NEDC 32264 Class 2 November 1993 DRF No. A00-05828

APPLICATION OF PROBABILISTIC SAFETY ASSESSMENT TO GENERIC LETTER 89-10 IMPLEMENTATION

TOPICAL REPORT - 1 BWR Owners' Group Integrated Risk Based Regulation

Reviewed by: Kazlet

R.A. Hill, Sr. Technical Program Manager

Approved by: S.J. 2

S.J. Stark, Manager BWR Owners' Group Projects

9406090094 940203 PDR IDPRP EMVGENE NEDC-32264 CLASS 2

Application of Probabilistic Safety Assessment to Generic Letter 89-10 Implementation

TOPICAL REPORT - 1 BWR Owners' Group Integrated Risk Based Regulation

November 1993

Prepared by the BWROG Integrated Risk Based Regulation Committee in cooperation with the Valve Technical Resolution Group Committee

IMPORTANT NOTICE REGARDING CONTENTS OF THIS REPORT

Please Read Carefully

The only undertakings of General Electric Company (GE) respecting information in this document are contained in the contract between the Boiling Water Reactors Owners' Group (BWROG) and GE, as identified in the respective utilities' BWROG Standing Purchase Order for the performance of the work described herein, and nothing in this document shall be construed as changing those individual contracts. The use of this information, except as defined by said contracts, or for any purpose other than that for which it is intended, is not authorized, and with respect to any other unauthorized use, neither GE, nor any of the contributors to this document makes any representation or warranty, and assumes no liability as to the completeness, accuracy, or usefulness of the information contained in this document.

PARTICIPATING UTILITIES:

Carolina Power & Light Commonwealth Edison Entergy Operations, Inc. Georgia Power GPU Nuclear Gulf States Utilities Nebraska Public Power District New York Power Authority Niagara Mohawk Power Northern States Power Pennsylvania Power & Light Philadelphia Electric Tennessee Valley Authority Washington Public Power Supply System

This is a Class II document. Distribution of Class II documents is limited to the participating utilities and may be distributed to others only by the authorization of the participating utilities and the BWR Owners' Group.

EXECUTIVE SUMMARY

Initiatives undertaken by utilities in response to the Nuclear Regulatory Commission's (NRC) Generic Letter (GL) 88-20 have made new tools available for the quantification of risk and the closure of regulatory issues. These tools are known collectively as Individual Plant Examinations (IPEs).

In January, 1992 the Boiling Water Reactor Owners Group (BWROG) formed the Integrated Risk Based Regulation (IRBR) Committee. The purpose of this committee is to study and apply risk based analyses to the operation of BWR nuclear power plants. The first study undertaken was the prioritization of motor operated valves (MOVs) for the NRC GL 89-10 program.

The technical approach developed is a seven task analysis that utilizes the Probabilistic Safety Assessment (PSA), the experience of operating staff, qualitative studies, and the identified GL 89-10 program scope as input. The goal of the assessment is to place each MOV in one of three application categories based on the high, medium, or low safety significance of the valve. This ranking of the MOVs is based on generally accepted risk importance criteria and represents discrete contributions to overall plant risk. The MOVs are initially ranked by the Importance Measures as calculated in the PSA. ADDENDUM 1 provides a detailed presentation on "Importances". Valves not included in the PSA or masked by modeling techniques are evaluated qualitatively and all valves are subjected to qualitative evaluation by the plant operating staff. On the basis of these studies, the valves are assigned to the appropriate application category.

The number of categories and the boundaries that separate these categories are based on engineering judgement. After several sensitivity studies the IRBR committee chose three categories. Once placed into an importance category, GL 89-10 recommendations would be applied to valves within that category.

The tasks discussed in this topical report are:

- 1. Review of Plant PSA to determine how well the PSA represents the MOVs pertinent to the GL 89-10 program.
- 2. Review of GL 89-10 MOVs Not Included in the PSA,
- 3. Importance Measures used in the PSA,

4. Quantifying the Importance of MOVs Implicitly Modeled in the PSA,

- Sensitivity Analysis to further assure that MOVs are evaluated properly,
- 6. Compilation of Results, and
- Application Criteria placing MOVs into one of three categories and then applying valve testing criteria specific to each category

The concept of distributing resources according to risk significance was applied in the development of application criteria in this topical report.

In the above tasks, MOVs not in the GL 89-10 program have not been deleted. If an MOV not currently in the GL-10 program were to show high relative risk importance compared to valves which were in the program, it is proposed that the licensee would take action to evaluate the valve's operability in a manner similar to GL 89-10.

Some present GL 89-10 MOVs with a safety-related classification may be considered for reclassification based on the reviews performed in Tasks 1 through 6. Such reclassification would be outside the scope of this report. The testing of reclassified valves would be determined by programs established by the plant licensees

The application criteria stated within has been coordinated with and developed in conjunction with the BWROG Valve Technical Resolution Group.

The concerns of PSA utilization stated by the NRC in the Motor Operated Valve Users Group meeting of February, 1993 are addressed through the use of sensitivity studies.

The results of this study will provide tools to optimize the allocation of resources in addressing the concerns of GL 89-10. Plant operational safety and efficiency will be maximized, and utilities can be assured that priorities for valve testing and maintenance have been effectively established.

CONTENTS

SUBJECT	PAGE
EXECUTIVE SUMMARY 1.0 INTRODUCTION 1.1 Purposes and Scope 1.2 Background 1.3 Methodology 1.3.1 Task 1 Review Plant PSA 1.3.2 Task 2 Review MOVs Not Included in PSA 1.3.3 Task 3 List Importance Measures of MOVs in PSA 1.3.4 Task 4 Quantify Importances of MOVs Implicitly	iv 1 2 4 4 6 6
Modeled in the PSA 1.3.5 Task 5 Sensitivity Analyses 1.3.6 Task 6 Compilation of Results 1.3.7 Task 7 Application Criteria 1.4 Multicomponent Issues	8 10 13 18
<pre>2.0 RANKING STUDY RESULTS 2.1 Individual Plant Results 2.1.1 Results for BWR A 2.1.1.1 Sensitivity Results for BWR A 2.1.2 Results for BWR B 2.1.3 Results for BWR C 2.1.4 Results for BWR D 2.1.5 Results for BWR E</pre>	20 20 21 23 25 26 28
2.2 Comparison of Results 2.3 Sensitivities	32 34
3.0 CONCLUSIONS	35
TABLES	
TABLE 1MOV RISK PRIORITIZATION RESULTSTABLE 2RANKING CRITERIA FOR GENERIC LETTER 89-10TABLE 3APPLICATION OF RISK IMPORTANCETABLE 4MOV PRIORITIZATION RESULTS SUMMARY	12 15 16 33

TABLE .	3	APPL	ICATION	OF.	RISK	IMPORTA	INCE	
TABLE	4	MOV	PRIORITI	ZAT	ION F	RESULTS	SUMMARY	

1

ŵ

APPENDICES

APPENDIX A - DATA TABLES FOR BWR A	W-1
TABLE A1 MOV RISK PRIORITIZATION RESULTS (BWR A)	A-2
TABLE A2 PROBABILISTIC SENSITIVITI ANALISES ON VALVE CROUPING (BWR A)	A-7
TABLE A3 RELATIVE CHANGE IN CORE DAMAGE FREQUENCY	. 7
VS VALVE FAILURE RATE	A-8
TABLE A4 COMPARISON OF RIDE MINING INTEREST	
	B-1
APPENDIX B - DATA TABLES FOR BWR B	D-1
TABLE B1 PRIORITIZATION OF MOVS FOR PLANT B	B-2
ADDENDLY C - DATA TABLES FOR BWR C	C-1
AFFENDIA C - DAIA IADDED FOR DAIA C	
TABLE C1 PRIORITIZATION OF MOVS FOR PLANT C	C-2
APPENDIX D - DATA TABLES FOR BWR D	D-1
TARTE DI NOVA Not Modeled in the PSA for BWR D	D-2
TABLE D1 MOVS Not Hodered in the PSA for BWR D	D-4
TABLE D3 MOVs with a Common Cause Failure	D-13
Basic Event MOV Importance Banking from Baseline	D=15
PSA - BWR D	D-16
TABLE D5 GL 89-10 Sensitivity Study for BWR D	D-19
TABLE D6 MOV SUMMARY	D=21
APPENDIX E - DATA TABLES FOR BWR E	
TARTE EL CT 89-10 MOV Categories and Importance	E-1
TABLE E2 GL 89-10 MOV Information	E-34
TABLE E3 MOV Failure Rate Sensitivity	E-64
TABLE E4 BWR E Prioritization Results	E-68
TABLE E5 BWR E Failure Rate Sensitivity	E-09
TABLE E6 BWR E Failure Rate Sensitivity	E=70
ADDENDUM 1 BWR OWNERS INTEGRATED RISK-BASED REGULATION	
COMMITTEE REPORT "RANKING PROCESSES"	ADD-1

1.0 INTRODUCTION

Initiatives undertaken by utilities in response to the Nuclear Regulatory Commission's (NRC) Generic Letter 88-20 (GL 88-20), "Individual Plant Examination for Severe Accident Vulnerabilities", have made new tools available for the quantification of risk. These tools which were derived from GL 88-20 requirements are known collectively as Individual Plant Examinations (IPEs) and generally take the form of Probabilistic Safety Assessments (PSAs).

In January, 1992 the Boiling Water Reactors Owners Group (BWROG) formed a new committee, the Integrated Risk Based Regulation (IRBR) Committee. The purpose of this committee is to study the feasibility of applying risk based analyses to the operation of BWR nuclear power plants and to develop appropriate techniques.

In December, 1992 the IRBR decided to produce a series of topical reports, each dealing with a specific technical issue where risk analyses would be appropriate and useful. These topical reports offer considerable advantages to both BWROG members and to the NRC, including:

- They can improve safety by focusing on the issues of greater risk significance,
- They can introduce a level of standardization in applying PSA analyses,
- This, in turn, can significantly reduce resource requirements of both the NRC and the BWR utilities when resolving issues, and
- Simultaneously, the work will reflect a more complete input from a larger group of contributors.

The first undertaking of the IRBR Committee applies PSA techniques, drawn from a number of plant specific analyses, to the risk prioritization of motor operated valves (MOVs). This effort will provide information for prudent resource allocation for the Generic Letter 89-10 (GL 89-10) Programs currently underway.

1.1 Purposes and Scope

The purposes of this study were to develop a methodology for risk based prioritization of MOVs, to apply this prioritization methodology to the ranking of MOVs at several BWRs. This process of ranking or prioritization of MOVs according to risk significance forms the technical underpinning for safety enhancement and prudent resource allocation within the context of the NRC GL 89-10 pro-

grams. The topical report process and recommendations can be applied on a plant specific basis.

Two scope related issues were identified and reconciled. These include:

a)	GL	89-10	Which	MOVS	are	in	a	plant's	GL	89-10	pro-
			gram,	and							

b) IPE Which MOVs are in a plant's IPE and the justification for not including particular MOVs within an IPE,

The MOVs in this report are limited to "at-power" plant configurations and challenges from internal event initiators. This report does not attempt to address MOV importance in the context of plant manual shutdown events risk or external events. This topical report addresses MOVs that pertain to Level 1 issues, [i.e., core damage frequency, (CDF)], and MOVs that pertain to Level 2 issues, (i.e., loss of containment integrity and source term issues).

This report also addresses issues such as analytical truncation effects, the treatment of multi-component unavailability, and the potential of masking risk important valves.

1.2 Background

The NRC has issued many NRC bulletins and information notices concerning MOV performance, including IEB 85-03, "Motor Operated Valves Common Mode Failure Plant Transients Due to Improper Switch Settings". This IEB recommended that plants develop and implement a program to verify how MOV switch settings are selected, set, and maintained in order to assure their functioning under design basis conditions. The following is a brief history of the regulation documents concerning MOV operability.

- November 15, 1985 NRC issued IEB 85-03; this bulletin recommended that utilities establish a program to ensure MOV switch settings are correctly set and maintained for selected systems.
- April 27, 1988 NRC issued Supplement 1 to IEB 85-03; this supplement expanded the scope of valves to address the concern of mispositioning valves from the Control Room.
- June 28, 1989 NRC issued GL 89-10, "Safety Related Motor Operated Valve Testing and Surveillance," which superseded IEB 85-03; this generic letter redefined the scope of MOVs to include all safety related valves, valves important to safety, and position changeable valves in safety related systems.

GL 89-10 recommends the examination of MOVs from their design basis service conditions.

- June 13, 1990 NRC issued Supplement 1 to GL 89-10; this document stated the NRC's position on issues raised during public meetings related to the implementation of this program.
- August 3, 1990 NRC issued Supplement 2 to GL 89-10; this supplement provided utilities additional time to implement their MOV program.
- October 25, 1990 NRC issued Supplement 3 to GL 89-10; this document states the NRC's concerns involving MOV performance based on results from INEL tests.
- January 14, 1991 NRC issued Temporary Instruction 2515/109; this instruction provided direction to the NRC teams that would be conducting audits of GL 89-10 programs after January 1, 1991.
- February 12, 1992 NRC issued Supplement 4 to GL 89-10; this supplement stated that the NRC staff no longer considered MOVs affected by inadvertent operation of MOVs from the control room to be within the scope of GL 89-10 for BWR plants.

Risk considerations are implicit in the development of GL 89-10 in that passive failures of MOVs were removed from consideration by the NRC, based on their low probability of occurrence. When justifying GL 89-10 issuance, the NRC used risk considerations in the value impact analysis.

While there are recognized limitations to present PSAs, they do provide an excellent structure by which to assess the relative risk of issues relating to plant safety. The technically rigorous, verifiable, and well reviewed PSAs provided in response to GL 88-20 analyzed various challenges to plant safety by considering plant design, operational procedures, and plant specific equipment performance data. This provided a generally unbiased assessment of the relative risk importance of one plant component or operator action versus another. As such, the NRC did well to utilize PSA in its development of GL 89-10 and utilities can do well to use PSA in efficiently responding to GL 89-10. This is especially the case since utilities are under increasing pressure to prioritize their resources to achieve the maximum safety benefit while addressing the GL 89-10 issue and other issues with safety relevance. PSAs should always be combined with sound judgement and insights from deterministic and mechanistic analyses.

GL 88-20 requests that Licensees evaluate Generic Safety Issues (GSIs) and Unresolved Safety Issues (USIs) using plant IPEs. Closure of GSIs and USIs as a result of these evaluations is

recognized within GL 88-20. Generic letters are another means of the NRC conveying concerns to the industry; therefore, the application of PSA methods to the recommendations of GL 89-10 is appropriate.

1.3 <u>Methodology</u>

The technical approach developed is a seven task analysis utilizing the plant PSA and the identified GL 89-10 program scope as input. The goal of the assessment is to place each MOV in one of three application categories based on risk significance. The ranking of the MOVs is established based on generally accepted risk importance criteria and represent defined contributions to overall plant risk. The number of categories and the boundaries that separate these categories are based on engineering judgement. After several sensitivity studies the IRBR committee chose three categories. Once placed into an importance category, categoryspecific GL 89-10 recommendations can be applied to each valve within that category.

1.3.1 Task 1 - Review Plant PSA

A thorough understanding of the PSA is crucial. Without a working understanding of PSA assumptions, modeling techniques, and results the following tasks can not be properly completed. A simplistic approach could lead to underestimating an MOV's importance. Therefore, a detailed review of the PSA must be performed.

To determine MOV risk imporatnce, the analyst should review both the PSA Level 1 and Level 2 analyses. This captures valves which affect core damage frequency and/or valves which affect radionuclide release frequency (loss of containment integrity). Task 2 addresses treatment of MOVs in the GL 89-10 program that do not appear in a plant's PSA.

PSAs model different failure modes for equipment. In the case of MOVs, the failure modes typically include failure to change position on demand, failure to control flow, and transfer closed or open (spurious actuation). For the purposes of this effort, because the GL 89-10 program is concerned with active valve failures, the failure to change position on demand is the failure mode of most concern. Consideration of the other failure modes in importance calculations is conservative and may be included if desired. The basic building block of the PSAs is typically called a basic event, because, depending on the scenario, a particular valve may have more than one important failure mode (e.g., in one scenario it may be failure to open, while in another scenario it may be failure to close). Therefore, the overall importance of the valve must consider the failure modes relevant to all pertinent scenarios. Risk perspectives have the potential to improve the MOV test

process itself. It is preferred that values be tested to "best estimate" conditions that might occur during the risk dominant accident sequences. This approach to testing is distinctly different from testing values to extreme conditions that are hypothesized to occur during highly improbable events, such as the instantaneous, double-ended guillotine break of the largest primary system pipe. Of particular concern are the severe tests of low probability events that could themselves degrade value operability during the more likely accident sequences.

During the review of the PSA the analyst should be cognizant of MOVs which may be "masked". There are several mechanisms by which the true importance of an MOV may be masked. Specifically, initiating events may include certain MOV failures and the linking of the initiating event importance to the CDF importance may not be automatic with the PSA software. In PSAs sometimes independent sub-fault trees are modularized and treated as basic events in the analysis. The analyst should review the PSA to identify any MOVs included in the modules, so that the importance of the MOV may be examined. It is by no means obvious that such MOVs are of low importance. Similarly, if operator error were to dominate a particular event the valve failure may not have been explicitly modeled. These situations should also be identified by the risk analyst to assure that the valve importances can be correctly estimated.

As a part of the PSA review the analyst should consider how the valves involved in the high energy line break (HELB) scenarios are modeled. This type of break will put the maximum pressure differential across the valves and this condition is a primary of concern of GL 89-10. If the PSA does not adequately model these valves a qualitative assessment should be made of the each valve significance.

Additionally, the risk analyst should also evaluate the part that MOVs play in any initiating event for which screening analyses were performed. For example, flooding analysis or high to low pressure interfacing system LOCA analyses could take implicit credit for MOVs at a particular failure rate. If this failure rate were raised significantly, the scenarios could become important.

Determination of the valve importance for the last two items is addressed in Task 4. However, the risk analyst should be aware of the above issues while performing the other tasks.

This task lays the foundation by which to critically examine any importance reports that may be generated by the PSA software.

1.3.2 Task 2 - Review MOVs not included in PSA

To perform this task a listing of the MOVs addressed in the PSA is needed. This task examines MOVs that have been identified in a plants' GL 89-10 program scope, but that are not modeled in the PSA.

Some GL 89-10 MOVs may not be explicitly modeled in the PSA. This stems from the limitations on model size. The PSA analyst may choose not to model some components based on engineering judgement of their extremely low contributions to risk. In light of GL 89-10 concerns, the reason for not modeling specific MOVs should be briefly documented. This brief description will provide a qualitative or quantitative justification for a low risk contribution by the subject valve. In a few cases a quantitative justification may need to be developed, based on a small model evaluation. For example, a calculation could be prepared for a valve not in the PSA that demonstrates that it has negligible contribution to the overall risk. Review of these justifications by plant personnel is recommended.

1.3.3 Task 3 - Importance Measures Used in PSAs

Most of the software used in PSAs has the ability to quantify various risk importance measures for equipment modeled in the PSA. Completion of this task results in a listing of the MOVs and their associated numerical importance measure. Risk importance, as it is commonly used in PSA terminology, is the quantitative measure of the impact that each basic event contained in the PSA has on the results of the analysis.

These importance measures generally relate to the overall contribution to Core Damage Frequency (CDF) in the Level 1 analysis and Radionuclide Release Frequency (RRF) in the Level 2 analysis. ADDENDUM 1 describes various ranking processes utilized in contemporary PSA software. A commonly used risk importance factor is calculated using the following equation:

Importance = Sum of all event frequencies involving a specific MOV Total CDF or RRF

The above risk importance measure is analogous to the Fussell-Vesely importance measure. The Fussell-Vesely importance measure is acceptable for determining relative basic event importances for cases in which the basic event probabilities are not expected to change dramatically.

The Fussell-Vesely importance measure is acceptable for prioritization of MOVs, based on the following reasoning. The F-V identifies which MOVs are in accident sequences, or in accident-sequence cutsets, representing the largest fraction of the total core damage

frequency. An error in the failure probability of those MOVs would have the greatest effect on CDF. The purpose of the GL 89-10 testing is, ultimately, to assure that MOV reliability is as good as the risk analysts have assumed that it is. It is most important to confirm the reliability of MOVs in sequences that contribute the most to CDF.

It should also be noted that, when a uniform failure probability is assumed for all MOVs in the PSA, that the F-V, Risk Achievement Worth, and the Risk Reduction Worth will yield identical rankings. Since all MOVs then have failure probabilities that change the same amount when set to 1.0 or 0.0, importance will be based on whether or not a particular MOV appears in sequences important to core damage. Other importance measures may give similar rankings to components.

Section 2.3 describes the results of sensitivity analyses that were performed to show the applicability of a few other importance measures. These include comparisons of the generic MOV failure rates used in plant PSAs versus the NRC worst case MOV failure rate of 0.087/d.

Small differences between the relative risk positions of an MOV in one ranking methodology versus another is even less of a concern because of placing groups of valves into risk categories. It is likely that even if two different ranking methods resulted in somewhat different rankings in their lists of MOVs, this would still result in the same particular valves populating the same risk category. The "binning" of MOVs into risk categories therefore diminishes concerns about the choice of ranking methods.

The specific set of accident sequences used in the importance calculation is straightforward for the Level 1 analysis, in that the sequences of interest are those that lead to core damage. However, for the Level 2 analysis, because of the various techniques used, the definition of sequences of interest may not be as clear and importances may not be calculated as part of the software analysis results. The risk analyst will have to carefully consider the analytical techniques used in the specific plant PSA and describe the approach utilized for the Level 2 importance calculations.

The product of this task is the Level 1 and Level 2 importance ranking results. The importance ranking results must account for MOVs which were included in the PSA modularized basic events, initiating events, and operator errors mentioned in Task 1, as well as the GL 89-10 program MOVs.

More extensive information on importance measures appears in Addendum 1. This addendum represents the present state of knowledge and is appropriate for use with this topical report. It is

anticipated that this addendum will evolve as further applications of PSA technology are undertaken.

1.3.4 Task 4 - Quantify Importances of MOVs Implicitly Modeled in the PSA

Because PSAs generally treat some potential failures implicitly, an expanded review of MOV importance is required. As discussed in Task 1, two cases where MOVs are potentially modeled implicitly are initiating event frequency and human error frequency.

If MOV failure modes are modeled implicitly, one must understand the nature of their inclusion in the PSA models. This type of modeling, in which components are implicitly incorporated, is generally called "modularization". The basic event probability represents the aggregate of the failure modes of several components and operator actions required to accomplish a function. Operator failure usually dominates. For example, a basic event titled "operator aligns containment venting" obviously includes an opera-tor action but it may also implicitly require an MOV in the containment vent system to operate. To determine overall containment vent MOV importance in this example, one would multiply the containment vent basic event importance by the MOV contribution to the containment vent failure probability. This MOV contribution would be the corresponding F-V basic event importance of the vent valve to the fault tree or other representation of "operator aligns containment venting". This value would then be added to any importance calculated for the individual valve during the Task 3 study. A similar case exists for some initiating events.

Alternatively, for these cases, the overall importance of an event like "operator fails to align containment venting" can be used as a conservatively bounding estimate for the importance of the masked MOV.

For completeness, an evaluation must be made of the importance of the MOVs dropped from the PSA model in any PSA screening analysis which was performed for the PSA. Alternatively, a screening analysis validity verification should be performed and documentation should be provided showing that MOVs not included explicitly in the PSA are not significant contributors to CDF and RRF.

1.3.5 Task 5 - Sensitivity Analyses

In considering PSA utilization for implementation of GL 89-10, three issues have been raised: 1) truncation of valve contributions because of assumed low failure probabilities, 2) truncation of valve contributions because of calculational cut-offs and 3) combinations of MOVs across systems not functioning properly (inter-system common cause failures). Resolution of issues 1) and 2) can be made by performing certain sensitivity studies: 1) The truncation (base events dropping out of the model) due to low failure probabilities occurs in the generation of cutsets from fault trees. Temporarily setting high failure rates (e.g., 0.10 or higher) for MOVs in the data base which is used to generate cutsets from fault trees assures that the MOVs appear in the cutsets. The failure rates in the data base are then restored to their correct values for evaluating the cutsets to obtain CDF and importances. The use of Fussell-Vesely importances reduces the concern about truncation errors because they are not affected unless the cutset generation for CDF is seriously in error. If the cutset generation omits 1 percent of the CDF it is not possible for any basic event with an importance of 0.01 or higher to be truncated, and it is highly unlikely that any significant component would not be represented in the F-V importances.

2) The truncation of valve contribution because of calculation cut-off occurs because of the truncation limits set in both the cutset generation and the cutset evaluation. The limitation to setting very low cut-off values comes from the necessity for setting limitations on program "run time" with the some programs. A small number of "runs" and visual inspection of the results will suffice to demonstrate that the MOVs are included in the importance tables. This technique will keep all MOVs in the analysis with a reasonable program run time.

3) Concerns have been expressed concerning common cause failures in MOVs in different systems which might be interactive based on the fact that such coincident, inter-system failures are not, in general, modeled in PSAs. These failures are not considered to require action as part of GL 89-10 MOV prioritization studies for two reasons:

- a) Differences in valve size, function, environment, etc. generally lead to very low probabilities of common cause failure of valves in different systems or to those failures having serious consequences. The use of high failure rates or low truncation values as called for in the above paragraphs provides reasonable assurance that all important components have been identified.
- b) Some, if not all, of the valves in such a group would be included in the "high" risk category and would be subject to the most stringent testing. Therefore, the possibility of coincident failures of all of a group of valves due to the critical failure modes is unlikely.

Intra-system common cause failures are routinely explicitly modeled in PSAs and hence are not treated in this study.

It is not expected that each individual plant will perform the sensitivity analyses to deal with the above three concerns. This report presents certain sensitivity studies and draws conclusions that could then be utilized by other BWRs utilizing this methodology. Applicability reviews of the sensitivity analyses would be the responsibility of the individual BWR.

Section 2.3 documents the results of the sensitivity analyses performed.

The results of these sensitivity analyses are reviewed against the application criteria of Task 7 to determine if any valves should be considered more important than the initial importance reports would indicate.

1.3.6 Task 6 - Compilation of Results

Results of the previous tasks should be compiled into a table similar to that shown in Table 1. This table is a list of MOVs by importance. Valves not modeled in the PSA and the justification of their low importance prepared in Task 2 should be included at the end of the list.

The third column summarizes in words the crux of the argument of the PSA numerics that result in the particular importance analysis. This is particularly useful for reviewers who are not familiar with PSA. In addition, the effort necessary to put together this text provides another review of the basis for the PSA importance ranking.

A consideration in qualitative review of valves is the feasibility of recovery of a failure of the valve by other means (e.g., manual operation) if the failure is a "normal actuation" failure. If the recovery action is not modeled in the PSA, there may be a basis for a lower importance ranking for a particular valve.

In considering valves which were not included in the PSA (see Table 1) the most important consideration is, "What are the consequences of the MOV failure to function?" Where the consequences and probability of occurrence can be expressed in terms of CDF or RRF, the consequences can then be compared to failure of other valves which have similar consequences and a similar importance can be assigned.

The assessment of risk associated with the failure of valves with a primary function of controlling release of radioactive material is more complex. Not all utilities have performed detailed Level 2

PSAs and there is less standardization in methods and agreement in phenomenological processes. Therefore, the results on the ones which have been performed are not as easily comparable as the results from Level 1 analysis. However, a similar assessment of consequence can be done and a "qualitative" assignment of risk "importance" can be made.

The overall ranking results must be critically reviewed by an expert panel to ensure that important aspects are not missed. Personnel from design, maintenance, and operations are recommended.

		TABLE 1	
MOV	RISK	PRIORITIZATION	RESULTS

VALVE ID	DESCRIPTION	IMPACT of MOV FAILURE	RISK IMPORTANCE
2SWP*MOV94A	Division 1 EDG service water cooling supply valve	Results in failure of EDG due to lack of cooling	Values filled in from impo- tance calculations (i.e. 0.0 FV, 1.38 RAW)
2ICS*MOV120	RCIC Steam Supply Valve	Results in failure of RCIC and impacts high pressure make-up	
2CSH•MOV105	HPCS pump discharge to suppression pool	Results in failure of HPCS and impacts high pressure makeup	
2RHS*MOVIA	RHR pump a suction valve	Results in failure of Div. I RHR and impacts Cmt heat removal	
2DEH*MOV119	Equip drain isolation valve	With failure of its inboard valve pair results in containment bypass	
2ICS*MOV124	RCIC Test return MOV	Open for approx. 6 hrs per qtr for RCIC testing, is assumed in failed state during test	
2SWP*MOVIB	Auto-straining backwash MOV	Provides strainer backwash. Assumed not clogged at start of accident it won't clog over relatively short accident duration. As initiator is small contributor because of redundant pumps and low flow alarms which give much time for recovery	

1.3.7 Task 7 - Application Criteria

The concept of distributing resources according to risk significance was applied in the development of application criteria in this topical report. In the previous tasks MOVs not in the GL 89-10 program have not been deleted. If an MOV not currently in the GL 89-10 program were to show high relative risk importance compared to valves which were in the program, it is proposed that the licensee would take action to assure the valves' performance in a manner similar to GL 89-10.

Another concept would be for the licensee to consider reclassification of any GL 89-10 MOVs whose inclusion in GL 89-10 or safety-related classification was called into question by the reviews performed in Tasks 1 through 6. This establishment of guidelines for this reclassification is outside the scope of this report.

The NRC's recommended GL 89-10 program can be summarized in five basic steps:

- Step 1. Identify MOVs within the scope of GL 89-10 (i.e. active safety-related MOVs).
- Step 2. Perform design basis reviews, establish switch setting methodology, calculate required operating forces based on these reviews certain "upgrades" may be identified.
- Step 3. Verify switch settings (normally, static diagnostic testing). It is recommended that periodic verification of performance be repeated every five years.
- Step 4. Conduct dynamic dp tests where practicable.
- Step 5. Post maintenance/modification testing(a).

Based on the insights gained from MOV importance ranking, safety improvements and better use of resources can be obtained by grouping the valves into three risk categories. Each risk category is associated with particular valve performance verification frequency. This maximizes the benefit of implementing the GL 89-10 in that the valves of greatest risk significance would be identified and efforts would be concentrated on these valves. Qualitatively these valve categories are:

(*) The extent of post maintenance/modification testing varies, depending on the type of maintenance/modification performed.

- HIGH CATEGORY: These values appear high on the importance ranking results for core damage or large release. Typically, these values are associated with relatively high frequency sequences in which the failure of the value(s) in combination with a single operator error or active system failure results in core damage or release of radionuclides. Failure of the values severely limits the paths available for achieving safe shutdown. An example of high importance values would be MOVs in the cooling water supply to the diesels which must close or open to provide adequate cooling water to the diesels at a plant in which loss of offsite power was a major contributor to CDF or RRF.
- MEDIUM CATEGORY: These valves contribute less significantly to core damage or large release, but still appear above the insignificant range in the importance reports. These valves typically perform a risk-significant function, but the importance of these valves is reduced by factors such as the availability of other systems which can perform the same function, availability of time for recovery, or low frequency of the initiating event(s). An example of medium impact valves could be the shutdown cooling suction valves. The importance of these valves is reduced because other RHR modes are provided for cooling the reactor.
- LOW CATEGORY: These valves have a low contribution to core damage or large releases. Typically, failure of these valves does not significantly change the progression of any accident sequence. Factors, similar to the medium priority valves, are present to that extent that failure of the valve(s) does not significantly impact plant risk. An example of a low category valve could be a service water system isolation valves designed to protect against line breaks in an area in which flooding was found to be a negligible risk contribution. It is important to understand that just because a valve has a low importance does not mean that one cannot conceive of a scenario in which the valve is needed. It simply means that when the function of the valve is evaluated within the comparative framework of a PSA, it is found to be of low importance relative to that for other valves.

Valves are assigned to these three categories based on the criteria in Table 2. The sensitivity analyses and any other available information (operational reviews, etc.) and used to move additional MOVs into the HIGH and MEDIUM category, based on engineering judgment.

	RANKING CRITERIA FO FOR GENERIC LETTE	R MOVS R 89-10	
RANK	CRITERIA ^{(ax(b)(c)}	NOTES	
High	> 1% CDF GL 89-10 MOVs	Additional MOVs can be added based on	
Medium	≥ 1% CDF ≥ 0.1% GL 89-10 MOVs	judgement, sensitivity analyses.	
Low	Remaining GL 89-10 MOVs < 0.1% CDF	Adequate justification for valves in this category should exist.	

The evaluation of MOVs on a qualitative basis is expected to "upgrade" rather than down-grade the categorization of GL 89-10 program MOVs.

The above criteria are consistent with previous industry prioritization studies. However, many plant-specific issues could cause individual plants to modify the above for their specific applications. Specific considerations could include absolute values for PSA core damage frequency or radionuclide release frequency.

The specific applications of the risk importance to the GL 89-10 criteria are summarized in Table 3.

(*)These importance criteria establish the baseline for valve inclusion. However, as noted in Task 4, qualitative assessments further evaluate the inclusion of other MOVs.

(b)Similar criteria for Level 2/RRF should be utilized.

(°)See ADDENDUM 1 for correlation of %CDF and F-V.

TABLE 3 APPLICATION OF RISK IMPORTANCE RELATIVE TO GENERIC LETTER 89-10

RISK ⁽⁸⁾ CATEGORY	SCOPE & DB REVIEW	INITIAL TEST SCHEDULES	UPGRADE	PERIODIC ^{(c)(d)} PERFORMANCE VERIFICATION	POST MAINTENANCE/ MODIFICATION TESTING
High	Yes	Risk significant schedule	In accordance with cur- rent licensing commitment on risk significant schedule	Every 2-3 outages	Static test when torque & thrust output are affected.
Medium	Yes	Resource ap- propriate schedule sooner than low risk valves	Resource appropriate schedule, not to ex- ceed current licensing commitments	Every 5-7 outages	Static test when normal operability is affected – less severe than high risk.
Low ^(b)	Yes	Resource ap- propriate schedule	Based on plant performance considerations only	Every 8-10 out- ages	Static test based on plant perfor- mance considerations only.

Resolution of emerging technical issues should be evaluated commensurate with a valve's category. a.

b.

- Low risk valves = GL 89-10 valves modeled in the PSA and determined to be of low risk significance.
 - GL 89-10 valves not modeled in the PSA and confirmed to be of low risk significance.

May be altered based on performance as trending information is available. Definition of acceptable performance verification may be modified based on C. technological advances.

Valve testing should consider combinations of equipment that may be out of service during the testing. Certain combinations of equipment out of service d. could lead to high risk configurations.

16

It is believed that the test frequencies recommended in Table 3 are conservative. The recommended test frequencies for the medium and low categories are far more frequent than would be dictated by risk considerations alone. For example, if resources are applied according to risk significance, then testing frequencies would be inversely proportional to an MOV's risk ranking. However, as seen in Table 2, the medium and low risk categories are about factors of 10 and 100, respectively, less risk significant than the high risk category. The periodic testing frequencies recommended in Table 3 for the medium and low risk categories is every 5 and 8 outages and every two outages for the high risk category. This is far more frequent than would be recommended based on risk considerations only. Thus the recommended testing frequencies are conservative from a risk perspective.

Furthermore, in several instances utilities have performed actuator refurbishment prior to performance of the GL 89-10 baseline diagnostic static testing. This refurbishment commonly includes the disassembly and inspection of all internal actuator parts. This practice has afforded an opportunity to evaluate the effectiveness of preventative maintenance programs in preventing degradation of the actuator drive train. After an average of 10 to 15 service years since comparable maintenance, utilities generally reported very few wear or age related failures unless the actuator was under-sized or served in a high temperature environment. Comparing industry experience with GL 89-10 recommendations of testing every five years with industry experience, the retest periods proposed by the above application criteria are considered reasonable.

The above test frequencies are considered to be reasonable, based on risk, but could be modified by each plant, if necessary, based on maintenance history and on the new data which develop as test results are obtained.

These application criteria will allow appropriate resources to be applied to the most risk significant valves while maintaining the intent of the GL 89-10 program to increase the overall effectiveness of MOV operation in a cost-beneficial manner.

1.4 <u>Multicomponent Issues</u>

Several multicomponent issues were examined during the course of the development of this topical report. One area of initial concern was whether or not the importance ranking of specific MOV's might be higher or lower because of simultaneous failures or unavailabilities of other MOV's. A related issue is in the conduct of testing of MOV's, i.e., should multicomponent issues somehow affect the valve testing program?

Multicomponent issues in PSAs are not new and many are routinely treated as part of a PSA's intra-system common cause failure mode analyses. However PSAs do not usually analyze co-incident failures of like components, e.g., MOVs, that are inter-system failures. Inter-system failures involve more than one system while intra-system failures are all within the same system.

Two arguments are made in the description of Task 5 that intersystem MOV failures would be unlikely. First, differences in valve size, function, environment, etc. generally 1 ad to very low probabilities of common cause failures of valves in different systems. Second, some, if not all, of the valves in such a group would be included in the "high" risk category and would be subject to the most stringent testing. Therefore co-incident failures of all such valves would be unlikely.

Further insights on multicomponent issues can be gained by examining the results of various sensitivity studies described in this topical. One multivalve study is described in Section 2.1.1.1 where, for BWR A, 36 low ranked valves were simultaneously assumed to be totally unavailable [failure rate set equal to 1.0]. This large, but individually low ranked group of valves, would only increase BWR A's core damage frequency by 19% under the extreme situation of total unavailability of this whole valve group. Therefore multicomponent issues for this low group of valves appears to be rather unimportant for BWR A.

Sensitivity studies for BWR D utilized high assumed failure rates as a mechanism for examining common cause failure (CCF) effects. A failure rate of 0.087, which was almost 30 times larger than the failure rate utilized in BWR D's IPE, was assigned as a common cause failure to any valve that would have to operate in an accident situation under "high dp". These CCFs do cross system boundaries. One observation derived from this sensitivity study was the fact that, over a wide range of failure rates, many of the same MOV's identified as being in the "high" risk category through the failure rate sensitivity analysis matched those

determined from ranking analyses. Thus, it appears that multicomponent inter-system CCF's of MOV's would not obscure identifying which valves belong in the high risk category.

An additional realization was that even when different ranking schemes were used each identified the same valves as belonging to the same particular risk category. Based on the above, multicomponent issues do not appear to be an important consideration when ranking MOVs or their placement into risk categories.

With regard to whether multicomponent isues should somehow affect the valve testing program, some studies indicate that certain pairs of valves, simultaneously unavailable, produce a considerably higher importance for the pair than one could get by merely summing the individual importances of each valve. This could be a consideration during valve testing, i.e., it might be valuable to delay the testing of a particular valve if it is part of a high ranked valve pair and the other pair member is unavailable because of failure, test, maintenance, etc.

The IRBR Committee of the BWROG views the above concern as a subset to the larger issue of configuration control, i.e., the avoidance of high risk configurations. Furthermore, an analysis of configuration control could include considerations beyond valve pairs. This analysis could be performed as part of the test planning. It is possible that the combination of an unavailable MOV with some other unavailable plant component, such as pump or a diesel generator, could also lead to high CDF's while both are in that configuration. Utilization of the periodic performance verification test frequencies, as suggested in Table 3, may serve to reduce this concern. The most important MOV's are to be tested most frequently. However, since the population of MOV's in the high risk category is small, simultaneous testing of members of this category could be avoided. There are many more MOV members in the low risk category, but the intervals between tests would be longer. This would lend itself to avoiding certain MOV pairs from being simultaneously unavailable. Further, the sensitivity studies performed on BWR A imply that even if low ranked MOV's are simultaneously unavailable, e.g. because of testing, in many cases this will not result in temporary high risk situations.

The recommendations in Table 3 should resolve this issue. Therefore no further action on this subject is included in this topical report.

2.0 RANKING STUDY RESULTS

The following subsections provide plant specific results of MOV prioritization.

2.1 Individual Plant Results

2.1.1 Results for BWR A

BWR A is one unit of a dual unit configuration with a BWR 4 vessel and containment. Important system features include high pressure injection systems HPCI and RCIC, low pressure injection systems Core Spray (4 pumps) and LPCI (4 pumps), four shared diesel generators, High Pressure Service Water (HPSW) utilized for cooling 4 RHR heat exchangers, and an Emergency Service Water (ESW) system that supplies diesel cooling as well as ECCS pump and room cooling.

The one unit and the shared systems involve 92 of the 178 MOVs included in the GL 89-10 program at the site. The Level 1 PSA models 55 valves with failure modes identical (i.e., failure to open or close on demand) to those required in GL 89-10. 74 valves of the 92 MOVs are modeled in the Level 1 PSA.

The ranking of the MOVs is based on Fussell-Vesely (F-V) importance measure and the Risk Achievement Worth (RAW) (see Addendum 1 for definitions) calculated from the Level 1 PSA. The risk prioritization results presented in Table A1 include all MOVs in the GL 89-10 scope plus any additional MOVs which exceed a F-V importance of 0.0001 or a single valve RAW of 1.0. F-V and RAW are used as complementary measures since RAW can verify that appropriate rankings have been made.

Quantitative Level 2 analyses using importance measures based on large release were performed to assess if any MOVs would be considered risk significant. All valves that were determined to be significant, based on release, were also found to be significant in Level 1 analyses and therefore release importances did not contribute additional MOVs to the list of significant valves.

Deterministic evaluations, results of which are not included in Table A1, were also used to prioritize specific MOVs and were based on potential of closure after a line break and on design margins.

Alternate unit PSA ranking was also performed to assess the effect on the relative importance of the MOVs of non-symmetries (mostly due to the difference in power supplies). The calculated F-V and RAW measures for the alternate unit were very similar to those reported in Table Al except for one valve, the Emergency Cooling Water (ECW) pump discharge valve. This valve, which is common to both units, has a F-V and RAW of 0.001 and 1.1, respectively. The difference in importance is due to a non-symmetry between the units. Therefore the valve's importance is based on the alternate unit's importance.

Qualitative judgements or practical testing factors were not considered when developing the ranking of MOVs in this section. The Tables provide only a listing as produced by manipulating the IPE models as a demonstration of risk based ranking.

2.1.1.1 Sensitivity Results for BWR A

A number of probabilistic evaluations were performed using the Level 1 IPE for BWR A to determine the risk significance of motor operated valves. These sensitivity studies provide insights into the impact of truncation effects, valve failure rates, and valve failure combinations on the number and categorization of valves considered risk significant.

This sensitivity assessment of valve importance was quantitatively performed using only a Level 1 IPE model and does not therefore consider MOVs associated with the Level 2 analysis (i.e., containment isolation valves) or those MOVs considered important from a purely deterministic perspective. All sensitivities were performed by re-quantifying the entire IPE model at constant truncation values. A truncation value of 1E-11 was used during quantification since this would allow, at the IPE valve failure rate of 1.2E-2, a significant number of valve failure combinations within a cutset to occur without truncation affecting a valve's importance contribution. Increasing the MOV failure rate would have the same effect as lowering the truncation value because there would be a net increase in the number of cutsets generated that would represent valve failures. It is highly unlikely that valves below this level would represent a significant risk contribution.

Table A1 illustrates the impact that assumed valve failure rates have on the number of MOVs with a F-V importance greater than 1.0E-4. This table indicates that an upper limit on the number of valves exists given extremely high failure rates and that many valves, considered insignificant in terms of risk, do not contribute collectively to overall risk. Another sensitivity, illustrated in Table A4 was performed to confirm this conclusion. All failure to stroke valves that did not achieve a F-V

importance of 1.0E-4 in the IPE model, 36 in all, were arbitrarily failed (failure rate set to 1.0) and the model requantified. The increase in CDF was only 19% greater than the base IPE model CDF, indicating that most of those valves are truly risk insignificant. Failing all valves simultaneously represents failure combinations across a number of systems (i.e., inter-system common cause).

In addition to the sensitivities performed on the categorization of valves, the change in core damage frequency is shown in Table A3 as a measure of the integrated impact MOVs have on the Level 1 risk profile. The results indicate that increases in valve reliability (i.e., lower valve failure rates) from the IPE value have little effect on the CDF and only significant decreases in reliability of all valves change the CDF by appreciable amounts.

Comparison between different risk ranking methods, namely E-V and RAW, was also performed to assess the sensitivity of the number of valves considered risk significant. The results of this comparison is shown in Table A4

2.1.2 Results for BWR B

BWR B is a BWR 4 with a Mark I containment. Important features include HPCI, RCIC, Core Spray (two pumps), LPCI (four pumps), three emergency diesel generators, a dedicated RHR service water system and a normal service water system that supplies normal and emergency loads. The unit has 81 active safety-related MOVs included in the GL 89-10 program. The total core damage frequency is estimated at approximately 2E-5.

This information used to rank the MOVs in presented in Table B1. This Table includes all MOVs within the GL 89-10 scope plus any other MOVs exceeding 0.01 percent importance to the core damage frequency. The importance values represent only MOVs failing to open or close on demand. Note that only one valve on the list, 1P52-F874, is outside the scope of GL 89-10. Of the 81 valves within the scope of GL 89-10, 33 were not explicitly modeled in the IPE as basic events.

The importance measures were also calculated based on the containment failure frequency (all modes) and the large release frequency. These data are also presented in Table B1. A comparison between the importance measures for core damage, containment failure and large releases reveals that MOVs that appear to contribute significantly to containment failure or large releases also appear as visible contributors to core damage.

The valve priorities shown in Table Bl were assigned using the criteria in Table 2. Based on an additional qualitative review of the results, a number of valves were moved to the medium and high categories from lower categories. The justification for these upgrades is included in Table Bl.

The IPE for this plant was performed using the RISKMAN software package from PLG, Inc. Quantification was performed with the quantification truncation limit set to the same frequency as the cutoff limit for saving sequences to the data base, at 5E-10. This cutoff value resulted in 2600 sequences being used in the importance calculations, representing 95% of the total core damage frequency. Lower cutoff and truncation limits would result in a larger sequence data base for the importance calculations, but experience has shown that it is unlikely that the importance results would change.

The Level 2 analysis was performed using the containment performance analysis approach employed by Fauske and Associates. A containment event tree was developed and quantified concurrently with the Level 1 event trees. Containment systems modeled using fault trees for the Level 2 analysis included the drywell spray mode of RHR, the containment vent hardware, and important containment isolation valves. The quantification of the Level 2 trees with the Level 1 trees allowed all systems to be included in the generation of basic event importances for the containment failure frequency and for the large release frequency.

Several manipulations were performed with the "as calculated" importance results:

b.

- a. Some initiating events were modeled using fault trees. The importances of these basic events were manually included.
 - The importances of common cause events, which are listed separately from independent events in the importance reports, were manually added to the independent failure events, so that the total importance of the valve could be determined.
- c. Failure modes not applicable to GL 89-10 (e.g., transfer closed/open, maintenance and misalignment) were removed from the list.
- d. Some valves had basic events for failure to open and failure to close (different scenarios). The importances for both basic events were totaled.

2.1.3 Results for BWR C

BWR C is a BWR 5 with a Mark II containment. The Unit has 177 active safety-related valves in its GL 89-10 program. Total core damage frequency is calculated to be 3.1E-5/yr. Level II Early/High radionuclide release frequency is calculated to be 7.8E-7/yr. MOV failure rate is calculated to be 0.002/d.

Table C1 shows the result of the prioritization of MOVs using the Level I and II models. Table C2 shows the qualitative reasoning for individual valve importance for those valves with lower priority. This table, while providing a check of the PSA quantification, provides a description of valve importance that could be easily understood by those not versed in PSA.

A number of sensitivity studies were performed to evaluate the above-mentioned results. Quantification of the model with the low-important MOVs set to guaranteed failure demonstrated the low contribution of less important MOVs even if very high failure rates are used. In addition, Risk Achievement Worth (RAW) importance ranking were shown to produce the same ranking of MOVs as did the F-V importance rankings used for Table C1. This occurs in this application since the PSA used the same failure rate for all MOVs in the model. Because of this, ranking is not sensitive to MOV failure rate. However, a quantification with the MOV failure rate set to 1.0 for all MOVs resulted in a CDF increase of 80 times. This sensitivity study showed that the functioning of MOVs is a critical aspect of plant safety. However, as shown above, this safety is highly dominated by a relatively few MOVs.

2.1.4 Results for BWR D

BWR D is a BWR 3 with a Mark 1 containment. Important features include HPCI, RCIC, Core Spray (two loop), LPCI (two loops, four pumps), two emergency diesel generators, dedicated RHR service water, and a normal service water system that can supply normal and emergency loads. The unit has 61 active safety related MOVs included in the GL 89-10 program. The total core damage frequency is 2.6E-5/yr. from the PSA submitted in February, 1992.

The ranking of MOVs based on the F-V importance measures is presented in Table D4. Tables D1 and D2 are included to show which valves were not modeled in the PSA and which valves had minimal impact on the PSA (i.e. F-V < 0.1%). This is also summarized in Table D6.

To verify the important MOVs, a requantification of the Level 1 PSA was completed. This effectively replaced the regulatory backfit analysis provided by NUREG/CR-5140. This showed that the same MOVs were identified as important whether a common cause failures related to design or maintenance was included or not. This requantification process was also completed for a PWR as part of a cooperative efforts group, and it showed similar results.

As stated above, this work was based on Level 1 results. The MOVs associated with decay heat removal do not impact risk significantly for the following reasons:

- All containment heat removal systems are manually initiated.
- There is substantial time available for initiation.
- Makeup to the reactor is possible, subsequent to containment heat removal failure, from sources inside or outside the reactor building.

The original PSA for this BWR assumed a failure rate of 0.003/d for MOVs. This is relatively low in comparison to the NRC's assumed failure rate of 0.087/d. This .087 failure rate was applied as a common cause failure (CCF) to any MOV that would have to operate in an accident situation under "high dp", refer to Table D3. These CCFs do cross system boundaries, and the sensitivity analysis was completed to determine the impact on the overall PSA results. In this study, a single CCF event was added to the baseline fault trees for all valves discussed above. The results of requantification with the higher failure rates showed substantial increase in core damage frequency when compared to the baseline PSA. This modified PSA does not, however, reveal which MOVs are driving the increase.

If the valves that are assumed to be important are also assumed to be well maintained, the higher failure rate should be removed for these valves. In the case of the test plant, the threshold was set at 0.1% F-V or 14 valves. Requantifying the new model (optimized PSA) showed that the resulting CDF nearly matched the baseline CDF. These results are summarized in Table D5.

Conclusions

1.

2.

3.

4.

F-V, Birnbaum, RAW and RRW are generally consistent in determining a measure of an MOVs importance.

The addition of the MOV CCF in the PSA has a significant effect on the computed CDF. This is in part due to the fact that no recovery factors were included.

Selective removal of the MOV CCF term in branches of the modified PSA to simulate credit taken for certain valves being subjected to the GL 89-10 MOV Testing Program was effective in establishing the importance of these valves. This optimized PSA yields CDFs that are almost identical to the baseline PSA.

> The MOVs above the threshold in the importance ranking from the baseline PSA had the .087 common cause failure probability removed in the optimized PSA (taking credit for the GL 89-10 testing program). The resulting CDFs in the optimized PSA were almost identical to the baseline CDFs. This result confirmed the appropriateness of the set of MOVs selected as the most important, hence those requiring the GL 89-10 testing. This confirms the premise that important MOVs can be identified by the baseline PSA, without the need to modify the PSA to perform sensitivity studies.

> > 27

2.1.5 Results for BWR E

BWR E is single unit BWR 6 with a Mark III containment. Important features include HPCS, RCIC, LPCS, LPCI (3-pumps), three emergency diesel-generators, and a standby service water system which supplies the RHR heat exchangers, the diesels, and other safety-related components. The CDF for the plant is 1.55E-5 per year and is dominated (86%) by station blackout (SBO).

The Mark III containment includes a free-standing steel containment liner surrounded by a concrete shield building. An annulus exists between these two structures. Penetration failures amount to 15% of all containment failures following core damage.

The unit has a total of 219 active safety-related MOVs included in the GL 89-10 program. Of these, 82 MOVs were modeled in the Level 1 PSA, 8 MOVs were modeled in both Level 1 and Level 2 PSAs, and 10 MOVs were Level 2 valves only. Tables E1 and E2 list these valves and their importance to CDF or containment failure.

Also shown on Table E1 are the containment isolation valves (CIVs). Some of these CIVs are exempted from manual operator closure during a SBO. The rules for these exemptions are provided in the SBO Rule analysis for BWR E, and were accepted by NRC in the plant's SBO Safety Evaluation Report (SER). This is significant since SBO dominates CDF for this plant, and NRC accepts that most motor-operated CIVs do not need to automatically function during this event. The SBO Rule exemptions formed one basis for selection of Level 2 MOVs.

The initial step in determining the importance of MOVs in the Generic Letter 89-10 program was to determine which of the valves in the program were modeled in the PSA. This information was gathered from the plant Level 1 PSA database and from the containment isolations considered in the Level 2 PSA.

The MOVs important to core damage were determined using the Fussell-Vesely importance ranking calculated by the SAIC CAFTA 386 computer code. This importance measure is calculated by summing the cutsets which contain a specific component failure mode and dividing by the overall core damage frequency. If a component has multiple failure modes the total Fussell-Vesely importance is calculated by summing the importance for each failure mode.

Three sensitivities were performed to determine which motoroperated valves (MOVs) were important to core damage and containment failure. The MOVs were originally ranked using the generic failure rate from NUREG/CR-4550 of 3.00E-03/demand for MOVs required to change state during an accident condition. The importance of these MOVs was then determined if the generic failure rate was 0.087 as described in GL 89-10. This failure

rate was used for all MOVs required to change state during an accident whether it was included as part of the GL 89-10 program or not. These rankings are shown in Table E3. The final sensitivity determined the increase in core damage frequency if only the high and/or medium important valves were tested in full compliance with GL 89-10 and all others were tested at less than full compliance (See Table E5).

In the base case, the MOV importance was taken directly from the Level 1 PSA results to determine a valve ranking. Based on an MOV failure rate of 3.00E-03/demand, only twenty-three MOVs were determined to have any effect on overall core damage frequency, including 6 high importance MOVs and 14 medium importance MOVs (See Table E4). These valves consisted mostly of standby service water header and discharge valves, HPCS valves, and RCIC valves since 86% of CDF was due to station blackout. All other valves were of low importance or did not appear in any Level 1 PSA cutsets.

In the GL 89-10 sensitivity, the generic failure rate for MOV failure to open or failure to close was changed to 8.7E-02/demand. The common cause failures were also updated to reflect this new failure rate. The station blackout sequences were reviewed and no new MOVs were found which would show up at the new failure rate. Therefore, the initial cutsets were updated and recoveries were added. This method was considered acceptable since these valves already had a high or medium importance ranking for the base case. The transients sequences were re-quantified at the new MOV failure rate and recoveries were added to the cutsets as applicable. The LOCA sequences were not re-quantified because of their low probability compared to transient and station blackout sequences. The LOOP sequences were not re-quantified since no MOVs are in these sequences that are not in the transient sequences and no low or medium importance valves would increase to high importance based on LOOP sequences. The ATWS sequences were not re-quantified because the ATWS failure probability is below truncation and does not contain any MOVs. The core damage frequency increases to approximately 6.10E-04/yr for this sensitivity. Based on the results of this sensitivity, sixty three MOVs contributed to 99.99% of core damage frequency. Another 19 valves showed up in the sample as having an importance less than 1.0E-04. The rest of the MOVs were evaluated to determine why they did not contribute to core damage even at the worst case failure rate. This evaluation determined that the importance for a majority of the remaining valves was insignificant because the valve was not required to change state during an accident. The rest of the valves did not show up because they were required to change position during ATWS event only, and since the ATWS probability is extremely low, the valves are insignificant.

Finally, the core damage frequency was determined if the valves that were ranked as having a high importance were tested at
regular intervals so that the failure rate of these values is 3.0E-03/d while the other values are not as frequently tested and therefore had a failure rate of 8.7E-02/d. The high importance measure was considered at two points, values which contributed to the top 95% of core damage (F-V => 0.05) and values which contributed to the top 99% of core damage (F-V => 0.01). The second part of this sensitivity calculated the core damage frequency if both the high and medium importance walves were tested as stated in GL 89-10. The medium importance measure was also considered at two points, values which contribute to the top 99.9% of core damage (F-V => 0.001) and values which contribute to the top 99.9% of core damage (F-V => 0.0001). The core damage frequency for each of these importance measures is shown in Table E6.

Level 2 MOV importance measures are primarily qualitative in nature. The Level 2 software used, Halliburton - NUS'S NUCAP+ code, does not provide direct importance measures. PSA analysts qualitatively evaluated each MOV included in the Level 2 analysis with respect to containment isolation and ESF functionality. In addition, the list of GL 89-10 MOVs was compared to the list of containment isolation valves identified in the plant's SBO analysis. MOVs related to systems identified as important in the Level 2 analysis (such as the suppression pool cooling mode of RHR) were also evaluated for risk significance. Based on this analysis, each MOV was then ranked as having either a HIGH or LOW risk significance with respect to Level 2 and an explanation of ranking was provided.

