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Abstract

This report presents the results of the first year of an ongoing research
program to determine the probability of failure characteristics of computer
codes relevant to nuclear safety. An introduction to both qualitative and )
quantitative aspects of nuclear software is given. A mathematical framework '

is presented which will enable the a priori prediction of the probability of
failure characteristics of a code given the proper specification of its
properties. The framework consists of four parts: 1) a classification system
for software errors and code failures; 2) probabilistic modeling for selected
reliability characteristics; 3) multivariate regression analyses to establish
predictive relationships among reliability characteristics and generic code
property and development parameters; and 4) the associated information base.
Preliminary data of the type needed to support the modeling and the pre-
dictions of this program are described. Illustrations of the use of the
modeling are given but the results so obtained, as well as all "results" of
code failure probabilities presented herein, are based on data which at this
point are preliminary, incomplete, and possibly non-representative of codes
relevant to nuclear safety.
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Executive Summary

This report presents the results of the first year of an ongoing research
program to determine the probability of failure characteristics of computer
codes relevant to nuclear safety. An introduction to both qualitative and

~

quantitative aspects of nuclear software is given. A mathematical framework
is presented which will enable the a priori prediction of the probability of
failure characteristics of a code given the proper specification of its
properties. Preliminary data of the type needed to support the modeling and
the predictions of this program are described. Illustrations of the use of
the modeling are given but the results so obtained, as well as all "results"
of code failure probabilities presented herein, are based on data which at
this point are preliminary, incomplete, and possibly non-representative of ,

codes relevant to nuclear safety.

,

,
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1.0 Introduction and Summary

This report describes the results of the initial phase of a research program
sponsored by the Nuclear Regulatory Commission (NRC) and designed to establish
quantitative predictions of reliability for the computer software used in the
nuclear industry. The overall objective of this program is to develop generically
applicable analytic tools and an associated information base that can be used
to estimate the probability of success and other reliability characteristics of
any specific computer code relevant to nuclear reactor safety, given the character-
istics of the specified code. Relevant applications in nuclear safety include
both analysis computer codes used in design and safety assessment and data
acquisition codes used in real and simulated on-line and emergency situations.

Illustrative examples of the type of question that this research program is
designed to answer or to help to answer are:

1. What is the probability that a large safety code yields '
the correct (or at least a conservative estimate of the)
containment pressure for a hypothetical loss of coolant-
accident? Although the phenomenological modeling
uncertainties are evident and 'may dominate the " answer"
a contributor to this probability is the uncertainty in
whether the associated software is input and exercised
properly. This latter contribution is to be assessed in
this program.

2. What is the probability that a computer program monitoring
and analyzing real time nuclear reactor sensor data correctly
interprets, analyzes, and presents this data to a reactor
operator in an emergency situation?

To not only answer questions such as these for existing specific computer
programs, but to provide generically applicable answers for use in enhancing
nuclear safety, the designated specific goals for the analytic tools and
information developed as part of this program are to:

1. Allow NRC to make an a priori estimate of a computer code's
probability of successful operation given the code's general
properties and its intended application. These properties
include not only physical characteristics such as size, complexity
and programming language but development and quality assurance
parameters such as testing history and operational history
af ter testing. It is to be emphasized that the usage or application
of a code can be a strong determinant of its probability of
successful operation.

2. Provide information for NRC to determine quantitative criteria
for the acceptability of software relevant to nuclear safety
for eventual use in the licensing arena.

The motivation for this program is provided by the important role played by
computers in reactor design and safety analysis and by the growing need for
improved on-line information processing. Propagation of software errors in
reactor design codes can lead to analytical predictions, resulting among other

._ _ _ _ _
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things, in unsafe plant hardware design, unsafe operational and safety para-
meters such as trip settings, and erroneous predictions of plant lifetime
related parameters. Software errors in reactor safety assessment codes may
result in either false " security" in which needed safety measures go unrecogni-
zed or in undue alarm leading to the incorporation of unnecessary, costly, and
even potentially unsafe mitigation devices. As pointed out'by Fabic [1.1], the
accuracy of a safety code in predicting the response of a plant to a nuclear
accident is a function of programming errors as well as a host of plant and
modeling uncertainties. All these factors make it clear that software reli-
ability must be integrated into quantitative assessments of nuclear safety.

The growing need for data acquisition and information processing codes in on-
line situations has been highlighted by the President's Commission on the Three
Mile Island Accident [1.2]. Long et al. [1.3] and Ramamoorthy et al. [1.4]
have emphasized the necessity for a methodology to assess the development and
validation of critical software for nuclear power plants. On-line safety
protection system software such as the Core Protection Calculator (CPC)
implemented in the Arkansas Nuclear One, Unit 2 [1.5] and a proposed disturbance
analysis system (DAS) [1.6] are example's of critical software. The CPC is a
software system which processes sensor infonnation and if necessary initiates a
High Local Power Density or Low DNBR trip. DAS is a computer network of
hardware and software which allows plant personnel to access and act upon real-
time information relating to possible causes and consequences of disturbances
and corrective actions. Propagation of software errors through these systems
can lead to delayed or erroneous control and operator actions, and unnecessary
forced outages. For example, in a review of 14 events [1.7] in which reactor
control was either lost or impaired at one Canadian power station, nearly half
of the events were traced to deficiencies in control computer software. These
deficiencies were about evenly split between changes introduced since software
implementation and problems with code design.

Given the goals of this research, the software reliability program in FY 81 was
broken into interrelated tasks:

1. Review the literature for and discuss with experts in the
field known mathematical approaches and associated data
bases for quantifying software reliability. Investigate
this information as to its applicability for this program.

2. Develop a mathematical approach that will meet the specific
goals outlined above. As will be described in Section 3,
existing models have limited usefulness here. Further, to

| support the approach of this program, the existing data
! base will have to be greatly expanded. This is discussed
| in Section 4.

The work that was done to satisfy the first task, which included information
exchanges and discussion with personnel in aerospace, defense, communications,
and computer technologies, clearly pointed out the need for the quantitative

| analytic capability and associated information base that are the end products
of this program.

i

. .._ _ ._



4 |

|

The remainder of this report discusses the progress that has been made on the
program to date. Section 2 of this report briefly discusses some of the
design and development considerations that enter into the production of reli-
able software. Organizations instrumental in establishing software standards
in the nuclear industry are cited. Finally, problems in the validation and
verification of nuclear-safety-related software are discussed. It is intended
to give the reader insight into qualitative reliability characteristics of
computer software.

Section 3 discusses the functional requirements and desired results of this
program in mathematical forms. The mathematical reliability models that have
been published are described. Obtaining and analyzing failure data with these
models to understand their underlying bases was a significant part of the FY81
research. The role of these models in assessing nuclear sof tware is described
in light of our studies with them. A mathematical approach that will meet the
quantitative requirements of this program is outlined with descriptions of the
necessary supporting mathematical and statistical models and information. The

implementation of this approach is next described.

The most significant problem in developing mathematical models to predict
software reliability characteristics is the lack of failure data upon which to
base and subsequently test these models. As will be seen in Section 3, published
models do not explicitly treat code characteristics such as complexity, testing
history, and application, which are critical to 'a code's probability of
successful operation. Further, published models were developed to evaluate the
reliability of continuously running codes such as those used in continuous data
acquisition and generally predict failure rates vs. time, a parameter which has
little significance in evaluating the failure probability of an analysis code
in a specific execution. The accumulation of non-nuclear and nuclear software
failure data, both published and unpublished, as well as the initiation of
documentation of related failure data within ANL is being pursued with the
objective to categorize code failure data according to the general code
properties. This categorization is necessary for research goal number 1 to be
achieved. Section 4 reports progress to date and future efforts in accumulating
and generating these data.

Section 5 discusses initial results of analyzing published data to obtain pre-
liminary but illustrative reliability estimates. Far more extensive studies
will be performed but the flavor of the studies is shown in Section 5 This
section also describes some very brief results of preliminary surveys to obtain
subjective estimates of sof tware reliability among computer code developers and
users. Because the data to date are preliminary, unverified, and possibly
non-representative of related nuclear software, these results are presented
only for illustration.

Section 6 outlines the directions that should be followed to best achieve the
goals of this research program. Specific research paths and tasks are suggested
with the end product of each described.
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2.0 Considerations in the Development of Reliable Software

This section briefly discusses some of the design and development considerations
that enter into the development of reliable sof tware. Organizations instru-
mental in establishing sof tware standards, especially in the nuclear industry,
are cited. Finally, comments regarding the validation and verification of
codes are offered. It is seen that safety codes in the nuclear industry pose
special problems.

The initial phase of software development, as depicted in Figure 1, emphasizes
the structure of software, with the assumption that well structured or modular
software results in improved reliability. By simplifying logic and program
control, program functions become easier to understand and consequently,
testing of such sof tware is facilitated [2.1,2.2,2.3].

In the fast reactor physics community, there is an ongoing, major effort to
implement standardization procedures and guidelines to maximize the exchange-
ability of sof tware, as proposed by the Committee on Computer Code Coordination
(CCCC) [2.4] established by D0E. Recommendations of the CCCC also include
standardization of utility subroutines, data storage, and input / output (I/0)
files. This reduces the introduction of new errors (bugs) and the dependence
of coding upon a specified computer, thereby facilitating exportability of
software, exchangeability of information, and availability of documentation.
The CCCC is strongly supported by the national laboratories and to a lesser
extent by the nuclear industry.

Another approach to the development of reliable software is redundancy. This
is a familiar concept in the hardware design of nuclear power plants. Appli-
cation of a similar concept to fault-tolerant sof tware development has been
suggested by Randall [2.5]. Redundancy may be accomplished through code
design rather than by simple replication of programs. For example, in the
operation of nuclear power plants, redundancy in the on-line software can be
provided by comparing computed signals with signals from the sensors located
at the various parts of the plants. This approach provides independent
validation of both the senscrs and the sof tware.

In the military, aerospace, and communication industries, where development of
highly reliable sof tware is critical, emphasis [2.6,2.7,2.8] has been focused
on guidelines and standard procedures to achieve highly reliable software. In
the nuclear field, efforts in software reliability have been also directed to
developing or assuring reliable sof tware as cited earlier.

In the nuclear energy field, standards committees and organizations have
developed standards applicable to nuclear software as follows:

1. American National Standard Institute (ANSI)

ANSI X3.9-1966 American National Standard FORTRAN
ANSI /IEEE Std 730 IEEL Trial-Use Standard for Software

Quality Assurance Plan
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2. American Nuclear Society (ANS)

ANS-STD.3-1971 Recommended Programming Practices to
Facilitate the Interchange of Digital
Computer Programs

ANS-10.3/N413-1974 Guidelines for the Documentation of
Digital Computer Programs (also approved
by ANSI)

3. Nuclear Standards Management Center
|

Coordinates development of DOE nuclear
program standards

4. Committee on Computer Code Coordination

LA-6941-MS Standard Interface Files and Procedures
for Reactor Physics, Version IV |

5. Reactor Development Technology (RDT), now designated as
Nuclear Energy (NE) Standards

RDT Std F1-4 Computer Coding, Documentation, and
Distribution (Draft,1975)

6. National Energy Software Center

7. Nuclear Energy Programs / Organizations

LA-7812-MS Quality Assurance for TRAC Development

R0010-1001-SA-00 Argonne National Laboratory
Quality Assurance Policy and
Procedures Manual

Uniform application of these standards throughout the industry will help ensure
reliable software. For the majority of nuclear codes specific apprcaches
to software validation and verification (V&V) are adequate. Code validation
and verification is normally accomplished by testing each of the several
modules in a code and the code as a whole. Several possible modes of V&V

! are as follows:
l

1. Comparison of the results generated by the module to known
analytic solutions to the equation sets solved in the module
or appropriate simplification of these sets;

2. Comparison of the results generated by the module to the results
of other computer codes that model the same phenomena;

3. Comparison of the results generated by the module to experi-
.

mental results; and
' 4. Comparison of the results generated by the module to the " expected

behavior" of the models it contains.

1

_ _ - _ ._. . -_. --
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Although such comparisons may validate portions of a code they rarely test the
whole system. It is important to note that testing can guarantee the presence
of, but not the absence of, bugs.

There are codes, however, especially in the risk assessment area for which this
procedure is not totally satisfactory because:

1. Either analytical solutions do not exist or an inability to
place bounds on uncertainty associated with data makes the
solutions inconclusive.

2. No other codes of this type exist.

3. Experimental results do not exist or are unavailable.

4. The driving phenomena are not understood well enough to compare
the results with " expected behavior".

Clearly there is a need to develop additional procedures and methods to assess
reliability of codes which fall in the category of the unverifiable.

&

s
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| Figure 2.1 A Structure for Developing Reliable Software

- _ _ _ _ _ - _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _

10

References

2.1 E. C. Nelson, "Sof tware Reliability," TRW-SS-75-05, (1975).

2.2 B. W. Boehm, " Software and Its Impact: A Quantitative Assessment,"
Datamation, May (1973).

2.3 H. D. Mills, " Software Development," IEEE Transactions on Software
Engineering, Vol. SE-2, No. 4, (1976).

2.4 R. D. O' Dell, " Standard Interface Files and Procedures for Reactor
Physics, Version IV," LA-6941-MS, (1977).

2.5 B. Randall, " System Structure for Software Fault Tolerance," Proceedings
of International Conference on Reliable Software (1975).

2.6 " Final Report of the Joint Logistics Commanders Software Workshop,"
Vol.1, Army Material Development and Readiness Command, Naval
Material Command, Air Force Logistics Command and Air Force Systems
Command, October (1979).

2.7 A. D. Schuman, " Proposed Multi-Service Documentation Standards and
Requirement," Panel Presentation at the IEEC Reliability and Maintain-
ability Symposium, (1981).

2.8 " Software Quality Assurance Program Requirements," MIL-S-52779.

2.9 Record of the IEEE-NRC Wcrking Conference on Advanced Electrotechnology
Applications to Nuclear Power Plants, (1980).

2.10 J. S. Moore and L. Lamport, " Program Verification: An Approach to
Reliable Hardware and Sof tware," Trans. Am. Nuc. Soc. , 35 (1980).

|

2.11 H. R. Downs, " Automated Tools for the Verification of Computer
Programs," Trans. Am. Nucl . Soc. , 35 (1980).

2.12 T. E. Dunn, " Development of a Standard for Computer Code Control and
Verificat:in," Trans. Am. Nuc. Soc., 35 (1980).

- _ _ _ _ _ _ - _ _



11

)
3.0 Quantitative Sof tware Reliability Analysis

This section describes an analytic framework through which the goals of this
research program, as described in Section 1, can be met. The mathematical
approach that is formulated here is designed to be able to yield predictions of
software probability or reliability characteristics for all types of computer I

codes relevant to nuclear safety. Codes of interest in nuclear safety appli-
cations fall into two broad categories: What might be called discrete task
codes, exemplified by analysis codes such as RELAP or TRAC, are run to accomplish
a specified task and then stopped for examination of computational results.
The second category consists of continuous task codes exemplified by data

,acquisition codes such as might be used to provide a reactor operator with I

a continuous display of data from an operating reactor. Because these two {
types of codes have conceptually different measures of raliability, it is
important to formulate an analytic framework which encompasses both.

Section 3.1 discusses the functional requirenents of this analytic framework
and the form of the desired results. It begins with some basic definitions i

and then describes mathematical parameters that can be used to measure the I

probabilities of successful or unsuccessful operation of computer codes in
nuclear applications. These probabilities are affected by the way failures
are categorized and counted, by the specific properties and usage of the
computer code, and by the techniques used in developing and testing the code.
The concept of classifying the failure, computer code property, and code
development parameters that affect these probabilities is described and
examples are shown. The potential use of regression' analyses to assess the
functional dependencies between the calculated software probability character-
istics and these parameters is cited.

Section 3.2 describes mathematical modeling that can be used to fill out the
analytical framework. The section begins with a brief review of failure rate
models which have been used' extensively for more than ten years in communi-
cations, aerospace, and defense applications. The applicability that these
models have in the mathematical framework of this program is discussed in
view of the special needs of the nuclear industry. It will be seen that the
approach used in the models published to date have rather limited usefulness
in meeting the goals of this program because they have been primarily designed

.

for and applied to calculating the reliability characteristics of the so|

| called continuous task codes. Modeling that comprises the analytic framework
| which is proposed here to encompass both the discrete and continuous task codes
' is then described. Possible model extensions that may prove useful in the

longer term are proposed and the concepts and models needed to cupport or
augment this framework are discussed.!

Finally, Section 3.3 summarizes data requirements needed to implement the
models described in Section 3.2. Some alternative approaches which may be
attempted in the absence of the desired data are also outlined, and the use
of standard statistical analysis packages to obtain correlations between
probabilistic code parameters and other code characteristics is briefly

| discussed.

