NUREG/CR-2186 NUREG/CR-2186
ANL-81-84 ANL-81-84

QUANTITATIVE SOFTWARE RELIABILITY ANALYSIS
OF COMPUTER CODES RELEVANT TO NUCLEAR SAFETY

ARGONNE
NAT 1IONAL
LABORATORY

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOCIS

Prepared for the Office of Nuclear Regulatory Research

U. S. NUCLEAR REGULATORY COMMISSION
under Interagency Agreem=2nt DOE 40-550-75




The facilities of Argonne National Laboratory are owned by the United States Government. Under the
terms of a contract (W-31-109-Ing-38) among the U. S. Department of Energy, Argonne Universities
Association and The University of Chicago, the University employs the staff and operates the Laboratory in
accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona The University of Kansas The Ohio State University

Carnegie-Mellon University Kansas State University Ohio University

Case Western Reserve University  Loyola University of Chicago  The Pennsylvania State University

The University of Chicago Marquette University Purdue University

University of Cincinnati The University of Michigan Saint Louis University

Ilinois Institute of Technology Michigan State University Southern Illinois University

University of Illinois University of Minnesota The University of Texas at Austin

indiana University University of Missouri Washingtor University

The University of lowa Northwestern University Wayne State University

lowa State University University of Notre Dame The University of Wisconsin-Madison
NOTICE

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither che United States Gevernment nor aily agency
thereof, or any of their employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party's use, or the results of
such use, of any information, apparatus, product or process disclosed in this report,
or represents that its use by such third party would not infringe privately owned
rights.

Available from

GPO Sales Program
Division of Technical Information and Document Control
U. S. Nuclear Regulatory Commission
Washington, D.C. 20555

and

National Technical Information Service
Springfield, Virginia 22161



NUREG/CR-2186
ANL-81-84

Distribution
Codes: RG
and XA

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, I1linois 60439

GQUANTITATIVE SOFTWARE RELIABILITY ANALYSIS
OF COMPUTER CODES RELEVANT TO NUCLEAR SAFETY

C. J. Mueller
Editor

Contributors

H. Komoriya
C. C. Meek

E. E. Morris
W. E. Vesely*

Reactor Analysis and Safety Division

December 1981

Prepared for the Office of Nuclear Reactor Regulation
U. S. Nuclear Regulatory Commission
Washington, D. C. 20555
Under Interagency Agreement DOE 40-550-75

NRC FIN No. A2226

*U. S. Nuclear Regulatory Commission




Abstract

This report presents the results of the first year of an ongoing research
program to determine the probability of failure characteristics of computer
codes relevant to nuclear safety. An introduction to both qualitative and
quantitative aspects of nuclear software is given. A mathematical framework
is presented which will enable the a pricri prediction of the probability of
failure characteristics of a code given the proper specification of its
properties. The framework consists of four parts: 1) a classification system
for software errors and code failures; 2) probabilistic modeling for selected
reliability characteristics; 3) multivariate regression anaiyses to establish
predictive relationships among reliability characteristics and generic code
property and development parameters; and 4) the associated information base.
Preliminary data of the type needed to support the modeling and the pre-
dictions of this program are described. Il1lustrations of the use of the
modeling are given but the results so obtained, as well as ail "results" of
code failure probabilities presented herein, are based on data which at this
point are preliminary, incomplete, and possibly non-representative of codes
relevant to nuclear safety.

NRC FIN NO. TITLE

A2226 Software Reliability



Table of Contents

T e T T I R T I R T e

T.0 INCrOCtION B0 SUIRTY « o oo o s o 8 & v 5 3 & & s 5 8. & =

2.0
3.0

Considerations in the Development of Reliable Software . . . .
Quantitative Software Reliability Anmalysis . . . . . . . . . .
3.1 Functioni]l Requirements and Desired Results . . . . . . .

3.2 Mathematical Modeling . . . . . . . « . ¢ ¢ . 4 v o v o
3.3 Implementation . . . . . . & & & ¢ 4 4 ¢ 4 4 e u e ..

4.0 Software Failure Data . . . . . . ¢ & v ¢ ¢ v ¢ & o o o o + &
4.7 Non-Nuclear Data . . . ... . ... PR
8.2 PDREVEIR BERA. 2 « & 5 & 5 4 bk A d b s e Bs Y e
4.3 Conclusions on Data Needs and Future Acquisition Efforts
5.0 Summary of Results . . . . . ¢ . & o ¢ & ¢ ¢ & o ¢ s 5 o s & &
5.1 Illustrative Failure Probability Characteristics Results.
5.2 Illustrative Regression Analysis Results Correlating
Software Failure Probabilities with Code Properties . . . .
5.3 Surveyed Estimates of Software Failure Probability
COErBEEeristits . . « + « » v 4 5 5 v » 5 » s 3 & & w v @
6.0 Summary, Conclusions, and Future Directions . . . . . . . . .
Appendices
A. Summary of Published Software Failure Rate Models . . . . . .
B. SOTONE FRilurE DBt T0RE . v « ¢ s s anie » % 5 % w & » & %
S SERELSRICAL ARRIVENS SHERIS .« s o o v b s n e e 8

iii

o
o
mw-—-lﬁ

11

12
15

26
26
31
41
41
R
45
56

59
70
87



List of F.~ures

A Structure for Developing Reliable Software

------

I1lustrative Failure Rate Model Predictions of Software
BEETARETILE & o » » vim v kR e e ok ww & W e

Sample Regression Results -- Detection of Faults vs. Time

Sample Regression Results -- Time Behavior of Faults Per
Line of Instruction . . . . . . . . + « « « . .

Sample Regression Results -- Log Normal Plot of Residuals

List of Tables

Key Software Probability and Reliability Characteristics . . . .

Categories of Operational Failures, Causal Mechanisms, and
Controlling Properties and Development Variables in
Software Reliability . . . . . . . . . . . .. T o

I1lustration of Failure Data: Successive Execution Times

Botween Fatlures In Seconds . . . s ¢ v o« s s 4y & » % 2in & 3

Characteristics of Software Systems Studied by Musa

Characteristics of Software Systems Studied by Brooks and
MOLRRY & 5 ¢ v o 56 o4 H v o o'in o b o0 & & & n &s

Comparative Histories of Errors Introduced in Debugging and
Total Errors Detected as Analyzed by Goel and Okumoto

NIDS EPr ey DR -5 i e el s wambed e e b el e sk el gt A T B

Change Data and Code Defect Estimates for Large Scale Programs

Studied by Dickson, Hesse, Kientz and Shooman . . . . . . . . .

Relationships Between Errors and Program Properties as
Reported by F. Akiyama . . . . . . . « . . « « . :

Maximum Likelihood Estimates of Model Parameters as a Function
of Fault Detection Data . . . . « « « « & et LT SRRl F

Estimated Software Failure Probability Parameters for Selected
Data Systems . . . . . « « + ¢ ¢ o v o s e o0 oa s ‘ »

Parameters of Interest in the Fault Discovery Model

Parameters of Interest in the Log-Linear Probability Model

iv

48
49

50
51

24

25

32
33

34

35
36

37

39

52

53
54
54



o

o o @

e oL WO © oo o™

o @

.10
1
A2
13
.14
4 1

B.16

Failure
Failure
Failure
Failure
Tailure
Failure
Failure
Failure
Failure
Failure
Failure
Failure
Failure
Failure
Failure

Failure

Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data

Data

Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set
Set

Set

List of Tables (cont'd)

Page
1Of 3. D MOBR s » wio. 5.6 5 o & 2. % & % 2w+ 71
ZO0F 0. 0. MBD. . i + v v v e v s w e e 72
30f J. D. MusSa . . . ¢ o ¢ 6 0 0 s a b s e 2
BOF O D MUBR & ¢ s o s o v s ¥ b e s 73
SOF 3, D. MR . & « ¢« « ¥ 2 0 bowm s b v &' 74
Sof J. D. MBB . . « & 5 . s 0 = 5w a s b oa 77
1Gof J. D. MUSE « &+ & a6 o o 6 s v 5 o & » b 77
TEOF 3. Do TUSE . & v o 5 3 45 28 45 4 30 78
2 0F 3. B BB o v s > wowE bos ¥ 78
RO af 0. 0. MSE .+ < 5 & o 5 o wv 55 Vinlw 79
SSIR GFf J. D. Msh . .« 5 v v vn 0 s w e ss 80
SSID- 07 J. D BB . . s s a eis e doaiw a v B 81
SEIC of 0. 0. Mdl - « v i's 5 W n eln 8 w s 83
$SZ of J. D Mush . « . o s 0 o 2 s b e e 84
$S3of J. D. Musa . . . . . ¢ ¢ v s s s e s 85
S8 of J. D. BUGE . & . & s +oo s s s Ey e e s 86



Executive Summary

This report presents the results of the first year of an ongoing rescarch
program to determine the probability of failure characteristics of computer
codes relevant to nuclear safety. An introduction to both qualitative and
quantitative aspects of nuclear software is given. A mathematical framework
is presented which will enable the a priori predictinn of the probability of
failure characteristics of a code given the proper spzcification of its
properties. Preliminary data of the type needed to support the modeling and
the predictions of this program are described. Illustrations of the use of
the modeiing are given but the results so obtained, as well as all "results"
of code failure probabilities presented herein, are based on data which at
this point are preliminary, incomplete, and possibly non-representative of
codes relevant to nuclear safety.



1.0 Introduction and Summary

This report describes the results of the initial phase of a research program
sponsored by the Nuclear Regulatory Commission (NRC) and designed to establish
quantitative predictions of reliability for the computer software used in the
nuclear industry. The overall objective of this program is to develop generically
applicable analytic tools and an associated information base that can be used

to estimate the probability of success and other reliability characteristics of
any specific computer code relevant to nuclear reactor safety, given the character-
istics of the specified code. Relevant applications in nuclear safety include

both analysis computer codes used in design and safety assessment and data
acquisition codes used in rea! and simulated on-line and emergency situations.

I1Tustrative examples of the type of question that this research program is
designed to answer or to help to answer are:

1. What is the probability that a large safety code yields
the correct (~r at least a conservative estimate of the)
containment pressure for a hypothetical loss of coolant
accident? Although the phenomenological modeling
uncertainties are evident and may dominate the "answer"
a contributor to this probability is the uncertainty in
whether the associated software is input and exercised
properly. This latter contribution is to be assessed in
this program.

2. What is the probability that a computer program monitoring
and analyzing real time nuclear reactor sensor data correctly
interprets, analyzes, and presents this data to a reactor
operator in an emergency situation?

To not only answer questions such as these for existing specific computer
programs, but to provide genericaliy applicable answers for use in enhancing
nuclear safety, the designated specific goals for the analytic tools and
information developed as part of this program are to:

1. Allow NRC to make an a priori estimate of a computer code's
probability of successful operation given the code's general
properties and its intended application. These properties
include not only physical characteristics such as size, complexity
and programming language but development and quality assurance
parameters such as testing history and operational history
after testing. It is to be emphasized that the usage or application
of a code can be a strong determinant of its probability of
successful operation.

2. Provide information for NRC to determine quantitative criteria
for the acceptability of software relevant to nuclear safety
for eventual use in the licensing arena.

The motivation for this program is provided by the important role played by
computers in reactor design and safety analysis and by the growing need for
improved on-line information processing. Propagation of software errors in
reactor design codes can lead to analytical predictions, resulting among other



things, in unsafe plant hardware design, unsafe operational and safety para-
meters such as trip settings, and erroneous predictions of plant lifetime
related parameters. Software errors in reactor safety assessment codes may
result in either false “security” in which needed safety measures go unrecogni-
zed or in undue alarm leading to the incorporation @f unnecessary, costly, and
even potentially unsafe mitigation devices. As pointed out by Fabic [1.1], the
accuracy of a safety code in predicting the response of a plant to a nuclear
accident is a function of programming errors as well as a host of plant and
modeling uncertainties. All these factors make it clear that software reli-
ability must be integrated into quantitative assessments of nuclear safety.