The overall risk ranking of MOVs was done by taking the Level 1 importance ranking for the base case and assigning a quantitative importance for the Level 2 valves based on the qualitative ranking of the valve. The Level 2 importance rankings were determined to be either HIGH, LOW, or none. The quantitative risk ranking for high importance Level 2 valves was taken to be 0.01, the lower bound for high importance chosen in Table 2. Similarly, the quantitative risk ranking for flow importance Level 2 valves was taken to be 0.001, the lower bound for medium importance chosen in Table 2. The overall risk ranking was then calculated using the formula:

O.R. = 0.75 * L1 + 0.25 * L2
where O.R. = the overall risk ranking
L1 = the Level 1 PSA importance ranking
L2 = the Level 2 PSA importance ranking
(HIGH = 0.01, LOW = 0.001)

The overall importance for Level 1 MOVs was considered greater than Level 2 MOVs, since a significant radiological release would

have to be preceded by a core damage event and since the importance ranking for Level 2 valves is more subjective than the Level 1 importance ranking.

All valves in either the Level 1 or the Level 2, which did not appear in the importance rankings of either list, were assigned an importance of <1.0E-05 since the lowest importance ranking for Level 1 PSA components is in the 1.0E-5 range. All other valves were assigned an importance of <1.0E-7, based on the justification for not including these valves in either PSA.

2.2 Comparison of Results

Table 4 summarizes the results for the five plants that performed a demonstration of the BWROG-IRBR MOV Prioritization methodology. Overall, the results correspond well even with the diversity of the five BWR designs. This shows that the methodology is consistent and applies well at numerous plants.

The results show that even among plants with widely different numbers of GL 89-10 MOVs, relatively few contribute significantly to plant risk as quantified by individual PSAs. At least 2/3 of each plant's valves fall into the lowest priority category.

Table 4 MOV Prioritization Results Summary

(-	many		
NOTES	Level 1 PSA	Level 2 PSA	Level 1 & Level 2 PSA	Level 1 PSA - BWR D used only high & low categoriza- tions.	Level 1 AND 2 PSA
TOW	80	57	154	47	199
MEDIUM	œ	10	17	N/A	14
HIGH	4	14	9	14	9
GL 89-10 VALVES	92	81	177	61	219
Plant	BWR A	BWR B	BWR C	BWR D	BWR E

2.3 Sensitivities (Task 5)

Several sensitivity assessments were performed to study the effect of various uncertainties on plant results. The primary goal of these assessments was to determine the robustness of the methodology in the face of numerous uncertainties surrounding PSA and GL 89-10. In general, these assessments showed that the methodology is not sensitive to key uncertainties relating to this application of PSA, and results can be used as described under Task 7 with the assurance that the methodology adequately supports MOV prioritization.

As described in Section 2.1, the uncertainty in MOV failure rate was studied by arbitrarily assigning high failure rates for MOVs. This sensitivity also addresses the concern that MOV importance can be underestimated since MOV failures can be truncated from quantification due to low failure rate. These studies showed that while CDF can dramatically increase as MOV failure rate increases, individual MOV ranking is preserved. In addition, arbitrarily assigning high failure rates to only low prioritized valves resulted in very minor increases in CDF. These sensitivities show that while MOV failure rate is important, a relatively few MOVs contribute to this risk. Therefore concern over MOV failure rates and low PSA quantification truncation limits need not deter the use of MOV ranking in assigning resources to the resolution of GL 89-10.

The concern that the F-V ranking scheme is not adequate for prioritization of MOVs was addressed by using different ranking schemes, in particular, the use of risk achievement worth (RAW). The sensitivity of results of this study to the ranking scheme chosen were found to be minor. Since PSAs often use the same failure rate, or very similar rates, for all MOVs the ranking of MOVs is relatively independent of ranking scheme such that prioritized lists are similar. In particular, for plants that use the same failure rate for all MOVs, the F-V and RAW ranking schemes produce similar results. Generally, this study found that the method of ranking is more of sensitive when comparing components and operator actions with relatively different failure rates.

3.0 CONCLUSIONS

This study provides a methodology for prioritization of MOVs relative to their significance to plant safety. It has demonstrated the methodology at five representative plants, and includes sensitivity analyses to demonstrate the effectiveness of the methodology. The results of this study show that plants can use their PSA analyses to establish MOV prioritization for application to a plant's GL 89-10 program. Furthermore, the sensitivity studies for the BWRs described herein show that sensitivity studies for other BWRs are not necessary.

OCTOBER 1, 1993

APPENDIX A

DATA TABLES FOR BWR A

VALVE ID	DESCRIPTION	IMPACT of MOV FAILUR!	RISK IMPORTANCE
MO-23-019	EPCI Injection Valve	Results in failure of IIPCI and impacts high pressure makeup	FV =.033 RAW = 3.8
MO-23-914	HPCI Steam Admission Valve	Results in failure of HPCI and impacts high pressure makeup	FV = .033 RAW = 3.8
MO-13-021	RCIC Injection Valve	Results in failure of RCIC and impacts high pressure makeup	FV = .025 RAW = 3.1
MO-13-131	RCIC Steam Admission Valve	Results in failure of RCIC and impacts high pressure makeup	FV = .025 RAW = 3.1
MO-10-25A	LPCI Loop A Injection Valve	Results in failure of LPCI and Shutdown Cooling Loop A	FV = .005 RAW = 1.5 CCF RAW = 54 for A&B Level 2 RAW = 5.8
MO-10-25B	LPCI Loop B Injection Valve	Results in failure of LPCI and Shutdown Cooling Loop B	FV = .005 RAW = 1.5 CCF RAW = 54 for A&B Level 2 RAW = 5.8
MO-10-174	HPSW Injection Crossile to RHR MOV	Results in failure of IIPSW ability to inject into reactor vessel given failure to inject from other low pressure sources	FV =.003 RAW = 1.3
MO-10-176	HPSW Injection Crossile to RHR MOV	Results in failure of HPSW ability to inject into reactor vessel given failure to inject from other low pressure sources	FV = .003 RAW = 1.3
MO-10-39A	RIIR Loop A Suppression Pool Cooling Valve	Results in failure of RHR Loop A Suppression Pool cooling and Torus spray	FV = .001 RAW = 1.1 CCF RAW = 7.5 for A&B
MO-10-39B	RIIR Loop B Suppression Pool Cooling Valve	Results in failure of RIIR Loop B Suppression Pool Cooling and Torus Spray	FV = .001 RAW = 1.1 CCF RAW = 7.5 for A&B
MO-10-34A	RHR Loop A Suppression Pool Cooling Valve	Results in failure of RHR Loop A Suppression Pool Cooling	FV = .001 RAW = 1.1
MO-10-34B	RIIR Loop B Suppression Fool Cooling Valve	Results in failure of RHR Loop B Suppression Pool Cooling	FV = .001 RAW = 1.1

TABLE A1 MOV RISK PRIORITIZATION RESULTS (BWR A)

TABLE A1 MOV RISK PRIORITIZATION RESULTS (BWR A) (continued)

VALVE ID	DESCRIPTION	IMPACT of MOV FAILURE	ISK IMPORTANCE
MO-10-089B	RHR heat exchanger B cooling water discharge MOV.	Results in failure of HPSW to cool RIIR heat exchanger B for containment heat removal. Similar valves associated with other trains have lower significance due to diesel loading during LOOP	FV = .1.308 RAW = 1.06
NiO-10-017/018	RIIR Shutdown Cooling Suction Valves	Results in famure of RHR to remove heat from the reactor vessel	FV = .0006 RAW = 1.05
MO-14-005A/B/C/D	LPCS Minimum Flow Valve (4 functionally identical valves)	Each minimum flow valve results in the failure of its respective LPCS pump train and impacts low pressure make-up	FV = .0004 RAW = 1.03 CCF RAW = 1.17 for A/B/C/D trains
MO-14-012A/B	LPCS Injection Valve (A and B Loop)	Results in failure of LPCS Loop A/B injection and impacts low pressure injection	FV = .0004 RAW = 1.03
MO-32-2803	HPSW to Emergency Cooling Tower reservior	Results in failure of closed loop mode of IIF.257 to the ECI	Insignificant
MO-12-015/018	RWCU Suction Valves	Failure to close will cause SLC dilution during ATWS and is modeled explicitly. Failure to close to isolate ISLOCA is implicitly modeled in the LOCA outside containment initiator probability.	Insignificant for SLC mode. High importance is qualitatively assigned for ISLOCA
MO-13-015/016	RCIC Inboard/Outboard Steam Isolation Valves	89-10 failure mode not modeled in PSA. Normally open valve is not required to stroke for RCIC operation. Failure to close to isolate LOCA outside containment was not modeled because the RCIC steam line is of limited diameter and therefore not considered a potential LOCA source.	Insignificant
MO-23-015/016	HPCI Inboard/Outboard Steam Isolation Valves	89-10 failure mode not modeled in PSA. Normally open valve is not required to stroke for HPCI operation. Failure to close to isolate IS LOCA is implicitly modeled in the LOCA outside containment initiator probability.	Insignificant
MO-02-029A/B	Feedwater Loop A/B Injection to Reactor vessel	Normally open valve required for RCIC/HPCI injection. Failure to close to isolate a LOCA outside containment is implicitly modeled in the initiator.	Insignificant

TABLE A1 MOV RISK PRIORITIZATION RESULTS (BWR A) (continued)

VALVE ID	DESCRIPTION	IMPACT of MOV FAILURE	RISK IMPORTANCE
MO-48-0841	Emergency Cooling Water pump discharge Valve	Results in failure of ECW pump and impacts redundancy of diesel cooling water system. Opposite unit important only.	FV =.001 RAW = 1.1
MO-10-089A/C/D	RIIR heat exchanger A/C/D cooling water discharge Valves	Results in failure of HPSW to cool RHR heat exchangers for containment heat removal. "A" valve importance artificially increased to that of B valve due to modelling non-symmetries.	Insignificant
MO-02-053A/B	Recirc pump discharge block Valves	Normally open valve not required to change state, therefore not modeled in PSA. Valve required to close for recirc line LOCA.	Insignificant
MO-13-132	RCIC Lube of cooling Valve	Results in failure of RCIC and impacts high pressure makeup. Not explicitly modeled but included in data for pump failure.	FV = .025 RAW = 3.1 (estimated)
MO-02-074/077	Main Steam Line drain Valve	Normally closed values are not required for injection or isolation and are therefore not modeled in PSA.	Insignificant
MO-10-154A/B	RHR Recirc Loop A/B return (LPCI injection) Valves	Normally open valve not required to change state for LPCI injection, plugging mechanism modeled in PSA.	Insignificant
MO-12-068	RWCU Recirculation flow to reactor valve	Normally open valve failing to isolate during LOCA outside containment is an initiator and is implicitly modeled in PSA.	Insignificant
MO-13-018	RCIC CST suction Valve	Failure to close on transfer of RCIC suction from CST to suppression pool with fail RCIC.	Insignificant
MO-32-2344	IIPSW cross-tie valve	Fallure to or cn Umits the ability to line up any HPSW pump to any RHR 'seat exchanger. Modeled in PSA.	Insignificant
MO-32-2486	HPSW discharge valve to pond	Normally open value only required to close on loss of pond to utilize closed loop cooling. Modeled in PSA.	Insignificant
MO-33-0498	ESW discharge value to pond	Normally open valve only required to close on loss of pond to utilize closed loop cooling. Modeled in PSA.	Insignificant
MO-35-2373/4	RBCCW Recirculation pump cooling water isolation valves	Normally open valves allow cooling of recirc pump seals. Failure to close is not modeled in PSA since pumps are tripped in model.	Insignificant
MO-44-2200A/B	Drywell Cooler Inlet isolation Valves	Failure to close for containment LOCA conditions. Not modeled in PSA due to closed loop system and small diameter line.	Insignificant

TABLE A1 MOV RISK PRIORITIZATION RESULTS (BWR A) (continued)

VALVE ID	DESCRIPTION	IMPACT of MOV FAILURE	RISK IMPORTANCE
MO 48-2804A/B	Emergency Cooling Tower Reservoir Flow to HPSW/ESW Pump Bay Valve	Fallure to open in the event that the pond is unavailable will cause loss of closed loop cooling. Addressed in PSA.	Insignificant
MO-02-038A/B	Feedwater Start-up Recirculation Isolation	Fullure to open during feedwater system recirculation mode with the reactor feed pumps shut off will full start-up and failure to close when the reactor pressure is greater than 600 psig will not impact the PSA model at power. Therefore the valves are not modeled.	Insignificant
MO-10-013A/B/C/D	RHR Suppression Pool Suction Valves	Failure to open to for Suppression Pool Cooling and LPCI Injection modes and failure to close for Shuidown Cooling would cause failure of those modes of RHR. The functions are addressed in PSA.	Insignificant
MO-10-016A/B/C/D	RIIR Pumps Min Flow Bypass Valves	Failure to open on pump low flow modeled in PSA for LPCI mode only for pump dead head protection, failure to open for LPCI mode would fail train.	Insignificant
MO-10-026A/B,-031A/B	RHR Drywell Cooling Spray Water Valves	Failure to open for drywell spray modeled in PSA. Little credit given for use of valves due to procedural restrictions.	Insignfleant
MO-10-038A/B	RHR Suppression Chamber Cooling Water Sprøy Volve	Failure to open to for wetwell spray is addressed in PSA and would fail this mode of containment cooling.	Insignificant
MO-13-020	RCIC Pump Discharge Block Vulve	Normally open valve not required to change state. Plugging mechanism modeled in PSA. 89-10 failure is to open when pump discharge valve downstream is in test.	Insignificant
MO-13-27	RCIC Pump Minimum flow Valve	Failure to open on pun p low flow would not fail pump because injection occurs in sufficient time to limit dead head condition.	Insignificant
MO-13-039,041	RCIC Torus Suction Block Valve	Failure to open when transferring suction to the suppression pool will fail RCIC. Modeled in PSA.	Insignificant
MO-14-007A/B/C/D	CS Pump Suction Valves	Normally open valve not required to change state for primary PSA function.	Insignificant
MO-14-011A/B	CS Outhoard Isolation Valves	Normally open valve not required to change state. Plugging mechanism modeled in PSA. 89-10 failure mechanism insignificant due to time in test.	Insignificant
NO 11 070 071	Torus Water Filter Pump Isolation Valves	Failure to close on LOCA conditions. Not modeled in PSA.	Insignificant

TABLE A1 MOV RISK PRIORITIZATION RESULTS (BWR A) (continued)

VALVE ID	DESCRIPTION	IMPACT of MOV FAILURE	RISK IMPORTANCE
MO-23-017	IIPCI CST Suction Valve	Normally open valve fails to close when transfering suction to the suppression pool and will fail IIFCI.	Insignificant
MO-23-020	HPCI Pump Discharge Block Valve	Normally open valve not required to change state. Plugging mechanism modeled in PSA. 89-10 failure mode identical to RCIC description.	Insignificant
MO-23-325	HPCI Pump Minimum Flow Valve	Faflure to open on HPCI pump low flow would not fail pump because injection occurs in sufficient time to limit dead head condition.	Insignificant
MO 23-057,058	HPCI Torus Suction Block Valves	Failure to open when transferring suction to suppression pool will fail IIPCI. Addressed in PSA.	Insignificant
MO-257-4245	HPCI Turbine Exhaust Vacuum Breaker Valve	Normally open, failure to close to provide containment isolation would not fail HPCI. Small diameter line insignificant source term contributor and not modeled in PSA.	Insignificant
MO-44-2201A/B	Drywell Cooler Outlet Isolation Valves	Failure to close for containment LOCA conditions. Not included in PSA due to closed loop system and small diameter line.	Insignificant
MO-48-501/502A/B/C	Emergency Cooling Tower Block Valves for closed loop flow.	Failure to open for IIPSW and ESW flow to ECT will cause loss of systems if pond is unavailable. Addressed in PSA.	Insignificant
MO-13C-4244	RCIC Turbine Exhaust Vacuum Breaker Valve	Normally open valve failing to close would not impact RCIC. Small diameter line is an insignificant source term contributor.	Insignificant

TABLE A2

PROBABILISTIC SENSITIVITY ANALYSES ON VALVE GROUPING (BWR A) (NUMBER OF VALVES IN EACH CATEGORY)

LUV INPORTANCES	VALVE FAILURE	CRATE (FAILURE)	TO STROKE ON DES	(dNVb)	
	F	280.	50'	(HPE VALATE)	\$00.
95	12	10	6	0	0
56	8	5	9	4	0
0.00	v.	3	10	8	-
66 66	7	7	9	6	9
TOTAL *	29	29	28	21	10
THE R. P. LEWIS CO., NAMES AND ADDRESS OF TAXABLE PROPERTY AND ADDRESS OF TAXABLE PARTY.	Non-second distance of the second sec	Statement of the statem			

* The total number of valves can be compared to the 55 valves (one unit and common) modeled in the IPE with failure modes consistent with the GL, 89-10 list of valves.

TABLE A3

RELATIVE CHANGE IN CORE DAMAGE FREQUENCY VERSUS VALVE FAILURE RATE (BWR A)

	VALVE FAILURE	RATE (FAILURE	TO STROKE ON DF	(GNVW)		
	-	780.	.05	.012	600.	0
Multiplier	6.9	5.3	2.3	1.0	6	×,
on IPE CDF						

R-7

-

÷

TABLE A4 COMPARISON OF RISK RANKING METHODS (BWR A)

	to seat of the sea	
VALVE DESCRIPTION	IV IMPORTANCE	RAW IMPORTANCE
HPC1 INJECTION VALVE	660,	3.8
HPCI TURBINE STEAM ADMISSION VALVE	633	3.8
RCIC INJECTION VALVE	.025	3.1
RCIC TURBINE STFAM ADMISSION VALVE	.025	3.1
LPCI LOOP B INJECTION VALVE	,006	1.5
LPCI LOOP A INJECTION VALVE	500	1.5
HPSW INJECTION CROSSTIE VALVE	003	1.3
HPSW INJECTION CROSSTIE VALVE	600,	5.1
RHR SUPPRESSION POOL COOLING VALVE	100	1.1
7, '9 SUPPRESSION POOL COOLING VALVE	100.	1.1
"" "PRESSION POOL COOLING VALVE	100.	1.1
RV'8 S. "TESSION POOL COOLING VALVE	100'	1.1
RHR HEAT EXCHANGER VALVE	0008	1.06
RHR SHUTDOWN COOLING VALVE	.0006	1.05
RHR SHITDOWN COOLING VALVE	.0005	1.05
CORE SPRAY PUMP A MIN FLOW VALVE.	6004	1.03
CORE SPRAY PUMP B MIN FLOW VALVE	1000	1.03
CORE SPRAY PHMP C MIN FLOW VALVE	.0004	1.03
CORE SPRAY PUMP D MIN PLOW VALVE	6003	1.03
CORE SPRAY LOOP A INJECTION VALVE	.0004	1.03
CORE SPRAY LOOP B INJECTION VALVE	0004	1.03
36 VALVES < FV OF 1E-4		1.19 (COMBINED EFFECT)

OCTOBER 1, 1993

APPENDIX B

DATA TABLES FOR BWR B

B-1

	P	RIOR	LTIZA	TION	OF N	TA 10TOR-	BLE B1 -OPERATED VALVES FOR PLANT B
				MOV IMP	ORTANCE	S TO:	
VALVE NUMBER	FUNCTION	89-10 SCOPE	PRA SCOPE	CORE DAMAGE	CHMT FAIL	LARGE REL	COMMENTS/JUSTIFICATION FOR PRIORITY
					ΗIG	H P R	IORITY HOVS
1E11-FD68A 1E11-FD688	Heat Exch Flow Control Heat Exch Flow Control	¥ Y	¥ ¥	0.510 1.348	1.047 2.916	0.340 0.984	Failure of F068A or B causes loss of heat removal for all modes of one RHR loop. The importance of F068B to the CDF and containment failure frequency exceeded 1 percent, placing it in the HIGH category. The importance of F068A to the CDF was less than one percent, but its contribution to containment failure exceeded 1 percent. F068A was upgraded to the HIGH category. No credit was taken for local manual recovery of F068A or B in the PRA.
1E41-F001 1E41-F006 1E51-F013 1E51-F045	HPCI Steam Inlet HPCI Injection RCIC Injection RCIC Steam Inlet	Y Y Y Y	¥ ¥ ¥	1.198 1.199 0.743 0.742	0.426 0.426 0.057 0.057	0.160 0.161 0.023 0.023	Demand failure of the valves listed on the left cause complete loss of HPCI or RCIC. HFCI and RCIC are risk-significant systems for Plant B because high pressure injection systems are relatively limited compared to low pressure injection systems. Feedwater has turbine-driven pumps which fail on MSIV closure, and HPCI and RCIC are both single-train systems with relatively high unavailabilities compared to the redundant low pressure motor-driven systems. Loss of high pressure injection with ADS inhibited requires operator actions to emergency depressurize. The RCIC valves had CDF importances just below one percent, but these valves were upgraded to the HIGH category because of the similarity of function to the HPCI valves, and because the RCIC system was one of the most important systems to the CDF.
1E41-F059 1E51-F046	HPCI Lube Oil Cooling Water RCIC Lube Oil Cooling Water	¥ ¥	N N	0.000	0.000	0.000	These values were included within the pump/turbine boundary of the HPCI and RCIC systems and were not explicitly modeled in the PRA. However, demand failure of these values is expected to cause loss of HPCI and RCIC. HPCI and RCIC total importances were 40% and 16% respectively. These values were upgraded to HIGH based on the importance of HPCI and RCIC to the CDF.

			NEDC-3226	4				in the second
TABLE B1	PRIORITIZATION	OF	MOTOR-OPERATED	VALVES	FOR	PLANT	В	(Continued)

1E41-F002 1E41-F003 1E51-F007 1E51-F008	HPCI Steam Line Isolation HPCI Steam Line Isolation RCIC Steam Line Isolation RCIC Steam Line Isolation	Y Y Y	Y Y Y Y	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0,000 0,000 0,000 0,000	The HPCI/RCIC valves function to isolate the steam lines given a break outside containment. The valves isolate on high steam line flow or high temperature in the respective rooms. The isolation function of these valves was implicitly modeled in the unisolated LOCAs outside containment initiating event frequency. Unisolated LOCAs outside containment accounted for less than 1 percent of the total CDF, but exceeded 1% of the frequency of large releases. Sensitivity analysis shows that small changes in the common cause failure probability of motor operated valves can significantly increase the contribution of unisolated LOCAs outside containment to the frequency of large releases. Other factors which support the categorization of the frequency of large releases. 1) the valves are required to close these valves as high priority valves are: 1) the valves are required to close these valves to isolate leads to a potential large release outside containment.
1631-F001 1631-F004	RWCU Isolation RWCU Isolation	¥ ¥	Y Y	0.000 0.001	0.000 0.003	0.000 0.000	The RWCU isolation valves function to isolate the RWCU lines given a break outside containment. The isolation function of these valves was implicitly modeled in the unisolated LOCAs outside containment initiating event frequency. Both valves were explicitly modeled in the containment isolation model. The priority of these valves was upgraded to HIGH based on the same reasoning as the HPCL/RCIC steam line isolation valves.
					TEDI	J M P	RIORITY MOVS
1E11-F015A	LPCI Injection	Y Y	Y Y	0.047	0.016	0.000	Failure of a single LPCI injection valve fails one loop of LPCI. These valves fall below the HIGH importance ranking because of the redundancy and diversity of low prosecure injection systems.
1E11-F028A 1E11-F028B	RHR Torus Test/Spray RHR Torus Test/Spray	¥ Y	Y Y	0.044 0.596	0.098 1.323	0.022 0.430	Failure of F028A or F028B fails both suppression pool cooling and suppression pool spray modes for one loop of RHR. These valves are not ranked as HIGH priority valves because failure of these valves does not affect the Shutdown Cooling Mode of RHR, and because other means of decay heat removal are available (main condenser and containment venting). Also, local manual actions can open these valves for in which these valves are failed.
1E21-F005A 1E21-F005B	CS Injection CS Injection	Y Y	Y Y	0.069 0.088	0.044 0.072	0.078 0.108	Failure of the Core Spray injection valve to open causes loss of one loop of Core Spray. These valves were just below the cutoff for LOW importance valves, and were upgraded to NEDIUM because of the similarity of function to the LPCI injection
1P41-F310A 1P41-F310B 1P41-F3100 1P41-F3100 1P41-F3100	PSW Turbine Bldg Header PSW Turbine Bldg Header PSW Turbine Bldg Header PSW Turbine Bldg Header	Iso Y Iso Y Iso Y Iso Y	Y Y Y	0.175 0.151 0.008 0.008	0.336 0.254 0.018 0.019	0.480 0.420 0.000 0.000	The Turbine Building PSW header isolation valves are required to close during LOCA or LOSP to ensure adequate cooling water to essential components. Failure to close during an LOSP is the most important failure mode, because of the dependence of the diesels on PSW for cooling. The A and B valves had importances in the MEDIUM diesels on PSW for cooling. The A and B valves had importances in the MEDIUM and B valves are more important because of the divisional power arrangement (only valve A can isolate service water for diesel A when diesel C is down). Valves C and D were upgraded to MEDIUM importance for consistency.

B-3

					LOW	PRI	ORITY NOVS
1821-F016 1821-F019	MSL Drain Isolation MSL Drain Isolation	Y Y	N (N (0.000	0.000	0.000	F016 and F019 are opened during startup to drain condensate from the main steam lines. These values are closed once the main turbine is rolled. Discharge from these values passes through other values to the condenser. Closure of the MSIVs does not isolate these values from the reactor, so that failure of both F016 and F019 to close could result in continued blowdown from the reactor to the condenser. Flow is limited by restrictive orifices in the drain lines from each MSIV. The low importance ranking of these values is justified because the values are normally closed during power operation.
1831-F031A 1831-F031B	Recirc Pump Disch Isolation Recirc Pump Disch Isolation	Ŷ	N (N (0.000	0.000	0.000	The only accident sequence in which recirculation pump discharge valve closure is needed to prevent core damage is a large break in the recirculation piping. These valves were modeled implicitly in the large LOCA initiating event model. Failure of the discharge valve in the unbroken loop to close could result in LPCI flow from both loops being lost through the break. Both loops of Core Spray would also have to fail before significant core damage would occur. Based on estimates for the IPE, less than 15 percent of large break LOCAs would require discharge valve closure. If core damage did occur because LPCI flow was diverted through the break, containment failure is unlikely due to the availability of debris cooling. A LOW priority is justified because of the combined low frequency of large break LOCAs and the low failure probability of both loops of Core Spray.
1E11-F003A 1E11-F003B 1E11-F047A 1E11-F047B	RHR Heat Exch Outlet RHR Heat Exch Outlet RHR Heat Exch Inlet RHR Heat Exch Inlet	Y Y Y Y	N (N (N)	000,000 000,000 0,000 0,000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	The heat exchanger inlet and outlet valves are normally open and not required to close for any accident sequences modeled in the IPE. These valves receive no automatic isolation signals. The risk significance of these valves is low.
1E11-F004A 1E11-F004B 1E11-F004C 1E11-F004D 1E11-F006B 1E11-F006B 1E11-F006D	RHR Torus Suction RHR Torus Suction RHR Torus Suction RHR Torus Suction RHR SDC Pump Suction RHR SDC Pump Suction RHR SDC Pump Suction RHR SDC Pump Suction	***	үүүү	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	Each RHR pump has one Torus suction and one vessel suction isolation valve. The FO04 valves isolate the Torus suction paths, and the FO06 valves isolate the vessel suction paths. The FO04 valves are normally open, and the FO06 valves are normally closed. Each FO04 and FO06 valve pair must close/open respectively to align an RHR pump for shutdown cooling. To eliminate a modeling problem, only two of the vessel suction valves were modeled in the PRA (this was conservative). These valves are considered LOW importance to risk because failure of a valve pair to function only impacts one RHR pump for one mode of RHR operation. Also, for most events for which shutdown cooling is needed, time is available to manually open/close the valves given failure of a motor operator. All of the FO04 and FO06 valves have hand-wheel operators, and would be accessable for most accident sequences.

NEDC-32264 TABLE B1 PRIORITIZATION OF MOTOR-OPERATED VALVES FOR PLANT B (Continued)

				NEDC-3226	4				
TABLE	B1	PRIORITIZATION	OF	MOTOR-OPERATED	VALVES	FOR	PLANT	В	(Continued)

1E11-F007A RHR Minimum Flow 1E11-F007B RHR Minimum Flow	Ÿ I	N 0.000 N 0.000	0.000	0.000	There are two RHR minimum flow valves, one for each loop. The minimum flow valves are normally open and provide a flow path for the RHR pumps in the LPCI mode until the injection valves open and vessel pressure decreases below the LPCI shutoff head. Failure of the minimum flow valves results in some reduction in RHR flow in all modes of operation. The IPE evaluated the realistic impact of failure of a minimum flow valve to close, and concluded that the remaining flow rate would be adequate for all modes of RHR operation. Thus, failure of the minimum flow valves adequate for all modes of RHR operation. Thus, failure of the minimum flow valves to close is considered of low risk significance. If an RHR loop is operating in test or suppression pool cooling, the minimum flow valve could be closed. If a LOCA occurred, the RHR system is designed to automatically realign to the LPCI mode, and the minimum flow valve would receive a signal to open. It was concluded in the IPE analysis that even if the minimum flow valve failed to realign, the RHR pumps would likely operate long enough for either vessel depressurization or operator intervention.
1E11-FOC8 RHR SDC Vessel Isolation 1E11-FOO9 RHR SDC Vessel Isolation	¥ ¥	Y 0.000 Y 0.000	0.000 0.000	0.000	Demand failure of either FOO8 or FOO9 fails the shutdown cooling mode of RHR. This mode is not risk-significant because Shutdown Cooling is vulnerable to single failures and is less likely to be available than Suppression Pool Cooling. These valves also receive isolation signals designed to prevent vessel drain-down during refueling outages, but the risk significance of failures to isolate during "efueling is beleived to be small because of the low differential pressure and the time available for operator intervention.
1E11-F016A RHR Drywell Spray 1E11-F016B RHR Drywell Spray 1E11-F021A RHR Drywell Spray 1E11-F021B RHR Drywell Spray	ү Ү Ү	Y 0.092 Y 0.004 Y 0.092 Y 0.004	0.073 0.004 0.073 0.004	0.122 0.000 0.122 0.000	The RHS F016A/F021A and F016B/F021B valve pairs are normally closed containment isolation valves that must be opened to initiate the Drywell spray mode of RHR. F016A/F021A and F016B/F021B valve pairs are normally closed containment isolation valves that must be opened to initiate the Drywell spray mode of RHR. Failure of any single valve to open fails one loop of RHR in the Drywell spray mode, but has no impact on other modes of RHR operation. The Drywell sprays appear mode, but has no impact on other modes. The RHR Drywell spray mode may be used to reduce the Drywell temperature to prevent the vessel level instrumentation reference legs from boiling. If no containment cooling is available and Drywell spray cannot be initiated, emergency depressurization and vessel flooding must be performed. These types of sequences were relatively unimportant to plant risk. Drywell sprays were also modeled in preventing containment failure following vessel failure. The sprays are relatively unimportant because for many of the sequences in which the sprays could perform, LPCI injection is also available for debris cooling. Either Drywell sprays or LPCI or Core Spray injecting through the failed vessel were considered adequate to prevent containment failure following a core damage event.
1E11-F017A LPCI Throttle 1E11-F017B LPCI Throttle	ŶŶ	Y 0.007 Y 0.018	0.015 0.039	0.000	The LPCI throttle valves (F017A,B) are normally open and not required to close during any accident sequence modeled in the IPE. The throttle valves are interlocked open for 10 minutes following any LPCI initiation signal, to prevent operators from throttling flow until core cooling requirements are satisfied. Failure of the F017 valve to throttle flow does not impact the ability to cool the core. Following LPCI injection, either the throttle valve or injection valve (F015) may be required to close before other modes of RHR can be initiated. The redundancy of the throttle valve with the F015 valve makes this function relatively unimportant to plant risk. Containment isolation is provided by the F050 check valves and F015 injection valves.

63

.

NEDC-32264 TABLE B1 PRIORITIZATION OF MOTOR-OPERATED VALVES FOR PLANT B (Continued)

1E11-F024A RHR Torus Test Inboard 1E11-F024B RHR Torus Test Inboard 1E11-F027A RHR Torus Spray Inboard 1E11-F027B RHR Torus Spray Inboard	ү Ү Ү	Y Y Y Y	0.007 0.018 0.007 0.018	0.015 0.039 0.015 0.039	0.000 0.000 0.000 0.000	Establishing suppression pool heat removal requires opening F028A/B and either F024A/B (test line) or F027A/B (suppression pool spray). Because of the added redundancy of the F024/F027 valves, these valves are significantly less important to the core damage frequency than F028. For aimost all sequences involving loss of decay heat removal, adequate time is available for these valves to be manually opened using the handwheel operators. Thus, the risk significance of these valves is low.
1E11-F048A RHR Heat Exch Bypass 1E11-F0488 RHR Heat Exch Bypass	Y Y	Y Y	0.000	0.000	0.000	This valve is normally open, and remains open during the LPCI injection phase. It must be throttied closed to control flow through the RNR heat exchanger for any RHR mode involving heat removal. If RHR is in suppression pool cooling when a LOCA occurs, this valve could degrade LPCI flow if it fails to open. This failure mode is relatively unimportant, because adequate LPCI flow can still pass through the heat exchanger to realistically prevent significant core damage. Failure of this valve to close will degrade the heat removal capacity of a single loop of RHR in suppression pool cooling, shutdown cooling, and other modes. This failure mode is relatively risk-insignificant because the heat removal capability is not completely failed and because for most risk-significant sequences, time is available to manually close the valve using the hand-wheel operator.
1E11-F103A Heat Exch Vent 1E11-F103B Heat Exch Vent	Y Y	N N	0.000	0.000	0,000 0,000	This value is only used to vent the heat exchangers of noncondensible gases in the steam condensing mode, and to flush the heat exchanger during shutdown cooling. It is normally closed and remains closed during all other modes of RHR operation. The steam condensing mode was not modeled in the IPE, because it is not a preferred mode of operation at Plant B, and because it is a more complex and therefore less reliable heat removal mode than suppression pool cooling or shutdown cooling. If shutdown cooling was the only heat removal mode available, a failed closed vent value would not physically prevent the operators from using shutdown cooling to protect containment.
1E21-F001A CS Pump Suction Isolation 1E21-F001B CS Pump Suction Isolation	¥ Y	Y Y	0.000	0.000	0.000.0	The core spray suction isolation value is normally open and receives no automatic isolation signal. These values are not required to be closed for any accident modeled in the IPE.
1E21-F031A CS Minimum Flow Isolation 1E21-F031B CS Minimum Flow Isolation	Y Y	N N	0.000	0.000	0.000	There are two CS minimum flow valves, one for each pusp. The minimum flow valves are normally open and provide a flow path for the CS pumps until the injection valves open and vessel pressure decreases below the CS shutoff head. Failure of the minimum flow valves to close results in some reduction in flow. The IPE evaluated the realistic impact of failure of a minimum flow valve to close, and concluded that the remaining flow rate would be adequate to prevent significant core damage. Thus, failure of the minimum flow valves to close is considered of low risk significance. If a loop of CS is in test mode, the minimum flow valve could be closed. If a LOCA occurred, the CS system is designed to automatically realign from test to injection, and the minimum flow valve would receive a signal to open. It was concluded in the IPE analysis that even if the minimum flow valve failed to realign during a test, the CS pump would likely operate long enough for either vessel depressurization or operator intervention.

NEDC-32264 TABLE B1 PRIORITIZATION OF MOTOR-OPERATED VALVES FOR PLANT B (Continued)

		and the second second second		the second second second	successive design and the second	the second s	
1E41-F004 1E41-F041 1E51-F010 1E51-F029 1E51-F031	HPCI CST Suction Isolation HPCI Torus Suction Isolation HPCI Torus Suction Isolation RCIC CST Suction Isolation RCIC Torus Suction Isolation RCIC Torus Suction Isolation	太太太太太	үии	C.000 O.000 O.000 O.000 O.000 C.000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	HPCI and RCIC will auto-swap from the CST to the suppression pool on low CST level or high suppression pool level. Interlocks are provided such that the CST suction valve will only close after the suppression pool suction valves are both fully open. Thus, if either suppression pool suction valve fails to open the CST line will remain available. If the CST valve fails to close or if the torus pathway fails to open, HPCI/RCIC will continue to operate until the CST inventory is depleted. For all but a small fraction of LOCA events, operation of HPCI or RCIC from the CST provides an extended period of high pressure cooling. For a transient, if HPCI or RCIC maintains vessel level until the CST is depleted, more than an hour is available before adequate core cooling becomes a concern. This is adequate time for the operators to either manually open the failed valves or provide injection from other high pressure sources such as CRD or condensate. Thus, demand failures of the HPCI/RCIC CST and suppression pool suction lines are insignificant contributors to core damage.
1E41-F012 1E51-F019	HPCI Minimum Flow RCIC Minimum Flow	Y Y	N N	0.000	0.000	0.000	The minimum flow valves for HPCI and RCIC did not appear as risk-significant in the IPE because it is not anticipated that HPCI and RCIC would ever operate without a flow path to the vessel or the CST. If the HPCI/RCIC discharge MOV failed to open on HPCI/RCIC initiation, a dead-head condition would exist, but in this case, HPCI/RCIC is unavailable for injection regardless of the status of the minimum flow valve.
1E41-F104 1E41-F111 1E51-F104 1E51-F105	HPCI Vac Breaker Isolation HPCI Vac Breaker Isolation RCIC Vac Breaker Isolation RCIC Vac Breaker Isolation	Y Y Y Y	N N N	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	The vacuum breaker isolation valves isolate the vacuum breaker line on low steam line pressure and high Drywell pressure. The purpose of this isolation is to eliminate a potential leakage pathway from the suppression pool airspace through the turbine exhaust line and turbine seals into secondary containment. This leakage pathway could exist if containment pressure was high and HPCI was tripped. This pathway would bypass the water seal that the exhaust line normally has. The importance of this isolation failure is small because any releases would be filtered through the suppression pool, and because of the redundancy of the isolation valves. If this pathway fails to isolate, it is likely due to loss of power to the valves and not hardware failure.
1E51-F119	RCIC Low Speed Bypass	Y	N	0.000	0.000	0.000	The RCIC low speed bypass line was added as an operational improvement to reduce stresses on the RCIC components during startup. Failure of this value to open during RCIC startup will not prevent RCIC initiation, and failure of this value to close will not impact the isolation functions of the RCIC steam line isolation values.
1E51-E524	RCIC Trip and Throttle	Y	N	0,000	0.000	0.000	RCIC trip and throttle value closure is needed to terminate RCIC injection given a RCIC turbine trip. Failure of RCIC to trip with no other malfunctions present results in continued injection to the vessel. Because of the small injection capacity of RCIC, operators have adequate time to take actions to prevent vessel overfill. Failure of F524 to close given a condition requiring RCIC trip could result in damage to the RCIC system. If a condition requiring RCIC trip is present, then RCIC would most likely be unavailable for the remainder of the event regardless of F524 success or failure. If RCIC was damaged due to failure of F524 to close, steam release outside primary containment would be limited by isolation values F007 and F008. Furthermore, the ability of the trip and throttle value to close while exposed to full reactor pressure is verified during monthly RCIC operability testing.

B-7

NEDC-32264 TABLE B1 PRIORITIZATION OF MOTOR-OPERATED VALVES FOR PLANT B (Continued)

1P41-F049 1P41-F050	PSW to DW Coolers Isolation PSW to DW Coolers Isolation	Y Y	¥	0.000 0.000	0.000	0.000	The PSW System is a closed system within containment, and the isolation values receive no automatic isolation signals. Isolation is only needed if the PSW pressure boundary within containment is failed. PSW breaks within containment will require a shutdown due to loss of drywell cooling and will likely generate a LOCA signal on high drywell pressure. However, risk significance is LOW because no systems important to safe shutdown are impacted.
1P41-F312	PSV Radwaste Dilution Line	Y	N	0.000	0.000	0.000	The 30" dilution line ties directly into Unit 1 division I PSW, and is typically only opened occasionally during outages. During non-outage periods, dilution flow is provided from circulating water blowdown to the river.
1P42-F051 1P42-F052	RBCCW Drywell Inlet RBCCW Drywell Outlet	Y Y	Y N	0.000	0.000	0.000	The RBCCW System is a closed system within containment, and the containment isolation valves receive no automatic isolation signal. Isolation is only required if the RBCCW pressure boundary within containment is failed. If an RBCCW break occurs within containment during power operation, a shutdown due to loss of reactor recirculation pump cooling is required. However, risk significance is LOW because no systems important to safe shutdown are impacted.
1P52-F874	N2 Backup MOV to Inst Air	N	Y	0.023	0.051	0.000	This value opens on low pressure in the noninterruptible instrument air header to pressurize the header from the nitrogen system. This value is not in the scope of GL 89-10, but is modeled in the PRA. Its importance to the CDF is below the medium cutoff of 0.1 percent, so this MOV does not need to be added to the test schedule. It is provided here as an example of an MOV in the PRA that is not in the scope of GL 89-10.

B-8

OCTOBER 1, 1993

APPENDIX C

DATA TABLES FOR BWR C

FV Importance	Number of Valves in Category	Cumulative Number of Valves
0.05	0	0
0.01	6	6
0.001	17	23
0.0001	34	57
<0.0001	120	177

Table C1 - Prioritization of MOVs for BWR C

Table C2 Current 89-10 MOVs with Low Risk Significance

04/07/93 Page 1 of 18

0

		PRA	89-10	PRA REASONING
Component 10 2CCP*MOV122	DESCRIPTION DRS-CONT ISO INBD (MOTOR OPERATED VALVE)		YE2	THIS IS A CONTAINMENT ISOLATION VALVE, AND WAS CONSIDERED IN THE CONTAINMENT ISOLATION SECTION. THE REACTOR CLOSED LOOP COOLING SYSTEM (CCP) IS A CLOSED LOOP SYSTEM. IF LEAKAGE WERE TO LEAK INTO THE SYSTEM, IT WOULD REMAIN CONTAINED IN THE LOOP. THE FAILURE MECHANISM NECESSARRY TO BREACH CONTAINMENT IS A LINE BREAK BGTH INSIDE AND OUTSIDE CONTAINMENT, AND 2 MOVS FAILING TO ISOLATE (BOTH CONTAINMENT ISOLATION VALVES). THIS IS CONSIDERED A VERY SMALL CONTRIBUTOR IN COMPARISON TO OTHER FAILURE MODES.
2ccP*MoV124	DRS-CONT ISOL OUTBD (MOTOR OPERATED VALVE)		YES	THIS IS A CONTAINMENT ISOLATION VALVE, AND WAS CONSIDERED IN THE CONTAINMENT ISOLATION SECTION. THE REACTOR CLOSED LOOP COOLING SYSTEM (CCP) IS A CLOSED LOOP SYSTEM. IF LEAKAGE WERE TO LEAK INTO THE SYSTEM, IT WOULD REMAIN CONTAINED IN THE LOOP. THE FAILURE MECHANISM NECESSARRY TO BREACH CONTAINMENT IS A LINE BREAK BOTH INSIDE AND OUTSIDE CONTAINMENT, AND 2 MOVS FAILING TO ISOLATE (BOTH CONTAINMENT ISOLATION VALVES). THIS IS CONSIDERED A VERY SMALL CONTRIBUTOR IN COMPARISON TO OTHER FAILURE MODES.
2ccp*HoV14A	GATE VALVE SEC*E1A INLET (MOTOR OPERATED VALV	and and the second	YES	REACTOR BUILDING CLOSED LOOP COOLING (CCP) TO SPENT FUEL COOLING. THIS VALVE IS IN ONE OF TWO REDUNDANT TRAINS OF COOLING. SPENT FUEL COOLING IS NOT INCLUDED IN THE SCOPE OF THE IPE, AND NO CREDIT IS TAKEN FOR THE SYSTEM. HOWEVER, SPENT FUEL POOL COOLING RISK'IS LOW BECAUSE HEATUP OCCURS SLOWLY AND MANY HOURS ARE AVAILABLE FOR RECOVERY. ALSO, THIS VALVE IS NORMALLY OPEN AND MUST REMAIN OPEN.
2ccp*MoV148	GAIS VALVE SEC*E1B INLET (MOTOR OPERATED VALV	-	YES	REACTOR BUILDING CLOSED LOOP COOLING (CCP) TO SPENT FUEL COOLING. THIS VALVE IS IN ONE OF TWO REDUNDANT TRAINS OF COOLING. SPENT FUEL COOLING IS NOT INCLUDED IN THE SCOPE OF THE IPE, AND NO CREDIT IS TAKEN FOR THE SYSTEM. HOWEVER, SPENT FUEL POOL COOLING RISK IS LOW BECAUSE HEATUP OCCURS SLOWLY AND MANY HOURS ARE AVAILABLE FOR RECOVERY.
ar ann an				

C-3

Table C2 (Continued) Current 89-10 MOVs with Low Risk Significance

04/07/93 Page 2 of 18

Component ID	Description	PRA	89-10	PRA REASONING
2CCP*HOV15A	RCS-CONT ISOL OUTBD (MOTOR OPERATED VALVE)	f	YES	THIS IS A CONTAINMENT ISOLATION VALVE, AND WAS CONSIDERED IN THE CONTAINMENT SECTION. THE REACTOR BUILDING CLOSED LOOP COOLING SYSTEM (CCP) IS A CLOSED LOOP SYSTEM. IF LEAKAGE WERE TO LEAK INTO THE SYSTEM, IT WOULD REMAIN IN THE LOOP. THE FAILURE MECHANISM NECESSARY TO BREACH CONTAINMENT, IS A LINE BREAK BOTH INSIDE AND OUTSIDE CONTAINMENT, AND 2 MOV'S FAILING TO ISOLATE (BOTH CONTAINMENT ISOLATION VALVES). THIS IS CONSIDERED A VERY SMALL CONTRIBUTER IN COMPARISON TO OTHER FAILURE MODES.
2ccP*MOV15B	RCS-CONT ISOL OUTBD (MOTOR OPERATED VALVE)	a statut and the same state and the same state and the same	YES	THIS IS A CONTAINMENT ISOLATION VALVE, AND WAS CONSIDERED IN THE CONTAINMENT SECTION. THE REACTOR BUILDING CLOSED LOOP COOLING SYSTEM (CCP) IS A CLOSED LOOP SYSTEM. IF LEAKAGE WERE TO LEAK INTO THE SYSTEM, IT WOULD REMAIN IN THE LOOP. THE FAILURE MECHANISM NECESSARY TO BREACH CONTAINMENT, IS A LINE BREAK BOTH INSIDE AND OUTSIDE CONTAINMENT, AND 2 MOV'S FAILING TO ISOLATE (BOTH CONTAINMENT ISOLATION VALVES). THIS IS CONSIDERED A VERY SMALL CONTRIBUTER IN COMPARISON TO OTHER FAILURE MODES.
2ccp*Mov16A	RCS-CONT ISOL INBD (MOTOR OPERATED VALVE)	and the second s	YES	THIS IS A CONTAINMENT ISOLATION VALVE, AND WAS CONSIDERED IN THE CONTAINMENT SECTION. THE REACTOR BUILDING CLOSED LOOP COOLING SYSTEM (CCP) IS A CLOSED LOOP SYSTEM. IF LEAKAGE WERE TO LEAK INTO THE SYSTEM, IT WOULD REMAIN IN THE LOOP. THE FAILURE MECHANISM NECESSARY TO BREACH CONTAINMENT, IS A LINE BREAK BOTH INSIDE AND OUTSIDE CONTAINMENT, AND 2 MOV'S FAILING TO ISOLATE (BOTH CONTAINMENT ISOLATION VALVES). THIS IS CONSIDERED A VERY SMALL CONTRIBUTER IN COMPARISON TO OTHER FAILURE MODES.

Table C2 (Continued) Current 89-10 MOVs with Low Risk Significance

3 of 18

Page

26/20/93

REACTOR BUILDING CLOSED LOOP COOLING (CCP) TO SPEMT FUEL COOLING. THIS VALVE IS IN ONE OF TWO REDUNDANT TRATHS OF COOLING. SPENT FUEL COOLING IS NOT INCLUBED IN THE SCOPE OF THE IPE, AND NO CREDIT IS TAKEN FOR THE SYSTEM. HOWEVER, SPENT FUEL POOL COOLING RISK IS LOW BECAUSE HEATUP OCCURS SLOWLY AND MANY HOURS ARE AVAILABLE FOR RECOVERY. ALSO, THIS VALVE IS NORMALLY OPEN, AND HUST REMAIN OPEN. SYSTEM, IT WOULD REMAIN IN THE LOOP. THE FAILURE MECHANISM NECESSARY TO BREACH CONTAINMENT,IS A LINE BREAK BOTH INSIDE AND OUTSIDE CONTAINMENT, AND 2 MOV'S FAILING TO ISOLATE (BOTH CONTAINMENT ISOLATION VALVES). THIS IS CONSIDERED A VERY SMALL CONTRIBUTER IN COMPARISON TO SYSTEM, IT WOULD REMAIN IN THE LOOP. THE FAILURE MECHANISM NECESSARY TO BREACH CONTAINMENT, IS A LINE BREAK BOTH INSIDE AND OUTSIDE CONTAINMENT, AND 2 MOV'S FAILING TO ISOLATE (BOTH CONTAINMENT ISOLATION VALVES). THIS IS CONSIDERED A VERY SMALL CONTRIBUTER IN COMPARISON TO SYSTEM, IT WOULD REMAIN IN THE LOOP. THE FAILURE MECHANISM NECESSARY TO BREACH CONTAINMENT,IS A LINE BREAK BOTH INSIDE AND OUTSIDE CONTAINMENT, AND 2 MOV'S FAILING TO ISOLATE (BOTH CONTAINMENT ISOLATION VALVES). THIS IS CONSIDERED A VERY SMALL CONTRIBUTER IN COMPARISON TO THE REACTOR BUILDING CLOSED LOOP COOLING SYSTEM THE REACTOR BUILDING CLOSED LOOP COOLING SYSTEM > SYSTEM. IF LEAKAGE WERE TO LEAK INTO THE THIS IS A CONTAINMENT ISOLATION VALVE, AND WAS CONSIDERED IN THE CONTAINMENT SECTION. THE REACTOR BUILDING CLOSED LOOP COOLING SYSTEM THIS IS A CONTAINMENT ISOLATION VALVE, AND WAS CONSIDERED IN THE (CCP) IS A CLOSED LOOP SYSTEM. IF LEAKAGE WERE TO LEAK INTO THE SYSTEM, IT WOULD REMAIN IN THE LOOP. THE FAILURE MECHANISM NECES THIS IS A CONTAINMENT ISOLATION VALVE, AND WAS CONSIDERED IN THE (CCP) IS A CLOSED LOOP SYSTEM. IF LEAKAGE WERE TO LEAK INTO THE (CCP) IS A CLOSED LOOP SYSTEM. CONTAINMENT SECTION. CONTAINMENT SECTION. OTHER FAILURE MODES. OTHER FAILURE MODES. OTHER FAILURE MODES. PRA REASONING 1 89-10 YES YES YES YES PRA ł GATE VLV. SFC*E1A OUTLET (MOTOR OPERATED VALV RCS-CONT ISOL DUTED (MOTOR OPERATED VALVE) RES-CONT ISOL OUTBD (MOTOR OPERATED VALVE) RCS-CONT ISOL INBD (MOTOR OPERATED VALVE) Description Component 10 2CCP*MOV17B 2CCP*HOV18A 2CCP*MOV16B 2CCP#HOV17A

C-5

Table C2 (Continued) Current 89-10 MOVs with Low Risk Significance

04/07/93 Page 4 of 18

Component ID	Description	PRA	89-10	PRA REASONING
2ccP*Mov188	GATE VLV. SFC*E1B OUTLET (MOTOR OPERATED VALV		YES	REACTOR BUILDING CLOSED LOOP COOLING (CCP) TO SPENT FUEL COOLING. THIS VALVE IS IN ONE OF TWO REDUNDANT TRAINS OF COOLING. SPENT FUEL COOLING IS NOT INCLUDED IN THE SCOPE OF THE IPE, AND NO CREDIT IS TAKEN FOR THE SYSTEM. HOWEVER, SPENT FUEL POOL COOLING RISK IS LOW BECAUSE HEATUP OCCURS SLOWLY AND MANY HOURS ARE AVAILABLE FOR RECOVERY. ALSO, THIS VALVE IS NORMALLY OPEN AND MUST REMAIN OPEN.
2CCP*MOV265	DRS-CONT ISOL OUTBD (MOTOR OPERATED VALVE)	- And the star was not out on the star and	YES	THIS IS A CONTAINMENT ISOLATION VALVE, AND WAS CONSIDERED IN THE CONTAINMENT SECTION. THE REACTOR BUILDING CLOSED LOOP COOLING SYSTEM (CCP) IS A CLOSED LOOP SYSTEM. IF LEAKAGE WERE TO LEAK INTO THE SYSTEM, IT WOULD REMAIN IN THE LOOP. THE FAILURE MECHANISM NECESSARY TO BREACH CONTAINMENT, IS A LINE BREAK BOTH INSIDE AND OUTSIDE CONTAINMENT, AND 2 MOV'S FAILING TO ISOLATE (BOTH CONTAINMENT ISOLATION VALVES). THIS IS CONSIDERED A VERY SMALL CONTRIBUTER IN COMPARISON TO OTHER FAILURE MODES.
2CCP*MOV273	DRS-CONT ISOL INBD (MOTOR OPERATED VALVE)		YES	THIS IS A CONTAINMENT ISOLATION VALVE, AND WAS CONSIDERED IN THE CONTAINMENT SECTION. THE REACTOR BUILDING CLOSED LOOP COOLING SYSTEM (CCP) IS A CLOSED LOOP SYSTEM. IF LEAKAGE WERE TO LEAK INTO THE SYSTEM, IT WOULD REMAIN IN THE LOOP. THE FAILURE MECHANISM NECESSARY TO BREACH CONTAINMENT, IS A LINE BREAK BOTH INSIDE AND OUTSIDE CONTAINMENT, AND 2 MOV'S FAILING TO ISOLATE (BOTH CONTAINMENT ISOLATION VALVES). THIS IS CONSIDERED A VERY SMALL CONTRIBUTER IN COMPARISON TO OTHER FAILURE MODES.
2CCP*MOV94A	RCS-CONT ISOL INED (MOTOR OPERATED VALVE)		YES	THIS IS A CONTAINMENT ISOLATION VALVE, AND WAS CONSIDERED IN THE CONTAINMENT SECTION. THE REACTOR BUILDING CLOSED LOOP COOLING SYSTEM (CCP) IS A CLOSED LOOP SYSTEM. IF LEAKAGE WERE TO LEAK INTO THE SYSTEM, IT WOULD REMAIN IN THE LOOP. THE FAILURE MECHANISM NECESSARY TO BREACH CONTAINMENT, IS A LINE BREAK BOTH INSIDE AND OUTSIDE CONTAINMENT, AND 2 MOV'S FAILING TO ISOLATE (BOTH CONTAINMENT ISOLATION VALVES). THIS IS CONSIDERED A VERY SMALL CONTRIBUTER IN COMPARISON TO OTHER FAILURE MODES.
1				

Table C2 (Continued) Current 89-10 MOVs with Low Risk Significance

04/07/93 Page 5 of 18

Component ID	Description	PRA	89-10	PRA REASONING
2CCP*HOV94B	RCS-CONT ISOL INBD (MOTOR OPERATED VALVE)	a and the same labor same same same same same same same	YES	THIS IS A CONTAINMENT ISOLATION VALVE, AND WAS CONSIDERED IN THE CONTAINMENT SECTION. THE REACTOR BUILDING CLOSED LOOP COOLING SYSTEM (CCP) IS A CLOSED LOOP SYSTEM. IF LEAKAGE WERE TO LEAK INTO THE SYSTEM, IT WOULD REMAIN IN THE LOOP. THE FAILURE MECHANISM NECESSARY TO BREACH CONTAINMENT, IS A LINE BREAK BOTH INSIDE AND OUTSIDE CONTAINMENT, AND 2 MOV'S FAILING TO ISOLATE (BOTH CONTAINMENT ISOLATION VALVES). THIS IS CONSIDERED A VERY SMALL CONTRIBUTER IN COMPARISON TO OTHER FAILURE MODES.
2csH*Mov110	MOTOR OPERATED VALVE		YES	VALVE IS IN A FULL FLOW TEST RETURN LINE. VALVE IS ONLY PLACED IN THE OPEN POSITION ON A QUARTERLY BASIS FOR ABOUT SIX HOURS. THE EXPOSURE TO AN INCIDENT FOR THIS VALVE IS SO SMALL AS NOT TO BE CONSIDERED. ALSO, ON SYSTEM INITATION, THE VALVE RECEIVES AN ISOLATION SIGNAL AND THEREFORE IS NOT FURTHER CONSIDERED.
2csH*MOV111	MOTOR OPERATED VALVE	-	YES	VALVE IS IN A FULL FLOW TEST RETURN LINE. VALVE IS ONLY PLACED IN THE OPEN POSITION ON A QUARTERLY BASIS FOR ABOUT SIX HOURS. THE EXPOSURE TO AN INCIDENT FOR THIS VALVE IS SO SMALL AS NOT TO BE CONSIDERED. ALSO, ON SYSTEM INITIATION, THE VALVE RECEIVES AN ISOLATION SIGNAL AND THEREFORE IS NOT FURTHER CONSIDERED.
2csH*MOV112	MOTOR OPERATED VALVE	4	YES	VALVE IS IN A FULL FLOW TEST RETURN LINE. VALVE IS ONLY PLACED IN THE OPEN POSITION ON A QUARTERLY BASIS FOR ABOUT SIX HOURS. THE EXPOSURE TO AN INCIDENT FOR THIS VALVE IS SO SMALL AS NOT TO BE CONSIDERED. ALSO, ON SYSTEM INITIATION, THE VALVE RECEIVES AN ISOLATION SIGNAL AND THEREFORE IS NOT FURTHER CONSIDERED.
2CSL*FV114	CORE SPRAY PUMP TEST	-	YES	VALVE IS IN A FULL FLOW TEST RETURN LINE. VALVE IS ONLY PLACED IN THE OPEN POSITION ON A QUARTERLY BASIS FOR ABOUT SIX HOURS. THE EXPOSURE TO AN INCIDENT FOR THIS VALVE IS SO SMALL AS NOT TO BE CONSIDERED. ALSO, ON SYSTEM INITIATION, THE VALVE RECEIVES AN ISOLATION SIGNAL AND THEREFORE IS NOT FURTHER CONSIDERED.
		1	1	

