 47 \\ & 59 \end{aligned}$	$\begin{aligned} & 11 \\ & 14 \\ & 21 \\ & 27 \\ & 34 \end{aligned}$	$\begin{array}{r} 9 \\ 12 \\ 18 \\ 23 \\ 29 \end{array}$	$\begin{array}{r} 9 \\ 11 \\ 17 \\ 22 \\ 27 \end{array}$	$\begin{array}{r} 8 \\ 10 \\ 14 \\ 19 \\ 24 \end{array}$	$\begin{aligned} & 58 \\ & 76 \end{aligned}$	$\begin{aligned} & 29 \\ & 38 \\ & 55 \\ & 72 \\ & 89 \end{aligned}$
$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 75 \end{aligned}$. .	\ldots \cdots \ldots \ldots		\% \ldots \ldots \ldots	$\begin{array}{r} 80 \\ 104 \\ 130 \\ 154 \\ 192 \end{array}$	$\begin{array}{r} 69 \\ 90 \\ 113 \\ 133 \\ 166 \end{array}$	$\begin{aligned} & 40 \\ & 52 \\ & 65 \\ & 77 \\ & 96 \end{aligned}$	$\begin{aligned} & 35 \\ & 45 \\ & 56 \\ & 67 \\ & 83 \end{aligned}$	$\begin{aligned} & 32 \\ & 41 \\ & 52 \\ & 62 \\ & 72 \end{aligned}$	$\begin{aligned} & 28 \\ & 36 \\ & 45 \\ & 53 \\ & 66 \end{aligned}$	Y \cdots \cdots \cdots +1	$\begin{aligned} & 106 \\ & 140 \\ & 173 \\ & 206 \\ & 255 \end{aligned}$

These values of full foad current are for motors running at speeds usual for belted motors and motors with normal torque characteristics Motors built for especialiy low speeds or high-torques may require more running current in which case the nameplate current rating should be used
4. Cument in common conductor of 2 -phase, 3 -wire systems will be 1.41 times value given.
5) For fuil toad currents of 208 and 200 -volt motors, increase the corresponding 230 -volt motor full load current by 10
and 15% respectively.

Page 10

Motor Application for Front-Adjustable Magnetic-Only Circuit Breaker Table C: Standard Breakers

Hp Rating	460 Volt 3 Phase	Motor Full Load Amps	Breaker Type	Contin- uous Rating Amps	Magnetic Trip Range/Adjustment Positions Low to High													
3 Phase					Low	-	2	3	4	5	6	7	8	9	10	11	12	High
	16, 7/4, 1	54-1.8	FB	3	7	8	8.5	9	10	11				16				
\%,	\%/4, 1, 11/2, 2	1.2-3.7	FB	5	15	17	18	20	22	24	26	28	30	33	38	19 39	$\begin{aligned} & 20 \\ & 42 \end{aligned}$	$\begin{aligned} & 22 \\ & 45 \end{aligned}$
\%/4, 1, 1\%,	2,3,5	27.86 (7)	F8	10	35	40	45	50	55	60	65	70	80	85	90	100	105	45
1\%,2, 3,5	1\%, $51 \% 10$	2.5-6.6	FB	25	32	35	39	43	47	50	54	58	62	65	69	73	76	0
1\%, 2, 3	3, $5,7 \%$	5.1-15.7	F8	25	66	75	80	85	90	100	110	120	130	140	150	165	175	190
3, 5, $71 / 2$	5, 7 , $7 / 2,10,15$	3.9.12.4	FB	30	50	56	65	72	80	90	96	105	110	120	125	135	140	190
1\%, 2, 3, 5	5, $7 / 2,10,15$ $5,7 \%, 10$	7.0-22.2	F8	30	90	100	110	115	125	140	155	170	185	200	215	230	250	150
5, 7/2, 10	10, 15, 20, 25	$5.1-15.7$ 123.39 .6	FB	50	66	75	80	85	90	100	110	120	130	140	150	165	175	190
2, 3, 5, 7\%	5, 71/2, 10, 15	12	FB	50	150	180	195	210	230	250	285	320	350	380	405	430	455	480
5. $7 \% / 10$	$10,15,20,25$	11.6-39.6	${ }^{8}$	70	100	110	125	140	150	165	175	190	205	215	230	245	255	270
15, 20, 23, 30	30, 40, 50, 60	$34.7-87$ (1)		100	150	170	190	205	225	250	285	320	350	380	405	430	455	480
$20,25,30,40$	$20,25,30,40$ $40,50,60,75$	27-61	JB-KB	250	350	400	440	480	525	560	610	660						
$20,25,30,40$ $25,30,40$	40, 50, 60, 75	49.108	JB-K8	250	625	700	780	860	940	1020	1050	1170						000
$25,30,40,50$	50	58-130	JB-KB	250	750	850	930	1030	1125	1210	1300	1400						1500
40, 50, 60, 75	$75,100,125,160$	68	JB-KB	250	875	980	1100	1200	1300	1400	1500	1640						1750
$40,50,60,75$	100, 125, 150	$87-195$ 97.216 (1)	JB-KB	250	1125	1290	1425	1560	1700	1840	1980	2115						2250
		216 (1)	JB.KB	250	1250	1400	1560	1720	1880	2040	2100	2340						2500
$10,15,20$ $20,25,30,40$	20, 25, 30, 40	27.61	LBB-L8	400	350	400	440		525	560	610							
$20,25,30,40$ $25,30,40$	40, 50, 60, 75	49.108	LBB-LB	400	625	700	780	860	940	1020	1050	1170						700 1250
$25,30,40$ $25,30,40$	$50,60,75,100$	58-130	LBE-L8	400	750	850	930	1030	1125	1210	1300	1400			,			1250
$25,30,40,50$ $40,50,60,75$	$60,75,100$	68-151	LBB-LB	400	875	980	1100	1200	1300	1400	1500	1640			-			1500
$40,50,60,75$ $50,60,75,100$	$75,100,125,150$	87.195	LBE LB	400	1125	1290	1425	1560	1700	1840	1980	2115			+ + +			1750
$50,60,75,100$ $60,75,100,125$	$100,125,150,200$	115-260	LBE-LB	400	1500	1690	1875	2065	2250	2440	2630	2815						2250 3000
60, 75, 100, 125	125, 150, 200, 250	154-346(1)	LBE-LB	400	2000	2250	2500	2750	3000	3250	3500	3750						4000
40, 50, 60, 75	75, 100, 125, 150	87.195	LA		1125	1265	1405	1555	1690	1830								
$50,60,75,100$	10., 125, 150, 200	115.260	L.A	600	1500	1685	1875	2060	2250	2435	2625	2110			.			2250
$60,75,100,125$	125, 150, 200, 250	154.346	L.A	600	2000	2250	2500	2750	2250 3000	2435	2625	2810 3750						3000
$75,100,125,150$	200, 250, 300, 350	193.433	LA	600	2500	2815	3125	3440	3750	3250 4065	3500	3750 4690						4000 5000
100, 125, 150, 200	200, 250, 300, 350, 400,	231.520(1)	LA	600	3000	3375	3750	4125	4500	4875	5250	5625						5000 6000

On combination starters or special control panels where the circuit breaker is mounted in close proximity to the starter unit, it may be advisable to use a magnetic-only circuit breaker. This is true for two reasons: 1) the overload relays on the starter or control panel will supply the circuit overload protection needed and 2) since it is adjustable, the mag. netic-only circuit breaker can provide closer short circuit protection, thus preventing some heater burnouts.

Tables C and C-1 assume the following conditions:

1. The first $1 / 2$ cycle asymmetrical inrush current is not more than 11 times motor full load current. This is true for most motors.
2. A continuous rating of the breaker should not be less than 115% of the motor FLC.

When magnetic only circuit breakers are used in motor circuits, they should be set to trip just above the current inrush. The first halfcycle inrush will vary with the motor characteristics. Motors with locked rotor currents of six times motor full load amperes will usually require an instantaneous magnetic setting of 10 to 11 times motor full load amperes to prevent tripping when starting. To obtain the best protection, the magnetic trip should be adjusted downward until the breaker trips in starting and then adjusted upward one setting position. This will insure that the circuit will open instantly on any current above the motor inrush.