The growing need for data acquisition and information processing codes in on-
line situations has been highlighted by the President's Commission on the Three
Mile Island Accident [1.2]. Long et al. [1.3] and Ramamoorthy et al. [1.4]
have emphasized the necessity for a methodology to assess the development and
vaiidation of critical software for nuclear power plants. On-line safety
protection system software such as the Core Protection Calculator (CPC)
implemented in the Arkansas Nuclear One, Unit 2 [1.5] and a proposed disturbance
analysis system (DAS) [1.6] are examples of critical software. The CPC is a
software system which processes sensor information and if necessary initiates a
High Local Power Density or Low DNBR trip. DAS is a computer network of
hardware and software which allows plant personnel to access and act upon real-
time information relating to possible causes and consequences of disturbances
and corrective actions. Propagation of software errors through these systems
can lead to delayed or erroneous control and operator actions, and unnecessary
forced outages. For example, in a review of 14 events [1.7] in which reactor
control was either lost or impaired at one Canadian power station, nearly half
of the events were traced to deficiencies in control computer software. These
deficiencies were about evenly split between changes introduc~d since software
implementation and problems with code design.

Given the goals of this research, the software reliability program in FY 81 was
broken into interrelated tasks:

1. Review the literature for and discuss with experts in the
field known mathematical appreaches and associated data
bases for quantifying software reliability. Investigate
this information as to its applicability for this progran.

2. Develop a mathematical approach that will meet the specific
goals outlined above. As will be described in Section 3,
existing models have limited usefulness here. Further, to
support the approach of this program, the existing data
base will have to be greatly expanded. This is discussed
in Section 4.

The work that was done to satisfy the first task, which included information
exchanges and discussion with personnel in aerospace, defense, communications,
and computer technologies, clearly pointed out the need for the quantitative
analytic capability and associated information base that are the end products
of this program.



The remainder of this report discusses the progress that has been made on the
program to date. Section 2 of this report briefly discusses some of the
design and development considerations that enter into the production of reli-
able software. Organizations instrumental in establishing software standards
in the nuclear industry are cited. Finally, problems in the validation and
verification of nuclear-safety-related software are discussed. It is intended
to give the reader insight into qualitative reliability characteristics of
computer software,

Section 3 discusses the functional requirements and desired results of this
program in mathematical forms. The mathematical reliability models that have
heen published are described. Obtaining and analyzing failure data with these
models to understand their underlying bases was a significant part of the FY8]
research. The role of these models in assessing nuclear software is described
in light of our studies with them. A mathematical approach that will meet the
quantitative requirements of this program is outlined with descriptions of the
necessary supporting mathematical and statistical models and information. The
implementation of this approach is next described.

The most significant problem in developing mathematical models to predict
software reliability characteristics is the lack of failure data 'man which to
base and subsequently test these models. As will be seen in Sectiun 3, published
models do not explicitly treat code characteristics such as complexity, testing
history, and application, which are critical to a code's probability of
successful operation. Further, published models were develonea to evaluate the
reliability of continuously running codes such as those used in continuous data
acquisition and generally predict failure rates vs. time, a parameter which has
little significance in evaluating the failure probability of an analysis code

in a specific execution. The accumulation of non-nuclear and nuclear software
failure data, both published and unpublished, as well as the initiation of
documentation of related failure data within ANL is being pursued with the
objective to categorize code failure data according to the general ccde
properties. This categorization is necessary for research goal number 1 to be
achieved. Section 4 reports progress to date and future efforts in accumulating
and generating these data.

Section 5 discusses initial results of analyzing published data to obtain pre-
Timinary but illustrative reliability estimates. Far more extensive studies
will be performed but the flavor of the studies is shown in Section 5. This
section also describes some very brief results of preliminary surveys to obtain
subjective estimates of software reliability among computer code developers and
users. Because the data to date are preliminary, unverified, and possibly
non-representative of related nuclear software, these results are presented
only for illustration.

Section 6 outlines the directions that should be followed to best achieve the
goals of this research program. Specific research paths and tasks are suggested
with the end product of each described.



1

.

.
o

References

S. Fabic, "Code Assessment for Nuclear Reactor Accident Analysis
Programs,” Trans. Am. Nucl. Soc., 35, 254 (1980).

J. G. Kemeny (Chairman), "Report of the President's Commission on
the Accident at Three Mile Island,” U.S. Govermment Printino Office,
Washington, D.C., October (1979).

A. B. Long, et al., "A Methodology for the Development and Validation
of Critical Software for Nuclear Power Plants," 1st International
Computer Software and Applications Conference, IEEE COMSAC 77, 620
(1977).

C. V. Ramamoorthy, et al., "A Systematic Approach to the Development
and Validation of Critical Software for Nuclear Power Plants,”
Proceedings 4th International Conference on Software Engineering,
231 (1979).

Combustion Engineering, Inc., "Assessment of the Accuracy of PWR Safety
System Actuation as Performed by the Core Protection Calculators,"
CENPD-170, July (1975).

A. B. Long, “Technical Assessment of Disturbance Analysis Systems,"
Nuclear Safety, Vol. 21-1, 38 (1980).

L. Magagna, "Control Computer Systems in Generating Stations in Ontario
Hydro Design Approach and Experience,” 1976 EEI Engineering Computer
Forum, 155 (1976).



2.0 Considerations in the Development of Reliable Software

This section briefly discusses some of the design and development considerations
that enter into the development of reliable software. Organizations instru-
mental in establishing software standards, especially in the nuclear industry,
are cited. Finally, comments regarding the validation and verification of

codes are offered. It is seen that safety codes in the nuclear industry pose
special problems.

The initial phase of software development, as depicted in Figure 1, emphasizes
the structure of software, with the assumption that well structured or modular
software results in improved reliability. By simplifying logic and program
control, program functions become easier to understand and consequently,
testing of such software is facilitated [2.1,2.2,2.3].

In the fast reactor physics community, there is an ongoing, major effort to
implement standardization procedures and guidelines to maximize the exchange-
ability of software, as proposed by the Committee on Computer Code Coordination
(cccc) [2.4] established by DOE. Recommendations of the CCCC also include
standardization of utility subroutines, data storage, and input/output (1/0)
files. This reduces the introduction of new errors (bugs) and the dependence
of coding upon a specified computer, thereby facilitating exportability of
software, exchangeability of information, and availability of documentation.
The CCCC is strongly supported by the national laboratories and to a lesser
extent by the nuclear industry.

Another approach to the development of reliable software is redundancy. This
is a familiar concept in the hardware design of nuclear power plants. Appli-
cation of a similar concept to fault-tolerant software development has been
suggested by Randall [2.5]. Redundancy may be accomplished through code
design rather than by simple replication of programs. For example, in the
operation of nuclear power plants, redundancy in the on-line software can be
provided by comparing computed signals with signals from the sensors located
at the various parts of the plants. This approach provides independent
validation of both the senscrs and the software.

In the military, aerospace, and communication industries, where development of
highly reliable software is critical, emphasis [2.6,2.7,2.8] has been focused
on guidelines and standard procedures to achieve highly reliable software. In
the nuclear field, efforts in software reliability have been also directed to
developing or assuring reliable software as cited earlier.

In the nuclear energv field, standards committees and organizations have
developed standards applicable to nuclear software as follows:

1. American National Standard Institute (ANSI)
ANSI X3.9-1966 American National Standard FORTRAN

ANSI/I1EEE Std 730 1EE. Trial-Use Standard for Software
Quality Assurance Plan



American Nuclear Society (ANS)

ANS-STD.3-1971 Recommended Programming Practices to
Facilitate the Interchange of Digital
Computer Programs

ANS-10.3/N413-1974 Guidelines for the Documentation of
Digital Computer Programs (also approved
by ANSI)

Nuclear Standards Management Center

Coordinates development of DOE nuclear
program standards

Committee on Computer Code Coordination

LA-6941-MS Standard Interface Files and Procedures
for Reactor Physics, Version IV

Reactor Development Technology (RDT), now designated as
Nuclear Energy (NE) Standards

RDT Std F1-4 Computer Coding, Documentation, and
Distribution (Draft, 1975)

National Energy Software Center

Nuclear Energy Programs/Organizations

LA-7812-M5 Quality Assurance for TRAC Development
RO010-1001-SA-00 Argonne National Laboratory

Quality Assurance Policy and
Procedures Manual

Uniform application of these standards throughout the industry will help ensure
reliable software. For the majority of nuclear codes specific apprcaches

to software validation and verification (V&V) are adequate. Code validation
and verification is normally accomplished by testing each of the several
modules in a code and the code as a whole. Several possible modes of V&V

are as follows:

1.

Comparison of the results generated by the module to known
analytic solutions to the equation sets solved in the module

or appropriate simplification of these sets;

Comparison of the results generated by the module to the results
of other computer codes that model the same phenomena;

Comparison of the results generated by the module to experi-
mental results; and

Comparison of the results generated by the module to the "expected
behavior" of the models it contains.



e

Although such comparisons may validate portions of a code they rarely test the
whole system. It is important to note that testing can guarantee the presence
of, but not the absence of, bugs.

There are codes, however, especially in the risk assessment area for which this
procedure is not totally satisfactory because:

1. Either analytical solutions do not exist or an inability to
place bounds on uncertainty associated with data makes the
solutions inconclusive.

2. No other codes of this type exist.

3. Experimental results do not exist or are unavailable.

4. The driving phenomena are not understood well enough to compare
the results with "expected behavior".

Clearly there is a need to develop additional procedures and methods to assess
reliability of codes which fall in the category of the unverifiable.



SOFTWARE PELIABILITY

SOFTWARE DEVELOPMENT

STRUCTURED (MODULAR)
PROGRAMMING

RELIABILITY

QUALITY ASSURANCE
VALIDATION
AND
VERIFICATION

STRATEGIC TESTING
FOR OPERATIONAL

RELIABILITY
(QUALIFICATION)

RELIABILITY MEASURE
THROUGH
RELIABILITY MODELS

-

Figure 2.1 A Structure for Developing Reliable Software




References

yftware Rel

tware and

3

re Deve
’\() .

Procedures

Structure for Software Fault Tolerance,
\ference on Reliable Software (]¢

Commanders Software W

inec Command, Nav

- - A3 AV e O
and and Air Force

A ¢ snd
as and

Maintain-

"eémerntLe




11

3.0 Quantitative Software Reliability Analysis

This section describes an analytic framework through which the goals of this
research program, as described in Section 1, can be met. The mathematical
approach that is formulated here is designed to be able to yield predictions of
software probability or reliability characteristics for all types of computer
codes relevant to nuclear safety. Codes of interest in nuclear safety appli-
cations fall into two broad categories: What might be called discrete task
codes, eremplified by analysis codes such as RELAP or TRAC, are run to accomplish
a specified task and then stopped for examination of computational results.

The second category consists of continuous task codes exemplified by data
acquisition codes such as might be used to provide a reactor operator with

a continuous display of data from an operating reactor. Because these two
types of codes have conceptually different measures of reliability, it is
important to formulate an analytic framework which enconpasses both.

Section 3.1 discusses the functional requirements of this analytic framework
and the form of the desired results. It begins with some basic definitions
and then describes mathematical parameters that can be used to measure the
probabilities of successful or unsuccessful operation of computer codes in
nuclear applications. These probabilities are affected by the way failures
are cateqorized and counted, by the specific properties and usage of the
computer code, and by the techniques used in developing and testing the code.
The concept of classifying the failure, computer code propertv, and code
development parameters that affect these probabilities is described and
examples are shown. The potential use of regression analyses to assess the
functional dependencies between the calculated software probability character-
istics and these parameters is cited.

Section 3.2 describes mathematical modeling that can be used to fill out the
analytical framework. The section begins with a brief review of failure rate
models which have been used extensively for more than tea years in communi-
cations, aerospace, and defense applications. The applicability that these
models have in the mathematical framework of this program is discussed in
view of the special needs of the nuclear industry. It will be seen that the
approach used in the models published to date have rather limited usefulness
in meeting the goals of this program because they have been primarily designed
for and applied to calculating the reliability characteristics of the so
called continuous task codes. Modeling that comprises the analytic framework
which is proposed here to encompass both the discrete and continuous task codes
is then described. Possible model extensions that may prove useful in the
longer term are proposed and the concepts and models needed to -upport or

augment this framework are discussed.

Finally, Section 3.3 summarizec data requirements needed to implement the
models described in Section 3.2. Some alternative approaches which may be
attempted in the absence of the desired data are also outlined, and the use
of standard statistical analysis packages to obtain correlations between
probabilistic code parameters and other code characteristics is briefly

discussed.