()

Table C2 (Continued) Current 89-10 MOVs with Low Risk Significance

THESE VALVES ARE NOT MODELED IN THE IPE. FOR FEEDWATER INJECTION, THE VALVE IS NOT REQUIRED TO REPOSITION. FOR ISOLATION, IF THE VALVE FAILS TO CLOSE, THERE IS SUFFICIENT PASSIVE REDUNDANCY (3 CHECK VALVES IN SERIES) TO CONSIDER THE MOV FAILURE OF LOW IMPORTANCE. THESE VALVES ARE NOT MODELED IN THE IPE. FOR FEEDWATER INJECTION, THE VALVE IS NOT REQUIRED TO REPOSITION. FOR ISOLATION, IF THE VALVE FALLS TO CLOSE, THERE IS SUFFICIENT PASSIVE REDUNDANCY (3 CHECK VALVES IN SERIES) TO CONSIDER THE MOV FAILURE OF LOW IMPORTANCE. THIS IS THE PUMP SUCTION ISOLATION VALVE. IT IS MORMALLY KEYLOCKED OPEN AND DOES NOT NEED TO CHANGE POSITION FOR SYSTEM OPERATION. IT IS THEREFORE CONSIDERED OF LITTLE IMPORTANCE IN THE IPE. THE DOMINANT FAILURE THE DOMINANT FAILURE 80 THIS IS A MINIMUM FLOW VALVE, FOR PUMP PROTECTION, AND IN COMBINATION WITH A LOCKED POSITION DOWNSTREAM MANUAL VALVE, THIS VALVE CAN ONLY PASS 1000 GPM IN TEST FLOW. IF THE VALVE DOES NOT CLOSE ON DEMAND (A SYSTEM ACTUATION), THE LOSS OF 10000 GPM IS MINOR COMPARED TO THE PUMP THIS IS IN A HYDROGEN RECOMBINER SYSTEM. NO CREDIT IS TAKEN FOR THIS SYSTEM IN THE IPE. THIS SYSTEM DOES NOT IN ANY WAY MITIGATE THE RESULTS OF ANY ANALYZED ACCIDENT SCENARIO THROUGH A LEVEL 2 IPE ANALYSIS. THE FAILURE OF ANY VALVE TO OPERATE IS OF NO CONSEQUENCE THIS IS IN A HYDROGEN RECOMBINER SYSTEM. NO CREDIT IS TAKEN FOR THIS SYSTEM IN THE IPE. THIS SYSTEM DOES NOT IN ANY WAY MITIGATE THE Page 6 of RESULTS OF ANY AMALYZED ACCIDENT SCENARIO THROUGH A LEVEL 2 IPE AMALYSIS. THE FAILURE OF ANY VALVE TO OPERATE IS OF NO CONSEQUENCE THESE VALVES WERE IMPLICITELY MODELED IN THE IPE. THE DOMIMANT F MECHANISM IN THE SCENARIO IS OPERATOR ERROR TO ALIGN STANDBY GAS TREATMENT FOR VENTING. THESE VALVES WERE IMPLICITELY MODELED IN THE IPE. THE DOMINANT H MECHANISH IN THE SCEMARIO IS OPERATOR ERROR TO ALIGN STANDBY GAS 26/20/70 AMALYSIS. THE FAILURE OF ANY BECAUSE IT IS A CLOSED SYSTEM. ANALYSIS. THE FAILURE OF ANY BECAUSE IT IS A CLOSED SYSTEM. TREATMENT FOR VENTING. OUTPUT OF 7800 GPM. PRA REASONING 89-10 YES YES YES YES YES YES YES YES PRA YES i i. i. GATE VALVE - MOTOR OPERATED RBNR18 OUTLET OUT GATE VALVE - MOTOR OPERATED RBHRTA OUTLET OUT GAS TREATMENT FILTER TRAIN SUCTION ISO VALVE TREATMENT FILTER TRAIN SUCTION ISO VALVE REACTOR VESSEL SUCTION ISOLATION VALVE REACTOR VESSEL SUCTION ISOLATION VALVE ÷ LPCS PMP SUCT VALVE (P1 Description GATE VALVE GAS Component 10 2CSL*MOV107 2CSLAHOV112 2FUS*MOV21B 2FUS#MOV21A 2HCS*MOV1B 2GTS*MOV1A 2GTS+MOV1B 2HCS*HOV1A

Table C2 (Continued) Current 89-10 MOVs with Low Risk Significance

04/07/93 Page 7 of 18

-	10	Description	PRA	89-10	PRA REASONING
2	HCS*MOV25A	MOTOR OPERATED - GLOBE VALVE RENRIA IN FLOW	-	YES	THIS IS IN A HYDROGEN RECOMBINER SYSTEM. NO CREDIT 10 TAKEN FOR THIS SYSTEM IN THE IPE. THIS SYSTEM DOES NO. IN ANY WAY MITTGATE THE RESULTS OF ANY ANALYZED ACCIDENT SCENARIO THROUGH A LEVEL 2 IPE ANALYSIS. THE FAILURE OF ANY VALVE TO OPERATE IS OF NO CONSEQUENCE BECAUSE IT IS A CLOSED SYSTEM.
21	HCS*MOV258	MOTOR OPERATED - GLOBE VALVE RENRIB IN FLOW	-	YES	THIS IN A HYDROGEN RECOMBINER SYSTEM. NO CREDIT IS TAKEN FOR THIS SYSTEM IN THE IPE. THIS SYSTEM DOES NOT IN ANY WAY MITIGATE THE RESULTS OF ANY ANALYZED ACCIDENT SCENARIO THROUGH A LEVEL 2 IPE ANALYSIS. THE FAILURE OF ANY VALVE TO OPERATE IS OF NO CONSEQUENCE BECAUSE IT IS A CLOSED SYSTEM.
and out the same set	HCS*MOV26A	MOTOR OPERATED - GLOBE VALVE RBNR1A CLG WTR I		YES	THIS IS IN A HYDROGEN RECOMBINER SYSTEM. NO CREDIT IS TAKEN FOR THIS SYSTEM IN THE IPE. THIS SYSTEM DOES NOT IN ANY WAY MITIGATE THE RESULTS OF ANY ANALYZED ACCIDENT SCENARIO THROUGH A LEVEL 2 IPE ANALYSIS. THE FAILURE OF ANY VALVE TO OPERATE IS OF NO CONSEQUENCE BECAUSE IT IS A CLOSED SYSTEM.
21	HCS*MOV26B	MOTOR OPERATED - GLOBE VALVE RBNR1B CLG WTR I	a man and a set of the	YES	THIS IS IN A HYDROGEN RECOMBINER SYSTEM. NO CREDIT IS TAKEN FOR THIS SYSTEM IN THE IPE. THIS SYSTEM DOES NOT IN ANY WAY MITIGATE THE RESULTS OF ANY ANALYZED ACCIDENT SCENARIO THROUGH A LEVEL 2 IPE ANALYSIS. THE FAILURE OF ANY VALVE TO OPERATE IS OF NO CONSEQUENCE BECAUSE IT IS A CLOSED SYSTEM.
nee and and and and and and	HCS*MOV2A	MOTOR OPERATED - GLOBE VALVE RENRIA INLET	a man mad and wate took down your parts	YES	THIS IS IN A HYDROGEN RECOMBINER SYSTEM. NO CREDIT IS TAKEN FOR THIS SYSTEM IN THE IPE. THIS SYSTEM DOES NOT IN ANY WAY MITIGATE THE RESULTS OF ANY ANALYZED ACCIDENT SCENARIO THROUGH A LEVEL 2 IPE ANALYSIS. THE FAILURE OF ANY VALVE TO OPERATE IS OF NO CONSEQUENCE BECAUSE IT IS A CLOSED SYSTEM.
2	HCS*MOV2B	MOTOR OPERATED - GLOBE VALVE RENRIA INLET	I I	YES	THIS IS IN A HYDROGEN RECOMBINER SYSTEM. NO CREDIT IS TAKEN FOR THIS SYSTEM IN THE IPE. THIS SYSTEM DOES NOT IN ANY WAY MITIGATE THE RESULTS OF ANY ANALYZED ACCIDENT SCENARIO THROUGH A LEVEL 2 IPE ANALYSIS. THE FAILURE OF ANY VALVE TO OPERATE IS OF NO CONSEQUENCE BECAUSE IT IS A CLOSED SYSTEM.
1			1		

C-9

Table C2 (Continued) Current 89-10 MOVs with Low Risk Significance

04/07/93 Page 8 of 18

Component 1D	Description	PRA	89-10	PRA REASONING
2HCS*MOV3A	MOTOR OPERATED - GATE VALVE RBNR1A INLET OUTL		YES	THIS IS IN A HYDROGEN RECOMBINER SYSTEM. NO CREDIT IS TAKEN FOR THIS SYSTEM IN THE IPE. THIS SYSTEM DOES NOT IN ANY WAY MITIGATE THE RESULTS OF ANY ANALYZED ACCIDENT SCENARIO THROUGH A LEVEL 2 IPE ANALYSIS. THE FAILURE OF ANY VALVE TO OPERATE IS OF NO CONSEQUENCE BECAUSE IT IS A CLOSED SYSTEM.
2HCS*MOV3B	RENRIB INLET OUTLED ISOL		YES	THIS IS IN A HYDROGEN RECOMBINER SYSTEM. NO CREDIT IS TAKEN FOR THIS SYSTEM IN THE IPE. THIS SYSTEM DOES NOT IN ANY WAY MITIGATE THE RESULTS OF ANY ANALYZED ACCIDENT SCENARIO THROUGH A LEVEL 2 IPE ANALYSIS. THE FAILURE OF ANY VALVE TO OPERATE IS OF NO CONSEQUENCE BECAUSE IT IS A CLOSED SYSTEM.
2HCS*MOV4A	RENRIA OUTLET INOD ISOL	-	YES	THIS IS IN A HYDROGEN RECOMBINER SYSTEM. NO CREDIT IS TAKEN FOR THIS SYSTEM IN THE IPE. THIS SYSTEM DOES NOT IN ANY WAY MITIGATE THE RESULTS OF ANY ANALYZED ACCIDENT SCENARIO THROUGH A LEVEL 2 IPE ANALYSIS. THE FAILURE OF ANY VALVE TO OPERATE IS OF NO CONSEQUENCE BECAUSE IT IS A CLOSED SYSTEM.
2HCS*MOV4B	RBNR18 OUTLET INBD ISOL	and here were special over some sets	YES	THIS IS IN A HYDROGEN RECOMBINER SYSTEM. NO CREDIT IS TAKEN FOR THIS SYSTEM IN THE IPE. THIS SYSTEM DOES NOT IN ANY WAY MITIGATE THE RESULTS OF ANY ANALYZED ACCIDENT SCENARIO THROUGH A LEVEL 2 IPE ANALYSIS. THE FAILURE OF ANY VALVE TO OPERATE IS OF NO CONSEQUENCE BECAUSE IT IS A CLOSED SYSTEM.
2HCS*MOV5A	MOTOR OPERATED - GLOBE VALVE RBN1A INLET INBD	and the second s	YES	THIS IS IN A HYDROGEN RECOMBINER SYSTEM. NO CREDIT IS TAKEN FOR THIS SYSTEM IN THE IPE. THIS SYSTEM DOES NOT IN ANY WAY MITIGATE THE RESULTS OF ANY ANALYZED ACCIDENT SCENARIO THROUGH A LEVEL 2 IPE ANALYSIS. THE FAILURE OF ANY VALVE TO OPERATE IS OF NO CONSEQUENCE BECAUSE IT IS A CLOSED SYSTEM.
2HCS*MOV5B	MOTOR OPERATED - GLOBE VALVE RBN1B INLET INBD	-	YES	THIS IS IN A HYDROGEN RECOMBINER SYSTEM. NO CREDIT IS TAKEN FOR THIS SYSTEM IN THE IPE. THIS SYSTEM DOES NOT IN ANY WAY MITIGATE THE RESULTS OF ANY ANALYZED ACCIDENT SCENARIO THROUGH A LEVEL 2 IPE ANALYSIS. THE FAILURE OF ANY VALVE TO OPERATE IS OF NO CONSEQUENCE BECAUSE IT IS A CLOSED SYSTEM.
		1	-	

Table C2 (Continued) Current 89-10 MOVs with Low Risk Significance

04/07/93 Page 9 of 18

(8

			T		ARE DESCRIPTION
1	Component ID	Description	PRA	89-10	PRA REASONING
to the and state star and state t	ZHCS*MOV6A	RBN1A INLET INBD ISOL	*	YES	THIS IS IN A HYDROGEN RECOMBINER SYSTEM. NO CREDIT IS TAKEN FOR THIS SYSTEM IN THE IPE. THIS SYSTEM DOES NOT IN ANY WAY MITIGATE THE RESULTS OF ANY ANALYZED ACCIDENT SCENARIO THROUGH A LEVEL 2 IPE ANALYSIS. THE FAILURE OF ANY VALVE TO OPERATE IS OF NO CONSEQUENCE BECAUSE IT IS A CLOSED SYSTEM.
and you use into our life out one	2HCS*MOV6B	RBN18 INLET INBO ISOL		YES	THIS IS IN A HYDROGEN RECOMBINER SYSTEM. NO CREDIT IS TAKEN FOR THIS SYSTEM IN THE IPE. THIS SYSTEM DOES NOT IN ANY WAY MITIGATE THE RESULTS OF ANY ANALYZED ACCIDENT SCENARIO THROUGH A LEVEL 2 IPE ANALYSIS. THE FAILURE OF ANY VALVE TO OPERATE IS OF NO CONSEQUENCE BECAUSE IT IS A CLOSED SYSTEM.
a was built way and tone (and fame only that and (one only	2HVC*MOV1A	SPCL FLTR TRAIN BYP VALVE		AE2	LOSS OF AIR CONDITIONING TO THE CTRL ROOM WOULD BE DETECTED EARLY SINCE THE OPERATORS ARE IN THE CONTROL ROOM AND THERE ARE BOTH TROUBLE AND INOP ALARMS ASSOCIATED WITH THE SYSTEMS. EVEN IF THE CTRL ROOM BECAME VERY HOT AND STARTED TO IMPACT ELECTRICAL EG. AND SYSTEMS, THE OPERATORS STILL HAVE THE OPTION OF TAKING CONTROL AT THE REMOTE SHUTDOWN ROOMS AT EL 261. THESE ROOMS HAVE THERE OWN SAFETY RELATED AIR CONDITIONERS. GIVEN THESE CAPABILITIES, VENTILATION FAILURES ARE UNIMPORTANT, AND NOT MODELED
IN ANY ANY ANY ANY ANY ANY ANY ANY ANY AN	2нис+нолјв	SPCL FLTR TRAIN BYP VALVE		YES	LOSS OF AIR CONDITIONING TO THE CTRL ROOM WOULD BE DETECTED EARLY SINCE THE OPERATORS ARE IN THE CONTROL ROOM AND THERE ARE BOTH TROUBLE AND INOP ALARMS ASSOCIATED WITH THE SYSTEMS. EVEN IF THE CONTROL ROOM BECAME VERY HOT AND STARTED TO IMPACT ELECTRICAL EQ AND SYSTEMS, THE OPERATORS STILL HAVE THE OPTION OF TAKING CONTROL AT THE REMOTE SHUTDOWN ROOMS AT EL 261'. THESE ROOMS HAVE THERE OWN SAFETY RELATED AIR CONDITIONERS. GIVEN THESE CAPABILITIES VENTILATION FAILURES ARE UNIMPORTANT, AND NOT MODELED.
to the same and the last one has been and and and	2ICS*FV108	TEST BYP TO CNDS STOR TK	a the part and same same last parts that who are	YES	THE VALVE IS IN A FULL FLOW TEST RETURN LINE. THE VALVE IS ONLY PLACED IN THE OPEN POSITION ON A QUARTERLY BASIS FOR ABOUT SIX HOURS. THE EXPOSURE TO AN INCIDENT FOR THIS VALVE IS SO SMALL AS NOT TO BE CONSIDERED. ALSO, ON SYSTEM INITIATION, THE VALVE RECEIVES AN ISOLATION SIGNAL AND THEREFORE IS NOT CONSIDERED FURTHER.
	1			top A sure one or owned to be	

Table C2 (Continued) Current 89-10 MOVs with Low Risk Significance

04/07/93 Page 10 of 18

Component 10	Description	PRA	89-10	PRA REASONING
2IC5*MOV121	STEAM SPLY LINE ISOL VALVE	YES	YES	THIS IS THE RCIC TURBINE STEAM SUPPLY SHUTOFF. IT IS NORMALLY OPEN, AND MUST REMAIN OPEN FOR INJECTION. IT IS THEREFORE CONSIDERED OF LITTLE IMPORTANCE COMPARED TO OTHER FAILURE MECHANISMS. THE PROBABILITY OF HELB, DURING WHICH THIS VALVE COULD CLOSE AND ISOLATE THE RUPTUE, IS CONSIDERED LOW RISK SIGNIFICANCE TO CORE DAMAGE (i.e., LOW IE PROBABILITY AND HIGH PROBABILITY TO PROVIDE ADEQUATE CORE COOLING).
21CS*MOV122	RCIC TURB EXH TO SUPPR	YES	YES	THIS IS THE RCIC TURBINE EXHAUST TO THE SUPPRESSION POOL. IT IS NORMALLY OPEN AND MUST REMAIN OPEN FOR OPERATION. IT IS THEREFORE CONSIDERED UNIMPORTANT COMPARED TO OTHER FAILURE MODES. THE PROBABILITY OF LINE RUPTURE IS LOW BECAUSE THE PRESSURE IN THIS PORTION OF THE SYSTEM IS LOW AND RUN TIME IS SHORT.
2ICS*MOV124	MOTOR OPERATED VALVE FOR RCIC TEST FCV TO CND	A series where we are series where we we	YES	THE VALVE IS IN A FULL FLOW TEST RETURN LINE. VALVE IS ONLY PLACED IN THE OPEN POSITION ON A QUARTERLY BASIS FOR ABOUT SIX HOURS. THE EXPOSURE TO AN INCIDENT FOR THIS VALVE IS SO SMALL AS NOT TO BE CONSIDERED. ALSO, ON SYSTEM INITIATION, THE VALVE RECEIVES AN ISOLATION SIGNAL AND THEREFORE IS NOT FURTHER CONSIDERED.
21CS*MOV128	RCIC ST SPLY LINE ISOLATION MOTOR OPERATED	YES	YES	THIS IS THE RCIC INSIDE ISOLATION VALVE. IT IS NORMALLY OPEN AND MUST REMAIN OPEN FOR SYSTEM OPERATION. IT IS THEREFORE CONSIDERED UNIMPORTANT IN COMPARISON TO OTHER FAILURES. THE PROBABILITY OF HELB, DURING WHICH THIS VALVE COULD CLOSE AND ISOLATE THE LINE RUPTURE, IS CONSIDERED LOW RISK SIGNIFICANCE TO CORE DAMAGE (i.e., LOW IE PROBABILITY AND HIGH PROBABILITY TO PROVIDE ADEQUATE CORE COOLING).
2ICS*MOV129	MOTOR OPERATED VALVE FOR PUMP SUCT FROM CNDS	YES	YES	THIS IS THE PUMP SUCTION ISOLATION VALVS. IT IS NORMALLY OPEN, AND NEEDS TO REMAIN OPEN FOR INJECTION. IT IS THEREFORE CONSIDERED OF SMALL IMPORTANCE IN COMPARISON TO OTHER FAILURES.

Table C2 (Continued) Current 89-10 MOVs with Low Risk Significance

04/07/93 Page 11 of 18

Component ID	Description	PRA	89-10	PRA REASONING
21CS*MOV136	MOTOR OPERATED VALVE FOR RCIC PMP SUCT FROM		YES	RCIC IS MODELED TO FAIL IF EITHER OF THE CONDENSATE STORAGE TANKS (CST A & B) ARE NOT AVAILABLE. 135,000 GAL. OF CST A ARE DEDICATED TO RCIC. THE SUPPRESSION POOL SUCTION PATH IS NOT HODELED BECAUSE ITS IMPORTANCE IS VERY SMALL. BOTH TANKS ARE CONNECTED ABOVE THE PROTECTED 135,000 GAL. AND THE FREQUENCY OF NOT HAVING SUFFICIENT WATER FROM BOTH TANKS TO CONTINUE INJECTING FOR 24 HOURS IS NEGLICIBLE AND NOT EVALUATED IN ANY SEQUENCE ANALYSIS. N2-EOP-RPV, SEC RL INSTRUCTS OPERATORS TO CONTINUE USING THE CST SOURCE, IF AVAILABLE.
2ICS*MOV143	MOTOR OPERATED VALVE FOR RCIC MIN FLOW TO		YES	MINIMUM FLOW TO THE SUPPRESSION POOL IS NOT MODELED. LOW FLOW CONDITIONS WHICH REQUIRE THIS (PUMP) PROTECTION ARE CONSIDERED UNLIKELY BECAUSE THE STEAM ADMISSIONS VALVE CLOSES, THEREBY TERMINATING INJECTION ON RPV LEVEL 8, AND IF MOV143 FAILS OPEN, FLOW DIVERSION IS NOT SIGNIFICANT ENOUGH TO PREVENT SUCCESS.
2ICS*MOV148	RCIC VAC BRKR ISOLATION MOTOR OPERATED VALVE	-	YES	THIS IS A VACUUM BREAKER USED TO PREVENT THE S.PHONING OF WATER INTO THE STEAM DISCHARGE LINE ON THE TERMINATION O' STEAM TO THE TURBINE. NO CREDIT IS TAKEN FOR THE OPERATION OF THIS VALVE IN THE PRA. IT IS NORMALLY OPEN, THERE IS A LOW PROBABILITY OF WATER HAMMER OCCURING DUE TO SIPHONING OF SUPRESSION POOL WATER, AND VEN SO, THE SYSTEM CAN TOLERATE WATER HAMMER TO THE DIFFUSER IN AN ACCIDENT SITUATION.
2ICS*MOV164	RCIC VAC BRKR ISOLATION MOTOR OPERATED VALVE	and some sum that the same time time time time time.	YES	THIS IS A VACUUM BREAKER USED TO PREVENT THE SIPHONING OF WATER INTO THE STEAM DISCHARGE LINE ON THE TERMINATION OF STEAM TO THE TURBINE. WE DON'T TAKE CREDIT FOR THIS VALUE IN THE PRA. IT IS NORMALLY OPEN, THERE IS A LOW PROBABILITY OF WATER HAMMER OCCURING DUE TO SIPHONING OF SUPRESSION POOL WATER, AND EVEN SO, THE SYSTEM CAN TOLERATE WATER HAMMER TO THE DIFFUSER IN AN ACCIDENT SITUATION.
21cs*Mov170	RCIC STEAM LINE WARM-UP MOTOR OPERATED VALVE	-	YES	NOT USED DURING OPERATION. STRICTLY A SMALL BYPASS LINE USED TO WARM UP THE DOWNSTREAM LINE BEFORE OPENING, FOR TESTING THE SYSTEM AND SYSTEM WARM-UP AFTER A SHUTDOWN. IT HAS A VERY LOW EXPOSURE TIME TO AN ACCIDENT SITUATION.

Table C2 (Continued) Current 89-10 MOVs with Low Risk Significance-

04/07/93 Page 12 of 18

Component ID	Description	PRA	89-10	PRA REASONING
2MSS*MOV111	NN STEAM DRN INBO ISOL VALVE	YES	YES	MAIN STEAM LINE DRAIN INBOARD ISOLATION VALVE. NORMALLY CLOSED. USED IN EOP-6 FOR RPV VENTING IF MSIVS CANNOT BE OPENED. THIS VALVE IS NOT USED TO PREVENT CORE DAMAGE IN ANY SCENARIOS MODELED, AND HAS A SMALL CONTRIBUTION TO CONTAINMENT FAILURE.
2MSS*MOV112	MN STEAM DRN OUTBD ISOL VALVE	YES	YES	MAIN STEAM LINE DRAIN OUTBOARD ISOLATION VALVE. NORMALLY CLOSED AND DE-ENERGIZED. THIS VALVE IS NOT USED TO PREVENT CORE DAMAGE IN ANY SCENARIOS MODELED, AND IS A SMALL CONTRIBUTOR TO CONTAINMENT FAILURE. THIS VALVE IS USED IN EOP-6 TO VENT THE RPV IF THE MSIVS CANNOT BE OPENED.
2HSS*MOV118	REAC VESSEL HEAD VENT VALVE	-	YES	NORMALLY CLOSED. REACTOR VESSEL HEAD VENT VALVE USED TO VENT HEAD AFTER SHUTDOWN AND PRIOR TO HEAD REMOVAL. NOT USED TO RESPOND TO ACCIDENT SITUATIONS OR DURING OPERATIONS AND THEREFORE NOT IN THE PRA.
2MSS*MOV119	REAC VESSEL HEAD VENT VALVE	-	YES	NORMALLY CLOSED. REACTOR VESSEL HEAD VENT VALVE USED TO VENT HEAD AFTER SHUYDOWN AND PRIOR TO HEAD REMOVAL. NOT USED TO RESPOND TO ACCIDENT \$174710NS OR DURING OPERATIONS AND THEREFORE NOT IN THE PRA.
2MSS*MOV2D8	INBD MSIV DRN ISOL VALVE		YES	THIS VALVE DOES NOT SERVE TO MITIGATE THE RESULTE OF ANY ANALYZED ACCIDENT SCENARIO THROUGH A LEVEL 2 IPE ANALYSIS. THE FAILURE OF THIS VALVE TO OPERATE IS OF NO CONSEQUENCE, AND IS THEREFORE NOT MODELED
a 2RHS*FV38C a a	RHR FLOW CONTROL VALVE	-	YES	THIS VALVE IS A FLOW CONTROL VALVE IN THE TEST RETURN LINE OF THE RHS SYSTEM. IT IS NORMALLY CLOSED AND ONLY OPERATED FOR A FEW HOURS PER QUARTER. ITS EXPOSURE TIME TO AN ACCIDENT SCENARIO IS SMALL, AND IS THEREFORE CONSIDERED UNIMPORTANT COMPARED TO OTHER FAILURES.
2RHS*MOV104	RHR HEAD SPRAY ISOLATION, GLOBE VALVE	-	YES	THIS VALVE SERVES THE STEAM CONDENSING MODE, A SHUTDOWN FUNCTION. SHUTDOWN FUNCTIONS ARE NOT IN THE SCOPE OF THE IPE, AND NO CREDIT IS TAKEN FOR THE VALVE.
2RHS*MOV112	RHR SHT DN CLG SUCT ISOL MOTOR OPERATED GATE	-	YES	THIS VALVE SERVES THE SHUTDOWN COOLING FUNCTION OF RHS, AND IS THEREFORE NOT IN THE SCOPE OF THE IPE.
Table C2 (Continued) Current 89-10 MOVs with Low Risk Significance

04/07/93 Page 13 of 18

	Description	PRA	89-10	PRA REASONING
2RHS*NOV113	RHR SHT DN CLG SUCT ISOL , GATE VALVE	-	YES	THIS IS AN ISOLATION VALVE FOR THE SHUTDOWN COOLING FUNCTION, AND IS THEREFORE NOT APPLICABLE TO IPE AND DO NOT TAKE CREDIT FOR IT. VALVE SERVES ONLY A SHUTDOWN MODE AND SERVES NO PURPOSE TO PREVENT OR MITIGATE A SEVERE ACCIDENT.
2RHS*MOV12A	DISCHARGE FROM ETA	YES	YES	THIS IS THE HEAT EXCHANGER OUTLET VALVE. IT IS NORMALLY OPEN, AND DOES NOT NEED TO CLOSE. IT IS THEREFORE CONSIDERED UNIMPORTANT COMPARED TO OTHER FAILURES.
2RHS*MOV12B	DISCHARGE FROM ETB	YES	YES	THIS IS THE HEAT EXCHANGER DISCHARGE VALVE. IT IS NORMALLY OPEN AND DOES NOT NEED TO CLOSE UNLESS THE OPERATOR IS ALIGNING THE SERVICE WATER SYSTEM TO FLOOD CONTAINMENT. THE FAILURE TO FLOOD CONTAINMENT IS NOT AN IMPORTANT CONTRIBUTION TO RISK.
2RHS*MOV142	RHR DISCHARGE TO RADWASTE GLOBE VALVE , MOTOR	-	YES	THIS IS AN ISOLATION VALVE FOR THE SHUTDOWN COOLING FUNCTION, AND IS THEREFORE NOT APPLICABLE TO IPE AND DO NOT TAKE CREDIT FOR IT. VALVE SERVES ONLY A SHUTDOWN MODE AND SERVES NO PURPOSE TO PREVENT OR MITIGATE A SEVERE ACCIDENT.
2RHS*HOV149	RHR DISCHARGE TO RADWASTE , GATE VALVE , MOTO	-	YES	THIS IS AN ISOLATION VALVE FOR THE SHUTDOWN COOLING FUNCTION, AND IS THEREFORE NOT APPLICABLE TO IPE AND DO NOT TAKE CREDIT FOR IT. VALVE SERVES ONLY A SHUTDOWN MODE AND SERVES NO PURPOSE TO PREVENT OR HITIGATE A SEVERE ACCIDENT.
2RHS*MOV1A	RHR PMP P1A SUCTION , MOTOR OPERATED VALVE	YES	YES	THIS IS THE PUMP SUCTION VALVE FROM THE SUPPRESSION POOL. IT IS NORMALLY OPEN, AND DOES NOT NEED TO CHANGE POSITION FOR SYSTEM OPERATION. IT IS THEREFORE CONSIDERED UNIMPORTANT IN COMPARISON TO OTHER FAILURES.
2RHS*MOV18	RHR PMP P1B SUCTION , MOTOR OPERATED VALVE	YES	YES	RHR PUMP 'B' SUCTION ISOLATION VALVE FROM SUPPRESSION POOL, NORMALLY OPEN, IT IS NOT REQUIRED TO CHANGE POSITION. IT IS THEREFORE CONSIDERED UNIMPORTANT COMPARED TO OTHER FAILURES.
2RHS*MOV1C	RHR PMP P1C SUCTION , MOTOR OPERATED VALVE	YES	YES	RHR PUMP SUCTION ISOLATION VALVE, NORMALLY OPEN, AND IT DOES NOT NEED TO CHANGE POSITION FOR SYSTEM OPERATION. THEREFORE IT IS CONSIDERED UNIMPORTANT TO SYSTEM OPERATION.
2RHS*MOV22A	RHR A STM LINE ISOL , GLOBE VALVE MOTOR	-	YES	SERVES AS A STEAM CONDENSING FUNCTION ONLY IN SHUTDOWN HODE. NORMALLY, CLOSED DURING OPERATION. DE-ENERGIZED DURING NORMAL PLANT OPERATION. THEREFORE NOT IN THE SCOPE OF IPE.
		1		

Table C2 (Continued) Current 89-10 MOVs with Low Risk Significance

04/07/93 Page 14 of 18

Component 10	Description	PRA	89-10	PRA REASONING
2RHS*MOV22B	RHR B SYM LINE ISOL , GLOBE VALVE MOTOR		YES	SERVES AS A STEAM CONDENSING FUNCTION ONLY IN SHUTDOWN MODE. NORMALLY, CLOSED DURING OPERATION. DE-ENERGIZED DURING NORMAL PLANT OPERATION. AS THIS VALVE IS DOWNSTREAM OF A CLOSED DE-ENERGIZED VALVE, IT HAS NO CONSEQUENCE DURING PLANT FULL POWER OPERATION AND IS NOT MODELED IN THE IPE.
2RHS*HOV23A	RHR & STM LINE ISOL , MOTOR OPERATED VALVE		YES	SERVES AS A STEAM CONDENSING FUNCTION ONLY IN SHUTDOWN MODE. NORMALLY, CLOSED DURING OPERATION. DE-ENERGIZED DURING NORMAL PLANT OPERATION. AS THIS VALVE IS DOWNSTREAM OF A CLOSED DE-ENERGIZED VALVE, IT HAS NO CONSEQUENCE DURING PLANT FULL POWER OPERATION AND IS NOT MODELED IN THE IPE.
2RHS*MOV238	RHR B STM LINE ISOL , GLOBE MOTOR OPERATED	The second secon	YES	SERVES AS A STEAM CONDENSING FUNCTION ONLY IN SHUTDOWN MODE. NORMALLY, CLOSED DURING OPERATION. DE-ENERGIZED DURING NORMAL PLANT OPERATION. AS THIS VALVE IS DOWNSTREAM OF A CLOSED DE-ENERGIZED VALVE, IT HAS NO CONSEQUENCE DURING PLANT FULL POWER OPERATION AND IS NOT MODELED IN THE IPE.
2RHS*MOV26A	RHR H.E. A VENT TO SUPP P , MOTOR OPERATED	-	YES	DO NOT TAKE CREDIT FOR THIS IN THE IPE. USED TO VENT HEAT EXCHANGER AS YOU FILL IT AFTER MAINTENANCE, DURING SHUTDOWN. NORMALLY CLOSED.
2RHS*MOV268	RHR H.E. VENT TO SUPP P , MOTOR OPERATED GLOB	-	YES	DO NOT TAKE CREDIT FOR THIS IN THE IPE. USED TO VENT HEAT EXCHANGER AS YOU FILL IT AFTER MAINTENANCE, DURING SHUTDOWN. NORMALLY CLOSED.
2RHS*MOV27A	RHR H.E. A VENT TO SUPP P , MOTOR OPERATED	-	YES	DO NOT TAKE CREDIT FOR THIS IN THE IPE. USED TO VENT HEAT EXCHANGER AS YOU FILL IT AFTER MAINTENANCE, DURING SHUTDOWN. NORMALLY CLOSED.
2RHS*MOV27B	RHR H.E. B VENT TO SUPP P , MOTOR OPERATED	-	YES	DO NOT TAKE CREDIT FOR THIS IN THE IPE. USED TO VENT HEAT EXCHANGER AS YOU FILL IT AFTER MAINTENANCE, DURING SHUTDOWN. NORMALLY CLOSED.
2RHS*MOV2A	RHR A SHUT DOWN COOLING SUCTION , MOTOR		YES	THIS IS ONE OF TWO CROSS TIE VALVES BETWEEN THE A AND B TRAINS. THE IPE DOES NOT TAKE CREDIT FOR THIS VALVE. IT IS USED DURING SHUTDOWN OPERATIONS, AND IS THEREFORE NOT IN THE SCOPE OF THE IPE.
2RHS*MOV2B	RHR B SHT DN COOLING SUCT , MOTOR OPERATED	-	YES	THIS IS ONE OF TWO CROSS TIE VALVES BETWEEN THE A AND B TRAINS. THE I IPE DOES NOT TAKE CREDIT FOR THIS VALVE. IT IS USED DURING SHUTDOWN OPERATIONS, AND IS THEREFORE NOT IN THE SCOPE OF THE IPE.

Table C2 (Continued) Current 89-10 MOVs with Low Risk Significance

04/07/93 Page 15 of 18

Component ID	Description	PRA	89-10	PRA KEASUNING
2RHS*MOV30A	RHR A RTN TO SUPP POOL IS MOTOR OPERATED	YES	YES	THIS IS THE SUPPRESSION POOL INJECTION VALVE. IT IS NORMALLY OPEN AND DOES NOT NEED TO CHANGE POSITION FOR SYSTEM OPERATION. THEREFORE IT IS CONSIDERED UNIMPORTANT IN COMPARISON TO OTHER FAILURES.
2RHS*MOV30B	RHR B RTN TO SUPP POOL IS MOTOR OPERATED	YES	YES	THIS IS THE SUPPRESSION POOL COOLING ISOLATION VALVE. IT IS NORMALLY OPEN, AND MUST REMAIN OPEN FOR SYSTEM OPERATION. THEREFORE IT IS CONSIDERED UNIMPORTANT IN COMPARISON TO OTHER FAILURES.
2RHS*MOV32A	RHR H.E. A FLOW TO RCIC MOTOR OPERATED GATE	-	YES	THIS VALVE IS USED IN THE STEAM CONDENSING MODE OF RHS. IT IS A SHUTDOWN FUNCTION AND IS NOT CONSIDERED IN THE IPE
2RHS*MOV32B	RHR H.E. B FLOW TO RCIC , MOTOR OPERATED VALV	-	YES	THIS IS IN THE STEAM CONDENSING MODE OF RHS, A SHUTDOWN FUNCTION. IT IS THEREFORE NOT IN THE SCOPE OF THE IPE.
2RHS*MOV33A	RHR A SUPP POOL SPRAY , MOTOR OPERATED GLOBE	YES	YES	THIS IS SUPPRESSION POOL SPRAY ISOLATION VALVE. IT IS NORMALLY CLOSED, AND MUST OPEN FOR OPERATION. ITS IMPORTANCE TO CORE DAMAGE IS INSIGNIFICANT IN COMPARISON TO OTHER FAILURES.
2RHS*MOV33B	RHR B SUPP POOL SPRAY , MOTOR OPERATED GLOBE	YES	YES	THIS IS THE SUPPRESSION POOL SPRAY ISOLATION VALVE. IT IS NORMALLY CLOSED AND MUST OPEN FOR OPERATION. ITS CONTRIBUTION TO CORE DAMAGE IS MINOR COMPARED TO OTHER FAILURES.
2RHS*MOV37A	RHR H.E. A FLOW TO SUPP P , MOTOR OPTRATED	-	YES	THIS VALVE SERVES THE STEAM CONDENSING MODE, A SHUTDOWN FUNCTION. SHUTDOWN FUNCTIONS ARE NOT IN THE SCOPE OF THE IPE, AND NO CREDIT IS TAKEN FOR THE VALVE.
2RHS*MOV37B	RHR H.E. B FLOW TO SUFF P , MOTOR OPERATED		YES	THIS VALVE SERVES THE STEAM CONDENSING MODE, A SHUTDOWN FUNCTION. SHUTDOWN FUNCTIONS ARE NOT IN THE SCOPE OF THE IPE, AND NO CREDIT IS TAKEN FOR THE VALVE.
2RHS*MOV40A	RNR A SHT DN CLG RETURN , MOTOR OPERATED VALV	-	YES	THIS VALVE SERVES THE SHUTDOWN COOLING MODE, A SHUTDOWN FUNCTION. SHUTDOWN FUNCTIONS ARE NOT IN THE SCOPE OF THE IPE, AND NO CREDIT IS TAKEN FOR THE VALVE.
2RHS*MOV408	RHS B SHUTDOWN COOLING , MOTOR OPERATED VALVE	-	YES	THIS VALVE SERVES THE SHUTDOWN COOLING MODE, A SHUTDOWN FUNCTION. SHUTDOWN FUNCTIONS ARE NOT IN THE SCOPE OF THE IPE, AND NO CREDIT IS TAKEN FOR THE VALVE.
2RHS*MOV4A	RHR A MIN FLOW BYPASS , MOTOR OPERATED GATE	YES	YES	THIS IS THE MINIMUM FLOW BYPASS VALVE, NORMALLY OPEN. IT DOES NOT NEED TO CLOSE, EVEN UPON INJECTION, AS THE BYPASS FLOW IS MINOR. IT DOES NEED TO OPEN FOR PUMP PROTECTION, IF IT CLOSES.

Table C2 (Continued) Current 89-10 MOVs with Low Risk Significance

04/07/93 Page 16 of 18

Component 10	Description	PRA	89-10	PRA REASONING
2RHS*MOV48	RHR B MIN FLOW BYPASS , MOTOR OPERATED VALVE	YES	YES	THIS IS THE MINIMUM FLOW BYPASS VALVE. IT IS NORMALLY OPEN AND DOES NOT NEED TO CLOSE, AS BYPASS FLOW WOULD BE MINIMAL. IT DOES NEED TO OPEN FOR PUMP PROTECTION, IF IT CLOSES.
2RHS*MOV4C	RHR C MIN FLOW BYPASS , MOTOR OPERATED VALVE	YES	YES	THIS IS A MINIMUM FLOW BYPASS VALVE. IT IS NORMALLY OPEN, AND DOES NOT NEED TO CLOSE AS BYPASS FLOW WOULD BE MINIMAL. IT DOES NEED TO OPEN FOR PUMP PROTECTION, IF IT CLOSES.
2RHS*MOV67A	RHR A SHT DNCLG CV BYPASS , MOTOR OPERATE	-	YES	THIS VALVE SERVES THE SHUTDOWN COOLING FUNCTION OF RHS, AND IS THEREFORE NOT IN THE SCOPE OF THE IPE.
2RHS*HOV678	RHR B SHT DN CLG CV BYPAS	-	YES	THIS VALVE SERVES THE SHUTDOWN COOLING FUNCTION OF RHS, AND IS THEREFORE NOT IN THE SCOPE OF THE IPE.
2RHS*MOV80A	HEAT EXCHANGER SUCTION ISOLATION VALVE	-	YES	THIS VALVE SERVES THE STEAM CONDENSING MODE, A SHUTDOWN FUNCTION. SHUTDOWN FUNCTIONS ARE NOT IN THE SCOPE OF THE IPE, AND NO CREDIT IS TAKEN FOR THE VALVE. THIS VALVE IS ALSO DE-ENERGIZED DURING NORMAL OPERATION.
2RHS*MOV80B	HEAT EXCHANGER SUCTION ISOLATION VALVE	-	YES	THIS VALVE SERVES THE STEAM CONDENSING MODE, A SHUTDOWN FUNCTION. SHUTDOWN FUNCTIONS ARE NOT IN THE SCOPE OF THE IPE, AND NO CREDIT IS TAKEN FOR THE VALVE. THIS VALVE IS ALSO DE-ENERGIZED DURING NORMAL OPERATION.
2RHS*MOV9A	RHR H.E. A SHELL SIDE INL MOTOR OPERATED	YES	YES	THIS IS THE HEAT EXCHANGER INLET VALVE, NORMALLY OPEN. IT DOES NOT NEED TO CHANGE POSITION FOR SYSTEM OPERATION. ITS CONTRIBUTION TO CORE DAMAGE IS MINIMAL IN COMPARISON TO OTHER FAILURES.
ZRHS*MOV9B	RHR H.E. B SHELL-SIDE INL MOTOR OPERATED VALV	YES	YES	THIS IS THE HEAT EXCHANGER INLET VALVE, NORMALLY OPEN. IT DOES NOT NEED TO CHANGE POSITION FOR SYSTEM OPERATION. ITS CONTRIBUTION TO CORE DAMAGE IS MINIMAL IN COMPARISON TO OTHER FAILURE MODES.
2SLS*MOV5A	RPV INJECTION ISOL STOP CHECK VALVE	-	YES	THIS IS A MOTOR OPERATED STOP CHECK VALVE. IT OPERATES AS A GLOBE STYLE CHECK VALVE DURING OPERATION. THE MOTOR IS USED TO ASSURE POSITIVE SEATING LATE IN CERTAIN SCENARIOS. THE MOTOR DOES NOT AID IN OPENING OR CLOSING THE VALVE.
2SLS*MOV5B	RPV INJECTION ISOL STOP CHECK VALVE	1	YES	THIS IS A MOTOR OPERATED STOP CHECK VALVE. IT OPERATES AS A GLOBE STYLE CHECK VALVE DURING OPERATION. THE MOTOR IS USED TO ASSURE POSITIVE SEATING LATE IN CERTAIN SCENARIOS. THE MOTOR DOES NOT AID IN OPENING OR CLOSING THE VALVE.
		1		

Table C2 (Continued) Current 89-10 MOVs with Low Risk Significance

04/07/93 Page 17 of 18

1 60	anonent ID	Description	PRA	89-10	PDA REASONING
251	IP*HOV17A	SPENT FUEL COOLING HEAT EXCHANGER SUCTION VAL		YES	THIS IS A BACKUP COOLING SOURCE TO THE SPENT FUEL POOL COOLING SYSTEM. SPENT FUEL POOL COOLING IS NOT IN THE SCOPE OF THE IPE, AND NO CREDIT IS TAKEN FOR THIS VALVE.
251	₽*MOV17B	SPENT FUEL COOLING HEAT EXCHANGER SUCTION VAL	-	YES	THIS IS A BACKUP COOLING SOURCE TO THE SPENT FUEL POOL COOLING SYSTEM. SPENT FUEL POOL COOLING IS NOT IN THE SCOPE OF THE IPE, AND NO CREDIT IS TAKEN FOR THIS VALVE.
251	IP*MOV18A	SPENT FUEL COOLING HEAT EXCHANGER DISCHARGE V	-	YES	THIS IS A BACKUP COOLING SOURCE TO THE SPENT FUEL POOL COOLING SYSTEM. SPENT FUEL POOL COOLING IS NOT IN THE SCOPE OF THE IPE, AND NO CREDIT IS TAKEN FOR THIS VALVE.
251	vP*MOV18B	SPENT FUEL COOLING HEAT EXCHANGER DISCHARGE V	1	YES	THIS IS A BACKUP COCLING SOURCE TO THE SPENT FUEL POOL COOLING SYSTEM. SPENT FUEL POOL COOLING IS NOT IN THE SCOPE OF THE IPE, AND NO CREDIT IS TAKEN FOR THIS VALVE.
25	JP*HOV1A	SERVICE WATER PUMP DISCHARGE ISOLATION VALVE	-	YES	THIS VALVE PROVIDES AUTOMATIC STRAINER BACKWASH FOR THE SERVICE SYSTEM. THERE IS SUFFICIENT PUMPING CAPACITY SUCH THAT THESE VALVES ARE NOT NEEDED TO RESPOND IN AN ACCIDENT SITUATION. SYSTEM PROCEDURES AND ALARMS ALERT OPERATORS TO ANY CLOGGING CONCERNS.
25	VP*MOV1B	SERVICE WATER PUMP DISCHARGE ISOLATION VALVE	-	YES	THIS VALVE PROVIDES AUTOMATIC STRAINER BACKWASH FOR THE SERVICE SYSTEM. THERE IS SUFFICIENT PUMPING CAPACITY SUCH THAT THESE VALVES ARE NOT NEEDED TO RESPOND IN AN ACCIDENT SITUATION. SYSTEM PROCEDURES AND ALARMS ALENT OPERATORS TO ANY CLOGGING CONCERNS.
25	WP*MOV1C	SERVICE WATER PUMP DISCHARGE ISOLATION VALVE	-	YES	THIS VALVE PROVIDES AUTOMATIC STRAINER BACKWASH FOR THE SERVICE SYSTEM. THERE IS SUFFICIENT PUMPING CAPACITY SUCH THAT THESE VALVES ARE NOT NEEDED TO RESPOND IN AN ACCIDENT SITUATION. SYSTEM PROCEDURES AND ALARMS ALERT OPERATORS TO ANY CLOGGING CONCERNS.
zer an an an an an	WP*HOV10	SERVICE WATER PUMP DISCHARGE ISOLATION VALVE		YES	THIS VALVE PROVIDES AUTOMATIC STRAINER BACKWASH FOR THE SERVICE SYSTEM. THERE IS SUFFICIENT PUMPING CAPACITY SUCH THAT THESE VALVES ARE NOT NEEDED TO RESPOND IN AN ACCIDENT SITUATION. SYSTEM PROCEDURES AND ALARMS ALERT OPERATORS TO ANY CLOGGING CONCERNS.
1	3		1	1	

1 1 1

Table C2 (Continued) Current 89-10 MOVs with Low Risk Significance

P

04/07/93 Page 18 of 18

Component ID	Description	PRA	89-10	PRA REASONING
2SWP*HOV1E	SERVICE WATER PUMP DISCHARGE ISOLATION VALVE		YES	THIS VALVE PROVIDES AUTOMATIC STRAINER BACKWASH FOR THE SERVICE SYSTEM. THERE IS SUFFICIENT PUMPING CAPACITY SUCH THAT THESE VALVES ARE NOT NEEDED TO RESPOND IN AN ACCIDENT SITUATION. SYSTEM PROCEDURES AND ALARMS ALERT OPERATORS TO ANY CLOGGING CONCERNS.
2SWP*MOV1F	SERVICE WATER PUMP DISCHARGE ISOLATION VALVE	-	YES	THIS VALVE PROVIDES AUTOMATIC STRAINER BACKWASH FOR THE SERVICE SYSTEM. THERE IS SUFFICIENT PUMPING CAPACITY SUCH THAT THESE VALVES ARE NOT NEEDED TO RESPOND IN AN ACCIDENT SITUATION. SYSTEM PROCEDURES AND ALARMS ALERT OPERATORS TO ANY CLOGGING CONCERNS.
2SWP*MOV21A	SPENT FUEL EMERGENCY SERVICE WATER VALVE	-	YES	THIS VALVE SUPPLIES A REDUNDANT SOURCE OF COOLING TO THE SPENT FUEL POOL COOLING SYSTEM, WHICH IS NOT IN THE SCOPE OF THE IPE, AND NO CREDIT IS TAKEN.
2swp*MoV218	SPENT FUEL EMERGENCY SERVICE WATER VALVE	-	YES	THIS VALVE SUPPLIES A REDUNDANT SOURCE OF COOLING TO THE SPENT FUEL POOL COOLING SYSTEM, WHICH IS NOT IN THE SCOPE OF THE IPE, AND NO CREDIT IS TAKEN.
25WP*MOV67A	SWP TO CLR 2HVK*CHL1A-MOTOR OPERATED VALVE	-	YES	THIS VALVE IS IN THE CONTROL BUILDING CHILLED WATER SYSTEM. THE REDUNDANCY IN SYSTEM TRAINS MAKES THE FAILURE OF ANY SINGLE VALVE INSIGNIFICANT TO RISK.
2SWP*MOV678	MOTOR OPER VALVE , SWP TO CLR 2HVK*CHL1B	-	YES	THIS VALVE IS IN THE CONTROL BUILDING CHILLED WATER SYSTEM. THE REDUNDANCY IN SYSTEM TRAINS MAKES THE FAILURE OF ANY SINGLE VALVE INSIGNIFICANT TO RISK.
2SWP*MOV95A	SWP TO CLR 2EGS*EG2- MOTOR OPERATED VALVE	YES	YES	FAILURE OF THE DIVISION III HPCS DIESEL TO POWER ITS EMERGENCY BUS IS NOT IMPORTANT TO RISK, SINCE THIS CAPABILITY IS NOT CREDITED IN THE STATION BLACKOUT EVENT MODEL
2SWP*MOV95B	MOTOR OPER VALVE SWP TO CLR 2EGS*EG2	I YES	YES	FAILURE OF THE DIVISION III HPCS DIESEL TO POWER ITS EMERGENCY BUS IS NOT IMPORTANT TO RISK, SINCE THIS CAPABILITY IS NOT CREDITED IN THE STATION BLACKOUT EVENT MODEL.
2WCS*MOV200	RWCU RETURN ISOL , MOTOR OPERATED GLOBE VALVE		YES	OTHER THAN 'OR CONTAINMENT ISOLATION, WHICH IS MODELED, (THIS VALVE IS NOT APPLICABLE) THE REACTOR WATER CLEANUP SYSTEM HAS NO FUNCTION IN THE PREVENTION OR MITIGATION OF A SEVERE ACCIDENT. THIS VALVE IS NOT IMPORTANT TO CONTAINMENT ISOLATION BECAUSE OF REDUNDANT CHECK VALVE AND HIGH PRESSURE DESIGN. THEREFORE THIS VALVE IS NOT MODELED IN THE IPE.
		l	1	

OCTOBER 1, 1993

APPENDIX D

DATA TABLES FOR BWR D

1

Table D1

MOVS NOT MODELED IN THE PSA FOR BWR D

Valve	Valve		Valve P.	osition	
Number	Signal	Function	Normal	Accident	Comments
MO-2010	NONE	RIR TORUS SPRAY (TRAIN A)	CLOSED	OPEN	NOT CREDITED IN IPE DUE TO SIMILARITY IN FUNCTION WITH DW SPRAY AND TORUS COOLING. SPRAY IS INITIATED TO COOL NON-CONDENSIBLE GASES IN TORUS AIR-SPACE.
MO-2011	NONE	RHR TORUS SPRAY (TRAIN A)	CLOSED	OPEN	NOT CREDITED IN IPE DUE TO SIMILARITY IN FUNCTION WITH DW SPRAY AND TORUS COOLING. SPRAY IS INITIATED TO COOL, NON-CONDENSIBLE GASES IN TORUS AIR-SPACE.
MO-2026	TO CLOSE (ISOLATION)	RHR HEAD SPRAY	CLOSED	CLOSED	DELETED FROM SCOPE OF MMOVP. NOT CREDITED IN IPE DUE TO LINE HAVING NO ACTIVE SAFETY FUNCTION.
MO-2027	TO CLOSE (ISOLATION)	RHR HEAD SPRAY	CLOSED	CLOSED	DELETED FROM SCOPE OF MMOVP. NOT CREDITED IN IPE DUE TO LINE HAVING NO ACTIVE SAFETY FUNCTION.
MO-2032	TO CLOSE	RHR TO RADWASTE SURGE TANK	CLOSED	CLOSED	VALVE RECEIVES ISOLATION SIGNAL. NOT CREDITED IN TPE DUE TO LINE PERFORMING NO ACCIDENT RESPONSE FUNCTION.
MO-2407	SNON	RHR TO RADWASTE SURGE TANK	CLOSED	CLOSED	NOT CREDITED IN IPE DUE TO LINE PERFORMING NO ACCIDENT RESPONSE FUNCTION.
MO-2-43A	JNON	RECIRC. PUMP SUCTION	OPEN	OPEN	NOT CREDITED IN IPE DUE TO VALVE NOT ITAVING AN ACTIVE SAFETY FUNCTION.
-MO-2-43B	NONE	RECIRC PUMP SUCTION	OPEN	OPEN	NOT CREDITED IN IPE DUE TO VALVE NOT HAVING AN ACTIVE SAFETY PUNCTION.

D-2

Valve	Valve		Valve I	Position	
Number	Signal	Function	Normal	Accident	Comments
MO-2071	TO CLOSE	HPCI TEST RETURN TO CST	CLOSED	CLOSED	NOT CREDITED IN IPE DUE TO LINE PERFORMING NO ACTIVE SAFETY FUNCTION.
MO-2110	TO CLOSE	RCIC TEST RETURN TO CST	OPEN	CLOSED	NOT CREDITED IN IPE DUE TO VALVE NOT PERFORMING AN SAFETY FUNCTION AND ITS SIMILARITY WITH MO-3502 (VALVES ARE IN SERIES).
MO-2373	TO CLOSE	MS CONDENSATE DRAIN LINE ISOLATION VALVE (INBOARD)	CLOSED	CLOSED	NOT CREDITED IN IPE DUE TO VALVES PERFORMING NO ACTIVE SAFETY FUNCTION.
MO-2374	TO CLOSE	MS CONDENSATE DRAIN LINE ISOLATION VALVE (OUTBOARD)	CLOSED	CLOSED	NOT CREDITED IN IPE DUE TO VALVES PERFORMING NO ACTIVE SAFETY FUNCTION.
MO-4043A		CGCS INLET			NOT CREDITED IN THE IPE DUE TO SYSTEM'S LIMITED CAPACITY TO REMOVE COMBUSTIBLE GASES.
MO-4043B		CGCS INLET			NOT CREDITED IN THE IPE DUE TO SYSTEM'S LIMITED CAPACITY TO REMOVE COMBUSTIBLE GASES.
MO-4044A		COCS RECIRC.			NOT CREDITED IN THE IPE DUE TO SYSTEM'S LIMITED CAPACITY TO REMOVE COMBUSTIBLE GASES.
MO-4044B		CGCS RECIRC.			NOT CREDITED IN THE IPE DUE TO SYSTEM'S LIMITED CAPACITY TO REMOVE COMBUSTIBLE GASES.
MO-4047A		CGCS COOLING WATER SUPPLY			NOT CREDITED IN THE IPE DUE TO SYSTEM'S LIMITED CAPACITY TO REMOVE COMBUSTIBLE GASES.
MO-4047B		CGCS COOLING WATER SUPPLY			NOT CREDITED IN THE IPE DUE TO SYSTEM'S LIMITED CAPACITY TO REMOVE COMBUSTIBLE GASES.

NEDC-32264 Table D1 MOVs NOT MODELED IN THE PSA FOR BWR D (Continued)

D-3

÷.

