

UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555-0001

May 31, 1994

Docket Nos. 50-369 and 50-370

> Mr. M. S. Tuckman Senior Vice President Nuclear Generation Duke Power Company P. O. Box 1006 Charlotte, North Carolina 29201

Dear Mr. Tuckman:

060371

9406080225 940531

ADOCK 05000369

PDR

PDR

SUBJECT: GENERIC LETTER (GL) 92-01, REVISION 1, "REACTOR VESSEL STRUCTURAL INTEGRITY," MCGUIRE NUCLEAR STATION, UNITS 1 AND 2 (TAC NO. M83480 AND M83481)

By letter dated July 3, 1992, Duke Power Company (DPC) provided its response to GL 92-01, Revision 1. The NRC staff has completed its review of your response. Based on its review, the staff has determined that DPC has provided the information requested in GL 92-01.

The GL is part of the staff's program to evaluate reactor vessel integrity for Pressurized Water Reactors (PWRs) and Boiling Water Reactors (BWRs). The information provided in response to GL 92-01, including previously docketed information, is being used to confirm that licensees satisfy the requirements and commitments necessary to ensure reactor vessel integrity for their facilities.

A substantial amount of information was provided in response to GL 92-01, Revision 1. These data have been entered into a computerized data base designated the Reactor Vessel Integrity Database (RVID). The RVID contains the following tables: A pressurized thermal shock (PTS) table for PWRs, a pressure-temperature limits table for BWRs and an upper-shelf energy (USE) table for PWRs and BWRs. Enclosure 1 provides the PTS table, Enclosure 2 provides the USE table for your facilities, and Enclosure 3 provides a key for the nomenclature used in the tables. The tables include the data necessary to perform USE and RT_{pts} evaluations. These data were taken from your response to GL 92-01 and previously docketed information. References to the specific source of the data are provided in the tables.

We request that you verify that the information that you have provided for your facilities has been accurately entered in the summary data files. No response is necessary unless an inconsistency is identified. If no comments are received within 30 days from the date of this letter, the staff will consider your actions related to GL 92-01, Revision 1, to be complete and the staff will use the information in the tables for future NRC assessments of your reactor pressure vessel.

NRC FILE CENTER COPY

Mr. M. S. Tuckman

The information requested by this letter is within the scope of the overall burden estimated in GL 92-01, Revision 1, "Reactor Vessel Structural Integrity, 10 CFR 50.54(f)." The estimated average number of burden hours is 200 person hours for each addressee's response. This estimate pertains only to the identified response-related matters and does not include the time required to implement actions required by the regulations. This action is covered by the Office of Management and Budget Clearance Number 3150-0011, which expires June 30, 1994.

Sincerely,

Original signed by:

Victor Nerses, Project Manager Project Directorate II-3 Division of Reactor Projects I/II Office of Nuclear Reactor Regulation

Enclosures:

- Pressurized Thermal Shock Tables
- 2. Upper-Shelf Energy Tables
- 3. Nomenclature Key

cc w/enclosures: See next page

DISTRIBUTION

Docket File PD23 Reading File NRC/Local PDR DMatthews VNerses LBerry GLainas OGC ACRS (10) DMcDonald JJohnson, RII

OFF	LA: PD23: DRPE	PM: PD23: DRPE	D: RD23: DRPE	
NAME	LBerry D	WNerses:dt	DMatthews	
DATE	5/24/94	E 12/ 194	5/3/194	

Document Name: MCGUIRE\9201.RII

Mr. M. S. Tuckman

The information requested by this letter is within the scope of the overall burden estimated in GL 92-01, Revision 1, "Reactor Vessel Structural Integrity, 10 CFR 50.54(f)." The estimated average number of burden hours is 200 person hours for each addressee's response. This estimate pertains only to the identified response-related matters and does not include the time required to implement actions required by the regulations. This action is covered by the Office of Management and Budget Clearance Number 3150-0011, which expires June 30, 1994.