Many factors can influence the trip point of magnetic-only breakers. See Field Testing, page 16.

[^1]Motor Application for Front-Adjustable Magnetic Only Breakers, Continued
Table C-1: SELTRONIC Breakers (M-gnetic-only)

Hp Rating		Motor Full Load Amps	Breaker Type	Continuous Rating Amps	Magnetic Trip Range Continuously Adjustable	
$\begin{aligned} & 230 \text { Voit } \\ & 3 \text { Phase } \end{aligned}$	460 Voit 3 Phase					
					Low	High
15, 20 15, 20, 25 $15,20,25,30$ 20, 2E, 30, 40 25, 30, 40, 50 25, 30, 40, 50 30, 40, 50, 60 40, 50, 60, 75 50, 60, 75 $50,60,75,100$ 60, 75, 100 $60,75,100,125$ 75, 100, 125, 150 100. 125, 150 $100,125,150,200$	25, 30, 40, 50 30, 40, 50, 60 $30,40,50,60$ $40,50,60,75$ $50,60,75,100$ 50, 75, 100 $60,75,100,125$ $100,125,150$ 100, 125, 150 $100,125,150,200$ 125, 150, 200 $125,150,200,250$ $150,200,250,300$ $200,250,300,350$ $200,250,300,350,400$	29-65 35-78 39.87 49.108 58. 130 68.151 77.173 97-216 105.238 116.260 135-303 154.346 174.390 193.433 231.520 (1)	LC LC LC	600 600	$\begin{array}{r} 375 \\ 450 \\ 500 \\ 625 \\ 750 \\ 875 \\ 1000 \\ 1250 \\ 1375 \\ 1500 \\ 1750 \\ 2000 \\ 2250 \\ 2500 \\ 3000 \end{array}$	$\begin{array}{r} 750 \\ 900 \\ 1000 \\ 1250 \\ 1500 \\ 1750 \\ 2000 \\ 2500 \\ 2750 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \\ 6000 \end{array}$
$\begin{aligned} & 60,75,100,125 \\ & 100,125,150 \\ & 100,125,150,200 \\ & 125,150,200 \end{aligned}$	$\begin{aligned} & 125,150,200,250 \\ & 200,250,300,350 \\ & 200,250,300,350,400 \\ & 200,250,300,350,400 \end{aligned}$	$\begin{aligned} & 154.346 \\ & 193-433 \\ & 231.520 \\ & 270.606 \\ & 308-693 \end{aligned}$	MC MC MC MC MC	$\begin{aligned} & 800 \\ & 800 \\ & 800 \\ & 800 \\ & 800 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2500 \\ & 3000 \\ & 3500 \\ & 4000 \end{aligned}$	$\begin{aligned} & 4000 \\ & 5000 \\ & 6000 \\ & 7000 \\ & 8000 \end{aligned}$
$\begin{aligned} & 75,100,125,150 \\ & 100,125,150,200 \\ & 110,125,150,200 \\ & 125,150,200,250 \end{aligned}$	$\begin{aligned} & 200,250,300 \\ & 200,250,300,350,400 \\ & 250,300,350,400,450 \\ & 250,300,350,400 . \\ & 450,500 \end{aligned}$	$\begin{aligned} & 185.416 \\ & 216-485 \\ & 247-554 \\ & 277 .-623 \\ & 308.693 \\ & 370.831 \end{aligned}$	NC NC NC NC NC NC	$\begin{aligned} & 1200 \\ & 1200 \\ & 1200 \\ & 1200 \\ & 1200 \\ & 1200 \end{aligned}$	$\begin{aligned} & 2400 \\ & 2800 \\ & 3200 \\ & \\ & 3600 \\ & 4000 \\ & 4800 \end{aligned}$	$\begin{aligned} & 4800 \\ & 5600 \\ & 6400 \\ & 7200 \\ & 8000 \\ & 9600 \end{aligned}$
		$\begin{aligned} & 231-520 \\ & 277.623 \\ & 324.779 \\ & 370.831 \\ & 416.935 \\ & 462-1040 \end{aligned}$	PC PC PC PC PC PC	$\begin{aligned} & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \end{aligned}$	$\begin{aligned} & 3000 \\ & 3600 \\ & 4200 \\ & 4800 \\ & 5400 \\ & 6000 \end{aligned}$	$\begin{array}{r} 6000 \\ 7200 \\ 8400 \\ 9600 \\ 10800 \\ 12000 \end{array}$
		$\begin{aligned} & 270-606 \\ & 308-693 \\ & 347.779 \\ & 385-866 \\ & 481.1082 \end{aligned}$	$\begin{aligned} & P C \\ & P C \end{aligned}$	$\begin{aligned} & 2500 \\ & 2500 \\ & 2500 \\ & 2500 \\ & 2500 \end{aligned}$	$\begin{aligned} & 3500 \\ & 4000 \\ & 4500 \\ & 5000 \\ & 6250 \end{aligned}$	$\begin{array}{r} 7000 \\ 8000 \\ 9000 \\ 10000 \\ 12500 \end{array}$
		$\begin{aligned} & 247.554 \\ & 277-623 \\ & 308-693 \\ & 385-866 \\ & 462-1040 \end{aligned}$	PC PC $P C$ PC PC	$\begin{aligned} & 3000 \\ & 3000 \\ & 3000 \\ & 3000 \\ & 3000 \end{aligned}$	$\begin{aligned} & 3200 \\ & 3600 \\ & 4000 \\ & 5000 \\ & 6000 \end{aligned}$	$\begin{array}{r} 6400 \\ 7200 \\ 8000 \\ 10000 \\ 12000 \end{array}$

(1) Maximum motor futi load current based on use at $75^{\circ} \mathrm{C}$ rated conductors and ambuents inside enelenturet thet truereding fete.

Table D: Derating Chart for Non-Compensated Thermal Magnetic Breakers Calibrated for $40^{\circ} \mathrm{C}$

Table E: Current Limiting Fuse Ratings (See page 14 for "How to Use Table E") In series with standard and MARK 75® thermal magnetic circuit breakers.

How to Use Table E (Page 13)
Table \mathbf{E} is based on the following type fuses

240 volts: Class K1

600 Volts: Class J. K1 or L
The ratings listed are for applications up to $200,000 \mathrm{amps}$ sym. available faults.

When applying 480 or 600 volt breakers on 240 volt (or less) circuits, the maximum line side fuse rating may be increased as follows:

Breaker Rated 480 or 600 Volts Ac	Increase Using	
	c. 00 Voit Fuses	250 Volt Fuses
EHB, FB	20\%	25\%
JA, KA, JB, KB	20\%	50\%
LA, LAB, LB, LBB, LC	20\%	50\%
MA, MC	20\%	50\%
NB, NC	20\%	50\%
PB, PC, PCC	20\%	25\%

Minimum Current Limiting Fuse Rating

 The columns headed "Min. Fuse" show the minimum fuse rating whose characteristic curve will not cross the thermal portion of the breaker characteristic curve. Thus, the fuse will not blow unless the short circuit current exceeds the instantaneous trip setting of the circuit breaker.The magnetic trip setting of the Quicklags, Types CA, DA, EB, EHB , and FB thermal magnetic circuit breakers is non-adjustable. The instantaneous trip settings of the types JA, KA. HKA, JB, KB, HKB, LA, LAB, HLA, LB, LBB, HLB, MA, HMA, MC, HMC, NB, HNB, NC, HNC, PB, PC, and PCC, are adjustable so that two columns, headed "Min. Fuse Inst. Trip LO" and "Min. Fuse inst. Trip HI" are provided to show the minimum fuse ratings at the low and high position of the magnetic trip setting. Other fuse ratings may be used between those shown for the LO and HI positions of the adjustable instantaneous trip, provided the magnetic trip adjustment is correctly set

Maximum Current Limiting Fuse

Rating on Load Side of Breakers

The columns headed "Max. Fuse Load Side" show the maximum fuse rating which may be used on the load side of the breaker. It should be noted that the ratings given are less than the ratings which may be used on the line side The lower ratings are used because of the arc voitage created by the fuses during interruption. These voltages will be impressed across the poles of a 2 or 3 pole breaker when the fuses are applied on the load side. At the same time, ionized gases are generated. If fuses of higher rating than those shown in the table are used on the load side, the arc voltage and the ronized gases mey cause flash-over between the poles of the breaker. This condition is not present it the fuses are used on the line side.