,

;

!

I
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3.1 Functional Requirements and Desired Results

Before describing the functional requirements and desired results of the
analytical framework in detail, a few comments will be made regarding
definitions. In the discussions that follow, reference will be made to the
detection of code errors. A code error will be regarded as synonymous with
a software error and is here defined as any defect in a line of code or in
the input data which can cause the computer code to fail. Code failure
includes abnormal termination, normal termination with erroneous results, or
any other unacceptable departure of program operation from the required
operation.

It may sometimes be convenient to refer to code faults rather than errors.
For example, a computer code may compute an incorrect temperature. It may
be necessary to correct several code errors to correct the temperature
calculation, but the incorrect temperature could be regarded as the result
of a single fault. As envisioned here, a code failure may be the result of
one or more faults and a fault may involve one or more code errors. It

should be possible to apply the framework described below for code errors
to code faults; however, the numerical values of pertinent parameters
would change.

The first step in formulating the mathematical ap,. coach for this research
program is to clearly delineate the form of the desired results. Probabilistic
or reliability characteristics that can be used to describe the successful or
unsuccessful operation of a code are described in Table 3.1. These character-
istics depend on the generic type of code. Codes are categorized according to
whether they have discrete tasks or continuous tasks. As seen in the table,
the operational mode distinction means that for analysis codes the desired code
probability characteristics are "per run or execution" oriented, i.e., an
estimate of the probability of failure is desired for a given run or set of
runs as would occur in a safety assessment; while for data acquisition codes,
the desired probability characteristics are " execution time oriented", i.e., an

estimate of the probability of failure is desired for a given length of time
for a specified demand.

Perhaps the single, most important code property is its reliability, i.e., the
probability that the code executes without failure on a given run (discrete
task code) or over a specified time period (continuous task code). There does
not appear to be a uniquely useful means to estimate the~ reliability of a
discrete task code based on the reliability of a continuous task code or vice

The importance of these differences in code reliability characteristicsversa.
takes two forms:

(1) The mathematical models used in estimating the desired
characteristics and/or the techniques used in their
implementation can be expected to be somewhat different
depending on the type of code.

(2) The required (as well as available) failure data needed
to verify these approaches are different.
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Thus both the requirements, namely the mathematical framework and the supporting
failure data, as well as the form of desired results, namely the predicted
software failure probability characteristics, depend upon the type of computer
code. It will be seen that all the published work to date on providing
probability or reliability models has focused on one type of code, the
continuous-running type.

A second quantity of considerable interest and one that is independent, from a
mathematical standpoint, of the type of code is the expected number of code
errors per line of code or more generally, per machine language instruction.
While this quantity does not provide a direct indication of code reliability,
it is a useful figure of merit by which to gauge the developmental progress of
a computer code. In addition, it appears that estimates of this quantity
would be similar for continuous and discrete task codes at similar stages of

'

development.

As an aid to developing the correlations between probability-of-failure
characteristics and code properties, it is desirable to classify errors
according to error type using one or more classification systems. Table 3.2
shows one method of categorizing errors, failures, and code properties. In
this table code execution failures are categorized according to their conse-
quences and their sof tware error causal mechanisms; the controlling code
properties and sof tware development characteristics that are assumed to affect
the failure frequency are categorized as shown. The detail in the table is
presented for completeness--it will be shown in this report that actual
failure data are not detailed enough to support estimates of failure proba-
bilities due to a specific faulty code unit, for example. However, by coarsely
segregating the failure data according to potential consequence and probable
cause, probability-of-failure characteristics may be categorized. For example,
assuming sufficient failure data can be obtained, the probability of either a
random (e.g., keypunch) or logical (e.g., incorrect implementation of an
equation) error causing an execution failure of a specified type may be
obtained. Although the current paucity of data precludes anything but gross
estimates of such probabilities, even these can be used to make bounding
estimates relevant to nuclear safety.

In general, two or three classification systems should probably be used
simul taneously. In setting up error classification systems, the following
general rules should be followed. First, error types should be mutually
exclusive within a single classification system. Second, the number of errors

of one type should be independent of the number of errors of other types
withir the same classification system. Third, ground rules should be clearly
stated regarding how to count errors. Finally, when more than one classification
system is in use, each system should result in the same total number of errors
being counted.

Although, in general, it may be desirable to set up classifications that are
not programming language specific, the following example illustrates how a
single classification system for a program written in FORTRAN might be set
up. Error types are defined according to whether they occur in

1. Input Data,
2. Arithmetic or Logical Assignment Statements,
3. Input or Output Statements,

, ..
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4. Data Initialization Statements,
5. Specification Statements,
6. Subprogram Statements,
7 Control Statements.

A specific FORTRAN manual would be identified to resolve questions as to
what FORTRAN statements fall into each of these types. In addition, one might
stipulate that statements that are out of order or misnumbered would be counted
as control statement errors and that more than one error in a single statement
would be counted as a single error. The question as to whether the number of
errors of one type is independent of the number of errors of other types with
this classification system is not obvious. One may simply have to assume
independence with the understanding that whenever possible, statistical tests
will be performed to test the assumption.

Tabulating the controlling variables associated with each code and its failure
history must be done to obtain the dependencies among the probability-of-
failure characteristics and the code properties. A s' tistically meaningful
number of codes must be investigated so that these cbracteristics can be
correlated. Obtaining these failure data is considered the most difficult
part of this program and is discussed in Section 4 Given that the appropriate
failure data can be obtained and probability characteristics calculated, then
regression analyses can be performed to identify the most important properties
and controlling variables in software development. This knowledge could be
used as a bcis for defining development or quality assurance criteria for
codes used or proposed for the licensing arena.

To summarize the above, the desired results include:

(1) Quantitative estimates of the key probability or reli-
ability characteristics describing the successful
or unsuccessful operation of a code. Table 3.1
illustrates some of these characteristics.

(2) Quantitative estimates of the dependence of these character-
istics on the type of failure, on the type and generic
properties of the code, and on the controlling variables
in the development of the code so that probabilistic
predictions in terms of these parameters may be made.
Table 3.2 illustrates several classifications of failure,
code, and development parameters that may be used to {facilitate correlation with the probability characteristics
to seek the functional dependencies.

The quantitative requirements include not only the mathematical models but
the associated data base with which to accomplish these. The modeling is
described in detail in Section 3.2. Failure data are discussed in Section
4.
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I
3.2 Mathematical Modeling j

The modeling to be described here is designed to fill out the analytic framework I

discussed in the previous section. This framework is designed to encompass
predictions .for the software probability or reliability characteristics for.
both discrete task codes and continuous task codes. The probability character-
istics of interest in discrete task codes are the probability of failure
parameters shown in Table 3.1 for a given run er set.of runs; the analogous
parameters of interest for continuous task codes are for a given duration of
time for a specific application. An example of a parameter of interest in the ,

former case is the probability that a run or set of runs using the RELAP code |
in a reactor safety analysis successfully (within the constraints of the 4

modeling) predicts peak fuel temperatures for a postulated loss-of-coolant
scenario. An example of a parameter of interest in the latter case is the .i
probability that an on-line code successfully interprets sensor data and i

outputs proper analytically-derived temperatures, pressurcs, or other state
parameters to a reactor operator during an emergency situation. In this latter
case, clearly the time that the emergency situation required that the on-line
software operate successfully would affect the probability of successful
o pera tion. As the TMI situation graphically illustrated, this time scale could
be for many hours.

These examples imply that the required mathematical models and the associated i

failure data depend somewhat upon the type of code. However, once tne ;

appropriate probability characteristics have been obtained for each generic
type of code, the analyses to be used for obtaining the dependencies on non-
probabilistic code. parameters such as those illustrated in Table 3.2 are the
same.

The methematical models currently used in software reliability analysis are
based on failure rate models such as those used in hardware reliability
applications. Given that an error of type k in classification j has not
occurred pricr to time t, the probability that such an error occurs between
t and t + dt is expressed as

(1)p(t)dtA

where )ik is the detection rate fcr errors of type k in classification j and
is, in . general, a function of time. The probability that an error occurs
between time t and t + dt, given no error prior to time t is expressed as

A(t)dt (2)' ,

where

(3)p(t).A(t) = A'

Here, A(t) is the detection rate for errors of all types. (The subscript j
is not required after summation over all error types k since all classification'

systems are postulated to count the same total number of errors.) From the
definition of A(t) a simple derivation shown in Appendix A yields the reliability'

,

1
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dt' A(t') i'
t

F -

x(t) = exp (4)-
.

J 0

Work to date has focused almost entirely on estimating A(t) for continuous
task codes. Attempts to break A(t) into components of various types as in
(3) are not apparent. Several models have been suggested to express A as
a function of parameters such as the number of errors present in the code,
the number of errors discovered, and the probability that an error is detected
given that it is present. These models are described in Appendix A. In most
of the models, the detection rate is not regarded as a function of time;
however, in the Littlewood-Verrall model, the parameter in the exponential
distribution is regarded as a random variable having a gamma distribution.
This leads to a time-dependent detection rate in (4).

A major fraction of the computer codes of interest in this research program
are discrete task codes. So long as errors occur infrequently, it should be
possible to apply failure rate models to tnese codes provided the time is the
accumulated CPU time for all runs, and provided the codes are run on identical
computers with identical compilers. However, detection rates obtained for a
code operation on one computer are not necessarily the same as detection rates
for operation on another computer. This is especially important in the case
of nuclear safety analysis codes which are often developed on a single computing
system but are then exported to different computing systems throughout the
country. In addition, if errors are detected too frequently, as might be the
case for a code undergoing a new phase of testing, the run time assigned to an
individual task might impose a structure on the error detection time which has
little to do with the actual error occurrence rate. For these reasons, it is

necessary to develop more compreFensive modeling which is more naturally applied
to discrete task codes and yet can also be applied to continuous task codes.

The modeling which will now be described can be used to meet these dual appli-
cations. Let Xik be a random variable defined as the number of errors of type
k in classification system j detected as the result of a given run. The

expected value of Xik will be denoted by Ajk. The probability distribution for
X is assumed to b6 Poisson, i.e.
Jk

*
A -A

e (5)P(XJk = x) =

where x is a non-negative integer. If the values for XJk are independent for
each type k and if the error types are mutually exclusive, then it is easy to
show that the probability distribution for the total number of errors X, defined
as

X=I X (6)Jk,

is also Poisson, i.e.
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P(X = x) = e^, (7)
~

where

(8)A*[Ajk -
With this model, the reliability is

R = P(X = 0) = e ^ (9)
-

.

The use of the Poisson distribution has certain mathematical advantages.
First, the Poisson distribution is often used to approximate the binomial
distribution. There may be instances where it is useful to model the detection
of errors of type k in terms of M the number of code units (lines of code,
instructions, or some other unit)ka,pable of producing type-k errors, and the
probability q that an error of type k is detected in a given unit during aq
given run. If q is the same for each unit and if error detection in each
unit is independdbt of error deiection in othar units, then the probability

and q In general,distribution for X will be binomial with parameters M
is likely to bfklarge and q small. Thebinomialdkstribubo.n can thenM

bhapproximatedbythePoissondkstributionin(5)with

( }jk * "jk 9j k *A

In (10) failure data may be used to estimate An or qp directly; some other
source such as expert opinion or the human errdP literSture, using analogous

may also be used. Of course, the value
error probabilities to estimate qhro,perties or specifications.k
of M is provided from the code

jk

A second advantage arises for codes that are conveniently described in terms
For runs of duration t, the

probability distribution fdh(t) as in (1).of error detection rates A
X is easily seen to be given by the Poisson
Jkdistribution in (5) with

dt' A k(t') . (11 )A =
ijk J 0

The reliability estimates (4) and (9) become identical in this case.

Finally, for a given error type and classification system, only one parameter
needs to be estimated for the Poisson distribution in (5). The accumulation
of appropriate failure data is n eded to verify whether values of A obtainedp
for a code operating on one compo irg system can be applied to the sSme code
when it operates on a different con +Jting system.

This discussion of reliability modeling will conclude with a dicussion of a few
potentially useful extensions to the 'oisson model described above. Reference
will be made only to the total number of errors; however, there does not appear

|
'

- - ,
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to be any a priori reason why the same developments could not be applied to
individual error types.

Table 3.1 suggests that probability distributions for important parameters
describing prcbabilistic code characteristics should be estimated if possible.
In the case of the Poisson model, the important characteristic is the expected

number of errors detected in a given run or equivalently the probability qhtedof error detection. Let f(A) represent the probability density of the exp
number of errors. The probability distribution of X, the number of errors
occurring on a given run, taking into account the uncertainty in the value of A
expressed by f(A) can be computed as

p ^x -A
j f(A) (12)P(X = x) = dA

where (12) becomes the replacement for (7). Generally f(A) would be chosen
from a parametric family of functions and (12) should be regarded as the
conditional probability that X = x given the appropriate parameter values.
The dependence of P(X = x) on such parameters should be understood but will
not be explicitly noted.

It may or may not be possible to evaluate the integral in (12) analytically
depending on the precise form of f(A). In any event the integral can be
evaluated numerically, perhaps using Monte Carlo techniques. Further, the

use of Monte Carlo would allow the sampling of A from actual data without
the need for determining an analytic form for f(A) (or equivalently f(q)).

If an analytic form is desired, a particularly convenient choice for the
function f(A) would be to select it from the family of gamma distributions,
i.e.

^ II3)
f(A) = r"8 ^ * *

where r(8) is the gamma function. With this choice, evaluation of the integral
in (12) yields

r (x+B) (34)a
P(X = x) =

(a + 1)B** *I OB) ,

and the reliability becomes

(15)R* ,j .

The expected number of errors detected in a given run is found to be

E(X)=f (16)

{
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and the variance of the number of errors detected is

Var (X) = f (1 + f) . (17)

Section 1 states that one of the objectives of this program is to permit a
priori estimates of a computer code's reliability given the code's general
properties and its intended application. This implies that it will be
possible to extrapolate data for codes of various types and for a variety
of applications to a specific code and code application for which error
detection data are not available. As one begins to apply the code, one may
modify the reliability estimates based on experience in using the code. If the
required data extrapolation is done in a way that provides estimates of the
parameters a and 8 in (13), then the gamma distribution in (18) can be regarded
as a prior distribution for a Bayesian analysis. If af ter running the code r
times, one observes s errors, then a strightforward application of Bayes
theorem leads to the following posterior distribution for A:

f(A|s,r)=(r(s+s) A +8~1 e (a+r)A (18)
0 -+I

.

It then follows that updated estimates for the probability distribution of
X, for the reliability, for the expected number of errors detected, and for
the variance of the number of errors detected are given respectively by (14),
(15), (16), and (17) with a replaced by a+r and 8 replaced by 8+s.

The discussion up to this point has been concerned with methods to estimate
the reliability of a computer code. However, as noted in Section 3.1, the
expected number of code errors per instruction or per line of code is also a
useful figure of merit for which estimates are desirable. Many of the failure
rate models described in Appendix A provide estimates of this quantity as a
result of attempting to model the way in which error detection and correction
modifies the error detection rate. It is possible to devise analogous models
to describe the influence of error detection and correction on the expected
number of errors. A by-product of such models might be estimates of the
expected number of code errors per instruction. Since such models have not
been investigated, the following approach was developed:

An examination of failure data such as that of Musa as listed in Appendix B
suggests a general picture in which, over a specified testing phase, the error
discovery rate accelerates early in the testing phase, increases at an approxi-
mately linear rate during the central part of the testing phase, and then
decelerates during the later stages. Qualitatively, such behavior might be
anticipated. Early in the testing phase, the more obvious errors may result in
relatively short code runs and exposure of relatively small portions of the
code. As these errors are eliminated, the runs are likely to increase in
length and a larger fraction of the code will exercised. Late in the testing

phase, only the more subtle errors remain and the rate of error detection
decreases. A convenient measure of progress through the testing period appears
to be the time in working days.
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To model this behavior, a relatively simple process may be envisioned. Let N
be the total number of errors present in the code and n(t) be the expected
number of errcrs detected in t working days. (Introduction of new errors
during error correction is assumed to be negligible.) If one defines

N

n7x= (19)n
,

2

then during the early part of the testing phase, x is negative; during the
central part, x is nearly zero; and during the later part x approaches unity.
Now let t be the time when x = 0 and defineg

y = k(t - t ) (20)g

where k is a constant to be specified later. The error detection rate will be
proportional to dx/dy. A relatively straightfoward way.to model the qualitative
behavior of the error detection rate, as described in the preceding paragraph,
is to let

2=1-x (21 ).

This equation clearly predicts an accelerating error detection rate early
in the testing period and a decelerating rate late in the period.