Table D2 MOVs MODELED IN THE PSA FOR BWR D

Basic Event	Valve	Function	Baseline CD	Importance	Comments
Identifier	Number		Core Damage	Containment	
BVMMO1426F	MO-1426	RBCCW DW ISOLATION ON RETURN LINE TO PUMPS/HX (INBOARD),			CC NOT ADDED TO MODEL DUE TO LOW LIKELIHOOD THAT VALVES WILL BE NEEDED TO CHANGE POSITION (CLOSED SYSTEM, PERFORMS NO ACTIVE SAFETY FUNCTION).
BVMM01427F	MO-1427	RBCCW SUPPLY TO DW COOLERS			NOT IN MMOVP, CC NOT INCLUDED SINCE VALVE POSITION CHANGE NOT REQUIRED.
BVMMO1428F	MO-1428	RBCCW SUPPLY TO DW COOLERS			NOT IN MMOVP, CC NOT INCLUDED SINCE VALVE POSITION CHANGE NOT REQUIRED.
BVMMO1429F	MO-1429	RBCCW SUPPLY TO DW COOLERS			NOT IN MMOVP, CC NOT INCLUDED SINCE VALVE POSITION CHANGE NOT REQUIRED.
BVMMO1430F	MO-1430	RECW SUPPLY TO DW COOLERS			NOT IN MMOVP, CC NOT INCLUDED SINCE VALVE POSITION CHANGE NOT REQUIRED.
BVMM04229F	MO-4229	RBCCW DW ISOLATION ON SUPPLY LINE TO DW COOLERS			CC NOT ADDED TO MODEL DUE TO LOW LIRELIHOOD THAT VALVES WHL BE NEEDED TO CHANGE POSITION (CLOSED SYSTEM, PERFORMS NO ACTIVE SAFETY FUNCTION).
BVMMO4230F	MO-4230	RETURN LINE TO PUMPS/HX (OUTBOARD)			CC NOT ADDED TO MODEL DUE TO LOW LIKELIHOOD THAT VALVES WILL BE NEEDED TO CHANGE POSITION (CLOSED SYSTEM, PERFORMS NO ACTIVE SAFETY FUNCTION).

D-4

Table D2 MOVs MODELED IN THE PSA FOR BWR D (Continued)

Basic Event	Valve	Function	Baseline CL) Importance	Comments
Identifier	Number		Core Damage	Containment	
CVMMO1741F CVMM01741T CVMM01741Z	MO-1741	CORE SPRAY TORUS SUCTION (TRAIN A)			NOT IN MMOVP, CC NOT ADDED DUE TO VALVE EXISTING IN REQUIRED POSITION (OPEN)
CVMM01742F CVMM01742T CVMM01742Z	MO-1742	CORE SPRAY TORUS SUCTION (TRAIN 13)			NOT IN MMOVP, CC NOT ADDED DUE TO VALVE EXISTING IN REQUIRED POSITION (OPEN).
CVMMO1749L	MO-1749	CORE SPRAY TEST RETURN Line (train A)			NOT IN MMOVP, CC NOT ADDED DUE TO VALVE EXISTING IN REQUIRED POSITION (CLOSED).
CVMM01750L	MO-1750	CORE SPRAY TEST RETURN Line (TRAIN B)			NOT IN MMOVP, CC NOT ADDED DUE TO VALVE EXISTING IN REQUIRED POSITION (CLOSED).
CVMM01751F	MO-1751	CORE SPRAY OUTBOARD INJECTION TEST VALVE (TRAIN A)			CC NOT ADDED DUE TO VALVE EXISTING IN REQUIRED POSITION, AND LOW LIKELIHOOD THAT VALVE WILL NEED TO CHANGE POSITION.
CVMM01752F	MO-1752	CORE SPRAY OUTBOARD INJECTION TEST VALVE (TRAIN B)			CC NOT ADDED DUE TO VALVE EXISTING IN REQUIRED POSITION, AND LOW LIKELIHOOD THAT VALVE WILL NEED TO CHANGE POSITION.
CVMMO1753F CVMM01753N	MO-1753	CORE SPRAY INBOARD INJECTION VALVE (TRAIN Å)	6.12E-03	0.99689	CC INCLUDED, OPENS AGAINS & FUMP HEAD. IMPORTANCE MEASURE INCLUDES BOTH BASIC EVENT AND COMMON 2323E CONTRIBUTIONS.

Table D2 MOVs MODELED IN THE PSA FOR BWR D (Continued)

L

.

5

	Function	Baseline C) Importance	Comments
		Core Damage	Containment	
	CORE SPRAY INDORD INJECTION VALVE (TRAIN B)	1.149E-02	0.99691	CC INCLUDED, OPENS AGAINST PUMP HEAD. IMPORTANCE MEASURE INCLUDES HOTH BASIC EVENT AND COMMON CAUSE CONTRIBUTIONS.
1.00	STEAM SEAL REGULATOR INLET VALVE			NoT IN MMOVP; CC NOT INCLUDED
60	STEAM PACKING EXHAUSTER OUTLET VALVE			NOT IN MMOVP, CC NOT INCLUDED
0	STEAM PACKING EXHAUSTER OUTLET VALVE			NOT IN MMOVP, CC NOT INCLUDED
- 20	CONDENSATE BLOCK VALVE (A HEATER)			NOT IN MMOVP, CC NOT INCLUDED
62	CONDENSATE BLOCK VALVE (B HEATER)			NOT IN MMOVP, CC NOT INCLUDED
10	FW ILP. HEATER INLET BLOCK VALVE (TRAIN A)			NOT IN MMOVP, CC NOT INCLUDED
34	FW H.P. HEATER INEET BLOCK VALVE (TRAIN B)			Not in MMOVP, CC NOT INCLUDED
24	CIRC. WATER SUPPLY TO CONDENSER			NOT IN MMOVP, CC NOT INCLUDED
55	CRC. WATER SUPPLY TO CONDENSER			NOT IN MMOVP, CC NOT INCLUDED

2

D-6

Basic Event	Valve	Function	Baseline C	D Importance	Comments
Identifier	Number		Core Damage	Containment	
FVMM01156F	MO-1156	CIRC. WATER SUPPLY TO CONDENSER			NOT IN MMOVP, CC NOT INCLUDED
FVMM01157F	MO-1157	CIRC. WATER SUPPLY TO CONDENSER			NOT IN MMOVP; CC NOT INCLUDED
FVMMO1614F	MO-1614	FW H.P. HEATER OUTLET BLOCK VALVE (TRAIN Å)			NOT IN MMOVP, CC NOT INCLUDED
FVMM01615F	MO-1615	FW H.P. HEATER OUTLET BLOCK VALVE (TRAIN B)			NOT IN MMOVP, CC NOT INCLUDED
FVMMO1850F	MO-1850	CIRC. WATER PUMP OUTLET			NOT IN MMOVP, CC NOT INCLUDED
FVMM01851F	MO-1851	CIRC. WATER PUMP OUTLET			NOT IN MMOVP, CC NOT INCLUDED
GVMM1087AL	MO- 1087A	Main Condenser Vacuum Breaker			NOT IN MMOVP; CC NOT INCLUDED
GVMM1087BL	MO- 1087B	Main Condenser Vacuum Breaker			NOT IN MMOVP; CC NOT INCLUDED
HVMMO2034F	MO-2034	HPCI TURBINE INBOARD STEAM ISOLATION VALVE			CC NOT ADDED DUE TO VALVE EXISTING IN REQUIRED POSITION, AND LOW LIKELIHOOD THAT VALVE WILL NEED TO CHANGE POSITION.
HVMMO2035F	MO-2035	HPCI TURBINE OUTBOARD STEAM ISOLATION VALVE			CC NOT ADDED DUE TO VALVE EXISTING IN REQUIRED POSITION, AND LOW L'KELHOOD THAT VALVE WILL NEED TO CHANGE POSITION.

NEDC-32264 Table D2 MOVs MODELED IN THE PSA FOR BWR D (Continued)

Basic Event	Valve	Function	Baseline (CD Importance	Comments
ldentifier	Number		Core Damage	Containment	
HVMMO2036F HVMMO2036N	MO-2036	HPCI TURBINE STEAM Admission Valve	1.82E-03	0.98176	CC INCLUDED; OPENS AGAINST RCS PRESSURE.
HVMMO2061F HVMMO2061N	MO-2061	HPCI TORUS SUCTION VALVE	1.77E-03	0.98176	CC INCLUDED; OPENS AGAINST TORUS PRESSURE.
HVMMO2062F HVMMO2062N	MO-2062	HPCI TORUS SUCTION VALVE	1.77E-03	0.98176	CC INCLUDED; OPENS AGAINST TORUS PRESSURE.
HVMMO2063F	MO-2063	HPCI CST SUCTION VALVE			CC NOT ADDED DUE TO VALVE INITIALLY BEING ALIGNED IN ACCIDENT RESPONSE POSITION, AND VALVE HAS LITTLE OR NO &P AT THE TIME VALVE POSITION CHANGE OCCURS.
HVMMO2067F HVMMO2067N	MO-2067	HPCI INJECTION/TEST VALVE	1.82E-03	0.98176	CC INCLUDED, OPENS AGAINST PUMP HEAD.
HVMMO2068F HVMMO2068N	MO-2068	HPCI INJECTION & ISOLATION VALVE	1.82E-03	0.98176	CC INCLUDED; OPENS AGAINST PUMP HEAD.
IVMMO2075F	MO-2075	RCIC TURBINE INBOARD STEAM ISOLATION VALVE			CC NOT ADDED DUE TO VALVE EXISTING IN REQUIRED POSITION, AND LOW LIKELIHOOD THAT VALVE WILL NEED TO CHANGE POSITION.
IVMMO2076F	MO-2076	RCIC TURBINE OUTBOARD STEAM ISOLATION VALVE			CC NOT ADDED DUE TO VALVE EXISTING IN REQUIRED POSITION, AND LOW LIKELIHOOD THAT VALVE WILL NEED TO CHANGE POSITION.
IVMMO2078F	MO-2078	RCIC TURBINE STEAM	1.21E-03	0.94596	CC INCLUDED, OPENS AGAINST RCS PRESSURE.

NEDC-32264 Table D2 MOVs MODELED IN THE PSA FOR BWR D (Continued)

Basic Event	Valve	Function	Baseline C	D Importance	Comments
Identifier	Number		Core Damage	Containment	
1VMMO2080F	MO-2080	RCIC TURBINE TRIP VALVE			CC NOT ADDED DUE TO VALVE BEING ALIGNED IN ITS ACCIDENT RESPONSE POSITION, AND LOW LIKELIHOOD OF A DEMAND TO CHANGE POSITION.
IVMMO2096F IVMMO2096N	MO-2096	RCIC TURBINE ACC. COOLING VALVE	1.21E-03	0.94596	CC included, opens against RCIC pump head.
IVMMO2100F IVMMO2100N	MO-2100	RCIC TORUS SUCTION VALVE	1.21E-03	0.94596	CC INCLUDED, OPENS AGAINST TORUS PRESSURE.
1VMMO2101F 1VMMO2101N	MO-2101	RCIC TORUS SUCTION VALVE	1.21E-03	0.94596	CC INCLUDED, OPENS AGAINST TORUS PRESSURE.
IVMMO2102F	MO-2102	RCIC CST SUCTION VALVE		0.94596	CC INCLUDED (THIS WAS INCLUDED INADVERTENTLY).
1VMMO2106F 1VMMO2106N	MO-2106	RCIC INJECTION/TEST VALVE	1.21E-03	0.94596	CC INCLUDED; OPENS AGAINST PUMP HEAD.
IVMMO2107F IVMMO2107N	MO-2107	RCIC INJECTION & ISOLATION VALVE	1.21E-03	0.94596	CC INCLUDED, OPENS AGAINST PUMP HEAD.
IVMMO3502L	MO-3502	RCIC CST RETURN LINE VALVE			NOT IN MMOVP; CC NOT INCLUDED SINCE VALVE IS IN ITS REQUIRED POSITION NORMALLY, AND DOESN'T CHANGE POSITION FOR ANY ACCIDENT SEQUENCE.
1.VMM02397C	MO-2397	RWCU INBOARD ISOLATION VALVE		0.68608	CC INCLUDED, VALVE CLOSES AGAINST RCS PRESSURE (ENABLES SLC OPERATION).

NEDC-32264 Table D2 MOVs MODELED IN THE PSA FOR BWR D (Continued)

Table D2 MOVs MODELED IN THE PSA FOR BWR D (Continued)

Basic Event	Valve	Function	Baseline CI) Importance	Comments
identifier	Number		Core Damage	Containment	
LVMM02398C	MO-2398	RWCU OUTBOARD ISOLATION VALVE		0.68608	CC INCLUDED; VALVE CLOSES AGAINST RCS PRESSURE (ENABLE SLC OPERATION).
RVMMO1986C RVMMO1986F	MO-1986	RHR TORUS SUCTION VALVE (TRAIN A)			CC NOT INCLUDED SINCE VALVE IS INITIALLY IN ITS REQUIRED POSITION AND LOCKED IN THIS POSITION.
RVMMO1987C RVMM01987F	MO-1987	RHR TORUS SUCTION VALVE (TRAIN B)			CC NOT INCLUDED SINCE VALVE IS INITIALLY IN ITS REQUIRED POSITION AND LOCKED IN THIS POSITION.
RVMM01988F RVMM01988N	MO-1988	RHR SHUTDOWN COOLING SUCTION VALVE (TRAIN A)		0.99687	CC INCLUDED; VALVE OPENS AGAINST TORUS PRESSURE.
RVMMO1989F RVMM01989N	MO-1989	RHR SHUTDOWN COOLING SUCTION VALVE (TRAIN B)		0.99687	CC INCLUDED, VALVE OPENS AGAINST TORUS PRESSURE.
RVMMO2002F	MO-2002	RHR HX BYPASS VALVE (TRAIN A)			CC NOT INCLUDED DUE TO VALVE POSITION NOT REQUIRING A CHANGE FOR ACCIDENT RESPONSE.
RVMMG2003F	MO-2003	RHR HX BYFASS VALVE (TRAIN B)			CC NOT INCLUDED DUE TO VALVE POSITION NOT REQUIRING A CHANGE FOR ACCIDENT RESPONSE.
RVMMO2006F RVMMO2006N	MO-2006	RHR TO TORUS VALVE (TRAU A)		0.99687	CC INCLUDED, VALVE OPENS AGAINST RHR PUMP HEAD.
RVMMO2007F RVMMO2007N	MO-2007	RHR TO TORUS VALVE (TRAIN B)		0.99687	CC INCLUDED, VALVE OPENS AGAINST RHR PUMP HEAD.
RVMMO2008F RVMMO2008N	MO-2008	RHR TORUS COOLING VALVE (TRAIN A)		0.99687	CC INCLUDED, VALVE OPENS AGAINST RHR PUMP HEAD.

Basic Event	Valve	Function	Baseline (D Importance	Comments
Identifier	Number		Core Damage	Containment	
RVMMO2009F RVMMO2009N	MO-2009	RHR TORUS COOLING VALVE (TRAIN B)		0.99687	CC INCLUDED, VALVE OPENS AGAINST RHR PUMP HEAD.
RVMMO2012F	MO-2012	RHR OUTBOARD INJECTION VALVE (TRAIN A)			CC NOT INCLUDED DUE TO VALVE BEING IN ITS REQUIRED POSITION FOR ACCIDENT RESPONSE, LOW LIKELIHOOD OF POSITION CHANGE, AND LOW CONSEQUENCES OF FAILURE TO CHANGE POSITION IF NECESSARY.
RVMMO2013F	MO-2013	RHR OUTBOARD INJECTION VALVE (TRAIN B)			CC NOT INCLUDED DUE TO VALVE BEING IN ITS REQUIRED POSITION FOR ACCIDENT RESPONSE, LOW LIKELIHOOD OF POSITION CHANGE, AND LOW CONSEQUENCES OF FAILURE TO CHANGE POSITION IF NECESSARY.
RVMMO2014F	MO-2014	RHR INBOARD INJECTION VALVE (TRAIN A)		0.99687	CC INCLUDED; VALVE OPENS AGAINST PUMP HEAD.
RVMMO2014N RVMMO2015F RVMMO2015N	MO-2015	RHR INBOARD INJECTION VALVE (TRAIN B)	6.39E-03	0.99689	CC INCLUDED, VALVE OPENS AGAINST PUMP HEAD. IMPORTANCE MEASURE INCLUDE BOTH BASIC EVENT AND COMMON CAUSE CONTRIBUTIONS.
RVMMO2020F	MO-2020	RHR OUTBOARD DW SPRAY Valve (train A)		0.99687	CC INCLUDED, VALVE OPENS AGAINST PUMP HEAD.
RVMMO2021F RVMMO2021N	MO-2021	RHR OUTBOARD DW SPRAY VALVE (TRAIN B)		0.99687	CC INCLUDED; VALVE OPENS AGAINST PUMP HEAD.

NEDC-32264 Table D2 MOVs MODELED IN THE PSA FOR BWR D (Continued)

Basic Event	Valve	Function	Baseline C	D Importance	Comments
Identifier	Number		Core Damage	Containment	
RVMMO2022F RVMMO2022N	MO-2022	RHR INBOARD DW SPRAY Valve (train A)		0.99687	CC INCLUDED, VALVE OPENS AGAINST PUMP HEAD
RVMMO2023F RVMMO2023N	MO-2023	RHR INBOARD DW SPRAY VALVE (TRAIN B)		0.99687	CC INCLUDED, VALVE OPENS AGAINST PUMP HEAD.
RVMMO2029F RVMMO2029N	MO-2029	RHR SDC VALVE (TRAIN A)		0.99687	CC INCLUDED, VALVE OPENS AGAINST PUMP HEAD.
RVMMO2030F RVMMO2030N	MO-2030	RHR SDC VALVE (TRAIN B)		0.99687	CC INCLUDED; VALVE OPENS AGAINST PUMP HEAD.
RVMMO2033F	MO-2033	RHR CROSS-THE VALVE			CC NOT INCLUDED DUE TO LOCKED OPEN VALVE NOT HAVING TO CHANGE POSITION.
RVMM0253AC	MO-2-53A	RECIRC. PUMP DISCHARGE VALVE (TRAIN Å)		0.99687	CC INCLUDED; CLOSES AGAINST PUMP HEAD.
RVMMO253BC	MO-2-53B	RECIRC. PUMP DISCHARGE VALVE (TRAIN B)		0.99687	CC INCLUDED; CLOSES AGAINST PUMP HEAD.

Table D2 MOVs MODELED IN THE PSA FOR BWR D (Continued)

NEDC-32264

Table D3

MOVs WITH A COMMON CAUSE FAILURE BASIC EVENT - BWR D

RCS Inventory		LOC	As			Transients		LOOP
	Large	Med	Small	Out Ct.	SORV	125 VDC	Others	
MO 1753 & 1754 SI INBOARD INJECTION - FTO	X	Х	х	Х	X	Х	х	х
MO-2036 HPCI STM ADM - FTO		X	х				X	Х
MO-2061 & 2062 HPCI TORUS SUCTION - FTO		Х	х				х	X
MO-2067 HPCI INJ./TEST - FTO		X	х				X	X
MO-2068 HPCI INJ FTO		х	х				Х	X
MO-2078 RCIC STM ADM - FTO			X				X	X
MO-2096 RCIC ACC. COOLING - FTO			X				Х	X
MO-2102 RCIC CST SUCTION - FTO			х				X	X
MO-2106 & 2107 RCIC INJECTION - FTO			х				X	X

Table D3 MOVs WITH A COMMON CAUSE FAILURE BASIC EVENT (Continued)

		100	. Y			Transients		LOOP
RCS Investory		Mail	Small	Out Ct.	SORV	125 VDC	Others	
	Paiga						~	×
MO-2014 & 2015	×	×	×	×	×	×	<	<
MO-2-53A & 53B	×	×	×	×	×	X	×	×
RECIRC, PUMP DISCLESPTO	I OC As			Tra	unsients			LOOP
Keacuvity Control		Turbine	Main Cond.	MSIV Closure	SORV	LOFW	Others	
		X	×	×	×	Х		×
RWCU ISOLATION - FIC						"Transfords		LOOP
Containment Heat		10	CAS			1 IGUSICIUS		
Removal	Large	Med	Small	Out Ct.	SORV	125 VDC	Others	
MO-1988 & 1989	×	×	×	×	×	×	×	×
RHR SDC SUCTION - FTO					>	X	×	X
MO-2006 & 2007 RHR TO TORUS - FTO	×	×	×	×	<	<		
MO-2008 & 2009	×	×	×	×	×	×	×	×
RHR/TORUS COOLING - F10	×	×	×	×	×	××	×	×
MO-2020 & 2021 RHR/OUTBD, DW SPRAY - FTO							,	>
MO-2022 & 2023	×	×	×	×	×	×	<	<
RHR/INHU, UW MINAL - LIV								

Table D3 MOVs WITH A COMMON CAUSE FAILURE BASIC EVENT (Continued)

RCS Inventory		LOC	CAs			Transients		LOOP
	Large	Med	Small	Out Ct.	SORV	125 VDC	Others	
MO-2029 & 2030 RHR SDC VALVES - FTO	X	Х	х	Х	Х	Х	х	Х

TABLE D4 MOV IMPORTANCE RANKINGS FROM BASELINE PSA - BWR D (Continued)

瘫

Notes

Above ranking sorted on Fussell-Vesely.
Total core melt frequency is 2.6E-5 per reactor year.
Total number of cutsets is 58,478.

NEDC-32264

Table D5

GL 89-10 SENSITIVITY STUDY FOR BWR D

			Modified Case		Optimiz	ed Case
Accident Class	Baseline Case CDF (1)	CDF (2)	Delta (4)	%Dif (5)	CDF (3)	Delta (4)
IA TRAN - HIGH RPV PRESS	3.1E-06	2.3E-05	2.0E-05	0.27	3.1E-06	1.0臣-08
ID STATION BLACKOUT	1.2E-05	2.3E-05	1.1E-05	0.15	1.2E-05	0.0
ID TRAN LOW RPV PRESS	3.2E-07	6.8E-03	6.8E-03	90.89	3.2E-07	0.0
11 LOSS OF CONT HEAT	1.3E-07	1.4E-04	1.3E-04	1.81	2.7E-07	1.3E-07
HIA LOCA - RPV RUPTURE	1.1E-07	9.8E-05	9.8E-05	1.32	1.1E-07	0.0
HIB LOCA - HIGH RPV PRESS	3.0E-07	3.6E-06	3.3E-06	0.04	3.0E-07	0.0
HIC LOCA - LOW RPV	3.9E-07	3.2E-04	3.2E-04	4.32	3.9E-07	0.0
HID LOCA - VAP SUP	3.0E-07	3.0E-07	0.0	0.00	2.9E-07	1.0E-09

8

Table D4

MOV IMPORTANCE RANKINGS FROM BASELINE PSA - BWR D

			And Internet in the Owner wanted in the Party of the Part	requirements of the second	A DESCRIPTION OF A DESC
Basic Event	Basic Event Probability	Fussell-Vesely	RRW	Birnbaum	RAW
CVMMO1754N	2.72E-03	1.15E-02	1.41E+01	1.07E-05	5.216+00
RVM3VALVeN	2.92E-05	6.62E-03	1.418+01	5.73E-04	2.27E+02
HVMMO2062N	2.92E-03	5.35E-03	1.42E+01	4.65E-06 ·	2.83£+00
HVMMO2061N	2.92E-03	5.35E-03	1.426+01	4.65E-06 .	2.83E+00
HVMMO2067N	2.92E-03	5.29E-03	1.42E+01	4.59E-06	2.81E+00
HVMMO2068N	2.92E-03	5.29E-03	1.42E+01	4.59E-06	2.81E+00
HVMMO2036N	2.92E-03	5.29E-03	1.42E+01	4.59E-06	2.81E+00
IVMMO2096N	2.926-03	5.22E-03	1.43E+01	4.53E-06	2.78E+00
IVMMO2078N	2.92E-03	5.22E-03	1.43E+01	4.53E-06	2.78E+00
IVMMO2106N	2 92E-03	5.22E-03	1.43E+01	1.51E-06	2.78E+00
IVMM02107N	2.9215-03	5.22E-03	1.43E+01	4.53E-06	2.78E+00
IVMMO2101N	2.92E-03	5.19E-03	1.42E+01	4.51E-06	2.77E+00
IVMMO2100N	2.92E-03	5.19E-03	1.42E+01	4.51E-06	2.77E+00
RVMM02015N	2.92E-03	5.75E-04	1.40E+01	5.00E-07	1.20E+00
CVM5354CCN	2.04E-04	1.22E-04	1.40E+01	1.52E-06	1.60E+00
CVMM01753N	2.72E-03	6.78E-05	1.40E+01	6.33E-08	1.03E+00

Basic Event	Basic Event Probability	Fussell-Vesely	RRW	Birnbaum	RAW
HVMSLDALMe	7.31E-05	6.32E-05	1.40E+01	2.198-06	1.87E+00
IVMSLDALMe	7.31E-05	5.36E-05	1.40E+01	1.86E-06	1.73E+00
CVMMO1742T	2.28E-05	3.65E-05	1.40E+01	4.05E-06	2.60E+00
CVMMO1742Z	1.64E-05	2.13E-05	1.40E+01	3.30E-06	2.30E+00
LVMMO2398C	2.92E-03	6.72E-06	1.40E+01	5.85E-09	1.00E+00
LVMMO2397C	2.92E-03	5.55E-06	1.40E+01	4.82E-09	1.00E+00
CVMM01742F	4.80E-06	2.75E-06	1.40E+01	1.45E-06	1.57E+00
CVMMO1752F	4.80E-06	2.75E-06	1.40E+01	1.45E-06	1.57E+00
CVMMO1754F	4.80E-06	2.75E-06	1.40E+01	1.45E-06	1.57E+00
HVMMO2061F	4.80E-06	1.44E-06	1.40E+01	7.60E-07	1.30E+00
HVMMO2062F	4.80E-06	1.44E-06	1.40E+01	7.60E-07	1.30E+00
HVMMO2035F	4.80E-06	1.44E-06	1.40E+01	7.60E-07 -	1.30E+00
HVMMO2068F	4.80E-06	1.44E-06	1.40E+01	7.60E-07	1,30E+00
HVMMO2036F	4.80E-06	1.44E-06	1.40E+01	7.60E-07	1.30E+00
HVMMO2067F	4,80E-06	1.44E-06	1.40E+01	7.60E-07	1.30£+00
HVMMO2063F	4.80E-06	1.44E-06	1.40E+01	7.60E-07	1.30E+00
HVMMO2034F	4.80E-06	1.44E-06	1.40E+01	7.60E-07	1.30E+00
CVMMO1750L	2.40E-06	4.2015-07	1.40E+01	4.4413-07	1.18E+00

NEDC-32264 TABLE D4 MOV IMPORTANCE RANKINGS FROM BASELINE PSA - BWR D (Continued)

Table D6 MOV SUMMARY

There are currently 76 MOVs identified in the GL 89-10 MOV Index (62 MOVs are in the scope of testing, 14 have been excluded - see plant MOV Program document for justification).

1. MOVs included in index, but not modeled in the PRA (21):

MO-2010	MO-2032	MO-2071*	MO-4043A	MO-4047A	MO-4068*
MO-2011	MO-2407	MO-2110*	MO-4043B	MO-4047B	
MO-2026*	MO-2-43A*	MO-2373	MO-4044A	MO-4085A*	
MO-2027*	MO-2-43B*	MO-2374	MO-4044B	MO-4085B*	

2. MOVs with minimal impact on the PRA results; i.e., F-V < 0.1% (62).

MO-1426	MO-1752	MO-1614**	MO-2102	MO-2008	MO-2-53A
MO-1427**	MO-1045**	MO-1615**	MO-3502*	MO-2009	MO-2-53B
MO-1428**	MO-1048**	MO-1850**	M O-2397	MO-2012	
MO-1429**	MO-1049**	MO-1851**	MO-2398	MO-2013	
MO-1430**	MO-1088**	MO-1087A**	MO-1986	MO-2014	
MO-4229	MO-1089**	MO-1087B**	MO-1987	MO-2020	
MO-4230	MO-1133**	MO-2034	MO-1988	MO-2021	
MO-1741*	MO-1134**	MO-2035	MO-1989	MO-2022	
MO-1742*	MO-1154**	MO-2063	MO-2002	MO-2023	
MO-1749*	MO-1155**	MO-2075	MO-2003	MO-2029	
MO-1750*	MO-1156	MO-2076	MO-2006	MO-2030	
MO-1751	MO-1157**	MO-2080	MO-2007	MO-2033	

3. MOVs that impact the PRA results (all are on the current MOV index), (14):

MO-1753	MO-2061	MO-2068	MO-2100	MO-2107
MO-1754	MO-2062	MO-2078	MO-2101	MO-2015
MO-2036	MO-2067	MO-2096	MO-2106	

4. Shutdown/External Events/etc.: (later)

5. MOVs that would recieve most rigorous testing in a graded program:

SAME as number 3 above.

* MOVs indentified within the MOV index as excluded from the testing scope.

** MOVs not contained within the MOV index.

Accident Class	Baseline Case CDF (1)	Modified Case			Optimized Case	
		CDF (2)	Delta (4)	%Dif (5)	CDF (3)	Delta (4)
IV ATWS	1.9E-06	3.4E-06	1.5E-06	0.02	3.4E-06	1.5E-06
V LOCA OUTSIDE CONT	6.7E-10	1.4E-09	7.2E-10	0.00	6.7E-10	0.0
S-TOTAL	1.8E-05	7.4E-03	7.4E-03	98.78	2.0E-05	1.6E-06
VI INTERNAL FLOOD	7.9E-06	7.3E-05	6.5E-05	0.87	7.9E-06	0.0
TOTAL	2.6E-05	7.4E-03	7.4E-03		2.8E-05	1.6E-06

Table D5 GL 89-10 SENSITIVITY STUDY FOR BWR D (Continued)

Notes

L From BWR D IPE

2. Common Cause Factor of .087 applied to every MOV which operates under high dp conditions, where high dp conditions are MOV opening or closing against reactor pressure, containment pressure or pump dicharge pressure.

3. Common Cause Factor of .087 applied only to those MOVs below a specified importance.

4. "Delta" column is a comparison against the Baseline CDF.

5. % of total change in CDF.

OCTOBER 1993

ADDENDUM 1 BWR OWNERS' INTEGRATED RISK-BASED REGULATION

COMMITTEE REPORT

RANKING PROCESSES

.

0

8

截

CONTENTS

		raye
1.0	SUMMARY	Add-1
2.0	INTRODUCTION	Add-2
3.0	SSC IMPORTANCE MEASURES	Add-4
	3.1 DEFINITIONS OF IMPORTANCE MEASURES	Add-5
4.0	APPLICATION OF IMPORTANCE MEASURES	Add-7
	4.1 Risk Reduction Importance Measures	Add-8
	4.2 Risk Increase Importance Measures	Add-9
	4.3 Cumulative % Risk Contribution	Add-9
	4.4 Percent Change in Risk	Add-10
	4.5 Application Considerations	Add-10
5.0	SYSTEM IMPORTANCE MEASURES	Add-11
TABL TABL TABL TABL	E Add-1 - CDF RISK INCREASE E Add-2 - CDF RISK REDUCTION E Add-3 - CUMULATIVE CDF % RISK CONTRIBUTION E Add-4 - PLANT X SYSTEM RANKING	Add-12 Add-13 Add-14 Add-15
FIGU FIGU FIGU F1GU	RE 1 - CUMULATIVE % RISK CONTRIBUTION RE 2 - FACTOR INCREASE IN CDF WHEN U = 1 RE 3 - % CDF RISK REDUCTION RE 4 - CUMULATIVE % RISK REDUCTION	Add-16 Add-17 Add-18 Add-19
Appe	ndix Add A - Description of Types of Basic Events in Plant X PSA	Add A-1
Appe	ndix Add B	Add B-1
	TABLE Add-B1 - Inputs from Plant X PSA	B1-1
	TABLE Add-B2 - Calculated Importance Measures from Plant X PSA	B2-1

1.0 <u>SUMMARY</u>

Several measures exist to rank the importance of structures, systems, and components (SSCs) in Probabilistic Safety Assessments (PSAs) in relation to core damage frequency (CDF) and radionuclide release frequency (RRF).

The importances of SSCs in relation to CDF for average plant conditions are evaluated in Level 1 PSAs as follows:

- Importance in relation to the effect on CDF when the SSC is assumed not to fail, (i.e., failure probability of an SSC is set equal to 0).

- Importance in relation to the effect on CDF when the SSC is assumed to fail, (i.e., failure probability of an SSC is set equal to 1).

- Importance in relation to the SSC's contribution to the CDF.

- Importance in relation to the change in CDF when the SSC failure probability is increased or decreased by a specified factor.

- PSA importance measures can be applied at the component or system level.

- In addition to single SSC failures, PSAs include the importance of initiating events, common cause failures, maintenance unavailabilities, operator errors, and non-recovery factors on the CDF.

- The evaluation of the importance measures for a typical BWR plant PSA indicates there is a small set of components and failure events (less than 200) that significantly affect the CDF. The remaining components and events have a marginal to insignificant effect on the CDF. This same conclusion is drawn from a review of the majority of current PSAs.

- PSA importance measures provide an effective means of identifying the proper regulatory emphasis and requirements to be placed on SSCs and other elements that contribute to plant risk.

The importance of SSCs in relation to RRF is not as easily quantified as for CDF. The significance depends upon what boundary is breached: the vessel, the drywell, and/or the wetwell; and the accident class. Several different analytical techniques have been used by the utilities for Level 2 PSAs, so no attempt is made in this report to identify a uniform method for evaluating the importance of the SSCs on RRF.

Add-1

Some utilities have performed Level 2 PSAs but some of the models and evaluation programs do not calculate importance measures for SSCs. Containment failure is the dominant factor in RRF and fault tree models can and have been developed for loss of containment. However, the models for some plants contain only frequencies for events leading up to the containment loss and not the cutsets for those events. Therefore, importances cannot be calculated for basic events leading up to the containment loss and ranking of those basic events must be done qualitatively.

2.0 INTRODUCTION

The BWR Owners' Group Committee on Integrated Risk-Based Regulation (IRBR) was established in 1992. One of the primary objectives of this Committee is to provide a mechanism for exchange of IRBR technology among participating utilities. An initial task of this Committee was to collect data on ranking of Systems, Structures, and Components (SSC) from each utility's plant PSA Most utilities have performed PSAs as part of their Generic Letter 88-20 Individual Plant Examination (IPE) submittal.

The purpose of this report is to provide a summary discussion of different CDF importance measures and how they can be used to rank SSCs for use in IRBR. Data from the PSA of one of the survey plants was used to demonstrate the ranking schemes. It is recognized that the ranks of the basic events are dependent on the specific plant's PSA results and therefore may vary from plant to plant. These plant differences will be addressed in future IRBR Committee activities.

The IRBR Committee plans to demonstrate how these risk importance measures can be effectively used to establish priorities for SSCs in several different regulatory and operations applications. As work progresses, specific issues relating to the evaluation and implementation of importances will be addressed in these applications. The following is a listing of some of these issues:

- How should importances be used for win-win strategies?
- How should uncertainties be considered?
- What criteria should be used to separate important from unimportant contributors?
- How should the effects of component configurations and the status of other components in general be taken into account in calculating importances?

Add-2

- How should the importances of multiple components and functions be evaluated?
- How should importances be utilized in developing risk management programs?
- How should importances be used in optimizing technical specifications, regulations, and operations?
- What are the dynamic aspects of importances which can cause importance values to change with different scenarios and time?
- What are the interactive aspects of importance which cause importances to change when components interact?

Initial applications are planned for prioritization of the testing of motor operated valves (MOVs), evaluation of operator actions contained in Emergency Procedure Guidelines (EPGs) and Accident Management Guidelines (AMGs), prioritization of plant work orders, and configuration control (i.e., control of "tag outs" and currently operable systems). These applications are intended to provide a broad spectrum of activities to test and address different issues relating to risk based regulation.

CAUTION

THE NUMERICAL METHODS FOR DETERMINING SSC IMPORTANCE SHOULD BE USED AS THE INITIAL INPUT FOR ANY EFFORT TO RANK OR GROUP SSCS BY RISK IMPORTANCE. THE NUMERICAL IMPORTANCE RESULTS ARE TO BE AUGMENTED AND VERIFIED BY SENSITIVITY STUDIES, QUALITATIVE REVIEWS, OPERATIONS/MAINTENANCE REVIEWS, AND ENGINEERING JUDGEMENT TO PROVIDE CONFIDENCE IN THE RANKING.

3.0 SSC IMPORTANCE MEASURES

There are several measures used in the industry today to rank the importance of SSCs. The measures can be calculated at the system, train (subsystem), or component level. These measures are calculated for "average" plant conditions, and are therefore appropriate for decisions about maintenance programs, overall maintenance priorities, modifications, certain Technical Specifications requirements, and similar resource allocations. The level is limited by the degree of linking of the fault trees in the models. To obtain a better understanding of these measures, some of the more common importance measures used to rank SSCs in PSAs were calculated from data from one of the survey plants (designated as plant X). The total CDF for this plant was 2.60E-05/year. The model for this plant is a "linked model" containing initiating events as well as SSCs. There were a total of 429 basic events included in the core damage accident sequences. The first basic event in an accident sequence is the initiating event followed by component failures and other failure events that are necessary for core damage to occur. The following is a summary of the different types of basic events included in the plant X PSA:

Number of Events Type of Basic Event

Initiating Event	24
Component/Hardware Failure	274
Common Cause Failure	68
Maintenance or Test Unavailability	24
Operator Error	25
Non-Recovery Factor or Probability	14
Motal Racio Fronte	429

Total Basic Events

Approximately 2/3 of the basic events are single component failures. Most of the remaining basic events are caused by multiple component failures or maintenance of components. Operator error is the only type of basic event not related to component failure or maintenance. A more detailed description of the types of basic events is provided in Appendix Add A.

When using importance measures for particular types or families of basic events, two factors need to be addressed: 1) Basic events not included in the PSA models, and 2) basic events which may have been excluded from the final results by truncation limits used in the evaluation of models. These are amplified as follows:

1) In developing models, specific basic events may have been omitted because their function was not relevant to the sequence. Or they may have been incorporated in a "module" formed from an

independent-sub-tree. In either event it is necessary to understand the details of the PSA models and insure that the basic events of interest are in the models.

2) In most evaluation programs truncation limits are set both in generating cutsets and again in evaluating the cutsets. In normal calculations of CDF, the truncation discounts basic events which do not contribute significantly to the results. If the importance of specific events is desired it is necessary to set truncation limits that will allow events of interest to appear in the end results. An alternate method is to set the unavailabilities of the events of interest to a high enough level to insure that they will appear in the cutsets. The evaluation of the cutsets can then be performed using a data base tailored to obtain the importance measures of interest. It is important to recognize that these importance measures are calculated for "basic events", not components. Often several basic events in the fault tree model are used to represent one component (i.e., Pump Fails to Start, Pump Fails to Run, Pump Out for Maintenance, etc). Properly determining "component" importance may involve working with several "basic events."

3.1 DEFINITIONS OF IMPORTANCE MEASURES

The following basic data were obtained for each basic event included in the plant X PSA:

SYMBOLS:

- T = Base core damage frequency for all basic events
- U = Failure probability (or unavailability) of individual basic event
- T(0) = CDF with basic event assumed to never occur, (i.e., probability set equal to 0)
- T(1) = CDF with basic event assumed to occur, (i.e., probability set equal to 1)

From the above basic PSA inputs the following importance measures can be calculated for each individual basic event:

a) Risk increase where basic event is assumed to occur (i.e., basic event probability set equal to 1).

Risk Increase = T(1) - T

b) Risk reduction where basic event is assumed never to occur (i.e., basic event probability set equal to 0).

Risk Decrease = T - T(0)

c) Fussell-Vesely (FV) importance is the fraction of the CDF which involves the basic event divided by the base CDF. In some PSAs this represents the sum of the CDF for the minimum cutsets containing the basic event divided by base CDF. A minimum cutset is defined as the smallest combination of failures (or basic events) which, if they all occur, will cause the top event (core damage) to occur.

 $FV = {T - T(0)}/T$

d) Criticality (CRIT) importance is as follows:

 $CRIT = \{ [T(1) - T(0)] * U \} / T = FV$

e) Risk Reduction Worth (RRW) is the base CDF divided by CDF with U = 0.

RRW = T/T(0)

f) Birnbaum (BIRN) importance is as follows:

BIRN = T(1) - T(0) = CRIT*(T/U)g) Risk Achievement Worth (RAW) is the CDF with U = 1 divided by base CDF.

RAW = T(1)/T

h) Cumulative % Risk Contribution is calculated by first ranking (sorting) the basic events by decreasing "Risk Decrease" or decreasing "F-V." The % risk reduction is the risk decrease divided by the sum of the risk decreases of all basic events. The cumulative % risk reduction is then the sum of the individual % risk reduction in order of their size. The number of SSCs included depends upon the total cumulative % of interest.

Add-6
$${T - T_i(0)}$$

% Risk Reduction =

 $\sum_{j=1}^{m} \{T - T_{j}(0)\} * 100$

Cumulative % Risk Contribution = Σ {% Risk Reduction_i} i=1

where "n" is the number of SSCs required to obtain the cumulative % risk of interest.

4.0 APPLICATION OF IMPORTANCE MEASURES

The following basic input information from the plant X PSA is provided in spreadsheet format in Table Add-B1 of Appendix Add B. The presentation is in order of decreasing {T-T(0)} (decreasing "Risk Decrease").

Colum

7	Basic	Event	Description	and	Type	of	Basic	Event
3	Basic	Fvent	Code					
3	Event	Probal	bility					

Measures Related to Risk Reduction

D CDF Where Event Does Not Occur E Risk Decrease

Measures Related to Risk Increase

F	CDF	Where	Event	Occurs
G	Risk	Incre	ase	

Using the above input data, the different importance measures given in Section 3.1 (except percent change in risk) were calculated for each basic event, ranked from high to low, and grouped according to the type of importance measure (either risk reduction or risk increase). In addition, the cumulative % risk contribution, as defined in Section 3.1, was calculated for each basic event. The calculations are presented in Table Add-B2 of Appendix Add B in the same order as Table Add-B1.

The first group of rankings in Table Add-B2 are related to risk reduction and includes the Fussell-Vesely, Criticality, and Risk Reduction Worth importance measures. The second group are related to risk increase and includes the Birnbaum, Risk Increase, and Risk Achievement Worth importance measures. It can be seen from

Add-7

Table Add-B2 that for risk reduction, ranking is nearly identical. For risk increase, correspondence is also very good for the first 200 entries in the ranking. This means that the precise importance measure chosen to evaluate risk reduction or risk increase may vary. Choice of any measure will result in a comparable component ranking. However, the rankings are significantly different between the two groups of importance measures. The reason for this difference is provided in the following discussion:

4.1 Risk Reduction Importance Measures

The importance measures related to risk reduction evaluate the effect on CDF when the basic event is assumed never to occur. This type ranking can be used to establish the priorities for the importance of SSCs in relation to CDF risks(*). A high SSC ranking indicates that the SSC is a major contributor to the CDF risk and should receive the most attention for improvement. This kind of importance measure helps in establishing priorities for modifications, corrective maintenance work, as well as identifying which components merit more frequent testing or replacement with more reliable components. A low SSC ranking beyond a specified criteria indicates that improving the SSC has a very little effect on the CDF. Table 1.ud-2 provides a summary of the basic events from the plant X PSA that are ranked by risk reduction. Only six component failure events appear in the top 25 basic event ranking. Common cause failures, initiating events, and operator non-recovery events make up the balance of the top 25 basic events.

^(*)Many SSCs are represented by only one basic event. For these, the basic event importance is equivalent to the component importance. For other components, like dieselgenerators, the component importance is some combination of basic event importances (e.g., for fail-to-start, fail-torun, etc). In this discussion, for simplicity, it will be assumed that basic event importance and component importance are equivalent.

4.2 Risk Increase Importance Measures

The risk increase measure provides the change in CDF when the basic event is assumed always to occur. This type of importance measure is used for three purposes. The first is to identify the risk insignificance of a basic event. This identifies which components could be removed from maintenance and testing programs, and which could be removed from Technical Specifications. A low SSC ranking implies the SSC has an insignificant effect on the CDF without regard to its occurrence probability. A high SSC ranking may require further evaluation of the SSC failure probability. A basic event, such as a common cause failure, an initiating event, or a structural failure which may a have negligible failure probability could have a high risk increase importance. Components with high risk increase importance are the components whose performance should not be allowed to deteriorate. The risk increase measure is also used when evaluating the effect on CDF when a system, train, or component is taken out of service to perform maintenance or test. When an SSC is found to have a low risk increase measure, this implies that when the SSC is taken out of service there is very little effect on CDF. Allowed out of service times should reflect this low risk significance.

Table Add-1 provides a summary of the basic events from the Plant X PSA that are ranked by risk increase. It can be seen that the top 25 basic events are due to common cause failures, initiating events, and one operator error. However, almost all of these 25 basic events have a low risk reduction ranking in Table Add-2 based on their low basic event probabilities. It is not surprising that common cause events have a high risk increase importance. Note also that when common cause events are excepted, component/hardware failures are the next single most important type of event.

Other observations can be made concerning the risk increase importance of the different type of PSA basic events. For example, only 11 individual component failures are included in the top 50 basic event ranking. Basic events due to maintenance and test are not ranked in the top 100 important basic events.

4.3 Cumulative % Risk Contribution

The cumulative % risk contribution importance measure is another method for evaluating the importance and non-importance of SSCs and other basic events. This importance measure provides an efficient method of identifying basic events that contribute to significant core damage risk. Table Add-3 provides a summary of the cumulative % risk contribution for the basic events given in the Plant X PSA. The same information is given in graphical form in Figure 1. It can be seen that the top 54 of the total 429

basic events contribute 90% of the total possible CDF improvement. Twenty-four (24) of these 54 events are individual component failures. It can also be seen that the bottom 263 out of the 429 basic events contribute less than 1% to the total CDF. This implies that at least 61% of the PSA basic events have an insignificant effect on the CDF.

4.4 Percent Change in Risk

This importance measure provides a realistic evaluation of the sensitivity of the changes in SSC failure probabilities on the CDF as opposed to setting the basic event probability equal to 0 or 1. This importance measure ranks the effect on CDF when the basic event failure probability is changed by a specified factor. If the basic event failure probability is changed by a factor f, the risk reduction importance measure times (f-1) provides the change in CDF.

4.5 Application Considerations

This study has revealed several items which should be considered by analysts performing, modifying, or utilizing PSA's in the future to enhance application of PSA results as a plant management tool:

a) Initiating events must be included as basic events in the PSA and any components within the initiating events need to be accounted for in any component importances.

b) High human error rates, recovery factors, maintenance events may mask true importance when relative importance measures are used.

c) Remember that conservatisms in modeling factors not related to the items being ranked become non-conservative when relative importances are used. Example: if an operator action is modeled "conservatively" and then becomes 95% of the CDF, then no other components will contribute more than 5%. If operator error rate is a factor of 10 conservative, importance of other components will be under estimated in this case by a large factor ("10x). If a known significant conservatism exists, a lower definition of significant importance categories may need to be considered.

d) Modeling Risk Acheivement Worth is a major perturbation to the model, and will not be valid for many low importance components, because the model was not assembled with "guaranteed failures" (i.e., U = 1) in mind.

e) Be aware of software-specific pitfalls (i.e., unique

approaches to importance calculations and Level 1 to Level 2 linking.)

f) The analyst must look at more than single issue (i.e., CDF).

g) The results group basic events into rough groups to deemphasize risk and allow other factors to influence the group into which events are placed.

5.0 SYSTEM IMPORTANCE MEASURES

The same importance measures developed for PSA basic events can be applied at the system level. This analysis requires a good knowledge of the fault tree model and the interdependencies of support systems for the system being considered. In essence, the system is being treated as an independent module. The factor increase in CDF when the system is assumed to fail (probability set equal to 1), % decrease in CDF when the system is assumed never to fail (probability set equal to 0), and cumulative % risk contribution are presented in Table Add-4 for the systems included in the plant X PSA. The same importance measures are shown graphically in Figures 2, 3, and 4.

It can be seen from Figure 2 (risk increase) that for about half of the systems, the CDF changes significantly when the system is assumed to fail. The CDF changes by a factor of 500 when Reactor Protection System (RPS) is assumed to have failed. For the Residual Heat Removal Service Water (RHRSW) and Emergency Diesel Generator (EDG) systems, the CDF changes by about a factor of 200 when each system is assumed to have failed. Other systems have a negligible effect on CDF when they are assumed to have failed.

The same three systems having the greatest effect on CDF when assumed to have failed (RPS, RHRSW, and EDG) also have the highest importance for % CDF risk reduction (refer to Figure 3). Eleven (11) out of the 20 systems account for approximately 90% of the total CDF (refer to Figure 4). Four of the systems are insignificant contributors to CDF, (i.e., together they contribute less than 1% to the total CDF).

Other system importance measures can be developed by increasing the failure probabilities for selected groups of PSA basic events within the system. For example, the effect of the CDF can be evaluated when all failure probabilities of individual components within the system are doubled while keeping the failure probabilities of the remaining basic events within the system constant.

TABLE Add-1

CDF RISK INCREASE

	CUM. NUMBER	NUMBI	ER OF	BAS	SIC	EVENT	rs	
RANK	OF	С	F	I	М	0	R	
1-25 26-50 51-75 76-100 101-150 151-200 201-250 251-300 301-350	25 50 75 100 150 200 250 300 350	0 11 13 16 39 33 32 46 42 29	21 8 10 9 0 1 9 0 0 3	362013222	0 0 0 0 6 10 1 0 0 3	1000435027	000001245	
>401	400	13	7	õ	4	3	2	
TOTAL	429	274	68	24	24	25	14	

C = COMPONENT/HARDWARE FAILURE

F = COMMON CAUSE FAILURE

- I = INITIATING EVENT
- M = UNAVAILABILITY DUE TO MAINTENANCE OR TEST
- O = OPERATOR ERROR
- R = RECOVERY FACTOR OR PROBABILITY

TABLE Add-2

CDF RISK REDUCTION

CUM. NUMBER OF		NUMBI	ER O	F BA	SIC	EVEN'	TS	
RANK	EVENTS	С	F	I	M	0	R	
)5		4	7	0	2	6	
26-50	50	15	4	3	õ	2	1	
51-75	75	9	5	1	4	4	2	
76-100	100	7	9	3	4	2	0	
101-150	150	34	6	4	0	5	1	
151-200	200	28	6	5	1	7	3	
201-250	250	26	18	1	3	1	1	
251-300	300	40	7	0	2	1	0	
301-350	350	38	9	0	2	1	0	
351-400	400	48	0	0	2	0	0	
>401	429	23	0	0	6	0	0	
TOTAL	429	274	68	24	24	25	14	

C = COMPONENT/HARDWARE FAILURE

F = COMMON CAUSE FAILURE

I = INITIATING EVENT

M = UNAVAILABILITY DUE TO MAINTENANCE OR TEST

O = OPERATOR ERROR

68

-

R = RECOVERY FACTOR OR PROBABILITY

TABLE Add-3

CUMULATIVE CDF % RISK CONTRIBUTION

CUMULATIVE	TOTAL NUMBER OF	CUM. NUMBER	NUMB	ER OI	F BA	SIC	EVEN	rs	
CONTRIBUTION	EVENTS	EVENTS	С	F	I	М	0	R	
10%	1	1	0	0	0	0	0	1	
20%	1	2	0	0	1	0	0	0	
30%	1	3	0	0	0	0	0	1	
40%	1	4	0	0	0	0	0	1	
50%	1	5	0	0	0	0	0	1	
60%	2	7	0	0	0	0	0	2	
70%	4	11	0	2	1	0	1	0	
80%	11	22	4	2	4	0	1	0	
90%	32	54	20	4	4	1	2	1	
95%	33	87	9	8	3	6	5	2	
96%	12	99	4	6	1	1	0	0	
97%	16	115	11	0	1	0	3	1	
98%	20	135	11	4	3	0	2	0	
008	21	166	21	4	1	0	4	1	
20 00	130	296	84	27	5	6	5	3	
100%	133	429	110	11	0	10	2	0	
	429		274	68	24	24	25	14	

C = COMPONENT/HARDWARE FAILURE

F = COMMON CAUSE FAILURE

I = INITIATING EVENT

M = UNAVAILABILITY DUE TO MAINTENANCE OR TEST

14

O = OPERATOR ERROR

R = RECOVERY FACTOR OR PROBABILITY

.

.

.

.

TABLE Add-4 - PLANT X SYSTEM RANKING

TOTAL CDF = 2.	60E-05/YEAR	FACTOR INC	$\begin{array}{l} \text{REASE} \\ \text{IN } U = 1 \end{array}$	<pre>% DECREASE IN CDF WHEN U</pre>	= 0	
SAFETY FUNCTION	PLANT SYSTEM	{T(1)-T}/1	RANK	{T-T(0)}*100/I	RANK	CUM. % RISK CONTRIBUTION
CONT HEAT DENOU	DUDCW	223.08	2	24.28	2	25.55%
CONT. HEAT REMOV.	MAIN CONDENSER	1.42	12	14.3%	6	62.60%
CONT. HEAT REMOV.	CONTAINMENT VENT	0.87	16	9.2%	10	87.57%
DESCRIVIAN	PPS	500.00	1	24.0%	3	38.16%
REACTIVITY	CPD HYDRAULTC	0.63	18	14.3%	7	70.128
SFACTIVIII	CIC III DIGIODIO	1.19	15	2.3%	14	97.298
REACTIVITI	BDT	0.81	17	0.4%	18	99.76%
REACTIVITY	RPT	0.63	19	0.3%	19	99.928
SUDADA	EDGS	203.85	3	24.4%	1	12.838
SUFFORI	TNST ATR	42.31	6	9.8%	9	82.739
SUPPORT	DC DOWED	35.38	7	3.8%	13	96.08%
SUPPORT	OFFETTE DOWED	28.85	8	1.1%	17	99.55%
SUPPORT	SERVICE WATER	92.31	5	0.15%	20	100.001
WATED INTECTION	HPCI	1.27	14	16.8%	4	46.999
MATER INCECTION	RHR/I.PCT	169.23	4	15.48	5	55.091
WAIER INDECTION	BCTC	2.46	10	14.28	8	77.589
WAIER INDECTION	CORE SPRAY	1.42	13	7.78	11	91.629
WATER INJECTION	ADS	< 0.38	20	4.78	12	94.091
WAIER INDECTION	FFFDWATER	8.08	9	1.6%	16	98.98
WATER INJECTION	CONDENSATE	1.54	11	1.6%	15	98.13

FIGURE 1 CUMULATIVE % RISK CONTRIBUTION

ALL TYPE BASIC EVENTS

EVENTS

BASIC

lı. O

CUM. NUMBER

PLANT X SYSTEM

FIGURE 2

-

(UNAVAIL.

CDF

FACTOR INCREASE IN

Add-17

% CDE KIZK KEDNCLION

Add-18

FIGURE 4

COMOLATIVE & RISK CONTRIBUTION

Add-19

PLANT X SYSTEM

APPENDIX Add A

Description of Types of Basic Events in Plant X PSA

Basic events are the primary elements of individual core damage accident sequences. The following types of basic events were included in the Plant X core damage accident sequences:

1) Initiating event - these events are the initiators of the individual core damage accident sequences. Examples of initiating events include turbine trips, reactor isolation, loss of offsite power, pipe breaks, and other events that cause reactor shutdown,

2) Component or hardware failure - examples of these type events include pump failures, valve failures, electrical component or channel failures, and structural failures. In some cases a system failure is given as a basic event (e.g., loss of feedwater or room cooling).

3) Common cause failure - these events include failure of multiple components, trains, or systems due to a common cause. Examples of these type events include failure of two or more diesel generators, failure of AC or DC power supplies, and failure of two or more electrical control channels.

4) Maintenance unavailability - these events include system, train, or component unavailabilities due to maintenance or test. Examples include maintenance unavailabilities of diesel generators, pumps, valves, and electrical components.

5) Operator error - these events include operator errors that cause a component, train, or system to be unavailable and errors where an operator fails to take appropriate action. Examples include failure of an operator to restore equipment after test or maintenance and failure of an operator to initiate standby liquid control or failure to depressurize the reactor.

6) Non-recovery factor or probability - these events include failure to restore equipment after failure or loss due to other causes. Examples include failure to restore offsite power or diesel generators after a specified time interval.