Maximum Current Limiting Fuse

Rating on Line Side of Breaker

The columns headed "Max. Fuse Line Side" show the maximum fuse rating for each circuit breaker ampere rating which may be used in series with, and on the line side of the breaker These are the maximum fuse ratings which will limit the short circuit current to within the capacity of the break $-r$ and also protect the thermal elements. Wh- these ratings are used, the fuses will not blow unless the short circuit approaches the maximum interrupting rating of the breaker. Applied in this mannor, nuisance fuse blowing is minimized

General Application Rules

1. In an application involving several different frame sizes or ampere ratings of circuit breakers, the maximum fuse rating is that one which will protect the smallest breaker in the system. The minimum fuse rating should be no less than the minimum rating shown for the largest breaker in the system
2. If the application in question will not conform to the above requirement, the application is not in accordance with sound engineering practice.

Current Limiter Selectivity

Within an electrical distribution system, it is economically advantageous to provide selectivity whenever possible. Selectivity defines the interrelated performance of protective devices. The following is a tabulation of information necessary to apply Tri-Pac breakers and MCP's or FB breakers, with current limiter attachments in various arrange ments, to provide coordination of limiters such that serious damage will not occur to the upstream limiter should the downstream limiter meit, regardless of the fault current within the maximum rating of the devices.

This does not im;iy that there will be any selectivity between tripping of the breakers involved but applies only to the current limiters as follows:

Tri-Pac's used with Tri-Pac's
Tri-Pac's used with breaker and current limiter attachment
Breaker and limiter attachment used with breaker and limiter attachment.

This is based on the $1^{12} t$ values of the limiters. To insure selectivity, $1^{2}+$ value of the upstream limiter must be at least three times that of the downstream limiter. Example: EL3030R will coordinate with 200LAP08.

Limiter	$12 \mathrm{t} \times 10^{6}$
FB Current Limiters	
LFB3070R LFB3150R LFB3003MR LFB3005MR LFB3010MR LFB3025MR LFB3030MR LFB3050MR LFB3070MR LFB3100MR LFB3150MR	$\begin{aligned} & 35 \\ & 7 \\ & .002 \\ & .004 \\ & .006 \\ & .03 \\ & .33 \\ & 15 \\ & .35 \\ & 415 \\ & 7 \end{aligned}$
MCP Current Limiters	
EL3003R EL3007R EL3015R EL3030R EL3050R EL3100R EL3150R	$\begin{aligned} & .002 \\ & .004 \\ & .02 \\ & .03 \\ & 15 \\ & 415 \\ & 7 \end{aligned}$
Tri-Pac Current Limiters	
100 FBP06 200LAP08 400 L AP10 500LAP:5 500 NBP12 800 NBP20 1000PBPR20 1600 PBPR30	$\begin{array}{r} 40 \\ 1.30 \\ 4.0 \\ 50 \\ 8.0 \\ 13.0 \\ 200 \\ 29.0 \end{array}$

Table F: Allowable Ampacities of Insulated Copper Conductors ${ }^{(1)}$ (
Not more than three conductors in raceway or cable or direct burial (Based on ambient temperature of $30^{\circ} \mathrm{C} .86^{\circ} \mathrm{F}$.) (D)

Size AWG	$\begin{gathered} 60^{\circ} \mathrm{C} \\ 140^{\circ} \mathrm{F} \end{gathered}$	$\begin{gathered} 75^{\circ} \mathrm{C} \\ 167^{\circ} \mathrm{F} \end{gathered}$	$\begin{array}{r} \hline 85^{\circ} \mathrm{C} \\ 185^{\circ} \mathrm{F} \end{array}$	$\begin{gathered} 90^{\circ} \mathrm{C} \\ 194^{\circ} \mathrm{F} \end{gathered}$	$\begin{aligned} & 110^{\circ} \mathrm{C} \\ & 230^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & 125^{\circ} \mathrm{C} \\ & 257^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & 200^{\circ} \mathrm{C} \\ & 392^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & 250^{\circ} \mathrm{C} \\ & 432^{\circ} \mathrm{F} \end{aligned}$
	Types AUW (14-2) T, TW, UF	Types RH. RHW RUH (14-2) THW THWN XHHW USE	$\begin{aligned} & \text { Types } \\ & \text { V } \\ & \text { Mi } \end{aligned}$	Types TA. T3S. SA. AVE SIS, FEP. FEPB. RHH. THHN XHHW 2	Types AVA. AVL	Types A) $(14-8)$ AlA	Types A (14-8). AA. FEP(6) FEPB (6	Type TFE Nickel or nickel coated coppei only
$\begin{array}{r} 18 \\ 16 \\ 14 \\ 12 \\ 10 \\ 8 \end{array}$	$\begin{aligned} & 15 \\ & 20 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 30 \\ & 45 \end{aligned}$	$\begin{aligned} & 22 \\ & 25 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 21 \\ & 22 \\ & 254 \\ & 3 \cup 4 \\ & 404 \\ & 50 \end{aligned}$	$\begin{aligned} & 30 \\ & 35 \\ & 45 \\ & 60 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 65 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & 55 \\ & 70 \end{aligned}$	$\begin{aligned} & 40 \\ & 55 \\ & 75 \\ & 95 \end{aligned}$
$\begin{aligned} & 6 \\ & 4 \\ & 3 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$	$\begin{array}{r} 55 \\ 70 \\ 80 \\ 95 \\ 110 \end{array}$	$\begin{array}{r} 65 \\ 85 \\ 100 \\ 115 \\ 130 \end{array}$	$\begin{array}{r} 70 \\ 90 \\ 105 \\ 120 \\ 140 \end{array}$	$\begin{array}{r} 70 \\ 90 \\ 105 \\ 120 \\ 140 \end{array}$	$\begin{array}{r} 80 \\ 105 \\ 120 \\ 135 \\ 160 \end{array}$	$\begin{array}{r} 85 \\ 115 \\ 130 \\ 145 \\ 170 \end{array}$	$\begin{array}{r} 13 \\ 120 \\ 145 \\ 165 \\ 190 \end{array}$	$\begin{aligned} & 120 \\ & 145 \\ & 170 \\ & 195 \\ & 220 \end{aligned}$
$\begin{aligned} & 1 / 0 \\ & 2 / 0 \\ & 3 / 0 \\ & 4 / 0 \end{aligned}$	$\begin{aligned} & 125 \\ & 145 \\ & 165 \\ & 195 \end{aligned}$	$\begin{aligned} & 150 \\ & 175 \\ & 200 \\ & 230 \end{aligned}$	$\begin{aligned} & 155 \\ & 185 \\ & 210 \\ & 235 \end{aligned}$	$\begin{aligned} & 155 \\ & 185 \\ & 210 \\ & 235 \end{aligned}$	$\begin{aligned} & 190 \\ & 215 \\ & 245 \\ & 275 \end{aligned}$	$\begin{aligned} & 200 \\ & 230 \\ & 265 \\ & 310 \end{aligned}$	$\begin{aligned} & 225 \\ & 250 \\ & 285 \\ & 340 \end{aligned}$	$\begin{aligned} & 250 \\ & 280 \\ & 315 \\ & 370 \end{aligned}$
$\begin{aligned} & 250 \\ & 300 \\ & 350 \\ & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & 215 \\ & 240 \\ & 260 \\ & 280 \\ & 320 \end{aligned}$	$\begin{aligned} & 255 \\ & 285 \\ & 310 \\ & 335 \\ & 380 \end{aligned}$	$\begin{aligned} & 270 \\ & 300 \\ & 325 \\ & 360 \\ & 405 \end{aligned}$	$\begin{aligned} & 270 \\ & 300 \\ & 325 \\ & 360 \\ & 405 \end{aligned}$	$\begin{aligned} & 315 \\ & 345 \\ & 390 \\ & 420 \\ & 470 \end{aligned}$	$\begin{aligned} & 335 \\ & 380 \\ & 420 \\ & 450 \\ & 500 \end{aligned}$	U \cdots \cdots \cdots \cdots	\ldots \ldots \ldots \ldots
$\begin{aligned} & 600 \\ & 700 \\ & 750 \\ & 800 \\ & 900 \end{aligned}$	$\begin{aligned} & 355 \\ & 385 \\ & 400 \\ & 410 \\ & 435 \end{aligned}$	$\begin{aligned} & 420 \\ & 460 \\ & 475 \\ & 490 \\ & 520 \end{aligned}$	$\begin{aligned} & 455 \\ & 490 \\ & 500 \\ & 515 \\ & 555 \end{aligned}$	$\begin{aligned} & 455 \\ & 490 \\ & 500 \\ & 515 \\ & 555 \end{aligned}$	$\begin{aligned} & 625 \\ & 560 \\ & 580 \\ & 600 \end{aligned}$	$\begin{aligned} & 545 \\ & 600 \\ & 620 \\ & 640 \end{aligned}$		' C .
$\begin{aligned} & 1000 \\ & 1250 \\ & 1500 \\ & 1750 \\ & 2000 \end{aligned}$	$\begin{aligned} & 455 \\ & 495 \\ & 520 \\ & 545 \\ & 560 \end{aligned}$	$\begin{aligned} & 545 \\ & 590 \\ & 625 \\ & 650 \\ & 665 \end{aligned}$	$\begin{aligned} & 585 \\ & 645 \\ & 700 \\ & 735 \\ & 775 \end{aligned}$	$\begin{aligned} & 585 \\ & 645 \\ & 700 \\ & 35 \\ & 775 \end{aligned}$	$\begin{aligned} & 680 \\ & 785 \\ & 840 \end{aligned}$	730	\cdots	,