Sincerely,

erses

Victor Nerses, Project Manager Project Directorate II-3 Division of Reactor Projects I/II Office of Nuclear Reactor Regulation

Enclosures:

- Pressurized Thermal Shock Tables
- 2. Upper-Shelf Energy Tables
- 3. Nomenclature Key

cc w/enclosures: See next page Duke Power Company

cc: A. V. Carr, Esquire Duke Power Company 422 South Church Street Charlotte, North Carolina 28242-0001

County Manager of Mecklenberg County 720 East Fourth Street Charlotte, North Carolina 28202

Mr. R. O. Sharpe Compliance Duke Power Company McGuire Nuclear Site 12700 Hagers Ferry Road Huntersville, NC 28078-8985

J. Michael McGarry, III, Esquire Winston and Strawn 1400 L Street, NW. Washington, DC 20005

Senior Resident Inspector c/o U. S. Nuclear Regulatory Commission 12700 Hagers Ferry Road Huntersville, North Carolina 28078

Mr. T. Richard Puryear Nuclear Technical Services Manager Westinghouse Electric Corporation Carolinas District 2709 Water Ridge Parkway, Suite 430 Charlotte, North Carolina 28217

Dr. John M. Barry Mecklenberg County Department of Environmental Protection 700 N. Tryon Street Charlotte, North Carolina 28202 McGuire Nuclear Station

Mr. Dayne H. Brown, Director Department of Environmental Health and Natural Resources Division of Radiation Protection P. O. Box 27687 Raleigh, North Carolina 27611-7687

Mr. Marvin Sinkule, Chief Project Branch #3 U. S. Nuclear Regulatory Commission 101 Marietta Street, NW. Suite 2900 Atlanta, Georgia 30323

Ms. Karen E. Long Assistant Attorney General North Carolina Department of Justice P. O. Box 629 Raleigh, North Carolina 27602

Mr. G. A. Copp Licensing - EC050 Duke Power Company 526 South Church Street Charlotte, North Carolina 28242-0001

Regional Administrator, Region II U.S. Nuclear Regulatory Commission 101 Marietta Street, NW. Suite 2900 Atlanta, Georgia 30323

Mr. T. C. McMeekin Vice President, McGuire Site Duke Power Company 12700 Hagers Ferry Road Huntersville, North Carolina 28078

Elaine Wathen, Lead REP Planner Division of Emergency Management 116 West Jones Street Raleigh, North Carolina 27603-1335

ENCLOSURE 1

Plant Name	Baltline Ident.	Heat No. Ident.	ID Neut. Fluence at EOL	IRT	Method of Determin. IRT _{nut}	Chemistry Factor	Method of Determin. CF	XCu	X2N 1
AcGuire 1	Int. shell 85012-1	C4387-2	2.02E19	34°F	Plant Specific	54.51	Calculated	0.11	0.61
EOL: 6/12/2021	Int. shell B5012-2	C4417-3	2.02E19	0°F	Plant Specific	100	Table	0.14	0.61
	Int. shell B5012-3	C4377-2	2.02E19	-13°F	Plant Specific	75	Table	0.11	0.66
	Lower shell 85013-1	C4315-1	2.02E19	0"F	Plant Specific	99.1	Table	0.14	0.58
	Lower shell 85013-2	c4374-2	2.02819	30°F	Plant Specific	65	Table	0.10	0.51
	Lower shell 85013-3	C4371-2	2.02E19	15°F	Plant Specific	65	Table	0.10	0.55
	Int. shell axial welds M1.22	20291 and 12008	1.46E19	-50°F	Plant Specific	171.06	Calculated	0.20	0.87
	Int. to lower shell circ. weld G1.39	83640	2.02E19	- 70*F	Plant Specific	39.8	Tabie	0.05	0.12
	3-442 ABC Lower shell axial welds M1.32	21935 and 12008	1.46819	·56°F	Generic	209.6	Table	0.22	0.86

Summary File for Pressurized Thermal Shock

References for McGuire 1

ſ

IRT_{ent} data are from July 3, 1992, letter from H. B. Tucker (DPCo) to USNRC Document Control Desk, subject: McGuire Nuclear Station, Units 1 and 2; Catawba Nuclear Station Units 1 and 2; Oconee Nuclear Station, Units 1, 2, and 3: Response to Generic Letter 92-01, Revision 1, Reactor Vessel Structural Integrity.

Fluence data are from the March 17, 1994 letter to USNRC subject: Pressurized Thermal Shock

Chemical compositions are from the response to GL 92-01 dated 12/20/93 and from the March 17, 1994 letter on Pressurized Thermal Shock.