12

3.1 Functional Requirements and Desired Results

Before describing the functional requirements and desired results of the
analytical framework in detail, a few comments will be made regarding
definitions. In the discussions that follow, reference will be made to the
detection of code errors. A code error will be regarded as synonymous with
a software error and is here defined as any defect in a line of code or in
the input data which can cause the computer code to fail, Code failure
includes abnormal termination, normal termination with erroneous results, or
any ot?er unacceptable departure of program operation from the required
operation.

It may sometimes be convenient to refer to code faults rather than errors.
For example, a computer code may compute an incorrect temperature. It may
be necessary to correct several code errors to correct the temperature
calculation, but the incorrect temperature could be regarded as the result
of a single fault. As envisioned here, a code failure may be the result of
one or more faults and a fault may involve one or more code errors. It
should be possible to apply the framework described below for code errors
to code faults; however, the numerical values of pertinent parameters

would change.

The first step in formulating the mathematical ap,.coach for this research
program is to clearly delineate the form of the desired results. Probabilistic
or reliability characteristics that can be used to describe the successful or
unsuccessful operation of a code are described in Table 3.1. These character-
istics depend on the generic type of code. Codes are categorized according to
whether they have discrete tasks or continuous tasks. As seen in the table,
the operational mode distinction means that for analysis codes the desired code
probability characteristics are “per run or execution” oriented, i.e., an
estimate of the probability of failure is desired for a given run or set of
runs as would occur in a safety assessment; while for data acquisition codes,
the desired probability characteristics are "execution time oriented”, i.e., an
estimate of the probability of failure is desired for a given length of time
for a specified demand.

Perhaps the single, most important code property is its reliability, i.e., the
probability that the code executes without failure on a given run (discrete
task code) or over a specified time period (continuous task code). There does
not appear to be a uniquely useful means to estimate the reliability of a
discrete task code based on the reliability of a continuous task code or vice
versa. The importance of these differences in code reliability characteristics

takes two forms:

(1) The mathematical models used in estimating the desired
characteristics and/or the techniques used in their
implementation can be expected to be somewhat different

depending on the type of code.

The required (as well as available) failure data needed
to verify these approaches are different.







14

Data Initialization Statements,
Specification Statements,
Subprogram Statements,

Contrnl Statements.

NS

A specific FORTRAN manual would be identified to resclve questions as to

what FORTRAN statements fall into each of these types. In addition, one might
stipulate that statements that are out of order or misnumbered would be counted
as control statement errors and that more than one error in a single statement
would be counted as a single error. The question as to whether the number of
errors of one type is independent of the number of errors of other types with
this classification system is not obvious. One may simply have to assume
independence with the understanding that whenever possible, statistical tests
will be performed to test the assumption.

Tabulating the controlling variables associated with each code and its failure
history must be done to obtain the dependencies among the probability-of-
failure characteristics and the code properties. A s* .tistically meaningful
number of codes must be investigated so that these claracteristics can be
correlated. Obtaining these failure data is considered the most difficult
part of this program and is discussed in Section 4. Given that the appropriate
failure data can be obtained and probability characteristics calculated, then
regression analyses can be performed to identify the most important properties
and controlling variables in software development. This knowledge could be
used as a ba is for dafining development or quality assurance criteria for
codes used or proposed for the licensing arena.

To summarize the above, the desired results include:

(1) Quantitative estimates of the key probability or reli-
ability characteristics describing the successful
or unsuccessful operation of a code. Table 3.1
illustrates some of these characteristics.

(2) Quantitative estimates of the dependence of thes2 character-
istics on the type of failure, on the type and generic
properties of the code, and on the controlling variables
in the development of the code so that probabilistic
predictions in terms of these parameters may be made.

Table 3.2 illustrates several classifications of failure,
code, and development parameters that may be used to
facilitate correlation with the probability characteristics
to seek the functional dependencies.

The quantitative requirements include not only the mathematical models but
the associated data base with which to accompiish these. The modeling is
described in detail in Section 3.2. Failure data are discussed in Section
4.



15

3.2 Mathematical Modeling

The modeling to be described here is designed to fill out the analytic framework
discussed in the previous section. This framework is designed to encompass
predictions for the software probability or reliability characteristics for
both discrete task codes and continuous task codes. The probability character-
istics of interest in discrete task codes are the probability of failure
parameters shown in Table 3.1 for a given run or set of runs; the analogous
parameters of interest for continuous task codes are for a given duration of
time for a specific application. An example of a parameter of interest in the
former case is the probability that a run or set of runs using the RELAP code
in a reactor safety anaiysis successfully (within the constraints of the
modeling) predicts peak fuel temperatures for a postulated loss-of-coolant
scenario. An example of a parameter of interest in the latter case is the
probability that an on-line code successfully interprets sensor data and
outputs proper analytically-derived temperatures, pressurcs, or other state
parameters to a reactor operator during an emergency situation. In this latter
case, clearly the time that the emergency situation required that the on-line
software operate successfully would affect the probability of successful
operation. As the TMI situation graphically illustrated, this time scale could
be for many hours.

These examples imply that the required mathematical models and the associated
failure data depend somewhat upon the type of code. However, once tre
appropriate probability characteristics have been obtained for each generic
type of code, the analyses to be used for obtaining the dependencies on non-
probabilistic code parameters such as those illustrated in Table 3.2 are the
same.

The m-thematical models currently used in software reliability analysis are
based on failure rate models such as those used in hardware reliability
applications. Given that an error of type k in classificacion j has not
occurred pricr to time t, the probability that such an error occurs betweer
t and t + dt is expressed as

Ajk(t)dt (1)

where is the detection rate for errors of type k in classification j and
is, in Beneral, a function of time. The probability that an error occurs
between time t and t + dt, given no error prior to time t is expressed as

y(t)dt (2)
where
A(t) = &g, (t). (3)
k ¥
Here, 1(t) is .he detection rate for errors of all types. (The subscript j
is not required after summation over all error types k since all classification

systems are postulated to count the same total number of errors.) From the
definition of 1(t) a simple derivation shown in Appendix A yields the reliability



16

t
Kit) = exp {-fo dt's(t') } . (4)

Work to date has focused almost entirely on estimating 1 (t) for continuous
task codes. Attempts to break 1(t) into components of various types as in

(3) are not apparent. Several models have been suggested to express ) as

a function of parameters such as the number of errors present in the code,

the number of errors discovered, and the probability that an error is detected
given that it is present, These models are described in Appendix A, In most
of the models, the detection rate is not regarded as a function of time;
however, in the Littlewood-Verrall model, the parameter in the exponential
distribution is regarded as a random variable having a gamma distribution.
This leads to a time-dependent detection rate in (43.

A major fraction of the computer codes of interest in this research program

are discrete task codes. So long as errors occur infrequently, it shoulc be
possible to apply failure rate models to tnese codes provided the time is the
accumulated CPU time for all runs, and provided the codes are run on identical
computers with identical compilers. However, detection rates obtained for a
code operation on one computer are not necessarily the same as detection rates
for operation on another computer. This is especially important in the case

of nuclear safety analysis codes which are often developed on a single computing
system but are then exported to different computing systems throughout the
country. In addition, if errors are detecied too frequently, as might be the
case for a code undergoing a new phase of testing, the run time assigned to an
individual task might impose a structure on the error detection time which has
little to do with the actual error occurrence rate. For these reasons, it is
necessary to develop more comprebensive modeling which is more naturally applied
to discrete task codes and yet cai also be applied to continuous task codes.

The modelirg which will now be described can be used to meet these dual appli-
catiens. Let X, be a random variable defined as the number of ervors of type
k in classificaé*on system j detected as the result of a given run. The
expected value of X4, will be denoted by Ajk° The probability distribution for
xjk is assumed to bg Poisson, i.e.

[P

Pijk = x) = ~

where x is a non-negative integer. If the values for X are independent for
each type k and if the error types are mutually exclusive, then it is easy to
show that the probability distribution for the total number of errors X, defined

as

X=1 X (6)

is also Poisson, i.e.



17

P(x=x)=5‘—.e'A . (7)

(8)

With this model, the reliability is

R=P(X=0)=e" . (9)

The use of the Poisson distribution has certain mathematical advantages.

First, the Poisson distribution is often used to approximate the binomial
distribution. There may be instances where it is useful to model the detection
of errors of type k in terms of Mj , the number of code units (lines of code,
instructions, or some other unit) gapable of producing type-k errors, and the
probability q;, that an error of type k is detected in a given unit during a
given run, It q., is the same for each unit and if error detection in each
unit 1is 1ndepend$ht of error de.ection in oth.r units, then the probability
distribution for X K will be binomial with parameters M. and q K In general,
M.k is Tikely to bé large and q,, small. The binomial é*stribué.on can then
be approximated by the Poisson J*stribution in (5) with

Ajk = MJk 9y - (10)

In (10) failure data may be used to estimate A . or q. directly; some other
source such as expert opinion or the human errﬂ# 11te}§ture, using analogous
error probabilities to estimate q,, , may also be used. Of course, the value
of Mjk is provided from the code ﬁboperties or specifications.

A second advantage arises for codes that are conveniently described in terms
of error detection rates 3., (t) as in (1). For runs of duration t, the
probability distribution fah Xjk is easily seen to be given by the Poisson

distribution in (5) with

t
™ =f0 4t gt (1)

The reliability estimates (4) and (9) become identical in this case.

Finally, for a given error type and classification system, only one parameter
needs to be estimated for the Poisson distribution in (5). The accumulation
of appropriate failure data is n eded to verify whether values of A, obtained
for a code operating on one comp. ‘ry system can be applied to the §§me code
when it operates on a different CompJating system.

This discussion of reliability modeling will conclude with a dicussion of a few
potentially useful extensions to the ‘oisson model described above. Reference
will be made only to the total numbe, of errors; however, there does not appear



18

to be any a priori reason why the same developments could not be applied to
individual error types.

Table 3.1 suggests that probability distributions for important parameters
describing prcbabilistic code characteristics should be estimated if possible,
In the case of the Poisson model, the important characteristic is the expected
number of errors detected in a given run or equivalently the probability q.

of error detection. Let f(A) represent the probability density of the expééted
number of errors. The probability distribution of X, the number of errors
occurring on a given run, taking into account the uncertainty in the value of 1
expressed by f(2) can be computed as

- X _=A
SERRY U SRl (12)

where (12) becomes the replacement for (7). Generally f(2) would be chosen
from a parametric family of functions and (12) should be regarded as the
conditional probability that X = x given the appropriate parameter values.
The dependence of P(X = x) on such parameters should be understood but will

not be explicitly noted.

It may or may not be possible to evaluate the integral in (12) analytically
depending on the precise form of f(A). In any evert the integral can be
evaluated numerically, perhaps using Monte Carlo techniques. Further, the
use of Monte Carlo would allow the sampling of A from actual data without
the need for determining an analytic form for f(a) (or equivaiently f(q)).

If an analvtic form is desired, a particularly convenient choice for the
function f(2) would be to select it from the family of gamma distributions,

i.e.
af =1
f(/\)’m A e
where I'(¢) is the gamma function. With this choice, evaluation of the integral
in (12) yields

ool (13)

g
X a r (x+g)
P(X = x) = (@ s 1)E™ x! r(g) ° $14)

and the reliability becomes

R - (_-T)ﬂ (15)

The expected number of errors detected in a given run is found to be

E(X) = (16)

= jw



19

and the variance of the number of errors detected is

var () = £ (14 1) (17)

Section 1 states that one of the objectives of this program is to permit a
priori estimates of a computer code's reliability given the code's general
properties and its intended application. This implies that it will be

possible to extrapolate data for codes of various types and for a variety

of applications to a specific code and code application for which error
detection data are not available. As one begins to apply ihe code, one may
modify the reliability estimates based on experience in using the code. If the
required data extrapo'ation is done in a way that provides estimates of the
parameters o and 2 in (13), then the gamma distribution in (18) can be regarded
as a prior distribution for a Bayesian analysis. If after running the code r
times, one observes s errors, then a strightforward application of Bayes
theorem leads to the following posterior distribution for 1:

g+s
f(‘f\"s'r) =(_(;_(:_:)?,' AB*S'] e-(aﬂ‘)l\ : (]8)

[t then follows that updated estimates for the probability distribution of

X, for the reliability, for the expected number of errors detected, and for
the variance of the number of errors detected are given respectively by (14),
(15), (16), and (17) with « replaced by a+r and g replaced by 2+s.