Table F-1: Correction Factors - Ambient Temps. Over 30 C. 86 F.

C.	F.	$\begin{gathered} 60^{\prime} \mathrm{C} \\ 140^{\circ} \mathrm{F} \end{gathered}$	$\begin{array}{r} 75^{\circ} \mathrm{C} \\ 167^{\prime} \mathrm{F} \end{array}$	$\begin{array}{r} 85^{\circ} \mathrm{C} \\ 185^{\circ} \mathrm{F} \end{array}$	$\begin{array}{r} 90^{\circ} \mathrm{C} \\ 194^{\circ} \mathrm{F} \end{array}$	$\begin{aligned} & 110^{\circ} \mathrm{C} \\ & 230^{\prime} \mathrm{F} \end{aligned}$	$\begin{aligned} & 125^{\circ} \mathrm{C} \\ & 257^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & 200^{\circ} \mathrm{C} \\ & 392^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & 250^{\circ} \mathrm{C} \\ & 482^{\prime} \mathrm{F} \end{aligned}$
40	104	82	88	90	. 91	94	95		
45	113	71	82	. 85	. 87	. 90	92		
50	122	58	. 75	80	82	87	89		
55	131	41	. 67	74	76	83	. 86		
60	1 ± 0	\cdots	. 58	67	71	79	83	91	. 95
70	158	\therefore	35	52	. 58	71	. 76	. 87	. 91
75	167	+.	\times	43	50	66	72	86	89
80	176	\ldots	.	. 30	. 41	. 61	69	. 88	. 87
90	194	\cdots	\cdots	\%	..	. 50	61 51	80	83
100	212	*	.	**	\cdots	A	. 51	77	. 80
120	248	*.	-.	\cdots	-	-	..	. 69	72
140	284	\cdots	*	\therefore	\cdots	\cdots	\cdots	. 59	59
160	320	\cdots	\cdots	\cdots	*	\cdots	\cdots	\cdots	. 54
180	356	*	\cdots	*	\cdots	-	\%	.	. 50
200	392	\%.	*	\cdots	\cdots	1	\%	*	43
225	437	\%			.	.			. 30

Table G: Allowable Ampacities of Insulated Aluminum and Copper-Clad Aluminum Conductors (1)
Not more than three conductors in rareway or cable or direct burial (Based on ambient temperature of $30^{\circ} \mathrm{C} .86^{\circ} \mathrm{F}$.) (1)

Wire Size AWG MCM	Temperature Rating of Conductor (See Table F-1)						
	$\begin{array}{r} 60^{\circ} \mathrm{C} \\ 140^{\circ} \mathrm{F} \\ \hline \end{array}$	$\begin{array}{r} 75^{\circ} \mathrm{C} \\ 167^{\circ} \mathrm{K} \end{array}$	$\begin{gathered} 85^{\circ} \mathrm{C} \\ 185^{\circ} \mathrm{F} \end{gathered}$	$\begin{gathered} 90^{\circ} \mathrm{C} \\ 194^{\circ} \mathrm{F} \end{gathered}$	$\begin{aligned} & 110^{\circ} \mathrm{C} \\ & 230^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & 125^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & 200^{\circ} \mathrm{C} \\ & 302^{-\mathrm{F}} \end{aligned}$
	Typas RUW (12.2). T. TW, UF	$\begin{aligned} & \text { Types } \\ & \text { RH. } \\ & \text { THW, } \\ & \text { RUH } \\ & (12 \cdot 2) \text {. } \\ & \text { THW } \\ & \text { THWN. } \\ & \text { XHHW, } \\ & \text { USE } \end{aligned}$	$\begin{aligned} & \text { Types } \\ & \text { V. } \\ & \text { Mi } \end{aligned}$	Types TA. TBS SA, AVB. SIS. RHH. THHN XHHWZ	Types AVA. AVL.	$\begin{aligned} & \text { Types } \\ & \text { Al, } \\ & (12-8) \text {. } \\ & \text { AlA } \end{aligned}$	$\begin{aligned} & \text { Types } \\ & \text { A } \\ & (128) . \\ & \text { AA } \end{aligned}$
$\begin{array}{r} 12 \\ 10 \\ 8 \\ 6 \end{array}$	$\begin{aligned} & 15 \\ & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 15 \\ & 25 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 40 \\ & 55 \end{aligned}$	$\begin{aligned} & 25(5) \\ & 30(5) \\ & 40 \\ & 55 \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \\ & 45 \\ & 60 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 65 \end{aligned}$	$\begin{aligned} & 30 \\ & 45 \\ & 55 \\ & 75 \end{aligned}$
$\begin{aligned} & 4 \\ & 3 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 / 5 \\ & 65 \\ & 75 \\ & 85 \end{aligned}$	$\begin{array}{r} 65 \\ 75 \\ 90 \\ 100 \end{array}$	$\begin{array}{r} 70 \\ 80 \\ 95 \\ 110 \end{array}$	$\begin{array}{r} 70 \\ 80 \\ 95 \\ 110 \end{array}$	$\begin{array}{r} 80 \\ 95 \\ 105 \\ 125 \end{array}$	$\begin{array}{r} 90 \\ 100 \\ 115 \\ 135 \end{array}$	$\begin{array}{r} 95 \\ 115 \\ 130 \\ 150 \end{array}$
$\begin{aligned} & 1 / 0 \\ & 2 / 0 \\ & 3 / 0 \\ & 4 / 0 \end{aligned}$	$\begin{aligned} & 100 \\ & 115 \\ & 130 \\ & 155 \end{aligned}$	$\begin{aligned} & 120 \\ & 135 \\ & 155 \\ & 180 \end{aligned}$	$\begin{aligned} & 125 \\ & 145 \\ & 165 \\ & 185 \end{aligned}$	$\begin{aligned} & 125 \\ & 145 \\ & 165 \\ & 185 \end{aligned}$	$\begin{aligned} & 150 \\ & \mathbf{y} \\ & 195 \\ & 215 \end{aligned}$	$\begin{aligned} & 160 \\ & 180 \\ & 210 \\ & 245 \end{aligned}$	$\begin{aligned} & 180 \\ & 200 \\ & 225 \\ & 270 \end{aligned}$
$\begin{aligned} & 250 \\ & 300 \\ & 350 \\ & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & 170 \\ & 190 \\ & 210 \\ & 225 \\ & 260 \end{aligned}$	$\begin{aligned} & 205 \\ & 230 \\ & 250 \\ & 270 \\ & 310 \end{aligned}$	$\begin{aligned} & 215 \\ & 240 \\ & 260 \\ & 290 \\ & 330 \end{aligned}$	$\begin{aligned} & 215 \\ & 240 \\ & 260 \\ & 290 \\ & 330 \end{aligned}$	$\begin{aligned} & 250 \\ & 275 \\ & 310 \\ & 335 \\ & 380 \end{aligned}$	$\begin{aligned} & \hline 270 \\ & 305 \\ & 335 \\ & 360 \\ & 405 \end{aligned}$	\ldots. \cdots \cdots
$\begin{array}{r} 600 \\ 700 \\ 750 \\ 800 \\ 900 \\ 1000 \end{array}$	$\begin{aligned} & 285 \\ & 310 \\ & 320 \\ & 330 \\ & 355 \\ & 375 \end{aligned}$	$\begin{aligned} & 340 \\ & 375 \\ & 385 \\ & 395 \\ & 425 \\ & 445 \end{aligned}$	$\begin{aligned} & 370 \\ & 395 \\ & 405 \\ & 415 \\ & 455 \\ & 480 \end{aligned}$	$\begin{aligned} & 370 \\ & 395 \\ & 405 \\ & 415 \\ & 455 \\ & 480 \end{aligned}$	$\begin{aligned} & 425 \\ & 455 \\ & 470 \\ & 485 \\ & 560 \end{aligned}$	$\begin{aligned} & 440 \\ & 485 \\ & 500 \\ & 520 \\ & 600 \end{aligned}$. \quad.
$\begin{aligned} & 1250 \\ & 1500 \\ & 1750 \\ & 2000 \end{aligned}$	$\begin{aligned} & 405 \\ & 435 \\ & 455 \\ & 470 \end{aligned}$	$\begin{aligned} & 485 \\ & 520 \\ & 545 \\ & 560 \end{aligned}$	$\begin{aligned} & 530 \\ & 580 \\ & 615 \\ & 650 \end{aligned}$	$\begin{aligned} & 530 \\ & 580 \\ & 615 \\ & 650 \end{aligned}$	$\begin{aligned} & 650 \\ & 705 \end{aligned}$	\cdots	? \cdots \cdots