If (21) is solved subject to the initial condition x = 0 when y = 0,
one finds

x = tanh y.

Substituting from (19) and (20), the following expression for n(t) results.

n(t)=h[1+tanhk(t-t)]. (22)
o

A least squares fit of (22) to failure data then provides estimates of the
parameters N, k, and t .g

Equation (21) assumes that the error detection rate is an even function of
t-t. This assumption can be relaxed, e.g. by subtracting a term pro-
porti8nal to x on the right side of (21). The solution of the resulting
equation leads to a result similar to (22), namely

n(t) = a + b tanh k(t - t ),
'

o

but there are now four constants to be determined rather than three. Further
analysis is required to determine whether the additional flexibility provided
by a fourth constant justifies the additional computational effort required to
determine four constants instead of three.

.. - -_.
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The estimate of N, the total number of errors present in the code, as
obtained through the use of (22) provides a means to estimate the number
of errors in the code per line of instruction at any stage during the test
phase. If this quantity is designated as n, one finds

[" (23)n=

where I is the number of lines of instructions.

In summary, modeling has been developed to calculate reliabilities and expected
numbers of errors detected for both continuous task and discrete task codes.
In addition, a means of estimating the expected number of errors per line of
instruction has been developed. The implementation of these models to produce
probability of code failure estimates useful .in nuclear safety is illustrated
in the next section.

!

}
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3.3 Impl ementa tion |

The implementation of the Poisson model described in Section 3.2 requires a
procedure for estimating the expected number of errors per run* (discrete task
codes) or during a specified period of operating time (continuous task codes).
If one is interested only in the reliability, classification of errors detected
is not essential; however, classifying errors promotes precision in the counting
of errors. Further, the consequences of code failure as categorized, for
example, in Table 3.2, obviously depend on the type of causal sof tware error
mec ha ni sm.

Data requirements are apparent from the discussion of the model. Ideally, one-
would like to have records of appropriately classified errors detected as a
function of the number of the run (or time period in the case of continuous
task codes) in which they were found. Data in this form would permit the
direct investigation of the dependence of the expected number of errors on
run number and error detection and correction. Such data should be recorded
for codes following their release for general use; however, they will probably
be more readily obtainable during the testing period just prior to release.
It should be possible to make reasonable estimates of code reliability in the
post-release period using data collected just prior to release, but, whenever
possible, these estimates should be checked against post release data. Obtaining
generic correlations between pre- and post-release data has been identified in
this report as a means of expanding the usefulness of both data bases.

Data in the form just described have not been found for discrete task codes.
Generally records of error corrections are recorded as a function of the date
when the corrections were made. Sources of these data are discussed in
Section 4 These data can be used to estimate the expected number of errors
per run provided reason; ole estimates can be made for the total number of runs
involved in producing the data; however, meaningful analysis of the changes
in the expected number of errors as errors are detected and corrected will be
more difficult.

Another possible approach to the estimation of the expected number of errors
per run is based on the observation that code errors are human errors. To use
this approach, classification of errors would be essential. An estimate of the
number of code units Mjk (see Eq. (10) in Section 3.2) capable of producing
errors of a given type would be made. Then the human steps required to produce
these units would be analyzed and human factor data would be used to estimate
the probability that these steps were carried out incorrectly. Finally, the'

code structure would be examined to estimate the probability that one of the
code units would be encountered during a run. The product of this probability
and the probability that the code unit is produced incorrectly would then
provide an estimate of the probability g k in Eq. (10) in Section 3.2.j

*Since the expected number of errors per run is given by A = qM, where the
notation in the previous section is used and M is specified, knowledge of
A implies knowledge of q and vice-versa. Thus, the discussion relating
estimation of A applies equally well to estimation of q.
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Still another means of estimating the expected number of errors per run is
through consultation with experts. For example, assume that for a certain set
of conditions the probability that a code would incorrectly compute an important
safety parameter is estimated to lie between 1/20 and 1/100 with 90% certainty.
Further assume that this probability is estimated to be equally likely to be
greater than 1/20 or less than 1/100. One way to use this information is to
fix the parameters in a probability distribution for A, the expected number of
errors per run. If the gamma distribution in Eq. (13) of Section 3.2 is used
for convenience of illustration, a = 165 and 8 = 4.48 and using Eq. (14), the
probability of failure is estimated to be

P(X > 1 ) = 0.03 + 0.01,

where 0.01 represents one standard deviation. Although some type of combined
subjective / statistical procedure may be necessary in the absence of data
it is clearly preferable to estimate the expected number of errors A or the
probability distribution for A directly from data.

Data requirements for estimating the number of errors per machine language
instruction in a code are similar to those described above for the Poisson
model . However, it is not necessary to have error detection records as a
function of run number or to even know the number of runs. Records in terms
of calendar days are adequate. For discrete task codes, the sigmoidal fault ,

discovery model (Eq. (22) in Section 3.2) can be used to estimate the number
of errors present or remaining in a code in terms of the number of errors
detected. For continuous task codes, the sigmoidal model and the failure rate
models of Appendix A appear to work about equally well. However, both the
failure rate models and the sigmoidal model are shown in Section 5 to have a
tendency to predict a total number of errors present in a code which is only
slightly larger than the number of errors actually detected. Thus, if any of

these models are used during code testing, the predicted number of errors
remaining in the code cannot be used as an acceptability criterion for when
code testing can be stopped. Some other quantity, such as the mean number of
days between error detections, must be used instead.

Once estimates of the expected number of errors or the number of errors per
machine language instruction have been made for several codes, correlation
of these values with other code characteristics can be attempted. Some of the
characteristics of potential interest in this correlation include code size,
complexity, testing history, and other properties shown in Table 3.2. The
nature of the relationships of the probabilistic code parameters to these
characteristics can be explored using the multivariate regression analysis
capabilities found in many standard statistical analysis code packages. Some
examp'.es of such analyses using the BMDP system described in Appendix C are
showa in Section 5.

In summary, approaches or means to obtaining the relevant parameters in the
aralytic framework have been described. Sample calculations using the failure
rnte models and the sigmoidal model to predict error content and the probability

.

o f a line of code being in error are shown in Section E. Calculations using!

or A obtained
t.ie Poisson model will be performed using estimates of qMbove.dkfrom these models as well as the other sources described

.- . - -
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Table 3.1 Key. Software Probability and Reliability Characteristics

Generic Type Key Probability and
lof Code Applications Reliability Characteristics '2 Comments

,

Discrete task Reactor design Probability that a specified unit of Key reliability
2codes code is in error . characteristics are

(Analysis codes) Safety assessment E'# ***#" "
Probability of an output error of a

' " *specified type in a given run.,

Appropriate failure data
Probability of success (failure) in
obt ng a key result in a given h" h s 0Q]os vs 9 runs.

Probability that a specified unit
of code produces an execution
failure in a given run.
Probability distributions or at
least confidence or uncertainty na

*bands for the above character-
istics.

Continuous task Feedback to operator Probability that a specified Key reliability
2codes unit of code is in error . characteristics

(Data acquisition Input to simulator depend heavily
codes)

Probability of success or on time.failure over a specifiedOperational control
time (i.e., reliability or Appropriate failure

Emergency system unreliability) during a data include a
activation specified demand. history of time to

(between) failures.Failure rate.
Probability distributions or at
least confidence or uncertainty
bands for the above characteristics.

TAll probability and reliability characteristics may. be categorized and normalized according to the type of
failure they measure, the failure causes, and consequences of failure.

2 Probabilities are defined both for actual code operation failures and for code component errors that
have the potential to cause operation failures.

.-



_ _ _ _ _ _ _ _ .-.-__ _ ___ _ _ _ _ _ _ _ _ _ _._ _ _ _ _ _ . _ _ _ _ _ _ _ . . . - __ .

lTable 3.2 Ca tegories of Operational Failures, Causal Mechanisms, and Controlling
Properties and Development Variables in Software Reliability

Controlling Properties
and Developmental

Operational Failures Causal Mechanism Variables

Type of Faulty Code Faulty Modeling Type of
Consequence Unit Unit Cause

In-Code 2 Testing Programming
1. Fo output 1. Symbol 1. Constant 1. Random (e.g. 1. Quality 1. Size

(i.e. a crash) 2. Operand 2. Variable key punch) assurance 2. Complexity
3. Constant 3. Equation 2. Logical or methods 3. Language

2. Absurd output 4. Variable 4. Model (set decisional 2. Size of QA 4. Structurea

(detectable) 5. Line (statement) of equations) (incorrect or effort and method
6. Storage byte or 5. Table (e.g. poor progransiing 3. Capability of coding

3. Misleading output array (e.g. property values) to implement for bench-
(may propagate common block) modeling) marking or
failures in 7. Logic block analytic @
nuclear plant (subroutine) Ex-Code verification

design or 8. Logical directive 3. Documentation
operation) (e.g. IF statement) leading to .

1. Application
Opera tional

misuse of code
(e.g. design,
safety assess-
ment, monitor-
ing, control)

2. History (time,
numbers of runs
and failures
since release)

1This table illustrates a plausible way of categorizing failures, their causes, and dominant variables.
Other ways could be chosen.

2In-code causes could also be subdivided as follows: 1) " Pure" programming causes such as syntax
errors or incorrect transfers of program control, logic, or data; 2) Program modeling causes such as
incorrect algorithm approximations or improper treatment of singular points or critical parameters
leading to overflow and roundoff errors.

,
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4.0 Software Failure Data

This section describes the failure data accumulated to date and how they and
future data have been or will be used to support the goals of this program.
Sections 4.1 and 4.2 describe the non-nuclear and nuclear software failure
data, respectively, that have been or are expected to be obtained in this
program. Section 4.3 discusses conclusf > ns on what should be done to satisfy
prog am goals.

4.1 Non-nuclear Data

The collection of the non-nuclear data has been made for two reasons:

(1) To initiate mathematical modeling and investigation as early
as possible. The available non-nuclear data has been in a much

: more readily useable form than the nuclear data. Tabulations of
'.

failure histories are available that could be directly used in
investigating or formulating mathematical models. On the other
hand, the nuclear data have been " buried" in logged records that
require evaluation and conversion to a form adaptable to mani-
pulation with mathematical models. Thus, the detailed investi-
gation of these records has been deferred. However, it is a
necessary component of this program.

(2) To form as wide a data base as' possible. Although the applf-
cability of non-nuclear software failure data to nuclear software
remains to be shown, comparisons can be made. If the data are
directly applicable the statistical data base for predicting
software probability of failure characteristics is obviously
enhanced. If the data are not applicable, comparing the data
will be ;seful in evaluating the software development and appli-
cation characteristics of nuclear codes to determine why nuclear

' and non-nuclear failure data are different.

Non-nuclear software failure data have been and are being compiled from the
open literature, Rome Air Development Center (RADC) and private companies.
RADC, at Griffiss Air Force Base, maintains an extensive literature and
computer library data-base in software reliability based on software failure
data from military, aerospace and communication industries. Most of the
failure history data come from data acquisition systems rather than batch mode
systems.

1

Failure history data are generally available in either of two forms: (1 )
individual failure tabulations showing successive execution times between
failures or (2) blocked data in the form (n,t), n errors in time t where t may
be in any unit of time including execution time. Although the former failure
data form may be reduced to the form (n,t), the converse is not true. Most of
the data- to be presented in this section were obtained during system testing
and integration and represent both faults, defined [4.1] as software defects
that cause an operational failure, and failures, defined as any unacceptable
departure of program operation from program requirements. In some cases, the

failure data are referred to as " errors" or " changes" which are ill-defined
but presumably represent faults or failures as just defined. Although the
intent of this program is to predict probability of failure characteristics

. .
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for codes in production status, not test status, it is assumed that extra-

,
polation to ~ production code failure probabilities can be made. Further.

| these data allow us to explore the mathematical approach of Section 3 while
more relevant data are being acquired.

,

Compilations of failure data [4.2] in the first form from 16 systems ranging in
; their applications from military to real time command and control systems were r

obtained from Rome Air Development Center (RADC). These data are illustrated
.

'

'

in Table 4.1 and comprise Appendix B. They are given in terms of successive
,

execution times between failures in seconds. . Descriptions of the systems from
j which the data were obtained are shown in Table 4.2. Clearly, these data

represent a diversity of systems and system characteristics. Accordingly, as
described elsewhere in this report, these data were used to investigate
different models that predict probability of failure characteristics and to-
perform regression analyses to illustrate use of the statistical analysis
systems.

Several software project studies, representing sets of failure data in
.

either the above form or the (n t) . form, were obtained from the literature
: and studied to gain an insight into both qualitative and quantitative

characteristics of software development and reliability. Data from these
studies and a brief summary of each are as follows:

,
,I

!
(1) The data shown in Table 4.3, taken from Brooks and. Motley [4.3],

| were taken from projects involved in the development of a large
scale command and control software system. These data represent
a variety of system sizes; higher order programming languages

.

J0 VIAL and CENTRAN were used in addition to the assembly

[ language ALC. The parameters N and q represent estimates of
the total number of errors in the system at the-initiation of<

the project and the probability that any one of these errors;
would be detected during a specified portion of the testing

,

! period. As described in the table, the lack of a quantitative
specification for this test period implies that the estimate
for q has no quantifiable significance.- Another highlight of.|

these data is illustrated in Projects 4 through 7, in which different
;

error accounting methods were used with grossly different error'

probability characteristics estimated. The implication of course
is that only crude error probabilities can be inferred from
published failure data unless the definitions of errors, faults,
failures and so forth are very clearly made.

(2) The data shown in Table 4.4, taken from Goel and Okumoto [4.4],
were obtained from a real-time control system for a land-based
radar system developed by Raytheon Co. Nearly all of the modules
are written in J0 VIAL /J3. One observation that can be made from
these data is that the ratio of errors introduced in fixing -

the code to the total number of errors is very small (s 2%). If

data from other codes support this observation, reintroduction ofi

|
errors does not constitute a significant contribution to code

I failure ~ probability. Of course, this may not hold true for other
codes. For large scale safety codes that routinely transfer large

| - amounts of information among modules, correction of a code defect
in one module may lead to the discovery of defects within modules
with which it interfaces.

i

I

{.
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(3) The data shown in Table 4.5, taken from Goel [4.5], are from the
real-time, multicomputer complex which forms the core of the
Naval Tactical Data System (NIDS). The programming language (s)
used is not specified. These data show the scatter in observed
times to failure that is evident in much of the failure data in
the literature. As observed 10 the last test phase, they also
show that a new testing phase is likely to result in an enhanced
detection rate even in a release version of a code.

(4) The data shown in Table 4.6, im estigated by Shooman {4.6] but
obtained by Dirkson, Hesse and Kientz [4.7], are from three
operating systems subsequent to release and from four application
systems during the system integration. These data yield estimates
of the number of code defects corrected per line of instruction
for the given programs. They 1mply that the given systems
averaged roughly 1 (observable) defect per 100 instructions (as
estimated using the Shooman mcdel discussed in Appendix A) prior
to the initiation of data collection. These data also show that
this defect percentage is significantly reduced by the end of
the observation period. ilowever, the scatter in the data ind teate
that quantification of this reduction will have large uncertainties.

(5) The data shown in Table 4.7, taken from Akiyama [4.8], are from a
system whose function is unspecified and written in FASP, the
assembler language for FACOM 230-60. Datt were available from all
phases of software development from module testinp to field use.
These data represent a base upon which to explore relationships
among error detection and the indicated code properties. Obviously
nothing meaningful can be obtained with just these data; however,
this table does represent an actual example of the type of data
needed to draw correlations among probability of failure character-
istics (here measured by number of errors detected) and code
properties.

The software from which the above failure data were obtained were not written
in FORTRAN, the principal programming language used in nuclear codes. Further,

as mentioned above, the functions and usage of these software systems are
sufficiently different that the applicability of the above data to nuclear
systems needs to be questioned. However, they provide not only an insight
into qualitative and quantitative characteristics of software systems but a
part of the non-nuclear data base for comparison with future data from nuclear
systems as well as a data base for testing the mathematical approach of
Section 3.
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4.2 Nuclear Data

This section discusses specific sources that will be tapped to provide a
nuclear sof tware failure data base. As related above, efforts in obtaining
and appropriately categorizing nuclear software failure data have been
deferred. Such data have only been found in logged records and are often in
a form associating dates or time durations with code changes that may or may
not have been made to correct a detected code bug which in turn may or may not
have been revealed by an operational . failure of the code. Nevertheless, the
investigation and interpretation of such data is needed to provide a nuclear
data base for this program.