The discussion up to this point has been concerned with methods to estimate
the reliability of a computer code. However, as noted in Section 3.1, the
expected number of code errors per instruction or per line of code is also a
useful figure of merit {or which estimates are desirable. Many of the failure
rate models described in Appendix A provide estimates of this quantity as a
result of attempting to model the way in which error detection and correction
modifies the error detection rate. It is possible to devise analogous models
to describe the influence of error detection and correction on the expected
number of errors. A by-product of such models might be estimates of the
expected number of code errors per instruction. Since such models have not
been investigated, the following approach was developed:

An examination of failure data such as that of Musa as listed in Appendix B
suggests a general picture in which, over a specified testing phase, the error
discovery rate accelerates early in the testing phase, increases at an approxi-
mately linear rate during the central part of the testing phase, and then
decelerates during the later stages. Qualitatively, such behavior might be )
anticipated. Early in the testing phase, the more obvious errors may result in
relatively short code runs and exposure of relatively small portions of the
code. As thece errors are eliminated, the runs are likely to increase in
length and a larger fraction of the code will exercised. Late in the testing
phase, only the more subtle errors remain and the rate of error detection
decreases. A convenient measure of progress through the testing period appears

to be the time in working days.



20

To model this behavior, a relatively simple process may be envisioned, Let N
be the total number of errors present in the code and n(t) be the expected
number of errcrs detected in t working days. (Introduction of new errors
during error correction is assumed to be negligible.) If one defines

XSTO (]9)
2

then during the early part of the testing phase, x is negative; during the
central part, x is nearly zero; and during the later part x approaches unity.
Now let to be the time when x = 0 and define

y = kit - t) (20)

where k is a constant to be specified later. The error detection rate will be
proportional to dx/dy. A relatively straightfoward way to model the qualitative
behavior of the error detection rate, as described in the preceding paragraph,
is to let

eyt . (21)
This equation clearly predicts an accelerating error detection rate early
in the testing period and a decelerating rate late in the period.

If (21) is solved subject to the initial condition x = 0 when y = O,
one finds

x = tanh y.
Substituting from (19) and (20), the following expression for n(t) results.

n(t) = g [1 + tanh k(t - to)]. (22)

A least squares fit of (22) to failure data then provides estimates of the
parameters N, k, and to.

Equation (21) assumes that the error detection rate is an even function of
t -t . This assumption can be relaxed, e.g. by subtracting a term pro-
porti8nal to x on the right side of (21). The solution of the resulting
equation leads to a result similar to (22), namely

n(t) = a + b tanh k(t - to).

but there are now four constants to be determined rather than three. Further

analysis is required to determine whether the additional flexibility provided

by a fourth constant justifies the additional computational effort required to
determine four constants instead of three.




21

The estimate of N, the total number of errors present in the code, as
obtained through the use of (22) provides a means to estimate the number
of errors in the code per line of instruction at any stage during the test
phase. If this quantity is designated as n, one finds

n o "__r_'-‘ (23)

where | is the number of lines of instructions.

In summary, modeling has been developed to calculate reliabilities and expected
numbers of errors detected for both continuous task and discrete task codes,.

In addition, a means of estimating the expected number of errors per line of
instruction has been developed. The implementation of these models to produce
probability of code failure estimates useful in nuclear safety is illustrated
in the next section.



22

3.3 Implementation

The implementation of the Poisson model described in Section 3.7 requires a
procedure for estimating the expected number of errors per run* (discrete task
codes) or during a specified period of operating time (continuous task codes),
If one is interested only in the reliability, classification of errors detected
is not essential; however, classifying errors promotes precision in the counting
of errors. Further, the consequences of code failure as categorized, for
example, in Table 3.2, obviously depend on the type of causal software error
mechanism,

Data requirements are apparent from the discussion of the model. Ideally, one
would Tike to have records of appropriately classified errors detected as a
function of the number of the run (or time period in the case of continuous
task codes) in which they were found. Data in this form would permit the
direct investigation of the dependence of the expected number of errors on

run number and error detection and correction. Such data should be recorded
for codes following their release for general use; however, they will probably
be more readily obtainable during the testing period just prior to release.

It should be possible to make reasonable estimates of code reliability in the
post-release period using data collected just prior to release, but, whenever
possible, these estimates should be checked against post release data. Obtaining
generic correlations between pre- and post-release data has been identified in
this report as a means of expanding the usefulness of both data bases.

Data in the form just described have not been found for discrete task codes.
Generally records of error corrections are recorded as a function of the date
when the corrections were made. Sources of these data are discussed in
Section 4. These data ca. be used to estimate the expected number of errors
per run provided reason.ple estimates can be made for the total number of runs
involved in producing the data; however, meaningful analysis of the changes

in the expected number of errors as errors are detected and corrected will be
more difficult,

Another possible approach to the estimation of the expected number of errors
per run is based on the observation that code errors are human errors. To use
this approach, classification of errors would be essential. An estimate of the
number of code units My, (see Eq. (10) in Section 3.2) capable of producing
errors of a given type would be made. Then the human steps required to produce
these units would be analyzed and human factor data would be used to estimate
the probability that these steps were carried out incorrectly. Finally, the
code structure would be examined to estimate the probability that one of the
code units would be encountered during a run. The product of this probabiliiy
and the probability that the code unit is produced incorrectly would then
provide an estimate of the probability 9y in Eq. (10) in Section 3.2.

*Since the expected number of errors per run is given by A = gM, where the
notation in the previous section is used and M is specified, knowledge of
p implies knowledge of q and vice-versa. Thus, the discussion relating
estimation of 2 applies equally well to estimation of q.



23

Still another means of estimating the expected number of errors per run is
through consuitation with experts. For example, assume that for a certain set
of conditions the probability that a code would incorrectly compute an important
safety parameter is estimated to Tie between 1/20 and 1/100 with 90% certainty.
Further assume that this probability is estimated to be equally likely to be
greater than 1/20 or less than 1/100. One way to use this information is to

fix the parameters in a probability distribution for 2, the expected number of
errors per run, If the gamma distribution in Eq. (13) of Section 3.2 is used
for convenience of illustration, o = 165 and ¢ = 4.48 and using Eq. (14), the
probability of failure is estimated to be

P(X> 1) = 0.03 + 0.0,

where 0.01 represents one standard deviation. Although some type of combined
subjective/statistical procedure may be necessary in the absence of data

it is clearly preferable to estimate the expected number of errors A or the
probability distribution for A directly from data.

Data requirements for estimating the number of errors per machine language
instruction in a code are similar to those described above for the Poisson
model. However, it is not necessary to have error detection records as a
function of run number or to even know the number of runs. Records in terms
of calendar days are adequate. For discrete task codes, the sigmoidal fault
discovery model (Eq. (22) in Section 3.2) can be used to estimate the number
of errors present or remaining in a code in terms of the number of errors
detected. For continuous task codes, the sigmoidal model and the failure rate
models of Appendix A appear to work about equally well. However, both the
failure rate models and the sigmoidal mode! are shown in Section 5 to have a
tendency to predict a tctal number of errors present in a code which is only
slightly larger than the number of errors actually detected. Thus, if any of
these models are used during code testing, the predicted number of errors
remaining in the code cannot be used as an acceptability criterion for when
code testing can be stopped. Some other quantity, such as the mean number of
days between error detections, must be used instead.

Once estimates of the expected number of errors or the number of errors per
machine language instruction have been made for several codes, correlation

of these values with other code characteristics can be attempted. Some of the
characteristics of potential interest in this correlation include code size,
complexity, testing history, and other properties shown in Table 3.2. The
nature of the relationships of the probabilistic code parameters to these
characteristics can be explored using the multivariate regression analysis
capabilities found in many standard statistical analysis code packages. Some
examp’es of such analyses using the BMDP system described in Appendix C are
showa in Section 5.

In summary, approaches or means to obtaining the relevant parameters in the
aralytic framework have been described. Sample calcuiations using the fa.lgre
ri.te models and the sigmoidal model to predict error content and the probability
of a line of code being in error are shown in Section £. Calculations using

tie Poisson model will be performed using estimates of qj or Ajk obtained

from these models as well as the other sources described §bove.



Table 3.1 Key Software Probability and Reliability Characteristics

Generic Type
of Code

Key Probability and

Applications Reliability Characteristics'’?

Comments

Discrete task Reactor design Probability that a specified unit of
codes code is in error-.
(Analysis codes) Safety assessment

Key reliability
characteristics are
“per execution”
oriented.

Appropriate failure data
include a history of

Probability of an output error of a
specified type in a given run,

Probability of success (failure) in
obtaining a key result in a given

Continuous task

Feedback to operator

run(s).

Probability that a specified unit

of code produces an execution
failure in a given run.

Probability distributions or at
least confidence or uncertainty
bands for the above character-
istics.

Probability that a specified

failures vs. total runs.

Key reliability

%odes unit of code is in error’. characteristics
Data acquisition Input to simulator ) depend heavily
codes) Probability of success or on time.

Operational control

Emergency system
activation

failure over a specified
time (i.e., reliability or
unreliability) during a
specified demand.

Failure rate.

Probability distributions or at
least confidence or uncertainty

bands for the above characteristics.

Appropriate faiiure
data include a
history of time to
(between) failures.

TATY probability and reliability characteristics may be categorized and normalized according to the type of
failure they measure, the failure causes, and consequences of failure.

“Probabilities are defined both for actual code operation failures and for code component errors that
have the potential to cause operztion failures.

ve



Table 3.2 Categories’ of Operational Failures, Causal Mechanisms, and Controlling

Properties and Development Variables in Software Reliability

Contrclling Properties
and Developmental

Operational Failures Causal Mechanism Variables
Type of Faulty Code Faulty Modeling Type of
Consequence Unit Unit Cause
In-Code’ Testi Programmin
1. Yo output 1. Symbol 1. Constant 1. Random (e.g. 1. mit‘e 1. mf———’
(i.e. a crash) 2. Operand 2. variable key punch) assurance 2. Complexity
3. Constant 3. Equation 2. Logical or methods 3. Language
2. Absurd output 4, variable 4, Model (set decisional 2. Size of QA 4. Structure
(detectable) 5. Line (statement) of eguations) {incorrect or effort and method
6. Storage byte or 5. Table (e.g. poor programming 3. Capability of coding
3. Misleading output array (e.qg. property values) to implement for bench-
(may propagate common block) modeling) marking or
failures in 7. Logic block analytic
nuclear plant (subroutine) Ex-Code verification
design or) 8. %ogical directive ) 3 ?Ec:7entltion . -
operation e.g. IF statement eading to perationa
' misuse of code 1. Application

(e.g. design,
safety assess-
ment, monitor-
ing, control)
2, History (time,
numbers of runs
and failures
since release)

'This table illustrates a plausible way of categorizing failures, their causes, and dominant variables.

Other ways could be chosen.

“In-code causes could also be subdivided as follows: 1) "Pure"” programming causes such as syntax
errors or incorrect transfers of program control, logic, or data; 2) Program modeling causes such as
incorrect algorithm approximations or improper treatment of singular points or critical parameters
Teading to overflow and roundoff arrors.

Se



26

4.0 Software Failure Data

This section describes the failure data accumulated to date and how they and
future data have been or will be used to support the goals of this program.
Sections 4.1 and 4.2 describe the non-nuclear and nuclear software failure
data, respectively, that have been or are expected to be obtained in this
program. Section 4.3 discusses conclusi ns on what should be done to satisfy
proy ‘am goals.

4.1 Non-nuclear Data

The collection of the non-nuclear data has been made for two reasons:

(1) To initiate mathematical modeling and investigation as early
as possible. The available non-nuclear data has been in a much
more readily useable form than the nuclear data. Tabulations of
failure histories are available that could be directly used in
investigating or formulating mathematical models. On the other
hand, the nuclear data have been "buried" in logged records that
require evaluaticon and conversion to a form adaptable to mani-
pulation with mathematical models. Thus, the detailed investi-
gation of these records has been deferred. However, it is a
necessary component of this program.