Add A-1

APPENDIX Add B

PLANT X DATA

Add B-1

INPUTS FROM PLANT X

TABLE Add-81

BASE CORE DAMAGE FREQUENCY T = 2.60E-05/YEAR

	to the second second	where appendix		MEASURES RELA RISK REDUC	TED TO TION	MEASURES RELA	TED TO
BASIC EVENT DESCRIPTION AND TYPE OF BASIC EVENT (A)	 BA	 	EVENT PROBABILITY (C)	CDF WHERE EVENT DOES NOT OCCUR T(0) DOES NOT OCCUR	ABSOLUTE DECREASE T - T(D) (E)	CDF WHERE EVENT OCCURS T(1) (F)	ABSOLUTE INCREASE T(1) - T (G)
C = COMPONENT/HARDWARE FAILURE 274 F = COMMON CAUSE FAILURE 68 I = INITIATING EVENT 24 M = UNAVAILABILITY DUE TO HAINTENANCE OR TEST 24 O = OPERATOR ERROR 25 R = RECOVERY FACTOR OR PROBABILITY 14							
4	29				1 776 05	3 355 05	7.535-06
OFFSITE POWER NON-RECOVERY AT 30 MINUTES	R I	11	6.40E-01	1.275-00	1,335-05	1 405-03	1.66E-03
LOSS OF OFFSITE POWER	1 TE		7.90E-03	1.285-05	1.325-05	11 / 046-05 1	1 465-05
OFFSITE POWER CONDITIONAL NON-RECOVERY AT 2 HOURS	R 11		4.50E-01	1.40E-05	1.202-03	11 3 225-05	6 24E-06
EDG NON-RECOVERY AT 2 HOURS	R DG	32	6.60E-01	1.41E-US	1.175-05	11 3 616-05	1.015-05
OFFSITE POWER CONDITIONAL NON-RECOVERY AT 4 HOURS	R II	11	5.30E-01	1.46E-U5	1.146-05	11 7 ACC OC 1	5 (46 05
CONDITIONAL NON-RECOVERY OF OFFSITE AC POWER AT 6 HOURS	S R CE	ETREC6	6.70E-01	1.47E-05	1.13E-05	11 7.026.05	5.40E-00
EDG CONDITIONAL NON-RECOVERY AT 4 HOURS	R [[D0	33	7.10E-01	1.4/E-05	1.136-00	11 5.07E-03 1	5 725-03
OPERATOR FAILS TO DEPRESSURIZE RX (45 MINUTES)	0 XF	RPVBLDWNY	1.00E-03	2.032-05	2.726-00	11 5 205-03 1	5 175-03
DIESEL GENERATOR COMMON CAUSE FAILURE TO RUN	F At	DLEDGXCCR	8.24E-04	2.1/E-05	4.205-00	11 3 436-03	2 635-01
RPS MECHANICAL FAILURE	F	1	1.00E-05	2.552-05	2,405-00	1 115-01	1 115-01
INTERNAL FLOOD IN ZONE 12 (SERVICE WATER - T.B. 931"	I F1	12	2.20E-05	2.305-05	2,435-00	11 1 155-02 1	1 15E-02
INTERNAL FLOOD IN ZONE 4 (SERVICE WATER - R.B. > 896')) I F4	6	2.10E-04	1 2.305-05	4 915 06	11 3 435-05	8 325-06
TURBINE TRIP	I T	r I	1.80E-01	2,425-00	1 735 06	11 2 305-03	2 27E-03
INTERNAL FLOOD IN ZONE 9 (SERVICE WATER - T.B. 911')	I F9	9	7.60E-04	11 2.43E-03	1.752-00	1 1 845-04	1 605-04
DG12 FAILS TO RUN	CAL	DLDG12XXR	8.32E-03	2.4/2-00	1.346-00	1 1.855-04	1 595-04
DG11 FAILS TO RUN	C AI	DLDG11XXR	8.32E-03	2.4/6-05	1.345-00	11 2.815-04	2 655-04
BREAKER B3304 FAILS TO CLOSE	CAL	CBB3304XC	4.67E-03	[] 2.48E-05]	1.242-00	11 5 405 07 1	5 075-03
COMMON CAUSE FAILURE OF EDGESN PUMP 11 AND 12 TO RUN	F E	PMP111ABR	2.40E-04	[] 2.48E-05]	1.216-06	1 5,102-05	1 445 05
LOSS OF FW	1 1	F	5.60E-02	[] 2.50E-05	A-88E-01	4.200-00	1,002-03

INPUTS FROM PLANT X

TABLE Add-B1

***************************************	11		MEASURES RELAT	TED TO	MEASURES RELA RISK INCRE	TEP TO []
BASIC EVENT DESCRIPTION AND TYPE OF BASIC EVENT (A)	 BASIC EVENT CODE (B)	EVENT PROBABILITY (C)	CDF WHERE EVENT	ABSOLUTE DECREASE T - T(O) (E)	CDF WHERE EVENT OCCURS (T(1) (F)	ABSOLUTE INCREASE T(1) - T (G)
COMMON CAUSE FAILURE OF EDGESW PUMP 11 AND 12 TO START OPERATOR FAILS TO INJECT SLC - TURB TRIP INITIATOR DG12 BREAKER 152-602 FAILS TO CLOSE DG11 BREAKER 152-502 FAILS TO CLOSE SRV FAILS TO CLOSE AS PRESSURE DROPS MANUAL SHUTDOWN MSIV CLOSURE HPCI PUMP P-209 FAILS TO START PROMPT NON-RECOVERY FACTOR FOR FW PUMPS RCIC PUMP P-207 FAILS TO START DG12 FAILS TO START DG12 FAILS TO START DG11 FAILS TO START DIESEL GENERATOR COMMON CAUSE FAILURE TO START COMMON CAUSE FACTOR FOR RPT CIRCUIT BREAKERS MEDIUM LOCA HO-7 FAILS TO OPEN HO-8 FAILS TO OPERATE OPERATOR DILUTES BORON BY FAILING TO CONTROL LEVEL AUTO TRANSFER SWITCH 12 FAILED TO TRANSFER TO ALT SUPPLY FAILURE OF ACB 152-408 TO OPEN FAILURE OF ACB 152-408 TO OPEN RPS ELECTRICAL FAILURE HPCI EGM FAILS TO OPERATE EDGESW PUMP P-111A FAILS TO RUN	<pre> EPMP111ABS SLCTOPY ACB152602C ACB152502C ACB152502C XVRSRVXXXC TMS TMS TMS TM TM I TM I TM I TM I TFREC ADLDG12XXS ADLDG12XXS ADLDG11XXS F ADLEDGXCCS F CBBETA I S1 C HVFH07STPN C HVFH08XXXR 0 UH C ACB152308N C ACB152408N F CE C HSCEGHXXXR C HSCEGHXXXR C CBMP111AXR C CBMP111AXR C CEMP111AXR C CEMP11AXR C CE</pre>	1.92E-04 4.00E-02 4.67E-03 1.52E-02 3.30E-01 7.20E-02 1.48E-02 1.10E-01 1.36E-02 3.72E-03 1.15E-04 1.00E-01 3.00E-04 1.15E-02 1.15E-03 2.34E-03 2.34E-03 2.00E-05 8.77E-03 2.16E-03 8.77E-03	2.50E-05 2.52E-05 2.53E-05 2.53E-05 2.53E-05 2.53E-05 2.53E-05 2.53E-05 2.54E-05 2.54E-05 2.54E-05 2.55E-05 2.55E-05 2.55E-05 2.55E-05 2.55E-05 2.55E-05 2.56E-05 2.56E-05 2.56E-05 2.57E-	9.65E-07 8.22E-07 7.44E-07 7.44E-07 7.36E-07 6.86E-07 6.86E-07 6.24E-07 5.93E-07 5.85E-07 5.85E-07 5.85E-07 5.62E-07 4.97E-07 4.94E-07 4.94E-07 4.94E-07 3.80E-07 3.77E-07 3.54E-07 3.54E-07 3.54E-07	5.04E-03 4.58E-05 1.84E-04 7.36E-05 2.73E-05 3.48E-05 6.99E-05 3.09E-05 6.89E-05 1.83E-04 1.83E-04 4.91E-03 3.04E-05 1.67E-03 6.84E-05 6.84E-05 6.84E-05 6.84E-05 1.88E-04 1.87E-04 1.87E-04 1.87E-04 1.88E-04 6.53E-05	5.02E-03 1.98E-05 1.58E-04 4.76E-05 1.30E-06 8.84E-06 4.39E-05 4.94E-06 4.29E-05 1.57E-04 4.29E-05 1.57E-04 4.89E-03 4.24E-05 4.25E-04 5.25E-04 5.25E-04 5.25E-04 5.25E-04 5.25E-04 5.25E-05 5.25E-05 5.25E-05 5.25E-05 5.25E-05 5.25E-05 5.25E-05 5.25E-05 5.25E-05 5.25E-05 5.25E-05 5.25E-05 5.25E-05 5.25E-05 5.25E-05 5.25E-05 5.25E-05 5.25E-05 5.25E-
RCIC EGM FAILS TO OPERATE EDGESW PUMP P-111B FAILS TO RUN DG FAN VSF10 FAILS TO START	C EPMP111BXR C AFNVSF10XS	2.16E-03	2.57E-05 2.57E-05	3.46E-07 3.35E-07	7 1.86E-04 7 1.81E-04	1.55E-04

.

-

-

.

- 54

-

.

INPUTS FROM PLANT X

.

8

TABLE Add-B1

	-			-	*****************		123.01	2000 20 20 20 20 20 20 20 20 20 20 20 20	2. 法公司法规规定规范规则规范	41
		1 11		-11	MEASURES RELA	TED TO	T.	MEASURES REL	ATED TO	11
	1	1		i	RISK REDUC	TION	i.	RISK INCR	EASE	11
DARTE CUENT RECEDITION		i ii		Ĥ						-11
AND	- F	1 11		1	CDF WHERE EVENT	ABUOLUTE	100	F WHERE EVENT	ABSOLUTE	11
ADV	- î	1	EVENT	1	DOES NOT OCCUR	DECREASE	1	OCCURS	INCREASE	11
TVOS OF DACIC EVENT		BASIC EVENT CODE	PROBABILITY	1	T(0)	T - T(0)	11	T(1)	T(1) - T	11
(A)	- 1	(B) []	(0)	-ii	(0)	(E)	Ĥ.	(F)	(G)	11
(A)	1			-1		an an an in the set of the set of the set of the set	1			-11
DC CAN VSED FATLS TO START	c i	AFNVSF9XXS	2.16E-03	1	2.57E-05	3.35E-07	11	1.81E-04	1.55E-04	
OPERATOR FALLS TO THIEFT SLC - MSTV CLOSURE INITIATOR	0 1	ISLEMOPY 11	4.00E-02	1	2.57E-05	3.28E-07	11	3.38E-05	7.80E-06	11
DAMES VID BUE FAIL T	FI	ABSY20XXXG 11	8.01E-06	- i	2.57E-05	3.228-07	11	4.00E-02	4.00E-02	11
PANEL IZU BUS FAULI	11	1A 11	7.00E-05	1	2.57E-05	3.17E-07	11	4.58E-03	4.55E-03	11
D 247 HECT ANY OT DIMO FATIS TO START	e i	HPMP217FTS	7.69E-03	1	2.57E-05	3.07E-07	11	6.55E-05	3.95E-05	11
FOR CREAT SIME D. 2020 FALLS TO DIN	c 1	CPMP208BXR	3.14E-03	÷	2.57E-05	2.91E-07	11	1.18E-04	9.23E-05	11
LURE SPRAT FURP P-2000 FALLS TO NOT	ні	HLOHPCIXXT	7.30E-03	ï	2.57E-05	2.83E-07	11	6.45E-05	3.85E-05	11
HELI STSTEN UNAVAILABLE DUE TO FEST	c i	IACN152308C 11	1.76E-03	1	2.57E-05	2.81E-07	11	1.86E-04	1.60E-04	11
FAILURE OF CONTROL 132-300 TO CLOSE	RI	IREPSHR II	8.00E-01	4	2.57E-05	2.78E-07	11	2.60E-05	0.00E+00	11
5 HOUR NON-REPAIR FACTOR FUR MACHINERT	E 1	INPTROUPOOS II	5 84F-04	i	2.57E-05	2.78E-07	11	4.99E-04	4,73E-04	. 11
COMMON CAUSE FAILURE TO START OF HPLI AND RLL FUNTS	11	LEDMD111AVG	1.735-03	- 1	2.57E-05 1	2.78E-07	11	1.86E-04	1.60E-04	11
EDGESK PUMP P-1114 FAILS TO START	- 1	LACHISZORC II	1 76E-03	- 1	2.57E-05	2.78E-07	11	1.84E-04	1.58E-04	11
FAILURE OF CONTACT 152-408 TO CLOSE	21	ICONDITIONS II	1 735-03	- 1	2.57E-05	2.73E-07	ii -	1.84E-04	1.58E-04	11
EDGESN PUMP P-111B FAILS TO START	0 1		5 00E-02	1	2 57E-05 1	2.65E-07	ii -	3.098-05	4.94E-06	11
OPERATOR FAILS TO MANUALLY OPEN SV-4234/35 AND 595	0 1	INDUTILEREI II	2 055-04	-1	2 575-05	2.56E-07	ii	8.92E-04	8.66E-04	11
2 OF 8 VACUUM BREAKERS FAIL OPEN	1	ZVB2FAILAC	6.005-02	8	2 575-05	2.55E-07	ii i	3,228-05	6.24E-06	11
OPERATOR FAILS TO INJECT SLC - LOFW INITIATOR	0 1	SECFORT 11	2 165-06	1	2.575-05	2.53E-07	11	1.20E-03	1.17E-03	11
OFF SITE POWER SYSTEM UNAVAILABLE (RANDOM-NOT INIT EVENT)	1	AUFFSITEAL	1 615-07		2 58E-05 1	2.49E-07	ii.	1.802-04	1.54E-04	. 11
DG 12 FAILURE TO RESTORE AFTER TEST OR MAINTENANCE	0 1	ADUDGICAAL 1	1.616-03	1	1 2 58E-05 i	2.49E-07	ii.	1.80E-04	1.54E-04	. 11
DG 11 FAILURE TO RESTORE AFTER TEST OR MAINTENANCE	0 1		C0-310.1	1	2 58E-05 1	2.48E-07	11	3.51E-05	9.10E-06	11
FAILURE OF RPT BREAKER 11A TO OPEN	-	PUBLIAAAAN []	2,000-02	1	2 585-05	2 48E-07	ii	3.51E-05	9.10E-06	5 11
FAILURE OF RPT BREAKER 11B TO OPEN	C	PCB11BXXXN	2.005-02	1	2.585-05	2 435-07	11	1.52E-03	1.49E-03	11
COMMON CAUSE FAILURE OF ALL SRVS TO OPEN	F	XVRBSRVCCN 11	1.035-04	1	2.585-05	2 43E-07	11	1 80F-04	1.54E-04	. 11
DG12 OUT FOR TESTING	M	ADLDG12XX1	1.576-03	1	2,500-05	2 425-07	11	1.80F-04	1.54E-04	
DG11 OUT FOR TESTING	M	ADLOGTIXXI	1.578-03		2.500-05	2 40E-07	11	1 14F-04	8.81E-05	5 1
MOV MO-1754 FAILS TO OPEN	C	CVMM01754N	2.722-03		2.585-05	2 305-07	11	3.51E-05	9,10E-00	5 1
45 MINUTE NON-RECOVERY FACTOR OUTSIDE CONT. ROOM	R	REC450UT	2.30E-02	1	2.585-05	2 295-07	11	6.29E-05	3.69E-05	5 1
DETE INAVATI ADLE DUE TO TEST	M	ILORCICXXI	0.105-03		E. 300-03	E. S E. F E. OT	11	N		1

INPUTS FROM PLANT X

TABLE Add-B1

			11			MEASURES RELA RISK REDUC	TED TO TION		MEASURES REL RISK INCR	ATED TO EASE	
BASIC EVENT DESCRIPTION	1		11		11	CDF WHERE EVENT	ABSOLUTE	11CDF	WHERE EVENT	ABSOLUTE	11
AND	3		4.	EVENT	111	NOES NOT OCCUR	DECREASE	11	OCCURS	INCREASE	1
		I DASTC EVENT COD	FIL	PROBABILITY	11	T(0)	T - T(0)	ii -	T(1)	T(1) = T	1
TYPE OF BASIC EVENT	1	(B)	11	(C)	11	(0)	(E)	ii -	(F)	(6)	1
(A)	. 1	1 (0)	-11 -					11			H
		102	11	8.00E-04	11	2.58E-05	2.23E-07	11	3.04E-04	2.78E-04	1
SMALL LOCA	E	TOPUS2	11	1.00E+00	- ii	2.588-05	2.19E-07	11	2.60E-05	0.00E+00	1
HI SUPPRESSION POOL LEVEL	1	LAFNVSF910S	ii -	4.40E-05	- 11	2.58E-05	2.11E-07	11	4.81E-03	4.788-03	-
COMMON CAUSE FAILURE OF VSF 9 AND TO TO START	1	ITC	11	1.90E-02	11	2.58E-05	2.04E-07	11	3.64E-05	1.04E05	1
LOSS OF CONDENSER VALUUT	c I	ICPMP208BXS	ii -	2.25E-03	11	2.58E-05	1,95E-07	11	1.12E-04	8.63E-05	1
CORE SPRAY PUMP P-2000 FAILS TO START	1	LF1	11	4.80E-05	- 11	2.58E-05	1.91E-07	11	4.00E-03	3.98E-03	ł
INTERNAL FLOOD IN ZONE I CTORUS RING HEADER DICARY	M	HI OHPCTYCM	11	5.18E-03	11	2.58E-05	1.88E-07	11	6.21E-05	3.61E-05	ļ
HPCI INJECTION TRAIN OUT FOR CORRECTIVE MAINTERANCE	0	FSWXTIFXXY	ii.	1,00E+00	11	2.58E-05	1.70E-07	11	2.605-05	0.00E+00	1
OPERATOR FAILS TO CROSS THE SERVICE WATER TO CONDENSER		LADI DG12YCH	11	1.05E-03	11	2.58E-05	1.61E-07	11	1.79E-04	1.53E-04	I
DG12 OUT FOR CORRECTIVE MAINTENANCE	M	ADI DC11YCM	11	1.056-03	11	2.58E-05	1.60E-07	11	1.79E-04	1.53E-04	1
DG11 OUT FOR CORRECTIVE MAINTENANCE		DVM3VALVEN	11	2.925-05	n	2.58E-05	1.58E-07	11	5.43E-03	5.41E-03	-
COMMON CAUSE FAILURE OF CS AND RHR IND HO VLVS TO OPEN		LATUY71YYP	11	9.67E-03	11	2.59E-05	1.45E-07	11	4.08E-05	1.48E-05	1
UPS INV. Y71 INTERNAL FAULT	-	LI CM11AS1YD	11	6.57E-03	ii	2.59E-05	1.36E-07	11	4.65E-05	2.05E-05	1
SLC HANDSWITCH 11AS1 FAILS TO OPERATE	5	DDMADUMPSD	11	2.45E-05	11	2.59E-05	1.29E-07	11	5.28E-03	5.25E-03	Ĩ
ALL SIX RHR/CS PUMPS FAIL TO RUN		220MIDIMOTOLINO	11	2 33E-05	- 11	2.598-05	1.22E-07	11	5.28E-03	5.25E-03	1
ALL SIX RHR/CS PUMPS FAIL TO START		1400052601	11	4 39E-05	11	2.59E-05	1.20E-07	11	2.76E-03	2.73E-03	1
LC 52-104 BREAKER 401 FAILS TO REMAIN CLOSED	0	ACDUS2401L		4.395-05	11	2.598-05	1.20E-07	11	2.768-03	2.73E-03	1
LC TRX40 SUPPLY BREAKER 152-609 FAILS TO REMAIN CLOSED	6	AUB132007L	11	4,376-05	11	2 59E-05	1,18E-07	11	6.81E-03	6.79E-03	1
COMMON CAUSE FAILURE OF FW 94-1 AND 94-2 TO OPEN		1 FVC94 1942N	11	1.73E-05	11	2 59E-05	1.18E-07	ii -	6.81E-03	6.79E-03	1
COMMON CAUSE FAILURE OF FW 94-1 AND FW 97-2 TO OPEN	P I	FVU941972N	11	1 736-05	11	2 59E-05 1	1.18E-07	ii -	6.81E-03	6.79E-03	1
COMMON CAUSE FAILURE OF FW 97-1 AND FW 94-2 TO OPEN	12	FVC9/19420	11	1.735-05	1	2.596-05	1.18E-07	ii -	6.81E-03	6.79E-03	1
COMMON CAUSE FAILURE OF FW 97-1 AND FW 97-2 TO OPEN		I FACALIALEN	11	0.005-02	- 11	2 598-05	1.15E-07	ii -	2.70E-05	1.04E-06	1
REACTOR TRIP WITHOUT TURBINE TRIP	1		11	7.000-02	11	2 59E-05	1.15E-07	11	5.85E-05	3.25E-05	1
RCIC UNAVAILABLE DUE TO CORRECTIVE MAINTENANCE	M	I I LORCICXCM	11	2 12E-05	11	2.59E-05	1.14E-07	ii	5.38E-03	5.36E-03	-
REACTOR PRESSURE SW PS2-3-52 A&B COMMON CAUSE FAILURE	F	I USPSZABLEL	11	7 205-04	11	2.59E-05	1.12E-07	11	1.81E-04	1.55E-04	-
ESW B.S. 1980 PLUGGED	C	I LESKBS 1980F	11	7 205-04	1 1	2 595-05	1.11E-07	-ii	1.80E-04	1.54E-04	-
EDG LOOP B STRAINER PLUGGED	C	ESRBS2414F	11	2 805 03	11	2 595-05	1.08E-07	11	6.45E-05	3.85E-05	1
OPERATOR FATLS TO START FEEDPUMPS AFTER A TRANSIENT	0	FREPOPERAT	11	£.002-03	1.1	Frank II		2.8			1

INPUTS FROM PLANT X

TABLE Add-B1

BASE CORE DAMAGE FREQUENCY T = 2.60E-05/YEAR

			MEASURES RELATED TO RISK REDUCTION						MEASURES RELATED TO RISK INCREASE			
BASIC EVENT DESCRIPTION	. 11		1		201	CONTRACTOR CUCKT	ADCO: HTC	Lice	TE DUEDE EVENT	ARSOLUTE	11	
AND	- 11		1		11cbi	F WHERE EVENI	ABSOLUTE	1100	occups	INCREASE	11	
	1		l	EVENT	100	ES NOT OCCUR	VELNEASE T T/D	11	T(1)	T(1) - T	11	
TYPE OF BASIC EVENT	1	BASIC EVENT CODE	1.1	PROBABILITY		1(0)	1 - 1107	11	10 1	(63	11	
(A)	1	(8)	1	(C)	11	(0)	(E)	11 			-11	
PORECTION FACTOR FOR NROTTI ENZY	R	N2CF		2.008-02	11	2.59E-05	9.75E-08	ii -	3.07E-05	4.68E-06	11	
OFFRATOR POCK NOT OPEN BURSU_BHR YTTE	0 1	WVHINXTIEY	i	7.50E-01	H	2.59E-05	9.59E-08	11	2.60E-05	0.00E+00	11	
THERE IN THE TO THE TO THE TO THE TOTAL CONFRATOR BOOM	11	LF10		4.60E-05	11	2.598-05	9.46E-08	11	2.08E-03	2.06E-03	11	
INTERNAL FLOOD IN CONE TO CREAT DIESEE DETERMINE HOUSE	c i	HVMM02036N	ñ -	2.92E-03	11	2.59E-05	9.39E-08	11	5.80E-05	3.20E-05		
MOV MU-2000 FAILS TO OPEN	01	HVMM02061N	i.	2.92E-03	ii i	2.59E-05	9.39E-08	11	5.80E-05	3.208-05	11	
MO-2001 FAILS TO OPEN	c 1	HVMM02062N		2.928-03	ii -	2.59E-05	9.39E-08	11	5.80E-05	3.20E-05	11	
MO-2082 FAILS TO OPEN	e 1	HVMM02067N		2.928-03	- 11	2.59E-05	9.39E-08	11	5.80E-05	3.20E-05	11	
MO-2067 FAILS TO OPEN	61	LKVMM02068N	EI -	2.92E-03	-ii	2.595-05	9.39E-08	11	5.80E-05	3.20E-05	1	
MO-2068 FAILS TO OPEN		1VNH02100N	11	2.92E-03	ii .	2.59E-05	9.00E-08	11	5.67E-05	3.07E-05	11	
MO-2100 FAILS TO OPEN	21	11/144021018		2 925-03	11	2.59E-05	9.00E-08	11	5.67E-05	3.07E-05	11	
MO-2101 FAILS TO OPEN		TUNNO2079K	11	2 925-03	11	2.59E-05	8.94E-08	11	5.64E-05	3.04E-05	1	
MOV MO-2078 FAILS TO OPEN	1		11	2.925-03	- 11	2.59E-05	8.94E-08	ii.	5.64E-05	3.04E-05	1	
MO-2096 FAILS TO OPEN		1100000000	5 B	2 025-03	11	2 59E-05 L	8.945-08	11	5.64E-05	3.04E-05	1	
MO-2106 FAILS TO OPEN	- 1	11000021020		2.025.03	11	2 595-05	8 94F-08	11	5.64E-05	3.04E-05	1	
HO-2107 FAILS TO OPEN	6	I TVMMOZ TOZN	11	2,720-00	11	2 595-05	8 92E-08	11	3.04E-05	4.42E-06	1	
OPERATOR FAILS TO DEPRESSURIZE RX (10 MINUTES)	0	XRPVIU		2.000-02	11	2 595-05	8.66F-08	ii.	2.81E-05	2.08E-06	1	
OPERATOR FAILS TO INJECT SLC - LOSS OF COND INITIATOR	0	SLCCOPY	11	4,005-03	11	2 505-05	8.61E-08	11	4.73E-05	2,13E-05	1	
REFERENCE LEG LEAK INITIATING EVENT	1	SR	11	4,000-03	11	2 595-05 1	8 19F-08	ii.	5.10E-04	4.84E-04	1	
INTERNAL FLOOD IN ZONE 2 (CONDESATE SERVICE WATER -	1	TF2	11	1.705-04	11	2 595-05 1	7.93E-08	11	2.685-05	7.805-07	1	
REFERENCE LEG LEAK COMMON CAUSE FACTOR	F	REFLEGBETA	11	1.002-01	11	2 505-05 1	7 28F-08	11	5,628-05	3.02E-05	1	
HPCI AUX OIL PUMP P-217 FAILS TO RUN	C	HPMP217FTR	11	2,40E-03	11	2.576-05	7 255-08	11	1 07F-04	8.06E-05	11	
LOSS OF SERVICE WATER	1	TS	11	9.00E-04	11	2.570-05	7 205-08		2 60E-05 1	0.00E+00	ı î	
SW 145 FAILS TO OPEN	C	FVHSW145XN	11.	5.00E-01		2.375-03	7 205-08	11	2.605-05 1	0 00F+00	11	
SW 147 FAILS TO OPEN	- C	FVHSW147XN	11	5.00E-01	11	2.596-05	1.202-00	11	7 125 02 1	7 125-02		
125V DC BATTERY D11 AND D21 FAILURE DUE TO COMMON CAUSE	F	DBA125VCCR	11	9.80E-07	11	2.59E-05	0.772-00	11	5 635-05	2 835-05	1	
RCIC HO-8 FAILS TO OPERATE	C	IVFHO8XXXR	11	2.36E-03	11	2.59E-05	0.712-08	11	3,432-03	3 745.04		
COMMON CAUSE FAILURE OF FN PP BRG OIL PUMPS TO RUN	- F	FP11P12CCR	11	2.40E-04	11	2.59E-05	6.66E-08		3.028-04	2.700-04		
HO-7 LIMIT SWITCH LS 3 FAILS TO CLOSE	C	HSL3XXH07C	11	2.19E-03	11	2.598-05	6.32E-08	11	5,49E-05	6.04E-00	1	

INPUTS FROM PLANT X

TABLE Add-81

				TED TO	II MEASURES REL	ATED TO II
			II DISK REDUC	TION	II RISK INCR	EASE
				*****		**********
BASIC EVENT DESCRIPTION	11	13	ICDF WHERE EVENT	ABSOLUTE	CDF WHERE EVENT	ABSOLUTE
AND		I EVENT	IDDES NOT OCCUR	DECREASE	OCCURS	INCREASE
	I DAGTO EVENT CODE		11 T(0)	T - T(0)	[] T(1) [T(1) - T
TYPE OF BASIC EVENI	11 (D)	(6)	(0)	(E)	(F)	(G)
(A)	11 (57					
I MIT SUITCH & OF MO-2061 FAILS TO CLOSE	c HSL4X2061C	2.19E-03	2.59E-05	6.32E-08	5.49E-05	2.89E-05
I WIT CUITCH & OF MO-2062 FAILS TO CLOSE	c 11HSL4X2062C	1 2.19E-03	2.59E-05	6.32E-08	5.49E-05	2.89E-05
THET SWITCH 7 OF MO-2002 FAILS TO CLOSE	c HSL7X2036C	2.19E-03	[] 2.59E-05	6.32E-08	5.49E-05	2.89E-05
COMMON CALLSE EATLINE TO DIN OF ALL COMPRESSORS	F INCHC123CCR	1.40E-04	2.59E-05	6.21E-08	4.71E-04	4,45E-04
DELITE VALUE DV_2056 FATLS OPEN	C HVRRV2056L	2.16E-03	[] 2.59E-05]	6.21E-08	5.49E-05	2.89E-05
OPERATOR DOES NOT DEDBESS ADT PR SA R C & D UNEN REQUIT	REO LIPSM5ABCDXY	1 1.00E-03	2.59E-05	6.16E-08	8.76E-05	6.16E-05
THIT OUTTOU TA OF MO-2078 FALLS TO CLOSE	c ISLLS16XXC	1 2.19E-03	2.59E-05	5.93E-08	5.30E-05	2.70E-05
LIMIT SWITCH IS OF NO 2079 FALLS TO CLOSE	c 11151154078c	11 2.19E-03	11 2.59E-05	5.93E-08	1 5.30E-05	2.70E-05
LIMIT SWITCH 4 OF NO-2010 FRIES TO CLOSE	c 11 ISL1 \$40960	11 2.19E-03	11 2.59E-05	5.93E-08	[5.30E-05	2.70E-05
LIMIT SWITCH & OF HO 2000 FAILS TO CLOSE	c 1115162100XC	11 2.19E-03	1 2.59E-05	5.93E-08	5.30E-05	2.70E-05
LIMIT SWITCH 4 OF MO-2100 FAILS TO CLOSE	c 1(15) 62101XC	11 2.19E-03	11 2.59E-05	5.93E-08	1 5.30E-05	2.70E-05
LIMIT SWITCH 4 OF MO-2101 FAILS TO CLOSE	c 151154X06C	11 2.19E-03	2.59E-05	5.93E-08	5.30E-05	2.70E-05
LIMIT SWITCH 4 OF XUD FAILS TO CLOSE	c 151154X07C	11 2.19E-03	2.59E-05	5.93E-08	1 5.30E-05	2.70E-05
LINE TECH DATTERY DENAND (=1 0)	FILDURATION	1.00E+00	1 2.59E-05	5.85E-08	11 2.60E-05	0.00E+00
DV_2007 FALLS TO DEMAIN CLOSED	C IVRRV2097L	11 2.16E-03	2.59E-05	5.85E-08	5.30E-05	2.70E-05
CATLUDE OF DELAY 102-5 TO ENERGIZE	C ARE1025XXE	1 3.65E-04	2.59E-05	5.33E-08	1.72E-04	1.46E-04
FAILURE OF RELAY 102-6 TO ENERGIZE	C ARE1026XXE	1 3.65E-04	1 2.59E-05	5.33E-08	1.72E-04	1.46E-04
EATLUDE OF DELAY 181-SY TO ENERGIZE	C ARE1835XXE	11 3.65E-04	2.59E-05	5.33E-08	1.72E-04	1.46E-04
CATILIDE OF DELAY 183-64 TO ENERGIZE	C ARE1836XXE	11 3.65E-04	2.59E-05	5.33E-08	1.72E-04	1,46E-04
UPCT SYSTEM NOT RESTORED AFTER TEST OR MAINTENANCE	0 HLOHPCIXXZ	1.86E-03	1 2.59E-05	5.20E-08	1 5.38E-05	2.78E-05
DC BOOM 11 LOUVERS FAIL TO OPEN	c ADMDG11RMN	3.54E-04	2.59E-05	5.17E-08	1.72E-04	1.46E-04
DC ROOM 12 LOUVERS FAIL TO OPEN	C ADMDG12RMN	11 3.54E-04	2.59E-05	5.17E-08	1.72E-04	1.46E-04
COMMON CAUSE LATINGE OF DG ROOM LOUERS TO OPEN	F 11ADMDG1112N	1.10E-05	2.59E-05	5.15E-08	(4.71E-03	4.68E-03
LOSS OF INSTRUMENT ATR	I TIA	[] 6.30E-03	11 2.60E-05	4.68E-08	3.33E-05	7.28E-06
	C FVCFW671XC	11 1.57E-03	[] 2.60E-05]	4.50E-08	1 5.46E-05	2.86E-05
AUVIL TARY OIL PUMP P61 FAILS TO START	C GPMP61XXXS	1 9.59E-03	2.60E-05	4.37E-08	3.04E-05	4.42E-06
RCIC FAILURE TO RESTORE AFTER TEST OR MAINTENANCE	O ILORCICXXZ	1.75E-03	2.60E-05	4.24E-08	5.02E-05	2.42E-05

8

.

.

INPUTS FROM PLANT X

TABLE Add-81

***************************************	11	}		MEASURES RELA	TED TO TION	HEASURES REL RISK INCR	ATED TO EASE	And And A
BASIC EVENT DESCRIPTION		1	1		*************	*****************		1
AND	11		1	CDF WHERE EVENT	ABSOLUTE	CDF WHERE EVENT	ABSOLUTE	H
	11		EVENT	DOES NOT OCCUR	DECREASE	OCCURS	INCREASE	11
TYPE OF BASIC EVENT	11	BASIC EVENT CODE	PROBABILITY	T(0)	T - T(0)	T(1)	1(1) - 1	11
(A)		(B)	(C)	(D)	(E)	[] (8)]	(G)	
A PARTY OF A PARTY OF A PARTY OF WATHTENANTE	- 11	110517XXX7	2.00E-03	2.60E-05	4.16E-08	4.68E-05	2.08E-05	1
FAILURE TO RESTORE SLU AFTER TEST OR HAINTERARCE	0 11	ATUTRY40YG	1 1.56E-05	2.605-05	4.16E-08	2.68E-03	2.65E-03	11
LC TRANSFORMER TRX4U INTERNAL FAULT	2 11	ACB0523011	4 39E-05	2.608-05	4.03E-08	9,416-04	9.15E-04	11
LC 103 BREAKER 52-301 FAILS TO REMAIN CLOSED	2 11	ACB1525001	1 6 39E-05	11 2.60E-05	4.03E-08	9.41E-04	9.15E-04	11
LC TRX30 SUPPLY BREAKER 152-509 FAILS TO REMAIN CLOSED	211	ACDIJEJUTA	7 205-04	11 2.60E-05 I	3.90E-08	8.03E-05	5.43E-05	11
SW AUTOMATIC STRAINER CLOGGED	2.8	55KA010517	0 005-01	2.60E-05 L	3.77E-08	2.60E-05	0.00E+00	11
CONDITIONAL PROBABILITY OF OVERPRESSURE FAILURE IN DRYWEL	1.5 11	UN INTER DURC	1 8 005-02	2.605-05.1	3.77E-08	1 2.65E-05	5.20E-07	11
CONTAINMENT HEAT REMOVAL NON-RECOVERY	R []	WKEL40HK5	8 0/6-06	11 2 60E-05 1	3.74E-08	11 4.68E-03	4.65E-03	11
COMMON CAUSE FAILURE OF ESW 1-1 AND 1-2 TO OPEN	1	EVCESWITZN	1 1 005-01	11 2 605-05 1	3 745-08	11 2.63E-05	2.60E-07	ii
OPERATOR FAILS TO ALIGN CRD FOR ALT EORON INJECTION	0 11	LALIBORONY	1.00E-01	11 2 605-05 1	3 695-08	11 2.83E-04	2.57E-04	1
N2 TANK GAS LINE RELIEF VALVE FAILS TO REMAIN CLOSED	C	NVRNONAMTL	1,446-04	11 2.605-05	3 AVE-DR	11 2.83E-04	2.57E-04	11
N2 TANK LIQUID LINE RELIEF VALVE FAILS TO REMAIN CLOSED	C	NVRNONAMEL	1 1.442-04	11 2 605-05 1	3.69E-08	11 2.83E-04	2.57E-04	11
RV-3442 FAILS TO REMAIN CLOSED	C []	NVRRV3442L	1.445-04	11 2.605-05 1	3 605-08	11 2.83E-04	2.57E-04	1
RV-3443 FAILS TO REMAIN CLOSED	c	NVRRV3443L	1.446-04	11 2.000-05	R0_304 F	11 2.835-06	2.57E-04	ï
RV-3444 FAILS TO REMAIN CLOSED	C	NVRRV3444L	1.44E-04	2.000-00	3.610 08	11 2 685-05	7 80F-07	i
OPERATOR FAILS TO INJECT SLC - LOOP INITIATOR	0	SLCLOPY	4.00E-02	2.005-05	3.010-00	11 8 375-04	8 11F-04	1
FAILURE OF BREAKER 152-308 TO REMAIN CLOSED	c	ACB152308L	4.39E-05	2.005-05	3.306-00	11 2 676-05	2 605-07	-
30 MINUTE NON-RECOVERY FACTOR OUTSIDE CONT. ROOM	R	REC300UT	1.20E-01	2.60E-05	3.412-00	1 2.05E-02	2.575-04	1
SV-7477 FAILS TO REMAIN OPEN	c	NVESV7477F	1.25E-04	2.60E-05	3.20E-08	2.030-04	0.000000	1
NO HIGH DW PRESSURE	F	NOHIDW	1.00E+00	2.60E-05	3.1/E-08	2.00E-05	0.00E+00	1
INTERNAL FLOOD IN ZONE 5 (SERVILE WATER - SE RHR ROOM)	1	F5	6.30E-04	2.60E-05	3.04E-08	1 1.44E-03	4.042-05	1
CHECK VALVE XP-6 FAILS TO OPEN	C	LVCSLCXP6N	1.31E-03	2.60E-05	2.705-08	4.685-05	2.005-05	1
CHECK VALVE XP-7 FAILS TO OPEN	c	LVCSLCXP7N	1.31E-03	2.60E-05	2.70E 08	4.68E-05	2.005-05	1
MANUAL BYPASS SW Y83 FAILS TO REMAIN CLOSED	C	ASMY83XX	5.21E-04	2.60E-05	2.70E-08	1 7.80E-05	5.20E-03	1
BUS 16 FAULT	C	ABS16XXXXG	8.01E-06	2.60E-05	2.45E-08	11 3.09E-03	3.0/E-03	1
FAILURE OF OPERATOR TO ADD WATER TO HOTWELL	0	HUMAKEUP	1.00E-01	2.60E-05	2.44E-08	2.638-05	2.606-07	1
INTERNAL FLOOD IN ZONE 11 (FIRE WATER - T.B. 931' WEST)	11	F11	3.70E-06	2.60E-05	2.39E-08	6.50E-03	6.47E-03	1
30 MINUTE NON-RECOVERY IN CONTROL ROOM	R]	1030	3.00E-03	2.60E-05	2.25E-08	3.35E-05	1.548-06	1

INPUTS FROM PLANT X

TABLE Add-81

						In state of the st		
	11	11	MEASURES REL	ATED TO	MEASURES RELATED TO			
		ii .	RISK REDU	CTION	RISK INC	EASE		
RASIC EVENT DESCRIPTION		ii	=====================================			CERTIFICATION CONTRACT		
AND	11	ii -	[COF WHERE EVENT]	ABSOLUTE	CDF WHERE EVENT	ABSOLUTE		
	11	EVENT	DOES NOT OCCUR	DECREASE	OCCURS	INCREASE		
TYPE OF BASIC EVENT	BASIC EVENT COD	E PROBABILITY	T(0)	T - T(0)	T(1)	T(1) - T		
(A)	(8)	(C)	(0)	(E)	(F)	(G)		
INTERNAL FLOOD IN TONE 7 (SERVICE WATER - SW RHR ROOM) I	11F7	11 5.60E-04	2.60E-05	2.22E-08	6.55E-05	3.95E-05		
In the Bir Failt T	ABSLC104XG	11 8.01E-06	2.60E-05	2.14E-08	[] 2.70E-03	2.68E-03		
EDG B HY PLUGGED C	LEHXEDGBXXF	1.36E-04	2.60E-05	1.90E-08	1.65E-04	1.39E-04		
EDGEGU HY & PLUGGED C	EHXEDGAXXF	1.36E-04	2.60E-05	1.90E-08	1.65E-04	1.39E-04		
DSOU DATTERY & AND BATTERY & COMMON CAUSE FAILURE	I DBA36CCCCR	1 9.80E-07	2.60E-05	1.79E-08	1.83E-02	1.83E-02		
CTOWN COON CEEDWATED MACTED CONTROLLED FAILS LOW C	LIFCKMASTERR	6.438-05	2.60E-05	1.68E-08	11 2.86E-04	2.60E-04		
SIGNAL FROM FEEDWATER MASTER CONTROLLER FAILS CON	I FPMAOPCCXS	1 7.83E-04	2.60E-05	1.59E-08	1 4.63E-05	2.03E-05		
LOOD & COCCUL FAILURE TO DESTORE AFTER TEST OR MAINTENANCEO	I FLOOPAXXXZ	1.11E-04	2.608-05	1,55E-08	1.65E-04	1.39E-04		
LOOP A EDGESW FAILURE TO RESTORE AFTER TEST OR MAINTENANCED	LIELOOPBXXXZ	1.11E-04	2.60E-05	1.55E-08	1.65E-04	1.39E-04		
LUOP B EDGESW PAILORE TO RESTORE AFTER TEST OR INTERCOM	LICRE14A10BE	11 3.65E-04	11 2.60E-05	1.54E-08	6.81E-05	4.21E-05		
RELAY 14ATUP FAILS TO ENERGIZE	11SPMPMP13CM	11 5.07E-02	1 2.60E-05	1.48E-08	2.63E-05	2.60E-07		
SW PUMP 15 UNAVAILABLE DUE TO CORRECTIVE PARTICIPARTE	111 PMP203CCS	11 6.83E-04	1 2.60E-05	1.42E-08	4.68E-05	2.08E-05		
COMMON CAUSE FAILURE OF SLC FURPS IS START	LACNISGGEAC	11 9.79E-05	1 2.60E-05	1.34E-08	1.63E-04	1.37E-04		
FAILURE OF DIESEL PANEL CONTACT TO CLOSE	LLACH35G/EBC	11 9.795-05	11 2.60E-05 1	1.34E-08	1.63E-04	1.37E-04		
FAILURE OF DIESEL PANEL CONTACT TO CLOSE	1110	11 1.20F-04	11 2.60E-05 1	1.32E-08	1.36E-04	1.10E-04		
LOSS OF ONE 125VDC BUS	LUELEDATARE	11 7 20F-04	11 2.60E-05 1	1.23E-08	11 4.32E-05	1.72E-05		
HPCI FILTER PLUGGED		11 4 80F-05	11 2.60E-05 1	1.20E-08	2.768-04	2.50E-04		
PSD 3445 FAILS TO REMAIN CLOSED	114004534081	11 / 305-05	11 2 60F-05 L	1.17E-08	11 2.94E-04	2.68E-04		
ACB 152-408 FAILS TO REMAIN CLOSED C	ALBIDZ4UOL	11 2 025-03	11 2.605-05 1	1.16E-08	11 2.99E-05	3.90E-06		
MO-2015 FAILS TO OPEN C	I I RVMM02015N	11 4 305.05	11 2.60E-05 1	1.13E-08	11 2.83E-04	2.57E-04		
BREAKER 52-302 FAILS TO REMAIN CLOSED	I ACBS2SUZAL	11 2 105 06	11 2 605-05	1.12E-08	11 5.12E-03	5.10E-03		
COMMON CAUSE FAILURE OF CS AND RHR INJ CHK VLVS TO OPEN F	RVCSVALVEN	1) / 705 05	11 2 605-05	1.10E-08	11 2.76E-04	2.50E-04		
BREAKER 52-402 FAILS TO REMAIN CLOSED C	ACB524U2AL	4.395-05	11 2 605-05 1	1 095-08	11 7 25E-04	6.99E-04		
LC TRANSFORMER TRX30 INTERNAL FAULT C	ATWTRX3UXG	1 1.305-00	11 2.605-05	9 96F-09	11 3.678-05	1.07E-05		
VACUUM BREAKER AD-2382A FAILS TO CLOSE	ZVB2382AXC	9.38E-04	2.002-00]	9 96E-09	11 3.67E-05	1.076-05		
VACUUM BREAKER A0-2382B FAILS TO CLOSE C	ZVB23828XC	11 9.38E-04	11 2 606-05	9 965-09	11 3.67E-05	1.07E-05		
VACUUM BREAKER A0-2382C FAILS TO CLOSE	11ZVB2382CXC	11 9.38E-04	11 2.605-05	0.045-00	11 3.675-05	1.07E-05		
VACUUM BREAKER A0-2382E FAILS TO CLOSE	ZVB2382EXC	9.38E-04	11 2.002-00	7.700-07	11 31012 03			

INPUTS FROM PLANT X

TABLE Add-B1

BASE CORE DAMAGE FREQUENCY T = 2.60E-05/YEAR

-

			MEASURES RELA	TED TO	MEASURES REL	ATED TO
	11 1		RISK REDUC	1104	In the tree	INSTREESSONSCIES
BASIC EVENT DESCRIPTION			LICOR INCOR CUENTI	ARCOLUTE	LICDE UNERE EVENT	ABSOLUTE
AND			LIDOLE NOT SCHOL	DECDEASE	Li occues l	INCREASE
		EVENT	TIDDES NOT DECUT	T T(D)	11 T(1)	T(1) - T
TYPE OF BASIC EVENT	BASIC EVENT CODE	PROBABILITY		(110)	(1) (1)	(6)
(A)	(B)	(C)	(0)		[]	
	1 2V82382FXC	9.386-04	1 2.60E-05	9.96E-09	3.67E-05	1.07E-05
VACUUM BREAKER AG-2302C FAILS TO CLOSE	1 ZVB2382GXC	9.38E-04	2.60E-05	9.96E-09	1 3.67E-05	1.07E-05
VACUUM BREAKER AU-25026 FAILS TO CLOSE	117VB2382HXC	9.38E-04	2.60E-05	9.96E-09	3.67E-05	1.07E-05
VACUUM BREAKER AU-2302A FAILS TO CLOSE	112V82382KXC	9.38E-04	2.60E-05	9,968-09	3.67E-05	1.07E-05
VACUUM BREAKER AU-2302K FAILS TO LEGGE	11ACB052408L	4.39E-05	11 2.60E-05	9.83E-09	11 2.50E-04	2.246-04
BREAKER 32-400 FAILS TO REMAIN CLOSED	I INVHAIS93XN	1.31E-03	1 2.60E-05	9.78E-09	3.35E-05	7.54E-06
AT 595 FAILS TO OPEN	LIGPMP61XXXR	2.40E-03	2.60E-05	9.62E-09	2.998-05	3.908-06
AUXILIARY OIL PUMP POI FAILS TO RUN	11ACR0523081	4.398-05	2.608-05	9.44E-09	11 2.41E-04	2.15E-04
BREAKER 52-308 FAILS TO REMAIN CLOSED	I DRATRETA	1.50E-01	11 2.60E-05	9.31E-09	[] 2.60E-05	0.00E+00
BATTERY COMMON CAUSE BETA FACTOR	11100010210	7.205-04	1 2.60E-05 1	8.84E-09]] 3.82E-05	1.22E-05
RCIC Y STRAINER 4262 PLUGGED	LIEUREEU11VN	6.51E-05	11 2.60E-05 I	8.74E-09	1.60E-04	1.34E-04
CHECK VALVE ESW-1-1 FAILS TO OPEN	LIEVCEONTINN	6 51E-05	11 2.60E-05 1	8.74E-09	1.60E-04	1.34E-04
CHECK VALVE ESW-1-2 FAILS TO OPEN	I DepStancco	2,125-05	11 2.60E-05 1	8.63E-09	11 4.34E-04	4.08E-04
REACTOR PRESSURE SENSORS PS-2-3-53 A&B COMMON CAUSE FAILURF	LADOLEVYYYC I	B 01E-06	11 2.60E-05	8.48E-09	1.08E-03	1.068-03
BUS 15 FAULT		1 5 00E-04	1 2.60F-05	8.27E-09	11 4.26E-05	1.668-05
COMMON MODE FAILURE OF REACTOR FEED PUMPS TO START	I PAPER CAOTICS	1 8.015-04	11 2.60E-05 1	7.31E-09	9.398-04	9.138-04
LC 103 BUS FAULT	ABSECTUSAG	3 (55 0)	11 2.605-05 1	7.15E-09	11 4.55E-05	1.958-05
COMMON CAUSE FAILURE OF ESW PUMPS P111 C/D TO START F	ILEPAPTITUS I	1 2 465 03	11 2 605-05	6.92E-09	2.916-05	3.12E-06
CONDENSATE PUMP A BRNG. LUBE OIL PUMP FAILS TO RUN C	[FPMLOPTIXE]	1 7 /05 06	1 2 60E-05	6 76F-09	11 9.31E-04 1	9.05E-04
COMMON CAUSE FAILURE OF LEV TRANS 72 A, B, C, D	I QILIZABLOR	1 / 705 05	11 2 60E-05	6 58F-09	11 1.76E-04	1.50E-04
BREAKER 52-404 FAILS TO REMAIN CLOSED C	ACBUDZ404L	0.37E-03	1 2.605-05 1	6 42F-09	11 4.00E-05	1,406-05
HPCI PUMP P-209 FAILS TO RUN	HPTP209XXR	4,002-04	2.605-05	6 27E-09	11 2.65E-05 I	5.20E-07
COND PUMP P-1B CORRECTIVE MAINTENANCE M	I FPMP1BXXCM	1.002-02	11 2 605-05	6 27E-09	11 2.65E-05	5.20E-07
OPERATOR INAPPROPRIATELY CROSS-TIE LC 104 TO LC 103 0	ACB3094091	7.005-02	11 2.605-05 1	6 215-09	11 4 68E-05	2.085-05 1
COMMON CAUSE FAILURE OF SLC SQUIBS TO FIRE F	I LUXIIIACCE	1 3.00E-04	11 2.605-05	5 85E-09	11 1.56E-04	1.30E-04 I
LOOP A EDGESH OUT FOR CORRECTIVE MAINTENANCE M	ELOOPAXXCM	4.528-05	11 2.605.05	5 85E-09	11 1.56E-06	1.30E-04
LOOP B EDGESW OUT FOR CORRECTIVE MAINTENANCE M	TELOOPBXXCM	4.528-05	2.000-05	5 695 00	11 1.565-04	1.30E-04 1
REFAKER 52-304 FAILS TO REMAIN CLOSED C	ACB052304L	4.398-05	E.00E-03	3.070-07	11	

INPUTS FROM PLANT X

TABLE Add-B1

				MEASURES RELA RISK REDUC	TED TO TION	MEASURES RELATED TO RISK INCREASE			
BASIC EVENT DESCRIPTION AND			a manual second	====================================	ABSOLUTE	COF WHERE EVENT	ABSOLUTE		
			EVENT	DOES NOT OCCUR	DECREASE	1 OCCURS	INCREASE []		
TYPE OF BASIC EVENT		BASIC EVENT CODE	PROBABILITY	[] T(0)	T - T(0)	11 1(1)	1(1) - 1 []		
(A)		(B)	(C)	(D)	(E)	(F)	(6) []		
NON PECONERY FACTOR FOR AC POUFR TO CRD PUMPS	R	I CRDTEREC	1.00E-01	2.60E-05	5.676-09	2.60E-05	0.00E+00		
CONDENCATE DUND COMMON MODE FAILURES	F	IFPMP1ABCCR	2.23E-05	1 2.60E-05	5.59E-09	11 2.76E-04	2.50E-04		
ETTTED TO SA CONTROL PRESSURE SUITCHES PLUGGED	c	INFLCONTRLF	7.20E-04	2.60E-05	5.49E-09	3.35E-05	7.54E-06		
COMMON CALLEE EATLINE OF SV 3-1624 AND R TO OPEN	F	IPVE3142CCN	7.31E-05	1 2.60E-05	5.46E-09	1.01E-04	7.46E-05		
LOSS OF DRYUELL COOLING	1	TDV	5.87E-03	2.60E-05	5.46E-09	2.70E-05	1.04E-06		
COMMON CAUSE FAILURE TO RUN OF CORE SPRAY PUMPS	F	CPMP208ccR	3.50E-04	1 2.60E-05	5.10E-09	4.06E-05	1.46E-05		
COMMON CAUSE FAILURE OF LEV TRANS 72 & AND E	F	GTL72ABXCR	5.62E-06	2.608-05	4.91E-09	9.00E-04	8.74E-04		
COMMON CAUSE FAILURE OF LEV TRANS 72 C.D	F	QTL72CDXCR	5.62E-06	2.60E-05	4.91E-09	9.00E-04	8.74E-04		
COMMON CAUSE FAILURE TO START OF CORE SPRAY PUMPS	F	ICPMP208ccs	1 3.37E-04	2.60E-05	4.89E-09	4.06E-05	1.46E-05		
MANUAL DYDACS CU V73 EATLS TO REMAIN CLOSED	c	ASHY73XXXL	5.21E-04	2.60E-05	4.81E-09	1 3.54E-05	9.36E-06		
CONNON CALLER FAILURE OF LEVEL TRANSMITTER 6-524/B	F	I FTL652ABXR	1.86E-05	1 2.60E-05	4.65E-09	2.76E-04	2.50E-04		
COMMON CAUSE FAILURE OF EEU PURPS P111 C/D TO PUN	F	LIEPMP111COR	2.40E-04	2.60E-05	4.52E-09	[] 4.47E-05]	1.87E-05		
COMMON CAUSE FAILURE OF EU 01_1 AND FU 91-7 TO OPEN	F	FVC911912N	1.73E-05	1 2.60E-05	4.34E-09	2.76E-04	2.50E-04		
CONNON CAUSE FAILURE OF EU 91-1 AND EU 94-2 TO OPEN	F	1/FVC911942N	1 1.73E-05	2.606-05	4,34E-09	1 2.76E-04	2.50E-04		
COMMON CAUSE FAILURE OF FU 91-1 AND FU 97-2 TO OPEN	F	11FVC911972N	1.732-05	1 2.60E-05	4.34E-09	1 2.76E-04	2.50E-04		
COMMON CAUSE FAILURE OF FU 94-1 AND FU 91-2 TO OPEN	F	FVC912941N	1.73E-05	1 2.60E-05	4.34E-09	[] 2.76E-04	2.50E-04		
COMMON CAUSE FAILURE OF EU 97-1 AND 91-2 TO OPEN	F	FVC912971N	1.73E-05	[] 2.60E-05	4.34E-09	2.76E-04	2.50E-04		
UDET AOD D-217 DELAY 72/M FAILS TO ENERGIZE	c	HRE72M217E	3.65E-04	2.60E-05	4.29E-09	3.77E-05	1.17E-05		
MO_20136 RELAY 72/2F FAILS TO ENERGIZE	с	HRE722F36E	3.65E-04	2.60E-05	4.29E-09	3.77E-05	1.17E-05		
MO-2036 RELAY 72/2M FAILS TO ENERGIZE	c	HRE722M36E	3.65E-04	2.60E-05	4.29E-09	3.77E-05	1.17E-05		
HO 2061 DELAY 72/1F FAILS TO ENERGIZE	с	HRE721F61E	1 3.65E-04	2.60E-05	4.29E-09	3.77E-05	1.17E-05		
HO-2061 RELAY 72/2F FAILS TO ENERGIZE	С	HRE722F61E	3.65E-04	2.60E-05	4.29E-09	1 3.77E-05	1.17E-05		
MO-2061 RELAY 72/2M FAILS TO ENERGIZE	С	HRE722M61E	3.65E-04	[2.60E-05	4.29E-09	3.77E-05	1.17E-05		
MO-2062 RELAY 72/1F FAILS TO ENERGIZE	с	HRE721F62E	3.65E-04	2.60E-05	4.29E-09	3.77E-05	1.178-05		
HO-2062 RELAY 72/1F FAILS TO ENERGIZE	с	HRE721F67E	3.65E-04	2.60E-05	4.29E-09	3.77E-05	1.17E-05		
MO-2062 RELAY 72/2F FAILS TO ENERGIZE	С	HRE722F67E	3.65E-04	11 2.60E-05	4.29E-09	3.77E-05	1.17E-05		
MO-2062 RELAY 72/2F FAILS TO ENERGIZE	С	HRE722F62E	3.65E-04	2.60E-05	4-29E-09	3.77E-05	1.17E-05		