One promising nuclear failure data base is that of the ARC (Argonne Reactor
Computation) System maintained by the Applied Physics Division at ANL. Roughly
125 codes ranging in size from 2,000 to 50,000 FORTRAN statements comprise
this data base which represents both pre-production and production codes.
Production as used here refers to codes that are in unlimited use within as
well as outside ANL. Pre-production refers to codes in varying stages of
testing but prior to release to this unlimited user status. The ARC System
was initiated in the mid 1960's and has been in continuous development since
that time. Production use of the codes in the system has been under way since
about 1970. Although the format of this base is as indicated in the preceding
paragraph, implying that considerable time and effort will be required to
properly evaluate it, the information gained from this evaluation as well as
the data obtained to sloport the regression analyses of Section 3 justify
these expeditures.

Actually the Applied Physics Division will provide data yielding two types of
i nformation. The first t>oe is given by the data generated to support the ARC
System requirements, namely that all changes to codes within the system and
the reasons for these changes, be documented on a standard form. The second
type is given by data from individual code developers who maintain their own
records, generally in a more detailed form. These data have been generated
for the more recent codes, some of which are not yet part of the ARC System,
which have been written to standards set by the Committee on Computer Code
Coordination (CCCC) established by DOE. By being more specific as to type of
bug in some cases, this second type will facilitate categorizing; however,:

| since all codes written by CCCC standards were not documented in this manner,
this type comprises less of a code data base than the first type of information.

Two examples of codes for which these types of information have been obtained
(but not yet investigated) are the GNIP4C and SYN 3D codes. The first is a
20,000 word input processor used to arrange geometry and nuclear data for
other codes within the ARC System. The data for this code is considered pre-
production data since the GNIP4C code is not available throughout the industry.
The second code is a 10,000 card, three dimensional, flux-synthesis, diffusion
theory code used in eigenvalue calculations for criticals analyses and burnup

,

| calculations. Data for the SYN 3D code include both pre-production and post
release data.

:

Actual logging of errors has occurred throughout the nuclear industry. For
,

example, extensive software error records have been kept at Los Alamos National
| Laboratory and EG&G on their large safety codes for many years. These records

take two forms: 1) written records containing information relating the nature

--
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of bugs found and how and when they were corrected; .2) computer update files
containing when and how changes due to software errors and other modifications
and additions were implemented. For at least one of these codes, the latter is
available on microfiche. These data will be explored to facilitate the
Cdtegorization of both errors and failures.

Although it is planned to survey the infonnation available throughout the
industry, early detailed data evaluation and investigation will probably be
limited to ANL and LANL sources to determine the needs to be filled by ad-
ditional investigations. The data will be investigated for all possible
nuclear applications to explore interdisciplinary differences, if any exist.
For example, it is likely though not proven, that deterministic physics codes
are more " reliable" than safety codes because of their greater ease of bench-
ma rki ng . Structural analysis codes provide another nuclear application and
should be similarly segregated. In summary, extrapolations of results from
one type of code to another must be supported by actual failure data.

.
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4.3 Conclusions on Data Needs and Future Acquisition Efforts |

|

The above sections lead us to draw several conclusions relating to data needs
and efforts to acquire these data:

(1) All data obtained to date comprise only a small part of the
information base needed to achieve the goals of this rrogram.

(2) The acquisition and appropriate categorization of r.uclear software
failure data will be a time-consuming but necessary component of
this program. Categorizing the bugs according to the types of code
defect consequence and cause categories is required as discussed
in Section 3. To accomplish this will undoubtedly require some sub-
jective categorization. Extended categorizations come to mind:
for example, an important concern for nuclear safety is with what
probability could an operational failure of a code or a documented
code bug result in a misleading code result upon which an unsafe
design decision or incorrect safety conclusion is made. No data to
estimate this propagation probability have been found or indeed can
be assumed to exist. Thus, expert opinions would have to be solicited
and factored in to assign such a probability.

(3) The data obtained have been and will be largely from testing phases
of codes. Post-release or production status data will be sought.
The aforementioned nuclear data sources contain both preproduction
and production status data as discussed. Clearly the goals of this
program relate to production codes, not test versions. Drawing
comparisons between the failure probabilities of pre- and post-
release codes must be done to obtain the benefits of a large pre-
release data base. However, the mathematical approach to treating
the data is the same.

(4) It would be extremely fruitful to establish a computerized data
bank and information center at the National Energy Sof tware Center
at ANL, to properly organize the failure data, integrate it with
the mathematical and statistical analysis systems described herein,
and to facilitate industry-wide participation (as well as access)
in data collection. This is discussed further in Section 6.

|

|

|

|

|
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Table 4.1

Illustration of Failure Data: Successive Execution
Times Between Failures in Seconds

Fault D ecution 04y of fault Execution Day of
Number Time Failure Number Time Failure

1 3, 1 70 379, 64

2 30, 2 71 44, 64

3 113, 9 72 129, 64

4 81, 10 73 810, 64

5 115, 11 74 290, 64

6 9, 11 75 300, 64

7 2, 17 76 529, 65

8 91, 20 77 281, 65

9 112, 20 78 160, 65

10 15, 20 19 828, 66

11 138, 20 80 1011, 66

12 50, 20 81 445, 66

13 77, 20 82 296, 66

14 24, 20 83 1755, 67

15 108, 20 84 1064, 67

16 88, 20 85 1783, 68

17 670, 30 86 860, 68

18 120, 30 87 983, 68

19 26, 30 88 707, 69

20 114, 30 89 33, 69

21 325, 30 90 86P, 69

22 55, 30 91 724, 69

23 242, 31 92 2323, 70

24 68, 31 93 2930, 71

25 422, 31 94 1461, 72

26 180, 32 95 843, 72

27 10, 32 96 12, 72

28 1146, 33 97 261, 72

29 600, 34 98 1800, 73

30 15, 42 99 865, 73

31 36, 42 100 1435, 74

32 4, 46 101 30, 74

33 0, 46 102 143, 74

34 8, 46 '103 108, 74

35 227, 46 1 04 0, 14

36 65, 46 105 3110, 75

37 176, 46 106 1247, 76

38 58, 46 107 943, 76

39 457, 47 108 700, 76 .

40 300, 47 109 875, 77

41 97, 47 110 245, 77

42 2f3, 47 111 729, 77

43 452, 53 112 1897, 78

44 255, 53 113 447, 79

45 197, 54 114 386, 79

45 193, 54 115 446, 79

47 6, 54 116 122, 79

48 79, 54 117 990, 79

49 816, 56 118 948, 80

50 1351, 56 119 1082, 80

51 148, 56 120 22, 80

52 21, 57 121 75, 80

53 233, 57 122 482, 80*

54 1 34, 57 123 5509, 81

55 357, 57 124 100, 81

56 193, 59 125 10, 81

57 256 $9 126 1071 82

58 31, 59 127 371, 83

59 369 59 128 790, 83

60 748* 59 129 6150, 83 i

61 0 59 130 3321, 83

62 232' 59 13e 1045, 84
*

63 330* $9 132 648, 84

64 365 61 133 5485, 87

65 1222'' 62 134 1160, 87

66 543 63 135' 1864, 88

67 10, 63 136 4116, 92

68 16, 63

69 529, 64
,

. , . . _ - _ . _ - - - - . - _ . . . - _ , ,
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Table 4.2 |

Characteristics of Software Systems Studied by Musa |

Total Instructions /
Phase for Which3 New or Modified

System No. Data Available Instructions Programmers Faults .5 64

1 S,0 21700/ 9 136 (2)7
19500

2 S,0 27700/ 5 54 (2)
6600

3 S,0 23400/ 6 38 (1)
11600

4 S,0 33500/ 7 53 (3)
9000

51 S* 244500 275 831
6 SS 5700 8 73

14C 0* 110 36-

17 5 61900 8 38
27 S 126100 8 41

40 S 180000 8 101

SSIA2 0* 112- -

551B2 0* 375- -

551C2 0* 277- -

SS2 0* 192- -

- - 278SS3 0*
196SS4 0* - -

I Design changes amounting to about' 21% of the source lines of code were
introduced after failure 288.

2SSIA. SSIB, and SSIC r'epresent the same software system running in
slightly different environments.

3 hases:P

SS = Subsystem Test, module testing
S = System Test; after modules or subprograms are integrated

into a larger system
.

0 = Operational; System Running in the Operational Environment.'

Data is for a complete phase unless starred.
4A fault is a software defect that causes the failure.
SIf a failure recurred before the fault that caused it was corrected,

it was not counted.
6When a failure was spawned as the result of correcting an earlier
failure, it was counted as a new failure.

7
Data are for the system testing phase unless in parentheses; data for
the operational testing phase are shown in parentheses.

--+s----- - _

__
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Ta bl e 4.3

Characteristics of Software Systems Studied by Brooks and Motley

Number of Errors
Project Instructions Language Phasel Detected N3 3q

1 1317K ALC, CENTRAN T&I 2657 3771 1.17x10'
2 124K J0 VIAL, J3 T&I 1301 1438 1.27x10 3

3 80K ALC
40K J0 VIAL, J3B T&I 1239 3094 2.07x10 3

42 ll4K J0 VIAL, J4 T&I, 1138 1348 .1166
post-integra-
tion testing

52 _ _ _ 1483 1824 .1060

62 2707 3958 .0739- - -

72 2362 3446 .0742- - -

IThe test and integration phase refers to a period of testing during
and af ter the integration of two or more programs into a single system.
Data from Projects 4 through 7 encompassed this phase as well as an
acceptance testing phase.

2 Projects 4, 5, 6 and 7 constitute one set of error data counted four
different ways and illustrate a need for standardized terminology.
(Four attempts to remove different types of non-software related errors
from the total set of SPRs (s_oftware problem r_eports) reported during
testing by different people according to their own definition of a
valid software error).

3N and q denote estimates, using the Brooks-Motley model discussed in
Appendix A, of the total number of detectable code errors at the
beginning of testing and the probability of any single error being
detected during a unit of test effort. Since this unit of effort was
not defined in the referenced literature, the physical significance of
"q" and even the comparability of q estimates among projects in this
table cannot be specified.

d

.-



. ._. . -. . .- - . - -.

35

Table 4.4t

Comparative Histories of Errors Introduced in Debugging
,

and Total Errors Detected as Analyzed by Goel and Okumoto "

Errors Errors Caused by
Mc.ith Detected Imperfect Debugging

1 122 6

2 98 1

3 82 1

4 75 3

5 113 2 9

6 85 3
,

7 105 2

8 47 1
,

9 61 1

10 25 1

11 28 0

12 42 1-

13 18 0

f 14 17 0

15. 28 0

16 14 0

i 17 5 0

18 3 0
'

19 3 0

20 13 0

21 5 0

22 10 0

|
TOTAL 999 22 -

|

!

|

|

, .. .-, - , . . - . . - . . . - - - - . . . . - . -- -- - - . .
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Table 4.5

NTDS Error Data

Time Between Errors
Error Number in Days

Checkout Phase

1 9

2 12
3 11

4 4
'

5 7

6 2,

7 5

8 8
9 5

10 7

11 1

12 6

13 1

14 9

15 4

16 1

17 3.

18 3
'

19 6

20 1

21 11

22 33
23 7

24 91

25 2

26 1

Test Phase
27 87

28 47
1

29 12
30 9

31 135

User Phase
32 258

Test Phase
33 16
34 35

_ __
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Ta bl e 4. 6

Change Data and Code Defect Estimates for Large Scale
Programs Studied by Dickson, Hesse, Kientz and Shooman

Application A Application B Application C Application D
240,000 Inst. 240,000 Inst. 240,000 Inst. 240,000 Inst.

Month Changes Changes / Inst. Changes Changes / Inst. Changes Changes / Inst. Changes Changes / Inst.

1 51 4 2.15 x 10 3 905 3.76 x 10 3 235 0.98 x 10 3 331 1.38 x 10 3
2 926 3.85 376 1.57 398 1.66 396 1.66
3 754 3.15 362 1 . 51 297. 1.24 269 1.12
4 662 2.76 192 0.80 506 2.11 296 1.24

'

5 308 1.28 70 0.29 174 .72 314 1.31
6 108 0.45 55 .23 183 0.76
7 60 .25 1 58 0.66
8 368 1.54i

'

9 337 1.41
10 249 1.02
11 166 0.69 ti
12 108 0.45
13 31 0.13

Supervisory A Supervisory B Supervisory C
210,000 Inst. 240,000 Inst. 230,000 Inst.

Month Changes Changes / inst. Changes Changes / Inst. Changes- Changes / Inst.

-

1 110 0.52 x 10 3 250 1.04 x 10 3 225 0.98 x 10 3
2 238 1.14 520 2.16 287 1.24
3 185 0.88 430 1.80 497 2.16
4 425 2.02 300 1.25 400 1.74
5 325 1.55 170 0.71 180 0.78
6 37 .18 120 0.50 50 0.22

,

7 5 .02 60 0.25
8 40 0.17

_ - _ _ _ _ _ _ - _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ . . _ - . _ _ .__ . - _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ - _ _
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Table 4.6 (continued)

Code Defect Parameters Estimated by Shooman Model

I E /IProgram T T T Ajt

Supervisory A 210K 6.14 x 10 3 0.875 x 10 3

Supervisory B 240 7.97 0.996

Supervisory C 230 7.48 1.25

Application A 240 13.20 2.20

Application B 240 7.70 1.54

Application C 240 7.00 1.00

Application D 240 12.90 0.995

Average . . . . . . . . . . . . . 8.92 . . . . . . 1.26

E = Estimated total reumber of errors at initiation of data collection.
T

IT = Number of machine language instructions in the system. ,

p = Number of errors / number of instructions / month, averaged over the
entire duration of time in months.

i

<

I

L
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Table 4.7

Relationshipc Between Errors and Program Properties
Program as Reported by F. Akiyama

Errors Detected'

During Different
Phases 3

Program Properties Total Detected DB AT BT(1) BT(2) F

Module fizel D J D+J Number of Errors 1 2 1 1 2

MA 4,032 372 283 655 100 58 25 11 4 2

MB 1,329 21 5 44 259 18 9 4 4 0 1

MC 5,453 552 362 914 93 78 6 8 0 1

MD 1,674 111 130 241 26 21 0 4 1 0
ME 2 ,0 51 31 5 197 512 71 54 8 5 1 3

MF 2 ,51 3 217 186 403 37 21 9 6 1 0

MG 699 104 32 136 16
MH 3,792 233 110 343 50 w

*
MX 3,412 416 230 646 80

TOTAL 24,955 2535 1574 4109 493

INumber of machine language instructions.
20: number of decision symbols.
J: number of subroutine call symbols.

3DB: testing individual modules.
AT: subsystem connection test.
BT: integration test before release.
F: field.

Duration of these phases are shown in month.
,

. .
. . .. . .

. .
.. .

.
..

.
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5.0 Summary of Results

This section presents illustrative results of software failure probability
characteristics generated using the analytic tools described in Section 3.
Section 5.1 reports results using models supporting the probabilistic framework
described in Section 3.2. Section 5.2 reports illustrative regression analysis
results on the correlations among failure probabilities and code variables.
All these results are based on preliminary, incomplete, unverified, and
possibly non-representative failure data and are presented only to illustrate
the methodology. Section 5.3 describes estimates of software failure character-
istics obtained from the literature and from informal surveys. It too is
considered preliminary, incomplete, and possibly non-representative. However,
it is used to illustrate that even in a very small sampling of observations and .

opinions, the estimated characteristics exhibit a wide uncertainty band and
heavy dependence on code properties.

5.1 Illustrative Failure Probability Characteristics Results

This section describes results using the published failure rate models and the
sigmoidal fault discovery model (Eq. (22) in Section 3.2) developed as part
of this research program. Calculations were performed with these models to
determine estimates of the number of software errors per line of instruction
and the probability of code failure. As described above, the results here are
presented to show the feasibility and usage of the methods, not to infer

,

probabilistic results relevant to nuclear codes.

Studies performed using the published failure rate models described in Appendix
A provided quantitative insight into both the published mathtnatical methods
and the software failure data described in Section 4. Considerable effort was
expended in understanding these models and the role they could play in the
mathematical framework of this program. However, for brevity this section
reports only a summary of the results obtained and representative illustrations
of individual calculations.

First, a quantitative comparison of the above software reliability models was
made to evaluate their relative merits. In particular, calculational results

were obtained with the deterministic failure rate models of Jelinski-Moranda
[5.1], Musa [5.2], Goel [5.3], and Brooks-Motley [5.4], and the stochastic
model of Littlewood-Verrall [5.5], applied to the published data {5.6] shown in
Ta bl e 4.1. An illustration of the results is presented in Figure 5.1 which
shows the reliability as a function of code execution time. These reliability
functions were obtained using the maximum likelihood estimates (MLE) of the
individual model parameters' based on the first 100 detected faults of Table
4.1. In all cases, the MLE equations were highly non-linear. Convergence to
the solution of these non-linear equations was slow for many of the failure
rate models, particularly for the stochastic model. A choice of initial
values was critical in obtaining any solution, with a good set of initial
values resulting in quickly converged solutions. However, as in any system of
highly non-linear equations, it is not a trivial matter to determine whether
the converged solution is unique.