Caution

Molded case circuit breakers are listed with UL, Inc. using $60^{\circ} \mathrm{C}$ rated conductor for ratings up to 100 amperes and $75^{\circ} \mathrm{C}$ rated conductor for all higher ratings. The use σ^{\prime} smaller conductor with a highet temperature insulation rating will cause the breaker to operate hot and result in premature tripping and/or damage to the breaker.
(1) For ambient temperatures over $30^{\circ} \mathrm{C}$, see Table F-1, Correction Factors
(2) For dry locations only See Table $310-13$ of N E C.
(2) These ampacities retate onty to conductors described in Table 310-13
(4) Ampacities for Types FEP, FEPB, RHH, THHN and XHHW conductors for sizes

14,12 and 10 shall be the same as designated for $75^{\circ} \mathrm{C}$ conductors in this tabie
(5) Ampacities for Types RHH. THHN and XHHW conductors for sizes 12 and 10
shail be the same as designated for $75^{\circ} \mathrm{C}$ conduct. - in this table
(6) Specia use only See Table 310.13

[^2]
Field Testing of Molded Case Circuit Breakers

Data obtained from field tests of molded case breakers often differs from published information, resulting in confusion on the part of the user as to which is correct.

Factory calibration and testing, on which published information is based, nearly duplicates actual operating conditions, i.e., $40^{\circ} \mathrm{C}$ ambient temperature, with poles in series in case of two and three pole breakers. Field testing, on the other hand, is usually done at room temperature ($25^{\circ} \mathrm{C}$) on individual poles.

Field testing should be performed by qualified individuals using the proper equipment and procedure. Such a service is available through the Westinghouse Electric Service Division. However, as a guide to those users who de sire to do their own testing, the following procedure is offered:

Test Procedure

Any deviation from this procedure will resuit in time values different from those in Table 2. requiring interpretation of those values to adjust for the difference.

1. Connect breakers as instructed in Table 1. one pole at a time, using four feet of wire or cable as specified.
2. Conduct test at 300% of breaker rating in an ambient temperature of $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$.
3. Resulting trip time should agree with trip times in Table 2.
4. Allow at least five (5) minutes cooling time between tests of adjacent poles.
(1) If copper bus is used in heu of cable, on these ratings. base size on 1000 amps. per sq. inch
2) IR1. PAC breakers must he testad ming dummy fuses or shorting the fuse terminal with a copper strap. or tesults will not be accurate and unnecessary biowing
of fuses may result.

Table 1
Four feet of copper wire or cable, sized as incicated below, should be used for each pole.

Breaker Amp. Rating	Wire Size	No. of Czbles Per Pole	Breaker Amp. Rating	Wire	Size

Table If
Test values are based on 300% of breaker rating on individual poles at $25^{\circ} \mathrm{C}$
Type Breake

Breake:	No. of	Amp.	Trip Time	conds
		Rating	Minimum	Maximum
Standard Breakers				
Quicklag B, C, P, HC, HP: Types BA, BAB, HBA	1	15.40	5	35
Quicklag B, C, P, HC, HP; Types BA, BAB, HBA	1	50.70	6	40
Ouicklag B, C, P, HC, HP: Types BA, BAB, HBA	2,3	15-40	4	45
Quicklag B, C, P, HC, HP, Types BA, BAB, H8A	2,3	$15-40$ 50.100	4	45 70
BA 277 Volt	2.3	15-30	12	35
CA, CAH 2.3 .30				
DA EHB HFP	2,3 2.3	$125 \cdot 225$ 250.400	15	140
EB, EHB, HFB	2,3	250.400 15.40	65	250 35
EB, EHB, HFE	1	15.40 50.100	8 22	35 75
ES, EHE, FB, HFB	2,3	15.40	22 9	75 45
EB. EHB FB, HFB 23.				
JA KA HKA	2.3	50.150 70.100	23	110 150
$\frac{J A(K A) H K A}{J B K B H K B}$	2,3			450
JB, KB, HKB JB, KB, HKB	2.3	$125-225$ 70.100	65	200
JB, KB, HKB JB, KB, HKB	2.3	125-225	10	200
JB, KB, HK LB, LBB, HL	2,3	r-250	25	200 250
LB, LBB, HLB	2,3	70-100	65	250 150
LB, LBB, HLB	2,3	125.400	50	250
LA, HLA (400 amp frame)	2,3	125.400	50	250
LA. HLA (600 amp frame)	2,3	250-600	50	250
MA. HMA	2.3	125.600	35	225
$\begin{array}{llll}\text { MA HMA } & 2.3 & 700-80 \mathrm{C} & 100\end{array}$				
NB, HNB	2,3	$\begin{aligned} & 700-800 \\ & 700 \cdot 1200 \end{aligned}$	100 120	450 450
PB	2,3	600-1600	120 150	450 575
PB	2.3	1800-3000	135	600

TRI-PAC Breakers(2)

FB TRI-PAC				
FB TRI-PAC	2,3 2,3	$15-40$ 50.100	9	45
LA TRI-PAC	2.3	50.100	23	110
LA TRI-PAC	2.3	70-300	70	170
NB TRI.PAC	2.3	350,400	115	230
NB TAI-PAC	2.3	300-400	180	480
PB TRI-PAC	$\begin{aligned} & 2,3 \\ & 3, \end{aligned}$	$500 \cdot 800$	210	540
SELTRONIC Breakers				
LC, HLC	2.3			
MC, HMC	2.3	400-800	25	150 +50
NC, HNC	2.3	600.1200		+ 500
PC, PCC	2,3	-600-1200	25	300
	2,3	1000-3000	25	450

Magnetic Only Breakers
Due to the many possible outside influencing factors, it may be very difficult to duplicate the factory calitration of magnetic only breakers or the instantaneous portion of standard thermai magnetic breakers. Such factors as the presence of steet, tts thickness and proximity to tha breaker, if the breaker is tiont or rear connected, the fype of enclosute in which the breaker is mounted, current waveshape cument tate af risear and pected, the capacity all exert varying degrees of influence on the magnetic trip tesponse of a breaker, and pawer supply

Molded Case Breakers for Application on Resistance Welding Circuits

Short circuit protection for resistance welding devices can be obtained by properly applying instantaneous trip molded case circuit breakers. These breakers permit normally high welding currents, but trip instantaneously if a short circuit develops.