(2) To form as vide a data base as possible. Although the appli-
cability of non-nuclear software failure data to nuclear software
remains to be shown, comparisons can be made. If the data are
directly applicable the statistical data base for predicting
software probability of failure characteristics is obviously
enhanced. If the data are not applicable, comparing the data
will be sseful in evaluating the software development and appli-
cation characteristics of nuclear codes to determine why nuclear
and non-nuclear failure data are different,

Non-nuclear software failure data have been and are being compiled from the
open literature, Rome Air Development Center (RADC) and private companies.
RADC, at Griffiss Air Force Base, maintains an extensive literature and
computer library data-base in software reliability based on software failure
data from wmilitary, aerospace and communication industries. Most of the
failure history data come from data acquisition systems rather than batch mode
systems.

Failure history data are generally available in either of two forms: (1)
individual failure tabulations showing successive execution times between
failures or (2) blocked data in the form (n,t), n errors in time t where t may
be in any unit of time including execution time. Although the former failure
data form may be reduced to the form (n,t), the converse is not true. Most of
the data to be presented in this section were obtained during system testing
and inteqration and represent both faults, defined [4.1] as software defects
that cause an operational failure, and failures, defined as any unacceptable
departure of program operation from program requirements. In some cases, the
failure data are referred to as "errors® or "changes" which are ill-defined
but presumably represent faults or failures as just defined. Although the
intent of this program is to predict probability of failure characteristics



27

for codes in production status, not test status, it is assumed that extra-
polation to production code failure probabilities can be made. Further,
these data allow us to explore the mathematical approach of Section 3 while
more relevant data are being acquired.

Compilations of failure data [4.2] in the first form from 16 systems ranging in
their applications from military to real time command and control systems were
obtained from Rome Air Development Center (RADC). These data are illustrated
in Table 4.1 and comprise Appendix B. They are given in terms of successive
execution times between failures in seconds. Descriptions of the systems from
which the data were obtained are shown in Table 4.2, Clearly, these data
represent a diversity of systems and system characteristics. Accordingly, as
described elsewhere in this report, these data were used to investigate
different models that predict probability of failure characteristics and to
perform regression analyses to illustrate use of the statistical amalysis
systems,

Several software project studies, representing sets of failure data in
either the ahove form or the (n,t) form, were obtained from the literature
and studied to gain an insight into both qualitative and quantitative
characteristics of software development and reliability. Data from these
studies and a brief summary of each are as follows:

(1) The data shown in Table 4.3, taken from Brooks and Motley [4.3],
were taken from projects involved in the development of a large
scale command and control software system. These data represent
a variety of system sizes; higher order programming languages
JOVIAL and CENTRAN were used in addition to the assembly
language ALC. The parameters N and q represent estimates of
the total number of errors in the system at the initiation of
the project and the probability that any one of these errors
would be detected during a specified portion of the testing
period. As described in the table, the lack of a quantitative
specification for this test period implies that the estimate
for q has no quantifiable significance. Another highlight of
these data is illustrated in Projects 4 through 7, in which different
error accounting methods were used with grossly different error
probability characterictics estimated. The implication of course
is that only crude error probabilities can be inferred from
published failure data unless the definitions of errors, fauits,
failures and so forth are very clearly made.

(2) The data shown in Table 4.4, taken from Goel and Okumoto [4.4],
were obtained from a real-time control system for a land-based
radar system developed by Raytheon Co. Nearly all of the modules
are written in JOVIAL/J3. One observation that can be made from
these data is that the ratio of errors introduced in fixin
the code to the total number of errors is very small (v 2%). If
data from other codes support this observation, reintroduction of
errors does not constitute a significant contribution to code
failure probability. Of course, this may not hold true for other
codes. For large scale safety codes that routinely transfer large
amounts of information among modules, correction of a coue defect
in one module may lead to the discovery of defects within modules
with which it interfaces.



28

(3) The data shown in Table 4.5, taken from Goel [4.5], are from the
real-time, multicomputer comp’ex which forms the core of the
Naval Tactical Data System (NfDS). The programming language(s)
used is not specified. These data show the scatter in observed
times to failure that is evidunt in much of the failure data in
the literature. As observed i~ the last test phase, they also
show that a new testing phase is likely to result in an enhanced
detection rate even in a releas: version of a code,

(4) The data shown in Table 4.6, investigated by Shooman [4.6] but
obtained by Dirkson, Hesse and lientz [4.7], are from three
operating systems subsequent to release and from four application
systems during the system integration. These data yield estimates
of the number of code defects corrected per line of instruction
for the given programs. They mply that the given systems
averaged roughly 1 (observable) defect per 100 instructions (as
estimated using the Shooman mcdel discussed in Appendix A) prior
to the initiation of data collection. These data also show that
this defect percentage is significantly reduced by the end oy
the observation period. Ilowever, the scatter in the data ind'cate
that quantification of this reduction will have large uncertainties.

(5) The data shown in Table 4.7, taken from Akiyama [4.8], are from a
system whose function is unspecified and written in FASP, the
assembler language for FACOM 230-60. Datc were available from all
phases of software development from module testina to field use.
These data represent a base upon which to explore relationships
among error detection and the indicated code properties. Obviously
nothing meaningful can be obtained with just these data; however,
this table does represent an actual example of the type of data
needed to draw correlations among probability of failure character-
istics (here measured by number of errors detected) and code
properties.

The software from which the above failure data were obtained were not written
in FORTRAN, the principal programming language used in nuclear codes. Further,
as mentioned above, the functions and usage of these software systems are
sufficiently different that the applicability of the above data to nuclear
systems needs to be questioned. However, they provide not only an insight

into qualitative and quantitative characteristics of software systems but a
part of the non-nuciear data base for comparison with future data from nuclear
systems as well as a data base for testing the mathematical approach of
Section 3.



4.2 Nuclear Data

This section discusses specific sources that will be tapped to provide a
nuclear software failure data base. As related above, efforts in obtaining
and appropriately categorizing nuclear software failure data have been
deferred. Such data have only been found in logged records and are often in

a form associating dates or time drrations with code changes that may or may
not have been made to correct a derected code bug which in turn may or may not
have been revealed by an operaticnal failure of the code. Nevertheless, the
investigation and interpretation of such data is needed to provide a nuclear
data base for this program.

One promising nuclear failure data base is that of the ARC (Argonne Reactor
Computation) System maintained by the Applied Physics Division at ANL. Roughly
125 codes ranging in size from 2,000 to 50,000 FORTRAN statements comprise
this data base which represents both pre-production and production codes.
Production as used here refers to codes that are in unlimited use within as
well as outside ANL. Pre-production refers to codes in varying stages of
testing but prior to release to this unlimited user status. The ARC System
was initiated in the mid 1960's and has been in continuous development since
that time. Production use of the codes in the system has been under way since
about 1970. Although the format of this base is as indicated in the preceding
paragraph, implying that considerable time and effort will be required to
properly evaluate it, the information gained from this evaluation as well as
the data obtained to s woport the regression analyses of Section 3 justify
these expeditures.

Actually the Applied Phys'cs Division will provide data yielding two types of
information. The first tyoe is given by the data generated to support the ARC
System requirements, namely that all changes to codes within the system and
the reasons for these changes, be documented on a standard form. The second
type is given by data from individual code developers who maintain their own
records, generally in a more jetailed form. These data have been generated
for the more recent codes, some of which are not yet part of the ARC System,
which have been written to standards set by the Committee on Computer Code
Coordination (CCCC) established by DOE. By being more specific as to type of
bug in some cases, this second type will facilitate categorizing; however,
since all codes written by CCCC standards were not documented in this manner,
this type comprises less of a code data base than the first type of information.

Two examples of codes for which these types of information have been obtained
(but not yet investigated) are the GNIP4C and SYN3D codes. The first is a
20,000 word input processor used to arrange geometry and nuclear data for
other codes within the ARC System. The data for this code is considered pre-
production data since the GNIP4C code is not available throughout the industry.
The second code is a 10,000 card, three dimensional, flux-synthesis, diffusion
theory code used in eigenvalue calculations for criticals analyses and burnup
calculations. Data for the SYN3D code include both pre-production and post
release data.

Actual logging of errors has occurred throughout the nuclear industry. For
example, extensive software error records have been kept at Los Alamos National
Laboratory and EG&G on their large safety codes for many years. These records
take two forms: 1) written records containing information relating the nature



30

of bugs found and how and when they were corrected; 2) computer update files
containing when and how changes due to coftware errors and other modifications
and additions were implemented. For at least one of these codes, the latter is
available on microfiche, These data will be explored to facilitate the
categorization of both errors and failures.

Although it is planned to survey the information available throughout the
industry, early detailed data evaluaticn and investigation will probably be
limited to ANL and LANL sources to determine the needs to be filled by ad-
ditional investigations. The data will be investigated for all possible
nuclear applications to explore interdisciplinary differences, if any exist.
For example, it is likely though not proven, that deterministic physics codes
are more "reliable” than safety codes because of their greater ease of bench-
marking. Structural analysis codes provide another nuclear application and
should be similarly segregated. In summary, extrapolations of results from
one type of code to another must be supported by actual failure data.



KH

4.3 Conclusions on Data Needs and Future Acquisition Efforts

The above sections lead us to draw several conclusions relating to data needs
and efforts to acquire these data:

(1)

(2)

(3)

(4)

A1l data obtained to date comprise only a small part of the
information base needed to achieve the goals of this program.

The acquisition and appropriate categorization of ruclear software
failure data will be a time-consuming but necessary comporent of
this program. Categorizing the bugs according to the types of code
defect consequence and cause categories is required as discussed

in Sectien 3. To accomplish this will undoubtedly require some sub-
jective categorization. Extended categorizations come to mind:

for example, an important concern fcr nuclear safety is with what
probability could an operational failure of a code or a documented
code bug result in a misleading code result upon which an unsafe
design decision or incorrect safety conclusion is made. No data to
estimate this propagation probability have been found or indeed can
be assumed to exist. Thus, expert opinions would have to be solicited
and factored in to assign such a probability.

The data ubtained have been and will be largely from testing phases
of codes. Post-release or production status data will be sought.
The aforementioned nuclear data sources contain both preproduction
and production status data as discussed. Clearly the goals of this
program relate to production codes, not test versions. Drawing
comparisons between the failure probabilities of pre- and post-
release codes must be done to obtain the benefits of a large pre-
release data base. However, the mathematical approach to treating
the data is the same.

It would be extremely fruitful to establish a computerized data
bank and information center at the National Energy Software Center
at ANL, to properly organize the fa‘lure data, integrate it with
the mathematical and statistical analysis systems described herein,
and to facilitate industry-wide participation (as well as access)
in data collection. This is discussed further in Section 6.



Fault

Number

VRN B LN -

IMlustration of Failure Data:

Table 4.1

Times Between Failures in Seconds

Successive Execution

Execution Day of Fault Execution Day of
_Time _ Failure Number Time Failure
1 70 79, 64
30, ? Ne 4", 64
"3, 4 17 129, 64
a, 10 73 810, 64
s, n 74 290, 64
9, n 7% 300, 64
s 17 76 529, 65
9, 20 7 281, €5
na. 20 78 160, 65
15, 20 79 828, 66
138, 20 B0 1011, 66
50, 20 81 445, 66
17, 20 82 296, 66
24, 20 83 1755, 67
108, 20 84 1064, 67
88, 20 85 1783, 68
670, 30 86 860, 68
120, 30 87 983, 68
26, 30 88 107, 69
4, 30 85 33, 69
325, 30 90 86f, 69
55, 30 Yl 724, 69
242, 3 92 2323, 70
€8, k)] 93 2930, n
422, n 94 1461, 72
180, 32 95 843, 12
10, 32 96 12, 72
1146, 13 S7 261, 72
600, 34 98 1800, 73
15, 42 99 BES, 73
36, 42 100 1435, 74
a 1 101 30, 74
0, 46 102 143, 74
8, a6 103 108, 74
227, 46 104 0, 74
65, 4 108 3o, 75
176, a6 106 1247, 76
58, 46 107 943, 76
457, 47 108 700, 76
300, 4 109 875, 17
97, 4 110 245, 77
261, 47 m 729, 17
452 53 12 1897, 78
255, 53 13 447, 79
197, 54 114 386, 79
193, 54 115 446, 79
6, 54 116 122, 79
79, 54 17 990, 19
816, 56 118 948, 80
1351, 56 " 1082, 80
148, 56 120 22, 80
21, 57 121 75, 80
233, 57 122 482, 80
134, 57 123 5509, 81
357, 57 124 100, 81
193, 59 12% 10, 8l
256, 59 126 07, 82
3, 59 127 n, 83
369, 59 128 790, 83
788 59 129 6150, 83
0, 59 130 iz, 83
30, 59 132 648, 84
1222, 62 134 1160, 87
10, 63 136 a6, 92
16, 63
64



33

Table 4.2
Characteristics of Software Systems Studied by Musa

Total Instructions/
Phase for Which® New or Modified

System No. Data Available Instructions Programmers Faults“*®*®
1 5,0 21700/ 9 136 (2)7
19500
2 5,0 27700/ 5 54 (2)
6600
3 5,0 23400/ 6 38 (1)
11600
4 S,0 33500/ 7 53 (3)
9000
§! 3* 24459%0 275 831
6 SS 5700 8 73
14C o* - 110 36
17 S 61900 8 38
27 S 126100 8 a1
40 S 180000 8 101
5S1A7 o* - - 112
SS1B? o* - - 375
£s1c? o* - - 277
$S2 o* - - 192
583 o* - - 278
$54 o* - - 196

'Design changes amounting to about 21% of the source lines of code were
introduced after failure 288,

?§S1A, SS1B, and SSIC represent the same scftware system running in
slightly different environments,

‘Phases:
SS = Subsystem Test, module testing
S = System Test; after modules or subprograms are integrated
into a larger system
0 = Operational; System Running in the Operational Environment,
Data is for a complete phase unless starred.