For the results presented in Figure 5.1 and Ta61es 5.1 and 5.2, only the
binominal distribution form af the Brooks-Motley model was treated; further,
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the error reduction factors, B in the Musa model and a in the Brooks-Motley
model were assumed to be 1. The MLEs of the model parameters varied greatly
depending upon over what range of failure data they were taken, as indicated in
Ta ble 5.1. However, for a given data set, Table 5.1 also shows that the i

analogous parameters for the different models agree reasonably well. For
example, constants of proportionality 4 in the Jelinski-Moranda model,1/T N in

0the Musa model, b in the Goel model, and q in the Brooks-Motley model, are
cczparable for all cases. These reflect the probability of error detection and
are seen to decrease with error detection as reliability improves.

Ff ure 5.1 and Table 5.1 reveal some of the generic traits of the failure rate3

model s . Littlewood [5.8], by applying goodness-of-fit tests has shown that
his stochastic model provides a better fit to the data than the deterministic
model s . In addition he observed that the stochastic model was more conservative
in its estimate of the reliability. Figure 5.1, as well as other examples not
reported here, substantiates Littlewood's observation regarding conservatism.
A~nonconservative feature of the deterministic models is illustrated in Table
5.1. The parameter N estimating the total number of errors in the system at

~

the initiation of detection becomes larger as more fault data are factored
into parameter estimation; i.e. N becomes larger as more errors are detected.
Since the Littlewood-Verrall does not predict N per se, quantitative estimates
of its conservatism are not readily made, although its conservatism relative
to the deterministic models is shown in Figure 5.1.

Table 5.2 lists software failure probability characteristics of nine of the
systems documented in Appendix B and studied with the Brooks-Motley binomial
model. As was the case for the Table 4.1 data, R, the estimated initial
total number of faults in the system, is always just slightly larger than
the observed number of faults. In one case, N was computed to be equal to
the number of observations. Thus, it is clear that the underprediction of
N is a characteristic of the failure rate models studied here, not simply a
characteristic of a specific set of data.

To illustrate the use of the sigmoidal fault discovery model to determine the
asymptotic number of faults for a given sof tware system,-the failure data of
Appendix B were analyzed. As shown in Section 3, the model

n(t) = f {1 + tanh[k(t-t )]) (1)
o

requires the estimation of the three parameters N, k, and t , with N being the
measure of error content. Good initial estimates of the pa9ameters must be
supplied for successful regression to be performed. The PAR derivative free
nonlinear regression module of the BMDP system was used in the present instance.
This module is described in detail in Appendix C. Basically, PAR computes
least square estimates of parameters using an iterative pseudo-Gauss-Newton
algorithm. For the examples considered here, data near the end of the testing
period were weighted more heavily than data near the beginning of the period.

Failure data for nine systems, namely Systems 1, 2, 3, 4, 5, 6, 7, 27, and 40
of Appendix B were analyzed. Figure 5.2 shows a comparison of the observed
data and the values predicted with (1) for System 4. This system is a real
time command and control software package of 33,500 lines extent, programmed
by seven programmers with a total of 53 observed fault-producing failures over
a 70-day period. Reasonable agreement is evident indicating that the assumptions
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underlying the model are supported by this example. An estimate of 55 total
. faults was obtained. This number is slightly larger than the number of faults
actually found and is in reasonable agreement with failure rate model pre-
dictions.

Table 5.3 summarizes the values of N, k, and t for the nine systems to which
the sigmoidal model was applied. Theinitial8stimatesusedintheregression
analysis were chosen as follows: The initial value for N was chosen to be the
total number of faults observed during the testing period; the initial value
of k was set equal to the reciprocal of the total number of observed faults;
and t was set equal to the time when half the total observed faults were
disco 9ered. Compgrison of the values obtained for N with the values listed
in Table 5.2 for N shows that the sigmoidal model predicts a total number of
faults somewhat larger than the total number of observed faults just as do
the failure rate models. These results indicate that the sigmoidal model is
a satisfactory alternative to the failure rate models for predicting N. !

|
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5.2 Illustrative Regression Analysis Results Correlating Software
Failure Probabilities with Code Properties

To illustrate the use of regression analyses to correlate failure probability
characteristics with code properties and development variables, the exercise
described herein was performed. A log-linear- form for the error content per
line of instruction, or alternatively the probability per line of instruction

that a software fault would cause code failure was assumed as follows:

0+at+aI+aP. (2)Inn =a j p 3

where

t = time in working days,
I = number of lines of instruction,
P = number of code programmers,

and

n = (N-n)/I, (3)

where

N = the estimated number of total errors
1

and
I

n = the observed number of errors.

The choice of independent variables in (2) was determined by the information
available about the systems on which the data were taken. The choice of time
in working days, rather than time between current and previous failure was
made because time in working days is thought to more correctly reflect debugging
activity and measure of level of sof tware exercise and fault detection. The
choice of the number of lines of instructions as an independent variable was
made because a nonlinear relationship between the number of faults and the
number of lines of instructions was expected. The choice of the number of
programmers was made because the information was available and the cresence
(or absence) of a multitude of programmers working on any software system can
obviously affect the production, detection, and correlation of faults. Choice
of the log-linear form for n was made to accommodate the several orders of
magnitude change expected in n.

Fits of the log-linear expression were accomplished using BMDP's PlR multiple
linear regression module, described in detail in Appendix C. Basically, PlR
computes a multiple linear regression equation on all data and on groups or
subsets of the data. The parameter a in (2) can be set to zero prior to the
analysis if desired. If a grouping VSriable is specified to form groups,
homogeneity of regression coefficients across groups is tested. It is also

possible to specify case weights.
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Figure 5.3 shows a comparison between results obtained with (2) and the observed .
data for the same nine data sets to which the sigmoidal model was applied.
Table 5.4 lists the estimated values of the parameters a . Rather extreme
variations ccur at small values of time between the predicted and observed
values (t' observed values sho(a lot of scatter in this range as well). As
a consequence, the "F" ratio relating fit to the resulting residuals is
relatively high (F = 40). Figure 5.4 shows a lognormal plot of the residuals.
The straight line represents the expected behavior if the residuals are normally
distributed. Significant departures from a normal distribution are evident.
The serial correlation of the residuals is relatively high indicating that
(2) does not successfully remove the inherent trends in the data.

Of the three independent variables considered in (2), increases in two of the
variables act to reduce n while increases in the third cause n to increase.
Increasing the number of working days causes n to decrease reflecting
successful debugging efforts. The decrease in n with the number of lines
of instruction suggests that the number of faults in the code may not be
proportional to the number of lines of instruction. The tendency for n to
increase with the number of programmers suggests inefficient coordination
of the programming effort. It should be remembered that these results are
only illustrative. The fact'that N increases with the number of observed
faults confuses the interpretation of the results. Therefore definitive
conclusions cannot be drawn from this analysis.

Again, the above work was done for illustration of the methods and no conclusions
are to be drawn. However, the effects of the variables on error content
satisfied " reasonableness". Further, the log-linear function used to describe
fault probability per line of instruction should also prove useful in future
analyses.

5.3 Surveyed Estimates of Software Nilure Probability Characteristics

This section describes observations from the literature as well as solicitations
of experts to obtain estimates of software failure probability characteristics.
In particular, observations for both code-specific and generic frequencies of
software errors or bugs per line of instruction are discussed. In addition,

conclusions of a small sample of experts regarding the failure probabilities
of large nuclear safety codes are presented.

Consider, first, the frequencies of errors per line of instruction. Boehm
reported in a summary paper [5.10] that "each new release of 0S/360 contains
roughly 1000 software errors." 05/360 is an IBM 360 operating system software
package consisting of roughly 300,000 to 500,000 machine instructions. This
translates to s 2 - 3 x 10 3 errors per instruction. Boehm also reported on
code development by IBM utilizing a variety of on-line programming tools,
programming systems, and innovative structuring of the software to achieve
highly reliable software. With this concept, an 83,000 instruction system for
the Neu York Times was developed. During the testing phase 21 errors were
found; since release 25 additional errors have been found. For this system,
the minimum estimated number of errors per instruction at the time of release
is given by s 3 x 10 4 Additional error discoveries will increase this
estimate. Other published values include a value of 5 x 10 3 errors per
machine instruction observed by Rubey {5.11] and a " historical r"%-of-thumb"
value by Shooman [5.12] of 10 2 for the testing and integration ;e. In an

-
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informal survey of approximately 10 code developers at ANL, all responded with
basically the same rough estimate of 10 3 errors /line of coding for codes that
are in production status. An informal survey was also conducted with roughly
10 widely published " experts" in the software' reliability field. This survey
yielded estimates of 3-12 faults /1000 machine instructions during integration
testing, roughly 10 2 faults per instruction during system testing, and 1 - 2
x 10 2 faults per instruction during module testing. There was a concensus of
opinion that further generalizations of various probabilities would be
dangerously misleading without first examining the systems in question. It |

was further opined that the post-release failure data depend strongly on-
testing effectiveness.

The quick survey discussed above produced estimates of 10 2 to 10' software
errors per line of instruction; however, the stage of development of the
codes was not always clear. Further, it could not be always discerned
whether line of instruction referred to machine instruction or line of
coding. Advanced programming languages such as FORlRAN generally normalize
to 5-10 machine instructions per line of code. This value depends on the
language as well as on the compilers in the computer hardware. Thus, probably
the only conclusion that can be drawn here is that the number of sof tware
errors in a code is highly dependent on both the specific code properties
and on the computer hardware on which the code is executed. As implied
above, this conclusion was supported in the informal discussions held with the
surveyed personnel .

Concerning failure probabilities of large safety codes, the dicussion was
initiated with the question, "In your opinion, what is the probability that
a large hypothetical accident code properly executes to provide a qualitatively
correct estimate of an important parameter?" "Important" here was loosely
defined as one upon which a safety conclusion might be based. " Properly
executes" was defined to mean that the software was functioning correctly

, independent of whether 'the physical or phenomenological modeling was correct.
A " qualitatively correct" result was defined to imply that conclusions drawn
would not change because of deviation from " perfect". The conclusions were
as follows:

1. For a specific code, the application of the code determined
the probability. For example, the reliability of an accident
analysis code would depend on the type of transient analyzed.

2. A safety code is much more reliable after widespread use than when
it is released. A newly released code is not reliable.

3. The reliability of the code is strongly dependent on the
expertise of the user. An inexperienced analyst is unreliable.

For an application for which the code has been " verified" by experience and
the input prepared by an expert, opinions of the probability of successful
operation generally were above 0.9d, although only qualitative statements
about confidence were made.
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The overall conclusion to be drawn from these discussions is that a subjective
estimate of the " generic" probability-of failure of a larg'; safety code in
calculating a hypothetical accident has little meaning. Rather, the estimate
would depend upon the code itself, the use of the code, the analyst applying
the code, and the experimental history of the code. The need for quantifying
the effects of these kinds of dependencies is clearly shown.

|
|
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|
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Table 5.1

Maximum Likelihood Estimates of Model Parametersl as a
Function of Fault Detection Data

Fault Data Rang ( 1-50 1-100 1-136
A A A A A A A A A A A A A A A

N 4,T ,b,q N 4,T,,b,q N 4,T ,b,qg g

Jelinski and Moranda 59 0.1807-3 106 0.6652-4 142 0.3482-4

Musa 59 93.787 106 141.812 142 202.270

(0.1807-3)2 (0.6652-4)2 (0.3482-4)2

Goel 61 0.1667-3 107 0.6459-4 143 0.3409-4

Brooks and Motley 60 0.1784-3 109 0.6250-4 144 0.3382-4

;

IDefinitions are as follows: N is an estigate of the number of errors in
A

the code at the initiation of detection; 4, T b, and q are parameters
that measure or enter into the measure of err 8r, detection probability.
Exact definitions are found in Appendix A.

1
^

2 , , , which is comparable to 4, b and q
TNg

!

I

___ _ ._ _
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Table 5.2 Estima tedl Software Failure Probability Parameters 2 for Selected Data Systems

System I/I* N N/I -N q q(b-N)
^

1 21,000/19,500 136 6.5-3 142 6 3.5-5 2.1-4
2 27,700/6,600 54 1.9-3 56 2 2.9-5 5.8-5
3 23,400/11,600 38 1.6-3 '38 0 6.8-5 0
4 33,500/9,000 53 1.6-3 61 8 6.2-5 5.0-4
5 244,500 831 3.4-3 900 69 8.9-8 6.1-6
6 5,700 73 1.3-2 91 18 3.2-2 5.8-1

17 61,900 38 6.1-4 40 2 1.2-5 2.4-5
27 126,100 41 3.3-4 43 2 7.5-7 1.5-6
40 180,000 101 5.6-4 103 2 2.1-7 4.2-7

0
1 The Brooks-Motley failure rate model was used to provide the estimates.
2 Parameter definitions:

I: total number of instructions.
I*: number of instructions that were modified during fault collection; this data was

available only for Systems 1, 2, 3, and 4.
N: actual number of faults detected when projection estimates were made.
N: estimated total number of faults at the initiation of fault data collection;

obviously N > N..

N-N: estimate of the number of faults remaining in the system that would be detected
: eventually; this is a measure of code failure. potential,.

q: the probability that, given a fault in the code, it will be detected in a unit
. . of test effort (here 1 s);

q(N-N): the expected number of faults detected in a unit of test effort and is numerically
equivalent to the probability of code failure in a unit of test effort (here i s)
provided q(N-N) << l.
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Table 5.3

Parameters of Interest in the Fault Discovery Model

System N' k o

1 161 1 4 faults 3.76 x 10-2 2 x 10-3 day-1 661 1 days

2 53 il 5.00 x 10-2 5 x 10-3 35 1_ 1

3 5314 1.87 x 10-2 4 x 10-3 52114

4 5512 3.83 x 10-2 4 x 10-3 291 2

5 922 1 64 5.09 x 10-3 4 x 10-4 258114
-2 3 x 10-3 231 16 77 13 4.44 x 10

17 37 11- 6.31 x 10-2 4 x 10-3 241 1

27 42 14 2.39 x 10-2 5 x 10-3 291 6

40 102 + 3 6.76 x 10-3 + 1 x 10-3 130 + 10

Note: Quoted uncertainties represent one standard deviation.

Table 5.4

Parameters of Interest in the Log-Linear Probability Model

Coefficient Value

a -7.08329
0

-6.19 x 10-3 1 x 10-3 days-1a l
-8.10 x 10-3 1 x 10-3 (thousand lines)-1a

2

6.98 x 10-2 11.6 x 10-2 (programmers)-1a
3

Note: Quoted uncertainties represent one standard deviation.

" * 1w - -:- m..c.. ., _ ,
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6.0 Summary, Conclusions, and Future Directions

This section will summarize the preceding sections and outline the status and
future directions of the tasks involved in this research program.

Section 2 discussed validation and verification of software. Although this
~

was not a direct part of the FY 81 research program there is a clear need
to compile a recommended list of procedures for validation and verification
of nuclear safety software to provide the best assurance that code results<

that'cannot be checked by conventional means are correct (within the framework
of the modeling). Two examples of " unverifiable" results in the area of
nuclear safety are presented for illustration: (1) An energy release from a
postulated steam explosion in an LWR accident; and (2) A probability of a
certain mode of failure in an. LWR plant. In the first example, the phenome-
nology of large scale fuel coolant interactions is not known well enough to
allow reasonable prediction even if the boundary and initial conditions for
such an event could be accurately established (they cannot be). Thus, analytic
and experimental benchmarks are not available and bounding considerations
provide the only clue to reasonableness of results. In the second example,
consider the specific case of a very complicated and uncertain system'

evaluated using a fault tree network and for which the predicted probability
of a certain mode of failure is 10~15 Here, not only do the system behavior
uncertainties dominate, but the magnitude of the answer is beyond the analysts
" intuition" for ascribing reasonableness to a result. Thus, an outline of

ways to provide assurance that such " unverifiable" results are correct is
needed.

Section 3 presented the mathematical approach of this program and Section
5 presented results generated using some of the supporting models. As stated
throughout this report, these results were generated only to illustrate the
methods and were based on an analysis of failure data tha+, are preliminary,
unverified, and possibly non-representative of software relevant to nuclear
safety. Further, what has been done to date has been to estimate parameters
that support the framework of this program. Actual implementation of the
Poisson model to predict probabilities of failure and associated uncertainty
bonds for nuclear codes remains to be done.