These breakers include standard molded case circuit breaker features such as trip-free operation, dead front and single phase protection. Because the breakers are resettable after tripping, replacement costs and downtime are minimized.

The proper breaker can be selected by using the curve on page 19, and the instantaneous Trip Range tables at right using the "duringweld" amperes and \% duty cycle.

Duty cycle is based on the one minute averaging time of the breaker, and can be determined as follows.

$$
\% \text { Duty Cycle }=\frac{\text { Weld Time } \times 100}{\text { Weld Time }+ \text { Off Time }}
$$

"During-weld" amperes can be obtained from the welder manufacturer, or as follows

During-weld Amperes $=$
During weld KVA $\times 1000$
Voitage
Interrupting capacity of the breaker should be within the maximum available at the point of application.

For additional information on complete breakers listed in the tables, refer as follows:

Prices: Price List 29-020 P WE A
Ordering Information, etc:
Tech. Data 29-120 TWE A
Dimensions: Dimension Sheet 29-170
Application: Application Data 29-160

\% Outy Cycte	100 A Frame		1 150 A Frame		225 A Frame		250 A Frame	
	Weld Cumment Amps	Inst Calib. Amps	Weid Cument Amps	inst. Calit Amps	Weld Current Amps	inst Catib Amps	Weld Current Amps	Inst Catit Amps
1 2 3 3 4 5 6 7 8 8 3 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100	$\begin{array}{r} 1000 \\ 707 \\ 577 \\ 500 \\ 447 \\ 408 \\ 378 \\ 353 \\ 333 \\ 316 \\ 258 \\ 224 \\ 200 \\ 183 \\ 168 \\ 158 \\ 149 \\ 141 \\ 135 \\ 129 \\ 124 \\ 120 \\ 116 \\ 1112 \\ 109 \\ 105 \\ 103 \\ 100 \end{array}$		1500 1060 866 750 671 612 568 530 500 474 387 336 300 275 252 237 224 212 203 194 186 180 174 16. 164 158 155 150		$\begin{array}{r} 2250 \\ 1592 \\ 1300 \\ 1125 \\ 1007 \\ 919 \\ 851 \\ 795 \\ 750 \\ 711 \\ 604 \\ 505 \\ 450 \\ 412 \\ 378 \\ 356 \\ 336 \\ 318 \\ 304 \\ 290 \\ 279 \\ 270 \\ 261 \\ 252 \\ 246 \\ 236 \\ 232 \\ 225 \end{array}$		$\begin{aligned} & 2500 \\ & 1777 \\ & 1443 \\ & 1250 \\ & 1118 \\ & 1020 \\ & 945 \\ & 883 \\ & 833 \\ & 790 \\ & 645 \\ & 560 \\ & 500 \\ & 458 \\ & 420 \\ & 395 \\ & 373 \\ & 353 \\ & 338 \\ & 323 \\ & 310 \\ & 300 \\ & 290 \\ & 280 \\ & 272 \\ & 263 \\ & 257 \\ & 250 \end{aligned}$	
\% Dutv Cycte	400 A Frame		600 A Frame		800 A Frame		1200 A	ame
	Weld Cureent Amps	Inst Calib Amps	Weld Current Amps	Inst. Catib Amps	Weid Current Amps	Inst Calib Amps	Weld Cument Amps	Inst Calib. Amps
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 35 \\ 40 \\ 45 \\ 50 \\ 55 \\ 60 \\ 65 \\ 70 \\ 75 \\ 80 \\ 85 \\ 90 \\ 95 \\ 100 \end{array}$	$\begin{aligned} & 4000 \\ & 2828 \\ & 2310 \\ & 2000 \\ & 1790 \\ & 1635 \\ & 1512 \\ & 1412 \\ & 1332 \\ & 1264 \\ & 1032 \\ & 896 \\ & 800 \\ & 731 \\ & 672 \\ & 632 \\ & 596 \\ & 564 \\ & 540 \\ & 516 \\ & 496 \\ & 480 \\ & 464 \\ & 448 \\ & 436 \\ & 420 \\ & 411 \\ & 400 \end{aligned}$		$\begin{aligned} & 6000 \\ & 4250 \\ & 3450 \\ & 3000 \\ & 2785 \\ & 2450 \\ & 2270 \\ & 2120 \\ & 2000 \\ & 1896 \\ & 1550 \\ & 1345 \\ & 1200 \\ & 1100 \\ & 1010 \\ & 950 \\ & 895 \\ & 846 \\ & 811 \\ & 775 \\ & 745 \\ & 720 \\ & 696 \\ & 672 \\ & 655 \\ & 631 \\ & 618 \\ & 600 \end{aligned}$		$\begin{aligned} & 8000 \\ & 5655 \\ & 4620 \\ & 4000 \\ & 3580 \\ & 3270 \\ & 3024 \\ & 2824 \\ & 2664 \\ & 2528 \\ & 2064 \\ & 1792 \\ & 1600 \\ & 1462 \\ & 1344 \\ & 1264 \\ & 1192 \\ & 1128 \\ & 1080 \\ & 1032 \\ & 992 \\ & 960 \\ & 928 \\ & 896 \\ & 872 \\ & 840 \\ & 822 \\ & 800 \end{aligned}$		12000 8500 6900 6000 5570 4900 4540 4240 4000 3792 3100 2690 2400 2200 2020 1900 1790 1692 1622 1550 1490 1440 1392 1344 1310 1262 1236 1200	4 4 8 0 8 0 0

Page 18

Molded Case Breakers for Application on Resistance Welding Circuits, Continued

* Duty Cycte	2000 A Frame		2500 A Frame			3000 A Frame	
	Weld Curtent Amps.	Inst Catit. Amps.	Weld Current Ampe.	inst Calrb. Amps		Weid Current Amps.	Inst. Calib Amps
1 2 3 4 4 5 6 7 7 8 9 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100	20000 14140 11550 10000 8950 8175 7560 7060 6660 6320 5160 4480 4000 3655 3360 3160 2980 2820 2700 2580 2480 2400 2320 2240 2240 2180 2100 2050 2050 2000		25000 17680 14420 12500 11280 10200 9450 8830 8330 7900 6450 5600 5000 4580 3950 3725 3525 3395 3225 3100 3000 2900 2800 2625 2580 2500		4 ∞ 0 8 8 0 8 8	30000 21250 17250 15000 13925 12250 11350 10600 $\begin{array}{r}10000 \\ 9480 \\ \hline 750\end{array}$ 7750 6725 5500 5050 4750 4475 4230 4055 3875 3725 3600 3480 3360 3275 3155 3090 3000	

\% Duty Cycle Vs. During-Weld Amperes

Westinghouse Electric Corporation
Low Voltage Breaker Division
Beaver, Pennsylvania 15009

29-160 A WE A
Application Data

September, 1976
Supersedes Application Data
29-160 all previous issues.
Mailed to: E, D, C/1901, 1928/DB

Continuous Ampere Ratings

Underwriters' Laboratories, Inc. Listed $70,90,100,125,150,175,200,225$

Interrupting Ratings, Amperes

Underwriters' Laboratories, Inc. Listed KA
Types JA and KA
240 Voits Ac: 30,000 Asym., 25,000 Sym 480 Volts Ac: 25,000 Asym , 22.000 Sym 600 Voits Ac: 25,000 Asym., 22.000 Sym 250 Volts Dc. 10,000

Mark 75 Type HKA

240 Volts Ac: 75,000 Asym. 65,000 Sym. 480 Volts Ac: 40,000 Asym., 35,000 Sym 600 Volts Ac: 30,000 Asym., 25,000 Sym 250 Volts Dc: 20,000 (5)

Application

These breakers are designed for the protec tion of branch and feeder circuits. Being of compact size, they arg ideally suited for use in control panels, penetboards, switchboards or separate enclosures where a 2.25 ampere frame size breaker is required

MARK 75 Type HKA Breakers, because of their higher interrupting capacity, are ideally suited for use in network systems where unusually high fault currents are available.