“A fault is a software defect that causes the failure.

“1f a failure recurred before the fault that caused it was corrected,
it was not counted,

“When a failure was spawned as the result of correcting an earlier
failure, it was counted as a new failure.

7
Data are for the system testing phase unless in parentheses; data for
the operational testing phase are shown in parentheses.



34

Table 4.3

Characteristics of Software Systems Studied by Brooks and Motley

Number of Errors
Project Instructions Language Phase! Detected N3 q3
1 1317k ALC, CENTRAN T &1 2657 7 1m0
2 124K JOVIAL, J3 T&I 1301 1438 1.27x1073
80K ALC g
40K JOVIAL, J3B T&I 1239 3094 2.07x1073
42 114K JOVIAL, J4 T&I, 1138 1348 L1166

post-integra-
tion testing

52 - - - 1483 1824 .1060
62 - - - 2707 3958 .0739
72 - - - 2362 3446 .0742

!The test and integration phase r«fers to a period of testing during
and after the integration of two or more programs into a single system.
Data from Projects 4 through 7 encompassed this phase as well as an
acceptance testing phase.

“Projects 4, 5, 6 and 7 constitute one set of error data counted four
different ways and illustrate a need for standardized terminology.
(Four attempts to remove different types of non-software related errors
from the total set of SPRs (software problem reports) reported during
testing by different people according to their own definition of a
valid software error).

N and q denote estimates, using the Brooks-Motley model discussed in
Appendix A, of the tctal number of detectable code errors at the
beginning of testing and the probability of any single error being
detected during a unit of test effort. Since this unit of effort was
not defined in the referenced literature, the physical significance of
"q" and even the comparability of q estimates among projects in this
tab1e cannot be specified.



35

Table 4.4

Comparative Histories of Errors Introduced in Debuyging
and Total Errors Detected as Analyzed by Goel and Okumoto

Errors Errors Caused by
Mc.ith Detected Imperfect Debugaing

122
98
82
75

113
85

105
47
61
25
28
42
18
17

O N OO s W N -

PO oo anl ol il el nd wel e wnd el
C W 0O VY OO " s W N - O W
- N
w w o s @

13
5
10

N
N -

———

TOTAL 999

ny
N%OOOOOOCOOO"‘O-'-‘—‘NMN&—'-‘O



36

Table 4.5
NTDS Error Data

Time Between Errors
Error Number in Days

Checkout Phase

1 9
2 12
3 n
4 4
5 7
6 2
7 5
8 8
9 5

10 7
11 1
12 6
13 1
14 9
15 4
16 1
17 3
i8 K
19 6
20 1
21 1N
z2 33
23 7
24 91
25 2
26 1
Test Phase
27 87
28 a7
29 12
30 9
31 135
User Phase
32 258

Test Phase




Table 4.6

Change Data and Code Defect Estimates for Large Scale
Programs Studied by Dickson, Hesse, Kientz and Shooman

Application A
240,000 Inst.

Application B
240,000 Inst.

Application C
240,000 Inst.

Application D
240,000 Inst.

Month Changes Changes/Inst. Changes Changes/Inst. Changes Changes/Inst. Changes Changes/Inst.
1 514 2.15 x 1073 905 3.76 x 1073 235 0.98 x 1073 231 1.38 x 1073
2 926 3.85 37¢ 1.57 398 1.66 596 1.66
3 754 3.15 362 1.51 297 1.24 269 1.12
4 662 2.76 192 0.80 506 2.11 296 1.24
5 308 1.28 70 0.29 174 72 314 1.31
6 108 0.45 55 ;- 183 0.76
7 60 .25 158 0.66
8 368 1.54
9 337 1.41

10 249 1.02
1 166 G.69
12 108 0.45
13 3 0.13
Supervisory A Supervisory B Supervisory C
210,000 Inst. 240,000 Inst. 230,000 Inst.

Month Changes Changes/inst. Changes Changes/Inst. Changes  Changes/Inst.
1 110 0.52 x 1073 250 1.04 x 1073 225 0.98 x 1073
2 238 1.14 520 2.16 287 1.24
3 185 0.88 430 1.80 497 2.16
4 425 2.02 300 1.25 400 1.74
5 325 1.55 170 0.7 180 0.78
6 37 .18 120 0.50 50 0.22
7 5 .02 60 0.25
8 40 0.17

(E



38

Table 4.6 (continued)

Code Defect Parameters Estimated by Shooman Model

Program i 2
Supervisory A 210K
Supervisory B 240
Supervisory C 230
Application A 240
Application B 240
Application C 240
Application D 240
Average . . . . « +« « « s« s s s

- m
" "

©
"

Estime ted total number of errors at initiation of data collection.

1,

E/1

.97
.48
.20
.70
.00

90

14 x 1073

°o

0.875 x 1073
0.996
1.25
2.20
1.54
1.00

0.995

Number of machine language instructions in the system.

Number of errors/number of instructions/month, averaged over the

entire duration of time in months.






References

4.1

J. D. Musa, "Validity of Execution-Time Theory of Software Reliability,"
IEEE Transaction on Reliability, Vol. R-28, No. 3, August 1979.

J. D. Musa, "Software Reliability Data," Data and Analysis Center
for Software, 312 (1980).

W. D. Brooks and R. W, Motley, "Analysis of Discrete Software Reliability
Models," RADC-TR-80-84 (1980).

A. K. Goel and K. Okumoto, “"Bayesian Software Prediction Models," Vol. V,
RADC-TR-78-155, (1978).

A. L. Goel and K. Okumoto, "Time-Dependent Error-Detection Rate Model
for Software Reliability and Other Performance Measures," IEEE
Transactions on Reliability, Yol. R-28, No. 3, August 1979.

M. L. Shooman, "Probabilistic Models for Software Reliability
Prediction, Statistical Computer Performance Evaluation, W. Freiberger,
Ed., Academic Press, New York, 1972,

J. D. Dickson, J. L. Hesse, A, C. Kientz, and M. L. Shooman, "Quantitative
Analysis of Software Reliability," Proceedings 1972 Annual Reliability
and Maintainability Symposium, IEEE, 1972,

F. Akiyama, "An Example of Software System Debugging," IFIP, 71,
Ljubi,. ma, Yugeslavia, 1971.




of software failure
ic tools described ction
supporting t+ he¢ ¥ framework
reports illustrative : on anal
" Sa 2
failure pre babilities and ? f‘ul'”ri,""“-
'\'-\‘qdrv,‘ 1 \ ‘,.‘;.‘ t f i and
jlata d . resented o
Nt v“"’v*""’(. .~.‘“'“\

. v e
rma surveys. t too

non-representative. How

1 sampling of observations

wide uncertainty band

aracteristics

published fail rate mode and the
) in Section 3./ wweloped as part
were performed these

tware erro

jescribed

P




42

the error reduction factors, B in the Musa model and o in the Brooks-Motley
model were assumed to be 1. The MLEs of the model parameters varied greatly
depending upon over what range of failure data they were taken, as indicated in
Table 5.1. However, for a given data set, Table 5.1 also shows that the
analogou: parameters for the different models agree reasonably well. For
example, constants of proportionality ¢ in the Jelinski-Moranda model, 1/T N in
the Musa model, b in the Goel model, and q in the Brooks-Motley model, are®
ccaparable for all cases. These reflect the probability of error detection and
are seen to decrease with error detection as reliability improves.

Fi,ure 5.1 and Table 5.1 reveal some of the generic traits of the failure rate
models. Littlewood [5.8], by applying goodness-of-fit tests has shown that
his stochastic model provides a better fit to the data than the deterministic
models. In addition he observed that the stochastic model was more conservative
in its estimate of the reliability. Figure 5.1, as well as other examples not
reported here, substantiates Littlewood's observation regarding conservatism.
A nonconservative feature of the deterministic models is illustrated in Table
5.1. The parameter N estimating the total number of errors in the system at
the initiation of detection becomes larger as more fault data are factored
into parameter estimation; i.e. N becomes larger as more errors are detected.
Since the Littlewood-Verrall does not predict N per se, quantitative estimates
of its conservatism are not readily made, although its conservatism relative
to the deterministic models is shown in Figure 5.1.

Table 5.2 lists software failure probability characteristics of nine or the
systems documented in Appendix b and studied with the Brooks-Motley binomial
model. As was the case for the Table 4.1 data, N, the estimated initial
total number of faults in the system, is alwaﬁs just slightly larger than
the observed number of faults. In one case, N was computed to be equal to
the number of observations. Thus, it is clear that the underprediction of
N is a characteristic of the failure rate models studied here, not simply a
characteristic of a specific set of data.

To illustrate the use of the sigmoidal fault discovery model to determine the
asymptotic numter of faults for a given software system, the failure data of
Appendix B were analyzed. As shown in Section 3, the model

n(t) = g (1 + tanh[k(t-+)]) (1)

requires the estimation of the three parameters N, k, and t_, with N being the
measure of error content. Good initial estimates of the papameters must be
supplied for successful regression to be performed. The PAR derivative'free
nonlinear regression module of the BMDP system was used in the present instance.
This module is described in detail in Appendix C. Basically, PAR computes
least square estimates of parameters using an iterative pseudo-Gauss-Newton
alcorithm. For the examples considered here, data near the end of the testing
period were weighted more heavily than data near the beginning of the period.

Failure data for nine systems, namely Systems 1, 2, 3, 4, 5, 6, 7, 27, and 40

of Appendix B were analyzed. Figure 5.2 shows a comparison of the observed

data and the values predicted with (1) for System 4., This system is a real

time command and control software package of 33,500 lines extent, programmed

by seven programmers with a total of 53 observed faulg-producing failures over

a 70-day period. Reasonable agreement is evident indicating that the assumptions



43

underlying the model are supported by this example. An estimate of 55 total
faults was obtained. This number is slightly larger than the number of faults
actually found and is in reasonable agreement with failure rate model pre-
dictions.

Table 5.3 summarizes the values of N, k, and t_ for the nine systems to which
the sigmoidal model was applied. The initial Bstimates used in the regression
analysis were chosen as follows: The initial value for N was chosen to be the
total number of faults observed during the testing period; the initial value
of k was set ‘qual to the reciprocal of the total number of observed faults;
and t was set equal to the time when half the total observed faults were
discoVered. Comparison of the values obtained for N with the values listed

in Table 5.2 for N shows that the sigmoidal model predicts a total number of
faults somewhat larger than the total number of observed faults just as do

the failure rate models. These results indicate that the sigmoidal model is

a satisfactory alternative to the failure rate models for predicting N.



a4

5.2 1llustrative Reqression Analysis Results Correlating Software
Failure Probabilities with Code Properties

To illustrate the use of regression analyses to correlate failure probability
characteristics with code properties and development variables, the exercise

described herein was performed. A log-linear form for the error content per

line of instruction, or alternztively the probatility per line of irstruction
that a software fault would cause code failure was assumed as follows:

1nn=ay+at+a,l+ap, (2)

where

t = time in working days,
I = number of lines of instruction,
P = number of code programmers,

and

n = (N-n)/1, (3)
where

N = the estimated number of total errors
and

n = the observed number of errors.