Specific areas within the approach that must be dealt with include the proper
classification of software errors, faults, and failures both for data organi-
zation and subsequent regression analysis. With respect to the regression,

L the optimum choice of dependent variables needs to be established. For

) example, in the Poisson model, the characteristic probability gjk is an
! obvious candidate. However, expected numbers of errors, f.e. Mjk 9.jk may in

certain circumstances be amendable to regression. Finally, regression analysis
may be performed directly on the reliability. Investigation of the number of'

errors per instruction in a code is useful since this quantity is a convenient
figure of merit with which to measure the developmental progress of a code.
A Bayesian approach to updating reliability estimates was also introduced.

Although all these concepts bear investigation, an overriding factor in this-

program is that the data that will become available in the near term, say
several years, simply do not justify the development of sophisticated mathe-

| matical modeling. Thus, a pragmatic approach dictates that after the initial

. , .- -.
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computer establishment of the framework, data acquisition efforts will dominate
model development work.

Section 4 described the data acquired to date. Short term data collection
efforts will be directed to nuclear codes. Other sources of relevant data
include the human error literature and solicitation of " experts". However,
this is a minor part of the overall data acquisition effort. A development
effort that would unify these and subsequent data acquisition efforts is
the creation of a readily accessible computerized information base and resource
center. The components of this information base would include the necessary
mathematical framework and associated models with which to make reliability
predictions as well as the software failure data with which to verify and
upgrade this framework. To facilitate access to and use of this information
base with its concomitant analytic capability, as well as to provide a
continuous updating capability that could accept failure data from throughout
the industry, a Software Reliability Information Center and Computerized Data
Bank and Analysis System is proposed. This would be established at the
National Energy Software Center and could be made accessible to the nuclear
industry. The need for this centralized data and analysis center has been
emphatically demonstrated to our staff in our attempts to obtain documented
code failure data. Such data have been logged by very few code developers in
any consistent fashion in the nuclear industry and have been difficult to
obtain. A failure data center should provide an industry-wide focus on
software reliability, as well as providing a comprehensive, centrally located
data base.

Section 5 described the results to date. As cited they were strictly used to
illustrate the models. In the following year, gross estimates of reliability
characteristics and their dependencies, similar to those provided, but based
on an improved nuclear data base will be provided using the mathematical
approach of this program. Tie-ins between the non-nuclear and nuclear data
base will also be investigated.

In summary, a general mathematical framework for predicting reliability
characteristics has been established. At the core of this framework is a

! Poisson model for the number of code errors of a specified type in a given
| computer application. Methods of implementing this framework have been

developed and include both mathematical modeling and the proper specification
and handling of data. The product of this framework includes predictions of
reliability characteristics such as expected number of errors and probability
of failure in a given computer run. By accumulating failure data and specifying
the code characteristics associated with each data set, multivariate regression
techniques can be used to identify the important code parameters and controlling
developmental parameters. Actual computer implementation of this framework
Wds started. Efforts in the near term have been described above.

|
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Appendix A

Summary of published Failure Rate Models

This appendix provides a review and summary of predictive mathematical software
reliability models developed in the military, aerospace and communication
industries. As a background for this review, the mathematical basis of software
reliability is first provided. Summaries of the individual models are then
provided with highlights discussed in a " comments" paragraph. Results of the
application of a selected group of these models to failure data are presented
in the text of this report.

In general the models discussed here assume functional forms for the code
failure rate or the. number of errors remaining in the code. These models are
then fit to failure data to estimate, generally using maximum likelihood,
values for the model parameters. The models are subdivided into:

(1 ) Deterministic models using error detection vs. time histories
to evaluate the parameters of deterministic functions assumed
for the failure rate;

(2) Deterministic models geared to similar parameter estimation
using histories that measure numbers of errors in time intervals;

(3) A stochastic model that uses error detection vs. time histories
to estimate the parameters of probability density functions
assumed for the failure rate and time to failure.

Prior to the presentation of the models, a short introduction to the mathematics
of reliability is provided to facilitate the discussion of the models. The
reliability is the probability of successful operation over time t and is given
as a function of time by

R(t) = P (t > t)

where t is the time of failure. The probability of failure is given as the
compleiiient of reliability, namely

F(t) = 1 - R(t) = P (t < t) = f(x)dx,
i Jo~

i
! where the failure density function f is given by

f(t) = dF(t) , , dR(t)l

i dt dt
*

i

I

| The hazard function or failure rate is defined by

Z(t) = f( } 1 dR(t)
P(t > t)dt R(t) = R(t) dt

=

-

_ _ _ _ _ _ _ _ _ _
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and is the conditional probability of failure in the interval t < t < t + dt
,

given survival up to time t. From the definition of the hazard rate, the

reliability function can be shown to be
t

_ [o Z(x)dxR(t) = e
.

The mean time to failure (MTTF) is given by

.

MTTF = tf(t)dt,

from which integrating by parts leads to

MTTF = R(t)dt.
o

In general, because sof tware bugs are corrected as they are detected, the
failure rate Z(t) is a decreasing function of code lifetime. This character-
istic gives rise to a reliability function that increases with the life of the
code.

Reliability models developed by Jelinski-Moranda (J-M) [A.1], Musa [A.2], Goel
[A.3], Shooman [A.4], Schick-Wolverton [A.5], Brooks-Motley (B-M) [A.6], and
Littlewood-Verrall (L-V) [A.7] are summarized in the following paragraphs.
These models represent a group of the most frequently cited models in the
literature. The first six of these models are considered deterministic
because the failure rate or number of remaining errors is expressed as a
deterministic function of a small number of parameters. As cited above, the
deterministic models use either time-to-failure data or number-of-failures-in-
a-time-interval data to estimate parameters. The Littlewood-Verrall model is
considered stochastic because the failure rate is treated as a random variable

,

with a probability density function dependent upon a small number of parameters.
The Jelinski-Moranda model served as a basis for the development of other
deterministic models. In fact, Musa, Shooman, Goel, Schick-Wolverton and
Brooks-Motley models are of ten referred to as Jelinski-Moranda type models
because of the similarity in the formulation of the hazard function. In all
of these models, the hazard function is assumed to be proportional to the
number of errors remaining. To facilitate reference to the literature the
nomenclature used in the original papers is preserved in this report.

A.1 Deterministic Models Using Time-to-Failure Data

A. l .1 Jelinski-Moranda Model

Z(t ) = 4[N - (1 - 1)]j
where N = total number or errors initially in the system

4 = constant of proportionality

i = number of errors found in debugging time interval t j
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Comments

The Jelinski-Moranda (J-M) model assumes that each software bug has
an equal probability of being detected, an unrealistic assumption
since more easily-detectable errors are eliminated first., A potentially
more serious drawback with this model is that the MLE (maximum
likelihood estimate) may predict infinite values for model parameters.

A.1.2 M. L. Shooman Model

Z(t) = K[E /IT - ' CIT)3 "KCr(')iT

thus

R(t) = e -Kc (t) tp

and

MTTF (T) =
E

-

f-c(T}K
c

- T -

where

E = total initial # of errors (unknown)T

I =# f instructions
T

c =# f errars corrected (normalized'to I )c T

e =# f errors remaining (unknown) normalized to I
r T

T = debugging time measured from the beginning of the system
testing period

I

= code operating (may consist of many testing periods).
time measured from the beginning of the systemt

testing phase In
some cases T =t

K = constant of proportionality (unknown),

|
| Comments

1) The Shooman model is essentially a J-M model where all parameters arei

normalized to the number of instructions.

2) The reliability function R(t) is defined for all t > 0. The
time variable t is a measure of the operating time since the
initial activation of the system and i is a measure of the
calendar time since the beginning of. the system integration.

,

_ _ _ _ _ _ _ _._ ___
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3) There are two unknown' parameters',h and K, in R(t). To solve
for these two parameters, the MTTF function, is evaluated at
two different debugging times, ti and T2, where ti < T2 and
e6aluatedf8r(1T2). With the computed E and K. R(t) can be i(ti) < cc

for which c is known;Tif e is not known,
3

an estimate must be made bas 6d on the previo6s data. The
adequacy of this technique depends on the knowledge of the
failure detection rate; the extrapolated value of R(t) based

for i for large n may be very poor unless theon T,
failure det6ction rate is almost constant.

A.l .3 J. D. Musa Model

= [o [1 I ' DZ(t) = KfE gp
o

T = accumulative execution time
'

E = # of err rs remaining
r

f = linear execution frequency,
, average instruction execution rate

number of instructions in the program

K = a constant of proportionality, the " error exposure
ratio", which relates the error exposure frequency
to f

i = number of errors detected

T = initial MTTFg

M = N /Bg g

where

N = number of initial errorsg

B = error reduction factor

= average ratio of the error reduction rate to the failure
occurrence rate

Comments

1) The Musa model appears to be widely accepted in the field
[A.8]. Z (t) is proportional to the number of errors remaining
and the linear execution frequency. The time variable t in
Musa's model is the accumulative execution time or the actual
CPU time utilized in executing the software.

2) The parameter B can be adjusted to tieat incorrect debugging
(additional errors introduced by attempts to_ correct errors),

i as well ~as corrections for the learning process that the

._. . , _ ._ _ _ _
_ _- _ _ _ - __ _ _
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programmers experience. The parameter B is postulated by Musa
to be nearly constant for large projects due to averaging
effects. This factor is usually positive and less than one;
however, it can be greater than one when correcting one error
leads to other errors. In practice, B is difficult to
quantitatively determine. For B = 1, the Musa model reduces
to the J-M model.

A.l.4 Schick and Wolverton Models

Z=4 N - (i - 1) t; S-W model
'

4

N-(1-1)](-at + btj + c) modified S-W modelZ=4

where

t = debugging time
$

4 = proportionality constant

N = initial error content

i = number of errors detected

a,b,c = positive constants

Comments

1) The Schick and Wolverton model is a modified J-M model to
better account for the variation of the failure rate with
time.

2) The modified Schick and Wolverton model expresses the time
variable as a quadratic function, which implies that the
failure rate initially increases to a maximum before becoming a
decreasing function.

A.2 Deterministic Models Using Failures-in-Fixed-Time-Intervals Data

The models described above are used with error data characterized by recording
the time between failures. The next two models express the hazard function in
terms of the number of remaining errors as do the J-M type models, but are
designed to use failure data in the form of number of failures in time t, (n,t)
denoting the number of errors detected in time t. The model by Goel utilizes a
nonhomogeneous Poisson process for software failure detection. The model by
Brooks and Motley features the use of binomial and Poisson distributions (only
the binomial distribution is presented here) to represent the number of errors
in a test.

A.2.1 A. L. Goel Model

This model describes a nonhomogeneous Poisson process (NHPP) whose mean value
function is derived by a deterministic analysis of the software failure process.

._
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Let n(t) be the cumulative number of software errors detected by time t and a
be the total number of initial errors or the total number of errors to be
detected eventually; then n(t) has following properties

eo when t = 0
n(t) =

J a when t = =

The number of errors detected in (t, t + At) is assumed to be proportional to
the number of remaining errors-

n(t + At) - n(t) = b(a - n(t))At
where b is a proportionality constant. Then

n(t) = a(1 - e-bt) ,

Let {N(t),t>0} be a nonhomogeneous Poisson process (NHPP) describing the
number of errors counted in (0,t) and having the following properties:

1. N(0) = 0

2. {N(t),t>0} has independent increments
_

3. P{2 or more events in (t t4At)} = o (At)

4. P{ exactly 1 cvent in (t t+At}} = A(t)At + o(At);

where A(t) is the hazard function and is called the intensity function. Fu rther,
let

pt

m(t) = J o A(s)ds.
I

Then for t>0, N(t) has the Poisson distribation
_,

P[N(t) = y) = I"( -m(t)e , y_>0
y.

with the expected value of N(t) given by

E[N(t)] - m(t);

m(t) is cal!ed the mean value function of the NHPP. For the homogeneous case
where A is a constant, m(t) = At and

y
P[N(t) = y] = L e~"

y1

where the mean value p = At. Choosing the mean value function m(t) to be equal
to the cumulative number of errors n(t) yields

m(t) = a(1 - e-bt),
.

wa



_ _ _ _ _ _

65

3

implying that

A(t) = abe-bt

and

R(t) = exp [- A(x)dx] = exp[-a{e-bs -b(s+t))3,-e
s s

where

s = time the last failure occurs

This conditional reliability function describes reliability since the last
failure.

Comments

1. A deterministic model for n(t) is required to obtain the
functional representation of m(t) which satisfies the
NHPP conditions, rather than the converse.

2. This model analyzes data sequences of the form (cq, t ) where ejjis the number of failures in calendar time t .j

A:2.2 Brooks and Motley Model

This model treats each program as a set of modules. The expected number of
errors in the portion of the total system which is under test on occasion i
can be found by taking the summation over all modules which are being tested.
The estimate of the number of errors prior to test i for the portion of the
system under test is given by

R (W N - aN _) )Zj = jeJ j j
j

=N E W -a E N _),3j
JcJ JcJj j

where

the set of modules tested on occasion iJ =j

3 sumrration over all modules that are elementsd'U
1 of the set J j

E the fraction of the system which is under testW =
JJ jj
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"N = number of errors in system before the first
testing occasion

= probability of correcting errors without reinsertinga
additional errors

1-1

N ,j E n,3 and is the number of errors actually detected in=j
m=1

that portion of the system prior to the ith occasion.

*If one defines

q = probability that any given error is detected during a unit
of test effort

and

tg = the system test effort on occasion 1; it can be given as the
execution (CPU) time, calendar time, number of tests, etc.,

then the probability of detecting any given error during the 1-th test
occasion will be

q, = 1 - (1 - q) I .

Since R errors are exposed during the i-th test occasion, the probability
of dete ting x errors will be given by the binomial distributionj

/ R,) R
3 (1 - q ) , - x,

x
1p(x ) =j q, j .

The probability of detecting no more than M errors during the i-th test
occasion is given by

M M (R) R

\* /
q * (1 - q ) g-x9 !Z p(x) = Z i j g

.

x=0 x=0

The relationship between the Brooks-Motley modal and other J-M type models
becomes more apparent if t, is regarded as execution or calendar time. Then
the reliability as a function time t after the erid of the (1-1)st testingj
period is obtained by setting M=0 in the preceding equation. Then

R = (1-q,) I = (1 - q) I
,

and for the failure rate,
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j=-f =-R in (1 - q) % IA
$ t

where

nj=Rq,j

is the expected number of failures in time t . The failure rate is proportionalg
to the number of undetected errors remaining in the system.

Comments

1. Basic assumptions are very similar to the J-M model, where the
proportionality factor 4 in the J-M model and q in the B-M model
are the measure or probability of error detection.

2. The B-M model has an advantage over the others in that it treats
modular level and system level reliabilities. This is desirable
in analyzing complex reactor design and safety codes. The B-M
model examines the modular level reliability by assigning

, the determination of which
" probability-of-usage" weights, W,t accommodates the fact thatmay be non-trivial. This treatmen
programs may be used for years without error if program use
is restricted to a set of well validated modules.

3. a is similar to B in the Musa model. All three parameters,
N, q, and a, are estimated by the maximum likelihood method.

4. This model can make estimates of the following items based on the
data of form n failures in period j.

current and future reliability,.

time to achieve specified reliability,.

probability of passing a reliability requirement test..

A.3 A Stochastic Model

The final model is a stochastic model, developed by Littlewood and Verra11,
which treats the execution time and the failure rate as random variables.

Littlewood and Verrall Model

This model attempts to account for the random process of input selection and
the stochastic nature of the times to failure and the associated failure
rates with a mathematically tractable model. The function

I
pdf(t|rg=A)=Ae ,tg>0j g4

.______ - _ - __ . .-
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represents the probability per unit time that the i-th failure occurs at time
j = A , andt given that the failure rate r jj

a-1 ,-+(1)Ai i,(i)ax
pdf(Aji.a)= Aj>0.j g)

gives the probability per unit A that the failure rate between the 1-1st and
1-th failure is A . $(i) is a monotonically increasing function of 1, e.g.,
$(i) = Bi + 821. jThe exponential distribution for time between failures is
chosen because failures are considered as constituting a random process (Poisson
process) and the choice of a family of Gamma distributions for the failure
rates is justified by its flexibility (having two parameters, $(i) and a),
correct range (0,=) and mathematical tractability.

Combining these two,

pdf(t|$(1),a)=a *

$ t i) t $(i)_j j

The failure rate function is given by

Z(t ) = tg + 9(i) 'j

|
from which the reliability function is

f ($1 TaR(t ) =
$Li)/

*j t j

Comments

1. The stochastic nature of time.and failure rate are considered.

2. $(i) is a scaling factor and aids in estimating the qualitative
behavior of the reliability without computing R(t). If $(i)
increases more rapidly than i, a faster than linear reliability
growth is implied.