Listed with Underwriters Laboratories, Inc
On all three phase Delta, grounded B phase applications, refer to Westinghouse.

Construction

These breakers have all the standard AB breaker features. Two and three pole breakers are supplied in one frame size; the current carrying parts being omitted from the center pole for two pole breakers. In addition, the MARK 75 Type HKA molded case is a higher strength gis is polyester material with greater resistance to tracking. Type JA breakers have non-interchangeable trip units. Types KA and HKA have interchangeable trips.

Federal Specification W-C-375b
See tabulation on page 20.1

Terminals

Two terminals required per pole. Terminals are Underwriters' Laboratories, Inc. listed for wire type and range listed below. When used with aluminum conductors, use joint compound

Terminal arrangement permits ready use of other circuit connecting means, such as tearconnecting studs, panelboard connectors and plug-in adaptor kits.

Operation

When the breaker contacts are open the handle is in either the mid or OFF position If in the mid-position the breaker has been tripped automatically. The latch must be reset by moving the operating handle to the extreme OFF position before attempting to restore service. Contacts may be closed, after reset ting the latch, by moving the handie to the ON position. JA breakers may be mounted in an inverted position and are approved for reverse feed. (4) Types KA and HKA may be mounted in an inverted position, but are not approved for reverse feed. The toggle handle operates with the following forces in pounds from the end of the handle: $\mathrm{ON}-24 \mathrm{lbs}$: OFF 10 lbs : reset -15 lbs .

Thermal Magnetic Breakers

These breakers are equipped with thermal front-adjustable magnetic trip elements Thermal trip elements are of an indirectly heated bimetallic type having a long time delay well suited for starting motors having high inrush currents of long duration. Instantaneous
magnetic trip settings may be adjusted between established limits to take care of cir cuit surge conditions Trip units are noninterchangeabie on JA breakers, and interchangeable on Type KA and HKA

Magnetic Trip Setting and Range ${ }^{(2)}$								
Ampe	$\begin{aligned} & \text { re Rati } \\ & 70 \end{aligned}$	$\begin{array}{r} \text { ting } \\ 90 \end{array}$	100	125	150	175	200	225
High	700	900	1000	1250	1500	1/50	2000	2250
Low	360	450	500	625	750	875	1000	1125

Magnetic Only Circuit Interrupters 3.

These are breakers with adjustable magnetic trip elements only, for applications where short circuit protection only is required. Mag. netic trip ranges are the same as those listed for thermal-magnetic breakers, but the continuous current ratings in ail cases are 225 amperes.

Ambient Compensating Breakers(3)

Have thermal and magnetic trip elements. They are thermal compensating to carry full load at $50^{\circ} \mathrm{C}$ while also meeting U/L trip requirements at $25^{\circ} \mathrm{C}$. Can be applied where a wide range of ambients is experienced
Saf-T-Vue Breakers (JA, KA Only) Saf-T-Vue breakers are similar to standard breakers except that they have a transparent window located over the breaker contacts Saf-T-Vue breakers are commonly used in steel mill applications where sight of contacts is required. Can be supplied in all standard ratings.

Molded Case Switches (JA, KA Only)

 (Non-Auto Interrupters)Breakers with non-automatic details (latch bracket and bridging strap) can be installed where a heavy-duty, high-capacity disconnect switch without overcurrent protection is required. Accessories, such as shunt trip, undervoltage release, etc., cannot be field mounted in molded case switches as a dummy trip is required for mounting. Accessories can be mounted if specified when breaker is ordered.

Mining Service Breakers(1)

A special version of KA and HKA breakers is available to meet Bureau of Mines requirements for trailing cable applications. Refer to Technical Data 29-128 T WE A
(2) All adjustable magnetic trips are set in hugn position at factory. may be adjusted down to required limit in the fiefd.
(5) Not Underwiters Laboratoties Inc fisted.
4) Except when used with an auxihary switch having $2 \mathrm{~A} \cdot 24$ monlact
5) Batings above 10000 ampis are not til Listed.

Page 40

Typical Exploded View

Circuit Breaker Removal

Before inspecting, installing, or removing from a circuit, the circuit breaker should be in the OFF position, and if practicable the circuit should be de-energized. If the circuit cannot be de-energized insulated tools, rubber gloves and a rubber floor mat should be used.

To remove a rear-connected circuit breaker from its mounting. remove terminal stud locknuts and pull circurt breaker forward.

To remove a front-connected circuit breaker from its mounting, loosen screws in terminal lugs and remove cables from terminals. Remove circuit breaker mounting screws and pull circuit breaker forward.

To remove a circuit breaker equipped with plug-in mounting blocks from its mounting. remove breaker mounting screws and pull circuit breaker forward.

Inspection and Maintenance

Good maintenance procedure calls for nerodic inspection of ali electrical apparatus including molded case circuit breakers. Terminal lugs and trip units must be tight to prevent overheating Due to the inherent wiping action built into the moving contacts of all Westinghouse circuit breakers, operating the breaker several times under load will remove any high resistance film that may have formed. Under normal conditions, additional cleaning of contacts is not required. However, should operating and/or atmospheric conditions make it desirable to clean the contacts further, the following procedure is recommended.
2. Wipe contact surfaces with a clean cloth dipped in a chlorinated solvent. If surfaces are excessively oxidized or corroded, scrape lightly with a fine file before wiping.

It should be noted that removing the sealed cover of the type JA breaker voids the Underwriters' Laboratories, Inc., label.

Replacing Interchangeable Trip Unit. Types KA and HKA

1. Remove circuit breaker from its mounting per instructions under "circuit breaker removal"
2. Remove cover by removing four screws.
3. Remnve screws from the outer poles of the line side of the trip unit and loosen the screw in the center pole of the same side of the trip unit.
4. Lift trip unit from frame after removing the operating handle from its mounting.
5. Instaft new trip unit by reversing above procedure.
6. Before replacing frame cover and mounting circuit breaker, check for proper fatching and closing. Perform latching and closing operations per instructions under "operation". Open and close breaker several times to make certain proper latching has been achieved
7. Replace frame cover and mount circuit breaker.

Accessories and Modifications

Accessories and modifications available include: alarm switch, auxiliary switch, shunt trip, undervoltage release, line terminal shields. plug-in adaptor kits, rear-connecting studs. center studs, mechanical interlocks, panelboard connectors, paralleling straps, motor operators, handle locking devices, moisture and fungus treatment.

Dimensions, Inches (2)
Not to be used for construction purposes. See Dimension Sheet 29-170 for detailed dimensions.