Summary File for Pressurized Thermal Shock

Plant Name	Beltline Ident.	Heat No. Ident.	ID Neut. Fluence at EOL	IRT _{not}	Method of Determin. IRT _{ME}	Chemistry Factor	Method of Determin. CF	XCu	Xin i
McGuire 2	Forging 05 Int. shell	526840	2.04£19	- 4 * F	Plant Specific	87.98	Calculated	0.16	0.85
EOL: 3/3/2023	Forging 04 Lower shell	411337-11	2.04E19	-30°F	Plant Specific	115.8	Table	0.15	0.88
	Int. to Lower shell Welds Shell W05	895075	2.04E19	- 68° F	Plant Specific	33.48	Calculated	0.03	0.70

References for McGuire 2

14

Chemical composition and IRT_{net} data are from July 3, 1992, letter from H. B. Tucker (DPCo) to USMRC Document Control Desk, subject: McGuire Nuclear Station, Units 1 and 2; Catawba Nuclear Station Units 1 and 2; Oconee Nuclear Station, Units 1, 2, and 3: Response to Generic Letter 92-01, Revision 1, Reactor Vessel Structural Integrity.

Fluence data are from Table 6-22 of WCAP-13516.

Plant Name	Beltline Ident.	Heat No.	Material Type	1/4T USE at EOL	1/4T Neutron Fluence at EOL	Unirrad. USE	Method of Determin. Unirrad. USE
McGuire 1	Int. shell 85012-1	C4387-2	A 5338-1	71	1.20619	89	65%
EOL: 6/12/2021	Int. shell B5012-2	C4417-3	A 5338-1	68	1.20219	89	65%
	Int. shell 85012-3	C4377-2	A 5338-1	81	1.20E19	100	65%
	Lower shell B5013-1	C4315-1	A 5338-1	64	1.20E19	84	65%
	Lower shell B5013-2	c4374-2	A 5338-1	77	1.20E19	96	65%
	Lower shell 85013-3	c4371-2	A 5338-1	68	1.20E19	85	65%
	Int. shell axial welds M1.22	20291 and 12008	Linde 1092, SAW	70	0.87619	110	Direct
	Int. to lower shell 9- 4442 circ. weld G1.39	83640	Linde 0091, SAW	101	1.20E19	126	Direct
	Lower shell axial welds M1.32	21935 and 12008	Linde 1092, SAW	59	0.87619	90	Direct

Summary File for Upper Shelf Energy

References

1

Chemical composition and UUSE data are from July 3, 1992, letter from H. B. Tucker (DPCo) to USNRC Document Control Desk, subject: McGuire Nuclear Station, Units 1 and 2; Catawba Nuclear Station Units 1 and 2; Oconee Nuclear Station, Units 1, 2, and 3: Response to Generic Letter 92-01, Revision 1, Reactor Vessel Structural Integrity.

UUSE data for welds M1.22, G1.39, and M1.32 are from Table A-1 of WCAP-10786.

Plant Hame	Beltline Ident.	Heat No.	Material Type	1/4T USE at EOL	1/4T Neutron Fluence at EOL	Unirrad. USE	Method of Determin. Unirrad. USE
McGuire 2	Int. shell Forging 05	526840	A 508-2	74	1.225619	100	Direct
EOL: 3/3/2023	Lower shell Forging 04	411337-11	A 508-2	71	1.225E19	97	65%
	Int. lower shell Welds W05	895075	Grau Lo, SAW	112	1.225E19	140	Direct

Summary File for Upper Shelf Energy

References

Chemical composition and UUSE data are from July 3, 1992, letter from H. B. Tucker (DPCo) to USNRC Document Control Desk, subject: McGuire Nuclear Station, Units 1 and 2; Catawbe Huclear Station Units 1 and 2; Oconee Nuclear Station, Units 1, 2, and 3: Response to Generic Letter 92-01, Revision 1, Reactor Vessel Structural Integrity.

Fluence data are from Table 5-22 of WCAP-13516.