_ . _ - _ _ .
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Appendix B - -

Sof tware Failure Data Sets

|

This appendix contains 16 data sets generated by John Musa [B.1]. These data *

sets were obtained from the Rome Air Development Center and are stored on tape.

Reference

B.1 J. D. Musa, "Sof tware Reliability Data," Data and Analysis Center for
Software, 312 (1980).
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Table B.1 Failure Data Set 1 of J. D. Musa

i t, d, i t, d i t, dj 9

i 3. i Si see. 56 i.: Se. 7e
2 30 2 52 21. 57 jul tel. 74
3 843. 9 53 235. 57 103 Ive. is
e al. 10 54 lle, 57 lov e. 74
5 115 II 55 '35i. 57 los 318e. 75
6 9 Il 56 193. 59 196 1247. 76
7 2 17 57 236 59 lui' 943. 76
8 98. 26 Se it. 59 809 Fus. 7h
9 114. 20 59 369 59 899 MF5. FF
le 15 20 to 748 59 liv 2e5. -77
Il 119 20 el 0. 59 til 729 77
12 Sv. 20 62 232 59 Ill in97 fn
13 17 20 63 138 59 113 est. 79
le 24 29 64 365. 6l lie 366 79
15 los. 20 65 1222 62 ils eth. 79
16 se. 20 66 543. 63 Il6 122. 79
17 679 30 67 10. 65 lli www. 79
18 129 30 69 16 63 Ile 94d. M0
19 Ja. le 69 St9 6e liv len2. e6
20 lie. So 70 379 6e 320 22. es
il 3th. 30 78 es. 6e ill 75. 69
22 55 30 72 129 6e 122 462. 80
il 2el. Il 73 ele. 64 123 5509 el
2e 6d. 31 Fe 290 64 124 190. el
25 e22 Al 75 500 6e 125 19 88
26 183. 32 76 529 65 126 1078. 82
27 10 32 'I f 288. 65 127 375. M3
is llee. 33 7e tho. 65 lie 199. 43
29 tue. Se 79 ele. e6 129 6150. 83
39 15. et 60 Inti. 66 ISO 3328. 83
31 lo. 82 el 485. 66 138 1045. se
32 e. 46 62 296. 66 132 6en. se
33 v. 86 83 1755. 67 133 Sees. 87
34 e. e6 64 106e. 67 13e 1860. 87
35 227 46 85 87P3. 6e 135 186e. 86
36 e5. 46 M6 nac. 6e 136 etl6 92
37 176 46 67 9el. en
le Sa. e6 se 707 69
39 457 87 89 13. 69
40 Sev. 47 43 n6e. 69
el 97 e7 91 724 61
42 263. 47 92 2323. 70
43 e52 53 93 2939 FI
se 255 53 9e less. Fi:
e5 197 Se 95 6e). F2
46 193. Se 9s 12. 72
e7 6 Se 9F 268. 72
48 79 54 96 lepp. 73
49 el6 56 #9 e65. 13
50 1351. 56 low le35 Fe

i= fault number, t = execution time, d = day of failure
9 q
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Table B.2 Failure Data Set 2 of J. D. Musa

i t d i t d i t dj j j j j j
t 191. 1 21 6!8. 32 41 100. 46
2 222 2 22 I?3. 32 42 4225. 46
3 260 11 23 12a2. 33 43 196CO. 93
4 290. 11 24 642. 33 to 0. 93
S 290. 14 21 6 '5. 33 45 0. 53
6 JU). 23 26 12 5. 33 46 3C0. S3
1 570. 21 27 2745. 37 47 9021. 97
8 610. 23 26 3551 37 48 2519. 64
1 365. 23 29 RUO. 36 49 6910. 64

10 s90. 23 31 J910. 39 50 3340. 67
11 #75. 23 31 6990. 38 51 27$0. 69
42 36C. 27 ?? 3390. 38 52 6615. 71
13 000. 27 33 ISao. 41 53 6945. 71
to 1210. 28 34 !!$. 42 S4 7819. 72
15 607. 29 35 1936. 42
14 50. 29 3 ti ifs. 43
af 660. 29 37 661. 43
18 ISO 7. 31 39 30. 43
19 625. 31 39 7d9. 43
20 912. 32 40 9U0. 4%

i= fault number, te execution time, d = day of failurej j

Table B.3 Failure Data Set 3 of J. D. Musa

i t d i t d i t dg j j j j j
l IIS. I 16 788 le 31 10$71. el
2 v. I 17 222. le 32 S63. e7
3 83. 3 le 72. le 33 27in. et
e lie. 1 19 6tS. In 3e 652. es
S 594 3 de See. 26 3S S%v3. So
6 130 3 28 15. 26 36 Ilh96 Se
7 10F7 1 22 319 26 57 6124 Se
6 15 3 23 1993 27 38 2Seb. 59
9 15 3 le 1357 30

10 , 9 2. 3 2S eSds. 36
Il Sd. 3 26 m3e. Se
12 fl. 3 21 1400 eu
13 600 6 28 6 40
14 1869 8 24 e568. 42
IS do. 8 30 lle6 ee

i= fault number, t = execution time, d = day of failurej j
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4

Table B.4 Failure Data Set 4 of J. D. Musa

.

i t d i t, d i t dg j j j j

i S. i 2i ses. 2. - ei s. se
2 71. I 22 19 26 42 645. 86
3 lei. I 23 il1 27 el set. ao
e e91. 5 2e IF. 27 es leg. es
5 4. 5 25 24e, 27 45 env. e'
6 5. 5 26 296, 27 e6 Fle. et
7 20. 5 27 215 27 47 6ae. e6
8 139. 5 28 Ilt. 27 e4 e, se
9 efs. g pe ip), 30 eg y7e. 50

10 325 g 30 50 38 50 256, 50
18 lei. le 51 308, 31 Si leggy. Se
12 19p. le 32 279, 18 52 lefee. 70
11 72. le il 140, 12 55 1526; 71
le 56. le 3e 674 32
15 ele. 20 15 in). 32
16 ef. 20 14 2462 el
17 520. 70 37 109.- el
19 te24 26 16 2576, e2
19 p. 26 )* 265, e5
20 92. 26 es 178 se

i= fault number, t = execution time, dj= day of failurej

.

_ _ - - _ . . _ . . _ . _ _ _ _ _ _ - _ _ _ _ . _ _ _ _ _ . _ _ _
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Table B.5 (Cont'd) I

i t. d. i t. d. i t. d. i t. d i t. d.
i i i i i i i i i i

$6: 576co. 2S eir se Ou, 52, 673 464 ses 72, ie20.. ,54 ,4S i~. i i . 3,2
Se2 32evo. <9S aid in9io.. sio 6ie irie. Sei 730 i,ii. 354 e4. .s a. Ses
36s 2 Fin 3 23 6i9 i.e44 3si 67S +0 343 75: 2sto. 359 74, io ,. 53
$64 disco. des 620 J. 351 nFO 865F20. 346 732 12rev4 5tl Fee 3aeSv. 3** i

565 156u0 t4e ett F2un. 351 EFT u5ovo. 347 735 13 des. 333 Fog gScal. iv5 |
S60 #6500. 291 ett 5220w. 354 n7m 21evo. 3 si F3e c54sS. 362 #9e sleue. 335
567 3549e. 247 e23 echoo. 3 64 079 IPho. Je7 755 als. 162 198 17*232. Swi
S64 lesle9 297 n 2 's SeoJ. 334 emo 3oue. 347 756 901. set 79/ 54=+0 e90
Sov ee9tF. Seu b25 51JJ. 314 a91 v. 587 737 se39 Sa2 193 7vS$m. ebt
$10 391/d. 30w 626 12nb. 533 662 v. Se7 150 1855. 3*2 794 10%Ue. #od |

SFt bSitS. 305 627 e64po. 555 te l 61529 See 739 o70va. $63 195 tilsa2. 405
472 23e62 302 02e 21ed). 356 6As 620 See 740 347 343 750 15727%. =c9
SF) 10909, 512 e2# l 't u d . 33s LAS 20100 Sea Fel 2ed9 365 79F 18700. =99
Sie 29eS32. SOS 650 v. 534 6e6 9 See 1.s 2 7475. 565 799 ASta. *wv
SFS 804l5. 595 oli 36o0 llo c17 7200 leo 783 57898 Sod F99 ISewit. 412
516 1%51n. 304 old levo, ils 6es 35e00 549 7ee 18842 36) Bau 754o4 ele
SFF 5 #50 Sus o53 1410n. S$6 se4 9me. 449 7e5 2tf44 $*e col 271Sov. eto
SFS euTFS. Soo n39 = ados. 137 690 ite0. 549 Fen 12957 See mot 59Ss0 edl
S79 Fee 60. 397 635 19604 157 e91 3IMO. 349 FeT 2%ida. 3%h owl leecto. *2d
56v 37200 30F 056 F200 137 602 31400 3e9 Jae 55)*). 3*T eve 152n. ete
591 s200 507 637 36Gv. 357 de) 9920, 349 7e9 ISite. Joe huS ovFS. nee
S$2 17599w. 399 655 37e90 318 eie 15e700 355 750 tools. See tot ever. ete
Sol 25d20 310 651 3253u. 330 o95 1240eu. 355 151 e lle). 37v 3df eSe, e24
See 16366v. 311 6*0 2I00 336 ove 1599 351 752 taled. 370 eee 60 *2e

,4
S$5 6dd. Sgt 648 1231 33e 691 6220 351 755 197o4. $11 809 d. ele Cn
580 6es. 3ll %42 510u. 338 698 264e0 353 75e 189272. 373 olo 175t. ete
SSF elleo. 312 645 30*00 33R 09+ *See. 35' 755 31254 374 cil 32be9 42e
S96 18640 182 6ee o00 358 700 258 " 756 54559 375 882 46vle. e<6
599 1026 312 6e5 5J00 331 701 3959 . 757 7417. 175 el3 thee. 426
$90 idee. 312 646 720, 33A 792 314o. ,3 755 $273. 575 ole 52v60. e27
S al 2040 312 n47 2ees. 33e Pb5 8995 353 159 20Fe2 576 elS 12 elt
592 52200 313 ose tcmo. 154 704 73598 3Se 76v 9*wo. 37s ete 3ees. 427
595 IJ6760. 5te 644 obt24 339 705 So09 354 F68 estd. 370 et? Jele. et?
59e olo60. SIS 650 0, 339 706 4o78 354 162 0853, 37m ele 9. 427
595 2160. 315 651 3o00d. 339 707 ' 198 35e 763 IS23ee. 379 et9 53e. *27
S96 115920 SIF 652 75600 340 Foe 9962. 354 76e 57669 3ec 020 6v55/. elo
59F 19560. 357 655 7200. Seu 799 2tSS. 35e 705 26e2 383 eil $216 e2n
S9e 192600. 319 oSe 15503 Saq 710 1800. 354 766 fee 0. 3nu ell 1474, e2e
S99 lies. It9 655 900 340 Fil eews. 354 7h7 2ee. Seu e25 ll69, ele
000 e5hle. Slw 656 loon. 3de 712 dSSI. 354 F6e eter. Seu ele 3n44 ele
6dl e2es. 320 65F 4 340 7t3 ePho*. 35S The alb. 340 925 seate. ede
602 3279?. 329 658 1900. 340 714 Stool. SS5 7F0 15857 3al e26 5e24 elv
603 aoF97. 121 659 nodcu. 341 785 6522. SSS Fil Fee 2. Set 627 4 7475. * e 50
60e e2. 321 660 3o00 343 Fin duru. 35S 772 d2ee. 341 ete 440s. est
605 37%81. 321 661 teco. 3et 737 le7329 3S9 773 1353. 3at 629 6T20. est
006 e7320 321 662 3e0h. 341 fle 26en. 359 774 20555. 391 e50 5$668 =32
607 voccu. 322 e65 laou. 345 7t9 250. 359 fis sed *I. SP2 851 13086 eat
606 59110. 322 boe 3nt00, 342 720 2ee0. 354 77e 36o54 365
609 5389u. $ts tes 7558 Se2 728 1294 359 777 otSw. 193
blu 39000. Ste 606 7061. 542 122 102. 359 776 21232. 344
bli 15000. 324 667 3600 342 721 21u0 559 FF9 See62. $?S
el2 2ee00. 52e ens IStaa. 345 7/4 3sou. SS9 Pso Sole. 415
til 35520. 325 669 9 345 725 19$94 359 781 125221. Sei
684 144C0. 524 670 1052. 345 726 2411. 159 762 129u15. 39u
big 52n45 926 bil tel. 543 ft1 (296 359 Fan 52857 598
.i. iser5i. 3,7 .Fe 9a2 5es Fe4 3aiS. 559 Fee i444. 3 ei

i= fault number, t = execution time, d = day of failure
$ g
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Table B.6 Failure Data Set 6 of J. D. Musa

i t d i t d i t dg j j g j j
i S. I 51 25. 16 St S. 57
t le. I 54 1. 16 *2 Sn. 57
i S9 I 15 672. de 65 Fe. la
e 52. t le in*, to 6e ee. Se
S t. t 55 al. 24 6S 2. Se
6 Se. t 56 St. 26 66 eo. ea
F 4. 2 57 8 26 67 221. et
e 25 2 4M 1. 16 64 o, et
4 d. t 59 el. 27 69 991. S/

le 5 S 99 F. 2F Fe 25, 35
Il e. e el el. 26 F1 ,s. S5
12 1. 6 e2 l. 28 F2 elf. Sa
15 So, 6 45 e. JP F5 66 Se
le 48. F ** S. /d
IS 199 12 eS 1. de
le 26S. Il e6 lb. Jo
17 6 Il e7 Fe. 29
le 5 Il se to. 50
le a. 12 49 2. So
to 1. Id 50 2. Su
21 14. It SR 5. 50
24 56 15 $2 169 SI
15 la. 15 55 49 52
/* 8. Il 54 68 35
25 Fe. le SS 55. 35
26 e l, le 56 27 SS
2F 256 le 57 24 SS
2e lit. l5 55 27 35
29 18 16 59 140. 37
50 v. 16 60 35. 57

i= fault number, t = execution time, d = day of failurej j

Table B.7 Failure Data Set 14 of J. D. Musa

i t d 1- t d i t dj j g j j j
I IstS2d. 5 16 64175 65 ~5 8 ~ IS655do. Its

~

4 19Feciv. 27 IF 2570 65 52 Sl5vev. 155
5 SleS64 55 le ISet. 65 55 177660 157
e 1149 55 19 2 dells. 66 5e 2e690ue. 16%
$ 5129 55 20 Steau. 67 55 1678460. IgS

6 5/Fene. 37 di ==>20. 67 56 170760 187
7 ISeto. 37 #d 040949. FF
6 h0099 Se 25 561e6v. el
4 lowl60 39 24 5'd590 82

Id 95F6/4 50 t$ $15280. 9M
11 72240. 51 2e 2sn996. 98
12 FIFF00 es 27 5'46760 94
15 25 beau. 65 de 98760 97
le 2d65. 65 /* 1225620 lit
1% 199 65 30 124 lit

i= fault number, t = execution time, d = day of failurej j

. _ - _ _
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Table B.8 Failure Data Set 17 of J. D. Musa

i t d i t d i t d
g j g j j j

i aine. 5 it .co. 2i si :) . . ei

2 medv. 9 af 15e00 25 3d Inow. 43
$ w99 9 39 120. tl SS Sauv. .el

4 1%v. + 19 san. 25 le swue, et

S 4W. 9 to 12u0 /* $5 2400. et

s uu0u. Il el Ya u . t% 5% l t 'J J . eS
7 Jeov, le /2 1200. #6 11 iws so. 55
9 diJo. IS 25 1200 26 16 9evo. Se
9 2194 1% 24 tito. 2F
to 4461 It 2% twrue. 59
il 1/00 Bd to 3two. 32
12 Suu. 18 27 6uo. 12
13 90pu. tw 19 96vu. 14
Id .v". 20 29 hav9. 37
IS 2*00 28 30 *199. 19

i= fault number, t = execution time, d = day of failurej j

Table B.9 Failure Data Set 27 of J. D. Musa

i tj d i t d i tj dj j j j
1 20336. I le 38euS. 19 31 33e6(0. 50
2 11t76. 1 17 16200. 23 32 268140. 63
3 *u933. I le 60uo. 23 33 74800. 65
4 39<94. 1 19 19u0. 24 34 2862CO. PS
S 17136. 2 26 100v0. 24 35 23320. 65
6 14e*46. 2 21 220. 24 16 70f0. 65
7 tv9s. 2 22 355e0. 24 37 $9820. to
3 1636. 2 23 810vo. 25 38 879CO. 67
9 19e30. 2 24 643ny$. 35 39 762CO. 68