INPUTS FROM PLANT X

TABLE Add-B1

BASE CORE DAMAGE FREQUENCY T = 2.60E-05/YEAR

					10000	***************************************		12 2 2 2 2	CALARCONCONCES:		11
	1	1 1	1		11	MEASURES RELAT	OT DET	11	MEASURES REL	ATED TO	11
	i i	1			11	RISK REDUCT	TION	11	RISK INCR	EASE	11
RASIC EVENT DESCRIPTION	i	1	ii -		=	*****************	**************			***********	== []
AND	- 1		1		110	DF WHERE EVENT	ABSOLUTE	[CDI	F WHERE EVENT	ABSOLUTE	11
E State Stat	1		1 E	VENT	110	OES NOT OCCUR	DECREASE	11	OCCURS	INCREASE	11
TYPE OF BACIF EVENT	- 1	BASIC EVENT CODE	PRO	BABILITY	11	T(0)	T - T(0)	11	T(1)	7(1) - T	11
(8)	- i	(B)	ii -	(C)	11	(D)	(E)	11	(F) [(6)	11
502											11
NO 3043 DELAY 72/2M FAILS TO ENERGITE	c	HRE722M62E	1 3.	65E-04	-11	2.60E-05	4.29E-09	11	3.77E-05	1.17E-0	5 11
HO TOED DELAY 72/2M EATLS TO ENERGIZE	0	HRE722M67E	1] 3.	65E04	11	2.60E-05	4.29E-09	11	3.77E-05	1.17E-0	5
HO-2052 RELAY 72/2F FAILS TO ENERGIZE	C	HRE722F68E	1 3.	65E-04	11	2.60E-05	4.29E-09	11	3.77E-05	1.17E-0	15
HO-2000 ACCAL TELED FAILS TO ENERGIZE	C I	HRE722M68E	1 3.	65E-04	11	2.60E-05	4.296-09	11	3.77E-05	1.17E-0	15 11
DELAY 33 1814 FALLS TO ENERGI7E	Ċ	HRE23181AE	1 3.	65E-04	11	2.60E-05	4.29E-09	11	3.77E-05	1.17E-0	15
DELAY 23AK1 FAILS TO ENERGI7E	C	HRE23AK1XE	1] 3.	65E-04	11	2.60E-05	4.29E-09	11	3.77E-05	1.17E-0	15
DELAY 23AK2 FAILS TO ENERGIZE	C	HRE23AK2XE	1 3.	65E-04	11	2.60E-05	4.29E-09	11	3.77E-05	1.17E-0	15 11
BELAV 23AX23 FAILS TO ENERGIZE	c	HRE23AK23E	1 3.	65E-04	11	2.60E-05	4.29E-09	11	3.77E-05	1.17E-0	15 11
DELAY 70/15 FATLS TO ENERGI7E	C	HRE721F36E	1 3	65E-04	11	2.60E-05	4.29E-09	11	3.77E-05	1.17E-0	15 11
DOTO DIMO D.207 FATIS TO RUN	c	IPTP207XXR	1 4	60E-04	11	2.60E-05	4.06E-09	11	3.48E-05	8.84E-0	16
COMMON CAUSE FAILURE TO RUN OF HPCI AND RCIC PUMPS	F	HPTRCHPCCN	1 1	92E-05	11	2.60E-05	3.906-09	11	2.29E-04	2.03E-0	14 11
TRANSFORMER #11 INTERNAL FAULT	C	ATWTR11XXG	1 1	56E-05	11	2.60E-05	3.90E-09	11	2.76E-04	2.50E-0	14 []
CORE SPRAY TRAIN B OUT FOR CORRECTIVE MAINTENANCE	М	CLOTRNBXCM	[] 1	60E-04	- 11	2.60E-05	3.74E-09	11	4.94E-05	2.34E-0	15 11
COMMON CAUSE FAILURE OF VSF 9 AND 10 TO RUN	F	AFNVSF910R	8	.64E-07	11	2.60E-05	3.72E-09	11	4.34E-03	4.32E-0	15 11
EATLURE OF LEVEL TRANSMITTER 728 TO OPERATE	C	QTL2372BXR	11 6	.26E-05	11	2.60E-05	3.64E-09	11	8,408-05	5.80E-0	15 11
I INIT SUITCH DAS/1 FAILS TO CLOSE (MO-1987)	c	RSLM01987C	11 7	.08E-03	11	2.60E-05	3.33E-09	11	2.65E-05	5.20E-0	37 []
BURSU LOOP 2 OUT FOR CORRECTIVE MAINTENANCE	м	WLOOP2XXCM	11 6	85E-03	11	2.60E-05	3.22E-09	11	2.65E-05	5.20E-(07 11
EATLUDE OF SUITCH 10AS198 TO CLOSE	c	IRSM10519BC	11 6	.57E-03	11	2.60E-05	3.09E-09	11	2.65E-05	5.20E-0	37
DATTERY & SUCE BLOUN	С	DFUBAGXXXL	11 3	.60E-05	11	2.60E-05	3.028-09	11	1.09E-04	8.35E-0	35
CONTACT 186.502 FATES TO REMAIN CLOSED	c	ACN186502L	1 2	.89E-05	11	2.60E-05	2.91E-09	11	1.27E-04	1.01E-(34 []
NO 11 CONTROL SUITCH CONTACT FAILURE TO REMAIN CLOSED	с	ACNDG11CSL	11 2	.89E-05	11	2.60E-05	2.91E-09	11	1.27E-04	1.01E-0	34
DO 13 CONTROL SHITCH CONTACT FAILURE TO REMAIN CLOSED	C	ACNDG12CSL	11 2	.89E-05	11	2.60E-05	2.91E-09	11	1.27E-04	1.01E-0	34
FATURE OF 152 501 CONTACT TO REMAIN CLOSED	C	1 ACN152501L	11 2	.89E-05	11	2.60E-05	2.91E-09	11	1.27E-04	1.01E-	04 []
FAILURE OF 152-511 CONTACT TO REMAIN CLOSED	C	ACN152511L	11 2	.89E-05	11	2.60E-05	2.91E-09	11	1.27E-04	1.01E-	04
FAILURE OF 152-KD2 CONTACT TO REMAIN CLOSED	¢	ACN152602:	11 2	.89E-05	11	2.60E-05 (2.91E-09	11	1.27E-04	1.01E-	04
FATLUSE OF ACR 602 CONTACT TO REMAIN CLOSED	с	ACN186602L	11 2	.89E-05	11	2.608-05	2.91E-09	11	1.27E-04	1.01E-	04
FATURE OF CONTACT 152-502 TO REMAIN CLOSED	С	ACN152502L	11 2	.89E-05	11	2.60E-05	2.91E-09	11	1.27E-04	1.01E-	04

0

INPUTS FROM PLANT X

TABLE Add-B1

			MEASURES RELA RISK REDUC	TED TO TION	MEASURES RELATED TO RISK INCREASE			
BASIC EVENT DESCRIPTION	11	11		ADCOLUTE	LICAR DUEDE EVENT	ARSOLUTE		
AND			CDF WHERE EVENT	ABSOLUTE	I occups	INCREASE 1		
	11	EVENT	LIDDES NOT OCCUR	DECREASE	11 7/11	T(1) - T 11		
TYPE OF BASIC EVENT	BASIC EVENT CODE	PROBABILITY	T(0)	1 - 1(0)	11 Xex 1	(6)		
(A)	(B)	(2)	(0)	(E)				
CONTRACTOR OF TAXAGE AND THE TAXAGE AND TAXAGE		11 2.89E-05	2.60E-05	2.91E-09	1.27E-04	1.01E-04		
FAILURE OF CONTACT 152-001 TO REMAIN CLOSED	11ACN152610L	11 2.89E-05	2.60E-05	2.91E-09	1.27E-04	1.01E-04		
FAILURE OF CONTACT 152-010 TO REMAIN CLOSED	LASM152502L	11 2.89E-05	2.60E-05	2.91E-09	1.27E-04	1.01E-04		
FAILURE OF CONTROL SWITCH 152-502 CONTACT TO REMAIN CLOSED	11ASM152602L	11 2.89E-05	2.60E-05	2.91E-09	1,27E-04	1.01E-04		
FAILURE OF HANDSWITCH 152-DUZ CONTACT TO REMAIN CLOSED	LICSM14S13BL	11 9.64E-05	2.60E-05	2.78E-09	5.49E-05	2.89E-05		
SWITCH 14ASISB FAILS TO REMAIN CLUSED	11CVM5354CCN	11 2.04E-04	[] 2.60E-05]	2.76E-09]] 3.95E-05	1.35E-05		
COMMON CAUSE FAILURE TO OPEN OF HOT 1735 AND NO 1154	LIWVACV1729N	11 5.76E-03	2.60E-05	2.70E-09	2.65E-05	5.20E-07		
CV-1729 FAILS TO OPEN	LINVCAS11XXC	11 4.265-04	2.60E-05	2.65E-09	1 3.22E-05	6.24E-06		
CHECK VALVE AS 7-1 FAILS TO CLOSE	I LUDAL TONXY	11 4.20E-01	2.60E-05	2.51E-09	1 2.60E-05	0.00E+00		
FAILURE TO MANUALLY ALIGN THE CRU STSTER	LIEVCESU178N	11 8.04E-06	1 2.60E-05	2.32E-09	3.15E-04	2.89E-04		
COMMON CAUSE FAILURE OF ESW 17 AND 18 TO OPEN	LEVCESU234N	11 8.04E-06	1 2.60E-05	2.32E-09	3.15E-04	2.89E-04		
COMMON CAUSE FAILURE OF ESW 23 AND 24 TO OPEN	LEVCESUL12N	11 8.04E-06	1 2.60E-05	2.328-09	3.15E-04	2.89E-04		
COMMON CAUSE FAILURE OF ESW 4-1 AND 4-2 TO UPEN	LICRE16AK1RF	11 7.20E-05	1 2.60E-05	2.09E-09	[[5.49E-05]	2.89E-05		
FAILURE OF RELAY 14AKTB TO REMAIN ENERGIZED	LODER101AVE	11 3 65E-04	11 2.60E-05	2.07E-09	11 3.17E-05	5.72E-06		
RELAY K101A FAILURE	LIVERENTOTARC	11 6 57E-03	11 2.60E-05	2.03E-09	[] 2.63E-05]	2.608-07		
COMMON CAUSE FAILURE OF P-5A/B TO START	I VPMPSADCCS	11 6 57E-03	11 2.60E-05 L	2.03E-09	[] 2.63E-05]	2.60E-07		
COMMON CAUSE FAILURE OF WASTE SAMPLE PUMPS TO START	I VPHJOADCCJ	11 3 655-04	11 2.60E-05 1	2.02E-09	11 3.15E-05	5.46E-06		
RELAY 13AK1 FAILS TO ENERGIZE	I TREIJAKIAE	11 3 655-04	11 2.60E-05	2.028-09	1 3.15E-05	5.46E-06		
RELAY 13AK2 FAILS TO ENERGIZE	I THEIJANCAE	11 3.655-06	11 2.60E-05	2.02E-09	11 3.15E-05	5.46E-06		
RELAY 721F FAILS TO ENERGIZE	I INERCITYOE	11 3 655-04	11 2.60E-05 L	2.02E-09	1) 3.15E-05	5.46E-06		
RELAY 721F FAILS TO ENERGIZE	I I RETETEUUE	11 3 455 04	2 605-05	2.02E-09	1 3.15E-05	5.46E-06		
RELAY 721F FAILS TO ENERGIZE	C [[IRE/21FU/E	11 7 455 04	11 2.60E-05	2.02E-09	11 3.15E-05	5.46E-06		
RELAY 721F FAILS TO ENERGIZE	C IRE721F78E	1 3.026-04	2 605-05	2 02F-09	11 3.15E-05 1	5,46E-06		
RELAY 721F FAILS TO ENERGIZE	E IRE721FD1E	11 3.65E-04	11 2.600-05	2 028-09	11 3.15E-05 I	5.46E-06		
RELAY 721F FAILS TO ENERGIZE	I TRE721FOGE	11 3.65E-04	11 2.000-05 1	2 025-09	11 3.15E-05 I	5.46E-06 1		
RELAY 722F FAILS TO ENERGIZE	C IRE722FOOE	1 3.65E-04	2.000-05	2.020-09	11 3 155-05 1	5.46E-06 1		
RELAY 722F FAILS TO ENERGIZE	C IRE722F78E	1 3.65E-04	2.605-05	2.022-09	11 3 155-05	5 66E-06 1		
RELAY 722F FAILS TO ENERGIZE	C [IRE722F01E	3.65E-04	11 2.00E-05 1	2.022-07	11 5.00-02 1			

INPUTS FROM PLANT X

TABLE Add-81

BASE CORE DAMAGE FREQUENCY T = 2.60E-05/YEAR

						MEASURES RELA RISK REDUC	TED TO TION	MEASURES RELA RISK INCRE	ASE
BASIC EVENT DESCRIPTION AND			and the second	EVENT	= C	DF WHERE EVENT	ABSOLUTE DECREASE	CDF WHERE EVENT	ABSOLUTE INCREASE
TYPE OF BASIC EVENT		BASIC EVENT COD	E	PROBABILITY	11	T(0)	T - T(0)	T(1)	T(1) - T
(A)		(B)	11	(C)	11	(D)	(E)	(#)	(G)
PELAY 722F FATLS TO ENERGIZE	c		-11 -	3.65E-04	-	2.60E-05	2.02E-09	3.15E-05	5.46E-06
DELAY 722E FATLS TO ENERGIZE	ċ	IRE722F06E	11	3.65E-04	11	2.60E-05	2.02E-09	3.15E-05	5.46E-06
DELAY 722E FATLS TO ENERGIZE	c	IRE722F96E	ii -	3.65E-04	11	2.60E-05	2.02E-09	3.15E-05	5.46E-06
DELAY 72H FAILS TO ENERGIZE	с	IIRE72MX78E	ii -	3.65E-04	11	2.60E-05	2.02E-09	3.15E-05	5.46E-06
DELAY 72H FALLS TO ENERGIZE	c	IRE72MX06E	ii -	3.65E-04	. 11	2.60E-05	2.02E-09	3.15E-05	5.46E-06
DELAY 72H FALLS TO ENERGIZE	ċ	IIRE72MX01E	11	3.65E-04	11	2.60E-05	2.02E-09	3.15E-05	5.46E-06
DELAY 72H FAILS TO ENERGIZE	ċ	I IRE72MX00E	ii -	3.65E-04	11	2.60E-05	2.02E-09	3.15E-05	5.46E-06
DELAY 72H FAILS TO ENERGIZE	Ċ	IRE72MX96E	ii -	3.65E-04	11	2.60E-05	2.028-09	3.15E-05	5.468-06
DELAY 72N FAILS TO ENERGIZE	C	IRE72MX07E	11	3.65E-04	11	2.60E-05	2.028-09	3.15E-05	5.46E-06
DUC 13 FAILT	C	ABS13XXXXG	11	8.01E-06	11	2.60E-05	2.01E-09	2.76E-04	2.50E-04
DUS 13 FAULT	c	LABS14XXXXG	ii.	8.01E-06	11	2.60E-05	2.01E-09	[] 2.76E-04	2.50E-04
BUS 14 FAULT	c	LABSMCC31XG	ii.	8.01E-06	11	2.60E-05	2.01E-09	[] 2.76E-04	2.50E-04
MCC DI BUS FAULI	ē	LARSMCC41XG	11	8.01E-06	11	2.60E-05	2.01E-09	2.76E-04	2.50E-04
MCC 41 BUS FAULI	c	ILEVCESU62XN	ii.	6.51E-05	ii.	2.60E-05	1.95E-09	5.59E-05	2.99E-05
CHECK VALVE ESW-4-C FAILS TO OPEN	r o	LICLOTENBXX7	11	1.11E-04	11	2.60E-05	1.84E-09	4.26E-05	1.66E-05
CORE SPRAY IRAIN & FAILURE TO RESTORE AFTER TEST ON THEM	F	LICROBETA	11	1.00E-01	ii.	2.60E-05	1.54E-09	2.60E-05	0.00E+00
COMMON CAUSE FACTOR FOR CRU PUMPS	M	11 HOCRDXXCM	11	2 71E-02	ii	2.60E-05	1.54E-09	2.60E-05	0.002+00
CRD OUT FOR CORRECTIVE MAINTENANCE	E	LOTI 72ABCYR	11	1 87E-06	11	2.60E-05	1.31E-09	[] 7.23E-04	6.97E-04
COMMON CAUSE FAILURE OF LEV TRANS 72 A, D, C		LOTI 72ABDCP	11	1 87F-06	- 11	2.60E-05	1.31E-09	1 7.23E-04	6.97E-04
COMMON CAUSE FAILURE OF LEV TRANS 72 A, B, D		LOTI 72ACDCR	ii.	1.87E-06	11	2.60E-05	1.31E-09	1 7.23E-04	6.97E-04
COMMON CAUSE FAILURE OF LEV THANS 72 A, C, D	F	LIGTI 72BCDCR	11	1.87E-06	11	2.60E-05	1.31E-09	[] 7.23E-04]	6.97E-04
COMMON CAUSE FAILURE OF LEV TRANS 72 B,C,D		LICOMD123CCD	11	5 18F-06	11	2.60E-05 I	1.30E-09	11 2.76E-04	2.50E-04
COMMON CAUSE FAILURE TO RUN OF ALL THREE SW PUMPS	-	LICOMDIMO11D	11	9.745-05	11	2.60E-05	1.248-09	1 3.87E-05	1.27E-05
SW PUMP #11 FAILS TO RUN	~	LI COMPLEMENT 2D	11	9.745-05	11	2.60E-05 1	1.24E-09	1 3.87E-05 1	1.27E-05
SW PUMP #12 FAILS TO RUN	-	ILCOM12CTZAL	11	9.645-05	11	2.60E-05	1.23E-09	1 3.87E-05	1.27E-05
SWITCH 14AST3A FAILS TO REMAIN CLOSED	-	LIEVCEDQLOVN	11	1.405-04	11	2.60E-05	1,21E-09	1 3.46E-05 I	8.58E-06
FW-94-2 FAILS TO OPEN	0	LEVERNO73VN	11	1 405-04	11	2.60E-05	1.21E-09	11 3.46E-05 1	8.58E-06

INPUTS FROM PLANT X

TABLE Add-81

				11	MEASURES RELAT	TED TO	MEASURES RELATED TO RISK INCREASE			
BASIC EVENT DESCRIPTION AND			EVENT		CDF WHERE EVENT	ABSOLUTE DEC: ASE	CDF WHERE EVENT OCCURS	ABSOLUTE		
TYPE OF BASIC EVENT		BASIC EVENT CODE	PROBABILITY	11	T(0)	T - T(D)	T(1)	T(1) - T		
(A)		(B)	(6)	11	(0)	(E)	(F)	(G)		
CONSCIENTS DING D DONG OIL PIMP FAILS TO DIN	-	FPMLOP12XR	2.16E-03	11	2.60E-05	1.17E-09	2.65E-05	5.20E-07		
AURON VALUE VO. 3.1 SALLS TO OPEN	0	LVCXP31XXN	6.51E-03	- 11	2.606-05	1.14E-09	2.638-05	2.60E-07		
CHECK VALVE VD 1.2 FAILS TO OPEN	c	LLVCXP32XXN	6.51E-03	11	2.60E-05	1.14E-09	2.63E-05	2.60E-07		
DELAY ADDASE OBEN COLL FAILS TO ENERGIZE (420)	c	IRRE420015E	3.65E-04	11	2.60E-05	1.11E-09	2.916-05	3.12E-06		
ACTA DECAVED 152,502 EATLS TO REMAIN CLOSED	0	AC8152502L	1,46E-05	- 11	2.60E-05	1.05E-09	9.80E-05	7.20E-05		
DOLT BREAKER 152-502 FALLS TO REMAIN CLOSED	c	LACB152602L	1.46E-05	- 11	2.608-05	1.05E-09	9.80E-05	7.208-05		
PERSUATES SUND B 36 CODDECTIVE MAINTENANCE	н	FPMP2BXXCM	1.30E-02	11	2.60E-05	9.49E-10	2.60E-05	0.00E+00		
PREDWATER FURP F-2D CORRECTIVE INTRICEMENTS	6	FVCESU61XN	6.51E-05	11	2.60E-05	9.36E-10	4.03E-05	1.43E-05		
CHECK VALVE ESW-4-1 FAILS TO OPEN	c	ICRE16AK1AF	7.20E-05	- 11	2.608-05	9.15E-10	3.87E-05	1.27E-05		
RELAY TAAKIA DEENERGIZES	c	LACEB4318XL	4.39E-05	- 11	2.60E-07	8.098-10	4.63E-05	2.03E-05		
BREAKER BASIS FAILS TO REMAIN CLOSED	6	LIHRSLCTNKR	6.00E-05	11	2.60E-12 :	8.76E-10	4.06E-05	1.46E-05		
SEC TANK HEATER FAILS	c	1HCN721R36C	9,79E-05	- 11	2.60E-0	8.485-10	3.46E-05	8.58E-06		
HO-2030 RELAT 12/TR CONTACTS FALL TO CLOSE	è	I HCN722R36C	9.79E-05	11	2.60E-05	8.48E-10	3.46E-05	8.58E-06		
HO-2030 RELAT 12/2P CONTACTS FAIL TO CLOSE	c	I HCN721R61C	9,796-05	11	2.60E-05	8.48E-10	1 3.46E-05 [8.58E-06		
MO-CUBI RELAT 12/TR CONTACTS FAIL TO CLOSE	e.	1HCN722861C	9.79E-05	11	2.60E-05	8.48E-10	1 3.46E-05	8.58E-06		
MO-2061 RELAT 12/28 CONTACTS FAIL TO CLOSE	e.	11HCN721R62C	9.79E-05	11	2.60E-05	8.48E-10	3.46E-05	8.58E-06		
MO-2002 RELAT 12/1R CONTACTS FAIL TO CLOSE	÷.	114CN721R67C	9,796-05	- 11	2.60E-05	8.48E-10	11 3.46E-05	8.58E-06		
MO-2062 RELAT 72/18 CONTACTS FAIL TO SLOSE	c	11HCN722R62C	9,798-05	- 11	2.60E-05	8.48E-10	1 3.46E-05	8.588-06		
MO-2062 RELAT 72/2R CONTACTS FAIL TO CLOSE	6	11HCN722R67C	9.79E-05	- 11	2.60E-05	8.48E-10	3.46E-05	8.58E-06		
MO-2002 RELAT TETER CONTACTS FAIL TO CLOSE	ċ	11HCN722R68C	9.79E-05	11	2.60E-05	8.48E-10	1 3.46E-05	8.58E-06		
MO 2068 RELAT 72/28 CONTACTS FAIL TO CLOSE	c	HCH721R68C	9.79E-05	- 11	2.60E-05	8.48E-10	3.46E-05	8.58E-06		
DELAY DRAVIS CONTACTS FAIL TO CLOSE	Ċ	HCN23AK13C	9.79E-05	11	2.60E-05	8.48E-10	[] 3.46E-05]	8.58E-06		
DELAY 234K15 CONTACTS FAIL TO CLOSE ON LOW CST LEVEL	с	HCN23AK15C	9.79E-05	11	2.60E-05	8.48E-10	3.46E-05	8.58E-06		
RELAY EJANTS CONTACTS FALL TO CLOSE ON HIGH TORUS LEVEL	C	I HCN23AK25C	9,79E-05	11	2.60E-05	8.48E-10	1 3.46E-05 1	8.58E-06		
RELAT EJAKES CONTACTS FAIL TO CLOSE ON HASH TORUS ELTER	C	LIHCN23AK27C	9.79E-05	11	2.608-05	8.48E-10	3.468-05	8.58E-06		
BELAN CONTACT STARS FALL TO CLOSE	c	HEN23AK28C	9.798-05	1	2.60E-05	8.48E-10	[] 3.46E-05]	8.58E-06		
DV_3030 FATLS TO DENATH CLOSED	c	WVRRV3039L	2.16E-03	11	2.60E-05	7.96E-10	2.63E-05	2.60E-07		

INPUTS FROM PLANT X

.

TABLE Add-81

BASE CORE DAMAGE FREQUENCY T = 2.60E-05/YEAR

						*************	22201		8月 1993年1993年1993年1993	11
	1	1 11		11 ME	ASURES RELA	TED TO	MEASURES RELATED TO			
	1	1 11		11	RISK REDUC	TION	11	RISK INCR	EASE	11
ALL ALL PUPPER APARTMETERS	- 1	1 11		1		*************			**************	41
BASIC EVENI DESCRIPTION	1			LICDE WH	ERE EVENT	ABSOLUTE	100	WHERE EVENT	ABSOLUTE	11
AND	1	1 11	EVENT	IDDES N	OT OCCUR	DECREASE	11	OCCURS	INCREASE	11
and as an element	- 1	IDASTC EVENT CODEL	PROBABILITY	II T	(0)	T - T(0)	ii -	T(1)	T(1) - T	11
TYPE OF BASIC EVENI	- 1	(B) (B)	(2)	11	(0) [(E)	ii -	(F) [(G)	11
(A)	. 1						11	an an in an		11
NO FAN MORTO FATLS TO BUN	c	AFNVSF10XR	1.40E-05	11 .	2.60E-05	7.85E-10	11	8.228-05	5.62E-05	11
AC FAN VOLO FATIS TO DIN	c i	AFNVSF9XXR	1.40E-05		2.60E-05	7.85E-10	11	8.22E-05	5.62E-05	11
ere pump p.203_& FAILS TO START	c 1	LPHP203AXS	5.53E-03	11	2.60E-05	7,77E-10	11	2.63E-05	2.60E-07	11
SLC FURE D. 303 D CALLS TO START	c i	ILPMP203BXS	5.53E-03	11	2.60E-05	7.77E-10	11	2.638-05	2.60E-07	11
ALL FURF F-203-D TALLS TO START	¢ i	IQREK113AXE	3.65E-04	11	2.60E-05	7.57E-10	11	2.81E-05	2.08E-06	11
RELAT NITON THILDRE DUE TO CORDECTIVE MAINTENANCE	H	DBAD11XXCM	1.32E-05	11	2.60E-05	7.41E-10	11	8.226-05	5.62E-05	11
BRITERT DIT UNAVAILABLE DUE TO CORRECTIVE MAINTENANCE	H I	DBAD21XXCM	1.328-05	ii -	2.60E-05	7.41E-10	11	8.22E-05	5.62E-05	11
BRITERT OCT UNRVATERDLE DOE TO CONSECTIVE INCATED DE	ci	ABSHCC34XG	8.01E-(*	11	2.60E-05	7.20E-10	11	1.16E-04	9.00E-05	11
MUL D4 BUS FAULT	c	LARSHCC44XG	8.01E-06	11	2.60E-05	7.20E-10	11	1.16E-04	9.00E-05	11
MCC 44 BUS FAULT		IVPHP36BXXS	5.91E-02	11	2.608-05	7.10E-10	11	2.60E-05	0.00E+00	11
FAILURE OF WASTE SAMPLE PUMP B TO START	-	LUDHDSAVYYS	5.915-02	11	2.60E-05 [7.10E-10	11	2.60E-05	0.00E+00	11
PUMP P-5A FAILS TO START			5.915-02	ii -	2.60E-05 1	7.10E-10	11	2.60E-05	0.00E+00	11
PUMP P-58 FAILS TO START		UDMDTGAVVS	5 91F-02	11	2.60E-05	7.10E-10	ii -	2.60E-05	0.00E+00	11
WASTE SAMPLE PUMP A FAILS TO START			7 825-05	11	2.60E-05	6.79E-10	11	3.46E-05	8.58E-06	11
CHARGER D70 RANDOM FAILURE			7 826-05	11	2 60F-05 1	6.79E-10	11	3.468-05	8.58E-06	11
CHARGER DBO RANDOM FAILURE	- C.	UBLUGUAXAR	7 715 05	11	2.60E-05 1	6.34E-10	ii -	3.46E-05	8.58E-06	11
AO 23-18 FAILS TO OPEN	C	HYCAO2510N	1 7.316-05	11	2.605-05 1	6 34F-10	ii-	3.468-05	8.58E-06	11
CHECK VALVE HPCI-10 FAILS TO OPEN	C	HACHECTION 1	7.316-05	11	2 605-05 1	6 34F-10	11	3.46E-05	8.58E-06	11
CHECK VALVE HPC1-18 FAILS TO OPEN	C	HVCHPCITBN	1 7 74c 05	11	2 606-05	6 34E-10	11	3.46E-05	8.58E-06	11
CHECK VALVE HPCI-9 FAILS TO OPEN	C	HACHECIOAN	7.312-05	11	2.000-05	4 345-10	11	3.46E-05	8 58E-06	11
CHECK VALVE HPO-1 FAILS TO OPEN	C	HVCHPO1FTN	7.31E-05	11	2.00E-05	2 T/E 10	11	3 66E-05	8 58F-06	11
CHECK VALVE HPO-2 FAILS TO OPEN	Ċ	HVCHPO2FTN	7.31E-05	11	2.60E-05	0.340-10	11	3 1465-05	8 58E-06	
HPCI STEAM LINE DRAIN AND ALARM FAIL ON INITIAL START	C	HVMSLDALME	7.31E-05	11	2.60E-05	0.340-10	11	3.400-05	8 585-06	11
PRESSURE SWITCH PS-1 DOES NOT CLOSE ON LOW OIL PRESSURE	C	HSPPS1XFTC	7.31E-05	11	2.60E-05	6.34E-10	11	3.402-05	0.502-00	11
YEO PANEL SUPPLY FUSE BLOWOUT	C	AFUYBOXXXL	7.20E-05	11	2.60E-05	6.24E-10	11	3.402-05	2 505 02	11
AO-1579 FAILS TO REMAIN OPEN	C	SVAA01579F	2.40E-06	- 11	2.608-05	6.03E-10	11	C. 70E-04	2.505-04	
CV 1470 FAILS TO REMAIN OPEN	C	INVACV1470F	2.40E-06	11	2.608-05	6.03E-10	11	2.708-04	2.508-04	
ISOLATION VALVE CV-1478 FAILS TO REMAIN OPEN	C	NVACV1478F	2.40E-06	11	2.60E-05	6.03E-10		2.70E-04	2.50E-04	11

TABLE Add-81

INPUTS FROM PLANT X

BASE CORE DAMAGE FREQUENCY T = 2.60E-05/YEAR

		1			11	MEASURES RELA RISK REDUC	TED TO TION		MEASURES REL RISK INC	ATED TO REASE	
BASIC EVENT DESCRIPTION	1		11		=	TREASERSTREETER	ARSOLUTE	lico	F WHERE EVENT	ABSOLUTE	1
AND			<u>B</u> -	PUPLIT	110	DEE NOT OFFIDE	DECREASE	11	OCCURS	INCREASE	ï
	1	la contra anticia antica	8	EVENI	110	TIM I	T T(0)	11	T(1)	T(1) - T	ï
TYPE OF BASIC EVENT	1	BASIC EVENT CODE	11	PROBABILITY		1(0)	783	11	(1)	(6)	1
(A)		(B)	11-	(0)	11 11	(0)	(E)	11. 			1
Prov 3/20% FATLE TO BENATN OPEN	0	INVPV3450AF		2.40E-06		2.60E-05	6.03E-10	11	2.76E-04	2.50E-04	1
PCV-345UR FRILS TO REMAIN OPEN	6	INVPV3450BF	ii -	2.40E-06	11	2.60E-05	6.03E-10	11	2.76E-04	2.50E-04	ł
PLU-3420B FAILS TO REPAIR OF CH	6	ARE957XXXE	ii -	3.65E-04	11	2.608-05	5.75E-10	11	2.76E-05	1.56E-06	1
FAILURE OF RELAT 93-1 TO ENERGIZE	e	ARE958XXXE	ii -	3.65E-04	11	2.60E-05	5.75E-10	11	2.76E-05	1,56E-06	1
FAILURE OF RELAT 72-0 TO ENERGIES	. c	HVCHPCI31N	11	6.51E-05	-11	2.60E-05	5.64E-10	11	3.46E-05	8.58E-06	i
HPCI-31 FAILS TO OPEN	0	HVCHPC132N	11	6.51E-05	11	2.608-05	5.64E-10	11	3.46E-05	8.58E-06	-
HPUI-32 FAILS TO OPEN	e i	FPMP1AXXXR	ii -	2.01E-04	- ii	2.60E-05	5.368-10	11	2.86E-05	2.60E-06	-
CONDENSATE PUMP A FAILS TO RUN	-	I FPMP2AAOPS	11	7.05E-03	- ii	2.60E-05	4,19E-10	11	2.60E-05	0.00E+00	1
ZA FEEDWATER AUX UIL PUMP FAILS TO START		IEPMP111CXS	11	3.29E-03	- iii	2.60E-05	4.03E-10	11	2.608-05	0.00E+00	1
ESW PUMP PITT C FAILS TO START		EPMP111DYS	ñ.	3.29E-03	- iii	2.608-05	4.03E-10	11	2.60E-05	0.00E+00	1
ESU PUMP PITT D FAILS TO START		INCHCOMP11R	ii.	2.64E-03	11	2.60E-05	3.82E-10	11	2.63E-05	2.60E-07	1
AIR COMPRESSOR #11 FAILS TO RUN	M	INCHEMP12CH	11	2.40E-02	- ii	2.60E-05	3.82E-10	11	2.60E-05	0.00E+00	1
COMPRESSOR 12 UNAVAILABLE DUE TO CORRECTIVE MAINTENANCE	14	INCHCHP13CH	11	2 40E-02	- ii	2.60E-05	3.82E-10	11	2.60E-05	0.005+00	Î
COMPRESSOR 13 UNAVAILABLE DUE TO CORRECTIVE MAINTENANCE	м	I DDCD21XXCM	11	9.72E-06	- 11	2.60E-05	3.48E-10	ii -	6.19E-05	3.59E-05	1
D21 UNAVAILABLE BECAUSE OF CORRECTIVE MAINTENANCE	м	I DBCD11XXCM	ii.	9.728-06	- 11	2.60E-05	3.48E-10	11	6.19E-05	3.59E-05	1
PANEL DIT OUT FOR CORRECTIVE MAINTENANCE	м	Lippco111xcH	ii.	9.72E-06	- 11	2.60E-05	3.48E-10	11	6.19E-05	3.59E-05	1
PANEL DITL OUT FOR CORRECTIVE HAINTENANCE		IDDCD211XCB	ii.	9.72E-06	11	2.60E-05	3.48E-10	11	6.19E-05	3.59E-05	1
PANEL 0211 OUT FOR CORRECTIVE MAINTENANCE		LICVCAO13BYN	11	6.51E-05	- ii	2.60E-05	3.30E-10	11	3.09E-05	4.94E-06	1
CHECK VALVE AG-13B FAILS TO OPEN		11000092888	11	6.51E-05	11	2.60E-05	3.30E-10	11	3.09E-05	4.94E-06	1
CHECK VALVE CS-9-2 FAILS TO OPEN	č	LARSNCC334G	ñ.	8.01E-06	- ii	2,60E-05	2.89E-10	11	6.19E-05	3.59E-05	1
MCC 33A BUS FAULT	- 6	LARSHCC43AG	ii.	8.01E-06	11	2.606-05	2.89E-10	11	6.19E-05	3.59E-05	1
MCC 43A BUS FAULT		I INVRIGSQAXI	11	1.44E-04	11	2.60E-05	2.78E-10	11	2.78E-05	1.825-06	1
RV 1459A FAILS TO REMAIN CLOSED	c	INVR1459BXL	11	1.44E-04	ii	2.60E-05	2.78E-10	11	2.78E-05	1.82E-06	-
RY 14378 FAILS TO REMAIN CLOSED	c	LINVR1460AXL	11	1.44E-04	11	2.60E-05	2.78E-10	11	2.78E-05	1.82E-D6	1
RV 140UA FAILS TO REPAIN CLOSED	c	IINVR146OBXL	11	1.44E-04	11	2.60E-05	2.78E-10	11	2.78E-05	1.82E-06	1
RV 1400B FAILS TO REMAIN CLOSED	C	I INVR7384XXL	11	1.44E-04	11	2.608-05	2.78E-10	11	2.78E-05	1.82E-06	1
RV 7384 FAILS TO REMAIN CLUSED	C	I FPMP2AXXXS	11	4.50E-03	- 11	2.60E-05	2.68E-10	11	2.608-05	0.00E+00	-

ADD 81-16

INPUTS FROM PLANT X

TABLE Add-B1

BASE CORE DAMAGE FREQUENCY T = 2.60E-05/YEAR

.

0

8

			MEASURES RELAT	TED TO []	MEASURES REU RISK INCR	ASE
BASIC EVENT DESCRIPTION AND	Marcia Anna Anna Anna Anna Anna Anna Anna An	EVENT	CDF WHERE EVENT DOES NOT OCCUR	ABSOLUTE DECREASE	OF WHERE EVENT	ABSOLUTE
TYPE OF BASIC EVENT (A)	BASIC EVENT CODE	PROBABILITY (C)	T(0) (D)	T - T(0) (E)	T(1) (F)	T(1) - 1 (6)
ESW PUMP P111 D FAILS TO RUN ESW PUMP P111C FAILS TO RUN REACTOR LEVEL SENSOR LIS 2-3-672A FAILS TO CLOSE ON LOW FAILURE OF PRESSURE SWITCH DPIS-1473 INST AIR DRYER PLUGGED	C EPMP111DXR C EPMP111CXR C GSV672AXXC C NSPPS1473C C NFLIADRYRF	2.16E-03 2.16E-03 7.31E-05 1.31E-03 7.20E-04	2.60E-05 2.60E-05 2.60E-05 2.60E-05 2.60E-05	2.63E-10 2.63E-10 2.63E-10 2.37E-10 2.37E-10	2.60E-05 2.60E-05 2.96E-05 2.63E-05 2.63E-05	0.00E+00 0.00E+00 3.64E-06 2.60E-07 2.60E-07

CALCULATED IMPORTANCE MEASURES FOR PLANT X

TABLE Add-B2

			RISK RE	DUCTION RAN	NKINGS				RISK IA	NCREASE RAN	KINGS			
BASIC EVENT DESCRIPTION AND		FUSSELL	-	CRITICAL	LTY	RISK R	EDUCT. TH 1	BIRNBA	JR .	RISK INCR	EASE	RISK ACHI WORTH	IEVE.	CUM % RISK
TYPE OF BASIC EVENT		1 YESELI	PANK	(RIRN#U)/1	T RANK	T/T(0)	RANK	IT(1)-T(0)	RANK	T(1)-T	RANK	T(1)/T	RANK	T-T(O)/SUM
(A)		(B)	(0)	(0)	(E)	(F)	(G)	(H)	(1)	(3)	(K)	(L)	(8)	(N)
C = COMPONENT/HARDWARE FAILURE 274							1				Î			
F = COMMON CAUSE FAILURE 68		11						1						
I = INITIATING EVENT 24		11						1		l.			1	
M = UNAVAILABILITY DUE TO MAINTENANCE OR TEST 24		11						1		1				
0 = OPERATOR ERROR 25		11											1	
R = RECOVERY FACTOR OR PROBABILITY 14		11					1						1	
		11	1			l -	1			1				
42	9	11												[
OFFSITE POWER NON-RECOVERY AT 30 MINUTES	R	0.51100	1	0.51264	1	2.045	2.1	2.08E-05	232	7.54E-06	323	1.29	324	9.29%
LOSS OF OFFSITE POWER	Ţ	0.50800	2	0.50882	S	2.033	5	1.67E-03	36	1.66E-03	36	64.90	36	18.55%
OFFSITE POWER CONDITIONAL NON-RECOVERY AT 2 HOURS	R	110.46200	3	0.45990	4	1.859	3	2.66E-05	224	1,46E-US	245	1.50	243	20.734
EDG NON-RECOVERY AT 2 HOURS	R	0.45800	4	0.46068	3	1.845	4	1.81E-05	241	6.24E-06	321	1.24	207	35.204
OFFSITE POWER CONDITIONAL NON-RECOVERY AT 4 HOURS	R	0.43700	5	0.43831	5	1.776	5	2.15E-05	227	1.018-05	283	1.39	285	43.204
CONDITIONAL NON-RECOVERY OF OFFSITE AC POWER AT 6 HOURS	R	0.43300	6	0.43081	7	1.764	7	1.67E-05	244	1 5.46E-06	331	1.21	349 1	51.084
EDG CONDITIONAL NON-RECOVERY AT 4 HOURS	R	[]0.43300	7	0.43523	6	1.764	6	[1.59E-05	247	4.68E-06	355	1.18	357	28.924
OPERATOR FAILS TO DEPRESSURIZE RX (45 MINUTES)	0	[[0.22000	8	0.22022	8	1.282	8	5.73E-03	13	5.72E-03	13	221.00	10	25 OTV
DIESEL GENERATOR COMMON CAUSE FAILURE TO RUN	F	110.16400	9	0.16411	9	1,196	9	5.18E-03	18	1 3.178-03	10	00.00	10	67.659
RPS MECHANICAL FAILURE	Ŧ	0.09450	10	0.09359	11	1.104	10	[]2.43E-01	1	2.45E-UT		1 4370 00		1 60 365
INTERNAL FLOOD IN ZONE 12 (SERVICE WATER - T.B. 931'	1	0.(19420	11	0.09392	10	1 1.104	11	111.11E-01	2	1 4 455 00	7	1 4270.00	71	1 71 05%
INTERNAL FLOOD IN ZONE 4 (SERVICE WATER - R.B. > 896')	I.	[[0.09310	12	0.09305	12	1 1.103	12	IT. ISE-UE	285	1 8 335 06	320	1 1 32	320 1	72 328
TURBINE TRIP	1	0.06950	1.5	0.07011	13	1.075	15	112 275 07	200	0.020-00	3/	1 88 30	36 1	73 532
INTERNAL FLOOD IN ZONE 9 (SERVICE WATER - T.B. 911')	1	110.06640	14	0.06640	14	1 1.Urt	10	112.272-03	00	1 4 600 04	100	7 16	100	1 76 67%
DG12 FAILS TO RUN	C	10.05170	15	0.05168	15	1.055	15	11.02E-04	400	1 4 505 54	100	7 10	104 1	1 75 607
DG11 FAILS TO RUN	C	0.05140	16	0.05135	16	1 1.054	16	111.60E-04	IUE	1.375-04	104	1 11 20	×4 1	1 76 279
BREAKER B3304 FAILS TO CLOSE	C	0.04760	17	0.04786	17	1.050	17	[2.66E-04	04	LE 07F 07	04	1 102 00	20 1	77 145
COMMON CAUSE FAILURE OF EDGESW PUMP 11 AND 12 TO RUN	F	10.04670	18	0.04681	18	1.049	18	115.0/E-03	20	1 1 445 05	224	1 1 61	230 1	77 819
LOSS OF FW	1	0.03800	19	0.03797	19	1 1.040	19	[]1.76E-05	242	1.002-03	241	1 10/ 00	237	1 79 485
COMMON CAUSE FAILURE OF EDGESN PUMP 11 AND 12 TO START	F	0.03710	50	0.03706	20	1 1.039	20	115.02E-03	21	1 3.02E-03	275	1 1.74.00	275	70.055
OPERATOR FAILS TO INJECT SLC - TURB TRIP INITIATOR	0	0.03160	21	0.03165	21	1.033	21	12.06E-05	236	1,985-05	230	1.70	105	1 70 578
NOTO DEFAMER 152-602 FALLS TO CLOSE	C	10.02860	22	0.02857	55	1.029	55	111.59E-04	705	1.58E-04	105	1 1.09	105	1 19.314

				terms in the second second	
A ALL AND A	THROOTANTE	PAGIJZESM	FOR	PLANT X	

TABLE Add-B2

BASIC EVENT DESCRIPTION AND Itsk REDUCTION RANKINGS Itsk REDUCT. BIRNAM REIX INCRESS REVIEWS Common service 1 FUSE RECUCT. BIRNAM REIX INCRESS REVIEWS Itsk RECULTION RANKINGS Itsk REVIEWS	CALCULATED IMPORTANCE MEASURES FOR PLANT X	************			******		******		******	***********	270253		2/22220	ELECTRONIC I
DASIC EVENT DESCRIPTION AND I CRITICALITY EISK REGUCT. BINRAUM RISK INCREAS RISK INCREAS <th></th> <th> R</th> <th>ISK RE</th> <th>DUCTION RAN</th> <th>KINGS</th> <th colspan="8"> RISK INCREASE RANKINGS</th> <th>***********</th>		R	ISK RE	DUCTION RAN	KINGS	RISK INCREASE RANKINGS								***********
AND IPUSELL- CRITURLITY AURITION AURITION <t< td=""><td>BASIC EVENT DESCRIPTION</td><td> =====================================</td><td></td><td></td><td>***</td><td colspan="2">I BEEK BEDUCT</td><td colspan="2"></td><td colspan="2">1 RISK INCREASE</td><td colspan="2"> RISK ACHIEVE.</td><td>CUM X RISK</td></t<>	BASIC EVENT DESCRIPTION	=====================================			***	I BEEK BEDUCT				1 RISK INCREASE		RISK ACHIEVE.		CUM X RISK
Type of BASIC EVENT IVEELV T-TCO/T RAME TTTCO/T RAME RTTTCO/T RAME RTTCO/T R	AND	FUSSELL-	9. J.	CRITICALI	27 1	LIOPT	H 1				1	WORTH	1	CONTRIBUTION
(A) (B) (C) (D) (E) (C) (D) (E) (C) (D) (E) (D) (D) <td>TYPE OF BASIC EVENT</td> <td>1 VESELY</td> <td></td> <td>(0100+01)/T</td> <td>DANK</td> <td>T/T(0)</td> <td>RANK</td> <td>T(1)-T(0)</td> <td>RANK</td> <td>T(1)-T</td> <td>RANK</td> <td>T(1)/T</td> <td>RANK</td> <td>T-T(0)/SUM</td>	TYPE OF BASIC EVENT	1 VESELY		(0100+01)/T	DANK	T/T(0)	RANK	T(1)-T(0)	RANK	T(1)-T	RANK	T(1)/T	RANK	T-T(0)/SUM
(A) (B) (C) (B) (B) <td></td> <td>[[T-T(0)/1</td> <td>RANK</td> <td>(BIRNAU)//</td> <td>253</td> <td>(F)</td> <td>(6)</td> <td>(H)</td> <td>(1)</td> <td>(J)</td> <td>(K)</td> <td>(L)</td> <td>(M) </td> <td>(N)</td>		[[T-T(0)/1	RANK	(BIRNAU)//	253	(F)	(6)	(H)	(1)	(J)	(K)	(L)	(M)	(N)
0611 BREAKER 152-502 FAILS TO CLOSE C 0.02850 23 0.02843 23 1.029 23 1.58E-04 108 1.58E-04 108 7.58E-05 7.2 2.88 7.72 2.88 7.72 2.88 7.72 2.88 7.72 2.88 7.72 2.88 7.72 2.88 7.72 2.88 7.72 2.88 7.72 2.88 7.72 2.88 7.72 2.88 7.72 2.88 7.72 2.88 7.72 2.88 7.72 2.88 7.8 7.8 8.76 7.72 2.88 7.8 7.8 2.69 7.8 2.69 7.8 2.69 7.8 2.69 7.8 2.69 7.8 2.69 7.7 2.68 7.8 2.68 7.8 2.68 7.8 2.60 7.7 2.65 7.7 2.65 7.7 2.68 7.8 2.60 7.7 2.65 7.7 2.65 7.7 2.65 7.7 2.65 7.7 2.65 7.7 2.65 7.7 2.65 7.7 2.65 7.7 2.65 7.7 2.65	(A)	((8)	107	(97	147	Lances		No. of Concession, Name				$(1,1,2) \in \{0,1,2,2\} \times \{0,1,2$	[
Doill Beaker 152-502 FAILS TO CLOSE C 0.02850 24 0.02825 24 1.029 24 4.85e-05 172 4.78e-05 172 2.83 172 1.037 100 <td></td> <td></td> <td></td> <td>0.028/3</td> <td>23</td> <td>1 029</td> <td>23</td> <td>11.58E-04</td> <td>108</td> <td>1.58E-04</td> <td>168</td> <td>7.06</td> <td>158</td> <td>80.09%</td>				0.028/3	23	1 029	23	11.58E-04	108	1.58E-04	168	7.06	158	80.09%
Sev FALLS TO CLOSE AS PRESSURE DROPS C 10.02800 24 0.02821 27 1.027 25 1.199E-06 360 1.36 376 1.03 376 81.07X MANUAL SHUTDOWN I 10.02640 25 0.02531 25 1.027 26 9.52E-06 280 8.84E-06 280 1.34 288 1 81.56X HPC PUMP P-207 FALLS TO START C 10.02400 28 0.02354 28 1.025 28 1.55E-06 333 4.94E-06 355 1.19 326 14.46E-05 174 4.29E-00 355 1.19 326 1.22 28 1.55E-06 333 4.94E-06 355 1.19 326 1.22 28 1.55E-05 174 1.26 174 1.55 174 1.26 174 1.55 174 1.26 174 1.55 174 1.55 174 1.56 170 1.38 28 8.808 22 1.80 376 1.42E-06 375 1.44E-03 37 1.64E-03 37 1.64E-03 37 1.64E-03 37	DG11 BREAKER 152-502 FAILS TO CLOSE	c 110.02850	23	0.02845	26	1.029	24	14.83E-05	172	4.76E-05	172	2.83	172	80.61%
MANUAL SHUTDOWN 1 0.0208/07 25 0.0208/7 25 1.027 26 9.526-06 289 8.846-06 289 1.34 288 [81.568 MSTV CLOSURE C 0.0208/07 26 1.026 27 0.02537 28 1.027 26 1.026 27 1.44 280 1.74 288 1 28.0 MENCL DURP P-209 FAILS TO START C 10.02500 27 0.02257 29 1.025 20 1.44 280 77 4.346-06 355 1.19 352 1 82.082 BOOT FAILS TO START C 10.02260 29 0.02257 29 1.023 30 1.58E-05 174 4.28E-05 174 2.68 77.03 100 1.88E-05 100 1.57E-04	SRV FAILS TO CLOSE AS PRESSURE DROPS	c [[0.02850	29	0.02521	27	1.027	25	1.99E-06	369	1.305-06	376	1.05	376	81.09%
HELLY CLOSUNE 1 0.02280 26 0.02380 26 1.026 27 4.46E-05 173 4.39E-05 173 2.60 174 2.65 174 2.65 174 2.65 174 2.65 174 2.65 173 4.439E-05 171 4.446-03 27 <th< td=""><td>MANUAL SHUTDOWN</td><td>I 110.02640</td><td>36</td><td>0.02637</td><td>25</td><td>1.027</td><td>26</td><td>9.52E-06</td><td>289</td><td>8.84E-06</td><td>289</td><td>1,34</td><td>288</td><td>81.56%</td></th<>	MANUAL SHUTDOWN	I 110.02640	36	0.02637	25	1.027	26	9.52E-06	289	8.84E-06	289	1,34	288	81.56%
HPC1 PUMP P-200F FALLS TO START C 10.02304 28 10.02354 28 15.56E-06 333 14.94E-06 355 1.19 352 1 82.68X PROMPT NON-RECOVERY FACTOR FOR FU PUMPS R 10.022304 29 10.02374 28 15.56E-06 333 14.94E-05 355 1.19 352 1 82.68X RECE PUMP P-2007 FALLS TO START C 10.02280 30 0.02259 30 1.022 30 1.57E-04 100 7.05 100 28.68X DG11 FALLS TO START C 10.02250 30 1.022 31 1.57E-04 110 1.57E-04 110 7.05 100 28.70X DG11 FALLS TO START F 10.02250 31 0.01897 33 1.019 33 1.57E-04 110 1.57E-04 110 7.05 100 33 0.01891 34 1.66E-03 37 1.46E-03 37 1.46E-03 37 1.46E-03 37 1.46E-03 37 1.46E-03 37 1.46E-03 37 1.64E-03 37 1.64E-03 37	MSIV CLOSURE	1 110.02620	20	0.02530	26	1.026	27	14.46E-05	173	4.39E-05	173	2.69	173	82.03%
PROMP THOM-BECOVERY FACTOR FOR FM PUMPS R I [0.02800 28 O 10227 29 1.023 29 4.35E-05 174 4.29E-05 174 2.65 174 [0.0280 26.8 774 [0.0280 28.88 774 [0.0280 30 1.023 30 [1.58E-04 109 1.57E-04 109 1.57E-04 100 7.05 109 83.70x DG11 FAILS TO START C [0.02260 30 0.02252 31 1.023 30 [1.57E-04 100 1.57E-04 100 7.05 109 83.70x DG14 FAILS TO START C [0.02260 32 0.02252 31 1.023 31 [1.57E-04 100 7.05 109 84.40x COMMON CAUSE FAICOR FOR RT CIRCUIT BREAKERS F [0.01900 34 0.01897 33 1.019 34 1.64E-03 37 1.64E-03 37 2.63 175 8.67X MC-7 FAILS TO OPEN C [0.01980 37 0.0189 37 1.019 37 4.42E-05 176 4.24E-05 176 4.24E	HPCI PUMP P-209 FAILS TO START	C 110.02340	28	0.02354	28	1.025	28	15.56E-06	333	4.94E-06	355	1,19	352	82.46%
RCLC PUMP P-207 FALLS TO START C [0.02280 25 0.02259 30 1.023 30 1.58E-04 109 1.57E-04 109 [0.32706 DG12 FALLS TO START C [0.02260 31 0.02259 31 1.0023 31 1.57E-04 110 1.57E-04 110 7.05 109 [0.32706 DG11 FALLS TO START C [0.02260 31 0.02252 31 1.0023 31 [1.57E-04 110 1.57E-06 110 7.03 110 [0.33,706 DG11 FALLS TO START F [0.02160 32 0.01891 36 1.019 33 [4.92E-06 357 4.42E-05 75 2.46 75 2.46 75 2.46 75 2.46 75 2.46 75 2.46 75 2.46 75 2.46 75 2.46 75 2.46 75 2.46 75 2.46 75 2.46 75 2.46 75 2.46 77 2.43 76 4.38 73 74 4.38 75 1.019 35 1.019	PROMPT NON-RECOVERY FACTOR FOR FW PUMPS	x [[0.02400	20	0.02275	29	1.023	29	14.35E-05	1,74	4.29E-05	174	2.65	174	82.88%
DG12 FAILS TO START C 0.02250 31 0.02252 31 1.57E-04 110 7.03 71 1.0213 7.03 71 1.0213 71 1.0213 71 1.0213 71 1.0213 71	RCIC PUMP P-207 FAILS TO START	C 110.02200	30	0.02259	30	1 1.023	30	1.58E-04	109	1.57E-04	109	7.05	109	85.294
Defit FAILS TO START C 10.00220 32 1.022 32 1.88E-03 22 1.89E-03 22 1.85E-03 22 1.89E-03 22 1.85E-03 22 1.85E-03 22 1.85E-03 22 1.85E-03 22 1.85E-03 23 1.61E-03 20 1.71 2.85E-03 12 1.85E-03 12 1.85E-03 12 1.85E-03	DG12 FAILS TO START	c 110.02200	31	1 0.02252	31	1.023	31	1.57E-04	110	1.57E-04	110	7.03	110	83.70%
DIESEL GENERATOR COMMON CAUSE FAILURE TO START F 0.0.01801 35 0.0.01891 36 1.019 33 4.92E-06 557 4.42E-06 558 1.17 359 86.4.782 COMMON CAUSE FACTOR FOR RPT CIRCUIT BREAKERS F 0.0.01890 35 0.0.01897 33 1.019 34 11.64E-03 37 1.64E-03 37 64.20 37 186.4.782 HO-8 FAILS TO OPERATE C 0.01890 35 0.01896 35 1.019 35 4.29E-05 176 4.24E-05 176 2.433 176 185.473 HO-8 FAILS TO OPEN C 0.01880 36 0.01895 37 1.019 37 14.83E-05 171 4.78E-05 171 2.84 171 86.12X AUTO TRANSFER SUITCH 12 FAILED TO TRANSFER TO ALT SUPPLY C 0.01460 39 0.01451 39 1.019 37 1.62E-04 97 7.23 97 86.32X FAILURE OF ACB 152-308 TO OPEN C 0.01450 41 0.01450 41 1.014 42 1.62E-04 97 7.23 97	DG11 FAILS TO START	0100.02360	32	0.02162	32	1.022	32	4.89E-03	22	4.89E-03	55	189.00	22	84.09%
COMMON CAUSE FACTOR FOR RPT CIRCUIT BREAKERS 1000000000000000000000000000000000000	DIESEL GENERATOR COMMON CAUSE FAILURE TO START	F 110.02100	33	1 0.01891	36	1.019	33	4.92E-06	357	4.42E-06	358	1.17	359	84,443
MEDIUM LOCA 1 1 0.01890 35 0.01896 35 1.019 35 1.4.29E-05 175 2.63 176 1 85.47X HO-8 FAILS TO OPERATE C 0.01890 36 0.01896 37 1.019 36 1.4.29E-05 176 4.24E-05 176 2.63 176 85.47X OPERATOR DILUTES BORON BY FAILING TO CONTROL LEVEL 0 0.01880 37 0.01896 37 1.019 37 1.4.83E-05 171 4.28E-05 176 2.63 176 85.81X AUTO TRANSFER SUITCH 12 FAILED TO TRANSFER TO ALT SUPPLY C 10.01740 38 0.01745 38 1.018 38 2.58E-04 66 2.57E-04 67 10.90 71 86.13X AUTO TRANSFER SUITCH 12 FAILED TO TRANSFER TO ALT SUPPLY C 10.01460 39 0.01461 39 1.015 39 1.62E-04 97 1.62E-04 97 7.23 97 1<86.39X	COMMON CAUSE FACTOR FOR RPT CIRCUIT BREAKERS	1 110 01900	34	0.01897	33	1.019	34	1.64E-03	37	1.64E-03	37	64.20	37	04.784
HO-B FAILS TO OPERATE C [0.01890 36 0.01896 34 1.019 36 [4.29E-05 176 4.24E-05 176 2.63 177 [0.0147] HO-7 FAILS TO OPEN 0 [0.01880 37 0.01859 37 1.019 37 [4.438E-05 171 4.78E-05 171 2.84 171 [8.5.81X] OPERATOR DILUTES BORON BY FAILING TO CONTROL LEVEL 0 [0.01740 38 0.01745 38 1.019 37 [4.438E-05 171 4.78E-04 67 10.09 71 [86.33X] FAILURE OF ACB 152-308 TO OPEN C [0.01460 49 0.01461 39 1.015 39 [1.61E-04 97 7.23 97 [86.65X] RPS ELECTRICAL FAILURE F [0.01450 41 1.015 40 [1.61E-04 100 1.61E-04 99 7.18 99 [86.65X] PALLEGH FAILS TO OPERATE C [0.01360 42 0.01363 42 1.014 42 [4.04E-05 178 4.00E-05 178 2.54 178 89 [8 87.41X]	MEDIUM LOCA	c 110 01890	35	0.01896	35	1.019	35	4.29E-05	175	4.24E-05	175	2.63	175	05.154
H0-7 FAILS TO OPEN 0 [0.01860 37 0.01859 37 1.019 37 [4.83E-05 171 4.78E-05 171 6.84 171 60.84 171 162E-04 97 7.23 97 86.92X 87.41X 87.41X 171 60.84 171 162E-04 98 162E-04 98	HO-8 FAILS TO OPERATE	c 110.01890	36	0.01896	34	1.019	36	4.29E-05	176	4.24E-05	176	2.63	170	02.415
OPERATOR DILUTES BORON BY FAILING TO CONTROL LEVEL C 0.01745 38 1.018 38 2.58E-04 66 2.57E-04 67 10.90 71 00.739 AUTO TRANSFER SWITCH 12 FAILED TO TRANSFER TO ALT SUPPLY C 0.01740 38 0.01745 38 1.018 38 2.58E-04 66 2.57E-04 67 10.90 71 00.739 FAILURE OF ACB 152-30B TO OPEN C 0.01460 39 0.01452 40 1.015 41 1.89E-02 5 1.89E-02 5 7.72.00 5 86.65X RPS ELECTRICAL FAILURE F 0.01450 41 0.01450 41 1.015 40 1.61E-04 100 1.61E-04 97 7.22 97 86.92X HPCI EGN FAILS TO OPERATE C 0.01360 42 0.01363 42 1.014 43 1.62E-04 98 7.22 98 87.41X RCIC EGM FAILS TO OPERATE C 0.01360 42 0.01333 45 1.014 44 3.96E-05 180 3.93E-05 181 2.51 181 87.93X	HO-7 FAILS TO OPEN	0 110.01860	37	0.01859	37	1.019	37	4.83E-05	171	4,78E-05	171	2.84	74	11 86 12%
AUTO TRANSFER SWITCH 12 FAILED TO TRANSFER TO ACTION AC	OPERATOR DILUTES BORON BY FAILING TO CONTROL LEVEL	c 110.01740	38	0.01745	38	1.018	38	2.58E-04	66	2.57E-04	67	10.90	07	11 86 302
FAILURE OF ACB 152-30B 10 OPEN F 0.01450 40 0.01452 40 1.015 41 1.89E-02 5 1.89E-02 5 1.27.00 9 86.92X RPS ELECTRICAL FAILURE F 0.01450 41 0.01450 41 1.015 40 1.61E-04 100 1.61E-04 99 7.18 99 86.92X FAILURE OF ACB 152-408 TO OPEN C 0.01450 41 0.01450 41 1.015 40 1.61E-04 100 1.61E-04 99 7.18 99 86.92X HPC1 EGM FAILS TO OPERATE C 0.01360 42 0.01363 42 1.014 43 1.62E-04 98 1.62E-04 98 7.22 98 87.41X EDGESW PUMP P-111A FAILS TO RUN C 0.01330 45 0.01333 45 1.014 44 13.96E-05 180 3.93E-05 181 2.51 181 87.65X RCIC EGM FAILS TO RUN C 0.01330 45 0.01333 45 1.013 46 1.62E-04 101 1.60E-04 101 7.16 101 </td <td>AUTO TRANSFER SWITCH 12 FAILED TO TRANSFER TO ACT SUITCE</td> <td>c 110.01460</td> <td>39</td> <td>0.01461</td> <td>39</td> <td>1.015</td> <td>39</td> <td> 1.62E-04</td> <td>97</td> <td>1.62E-04</td> <td>97</td> <td>1 777 00</td> <td>51</td> <td>11 86 65%</td>	AUTO TRANSFER SWITCH 12 FAILED TO TRANSFER TO ACT SUITCE	c 110.01460	39	0.01461	39	1.015	39	1.62E-04	97	1.62E-04	97	1 777 00	51	11 86 65%
RPS ELECTRICAL FAILURE C 0.01450 41 0.01450 41 1.015 40 1.61E-04 100 1.61E-04 99 7.16 99 7.12 98 87.16X EGESW PUHP P-111A FAILS TO OPERATE C 0.01300 43 0.01336 44 1.014 44 13.96E-05 180 3.93E-05 181 2.51 181 87.16X EGESW PUHP P-111B FAILS TO RUN C 0.01300 45 0	FAILURE OF ACB 152-308 10 OPEN	F 110.01450	40	0.01452	40	1.015	41	1.89E-02	5	1.89E-02	00	1 7 10	00	11 86.92%
FAILURE OF ACB 152-408 TO OPEN C 0.01360 42 0.01363 42 1.014 42 4.00E-05 178 2.34 178 0.0143 HPCI EGN FAILS TO OPERATE C 0.01350 43 0.01366 43 1.014 43 1.62E-04 98 7.22 98 87.41x EDGESW PUMP P-111A FAILS TO RUN C 0.01330 44 0.01336 44 1.014 44 3.96E-05 180 3.93E-05 181 2.51 181 87.61x RCIC EGM FAILS TO OPERATE C 0.01330 45 0.01336 44 1.014 44 13.96E-05 180 3.93E-05 181 2.51 181 87.90x EDGESW PUMP P-111B FAILS TO RUN C 0.01330 45 0.01294 46 1.013 45 1.61E-04 101 1.60E-04 111 6.98 112 88.13x DG FAN VSF9 FAILS TO START C 0.01290 47 0.01290 47 1.013 47 1.55E-04 113 1.55E-04 113 88.98x DF FAILS TO START C 0.0	RPS ELECTRICAL FAILURE	c 110.01450	41	0.01450	41	1.015	40	1.61E-04	100	1.61E-04	99	1 2.10	178	87.16%
HPC1 EGM FAILS TO OPERATE C 0.01350 43 0.01346 43 1.014 43 1.62E-04 98 7.22 96 1 61.44 EDGESW PUHP P-111A FAILS TO RUN C 0.01350 44 0.01336 44 1.014 44 3.96E-05 180 3.93E-05 181 2.51 181 87.65X RCIC EGM FAILS TO OPERATE C 0.01330 45 0.01333 45 1.013 45 1.61E-04 101 1.60E-04 101 7.16 101 87.90X EDGESW PUMP P-111B FAILS TO RUN C 0.01330 45 0.01333 45 1.013 45 1.61E-04 101 1.60E-04 101 7.16 101 87.90X EDGESW PUMP P-111B FAILS TO RUN C 0.01330 45 0.01294 46 1.013 45 1.56E-04 111 1.55E-04 113 6.96 113 88.13X DG FAN VSF9 FAILS TO START C 0.01290 47 0.01290 47 1.013 47 1.55E-04 113 1.55E-04 113 1.55E-04 113 88.59X OPERATOR FAILS TO INJECT SLC	FAILURE OF ACB 152-408 TO OPEN	c 110.01360	42	0.01363	42	1.014	42	4.04E-05	178	4.00E-05	1/8	1 7 22	011	11 87 41%
EDGESU PUMP P-111A FAILS TO RUN C 0.01340 44 0.01336 44 1.014 44 3.96E-05 180 3.93E-05 181 2.51 101 87.90X RCIC EGM FAILS TO OPERATE C 0.01330 45 0.01333 45 1.013 45 1.61E-04 101 1.60E-04 101 7.16 101 87.90X EDGESW PUMP P-111B FAILS TO RUN C 0.01330 45 0.01333 45 1.013 46 1.56E-04 111 1.56E-04 111 6.98 112 88.13X DG FAN VSF10 FAILS TO START C 0.01290 46 0.01290 47 1.013 47 1.55E-04 113 1.55E-04 113 88.36X OF FAN VSF10 FAILS TO START C 0.01260 48 0.01250 48 1.013 48 8.13E-06 325 7.80E-06 321 1.30 321 88.59X OPERATOR FAILS TO INJECT SLC – MSIV CLOSURE INITIATOR O 0.01260 48 0.01253 49 1.013 49 4.00E-02 4 4.00E-02 4 1540.00 4	HPCI EGM FAILS TO OPERATE	c 110.01350	43	0.01346	43	1.014	43	1.62E-04	98	1.62E-04	98	1 3 54	181	11 87.65%
RCIC EGM FAILS TO OPERATE C 0.01330 45 0.01333 45 1.013 45 1.61E-04 101 1.60E-04 101 111 8.8.382 <td>EDGESW PUMP P-111A FAILS TO RUN</td> <td>c 110.01340</td> <td>44</td> <td>0.01336</td> <td>44</td> <td> 1.014</td> <td>44</td> <td> 3.96E-05</td> <td>180</td> <td>3.93E-05</td> <td>181</td> <td>1 7.46</td> <td>101</td> <td>11 87.90%</td>	EDGESW PUMP P-111A FAILS TO RUN	c 110.01340	44	0.01336	44	1.014	44	3.96E-05	180	3.93E-05	181	1 7.46	101	11 87.90%
EDGESW PUMP P-111B FAILS TO RUN c 0.01290 46 0.01294 46 1.013 46 1.56E-04 111 1.55E-04 111 6.96 112 DG FAN VSF9 FAILS TO START c 0.01290 47 0.01290 47 1.013 47 1.55E-04 113 1.55E-04 113 6.96 113 88.36x DG FAN VSF10 FAILS TO START c 0.01290 47 0.01290 47 1.013 47 1.55E-04 113 1.55E-04 113 6.96 113 88.36x OPERATOR FAILS TO INJECT SLC - MSIV CLOSURE INITIATOR 0 0.01260 48 0.01250 48 1.013 49 4.00E-02 4 4.00E-02 4 1540.00 4 88.82x PANEL Y20 BUS CAULT F 0.01220 50 0.01225 50 1.012 50 4.55E-03 26 4.55E-03 26 176.00 26 89.04x LARGE LOCA F 0.01180 51 0.01178 51 1.012 51 3.98E-05 179 3.95E-05 180 2.52 180	RCIC EGM FAILS TO OPERATE	c 0.01330	45	0.01333	45	1.013	45	1.61E-04	101	1.60E-04	101	1 6 08	112	11 88.13%
DG FAN VSF9 FAILS TO START C C.01290 47 0.01290 47 1.013 47 1.55E-04 113 1.55E-04 113 0.010 100 DG FAN VSF10 FAILS TO START C C.01290 47 0.01290 47 1.013 47 1.55E-04 113 1.55E-04 113 0.010 100 100 DG FAN VSF10 FAILS TO START C 0.01260 48 0.01250 48 1.013 48 8.13E-06 325 7.80E-06 321 1.30 321 88.59% OPERATOR FAILS TO INJECT SLC - MSIV CLOSURE INITIATOR 0 0.01260 48 0.01233 49 1.013 49 4.00E-02 4 1540.00 4 88.82% PANEL Y20 BUS CAULT F 0.01220 50 0.01225 50 1.012 50 4.55E-03 26 4.55E-03 26 176.00 26 89.04% LARGE LOCA I 0.01120 51 0.01178 51 1.012 51 3.98E-05 180 2.52 180 89.26% P-217 HPCI AUX. OIL PUMP FAILS TO START C 10.01120 52 0.01118 <t< td=""><td>EDGESW PUMP P-111B FAILS TO RUN</td><td>c 110.01290</td><td>46</td><td>0.01294</td><td>46</td><td> 1.013</td><td>46</td><td> 1.56E-04</td><td>111</td><td>1,551-04</td><td>111</td><td>1 6.06</td><td>112</td><td>11 88.36%</td></t<>	EDGESW PUMP P-111B FAILS TO RUN	c 110.01290	46	0.01294	46	1.013	46	1.56E-04	111	1,551-04	111	1 6.06	112	11 88.36%
DG FAN VSF10 FAILS TO START 0 0.01260 48 0.01250 48 1.013 48 8.13E-06 325 7.80E-06 321 11.00 91 OPERATOR FAILS TO INJECT SLC - MSIV CLOSURE INITIATOR 0 0.01260 48 0.01250 48 1.013 48 8.13E-06 325 7.80E-06 321 11.00 91 OPERATOR FAILS TO INJECT SLC - MSIV CLOSURE INITIATOR 0 0.01260 48 0.01233 49 1.013 48 8.13E-06 325 7.80E-06 321 11.00 41 88.82X PANEL Y20 BUS CAULT F 0.01220 50 0.01225 50 1.012 50 4.55E-03 26 176.00 26 89.04X LARGE LOCA I 0.01180 51 0.01178 51 1.012 51 3.98E-05 179 3.95E-05 180 2.52 180 89.26X P-217 HPC1 AUX. OIL PUMP FAILS TO START C 10.01120 52 0.01118 52 1.011 52 9.23E-05 152 4.55 152 89.46X	DG FAN VSF9 FAILS TO START	c 110.01290	47	0.01290	47	1.013	47	1.55E-04	113	1.558-04	313	1 1 30	321	11 88.59%
OPERATOR FAILS TO INJECT SEC = HSIV CLOSORE INTERPORT F 0.01240 49 0.01233 49 1.013 49 4.00E-02 4 4.00E-02 4 1.00E-02 4<	DG FAN VSFTO FAILS TO START	0 110.01260	48	0.01250	48	1.013	48	8.13E-06	525	1 1.80E-00	361	1 1540 00	4	11 88.82%
PANEL Y20 BUS CAULT I 0.01220 50 0.01225 50 1.012 50 4.55E-03 26 4.55E-03 26 176.00 28 00.0128 LARGE LOCA I 0.01220 50 0.01178 51 1.012 51 3.95E-05 180 2.52 180 89.26% P-217 HPC1 AUX. OIL PUMP FAILS TO START C 10.01120 52 0.01118 52 1.011 52 9.23E-05 152 4.55 152 89.46%	OPERATOR FAILS TO INJECT SLC - HAIV CLOSORE INTERIOR	F 110.01240	49	0.01233	49	1 1.013	49	[4.00E-02	4	4.00E-02	4	1 176.00	26	11 89.04%
LARGE LOCA P-217 HPCI AUX. OIL PUMP FAILS TO START C 0.01180 51 0.01178 51 1.012 51 3.98E-05 179 3.95E-05 180 2.52 160 0.01120 C 0.01180 51 0.01178 51 1.012 51 3.98E-05 152 9.23E-05 152 4.55 152 89.46%	PANEL Y20 BUS CAULT	1 110.01220	50	0.01225	50	1 1.012	50	4.55E-03	56	4.55E-03	20	1 2 52	180	11 89.26%
P-217 HPCI AUX. OIL PUMP FAILS TO START	LARGE LOCA	c 110.01180	51	0.01178	51	1 1.012	51	3.98E-05	179	1 3.95E-05	160	1 4 55	152	11 89.46%
	P-217 HPCI AUX. OIL PUMP FAILS TO START	c [[0.01120	52	0.01118	52	2 1.011	52	2 9.26E-05	152	9.238-05	132	1 4.55	1.76	11