The choice of independent variables in (2) was determined by the information
available about the systems on which the data were taken. The choice of time
in working days, rather than time between current and previous failure was
made because time in working days is thought to more correctly reflect debugging
activity and measure of level of software exercise and fault detection. The
choice of the number of lines of instructions as an independent variable was
made because a nonlinear relationship between the number of faults and the
number of lincs of instructions was expected. The choice of the number of
proqrammers was made because the information was available and the oresence
(or absence) of a multitude of programmers working on any software system can
obviously aifect the production, detection, and correlation of faults. Choice
of the log-linear form for n was made to accommodate the several orders of
magnitude change expected in n.

Fits of the log-linear expression were accomplished using BMOP's PIR multiple
linear regression module, described in detail in Appendix C. Basically, PIR
computes a multiple linear regression equation on all data and on groups or
subsets of the data. The parameter a_ in (2) can be set to zero prior to the
analysis if desired. If a grouping viriable is specified to form groups,
homogeneity of regression coefficients across groups is tested. It is also
possible to specify case weights.



omparison betwee S | s obtained with (?) an
jata sets tc the sigmoidal model was
Limated values ¢ ‘e parameters a.. Rather

11

values of time between the urv*"'(ﬂ and
jes show a lot of scatter in this range ac

ratio relating fi o the resulting residua i

"'. "("‘1,"&:’1’
ents the expecte ) vior if the residuals are norma

)). Fiqure 5.4 y lognormal plot of

19

nt departures from normal distribution are eyvident
f the re: Is is relatively high indicating that

y remove herent trends in the data.

increase

ing
’}\‘ '54, "
the nun her

inec of
rogrammey

roememb

es w

iterature as well as solicitations

ure probability haracteristic

( v ~ frpauenci
fic and ge requenci
T arddl ¢

n y |

xperts iing the ure probabil

resente

ine of instruction. Boehm
ew release of 0S/360 contains
BM 360 operating system software
7",‘,9“*"&" instruction :
error ) on. Boehm :‘1‘ C repor
izing y 0 ine programming tool
ovative ¢ ‘ O » software to achi
1:"v +hi con v R7 ) : ir truction s
oped. iring esting phase 21 errors
itional rror been €fou

nf A - + 3

u

Y

\

weries wi
-

value of

3vuf a "hic

’!.(“v‘vﬂ f‘{"" 1"7““.-.301“




46

informal survey of approximately 10 code developers at ANL, all responded with
basically the same rough estimate of 107 errors/line of coding for codes that
are in production status. An informal survey was also conducted with roughly
10 widely published "experts" in the software reliability field. This survey
yielded estimates of 3-12 faults/1000 machine instructions during integration
testing, roughly 1077 faults per instruction during system testing, and 1 -2
x 1077 faults per instruction during module testing. There was a concensus of
opinion that further generalizations of various probabilities would be
dangerously misleading without first examining the systems in question. It
was further opined that the post-release failure data depend strongly on
testing effectiveness.

The quick survey discussed above produced estimates of 1077 to 107* software
errors per line of instruction; however, the stage of development of the

codes was not always clear. Further, it could not be always discerned

whether line of instruction referred to machine instruction or line of

coding. Advanced programming languages such as FORIRAN generally normalize

to 5-1C machine instructions per line of code. This value depends on the
lanquage as well as on the compilers in the computer hardware. Thus, probably
the only conclusion that can be drawn here is that the number of software
errors in a code is highly dependent on both the specific code properties

and on the computer hardware on which the code is executed. As implied

above, this conclusion was supported in the informal discussions held with the
surveyed personnel.

Concerning failure probabilities of large safety codes, the dicussion was
initiated with the question, "In your opinion, what is the probability that
a large hypothetical accident code properly executes to provide a qualitatively
correct estimate of an important parameter?" “Important” here was loosely
defined as one upon which a safety conclusion might be based. "Properly
executes” was defined to mean that the software was functioning correctly
_independent of whether the physical or phenomenological modeling was correct.

A "qualitatively correct" result was defined to imply that conclusions drawn
would not change because of deviation from “perfect”. The conclusions were

as follows:

1. For a specific code, the application of the code determined
the probability. For example, the reliability of an accident
aralysis code would depend on the type of transient analyzed.

2. A safety code is much more reliable after widespread use than when
it is released. A newly released code is not reliable.

3. The reliability of the code is strongly dependent on the
expertise of the user. An inexperienced analyst is unreliable.

For an application for which the code has been "verified" by experience and
the input prepared by an expert, opinions of the probability of successful
operation generally were above 0.95, although only qualitative statements
about confidence were made.



47

The overall conclusion to be drawn from these discussions is that a subjective
estimate of the "generic" probability of failure of a iarg: safety code in
calculating a hypothetical accident has little meaning. Rather, the estimate
would depend upon the code itself, the use of the code, the analyst applying
the code, and the experimental history of the code. The need for quantifying
the effects of these kinds of dependencies is clearly shown.



48

Data Base: First 100 Zrrors of
Musa System 1
Failure Rate Models
LEGEND
0= GOEL :
O = JELINSKI-MORANDA /MUSA

A& = BROOKS-MOTLEY
+ = LITTLEWOOD-VERRALL

SLIABILITY
/

RE
0
1
-
/
7
/

0.

-

0.0

p—

0.0 10.0 20,0 30.0 100 50.0
EXECUTION TIME, (MIN)

Figure 5.1 Illustrative Failure Rate Model Predictions of
Software Reliability



FAULTS

Figure 5.7

49

- T T T I
O OBSERVED 8
O
50 |— 0O PREDICTED o 0 =
i
o
0 - $ -
(¢]
o
o]
30 |- 8 -
P
(o]
20 — 0 oy
(o]
o
o
-
1o
l | | 1
0 15 30 45 60 75
TIME, days
Sample Regression Results -- Detection of Faults

vs. Time



50

” T I l [
o
o)
-3 5 O OBSERVED =
°0 0O PREDICTED
o
o)
-6 _— o =
o
o)
"7 m e
D
:: -8 C:EE;E!%ID e
~ Do
o4
o0
o DERTEL ®y
-9 — 0 U£ (o 8] (Dm s
o o %
(ole] [chgj
Dua&al
e o Bmcno —
o o
o
o)
-|| —— o] (@) pun—
o
o
-12 | | 1 |
0 100 200 300 400 500
TIME, days

Figure 5.3 Sample Regression Results -- Time Behavior of
Faults Per Line of Instruction



EXPECTED NORMAL VALUES

51

24

N

O
o

o

1
ol
(o))

-4 -3 -2 -4 0 | 2
OBSERVED VALUES

Figure 5.4 Sample Regression Results -- Log Mormal Plot
of Residuals



52

Table 5.1

Maximum Likelihood Estimates of Model Parameters’' as a
Function of Fault Detection Data

Fault Data Range¢ 1-50 1-100 1-136
N 5.7 .b.a R N 8.7 .00
Jelinski and Moranda 59 0.1807-3 106 0.6652-4 142 0.3482-4
Musa 59 93.787 106 141.812 142 202.270
(0.1807-3)% (0.6652-4)7 (0.3482-4)°
Goel 61 0.1667-3 107 0.6459-4 143 0.3409-4
Brooks and Motley 60 0.1784-3 109 0.6250-4 144 0.3382-4

Ipefinitions are as follows: N is an estimatg of _the number of errors in
the code at the initiation of detection; ¢, T b and q are parameters
that measure or enter into the measure of err8 detection probability.
Exact definitions are found in Appendix A.

~N
|_‘

-, which is comparable to ;, b and &

N
0

—f



Table 5.2 Estimated’ Software Failure Probability Parameters® for Selected Data Systems

System I/1* N N/T N N-N 3 q(N-N)

1 21,000/19,500 136 6.5-3 142 6 3.5-5 2.1-4

2 27,700/6,600 54 1.9-3 56 2 2.9-5 5.8-5

3 23,400/11,600 38 1.6-3 38 0 6.8-5 0

B 33,500/9,000 53 1.6-3 61 8 6.2-5 5.0-4

5 244,500 831 3.4-3 900 69 8.9-8 6.1-6

6 5,700 73 1.3-2 91 18 3.2-2 5.8-1
17 61,900 38 6.1-4 40 2 1.2-5 2.4-5
27 126,100 41 3.3-4 43 7.5-7 1.5-6
40 180,000 101 5.6-4 103 2.1-7 4.2-7
!The Brooks-Motley failure rate model was used to provide the estimates.

’Parameter definitions:

I:
I%:

-

N:
&-N:
q:

-

q(N-

total number of instructions.
number of instructions that were modified during fault collection; this data was
available only for Systems 1, 2, 3, and 4.
actua! number of faults detected when projection estimates were made.
estimated total number of faults at the initiation of fault data collection;
obviously N > N,
estimate of the number of faults remaining in the system that would be detected
eventually; this is a measure of code failure potential.
the probability that, given a fault in the code, it will be detected in a unit
of test effort (here 1 s);
N): the expected number of faults detected 1n a unit of test effort and is numerically
equivalent to the probability of code failure in a unit of test effort (here 1 s)
provided (N-N) << 1.

£S5



54

Table 5.3

Parameters of Interest in the Fault Discovery Model

System N K o

1 161 +4 fauits 3.76 x 1072 +2 x 107> day} 66+ 1 days
2 53 + 1 5.00 x 1072 +5 x 1073 ®+ 1

3 53 + 4 1.87 x 1072 +4 x 1073 52+ 14

4 55 + 2 3.83 x 1072 +4 x 1073 29+ 2

5 922 + 64 5.09 x 1073 +4 x 1074 258 + 14

6 77 +3 4.48 x 1072 +3 x 1073 23+ 1

17 37 +1 6.31 x 1072 +4 x 1073 2%+ 1
27 42 +4 2.39 x 1072 +5 x 1073 29+ 6
40 102 +3 6.76 x 1073 +1 x 1073 130 + 10

Note: Quoted uncertainties represent one standard deviation.

Table 5.4

Parameters of Interest in the Log-Linear Probability Model

Coefficient Value
a -7.08329
a) 6.19 x 1073 + 1 x 1073 days™!
a, -8.10 x 1073 + 1 x 1073 (thousand 1ines)™!
ay 6.98 x 1072 + 1.6 x 1072 (programmers )"

Note: Quoted uncertainties represent one standard deviation.



55

References

5.1

Z. Jelinski and P. Moranda, "Software Reliability Research," Statistical
Computer Performance Evaluation, W, Freiberger, ed. Academic Press,

New York, 465 (1972].

J. D. Musa, "A Theory of Software Reliability and its Application,"
IEEE Trans. on Software Engineering, Vol. SE-1, No. 3, 312 (1975).

A. L. Goel, "Software Error Detection Model with Applications," Journal
of Systems and Software 1, 243 (1980).

W. D. Brooks and R. W. Motley, "Analysis of Discrete Software Reliability
Models," RADC-TR-80-84 (1973).

B. Littlewood and J. L. Verrall, "A Bayesian Reliability Growth Model
for Computer Software," 1973 IEEE Sympocsium on Computer Software
Reliability, 70 (1973).

J. D. Musa, "Software Reliability Data," Data and Analysis Center for
Software, (1980).

J. J. More, B. S. Garhom, and K. E. Hillstrom, "Users Guide for Minpack-1,"
ANL-80-74, 1980.

B. Littlewood, "A Critique of the Jelinski-Moranda Model for Software
Reliability," 1981 Proceedings Annual Reliability and Maintainability
Symposium, 357 (1981).

Private Communication, W. Vesely, January 15, 1981,

B. W. Boehm, "Software and Its Impact: A Quantitative Assessment,"”
Datamation, 48, May (1973).

R. J. Rubey, "Quantitative Aspects of Software Validation," International
Conference on Reliable Software, 246 (1975).

M. L. Shooman, "Software Reliability Data Analysis and Model Fitting,"
Workshop on Quantitative Software Models, 182 (1979).



56

6.0 Summary, Conclusions, and Future Directions

This section will summarize the preceding sections and outline the status and
future directions of the tasks invclved in this research program.