19 2193?. 10 25 4 F8 5 7. 34 40 692f0. 69
1t 2405. 12 26 1348u0. 35 41 12096Co. 19
12 18000. 15 27 170400. 37
13 4880. 15 29 1085*0e SS
14 61182. Is 29 73990. 37
13 4800. 18 3n 1860. 63

i= fault number, t = execution time, d = day of failurej j

i

4
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Table B.10 Failure Data Set 40 of J. D. Musa

i t d i t d i tj j j j j d j
i 32.. i ei 640. i.e al i re... <5e
2 ies... 2 et 6... i00 ,, i.e .. 434
3 9ede. 9 el dese. 192 53 liotdv. law
4 todo. 21 64 819 las ce estowv. 46a
5 5700 24 e5 2/e9@. 14e e% 65+dre. #F4
a 2I899 27 e6 opeSe, le6 en SleS60. #74
1 2havv. 27 if $4163. Il# 67 lesnevo. 49,
e 18554J. 57 es it5e6 lie en a%72u. #47
9 11/857 el 49 718 lle a4 1942JW. SUW
to a%u. e2 Se l e 19 3. lle 94 2152s1 Sul
Il 210v. el Si stel. lie 98 eteed. See
it 26 7 * *. el 52 Stati. lie et rese@. 105
It 4115 ee %S 24515. 115 93 teleevo. Stu
le ital. ee 5e #9ee44 125 9e elbe. 1/n
15 lech 5 se 45 12a0 125 95 3200 Sie
lb #230 e5 56 2/v94 127 is $4e209. 3/4
11 ewev. as 5F Iwl5v. lol wF 348:46v. 335
le leed5 49 Se 2 e- l l . 127 99 blesou. 358
19 Ilaea. 50 59 1987v. 147 99 345%ve. Sa3
/o Stol. 51 to 5579e. 129 leu sile0. Se3
24 e555 54 el m26 52, 135 tot deSaos. 3e7
/d eq #9 54 62 2elhee. 455
26 31/4 So 65 eivle. 136
de 51323. 56 6e le9ho6 let
25 lielo. Su 65 leone, les
de 149e. 6e 66 3e5n0 148
27 Suov. 69 61 3960s. let
28 62182. F6 68 33e395. le8
29 #4440 16 69 296015. le8
le 46535 19 70 17F199 149
31 563. 19 Fl 214622. 150
12 159e4 es 12 156400. 15e
33 1505e. e5 73 160eu0. 156
3e 52377 e5 Fe loses. 156
15 ele 12, 85 75 267000 159
36 albu. 67 76 2098P33. 183
ST m20eo. 98 77 614060. 190
38 13169 98 78 feev. 199
39 Se/h. 97 79 2629667 220
40 SM33 99 60 29ehP90. 254

i= fault number, t = execution time, d = day of failurej j

_ _ _ _ _ _ _ _ _ _
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Table B.ll Failure Data Set SSIA of J. D. Musa

i t d i t d i t dj j j j j j

i e i ., . 2 ei iselo. So ni ~5v n. i.o

e ri3 rov. is se 9ue. 50 ,i e 3 5, S i .. . iu5
i .ritto. ir ei esi20. 50 5 3 5 5 v, . iva
e niefd. In 1e iM0elo. 53 ee 25894u. 197
5 77150 le d4 500P50 57 MS 194 flu. lug

6 tu$nSo, to a6 69950 58 e6 og9 4 49 111
1 19506'. Il 47 loco. $b of legl6J. Il4
9 45540 28 ao 99J. Se be 494uu. It$
9 36560 21 ai 14490 Se o9 diu, 115

lb 93ho. // 59 2e3o. 56 Vo 40 115
11 6750J. Il 51 47980 DP 98 SJolo. 116
12 e590 22 57 5670. 59 92 te./ leu. 187
15 t/5/14 25 55 Ploche. 6u 93 t.6359, 139
le 5*04 25 5e 4/o/0. 61 44 *n/u. liv
15 hregeu. 29 55 153700. 62 95 cases. 119
to 51000 2# 56 5 Allo, hl de 15umaa. 121
Il M5epo, lo 47 4510 61 97 36ut o. ill

IN t e. 9 0 9 So Se lembio. 6e 9a lov. lll

19 luu6to. 31 19 e6569 h5 99 11186s. t/2

29 1/150 51 60 llel50 67 60 Sil<e54 l/6

il 15e350 12 68 5?lo. 67 lul vlato. 1/1

24 ineolu. Se e2 29nce0 70 102 Swen. lll

/3 5150 Se 65 teleon. 73 los loria. 1/F

de 10559 34 63 13600 18 loe 35893u. 13o
#5 157500 15 e5 900. il 195 euo559 154
in hemio. Sh 66 97e50 72 ton 1969ub. 157
27 24579u. 19 67 213480 74 Int 5805vo. le2

JM 167380 40 66 38950. le lom 1760. Let

29 2Fitu. eo 69 3F3500 F7 109 179200. 143
50 ligaeo. #2 Fo 232020 79 llo 1745nv. l e .a

il 21edo, et 71 187900 PO llt Sile10 toF
5t Stoo, e2 F4 64260. 90 142 159980 tes

il 1u5570. el F3 4500 60
5e 2700 el 7e 253710 Pe
SS h9390 ee 75 5029ee. 66
16 62730 45 lb 71e60 M7

SF 20340 45 FF $t5970 92
3a 415550 41 To 2h001U. 9e

49 55870 49 79 9/920 95
e0 el919 49 60 673470 100

i= fault number, t = execution tiine, d = day of failurej j

|

|
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Table B.14 Failure Data Set SS2 of J. D. Musa

i t d i t d i t d i t d i t dj j j j g j g j j j

i 26 00, t et 960. 199 el %253no. 3e7 128 3tne. est 163 555a00. Se2
2 IJ96*0 3 42 la0940. 20t P2 253620, 350 122 $9690. as7 162 563es. ge)

3 300 3 a3 678580. 210 P3 70800. 351 til 199220. ee9 163 e76100. Se7
e a099"8 8 ee 131a0. 210 84 936720 163 124 7564 ee9 36e e7a30. Sei
5 75t920 17 e5 1200, 210 85 1324pe. 365 125 1928ag, e52 165 1137220. 559 i

6 1579900, 37 e6 302680. 21e 96 78200 366 326 2CSPO. 452 166 ete290. 566 f

7 37e280 42 e7 780. 21e 87 330720, 370 127 755v40. ett in7 357pree. 578 I

8 811600, a3 48 135a276 231 78 16tSPO. 372 125 59ad. att the Se8720. 588
9 Il3e60 e5 49 91500. 232 P9 13560 372 129 3932844 466 169 395930. Se6

to 62530s. 52 50 2760. 232 90 3700, 372 130 8570ee. see 170 2790. Sf6

11 321920, 56 51 25tn00, 235 99 289620, 376 138 tile 66@. 482 Ift 2520. Se6
32 2ect20 59 52 227p20 239 92 t3500 376 132 7este. ee3 172 1074 Sp6

is 7e160 60 53 e0700 239 93 19AU. 376 133 6360. 4A3 873 2e8950. 580
te 27e560 63 Se 13a0. 239 9e 599eo. 377 13e 3s e t e r. se? 17e 2t690 588

1

59
53 I85 225000, 66 55 Suteso. 2e5 95 7920 377 135 atfee, aan 175 3efl30.

9
i6 2e60. 66 56 iS660. 2a5 96 Joao. ill i3 13 100, a9a if. 86 ife.

17 5393ee. 73 57 3106:00. 258 or 16300. 377 137 tceses, a93 177 13600. 59e
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16 ie3000 77 58 fico. 258 98 1032360 390 139 7920'. 891 179 42889e. 599

! 19 900 77 59 363780, 268 99 183660 392 139 23e620 495 179 189380 600

20 557220 85 60 e6440. 265 500 ta8 algo, ele ta0 te27ee, e97 IPO 219690 602

il 66Feeg. 92 63 el40, 261 tot 39ta0 sie tel 18889. 197 set 12870. 602 00 |

22 389800 99 62 16020 265 102 55et00 att ta2 stS7ed. 502 te2 152a330. 615 4m f

23 824560 100 63 teesso. 267 303 1660 eli nel 73390 503 ta) 361e90. 6t9
2a 189520. 105 69 138560. 270 10e 23400, att see aves. 503 88e sta130. 620
25 1680l80 325 45 720. 270 105 5t77e0 e25 lag a305 0 508 185 95760. 628
26 773220 334 66 2798 270 106 29520 425 tot e e S e t. 509 iP6 2e0570. 623
27 1956e20, te? 67 53880. 278 507 5e660 826 te7 902ge. Sl0 187 675360, 629

28 8937e0 149 68 10990. 271 108 37800, a27 148 248eJ. Sta 188 70ees. 629

29 52tleo. 155 69 1806980. 293 109 383e0 e27 149 72669. 515 189 1et1350. 681
3e e980 355 70- 84900. 294 110 785eo, a28 150 559904 5t6 190 15280. 681

38 2065920 380 ft 3et200. 296 333 53a660 e3e 15: ttosos 516 491 1566270. 655
32 1433e0, g82 72 470, 298 112 58960 435 152 50a720s $22 192 9080. 655
33 522660 184 73 1920. 298 133 56580 e36 153 306r. 522

le 57216u. 196 79 1156190. 132 tte 195IP0 43A 35e ]? $ 2 04 522

35 139920 398 75 733500. 328 185 689e0 e39 f55 599a0. 523
36 720 198 76 e355ao. 327 116 703s0, ee0 156 91560. 524

37 990s. 198 77 507000. 333 317 40 100. ea5 157 360 Sie

30 1g80 19e 78 3e6080. 335 119 87240 se6 158 559384. 531
18 79 20e300. 337 119 32520 est 159 637ated 536

39 3060 9

et ettoo. 199 80 2321e0 380 120 40920 447 160 188o10. 538

i= fault number, t = execution time, d = day of failurej j
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i
Appendix C '

Statistical Analysis Systems

The BMDP biomedical computer program is a system developed at UCLA to provide
an easily used set of statistical algorithms [C.1]. Its various modules dealwith such topics as:

1. Data screening and description;
2. analysis of variance;
3. regression; and
4. multivariate analysis.

Two modules from the BMDP system were utilf red to fit the fault discovery ar.d
fault probability expressions introduced in Section 3.

PAR Derivative-free Nonlinear Regression: PAR computes least square esti-
mates of parameters in nonlinear regression. The program is used with regres-
sion functions for which analytical expressions for the derivatives are not
provided. An iterative pseudo-Gauss-Newton algorithm is used to compute the
parameter estimates. Case weights and inequality constraints on arbitrary
linear combinations of parameters can be specified and parameters can be held
fixed at initial values. Parameters can also be estimated by maximum likeli-
hood.

In general, this program minimizes the weighted residual sum of squares
n

RSS = ,I w [y$-f(s ,p)]2 (t)g g
i=1

subject to linear constraints

c (p) = bg z + ..+ b P -b =0 (2)pg tm m t

where

g = set of t independent variables (xg ,xf2'*****it) f r the ith case,s

j = dependent variable for the ith case,u

9 = weight for the ith case,w

! n = set of nonzero weighted cases used,

p = set of m parameters (p , . . ..p,),j
| f = function to fit.
l

Step 1

The constraints (if any) are solved in terms of ag(sk,1m) of the parameters.
For simplicity of notation we assume that these m) parameters are p ,....p,Ij .

m
g

P bgy3+b (3)= p .g g ,

|

Redundant constraints are ignored.
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Step 2

The solution to the least squares problem is obtained through iterations,
described in Steps 2-7. At each iteration the model is linearized at the
previous value of p = (p .....pm) tog

m

jj(ii ) + e (4)ij=j=1I z j j

where the p 's are the parameter values to be estimated.

ij=yj - f(xj,p) (5)

and

af(x ,p)j
(6)z =

ij aPj

j = 1,...,m .

If there are any linear equality constraints,

a f(xj ,p) *1m,

gj j-b ] (7)j = y -f(xj p) + b[Pg j=I
I py j ap g

1t=m1+1 1

and

af(x ,p) m af(x ,p)jj + E b (8)z =
ij ap1jj 3p, t=m +1J

j = 1,...,m .

Step 3

The program forms the matrix

^11 ^12
A= (9)

A A. 12 22 -

(stored in lower triangular form) where A is m x m, A12 = A21 is m x 1, and
ll

A is 1 x 1, with elements22
n

z (10)gj=j{wzj jg jja

where

Z i,m+1 " i *

If there are linear constraints, m becomes m .g
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Step 4
.

Using the Gauss-Jordan algorithm for matrix inversion, the diagonal elements
of Ali are pivoted on in a stepwise manner. Let A = (ajj) be the pivoted ma-
trix A. At each step the index of the pivot element is the one that maximizes
rr/a among all r such thata

rr

1 1 r 1 m and r has not been used previously as a pivot index
i /a > T where T is the tolerance.

Note that 1 - I /a is the squared multiple correlation of " variable" Z
rr rr r

with previously entered Z " variables."

Step 5

Let pr be the provisionally updated value of pr, for r = 1,....m. (If there
are linear constraints,

mi
= I b p +b (11)p

j=1 Ed d I1

for t = mi + 1,...,m.) The updated values are then defined by

pj = pj + d(p -p ) (12)j j

j = 1,....m ,

where d(ol 5 ) is the largest value such that maximums and minimums for thed1
parameter values are satisfied. If there are linear constraints then

*1
p (13)bgjg+bp =

g g

t=m + 1,....m .

Maximum and minimum values for the.se k are not necessarily satisfied.

Step 6

A new value for the residual sum of squares RSS is computed. If the new RSS
is larger than the previous RSS, the step size d is halved and the pj are re-
computed. This step halving is continued until the value of RSS is not greater
than its value on the previous iteration or until the maximum number of incre-
ment halvings is reached.

Step 7

The program returns to Step 2 and iterations are continued until either a
maximum number of iterations specified is reached or until

|RSS(N+1) - RSS(N)|/RSS(N+1) < C . (14)

_ _ _ _ _ _ _ _ _ _ _ _ _ .-
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After each iteration the parameter values and residual sum of squares are
printed. After the last iteration the program reports the asymptotic cor-
relations and standard deviations for the estimated parameters. For each
case after the last iteration, PAR lists the predicted and observed values
versus selected variable values, residuals versus selected variables, and
normal and detrended nonnal probability plots of residuals can be requested.

P1R Multiple Linear Regression: P1R computes a multiple linear regression
equation on all data and on groups or subsets of the data; equations with or
without an intercept can be chosen. If a grouping variable is specified to
form groups, homogeneity of regression coefficients across groups is tested.
It is also possible to specify case weights.

In general the following steps are followed in P1R:

Step 1

The weighted means and covariance matrix (c) are computed. Actual minimums
and maximums for each variable are also determined.

*"t(*it i}(*Jl'J}* *

E " ,"E w
t 11 g

(15)i cjj = n-1 E w
L L

L n l'

where
n = number of nonzero weighted cases to be used,

w = weight for case tg

xjg = value of the ith independent variable for case 1.

Step 2
|

After all data have been read, the standard deviations are computed,

sj = @ j (16).

The means, standard deviations, minimums and maximums, and (if requested) the
correlation and/or covariance matrices are printed.

Step 3

The regression intercept and coefficients are estimated. The general form
of the equation is

y =a+bx +bx' +...+ b x (17)
t 1 11 2 21 q qt

where

y = the dependent variable = x 'd
a = the intercept,

x = independent variable,
b = regression coefficient,
q = the number of independent variables used.

_
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The regression coefficients are determined by stepwise pivoting the covariance
matrix. No variable is piveted whose squared multiple correlation with pre-
viously pivoted variables exceeds 1 - tolerance.

"t*1 t*J L
=1 (18)c .

g3 g,
L

Step 4

The intercept (a) and each regression coeifficient (b ) are computed jj
a = y - Ib x =x ~

d ii

(20)b, = cg .

For all data and all requested groups, the output includes mean, standard
deviation, minimums and maximums, multiple R, and standard error of estimates
for each variable; an analysis of variance table consisting of regression and
residual sum of .;quares, degrees of freedom and mean squares; F statistic and
probability for the regression equation; and the regression coefficients,
their standard errors, and t statistics and probabilities. The covariance or
correlation matrix; scatter plots, nonnal and detrended normal probability
plots of residuals, and partial residual plots; residuals, predicted values
and data can be requested for each case.

Reference

C.1 W. J. Dixon and M. B. Brown, ed. , BMDP-79 Bio-medical Ccmputer Programs
.

P-Series, University of California Press, Berkeley,1979.

.
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