CALCULATED IMPORTANCE MEASURES FOR PLANT X

TABLE Add-82

	1000					CREATER:						***********		
	ł		ISK RE	DUCTION RAN	KINGS		1	[F	ISK IN	CREASE RANK	CINGS		1	
BASIC EVENT DESCRIPTION		********		**********	*****			************						
AND	1	FUSSELL	- 1	CRITICALI	TY	RISK RE	EDUCT.	BIRNBAU	M	RISK INCR	EASE	RISK ACH	EVE.	CUM % RISK
TYPE OF BASIC EVENT	1	VESELY				WORT	FH				1	WORTH	1	CONTRIBUTION
	1	T-T(0)/T	RANK	(BIRN*U)/T	RANK	T/T(0)	RANK	T(1)-T(0)	RANK	T(1)-T	RANK [T(1)/T	RANK	T-T(0)/SUM
(A)	- 1	(8)	(C)]	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K) [(1.)	(M)]	(N)
	- 1					10,000,000,000,000,000		$\left\ {{\left {{\left {{\left {{\left {{\left {{\left {{\left {{$	(1) (1) (1) (1)					
HPCI SYSTEM UNAVAILABLE DUE TO TEST	M	0.01090	53]	0.01088	53	1.011	53	3.888-05	182	3.85E-05	183	2.48	183	89.66%
FAILURE OF CONTACT 152-308 TO CLOSE	c [0.01080	54	0.01084	54	1.011	54	1.60E-0.4	103	1.60E-04	102	7.15	102	89.85%
EDGESW PUMP P-111A FAILS TO START	c	0.01070	55	0.01066	56	1.011	58	1. JUE-04	104	1.60E-04	103	7.15	103	90.05%
FAILURE OF CONTACT 152-408 TO CLOSE	C	0.01070	56]	0.01072	55	1.011	55	1.58E-04	106	1.58E-04	106	7.08	107	90.24%
5 HOUR NON-REPAIR FACTOR FOR MACHINERY	R	0.01070	57	0.00856	74	1.011	56	2.78E-07	392	0.005+00	423	1.00	404	90.44%
COMMON CAUSE FAILURE TO START OF HPCI AND RCIC PUMPS	FI	0.01070	58	0.01064	57	1.011	57	4.73E-04	55	4.73E-04	55	19.20	55	90.63%
EDGESN PUMP P-111B FAILS TO START	ci	0.01050	59	0.01054	58	1.011	59	11.58E-04	107	1.58E-04	107	7.08	106	90.82%
OPERATOR FAILS TO MANUALLY OPEN SV-4234/35 AND 593	01	0.01020	60	0.01001	59	1.010	60	5.21E-06	354	4.94E-06	354	1.19	355]	91.01%
2 OF 8 VACUUM BREAKERS FAIL OPEN	FL	0.00983	61	0.00983	61	1.010	61	8.66E-04	47	8.66E-04	47	34.30	47	91.19%
OPERATOR FAILS TO INJECT SLC - LOFW INITIATOR	oi	0.00982	62	0.00999	60	1.010	62	6.50E-06	330	6.24E-06	329	1.24	328	91.37%
OFF SITE POWER SYSTEM UNAVAILABLE (RANDOM-NOT INIT EVENT)	FI	0.00972	63	0.00972	62	1.010	63	1.17E-03	39	1.17E-03	39	46.00	39	91.54%
DG 12 FAILURE TO RESTORE AFTER TEST OR MAINTENANCE	01	0.00957	64	0.00958	65	1.010	64	1.558-04	114	1.54E-04	114	6.94	114	91.72%
DG 11 FAILURE TO RESTORE AFTER TEST OR MAINTENANCE	01	0.00956	65 1	0.00956	66	1.010	65	1.54E-04	115	1.54E-04	115	6.93	116	91.89%
SATURATE OF APT AREAKER 11A TO OPEN	ci	0.00955	66]	0.00964	63	1.010	67	9.35E-06	291	9.10E-06	285	1.35	287	92.06%
FATLURE OF BPT BREAKER 11B TO OPEN	c i	G.00955	67	0.00964	64	1.010	66	9.35E-06	292	9.10E-06	286	1.35	285	92.24%
COMMON CALLSE FAILLIRE OF ALL SRVS TO OPEN	FI	0.00935	68	0.00934	67	1.009	68	1.49E-03	38	1.49E-03	38	58.30	38	92.41%
DG12 OUT FOR TESTING	MI	10.00933	69 1	0.00932	68	1.009	69	11.54E-04	116	1.548-04	116	6.93	115	92.58%
DG11 OUT FOR TESTING	MI	0.00931	70	0.00931	69	1.009	70	1.54E-04	117	1.54E-04	117	6.92	117	92.75%
HOV NO. 1754 FAILS TO OPEN	c i	0.00924	71	0.00925	70	1.009	71	8.84E-05	155	8.81E-05	155	4.39	155	92.91%
45 HINGTE NON-RECOVERY FACTOR OUTSIDE CONT. ROOM	RI	0.00886	72	0.00897	71	1.009	72	9.33E-06	293	9.10E-06	287	1.35	286	93.08%
RELC INAVAILABLE DUE TO TEST	MI	0.00879	73	0.00880	72	1.009	73	3.71E-05	184	3.69E-05	184	2.42	184	93.24%
SMALL LOCA	11	0.00856	74	0.00857	73	1.009	74	12.78E-04	61	2.78E-04	61	11.70	61	93.39%
HI SUPPRESSION POOL LEVEL	FI	0.00841	75	0.00841	75	1.008	75	2.19E-07	404	0.00E+00	424	1.00	417	93.54%
COMMON CAUSE FAILURE OF VSF 9 AND 10 TO START	F	0.00811	76	0.00810	76	1.008	76	4.78E-03	23	4.78E-03	23	185.00	23	93.69%
LOSS OF CONDENSER VACUUM	11	10.00784	77	0.00775	77	1.008	77	1.06E-05	287	1.04E-05	282	1,40	282	93.83%
CORE SPRAY PUMP P-2088 FAILS TO START	c. j	0.00749	78	0.00749	78	1.008	78	8.65E-05	156	8.63E-05	156	4.32	156	93.97%
INTERNAL FLOOD IN ZONE 1 (TORUS RING HEADER BREAK)	TI	0.00735	79	0.00734	79	1.007	79	3.98E-03	28	3.98E-03	28	154.00	28	94.10%
HPCI INJECTION TRAIN OUT FOR CORRECTIVE MAINTENANCE	H	0.00722	80	0.00724	80	1.007	80	3.63E-05	185	3.61E-05	185	2.39	185	94.24%
OPERATOR FAILS TO CROSS THE SERVICE WATER TO CONDENSER	0	0.00653	81	0.00653	81	1 1.007	81	1.70E-07	405	0.00E+00	415	1.00	423	94.35%
DG12 OUT FOR CORRECTIVE MAINTENANCE	11	0.00618	82	0.00618	82	1.006	82	1.53E-04	119	1.53E-04	119	6.88	119	94.47%

CALCULATED IMPORTANCE MEASURES FOR PLANT X

TABLE Add-B2

***************************************	11	RISK R	EDUCTION RAI	ssesses NKINGS	(222222)			RISK IN	CREASE RAN	CINGS	********		
BASIC EVENT DESCRIPTION	arter:						**********						************
AND	FUSSE	LL-	CRITICAL	ITY	RISK R	EDUCT.	BIRNBA	UM	RISK INCR	EASE	RISK ACH	IEVE.	CUM % RISK
TYPE OF BASIC EVENT	VESEL	Y		. 1	WOR	тн ј				1	WORTH		CONTRIBUTION
	T-T(0)	T RANK	(BIRN*U)/	T RANK	T/T(0)	RANK	T(1)-T(0)	RANK	T(1)-T	RANK	T(1)/T	RANK	T-T(0)/SUM
(A)	(B)	(0)	(0)	(E)	(F)	(G)	(H)	(1)	(1)	(K)	(L)	(M)	(N)
ACAA AUT FOR CORDECTIVE NATHITENANCE	M 110.0061	7 83	0.00617	83	1.006	83	1.53E-04	120	1.53E-04	120	6.87	120	94.58%
CONNON CAUSE CATLUDE OF CS AND DUD THI HO VLVS TO OPEN	F 110.0060	7 84	0.00607	34	1,006	84	5.418-03	14	5.41E-03	14	209.00	14	94.69%
UDE 100 V71 INTERNAL CAULT	c 110.0055	7 85	0.00557	85	1.006	85	11.50E-05	248	1.48E-05	242	1.57	242	94.79%
OFS INV. THE INTERNAL FACE	c 110.0052	4 86	0.00522	86	1.005	86	12.07E-05	235	2.05E-05	232	1.79	232	94.89%
ALL STY DUD/FC DIMDC EATL TO DIB	F 110,0049	6 87	0.00495	87	1.005	87	15.258-03	.16	5.258-03	16	203.00	17	94.98%
ALL SIX RHR/LS FURPS FALL TO ROR	F 110.0047	1 88	0.00471	88	1.005	88	5.25E-03	17	5.258-03	17	203.00	16	95.06%
ALL SIX RARIES FORPS FAIL TO START	c 110.0046	3 89	0.00461	90	1.005	89	12.73E-03	30	2.73E-03	30	105.00	31	95.15%
LC 32-104 BREAKER 401 FALLS TO REMAIN CLOSED	c 110.0046	3 90	0.00461	89	1.005	90	12.73E-03	31	2.73E-03	31	106.00	30	95.23%
CONNER FAILE FAILURE OF EN 06-1 AND 06-2 TO OPEN	F 110,0045	2 91	0.00452	93	1.005	91	16.79E-03	11	6.79E-03	8	262.00	10	95.31%
COMMON CAUSE FAILURE OF TH 94-1 AND FU-C TO OFCH	110.0045	2 92	0.00452	94	1.005	94	16.79E-03	9	6.79E-03	11	262.00	8	95.39%
COMMON CAUSE FAILURE OF TH 97-1 AND TH 91-2 TO OFEN	F 110 0045	2 93	0.00452	91	1.005	93	16.79E-03	10	6.79E-03	10	262.00	9	95.48%
COMMON CAUSE FAILURE OF FW 97-1 AND FW 94-2 TO OFEN	F 110 0045	2 94	0.00452	92	1.005	92	6.79E-03	8	6.79E-03	9	262.00	11	95.56%
COMMON LAUSE FAILURE OF TH 74-1 AND TH 71-2 TO OF CH	1 110 0044	3 95	0.00400	100	1.004	95	1.16E-06	377	1.04E-06	378	1.04	377	95.64%
REACTOR TRIP WITHOUT TORDINE TRIP	H 110.0044	2 96	0.00443	95	1.004	96	3.26E-05	192	3.25E-05	192	2.25	192	95.72%
REALTON PRESENCE OU DES 3.52 ARE CONNON CAUSE FAILURE	F 110.0043	8 97	0.00437	96	1.004	97	5.36E-03	15	5.36E-03	15	207.00	15	95.80%
REACION PRESSURE SH PSE-S-SE AND CONTON CROSE PATEORE	c 110.0043	1 98	0.00431	97	1.004	98	1.56E-04	112	1.55E-04	112	6.98	111	95.88%
ENC LOOP & STRAINER PLUGGED	c 110.0042	6 99	0.00426	98	1.004	99	1.54E-04	118	1.54E-04	118	6.91	118	95.95%
OPERATOR FAILS TO START FEEDPUMPS AFTER A TRANSIENT	0 110.0041	5 100	0.00416	99	1.004	100	3.86E-05	183	3.85E-05	182	2.48	182	96.03%
CORRECTION FACTOR FOR NBOTTLEN2Y	R 0.0037	5 101	0.00368	101	1.004	101	4.78E-06	358	4.68E-06	357	1.18	356	96.10%
OPERATOR DOES NOT OPEN RHRSU-RHR XTIE	0 10.0036	9 102	0.00277	121	1.004	102	9.59E-08	406	0.005+00	429	1.00	427	96.17%
INTERNAL FLOOD IN JONE 10 (WEST DIESEL GENERATOR ROOM)	1 0.0036	4 103	0.00364	102	1.004	103	2.06E-03	35	2.06E-03	35	80.10	35	96.23%
MO-2067 FAILS TO OPEN	c 0.0036	1 104	0.00360	105	1.004	104	3.21E-05	195	3.20E-05	196	2.23	195	96.30%
HO-2062 FALLS TO OPEN	c [[0.0036	1 105	0.00360	107	1.004	105	3.216-05	194	3.20E-05	195	2.23	193	96.36%
HOW HO-2036 FAILS TO OPEN	c 0.0036	1 106	0.00360	103	1.004	107	3.21E-05	197	3.20E-05	193	2.23	197	96.43%
MO-2061 FAILS TO OPEN	c [[0.0036	1 107	0.00360	104	1.004	106	3.218-05	196	3.20E-05	194	2.23	194	96.49%
MO-2068 FAILS TO OPEN	¢ 110.0030	1 108	0.00360	106	1.004	108	3.21E-05	193	3.20E-05	197	2.23	196	96.56%
MO-2101 FAILS TO OPEN	c 0.0034	6 109	0.00346	109	1.003	109	3.08E-05	199	3.07E-05	199	2.18	198	96.62%
MO-2100 FAILS TO OPEN	c 0.0034	6 110	0.00346	110	1.003	110	3.08E-05	198	3.07E-05	198	2.18	199	96.69%
NO-2106 FAILS TO OPEN	c 0.003	4 111	0.00343	112	1.003	113	3.05E-05	202	3.04E-05	505	2.17	503	96.75%
MOV MO-2078 FAILS TO OPEN	C 0.003	4 112	0.00343	114	1.003	114	3.05E-05	201	3.04E-05	200	2.17	505	96.81%

D
CALCULATED IMPORTANCE MEASURES FOR PLANT X

	intra							**********					eeveweda	
	1	8	ISK RE	DUCTION RAN	KINGS		1	1	ISK IN	CREASE RAN	KINGS		- 8	
BASIC EVENT DESCRIPTION	1		******	**********	0.010.023				12253					***********
AND	1	FUSSELL-	- 1	CRITICALI	TY	RISK RE	EDUCT.	BIRNBAL	IM	RISK INCR	EASE	RISK ACH	IEVE. []	CUM % RISK
TYPE OF BASIC EVENT	1	VESELY	- i			WOR	TH	1			1	WORTH		CONTRIBUTION
	i i	T-T(0)/T	RANK	(BIRN*U)/T	RANK	T/T(0)	RANK	T(1)-T(0)	RANK	T(1)-T	RANK	T(1)/T	RANK	T-T(0)/SUN
(A)	- ii	(B)	(0)	(D)	(E)	(F)	(G)	(H)	(1)	(3)	(K)	(L)	(M)	(N)
			-			-						-		
MO-2107 FAILS TO OPEN	¢ į	0.00344	113	0.00343	113	1.003	111	3.05E-05	200	3.04E-05	203	2.17	201	96.87%
MO-2096 FAILS TO OPEN	c	0.00344	114	0.00343	111	1.003	112	3.05E-05	203	3.04E-05	201	2.17	200	96.94%
OPERATOR FAILS TO DEPRESSURIZE RX (10 MINUTES)	01	0.00343	115	0.00347	108	1.003	115	4.51E-06	359	4.42E-06	360]	1.17	360	97.00%
OPERATOR FAILS TO INJECT SLC - LOSS OF COND INITIATOR	0	0.00333	116	0.00333	115	1.003	116	2.17E-06	367	2.08E-06	368	1.08	368	97.06%
REFERENCE LEG LEAK INITIATING EVENT	I	0.00331	117	0.00329	117	1.003	117	2.14E-05	228	2.13E-05	226	1.82	226	97.12%
INTERNAL FLOOD IN JONE 2 (CONDESATE SERVICE WATER -	ti	0.00315	118	0.00316	118	1.003	112	4.84E-04	54	4.84E-04	54	19.60	54	97.18%
REFERENCE LEG LEAK COMMON CAUSE FACTOR	F 1	0.00305	119	0.00331	116	1.003	119	8.59E-07	379	7.80E-07	379	1.03	380	97.23%
HPCI AUX OIL PUMP P-217 FAILS TO RUN	C I	0.00280	120	0.00279	120	1.003	120	3.02E-05	204	3.02E-05	204	2.16	204	97.28%
LOSS OF SERVICE WATER	II	0.00279	121	0.00279	119	1.003	121	8.07E-05	158	8.06E-05	158	4.10	158	97.33%
SW 147 FAILS TO OPEN	C I	0.00277	122	0.00139	167	1.003	123	7.20E-08	408	0.00E+00	417	1.00	421	97.38%
SW 145 FAILS TO OPEN	01	0.00277	123	0.00139	166	1.003	122	7.20E-08	407	0.00E+00	416	1.00	411	97.43%
125V DC BATTERY 011 AND 021 FAILURE DUE TO COMMON CAUSE	F I	0.00269	124	0.00268	122	1.003	124	7.12E-02	3	7.125-02	3	2740.00	3	97.48%
RCIC HO-8 FAILS TO OPERATE	c]	0.00258	125	0.00258	123	1.003	125	2.84E-05	214	2.83E-05	214	2.09	214	97.53%
COMMON CAUSE FAILURE OF FW PP BRG OIL PUMPS TO RUN	F	0.00256	126	0.00254	124	1.003	126	2.76E-04	62	2.76E-04	62	11.60	62	97.58%
LIMIT SWITCH 4 OF MO-2062 FAILS TO CLOSE	c	0.00243	127	0.00244	127	1.002	129	2.89E-05	509	2.89E-05	210	2.11	210	97.62%
LIMIT SWITCH 7 OF MO-2036 FAILS TO CLOSE	C	0.00243	128	0.00244	126	1.002	130	2.89E-05	209	2.89E-05	211	2.11	212	97.66%
HO-7 LIMIT SWITCH LS 3 FAILS TO CLOSE	C	0.00243	129	0.00244	125	1.002	127	2.89E-05	208	2.89E-05	208	2.11	206	97.71%
LIMIT SWITCH 4 OF MO-2061 FAILS TO CLOSE	0	0.00243	130	0.00244	128	1.002	128	2.89E-05	207	2.89E-05	209	2.11	211	97.75%
RELIEF VALVE RV-2056 FAILS OPEN	C	0.00239	131	0.00240	129	1.002	132	2.89E-05	210	2.89E-05	212	2.11	208	97.80%
COMMON CAUSE FAILURE TO RUN OF ALL COMPRESSORS	F	0.00239	132	0.00239	130	1.002	131	4.45E-04	56	4.45E-04	56	18.10	56	97.84%
OPERATOR DOES NOT DEPRESS ARI PB 5A, B, C & D WHEN REQUI	REO	0.00237	133	0.00237	131	1.002	133	6.17E-05	162	6.162-05	162	3.37	162	97.88%
LIMIT SWITCH 4 OF MO-1'0'8 FAILS TO CLOSE	C	0.00228	134	0.00228	135	1.002	139	2.71E-05	220	2.70E-05	219	2.04	221	97.92%
LIMIT SWITCH 4 OF XO6 FAILS TO CLOSE	C]	0.00228	135	0.00228	132	1.002	136	2.71E-05	217	2.70E-05	221	2.04	222	97.97%
LIMIT SWITCH 16 OF MO-2078 FAILS TO CLOSE	C]	85500.01	136	85500.0	137	1.002	138	2.71E-05	222	2.70E-05	218	2.04	223	98.01%
LIMIT SWITCH 4 OF X07 FAILS TO CLOSE	C	0.00228	137	85500.0	133	1.002	135	2.71E-05	218	2.70E-05	222	2.04	220	98.05%
LIMIT SWITCH 4 OF MO-2096 FAILS TO CLOSE	C	85500.0	138	0.00228	134	1.002	137	2.71E-05	221	2.70E-05	220	2.04	217	98.09%
LIMIT SWITCH 4 OF MO-2100 FAILS TO CLOSE	C	0.00228	139	0.00228	136	1.002	140	2.71E-05	216	2.70E-05	216	2.04	216	98.13%
LIMIT SWITCH 4 OF MO-2101 FAILS TO CLOSE	0	0.00228	140	0.00228	138	1.002	134	2.71E-05	219	2.70E-05	217	2.04	219	98.17%
RV-2097 FAILS TO REMAIN CLOSED	C	0.00225	141	0.00225	139	1.002	141	2.71E-05	223	2.70E-05	223	2.04	218	98.21%
LONG TERM BATTERY DEMAND (=1.0)	F]	0.00225	142	0.00225	140	1.002	142	5.85E-08	409	0.00E+00	406	1.00	408	98.26%

c ||0 00123 172 | 0.00124 171 | 1.001 172 ||2.57E-04

LOSS OF INSTRUMENT AIR	1 0.00180	151	0.00178	149 1.002	151 7.33E-06	329	7.286-00	250 1	1.20	520 11
AU AZ-1 FATIS TO CLOSE	c 0.00173	152	0.00173	150 1.002	152 2.86E-05	213	2.86E-05	213	2.10	213
AUXTI TABLE OF BUMP PAT FALLS TO START	c 0.00168	153	0.00165	152 1.002	153 4.46E-06	360	4.42E-06	359	1,17	358
DOLE FAILURE TO DESTODE AFTER TEST OR MAINTENANCE	0 110,00163	154	0.00163	153 1.002	154 2.42E-05	225	2.42E-05	224	1.93	224
ACTO PATEORE TOY/O INTEDNAL FAIL T	c 110.00160	155	0.00159	155 1.002	155 2.65E-03	33	2.65E-03	33	103.00	33
TANHOR TO DESTORE BLC AFTED TEST OD MAINTENANCE	0 110,00160	156	0.00160	154 1.002	156 2.08E-05	229	2.08E-05	227	1,80	556 []
TAILURE TO RESTORE SEC ATTER TEST ON INCLOSED	c 110.00155	157	0.00155	157 1.002	158 9.15E-04	42	9.15E-04	41	36.20	41 11
LE TOS BREAKER 52-SOT PALES TO RETAIL TO REMAIN CLOSED	c 110.00155	158	0.00155	156 1.002	157 9.15E-04	41	9.15E-04	42	36.20	42
CU AUTORATIC CTOATNED CLOGGED	c 110.00150	159	0.00151	158 1.002	159 5.44E-05	168	5.43E-05	168	3.09	168
ONTATINEN LICAT DEMOVAL HON_BECOVERY	R 110.00145	160	0.00172	151 1.001	161 5.58E-07	381	5.20E-07	387	1.02	386
CONTRIBUTIONAL REPORT IN OF OVERDRESSURE FAILURE IN DRYWELL	F 110.00145	161	0.00144	160 1.001	160 3.77E-08	410	0.00E+00	407	1.00	410
CONDITIONAL PROBABILITY OF OVERTRESSORE TREESTORE IN CONTRACTION	0 110.00144	162	0.00114	174 1.001	163 2.97E-07	389	2.60E-07	390	1.01	389
OPERATOR FAILS TO ALIGN CRU FOR ALL BORDA LIVELTION	F 110.00144	163	0.00144	159 1.001	162 4.65E-03	25	4.65E-03	25	180.00	25
COMMON CAUSE FAILURE OF ESW 1-1 RND 1-2 TO OFEN	c 110 00142	164	0.00143	164 1.001	165 2.57E-04	69	2.57E-04	70	10.90	69
N2 TANK LIQUID LINE RELIEF VALVE FAILS TO REMAIN COOLD	c 110.00142	165 1	0.00143	165 1.001	168 2.57E-04	71	2.57E-04	73	10.90	70
NV-3444 FAILS TO REMAIN CLOSED	c 110 00142	166	0.00143	163 1.001	166 2.57E-04	68	2.57E-04	71	10.90	67
RV-3442 FAILS TO REMAIN CLOSED	c 110.00142	167 1	0.00143	161 1.001	167 2.57E-04	70	2.575-04	69	10.90	66
N2 TANK GAS LINE RELIEF VALVE FAILS TO REMAIN CLOSED	c 110 00142	168	0.00143	162 1.001	164 2.57E-04	67	2.57E-04	72	10.90	73
RV-3443 FAILS TO REMAIN CLOSED	0 110 00139	169	0.00126	170 1.001	169 8.16E-07	380	7.80E-07	380	1.03	379
OPERATOR FAILS TO INJECT SLC - LOOP INITIATOR	c 110 00137	170	0.00137	168 1 1.001	170 8.11E-04	48	8.11E-04	48	32.20	48
FAILURE OF BREAKER 152-308 TO REMAIN CLOSED	e 110.00131	171	0.00136	169 1.001	171 112.94E-07	390	2.60E-07	398	1.01	395
TO ALTABUTE MON_DECOVERY FACTOR OUTSIDE CONT. ROOM	n 110.0012+			the second second	1.4					

149

150

11 (6) (C) (A) 143 | 1.002 c ||0.00205 143 0.00206 FAILURE OF RELAY 102-5 TO ENERGIZE 144 0.00206 144 | 1.002 FAILURE OF RELAY 102-6 TO ENERGIZE c ||0.00205 0.00206 142 | 1.002 145 c ||0.00205 FAILURE OF RELAY 183-6X TO ENERGIZE 141 | 1.002 0.00206 146 c ||0.00205 FAILURE OF RELAY 183-5X TO ENERGIZE 145 | 1.002 147 0.00199 HPCI SYSTEM NOT RESTORED AFTER TEST OR MAINTENANCE 0 10.00200 147 | 1.002 148 0.00199 c [10.00199 DG ROOM 11 LOUVERS FAIL TO OPEN 146 | 1.002

TYPE OF BASIC EVENT

AND

DG ROOM 12 LOUVERS FAIL TO OPEN

COMMON CAUSE FAILURE OF DG ROOM LOWERS TO OPEN

30 MINUTE NON-RECOVERY FACTOR OUTSIDE CONT. ROOM

SV-7477 FAILS TO REMAIN OPEN

CALCULATED IMPORTANCE HEASURES FOR PLANT X

BASIC EVENT DESCRIPTION

TABLE Add-82

CRITICALITY

RISK REDUCTION RANKINGS

(0)

0.00199

0.00198

151 | 0.00178

|| FUSSELL-

VESELY

c ||0.00199

F | 0.00198

RISK INCREASE RANKINGS

RISK INCREASE

(3)

warms and the second second second

122 | 1.46E-04

123 | 1,46E-04

124 | 1.46E-04

125 | 1.46E-04

215 2.78E-05

127 | 1.46E-04

126 | 1.46E-04

24 4.68E-03

329 | 7.28E-06

72 | 2.57E-04

68 |

10.90

RISK ACHIEVE. CUM % RISK

(M)

123 ||

125 ||

122 11

126 11

215 11

124 11

127 11

24 11

326 11

68 |

WORTH

6.63

6.63

6.63

6.63

2.07

6.63

6.63

1.28

181.00

(1)

RANK T(1)/T

(K)

124

125

127

126

215

122

123

24

326

CONTRIBUTION

(N)

98.29%

98.33%

98.37%

98.40%

98.44%

98.48%

98.51%

98.55%

98.58%

98.61%

98.64%

98.67% 98.70%

98.73%

98.76% 98.79%

98.82%

98.84%

98.87%

98.89%

98.92%

98.95%

98.97%

92.00% 99.02%

99.05%

99.07%

99.10%

99.12%

99.15%

RANK T-T(0)/SUM

BIRNBAUM

(1)

(H)

143 | 1.46E-04

144 | 1.46E-04

146 | 11.46E-04

145 ||1.46E-04

147 ||2.79E-05

148 |1.46E-04

149 | 1.46E-04

150 ||4.68E-03

151 ||7.33E-06

RISK REDUCT. ||

(G) ||

WORTH.

[[T-T(0)/T RANK] (BIRN*U)/T RANK] T/T(0) RANK] T(1)-T(0) RANK] T(1)-T

148 | 1.002

149 1.002

(F)

(E)

NEDC-32264

CALCULATED IMPORTANCE MEASURES FOR PLANT X

				******	reservas:	esseera			esesseses:	******	*******		************
	11	RISK RE	DUCTION RAP	NKINGS		1	1	RISK IM	CREASE RAN	KINGS		1	1
BASIC EVENT DESCRIPTION	========			******	ing succession in	******	**********		**********		**********		
AND	FUSSELL	- 1	CRITICAL	ITY	RISK R	EDUCT.	BIRNBAL	UM	RISK INCR	EASE	RISK ACH	IEVE.	CUM X RISK
TYPE OF BASIC EVENT	VESELY			3	WOR	тн				1	WORTH		CONTRIBUTION
	T-T(0)/T	RANK	(BIRN*U)/	T RANK	T/T(0)	RANK	T(1)-T(0)	RANK	T(1)-T	RANK	T(1)/T	RANK	T-T(0)/SUM
(A)	(8)	(0)	(0)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)
	an II an an an an an an an an			-									
NO HIGH DW PRESSURE	F 0.00122	173	0.00122	172	1.001	173	3.17E-08	411	0.00E+00	422	1.00	429	99.17%
INTERNAL FLOOD IN JONE 5 (SERVICE WATER - SE RHR ROOM)	1 0.00117	174	0.00117	173	1.001	174	4.848-05	170	4.84E-05	170	2.86	170	99.19%
MANUAL RYPASS SW Y83 FAILS TO REMAIN CLOSED	c []0.00104	175	0.00104	178	1.001	175	5.20E-05	169	5.20E-05	169	3.00	169	99.21%
CHECK VALVE XP-6 FAILS TO OPEN	c []0.00104	176	0.00105	177	1.001	176	2.08E-05	230	2.08E-05	229	1.80	231	99.23%
CHECK VALVE XP-7 FAILS TO OPEN	c [10.00104	177	0.00105	176	1.001	177	2.08E-05	231	2.08E-05	230]	1.80	228	99.25%
RUS 16 FAIR T	c 110.00094	178	0.00095	179	1.001	178	13.07E-03	29	3.07E-03	29	119.00	29	99.26%
FATLURE OF OPERATOR TO ADD WATER TO HOTWELL	0 110.00094	179	0.00109	175	1.001	179	12.84E-07	391	2.60E-07	389	1.01	393	99.28%
INTERNAL FLOOD IN ZONE 11 (FIRE WATER - T.B. 931' WEST)	1 10.00092	180	0.00092	180	1.001	180	6.47E-03	12	6.47E-03	12	250.00	12	99.30%
TO MINUTE NON-RECOVERY IN CONTROL ROOM	R 110.00086	181	0.00087	181	1.001	181	7.56E-06	326	7.54E-06	322	1.29	322	99.31%
INTERNAL FLOOD IN ZONE 7 (SERVICE WATER - SW RHR ROOM)	1 110.00085	182	0.00085	182	1.001	182	3.95E-05	181	3.95E-05	179	2.52	179	99.33%
IT TOA DUS FAILT	c 110.00082	183	0.00083	183	1.001	183	2.68E-03	32	2.68E-03	32	104.00	32	99.34%
EDG B HY DINGED	c 110,00073	184	0.00073	185	1.001	184	1.39E-04	129	1.39E-04	129	6.36	129	99.36%
ENGESU MY & PLINGED	c 0.00073	185	0.00073	184	1.001	185	1.39E-04	128	1.39E-04	128	6.36	128	99.37%
250V BATTERY 3 AND RATTERY 6 COMMON CAUSE FAILURE	F 110.00069	186	0.00069	186	1.001	186	1.83E-02	6	1.83E-02	6	704.00	6	99.38%
STGNAL SPOM FEEDUATER MASTER CONTROLLER FAILS LOW	c 10.00065	187	0.00064	187	1.001	187	2.60E-04	65	2.60E-04	65	11.00	65	99.39%
FEEDWATER ANY OTH PUMP COMMON CAUSE FTS	F 110.00061	188	0.00061	188	1.001	188	2.03E-05	237	2.03E-05	234	1.78	233	99.40%
LOOP & EDGESU FAILURE TO RESTORE AFTER TEST OR MAINTENANC	E0 110.00060	189	0.00060	189	1.001	190	1.39E-04	131	1.39E-04	131	6.36	131	99.42%
LOOP & EDGESH FAILURE TO RESTORE AFTER TEST OR MAINTENANO	EO 110.00060	190	0.00060	190	1.001	189	1.39E-04	130	1.39E-04	130	6.36	130	99.43%
DELAY 16410B FAILS TO ENERGIZE	c 110.00059	191	0.00059	191	1 1.001	191	4.21E-05	177	4.21E-05	177	2.62	177	99.44%
CU DUMP 13 UNAVATI ARI E DUE TO CORRECTIVE MAINTENANCE	N 110.00057	192	0.00054	193	1.001	192	2.75E-07	393	2.60E-07	399	1.01	400	99.45%
COMMON CAUSE FAILURE OF SLC PUMPS TO START	F 110.00055	193	0.00055	192	1.001	193	2.08E-05	233	2.08E-05	228	1.80	227	99.46%
EATLIDE OF DIESEL PANEL CONTACT TO CLOSE	c 0.00052	194	0.00052	194	1.001	195	1.37E-04	132	1.37E-04	132	6.28	133	99.47%
FAILURE OF DIESEL PANEL CONTACT TO CLOSE	c [10.00052	195	0.00052	195	1.001	194	1.37E-04	133	1.37E-04	133	6.28	132	99.48%
LOSS OF ONE 125VDC BUS	1 0.00051	196	0.00051	196	1.001	196	1.10E-04	139	1.10E-04	139	5.23	139	99.49%
WPCT FILTER PLUGGED	c 110.00047	197	0.00048	197	1.000	197	1.72E-05	243	1.72E-05	238	1.66	238	99.49%
PSD 3445 FAILS TO REMAIN CLOSED	c 0.00046	198	0.00046	198	1.000	198	2.50E-04	74	2.50E-04	87	10.60	93	99.50%
ACR 152-408 FAILS TO REMAIN CLOSED	c 0.00045	199	0.00045	199	1.000	199	2.68E-04	63	2.68E-04	63	11.30	63	99.51%
MO-2015 FALLS TO OPEN	c [10.00045	200	0.00044	200	1.000	200	3.91E-06	361	3.90E-06	362	1.15	362	99.52%
BREAKER 52-302 FAILS TO REMAIN CLOSED	c 0.00043	201	0.00043	201	1.000	201	2.57E-04	73	2.57E-04	66	10.90	72	99.53%
COMMON CAUSE FAILURE OF CS AND RHR INJ CHK VLVS TO OPEN	F 0.00043	202	0.00043	202	1.000	202	5.10E-03	19	5.10E-03	19	197.00	19	99.53%

CALCULATED IMPORTANCE MEASURES FOR PLANT X

CALCOLATED THEOREMAN CONTRACT TO A PERSON A													
		RISK R	EDUCTION RAM	WKINGS]	+	NISK IN	CREASE RAN	KINGS		1	
BASIC EVENT DESCRIPTION				1999922 17V		енения врист. 1	I BIRNBAL	inennen IM	PISK INCR	EASE	RISK ACHI	EVE.	CUM % RISK
AND	1 PUSSELL		i entitenti		UOP	тн]	1			1	WORTH	1	CONTRIBUTION
TYPE OF BASIC EVENT	VESELT	TANK	(D10)+(1)/7	TDANK	T/T(0)	PANK	IT(1)-T(0)	RANK	T(1)-T	RANK	T(1)/T	RANK	T-T(0)/SUM
	11-1(0)/1	RANK	L DIKNAU//	(E)	(1)	(6)	(H)	(1)	(J)	(K)	(L)	(M)	(N)
(A)	[[(8)		(0)	127						-			Andrews .
	c 110 00062	203	0.00042	203	1 000	203	12.50E-04	75	2.50E-04	78	10.60	84	99.54%
BREAKER 52-402 FAILS TO REMAIN CLOSED	c 110.00042	203	0.00042	204	1 000	204	16.99E-04	49	6.998-04	49	27.90	49	99.55%
LC TRANSFORMER TRX30 INTERNAL FAULT	c 110.00042	204	0.00046	212	1 1 000	209	11.07E-05	281	1.07E-05	277	1.41	276	99.56%
VACUUM BREAKER A0-2382E FAILS TO CLOSE	t [[0.00038	205	0.00038	211	1 1 000	205 1	11 07E-05	283	1.07E-05	274	1.41	274	99.56%
VACUUM BREAKER AD-2382A FAILS TO CLOSE	C 110.00038	200	0.00038	200	1 1 000	211	11 07E-05	285	1.07E-05	278	1.41	275	99.57%
VACUUM BREAKER A0-2382F FAILS TO CLOSE	c [[0.00038	207	0.00038	200	1.000	208	11 07E-05	282	1.07E-05	276	1.41	281	99.58%
VACUUM BREAKER A0-2382C FAILS TO CLOSE	c [[0.0038	208	0.00038	209	1 000	210	11.075-05	280	1.07E-05	275	1.41	278	99.58%
VACUUM BREAKER A0-23828 FAILS TO CLOSE	c 110.00038	209	0.00030	205	1 1 000	212 1	11 07E-05	286	1.075-05	279	1.41	280	99.59%
VACUUM BREAKER AD-2382G FAILS TO CLOSE	c 110.00038	210	0.00038	203	1 1 000	207	11.07E-05	279	1.075-05	281	1.41	277	99.60%
VACUUM BREAKER A0-2382K FAILS TO CLOSE	c 0.00038	211	0.00038	200	1 1 000	206	11 07E-05	284	1 1.075-05	280	1.41	279	99.61%
VACUUM BREAKER A0-2382H FAILS TO CLOSE	c 110.00038	212	0.00030	234	1 1 000	213	112 26F-04	94	2.24E-04	94	9.60	94	99.61%
BREAKER 52-408 FAILS TO REMAIN CLOSED	c [[0.00058	213	0.00036	219	1 1 000	214	17 555-06	327	7.54E-06	325	1.29	323	99.62%
AI 593 FAILS TO OPEN	c 110.00038	214	0.00056	215	1 1.000	045	113 016-06	362	3 005-06	361	1 1 15	361	99.63%
AUXILIARY OIL PUMP P61 FAILS TO RUN	c 0.00037	215	0.00036	210	1 1.000	213	12 155-04	200	2.15F-04	95	9.27	95	99.63%
BREAKER 52-308 FAILS TO REMAIN CLOSED	c [[0.00036	215	0.00056	212	1 1 000	217	10 115-00	612	0.00E+00	405	1,00	403 1	99.64%
BATTERY COMMON CAUSE BETA FACTOR	F 0.00036	217	1 0.000034	333	1 1 000	218	111.22E-05	259	1 1.22E-05	254	1.47	254	99.65%
RCIC Y STRAINER 4262 PLUGGED	C [[0.00034	210	0.00034	210	1 1 000	210	111 34F-04	134	1 1.34E-04	134	6.16	134	99.65%
CHECK VALVE ESW-7-1 FAILS TO OPEN	c [[0.00034	219	0.00034	217	1 1 000	220	111 345-04	135	1 1.34E-04	135	6.16	135	99.66%
CHECK VALVE ESW-1-2 FAILS TO OPEN	c 110.00034	220	0.00034	230	1 1 000	221	114 DRF-04	57	1 4.08E-04	57	1 16.70	57	99.66%
REACTOR PRESSURE SENSORS PS-2-3-53 A&B COMMON CAUSE FAIL	URF 110.00033	221	1 0.00033	224	1 1 000	222	111 065-03	40	1.06E-03	40	41.70	40	99.67%
BUS 15 FAULT	c []0.00055	222	0.00033	222	1 1 000	223	111 665-05	245	1 1.66E-05	240	1. 1.64	241	99.68%
COMMON HODE FAILURE OF REACTOR FEED PUMPS TO START	F 110.00052	223	1 0.00032	222	1 1 000	226	119 136-04	43	1 9.13E-04	43	36.10	43	99.68%
LC 103 BUS FAULT	c [[0.00028	224	1 0.00028	224	1 1 000	225	111 95E-05	239	1 1.95E-05	236	1.75	236	99.69%
COMMON CAUSE FAILURE OF ESW PUMPS P111 C/D TO START	F 110.00020	223	1 0.00026	226	1 1 000	226	113 13E-06	364	1 3.12E-06	364	1.12	364	99.69%
CONDENSATE PUMP A BRNG. LUBE OIL PUMP FAILS TO RUN	c [[0.05027	220	0.00020	220	1 1 000	227	110 DSE-04	44	9.05E-04	44	35.80	44	99.69%
COMMON CAUSE FAILURE OF LEV TRANS 72 A, B, C, D	F [[0.00026	221	0.00026	227	1 1 000	228	111 506-04	121	1 1.50E-04	121	6.76	121	99.70%
BREAKER 52-404 FAILS TO REMAIN CLOSED	c [[0.00025	228	0.00025	222	1 1 000	220	111 405-05	253	1 1.40E-05	248	1 1.54	248	99.70%
HPCI PUMP P-209 FAILS TO RUN	c 110.00025	229	0.00025	228	1 1 000	229	115 26E-07	382	1 5 20E-07	381	1 1.02	384	99.71%
OPERATOR INAPPROPRIATELY CROSS-TIE LC 104 TO LC 103	0 110.00024	2.50	0.00020	238	1 1 000	231	115.26E-07	393	1 5.20E-07	383	1.02	382	99.71%
COND PUMP P-18 CORRECTIVE MAINTENANCE	M [[0.09024	251	0.00021	234	1 1 000	232	112 085-05	234	1 2.085-05	231	1 1.80	230	99.72%
CONTROL CALLER CATLINE OF SLE SOUTHS TO FIRE	F 110,00024	1 232	0.00024	667	1 1.000	E. J.E.	110.000 00	access.	1 million on		4		