(2) 2-pole treakers supplied in 3 -pole frames with center pole parts omutted

Further Information

Prices: Price List 29-020 PWE A Ordering Data: Tech. Data 29-120 TWE A Dimensions: Dimension Sheet 29-170 Trip Curves App. Data 29-161 A WE A

[^3]Westinghouse Electric Corporation
Low Voltage Breaker Division
Beaver, Pennsylvania 15009

Standard Types EB, EHB, , a and MARK 75B Type HFB
15-100 Amperes, 1, 2, 3 Poles; 15-150
Amperes 2, 3, 4 Poles
Supersedes Application Data
29-160 all previous issues.
Mailed to: E, D, C/1901, 1928/DB

29-160 A WE A
Application Data
Page 31

Continuous Ampere Ratings
Underwriters' Laboratories, Inc. Listed

Type EB

1 Pole, 120 Volts Ac, 125 Volts Dc: $15-100$
2, 3 Poles, 240 Volts Ac, $125 / 250$ Volts Dc: 15-100

Type EHB

1 Pole, 277 Volts Ac, 125 Volts Dc: $15-100$ 2 Poles, 480 Voits Ac, 250 Volts Dc: $15-100$ 3 Poles, 480 Volts Ac: 15-100

Type FB

2 Poles, 600 Volts Ac, 250 Volts Dc. 15-150 3,4 Poles, 600 Volts Ac: $15-150$

MARK 75 Type HFB

1 Pole, 277 Volts Ac, 125 Volts Dc: $15-100$
2 Poles, 600 Volts Ac, 250 Volts Dc: $15-150$
3 Poles, 600 Volts Ac: 15-150

Interrupting Ratings, Amperes

Underwriters' Laboratories, Inc. Listed
Type EB:
120, 240 Volts Ac: 10,000 (Asym. and Sym.) $120 / 250$ Volts Dc: 5,000

Type EHB:
240 Volts Ac: 20,000 Asym., 18,000 Sym. 277 Volts Ac: 15,000 Asym. 14000 Sym. 480 Voits Ac: 15,000 Asym, 14,000 Sym. 250 Volts Dc: 10,000

Type FB:
240 Voits Ac: 2^{r}. 00 Asym., 18.000 Sym. 480 Volts Ac: ' 000 Asym., 14,000 Sym. 600 Volts Ac: $1 \mathrm{j}, 000$ Asym., 14,000 Sym. 250 Volts Dc: 10,000

MARK 75 Type HFB

240 Volts Ac: 75,000 Asym., 65,000 Sym. (2) 480 Voits Ac: 30,000 Asym., 25,000 Sym. 600 Volts Ac: 20,000 Asym., 18,000 Sym. 250 Volts Dc: 20,000 ©

Application

These breakers are designed for use in control panels, convertible power panelboards. switchboards, motor control centers, lighting panels, bus duct plug-ins, individual enclosures and machine tool control panels. This breaker is used most frequently on motor branch circuits because its ratings cover most protective requirements. These breakers are listed with the Underwriters' Laboratories, Inc.

On all three phase Delta, grounded B phase applications, refer to Westinghouse.

Construction

These breakers have all the standard AB break features. The HFB breaker molded mat nal is a high impact, high tensile, flame resistant glass polyester, six times stronger and 21 times more resistant to tracking than the standard black moldarta.

Federal Specification W-C-375b
See tai - 'ation on page 20.1.

Terminals

Thermal magnetic breakers include load terminals only, Underwriters' Laboratories, Inc. listed for wire sizes and ranges listed below. Line terminals are availabia if required When used with aluminum conductors, use joint compound.

Max. Breaker Amps.	Wire Type	Wire Range
Standard Pressure Terminals		
20 (EB, EHB)	$\mathrm{Al} / \mathrm{Cu}$	* 14.810
100	Al/Cu	s 14.1/0
150	Al/ Cu	s.4-4/0
Optional Al/Cu Pressure Terminals		
50	Al/ Cu	s 14.54
100	$\mathrm{Al} / \mathrm{Cu}$	* 4-4/0

Removable terminal collar permits ready use of rear connected studs, plug-in adapter kits. or panelboard connector straps.

Operation

When the breaker contacts are open, the handle is in either the mid or OFF position.
If in mid-position, the breaker has been tripped automatically and the latch must be reset by moving the operating handle to the extreme OFF position before attempting to restore to service Contacts may be closed, after resetting the latch, by moving the handle to the ON position.

AB DE-ION ${ }^{\text {s }}$ Circuit Breakers

Page 32

Exploded View, Thermal Magnetic Breaker

adjusting knob in the front cover of the breaker. The adjustment is desigued to follow a linear scale, so that each of the settings provided has a definite ampere significance within calibration tolerances.

Magnetic Trip Range and Settings

Setting	Continuous Ampere : .ating						
	3	5	10	25	25	30	30
Low	?	15	35	32	66	50	90
High	22	45	110	80	190	15	270

Setting	Continuous Ampere Rating							
	50	50	70	100	100	150		
Low	66	160	100	150	450	575		
High	190	480	270	480	1550	1800		

Saf-T-Vue Breakers (Except HFE)(2) Saf-T-Vue breakers are similar to standard breakers except that the cover is fitted with a transparent window located over the breaker contacts. They are commonly used in stee! mill applicatinns where sight of contacts is required. Can ve supplied in all standard ratings.

Molded Case Switches (Except HFB)

(Non-Auto Interrupters)
These are breakers without overload or short circuit tripping elements and can be installed where a compact high capacity disconnect switch is required without overcurrent protection.

Mining Service Breakers(2)

A special version of FB and HFB breakers is available to meet Bureau of Mines requirements for trailing cable applications. Refer to Technical Data 29-128 T WE A.

Breaker Mounting

Breakers are approved for either upside down mounting or reverse feed. (4)

Circuit Breaker Removal
Before inspecting, installing, or removing from a circuit, the circuit breaker should be in the OFF position, and if practical, the circuit should be de-energized. If the circuit cannot be de-energized, insulated tools, rubber gloves, and a rubber floor mat should be used.

To remove a rear-connected circuit breaker from its mounting, remove terminal stud locksuts and pull circuit breaker forward.

To remove a front-connected circuit breaker from its mounting, loosen terminal screws and remove cables from terminals. Remove circuit breaker mounting screws and pull circuit breaker forward.

To remove a circuit breaker equipped with support blocks from its mounting. remove support block breaker mounting screws and pull circuit breaker forward. When the optional bolt-on support block feature is used, the screws mounting the stabs to the breaker conductor must also be removed.

Inspection and Maintenance

Good maintenance procedure calls for periodic inspection of all electrical apparatus including molded case circuit breakers. Terminal lugs must be tight to prevent overheating. Jue to the inherent wiping action built into the moving contacts of all Westinghouse circuit breakers, operating the breaker several times under load will remove any high resistance film that may have formed.
(2) Not Underwtiters Laboratories. Inc. listed.
(3) 1 pole breakers are 15 wide. 2 nole breakers are 2% wide except? pole FB megnetic only, and alt 2 pole HFB which are the same as 3 pole. 4 pole FB breakers are $5 \mathrm{z}^{4}$ wide other dimensions are same as 3 pole. (4) Breakers with internal attachments are not suitable for teverse feed.

Accessories, Modifications

Accessories and modifications are available as follows: See PL 29-120 or DB 29-150 for description. Line terminal shieids, rear connecting studs, plug-in adapter kits, panelboard connectors, center studs, handle locking devices, parallel connectors, moisture and fungus treatment, shunt trip. undervoltage release, auxiliary switch, alarm switch, mechanical interlocks, and motor operator.

Dimensions, Inches(${ }^{(5)}$
Not to be used for construction purposes. See Dimension Sheet 29.170 for detailed dimensions.

Further Information

Prices: Price List 29-020 P WE A
Ordering Data: Tech Data 29-120 TWE A
Dimensions: Dimension Shagt 29-170
Trip Curves: Application Doid 29-161 A WE A

Westinghouse Electric Corporation

Low Voltage Breaker Division
Beaver, Pennsylvania 15009

[^0]: (1) 120 valionly
 (2) $125 / 260$ Voits 6 a oms.
 (T) Avalaten 4 pole worsus
 (4) 2 pole onl
 (5) H.zher NEMA fatings avanlibie

 6Ut histed at 1004 tating

 (5) 100.000 based on NEMA test procedure

[^1]: (9) Maximum motor full load curtent based on use of $16^{\circ} \mathrm{C}$ rated conductors and ambients inside enclosures hot exceadina $60^{\circ} \mathrm{C}$
 (2) Maximum thip position setting permissable without exceeding 13 times maximum motor full laad current.

[^2]: D) Taken from N.E.C. Table 310-16. For information on aluminum conductors, refer to Table G.
 6. Taken from N.E.C. Table 310-18. For information on copper conductors see Table F

[^3]: 1. Remove cover, arc extinguishers and stationary contact assemblies.