PRESSURIZED THERMAL SHOCK AND USE TABLES FOR ALL PWR PLANTS

NOMENCLATURE

Pressurized Thermal Shock Table

Column Column Column	2:	Plant name and date of expiration of license. Beltline material location identification. Beltline material heat number; for some welds that a single- wire or tandem-wire process has been reported, (S) indicates single wire was used in the SAW process, (T) indicates tandem wire was used in the SAW process.
.Column	4:	End-of-life (EOL) neutron fluence at vessel inner wall; cited directly from inner diameter (ID) value or calculated by using Regulatory Guide (RG) 1.99, Revision 2 neutron fluence attenuation methodology from the quarter thickness (T/4) value reported in the latest submittal (GL 92-01, PTS, or P/T limits submittals).
Column Column		Unirradiated reference temperature. Method of determining unirradiated reference temperature (IRT).
		<u>Plant-Specific</u> This indicates that the IRT was determined from tests on material removed from the same heat of the beltline material.
		MTEB 5-2 This indicates that the unirradiated reference temperature was determined from following MTEB 5-2 guidelines for cases where the IRT was not determined using American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, NB-2331, methodology.
		<u>Generic</u> This indicates that the unirradiated reference temperature was determined from the mean value of tests on material of similar types.
Column	7:	Chemistry factor for irradiated reference temperature
Column	8:	evaluation. Method of determining chemistry factor
		<u>Table</u> This indicates that the chemistry factor was determined from the chemistry factor tables in RG 1.99, Revision 2.
		<u>Calculated</u> This indicates that the chemistry factor was determined from surveillance data via procedures described RG 1.99, Revision 2.

Column 9: Copper content; cited directly from licensee value except when more than one value was reported. (Staff used the average value in the latter case.)

No Data

This indicates that no copper data has been reported and the default value in RG 1.99, Revision 2, will be used by the staff.

Column 10: Nickel content; cited directly from licensee value except when more than one value was reported. (Staff used the average value in the latter case.)

No Data

This indicates that no nickel data has been reported and the default value in RG 1.99, Revision 2, will be used by the staff.

Upper Shelf Energy Table

Column	1:	Plant name and date of expiration of license.
Column	2:	Beltline material location identification.
Column	3:	Beltline material heat number; for some welds that a single- wire or tandem-wire process has been reported, (S) indicates single wire was used in the SAW process. (T) indicates tandem
		wire was used in the SAW process.
Column	4:	Material type; plate types include A 5338-1, A 302B, A 302B Mod., and forging A 508-2; weld types include SAW welds using
		Linde 80, 0091, 124, 1092, ARCOS-B5 flux, Rotterdam welds using Graw Lo, SMIT 89, LW 320, and SAF 89 flux, and SMAW welds using no flux.
Column	5:	EOL upper-shelf energy (USE) at $T/4$; calculated by using the EOL fluence and either the cooper value or the surveillance data. (Both methods are described in RG 1.99, Revision 2.)
		EMA This indicates that the USE issue may be covered by either owners group or plant-specific equivalent margins analyses.

Column 6: EOL neutron fluence at T/4 from vessel inner wall; cited directly from T/4 value or calculated by using RG 1.99, Revision 2 neutron fluence attenuation methodology from the ID value reported in the latest submittal (GL 92-01, PTS, or P/T limits submittals).

Column 7: Unirradiated USE.

EMA

This indicates that the USE issue may be covered by either owners group or plant-specific equivalent margins analyses.

Column 8: Method of determining unirradiated USE

Direct

For plates, this indicates that the unirradiated USE was from a transverse specimen. For welds, this indicates that the unirradiated USE was from test date.

65%

This indicates that the unirradiated USE was 65% of the USE from a longitudinal specimen.

Generic

This indicates that the unirradiated USE was reported by the licensee from other plants with similar materials to the beltline material.

NRC generic

This indicates that the unirradiated USE was derived by the staff from other plants with similar materials to the beltline material.

10, 30, 40, or 50 °F

This indicates that the unirradiated USE was derived from Charpy test conducted at 10, 30, 40, or 50 °F.

Surv. Weld

This indicates that the unirradiated USE was from the surveillance weld having the same weld wire heat number.

Equiv. to Surv. Weld

This indicates that the unirradiated USE was from the surveillance weld having different weld wire heat number.

Sister Plant

This indicates that the unirradiated USE was derived by using the reported value from other plants with the same weld wire heat number.

Blank

indicates that there is insufficient data to determine the unirradiated USE.