MEDC-32264

CALCULATED IMPORTANCE MEASURES FOR PLANT X

LACOUPTER IN VILLAGE INFORMATION			and second second	in the second							**********		***********
***************************************	11 1	RISK RE	DUCTION RAN	IK INGS		1	#	USK IN	CREASE RANK	CINGS			
BASIC EVENT DESCRIPTION				iousen:	DICK DI	Inuct I	I DIDNRAL	1990 IN 1990 I	RISK INCR	rase l	RISK ACH	EVE.	CUM X RISK
AND	FUSSELL-	- 1	CRITICALI	117	RISE RI	www.i	1 DIMON	27X - 3	HADR. AREN	1	WORTH		CONTRIBUTION
TYPE OF BASIC EVENT	VESELY	1		- Water	TITION	DANKI	1	DANK	T(1)-T	RANK	T(1)/T	RANKI	T-T(0)/SUM
	T-T(0)/T	RANK	(BIRN×U)/)	KANK	171107	(CARA I	1 /45	(13	in	(K) 1	0.5	(H) I	(N)
(A)	(8)	(0)	(0)	(6)	(1)	(0)	(11)	147	1		A day of		
	- []				4 000	377 1	14 705 04	176	1 305-04	137 1	5.00	136	99.72%
LOOP & EDGESH OUT FOR CORRECTIVE MAINTENANCE	м []0.00023	233	0.00023	232	1.000	234 1	11.200-04	130	1 305-04	138 1	5.00	138 1	99.73%
LOOP B EDGESW OUT FOR CORRECTIVE MAINTENANCE	M [[0.00023	234	0.00023	251	1.000	233	11.305-04	127	1.305-04	136	5.00	137 1	99.732
BREAKER 52-304 FAILS TO REMAIN CLOSED	c []0.00022	235	0.00022	235	1.000	235	11.305-04	130	0.005+00	204 1	1.00	428 1	00 732
NON-RECOVERY FACTOR FOR AC POWER TO CRD PUMPS	R 0.00022	236	0.00002	394	1.000	256	12.0/E-UY	415	0.002+00	80.1	10.60	76 1	00 76%
CONDENSATE PUMP COMMON HODE FAILURES	F 0.00022	237	0.00021	235	1.000	237	Z.50E-04	70	2.705-04	322	1 20	325 1	00 74%
FILTER TO SA CONTROL PRESSURE SWITCHES PLUGGED	c][0.00021	238	0.00021	237	1.000	238	17.558-06	328	1 0/2 06	377	1.04	378	00 742
LOSS OF DRYWELL COOLING	1 0.00021	239	0.00024	230	1.000	240	11.006-00	150	7 // 05	150	3.87	150 1	09.75%
COMMON CAUSE FAILURE OF SV 3-142A AND B TO OPEN	F 0.00021	240	0.00021	236	1.000	239	14.405-00	2/0	1 400-05	263	1.54	244 1	00 75%
COMMON CAUSE FAILURE TO RUN OF CORE SPRAY PUMPS	r 0.00020	241	0.00020	239	1.000	241	11.408-00	249	0 7/2 0/	245	34 60	46 1	00 76%
COMMON CAUSE FAILURE OF LEV TRANS 72 A AND B	F [[0.00019	242	0,00019	240	1.000	243	10.74E-04	40	0.146-04	45	34.60	45 1	00 76%
COPMON CAUSE FAILURE OF LEV TRANS 72 C, D	F 0.00019	243	0.00019	241	1.1.000	242	18.74E-04	43	1 1 120 00	344	1.56	263	99 76%
COMMON CAUSE FAILURE TO START OF CORE SPRAY PUMPS	F 0.00019	244	0.00019	242	1.000	244	17.405-02	200	1.405-02	294	1 36	284 1	00 77%
MANUAL BYPASS SW Y73 FAILS TO REMAIN CLOSED	c 0.00019	245	0.00019	243	1.000	245]	9.368-06	290	9.30E-00	204	1, 30	88	00.775
COMMON CAUSE FAILURE OF LEVEL TRANSMITTER 6-52A/B	F 0.00018	246	0.00018	244	1.000	240	12.508-04	11	2.300-04	01	1 1 73	237 1	00 779
COMMON CAUSE FAILURE OF ESW PUMPS P111 C/D TO RUN	F 0.00017	247	0.00017	245	1.000	247	11.8/2-05	240	1.0/2-05	231	1 10 60	02 1	00 785
COMMON CAUSE FAILURE OF FW 91-1 AND FW 94-2 TO OPEN	F 0.00017	248	0.00017	246	1.000	252	12.50E-04	78	2.506-04	0.5	10.00	76	1 00 781
COMMON CAUSE FAILURE OF FW 91-1 AND FW 91-2 TO OPEN	F 0.00017	249	0.00017	247	1.000	250	12.50E-04	82	2.505-04	02	10.00	01 1	00 785
COMMON CAUSE FAILURE OF FW 94-1 AND FW 91-2 TO OPEN	F [30.00017	250	0.00017	250	1.000	248	2.50E-04	80	2.505-04	02	1 10.00	82 1	00 78%
COMMON CAUSE FAILURE OF FW 91-1 AND FW 97-2 TO OPEN	F 0.00017	251	0.00017	248	1.000	251	2.50E-04	81	2.50E-04	04	10.00	06 77	1 00 768
COMMON CAUSE FAILURE OF FW 97-1 AND 91-2 TO OPEN	F 0.00017	252	0.00017	249	1.000	249	2.50E-04	79	2.50E-04	86	10,00	200	77.174
MO-2061 RELAY 72/2M FAILS TO ENERGIZE	c 0.00017	253	0.00016	253	1.000	260	1.17E-05	278	1.17E-05	269	1.45	208]	99.19%
RELAY 234K23 FAILS TO ENERGIZE	c 0.00017	254	0.00016	255	1.000	268	1.17E-05	272	1.17E-05	257	1.45	261	99.79%
MO-2061 RELAY 72/1F FAILS TO ENERGIZE	c 0.00017	255	0.00016	256	1.000	255	1.17E-05	268	1.17E-05	260	1.45	266	99.802
MO-2068 RELAY 72/2M FAILS TO ENERGIZE	c 0.00017	256	0.00016	266	1.000	254	1.17E-05	267	1.17E-05	272	1.45	269	99.802
HO-2036 RELAY 72/2F FAILS TO ENERGIZE	c 0.00017	257	0.00016	258	1.000	265	1.17E-05	264	1.17E-05	263	1.45	256	99.80%
RELAY 234K2 FAILS TO ENERGIZE	c 0.00017	258	0.00016	268	1.000	264	1.17E-05	269	1.17E-05	258	1.45	255	99.81%
MO-2062 RELAY 72/2F FAILS TO ENERGIZE	c 0.00017	259	0.00016	560	1.000	269	1.17E-05	277	1.17E-05	265	1.45	263	99.81%
MO-2062 RELAY 72/1F FAILS TO ENERGIZE	c 10.00017	260	0.00016	264	1.000	256	1.17E-05	265	1.17E-05	261	1.45	273	99.81%
10-2062 BELAY 72/28 FAILS TO ENERGIZE	c 0.00017	261	0.00016	251	1.000	266	1.17E-05	270	1.17E-05	270	1.45	257	99.81%
NO. 2062 DELAY 72/28 FALLS TO ENERGIZE	c [[0.00017	262	0.00016	262	1.000	270	1.17E-05	263	1.17E-05	271	1.45	265	99.82%

BASIC EVENT DESCRIPTION AND TYPE OF BASIC EVENT RISK REDUCTION RANKINGS RISK INCREASE RANKINGS RISK ACHIEVE. CUN X RISK NORTH (A) I FUSSELL- CRITICALITY RISK REDUC1. BIRNBAUM RISK INCREASE RISK ACHIEVE. CUN X RISK (A) I FUSSELL- CRITICALITY RISK REDUC1. BIRNBAUM RISK INCREASE RISK ACHIEVE. CUN X RISK (A) I FUSSELL- CRITICALITY RISK REDUC1. BIRNBAUM RISK INCREASE RISK ACHIEVE. CUN X RISK (A) I FUSSELL- CRITICALITY RISK REDUC1. BIRNBAUM RISK INCREASE RISK ACHIEVE. CUN X RISK (A) I VESELY WORTH I IONTRIBUTION T-TCO)/T RANK T(1)-T RANK T(1)/T RANK T-TCO)/SUM (A) I (B) (C) (D) (E) (F) (G) I.17E-05 260 1.45 262 99.82X RELAY 72/2F FAILS TO ENERGIZE C 0.00017 264 0.00016	CALCULATED IMPORTANCE MEASURES FOR PLANT X			TABLE	Add-Ba				-					
BASIC EVENT DESCRIPTION Image: constraint of the second secon	***************************************		RISK RE	DUCTION RAN	KINGS			1	RISK IN	ICREASE RAN	KINGS	******		
TYPE OF BASIC EVENT VESELY WORTH NORTH CONTRIBUTION (A) (T-T(0)/T RANK (BIRN#U)/T RANK T/T(0) RANK T(1)-T RANK T(1)/T RANK T-T(0)/SUH (A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) (L) (H) (N) MO-2068 RELAY 72/2F FAILS TO ENERGIZE C 0.00017 263 0.00016 263 1.000 271 1.17E-05 260 1.45 262 99.82% RELAY 72/1F FAILS TO ENERGIZE C 0.00017 264 0.00016 254 1.000 271 1.17E-05 260 1.45 267 99.82% MO-2062 RELAY 72/2F FAILS TO ENERGIZE C 0.00017 264 0.00016 254 1.000 271 1.17E-05 261 1.45 267 99.83% MO-2062 RELAY 72/2F FAILS TO ENERGIZE C 0.00017 265 0.00016 252 1.000 262 1.17E-05 261 1.45 271 99.83% RELAY 23 181A FAILS TO ENERG	BASIC EVENT DESCRIPTION	====================================		CRITICALI	TY	RISK RE	DUC1.	BIRNBAL)M	RISK INCR	EASE	RISK ACHI	EVE.	CUM % RISK
(A) (B) (C) (D) (E) (F) (G) (T) (C) (D) (E) (F) (G) (T) (T) RANK T(T)/T RANK T-T(O)/SUH (A) (B) (C) (D) (E) (F) (G) (T) (T) (L) (H) (L) (H) (N) MO-2068 RELAY 72/2F FAILS TO ENERGIZE C 0.00017 263 0.00016 263 1.000 261 1.17E-05 267 1.45 262 99.82X RELAY 72/1F FAILS TO ENERGIZE C 0.00017 264 0.00016 254 1.000 271 1.17E-05 267 1.45 267 99.82X RELAY 72/1F FAILS TO ENERGIZE C 0.00017 265 0.00016 252 1.000 271 1.17E-05 266 1.45 267 99.83X RELAY 72/2F FAILS TO ENERGIZE C 0.00017 265 0.00016 252 1.000 262 1.17E-05 266 1.45 271 99.83X RELAY 23 181A	TYPE OF BASTC EVENT	11 VESELY	i			WORT	тн 📗				1	WORTH	11	CONTRIBUTION
(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) (L) (H) (N) M0-2068 RELAY 72/2F FAILS TO ENERGIZE C 0.00017 263 0.00016 263 1.000 261 1.17E-05 260 1.17E-05 267 1.45 262 99.82% RELAY 72/1F FAILS TO ENERGIZE C 0.00017 264 0.00016 254 1.000 271 1.17E-05 271 1.17E-05 259 1.45 267 99.82% NO-2062 RELAY 72/2F FAILS TO ENERGIZE C 0.00017 265 0.00016 254 1.000 271 1.17E-05 261 1.45 267 99.82% NO-2062 RELAY 72/2F FAILS TO ENERGIZE C 0.00017 265 0.00016 252 1.000 261 1.17E-05 266 1.45 271 99.83% RELAY 23 181A FAILS TO ENERGIZE C 0.00017 266 0.00016 257 1.000 258 1.17E-05 266 1.45 271 99.83% RELAY 23 181A FAILS TO ENERGIZE C 0.00017 </th <th>FILE OF DRULE CEDIT</th> <th>11T-T(0)/T</th> <th>RANK</th> <th>(BIRN*U)/T</th> <th>RANK</th> <th>T/T(0)</th> <th>RANK</th> <th>T(1)-T(0)</th> <th>RANK</th> <th>T(1)-T</th> <th>RANK</th> <th>T(1)/T</th> <th>RANK</th> <th>T-T(0)/SUM</th>	FILE OF DRULE CEDIT	11T-T(0)/T	RANK	(BIRN*U)/T	RANK	T/T(0)	RANK	T(1)-T(0)	RANK	T(1)-T	RANK	T(1)/T	RANK	T-T(0)/SUM
M0-2068 RELAY 72/2F FAILS TO ENERGIZE C 0.00017 263 0.00016 263 1.000 261 1.17E-05 260 1.17E-05 267 1.45 262 99.82% RELAY 72/1F FAILS TO ENERGIZE C 0.00017 264 0.00016 254 1.000 271 1.17E-05 271 1.17E-05 259 1.45 267 99.82% M0-2062 RELAY 72/2F FAILS TO ENERGIZE C 0.00017 265 0.00016 252 1.000 271 1.17E-05 271 1.17E-05 266 1.45 267 99.82% M0-2062 RELAY 72/2F FAILS TO ENERGIZE C 0.00017 265 0.00016 252 1.000 262 1.17E-05 266 1.45 271 99.83% RELAY 23 181A FAILS TO ENERGIZE C 0.00017 266 0.00016 257 1.000 258 1.17E-05 266 1.45 271 99.83% RELAY 23 181A FAILS TO ENERGIZE C 0.00017 267 0.00016 259 1.000 263 1.17E-05 266 1.45 272 99.83% RELA	(A)	(B)	(C)	(D)	(E)	(F)	(6)	(H)	(1)	(J)	(K)	(L)	(M)	(N)
MO-2068 RELAY 72/2F FAILS TO ENERGIZE C 0.00017 263 0.00016 253 1.000 271 1.17E-05 271 1.17E-05 259 1.45 267 99.82% RELAY 72/1F FAILS TO ENERGIZE C 0.00017 264 0.00016 252 1.000 271 1.17E-05 271 1.17E-05 259 1.45 267 99.82% MO-2062 RELAY 72/2F FAILS TO ENERGIZE C 0.00017 265 0.00016 252 1.000 262 1.17E-05 274 1.17E-05 266 1.45 271 99.83% RELAY 23 181A FAILS TO ENERGIZE C 0.00017 266 0.00016 257 1.000 258 1.17E-05 266 1.45 272 99.83% RELAY 23 181A FAILS TO ENERGIZE C 0.00017 267 0.00016 259 1.000 263 1.17E-05 266 1.45 272 99.83% RELAY 23 AK1 FAILS TO ENERGIZE C 0.00017 267 0.00016 259 1.000 263 1.17E-05 266 1.45 264 99.83% RELAY 23AK1		c 110 00017	263 1	0.00016	263	1 000	261	1 1.17E-05	260	1.17E-05	267	1.45	262	99.82%
RELAY 72/1F FAILS TO ENERGIZE C 0.00017 265 0.00016 252 1.000 262 1.17E-05 274 1.17E-05 266 1.45 271 99.83% MO-2062 RELAY 72/2F FAILS TO ENERGIZE C 0.00017 265 0.00016 257 1.000 263 1.17E-05 266 1.17E-05 255 1.45 272 99.83% RELAY 23 181A FAILS TO ENERGIZE C 0.00017 266 0.00016 257 1.000 258 1.17E-05 266 1.17E-05 255 1.45 272 99.83% RELAY 23 181A FAILS TO ENERGIZE C 0.00017 267 0.00016 259 1.000 263 1.17E-05 262 1.17E-05 256 1.45 264 99.83% RELAY 23AK1 FAILS TO ENERGIZE C 0.00017 267 0.00016 259 1.000 263 1.17E-05 262 1.17E-05 256 1.45 264 99.83%	MO-2068 RELAY 72/2F FAILS TO ENERGIZE	c 110.00017	265 1	0.00016	254	1.000	271	11 178-05	271	1.17E-05	259	1.45	267	99.82%
MO-2062 RELAY 72/2F FAILS TO ENERGIZE C 0.00017 265 0.00016 252 1.000 266 1.17E-05 255 1.45 272 99.83X RELAY 23 181A FAILS TO ENERGIZE C 0.00017 266 0.00016 257 1.000 258 1.17E-05 266 1.17E-05 255 1.45 272 99.83X RELAY 23 181A FAILS TO ENERGIZE C 0.00017 267 0.00016 259 1.000 263 1.17E-05 262 1.17E-05 256 1.45 264 99.83X RELAY 23 AK1 FAILS TO ENERGIZE C 0.00017 267 0.00016 259 1.000 263 1.17E-05 262 1.17E-05 256 1.45 264 99.83X RELAY 23AK1 FAILS TO ENERGIZE C 0.00017 267 0.00016 259 1.000 263 1.17E-05 264 1.45 259 1.99.83X	RELAY 72/1F FAILS TO ENERGIZE	C [[0.00017	725 1	0.00016	25.2	1 000	262 1	11 17E-05	274	1.17E-05	266	1.45	271	99.83%
RELAY 23 181A FAILS TO ENERGIZE C 0.00017 267 0.00016 257 1.000 263 1.17E-05 262 1.17E-05 256 1.45 264 99.83% RELAY 23 AK1 FAILS TO ENERGIZE C 0.00017 267 0.00016 259 1.000 263 1.17E-05 262 1.17E-05 256 1.45 264 99.83% RELAY 23AK1 FAILS TO ENERGIZE C 0.00017 267 0.00016 259 1.000 263 1.17E-05 264 1.45 259 1.99.83%	MO-2062 RELAY 72/2F FAILS TO ENERGIZE	c [[0.00017	203	0.00016	257	1 000	258	11 17E-05	266	1.17E-05	255	1.45	272 11	99.83%
RELAY 23AK1 FAILS TO ENERGIZE C 10.00017 207 0.00018 237 1.000 267 111 17E-05 261 1 17E-05 268 1 1.65 259 1 99.84X	RELAY 23 181A FAILS TO ENERGIZE	c 110.00017	200	0.00016	350	1 000	263 1	11 17E-05	262	1.17E-05	256	1.45	264 11	99.83%
A LINE PROVIDE THE TAXAGE AND A LINE TO A	RELAY 23AK1 FAILS TO ENERGIZE	0.00017	201	0.00016	261	1 1 000	267 1	11 175-05	261	1 17F-05	268	1.45	259 11	99.84%
MO-2036 RELAY 72/2M FAILS TO ENERGIZE C 10.00017 208 0.00018 201 1.000 201 11.000 200 200 200 200 200 200 200 200 200	MO-2036 RELAY 72/2M FAILS TO ENERGIZE	c [[0.00017	268	0.00016	201	1.000	250 1	14 175 05	275	1 175-05	273	1.45	260 11	99.84%
HPCI AOP P-217 RELAY 72/M FAILS TO ENERGIZE C 0.00017 269 0.00016 209 1.000 257 11. HE-05 267 1.1125-05 262 1 1.65 270 11 99.84%	HPCI AOP P-217 RELAY 72/M FAILS TO ENERGIZE	c [[0.00017	269	0.00016	209	1.000	227	14 476 05	276	1 1 175-05	262	1.45	270 11	99.84%
MO-2062 RELAY 72/1F FAILS TO ENERGIZE C [0.00017 270 0.00016 267 1.000 253 [1.17E-05 270 1.17E-05 266] 1.45 258 [1 99.84%	MO-2062 RELAY 72/1F FAILS TO ENERGIZE	c 0.00017	270	0.00016	267	1.000	253	14 470 05	273	1.176-05	266	1.45	258 11	99.84%
MO-2061 RELAY 72/2F FAILS TO ENERGIZE C [0.00017 271 0.00016 265 1.000 257 [1.172-05 275 1.172-05 204 1 1.36 280 11 99 852	MO-2061 RELAY 72/2F FAILS TO ENERGIZE	c 0.00017	271	0.00016	265	1.000	270	10.010.00	202	0 0/2 02	288	1.36	280 11	00 85%
RCIC PUMP P-207 FAILS TO RUN C 0.00016 272 0.00016 270 1.000 272 8.842-06 294 0.042-06 200 1.04 20	RCIC PUMP P-207 FAILS TO RUN	c 0.00016	272	0.00016	270	1.000	272	18.84E-00	67	1 2 505 04	200	10.60	80 11	99 85%
TRANSFORMER #11 INTERNAL FAULT C 0.00015 273 0.00015 272 1.000 273 2.50E-04 85 2.50E-04 77 10.00 00 99.852	TRANSFORMER #11 INTERNAL FAULT	c 0.00015	273	0.00015	272	1.000	273	12.50E-04	83	2.306-04	17	1 8 81	06 []	00 85%
COMMON CAUSE FAILURE TO RUN OF HPCI AND RCIC PUMPS F 0.00015 274 0.00015 271 1.000 274 2.03E-04 96 2.03E-04 96 0.01 97.05	COMMON CAUSE FAILURE TO RUN OF HPCI AND RCIC PUMPS	F 0.00015	274	0.00015	273	1.000	274	12.03E-04	90	2.05E-04	70	1 1 00	225 11	00 86%
CORE SPRAY TRAIN B OUT FOR CORRECTIVE MAINTENANCE M 0.00014 275 0.00014 273 1.000 275 226 2.34E-05 226 2.34E-05 225 1.70 227 1 167 00 277 1 167 00	CORE SPRAY TRAIN B OUT FOR CORRECTIVE MAINTENANCE	M 0.00014	275	0.00014	273	1.000	275	12.34E-05	220	2.346-05	223	1 427 00	27 11	00 867
COMMON CAUSE FAILURE OF VSF 9 AND 10 TO RUN F 0.00014 276 0.00014 274 1.000 276 4.32E-03 27 4.32E-03 27 107.00 27 97.004	COMMON CAUSE FAILURE OF VSF 9 AND 10 TO RUN	F 0.00014	276	0.00014	274	1.000	276	4.32E-03	27	4.528-05	27	107.00	167 11	00 869
FAILURE OF LEVEL TRANSMITTER 728 TO OPERATE C 0.00014 277 0.00014 276 1.000 277 5.80E-05 163 5.80E-05 5.	FAILURE OF LEVEL TRANSMITTER 728 TO OPERATE	c 0.00014	277	0.00014	276	į 1.000	277	5.80E-05	163	5.80E-05	165	0.20	707 11	97.00A
LIMIT SWITCH OAS/1 FAILS TO CLOSE (MO-1987) C [0.00013 278 0.00014 275 1.000 278 5.23E-07 384 5.20E-07 584 1.02 305 7 97.654	LIMIT SWITCH OAS/1 FAILS TO CLOSE (MO-1987)	c 0.00013	278	0.00014	275	1.000	278	5.23E-07	384	5.20E-07	384	1 1.02	202 11	97.00%
RHRSW LOOP 2 OUT FOR CORRECTIVE MAINTENANCE M 0.00012 279 0.00014 277 1.000 279 5.23E-07 385 5.20E-07 386 1.02 385 99.874	RHRSW LOOP 2 OUT FOR CORRECTIVE MAINTENANCE	M 0.00012	279	0.00014	277	1.000	279	5.23E-07	385	5.20E-07	386	1.02	282 1	99.014
EATURE OF SWITCH 10AS198 TO CLOSE C 0.00012 280 0.00013 278 1.000 280 5.23E-07 386 5.20E-07 385 1.02 387 99.874	FATLURE OF SWITCH 10AS198 TO CLOSE	c 0.00012	280	0.00013	278	1.000	280	5.23E-07	386	5.20E-07	385	1.02	387	99.874
C 0.00012 281 0.00012 280 1.000 281 8.35E-05 157 8.35E-05 157 4.21 157 99.87%	BATTERY & FUSE BLOWN	c 0.00012	281	0.00012	280	1.000	281	8.35E-05	157	8.35E-05	157	4.21	157	99.87%
DE 11 CONTROL SUITCH CONTACT FAILURE TO REMAIN CLOSED C 0.00011 282 0.00011 292 1.000 288 1.01E-04 147 1.01E-04 148 4.88 140 99.87%	DE 11 CONTROL SWITCH CONTACT FAILURE TO REMAIN CLOSED	c [[0.00011	282	0.00011	292	1.000	288	1.01E-04	147	1.01E-04	148	4.88	140	99.87%
CONTACT 186-502 FAILS TO REMAIN CLOSED C 0.00011 283 0.00011 289 1.000 287 1.01E-04 145 1.01E-04 146 4.88 143 99.87%	CONTACT 184-502 FAILS TO REMAIN CLOSED	c 0.00011	283	0.00011	289	1.000	287	1.01E-04	145	1.01E-04	146	4.88	143	99.87%
CALLINGE OF 152-511 CONTACT TO REMAIN CLOSED C 0.00011 284 0.00011 285 1.000 286 1.01E-04 149 1.01E-04 142 4.88 149 99.88%	CATHERE OF 152-511 CONTACT TO REMAIN CLOSED	c [[0.00011	284	0.00011	285	1.000	286	1.01E-04	149	1.01E-04	142	4.88	149	99.88%
C 10.00011 285 0.00011 291 1.000 292 11.01E-04 140 1.01E-04 141 4.88 142 99.88%	FATLURE OF FORTACT 152-502 TO REMAIN CLOSED	c []0.00011	285	0.00011	291	1.000	292	1.01E-04	140	1.01E-04	141	4.88	142	99.88%
C 10.00011 286 0.00011 287 1.000 290 1.01E-04 148 1.01E-04 140 4.88 150 99.88%	FALLORE OF 152 501 CONTACT TO REMAIN CLOSED	c [10.00011	286	0.00011	287	1.000	290	1.01E-04	148	1.01E-04	140	4.88	150	99.88%
PAILORE OF 152-301 CONTACT TO REMAIN CLOSED C 110,00011 287 0.00011 290 1.000 285 1.01E-04 143 1.01E-04 147 4.88 148 99.88%	FAILURE OF 152-301 CONTACT TO REMAIN CLOSED	c 110.00011	287	0.00011	290	1.000	285	1.01E-04	143	1.01E-04	147	4.88	148 į	99.88%
C 110.00011 288 0.00011 282 1.000 282 11.01E-04 146 1.01E-04 143 4.88 144 99.88%	FAILURE OF ALB OUZ CONTACT TO REMAIN CLOSED	c 110.00011	288	0.00011	282	1 1.000	282	1.01E-04	146	1.01E-04	143	4.88	144	99.88%
FAILURE OF CONTACT 152-001 TO REHATH CLOSED C 110 00011 289 0.00011 284 1.000 284 1.01E-04 142 1.01E-04 149 4.88 141 99.89%	FAILURE OF CONTACT 102-001 TO REPAIR CLOSED	r 110 00011	289	1 0.00011	284	1 1.000	284	11.01E-04	142	1.01E-04	149	4.88	141	99.89%
DG 12 CONTROL SWITCH CONTACT FAILURE TO REMAIN CLOSED C 110 00011 290 1 0.00011 286 1 1.000 289 11.01E-04 150 1.01E-04 145 4.88 146 1 99.89%	DG 12 CONTROL SWITCH CONTACT FAILure TO REMAIN CLOSED	c 110 00011	200	1 0,00011	286	1 1.000	289	111.01E-04	150	1.01E-04	145	4.88	146 1	99.89%
FAILURE OF CONTACT 152-010 TO REMAIN CLOSEDS 110 00011 291 0 00011 288 1.000 293 11.01E-04 151 1.01E-04 150 4.88 145 1 99.89%	FAILURE OF CONTACT 152-010 TO REMAIN CLOSED	SEDC 110 00011	291	0.00011	288	1 1.000	293	11.01E-04	151	1.01E-04	150	4.88	145	99.89%
FAILURE OF CONTROL SUITCH 152-502 CONTROL TO REMAIN CLOSED C 10 00011 292 0.00011 281 1.000 291 1.01E-04 144 1.01E-04 144 4.88 151 99.89%	FAILURE OF CONTROL SUITCH 152-302 CUNTACT TO REDATH CLOS	c 110.00011	292	0.00011	281	1 1.000	291	1.01E-04	144	1.01E-04	144	4.88	151	99.89%

ADD 82-10

CALCULATED IMPORTANCE MEASURES FOR PLANT X

		*******		202123	22323333								
	[] 5	ISK RE	DUCTION RAN	KINGS				RISK IN	CREASE RAN	KINGS		11	
BASIC EVENT DESCRIPTION	==========			======			ibenitennieti		LEASE LAND	2002223		teve 1	CIN S DICK
AND	FUSSELL-	- 1	CRITICALI	TY	RISK RE	EDUCT.	BIRNBAU	3M	RISK INCR	EASE	RISK ACH	ieve. []	CUR & KISK
TYPE OF BASIC EVENT	VESELY				WORT	(H				mannel	WURTH	DANG 1	T T/D) /CUN
	T-T(0)/T	RANK	(BIRN*U)/T	RANK	T/T(0)	RANK	[[T(1)-T(0)	HANK	1(1)-1	RANK	1. 215	(HS 1)	(13)
(A)	(8)	(C)	(0)	(E)	(F)	(6)	(1) (1)	(1)	102	0.0	1 107	107 []	
			0.00014		3 000	207	114 DAE D/	4/4	1.015-04	151	4.88	147 1	99 892
FAILURE OF HANDSWITCH 152-602 CONTACT TO REMAIN CLOSED	c [[0.00011	293	0.00011	285	1.000	203	113 806 05	244	3 805-05	207	2 11	200 11	00 002
SWITCH 14AS13B FAILS TO REMAIN CLOSED	c [[0.00011	294	0.00011	293	1.000	274	12.070-00	211	4 350 05	2/0	1 1 50	249 1	99 907
COMMON CAUSE FAILURE TO OPEN OF MO-1753 AND MO-1754	F [[0.00011	295	0.00011	294	1.000	293	11.358-03	207	1.306-03	297	1.02	391 1	00 007
CV-1729 FAILS TO OPEN	c 0.00010	296	0.00012	279	1.000	296	15.238-07	301	5.20E-07	300	1 1 26	320 1	00 007
CHECK VALVE AS 1-1 FAILS TO CLOSE	c [[0.00010	297	0.00010	295	1.000	291	10.24E-00	.3.3 1,	0.245-00	220	1.00	145 1	00 007
FAILURE TO MANUALLY ALIGN THE CRD SYSTEM	0 0.00010	298	0.00004	346	1.000	298	12.51E-09	414	0.00E+00	410	1.00	50 1	00 007
COMMON CAUSE FAILURE OF ESW 17 AND 18 TO OPEN	F 0.00009	299	0.00009	298	1.000	300	[]2.89E-04	58	2.891-04	20	1 12.10	50 1	00 017
COMMON CAUSE FAILURE OF ESW 4-1 AND 4-2 TO OPEN	F 0.00009	300	0.00009	296	1.000	301	112.89E-04	24	2.896-04	50	12.10	60 1	00 015
COMMON CAUSE FAILURE OF ESW 23 AND 24 TO OPEN	F 0.00009	301	0.00009	297	1.000	299	12.89E-04	00	2.095-04	29	1 2.10	207 1	00 012
FAILURE OF RELAY 144K1B TO REMAIN ENERGIZED	c 0.00008	302	80000.0	300	1.000	302	2.89E-05	212	2.89E-05	206	2.11	207 1	99,915
RELAY K101A FAILURE	c 0.00008	303	0.00008	299	1,000	303	5.72E-06	332	5.72E-06	330	1.22	330	99.915
COMMON CAUSE FAILURE OF WASTE SAMPLE PUMPS TO START	F 0.00008	304	0.00007	328	1.000	304	2.62E-07	394	2.60E-07	400	1.01	396	99.91%
COMMON CAUSE FAILURE OF P-SA/B TO START	F 0.00008	305	0.00007	327	1.000	305	2.62E-07	395	2.60E-07	401	1.01	392	99.91%
RELAY 72M FAILS TO ENERGIZE	c 0.00008	306	0.00008	320	1.000	312	5.46E-06	348	5.46E-06	347	1.21	348	99.92%
RELAY 722F FAILS TO ENERGIZE	c 0.00008	307	0.00008	317	1.000	316	5.46E-06	344	5.46E-06	345	1.21	333	99.92%
RELAY 721F FAILS TO ENERGIZE	c 0.00008	308	0.00008	309	1.000	307	5.46E-06	338	5.46E-06	338	1.21	342	99.92%
RELAY 72M FAILS TO ENERGIZE	ε []0.00008	309	0.00008	323	1.000	308	5.46E-06	352	5.46E-06	349	1.21	345	99.92%
RELAY 72M FAILS TO ENERGIZE	c 0.00008	310	0.00008	311	1.000	318	5.46E-06	349	5.46E-06	350	1.21	347	99.92%
RELAY 722F FAILS TO ENERGIZE	c 0.00008	311	0.00008	319	ļ 1.000	324	5.46E-06	342	5.46E-06	341	1.21	341	99.92%
RELAY 722F FAILS TO ENERGIZE	c 0.00008	312	0.00008	313	1.000	317	5.46E-06	345	5.46E-06	343	1.21	351	99.92%
RELAY 13AK1 FAILS TO ENERGIZE	c 0.00008	313	0.00008	322	1.000	320	5.46E-06	340	5.46E-06	332	1.21	334	99.93%
RELAY 72M FAILS TO ENERGIZE	c 110.00008	314	0.00008	315	1.000	313	5.46E-06	335	5.46E-06	346	1.21	336	99.93%
RELAY 721F FAILS TO ENERGIZE	c 0.00008	315	0.00008	321	1.000	306	15.46E-06	334	5.46E-06	336	1.21	331	99.93%
RELAY 722F FAILS TO ENERGIZE	c 0.00008	316	0.00008	306	1.000	323	5.46E-06	339	5.46E-06	344	1.21	343	99.93%
RELAY 721F FAILS TO ENERGIZE	c 0.00008	317	0.00008	308	1.000	314	5.46E-06	346	5.46E-06	334	1.21	337	99.93%
RELAY 722F FAILS TO ENERGIZE	c []0.00008	318	0.00008	310	1.000	315	115.46E-06	353	5.46E-06	342	1.21	335	99.93%
RELAY 72M FAILS TO ENERGIZE	c [[0.00008	319	0.00008	312	1.000	319	5.46E-06	347	5.46E-06	351	1.21	346	99.93%
RELAY 72M FAILS TO ENERGIZE	c []0.00008	320	0.00008	314	1.000	325	5.46E-06	343	5.46E-06	348	1.21	350	99.94%
RELAY 13AK2 FAILS TO ENERGIZE	c []0.0008	321	80000.0	316	1.000	310	5.46E-06	350	5.468-06	333	1.21	344	99.94%
RELAY 721F FAILS TO ENERGIZE	c 0.00008	322	80000.0	318	1.000	322	[[5.46E-06	351	5.46E-06	339	1 1.21	339	99.94%

1.5

CALCULATED IMPORTANCE MEASURES FOR PLANT X			TABLE	Add-B2								*******	
		RISK RE	EDUCTION RAN	KINGS	********			ISK IN	CREASE RANK	CINGS			
BASIC EVENT DESCRIPTION					LEEXZDOOT	enner fl	DIDNDA	im l	RISK INCR	EASE	RISK ACHI	EVE. 11	CUM % RISK
AND	FUSSELL	- 1	CRITICALI	111	KISK RI	*u 11	DIVIDA		REUN ENSIN		WORTH	11	CONTRIBUTION
TYPE OF BASIC EVENT	VESELY		CONTRACTO /	. name	WUR	PANKII	(1)-T(0)	RANK	T(1)-T	RANK	T(1)/T	RANK	T-T(O)/SUM
	111-10071	RANK	(BIRNAU)/	(E)	(5)	(6) []	(#)	(1)	(1)	00	(L)	(M) []	(N)
(A)	[] (8)	(6)	(0)	(67				a sector of					in a second second
	- 110 00000	2.52	0.00008	305	1 000	311 11	5.46E-06	336	5.46E-06	340	1.21	338	99.94%
RELAY 722F FAILS TO ENERGIZE	C [[0.00008	363	0.00000	305	1 000	309 11	5 46E-06	337	5,46E-06	337	1.21	340 []	99.94%
RELAY 721F FAILS TO ENERGIZE	c 110.0008	324	0.00008	307	1 1 000	321 11	5.46E-06	341	5.46E-06	335	1,21	332	99.94%
RELAY 721F FAILS TO ENERGIZE	¢ []0.0008	222	0.00008	301	1 1 000	328 11	2 50F-04	84	2.50E-04	76	10.60	79	99.94%
MCC 31 BUS FAULT	c 0.00008	320	0.00000	301	1 1 000	326 11	2 50F-04	85	2.50E-04	74	10.60	75	99.94%
BUS 13 FAULT	c 110.0008	327	0.00008	309	1 1 000	327 11	2 50F-04	87	2.50E-04	77	10.60	87	99.95%
HCC 41 BUS FAULT	c [[0.0003	320	0.00008	202	1 1 000	329 11	2.50F-04	86	2.50E-04	75	10.60	74	99.95%
BUS 14 FAULT	C [[0.0008	327	0.00003	305	1 1 000	330 []	2 995-05	205	2.99E-05	205	2.15	205	99.95%
CHECK VALVE ESW-4-2 FAILS TO OPEN	c 110.00008	330	1 0.00007	302	1 1 000	331 11	1 665-05	246	1.66E-05	239	1.64	240	99,95%
CORE SPRAY TRAIN B FAILURE TO RESTORE AFTER TEST OR MAINT	0 110.00007	331	0.00007	115	1 1 000	333	1.54F-09	415	0.00E+00	403	1.00	414	90.95%
COMMON CAUSE FACTOR FOR CRD PUMPS	F 110.00006	332	1 0.00000	413	1 1 000	332 11	1.54E-09	416	0.00E+00	419	1.00	412	99.95%
CRD OUT FOR CORRECTIVE MAINTENANCE	M 110.00006	333	1 0.00000	115	1 1 000	337 11	6.97E-04	52	6.97E-04	50	27.80	53	99.95%
COMMON CAUSE FAILURE OF LEV TRANS 72 A, B, C	F 110.00005	334	1 0.00005	333	1 1 000	336 11	6.97E-04	50	6.97E-04	52	27.80	52	99.95%
COMMON CAUSE FAILURE OF LEV TRANS 72 A,C,D	F 110.00005	255	1 0.00005	336	1 1.000	334 11	6.978-04	53	6.97E-04	53	27.80	51	99.96%
COMMON CAUSE FAILURE OF LEV TRANS 72 B,C,D	+ 110.00005	330	0.00005	334	1 1.000	335 11	6.97E-04	51	6.97E-04	51	27.80	50	99.96%
COMMON CAUSE FAILURE OF LEV TRANS 72 A, B, D	r 110.00005	337	0.00005	338	1 1,000	338 11	2.508-04	88	2.50E-04	92	10.60	81	99.96%
COMMON CAUSE FAILURE TO RUN OF ALL THREE SW PUMPS	c 110.00005	330	1 0 00005	340	1 1.000	339	1.27E-05	256	1.27E-05	252	1.49	250	99.96%
SW PUMP #11 FAILS TO RUN	c 110.00005	340	1 0.00005	330	1 1.000	340 1	1.27E-05	255	1.27E-05	253	1.49	252	99.55%
SW PUMP #12 FAILS TO RUN	c 110.00005	341	1 0.00005	341	1 1.000	341	1.278-05	257	1.27E-05	251	1.49	253	99.96%
SWITCH 14AS13A FAILS TO REMAIN CLOSED	c 110,00005	342	0.00005	342	1 1.000	343	8.58E-06	296	8.58E-06	293	1.33	318	99.96%
FW-94-2 FAILS TO OPEN	c 110.00005	343	1 0.00005	343	1 1.000	342	8.58E-06	295	8.58E-06	294	1.33	307	99.96%
FW-97-2 FAILS TO OPEN	c 110.00005	344	0.00004	345	1 1.000	344	5.21E-07	388	5.20E-07	382	1.02	388	99.96%
CONDENSATE PUMP B BRNG. OIL PUMP FAILS TO NON	r 110.00004	345	1 0.00007	329	1 1.000	346	2.61E-07	397	2.60E-07	394	1.01	397	99.96%
CHECK VALVE XP-3-2 FAILS TO OPEN	c 110 00004	346	1 0.00007	330	1 1.000	345	2.61E-07	396	2.60E-07	393	1.01	391	99.96%
CHECK VALVE XP-3-1 FAILS TO OPEN	c 110 00004	347	1 0.00004	344	1 1.000	347	3.12E-06	365	3.12E-06	365	1.12	365	99.96%
RELAY 420015 OPEN COT FAILS TO ENERGIZE (420)	c 110.00004	348	1 0.00004	348	1 1.000	348	17.20E-05	160	7.20E-05	160	3.77	160	99.97%
DG11 BREAKER 152-502 FAILS TO REMAIN CLOSED	c 110.00004	340	0 00004	347	1 1.000	349	7.20E-05	161	7.20E-05	161	3.77	161	99.97%
DG12 BREAKER 152-602 FAILS TO REMAIN CLOSED	# 110 00004	350	0.00000	421	1 1.000	350	9.49E-10	417	0.00E+00	414	1.00	420	99.97%
FEEDWATER PUMP P-20 CORRECTIVE MAINTENANCE	c 110.0000	351	0.00006	349	1 1,000	351 1	1.43E-05	252	1.43E-05	247	1.55	247	99.97%
CHECK VALVE ESH-4-1 FAILS TO OPEN	c 110.0000	352	0.00004	350	1 1,000	352	11.27E-05	258	1.27E-05	250	1.49	251	99.97%
RELAY 14AK1A DEENERGIZES	c 110.0000	, 550	1 0100004										

ADD 82-12

8

8

.

•

CALCULATED IMPORTANCE MEASURES FOR PLANT X			TABLE	Add-B2					*********				**********
	+	ISK RE	DUCTION RAN	KINGS		11	R	ISK IN	CREASE RANK	INGS		П	
BASIC EVENT DESCRIPTION		******			010V DE	CONCT 1		M	RISK INCRE	ASE 1	RISK ACHI	EVE. 11	CUM % RISK
AND	FUSSELL-		CRITICALI	10	HODT NOT	ru II	Dannoris				WORTH	ii	CONTRIBUTION
TYPE OF BASIC EVENT	VESELY	- a cincl	(0100405/7	name!	T/T/01	PANK	1	RANK	T(1)-T	RANK	T(1)/T	RANK	T-T(0)/SUM
	11-1(0)/1	HANK	(BIRNAU)/1	Tes 1	(5)	(6) 1	(83	(1)	(1)	(K)]	(L)	(H) 11	(N)
(A)	(8)	(0)	(0)	167									
	c 110 00003	353 1	0.00003	351	1.000	353 1	2.038-05	238	2.03E-05	233	1.78	234 []	99.97%
BREAKER 84318 FAILS TO REMAIN CLOSED	c 110.00003	356 1	0.00003	352	1.000	354 1	1.46E-05	251	1.468-05	246	1.56	246 []	99.97%
SLC TANK HEATER FAILS	c 110.00003	354 1	0.00003	356	1 000	360 1	18.58E-06	297	8.58E-06	303	1.33	306	99.97%
MO-2062 RELAY 72/1R CONTACTS FAIL TO CLOSE	C 110.00005	754 1	0,00003	367	1 000	365 1	18 58E-06	299	8.58E-06	302	1.33	294 11	99.97%
MO-2062 RELAY 72/1R CONTACTS FAIL TO CLOSE	0 110.00005	330	0.00003	340	1 000	362 1	18 58F-06	302	8.58E-06	307	1.33	293 11	99.97%
MO-2062 RELAY 72/2R CONTACTS FAIL TO CLOSE	C 110.00005	301 1	0.00003	363	1.000	356 1	18 58F-06	308	8.58E-06	298	1.33	304 11	99.97%
RELAY 23AK27 CONTACTS FAIL TO CLOSE	c 110.00003	300	0.00003	361	1.000	366 1	18 58F-06	310	8.58E-06	305	1.33	298 11	99.97%
MO-2036 RELAY 72/2R CONTACTS FAIL TO CLOSE	C 110.00005	740	0.00003	366	1.000	367 1	18 58F-06	298	8.58E-06	304	1.33	308 []	99.97%
MO-2068 RELAY 72/2R CONTACTS FAIL TO CLOSE	c 110.00005	244	0.00003	360	1 000	368	18 58F-06	311	8.58E-06	309	1.33	311 11	99,97%
MO-2068 RELAY 72/2P CONTACTS FAIL TO CLOSE	c 110.00003	201	0.00003	7.15	1 000	363 1	18 58F-06	300	8.58E-06	297	1.33	292 11	99.97%
RELAY 23AK25 CONTACTS FAIL TO CLOSE ON HIGH TORUS LEVEL	c [10.00003	302	0.00003	322	1.000	350 1	18 58F-06	303	8 58E-06	296	1.33	296 11	99.97%
RELAY 23AK15 CONTACTS FAIL TO CLOSE ON LOW CST LEVEL	c 110.00003	363	0.00003	704	1 2 000	360 1	18 586-04	306	8 58E-06	301	1.33	314 11	99.98%
MO-2061 RELAY 72/1R CONTACTS FAIL TO CLOSE	c 0.00003	364	0.00003	326	1.000	267	10 585 04	200	1 8 585-06	295	1.33	310 []	99.98%
RELAY 23AK13 CONTACTS FAIL 10 CLOSE	c 0.00003	365	0.00003	327	1.000	755	18.585-06	305	1 8 58F-06	300	1.33	317 11	99.98%
MO-2036 RELAY 72/1R CONTACTS FAIL TO CLOSE	c 0.00003	366	0.00003	224	1 1.000	369 1	18 585-06	301	1 8 58E-06	306	1.33	302 11	99.98%
MO-2061 RELAY 72/2R CONTACTS FAIL TO CLOSE	c 0.00003	367	0.00003	322	1 1.000	364	18 585-06	307	1 8 58E-06	308	1.33	290 11	99.98%
MO-2062 RELAY 72/2R CONTACTS FAIL TO CLOSE	c 110.00003	368	0.00005	222	1 1.000	204	18 585-06	304	1 8 58E-06	299	1.33	316 11	99.98%
RELAY CONTACT 23AK28 FAILS TO CLOSE	c [[0.00003	369	0.00005	307	1 1.000	320 1	12 616-07	308	1 2 605-07	402	1.01	394 11	99.98%
RV-3039 FAILS TO REMAIN CLOSED	c [[0.00003	370	0.00002	393	1 1.000	372 1	15 628-05	165	1 5 625-05	164	3.16	166	99 98%
DG FAN VSF10 FAILS TO RUN	c [[0.00003	371	0.00005	369	1 1 000	371 1	15 628-05	164	1 5.62E-05	165	3,16	167	99.98%
DG FAN VSF9 FAILS TO RUN	c 0.00003	312	0.00005	300	1 1 000	373 1	12 61E-07	400	1 2.60E-07	392	1.01	398	99.98%
SLC PUMP P-203-B FAILS TO START	c 110.00003	373	0.00006	336	1 1 000	376 1	12 615-07	399	1 2.60E-07	391	1.01	402	99.98%
SLC PUMP P-203-A FAILS TO START	c 110.00003	314	0.00003	331	1 1 000	375 1	12 DRE-06	368	1 2.08E-06	367	1 1.08	367	99.98%
RELAY K113A FAILURE	c 0.00003	312	0.00003	370	1 1 000	376	15 628-05	167	1 5.62E-05	166	3.16	165	99.98%
BATTERY D11 UNAVAILABLE DUE TO CORRECTIVE MAINTENANCE	M 110.00003	316	0.00003	372	1 1 000	377	15 625-05	166	1 5 628-05	167	3.16	164	99.98%
BATTERY D21 UNAVAILABLE DUE TO CORRECTIVE MAINTENANCE	M [[0.00003	311	0.00005	371	1 1 000	770	10 000-05	156	1 9 00F-05	154	4.46	153	99.98%
MCC 44 BUS FAULT	c 0.00003	3/8	0.00003	373	1 1 000	378	110 005-05	153	1 9.005-05	153	4.46	154	99.98%
MCC 34 BUS FAULT	c 110.00003	319	0.00003	117	1 1 000	380	17 10E-10	418	1 0.00E+00	425	1.00	405 1	99.98%
WASTE SAMPLE PUMP A FAILS TO START	c [j0.00003	580	0.00000	(10	1 1 000	381	17 105-10	610	1 0.00E+00	427	1 1.00	413 1	99.98%
PUMP P-SA FAILS TO START	c 110.00003	581	0.00000	419	1 3 000	382	117 105-10	620	1 0.00E+00	426	1 1.00	465 1	99.98%
FAILURE OF WASTE SAMPLE PUMP B TO START	c [[0.00003	362	1 0.00000	918	1.1.000	202	11	14.0	I street av	0.00			

CALCULATED IMPORTANCE MEASURES FOR PLANT X			TABLE	Add 82					***********	unsasaa	resetterts		
		RISK RE	DUCTION RAN	KINGS	10 M 9 M 10 M 11 M			RISK IN	CREASE RAN	KINGS		41	
BASIC EVENT DESCRIPTION						CORDERES.			LEUZEBOUCKS	ESSERCE	DICK ACU	erur 11	CIN V DICK
AND	FUSSELL	·	CRITICALI	TY	RISK R	EDUCT. []	BIRNBA	UM I	HISK INCH	ERSE	NISK AUT	10 vc. 11	CONTRIBUTION
TYPE OF BASIC EVENT	VESELY				WOR	(H]]	*/** */DS	The Address	T245.T	DANK	*URIN	DANKII	T_T(D)/SUR
	T-T(0)/T	RANK	(BIRN*U)/T	RANK	1/1(0)	RANK	1(1)-1(0)	KANK	11.12-1	(K)	1 (1.5	(M) []	(N)
(A)	(B)	(()	(0)	(E)	(F)	(0) []	(H)	(1)	1.07	ANJ :	- 147 		
NAMES OF A STATE OF A STATE	c 110,00003	383	0.00000	416	1,000	383	7.10E-10	421	0.00E+00	428	1.00	416	99.99%
PUMP P-38 FAILS TO START	c 110.00003	386	0.00003	376	1.000	385 11	8.58E-06	312	8.58E-06	292	1.33	319	99.99%
CHARGER DBU RANDOM FAILURE	c 110 00003	385	0.00003	377	1.000	384 11	8.58E-06	313	8.58E-06	291	1.33	313 []	99.99%
CHARGER D/U RANDOM FAILURE	c 110.00003	386	0.00002	384	1.000	392 11	8.58E-06	320	8.58E-06	318	1.33	315	99.99%
CHECK VALVE HPO-2 FAILS TO OPEN	c 110.00002	387	0.00002	381	1.000	390 11	8.58E-06	316	8.58E-06	317	1.33	312	99.99%
CHECK VALVE HPO-1 FAILS TO OPEN	c 110 00002	388	0.00002	382	1,000	386 11	8.58E-06	314	8.58E-06	314	1.33	299	99.99%
CHECK VALVE HPCI-18 FAILS TO OPEN	c 110,00002	389	0.00002	379	1,000	388	8.58E-06	318	8.58E-06	312	1.33	291	99.99%
CHECK VALVE HPCI-9 FAILS TO OPEN	c 110.00002	390	0.00002	380	1.000	389 11	8.58E-06	321	8.58E-06	310	1.33	309	99.99%
PRESSURE SWITCH PS-1 DUES HOT CLOSE ON CON OIL THEOSONE	c 110.00002	391	0.00002	385	1.000	391 []	8.58E-06	317	8.58E-06	313	1.33	305 []	99.99%
CHECK VALVE HPCI-IU FAILS TO OPEN	c 110,00002	392	1 0.00002	378	1.000	393]]	8.58E-06	315	8.58E-06	319	1.33	301	99.99%
HPCI STEAM LINE DWAIN AND ALARM FAIL ON INITIAL STANT	c 110.00002	101	0.00002	383	1,000	387 []	8.58E-06	319	8,58E-06	311	1.33	297	99.99%
RO 23-10 TRILS TO JER BLOUGHT	c 110.00002	394	0.00002	386	1.000	394 11	8.58E-06	322	8.58E-06	290	1.33	295	99.99%
THE PANEL SUPPLY FUSE BLOWOUT	c 110.00002	305	1 0.00002	390	1.000	395 11	2.50E-04	91	2.50E-04	88	10.60	85	99.99%
CV 1470 FAILS TO REMAIN OPEN	c 110.00002	305	0.00002	389	1.000	399 11	2.50E-04	89	2.50E-04	89	10.60	89	99.99%
ISOLATION VALVE LV-1478 FAILS TO REMAIN OPEN	c 110.00002	397	0.00002	391	1.000	398 11	2.50E-04	90	2.50E-04	90	10.60	90	99.99%
PCV-545UR FAILS TO REMAIN OPEN	c 110.00002	398	1 0.00002	387	1.000	397 11	2.50E-04	93	2.50E-04	91	10.60	83	99.99%
PCV-S4508 FAILS TO REMAIN OPEN	c 110 00002	100	0.00002	388	1,000	396	2.50E-04	92	2.50E-04	93	10.60	86	99.99%
A0-1579 FAILS TO REMAIN OPEN	c 110,00002	400	0.00002	393	1 1.000	401 11	1.56E-06	376	1.56E-06	374	1.06	375	99.99%
FAILURE OF RELAY 95-7 TO ENERGIZE	c 110 00002	401	1 0.00002	392	1 1.000	400 11	1.56E-06	375	1.56E-06	375	1,06	374	99.99%
FAILURE OF RELAT 92-8 TO ENERGILE	c 110.00002	402	1 0.00002	396	1 1.000	402 11	8.58E-06	323	8.58E-06	316	1.33	300	99.99%
HPCI-32 FAILS TO OPEN	c 110 00002	403	0.00002	397	1 1.000	403	8.588-06	324	8.58E-06	315	1.33	303	99.99%
HPCI-31 FAILS TO OPEN	c 110.00002	404	1 0.00002	398	1.000	404 1	2.60E-06	366	2.60E-06	366	1.10	366	99.99%
CONDENSATE FUMP A FAILS TO RUN	c 110,00002	405	0.00000	424	1 1.000	405	4.19E-10	422	0.00E+00	412	1.00	426	99.99%
2A FEEDWATER AUX OIL FUMP FAILS TO START	c 110.00002	406	0.00000	426	1 1.000	406	4.03E-10	423	0.00E+00	411	1 1.00	407	100.00%
ESW PUMP PITT D FAILS TO START	c 110.00002	407	0.00000	425	1 1.000	407	4.03E-10	424	0.00E+00	409	1.00	419	100.00%
ESW PUMP FILL C FALLS TO START	M 110.00001	408	0.00000	422	1.000	408	3.82E-10	426	0.005+00	421	1.00	409	100.00%
COMPRESSOR 13 UNAVAILABLE DUE TO CORRECTIVE MAINTENANCE	M 110 00001	409	0.00000	423	1 1,000	409	3.82E-10	425	0.00E+00	420	1.00	425	100.00%
COMPRESSON 12 UNAVAILABLE DUE TO CORRECTIVE MAINTENANCE	c 110.00001	610	1 0,00003	375	1 1.000	410 1	2.60E-07	401	2.60E-07	395	1 1.01	390	100.00%
AIR COMPRESSOR WITH FAILS TO RUN	110.00001	611	1 0,00001	402	1 1.000	413 1	3.59E-05	186	3.59E-05	190	2.38	187]	100.00%
FAREL DETI OUT FOR CORRECTIVE HAINTENANCE	M 110.00001	412	1 0.00001	401	1 1.000	411	3.59E-05	187	3.59E-05	188	2.38	189	100.00%

CALCULATED IMPORTANCE MEASURES FOR PLANT X

***************************************	200	***********		**********	*****				and a set of the			essenses.		************
	1	R	ISK RE	DUCTION RAN	KINGS				RISK IN	CREASE RAN	KINGS			1
BASIC EVENT DESCRIPTION	-1			**********		*********					uszases	LESSZEDANCI		
AND	1	FUSSELL-	1	CRITICALI	TY	RISK RE	EDUCT.	BIRNBAU	/M	RISK INCR	EASE	RISK ACHI	EVE.	[CUM % RISK]
TYPE OF BASIC EVENT	1	VESELY	- 1			- WORT	TH	1				WORTH	1	CONTRIBUTION
	- İ	T-T(0)/T	RANK	(BIRN*U)/T	RANK	T/T(0)	RANK	T(1)-T(0)	RANK	T(1)-T	RANK	T(1)/T	RANK	T-T(C)/SUM
(A)	1	(8)	(0)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)
	- 1				(10.00) (10.00)	-					. second	-		
D21 UNAVAILABLE BECAUSE OF CORRECTIVE MAINTENANCE	81	0.00001	413	0.00001	400	1.000	412	3.59E-05	188	3.59E-05	191	2.38	186	100.00%
PANEL D11 OUT FOR CORRECTIVE MAINTENANCE	H 1	0.00001	414]	0.00001	399	1.000	414	3.59E-05	189	3.59E-05	189	2.38	190	100.00%
CHECK VALVE CS-9-2 FAILS TO OPEN	CH	0.00001	415	0.00001	404	1.000	415	4.94E-06	355	4.948-06	353	1.19	354	100.00%
CHECK VALVE AC-13B FAILS TO OPEN	¢ [0.00001	416	0.00001	405	1.000	416	4.94E-06	356	4.94E-06	352	1.19	353	100.00%
MCC 33A BUS FAULT	c	0.00001	417	0.00001	406	1.000	417	3.59E-05	190	3.59E-05	186	2.38	191	100.00%
MCC 43A BUS FAULT	c [0.00001	418	0.00001	407	1.000	418	3.59E-05	191	3.59E-05	187	2.38	188	100.00%
RV 7384 FAILS TO REMAIN CLOSED	C [0.00001	419	0.00001	409	1.000	421	1.82E-06	372	1.82E-06	373	1.07	370	100.00%
RV 1459A FAILS TO REMAIN CLOSED	c	0.00001	420	0.00001	410	1.000	420	1.82E-06	374	1.82E-06	369	1.07	373	100.00%
RV 1460A FAILS TO REMAIN CLOSED	c [0.00001	421	0.00001	412	1.000	422	1.82E-06	371	1.82E-06	371	1.07	371	100.00%
RV 14608 FAILS TO REMAIN CLOSED	c [0.00001	422	0.00001	413	1.000	419	1.828-06	373	1.828-06	372	1.07	369	100.00%
RV 1459B FAILS TO REMAIN CLOSED	c	0.00001	423	0.00001	411	1.000	423	1.826-06	370	1.82E-06	370	1,07	372	100.00%
RFP ZA FAILS TO START	C	0.00001	424	0.00000	427	1.000	424	2.68E-10	427	0.00E+00	413	1.00	418	100.00%
ESW PUMP P111 D FAILS TO RUN	C	0.00001	425	0.00000	428	1.000	427	2.63E-10	428	0.00E+00	410	1.00	424	100.00%
ESW PUMP P111C FAILS TO RUN	c	0.00001	426	0.00000	429	1.000	426	2.63E-10	429	0.00E+00	408	1.00	422	100.00%
REACTOR LEVEL SENSOR LIS 2-3-672A FAILS TO CLOSE ON LOW	c	0.00001	427	0.00001	408	1.000	425	3.64E-06	363	3.64E-06	363	1.14	363	100.00%
FAILURE OF PRESSURE SWITCH DPIS-1473	01	0.00001	428	0.00001	403	1.000	429	2.60E-07	402	2.60E-07	397	1.01	399	100.00%
INST AIR DRYER PLUGGED	c	0.00001	429	0.00001	414	1.000	428	2.60E-07	403	2.60E-07	396	1.01	401	100.00%