Section 2 discussed validation and verification of software. Although this
was not a direct part of the FY 81 research program there is a ciear need

to compile a recommended 1ist of procedures for validation and verification
of nuclear safety software to provide the best assurance that code results
that cannot be checked by conventional means are correct (within the framework
of the modeling). Two examples of "unverifiable" results in the area of
nuclear safety are presented for illustration: (1) An energy release from a
postulated steam explosion in an LWR accident; and (2) A probability of a
certain mode of failure in an LWR plant. In the first example, the phenome-
nology of large scale fuel coolant interactions is not known well enough to
allow reasonable prediction even if the boundary and initial conditions 'or
such an event could be accurately established (they cannot be). Thus, analytic
and experimental benchmarks are not available and bounding considerations
provide the only clue to reasonableness of results. In the second example,
consider the specific case of a very complicated and uncertain system
evaluated using a fault tree network and for which the predicted probability
of a certain mode of failure is 107'%, Here, not only do the system behavior
uncertainties dominate, but the magnitude of the answer is beyond the analysts
"intuition" for ascribing reasonableness to a result. Thus, an outline of
ways to provide assurance that such "unverifiable” results are correct is
needed.

Section 3 presented the mathematical approach of this program and Section

5 presented results generated using some of the supporting models. As stated
throughout this report, these results were generated only to illustrate the
methods and were based on an analysis of failure data thct are preliminary,
unverified, and possibly non-representative of software relevant to nuclear
safety. Further, what has been done to date has been to estimate parameters
that support the framework of this program. Actual implementation of the
Poisson mode! to predict probabilities of failure and associated uncertainty
bonds for nuclear codes remains to be done.

Specific areas within the approach that must be dealt with include the proper
classification of software errors, faults, and failures both for data organi-
zation and subsequent regression analysis. With respect to the regression,
the optimum choice of dependent variables needs to be established. For
example, in the Poisson model, the characteristic probability qjk is an
obvious candidate. However, expected numbers of errors, i.e. My qgk may in
certain circumstances be amendable to regression. Finally, regFession analysis
may be performed directly on the reliability. Investigation of the number of
errors per instruction in a code is useful since this quantity is a convenient
figure of merit with which to measure the developmental progress of a code.

A Bayesian approach to updating reliability estimates was also introduced.

Although all these concepts bear investigation, an overriding factor in this
program is that the data that will become available in the near term, say

several years, simply do not justify the development of sophisticated mathe-
matical modeling. Thus, a pragmatic approach dictates that after the initial



57

computer establishment of the framework, data acquisition efforts will dominate
model development work.

Section 4 described the data acquired to date. Short term data collection
efforts will be directed to nuclear codes. Other sources of relevant data
include the human error literature and solicitation of "experts". However,
this is a minor part of the overall data acquisition effort. A development
effort that would unify these and subsequent data acquisition efforts is

the creation of a readily accessible computerized information base and resource
center. The components of this information base would include the necessary
mathematical framework and associated models with which to make reliability
predictions as well as the software failure data with which to verify and
upgrade this framework. To facilitate access to and use of this information
base with its concomitant analytic capability, as well as to provide a
continuous updating capability that could accept failure data from throughout
the industry, a Software Reliability Information Center and Computerized Data
Bank and Analysis System is proposed. This would be established at the
National Energy Software Center and could be made accessible to the nuclear
industry. The need for this centralized data and analysis center has been
emphatically demonstrated to our staff in our attempts to obtain documented
code failure data. Such data have been logged by very few code developers in
any consistent fashion in the nuclear industry and have been difficult to
obtain. A failure data center should provide an industry-wide focus on
software reliability, as well as providing a comprehensive, centrally located
data base.

Section 5 described the results to date. As cited they were strictly used to
illustrate the models. In the following year, gross estimates of reliability
characteristics and their dependencies, similar to those provided, but based
on an improved nuclear data base will be provided using the mathematical
approach of this program. Tie-ins between the non-nuclear and nuclear data
base will also be investigated.

In summary, a general mathematical framework for predicting reliability
characteristics has been established. At the core of this framework is a
Poisson model for the number of code errors of a specified type in a given
computer application. Methods of implementing this framework have been
developed and include both mathematical modeling and the proper specification
and handling of data. The product of this framework includes predictions of
reliability characteristics such as expected number of errors and probability

of failure in a given cumputer run. By accumulating failure data and :pecifying
the code characteristics associated with each data set, multivariate regression
techniques can be used to identify the important code parameters and controlling
developmental parameters. Actual computer implementation of this framework

was started. Efforts in the near term have been described above.






59

Appendix A

Summary of Published Failure Rate Models

This appendix provides a review and summary of predictive mathematical software
reliability models developed in the military, aerospace and communication
industries. As a background for this review, the mathematical basis of software
reliability is first provided. Summaries of the individual models are then
provided with highlights discussed in a "comments" paragraph. Results of the
application of a selected group of these models to failure data are presented

in the text of this report.

In general the models discussed here assume functional forms for the code
failure rate or the number of errors remaining in the code. These models are
then fit to failure data to estimate, generally using maximum likelihood,
values for the model parameters. The models are subdivided into:

(1) Deterministic models using error detection vs. time histories
to evaluate the parameters of deterministic functions assumed
for the failure rate;

(2) Deterministic models geared to similar parameter estimation
using histories that measure numbers of errors in time intervals;

(3) A stochastic model that uses error detection vs. time histories
toc estimate the parameters of probability density functions
assumed for the failure rate and time to failure.

Prior to the presentation of the models, a short introduction to the mathematics
of reliability is provided to facilitate the discussion of the models. The
reliability is the probability of successful operation over time t and is given
as a function of time by

R(t) =P (E > t)

where t is the time of failure. The probability of failure is given as the
complement of reliability, namely

t
F(t) =1 - R(t) =P (t <t) f £(x)dx,
i 0
where the failure density function f is given by

CRL SR S

The hazard function or failure rate is defined by

P(t <t <t +dt) £t 1 dR(t)

2t) P(git)dt "R T TR dt




60

and is the conditional probability of failure in the interval t < t < t + dt
given survival up to time t. From the definition of the hazard rate, the
reliability function can be shown to be

t
e -J.o Z(x)dx
= e

The mean time to failure (MTTF) is given by

o

MTTF = j' tf(t)dt,
0

from which integrating by parts leads to

MTTF = S R(t)dt.
0

In general, because software bugs are corrected as they are detected, the
failure rate Z(t) is a decreasing function of code lifetime. This character-
istic gives rise to a reliability function that increases with the life of the
code.

Reliability models developed by Jelinski-Moranda (J-M) [A.1], Musa [A.2], Goel
[A.3], Shooman [A.4], Schick-Wolverton [A.5], Brooks-Motley (B-M) [A.6], and
Littlewood-Verrall [L-V) [A.7] are summarized in the following paragraphs.

These models represent a group of the most frequently cited models in the
literature. The first six of these models are considered deterministic

because the failure rate or number of remaining errors is expressed as a
deterministic function of a small number of parameters. As cited above, the
Jeterministic models use either time-to-failure data or number-of-failures-in-
a-time-interval data to estimate parameters. The Littlewood-Verrall model is
considered stochastic because the failure rate is treated as a random variable
with a probability density function dependent upon a small number of parameters.
The Jelinski-Moranda model served as a basis for the development of other
deterministic models. In fact, Musa, Shooman, Goel, Schick-Wolverton and
Brooks-Motley models are often referred to as Jelinski-Moranda type models
because of the similarity in the formulation of the hazard function. In all

of these models, the hazard function is assumed to be proportional to the

number of errors remaining. To facilitate reference to the literature the
nomenclature used in the origina! papers is preserved in this report.

A.1 Deterministic Models Using Time-to-Failure Data

A1 Jelinski-Moranda Model

2(t;) = o[N - (1 - 1))

total number or errors initially in the system

where N

4 = constant of proportionality

i

"

number of errors found in debugging time interval t,




61

Comments

The Jelinski-Moranda (J-M) model assumes that each software bug has

an equal probability of being detected, an unrealistic assumption

since more easily-detectable errors are eliminated first. A potentially
more serious drawback with this model is that the MLE (maximum
Tikelihood estimate) may predict infinite values for model parameters.

A.1.2 M. L. Shooman Model
2(t) = K[E;/1y - ec(r)] = Ke t);

thus
R(t) = e “Keplt) t
and
MTTF (1) = —p—!
K[-tl ¢ ('r)]
T ¢
where

E; = total initial # of errors (unknown)

IT = # of instructions

€ = # of erraors corrected (normalized to IT)

€ = # of errors remaining (unknown) normalized to I

T = debugging time measured from the beginning of the system
testing period

or
"

code operating time measured from the beginning of the system
testing phase (may consist of many testing periods). In
some cases t = t

K = constant of proportionality (unknown)
Comments

1)  The Shooman model is essentially a J-M model where all parameters are
normalized to the number of instructions.

2) The reliability function R(t) is defined for all t > 0. The
time variable t is a measure of the operating time since the
initial activation of the system and r is a measure of the
calendar time since the beginning of the system integration.



Al

o9

62

3) There are two unknown parameters, £. and K, in R(t). To solve
for these two parameters, the MTTF }hnction. is evaluated at
«wo different debugging times, r, and t,, where 1, < 1, and
e, (ty) < e. (r2). With the computed E, and K, Rtt) can be
eYaluated fbr 13 for which ¢_ is known; if ¢  is not known,
an estimate must be made bas&d on the previoﬁs data. The
adequacy of this technique depends on the knowledge of the
failure detection rate; the extrapolated value of R(t) based
on =, for t_ for large n may be very poor unless the
failire detBction rate is almost constant.
J. D. Musa Model
1 i~
Z(t) = KfE_ = = [1 - ]
PR TR
1t = accumulative execution time
Er = # of errors remaining
f = linear execution frequency,
_ average instruction executior rate
number of instructions in the program
K = a constant of proportiona'ity, the "error exposure
ratio", which relates the error exposure freguency
to 7
i = number of errors detected
T0 = initial MTTF
Mo = NO/B
where
No = number of initial errors
B = error reduction factor
= average ratio of the error reduction rate to the failure
occurrence rate
Comments
1) The Musa model appears to be widely accepted in the field
[A.8]. Z (1) is proportional to the number of errors remaining
and the linear execution frequency. The time variable 1 in
Musa's model is the accumulative execution time or the actual
CPU time utilized in executing the software.
2)

The parameter B can be adjusted to treat incorrect debugging
(additional errors introduced by attempts to correct errors),
as well as corrections for the learning process that the



programmers experience. The parameter B is postulated by Musa
o be nearly constant for large projects due to averaging
effects. This factor is usually positive and less than one;
however, it can be greater than one when correcting one error
leads to other errors. In practice, B is difficult to
quantitatively determine. For B = 1, the Musa model reduces
to the J-M model.

hick and Wolverton Model s

S-W model

modified S-W model

debugging time
proportionality constant

error content

f errors detected

onstants

k and Wolverton model is a modified

unt for the variation of the failure rate witt

hick and Wolverton model expresses the time
%

quadratic function, which implies that the

failure » jnitially increases to a maximum before becoming

18CTreas

Deterministi ydels Using Failures-in-Fixed-Time-Intervals Data

model i ibed above are used with error data character

«

ailures, he next two models press the ha

»f remaining errors as do the J- type model

in the form of number of failure
jetected in time t. | mode |
1‘1
ks and Motle ‘ e of binomia!

omogeneous Poisson s for software

binomial distributior presented here) Ll

Goel Model

a nonhomogeneous Poisson

a :‘ ory ‘:".“' + 1¢




64

Let n(t) be the cumulative number of software errors detected by time t and a
be the total number of initial errors or the total number of errors to be
detected eventually; then n(t) has following preperties

o whent =20
n(t) =f
a when t =

The number of errors detected in (t, t + At) is assumed to be proportional to
the number of remaining errors;

n(t + at) - n(t) = b(a - n(t))at
where b is a proportionality constant. Then
n(t) = a(1 - e'bt)

Let {N(t),t>0} be a nonhomogeneous Poisson process (NHPP) describing the
number of errors counted in (0,t) and having the following properties:

1. N(0) =

2. (N(t),t>0} has independent increments

3. P{Z or more events in (t,t4at)} = o (At)

4. P{exactly ! event in (t,t+at)} = a(t)at + o(at);

where A(t) is the hazard function and is called the :ntensity function. Further,

let
t
(t) = A(s)ds.
m fo s )as

Then for t>0, N(t) has the Poisson distribution

PIN(t) = y] = —'“—f—‘J-y ™) o

with the expected value of N(t) given by
“[N(t)] - m(t);

m(t) is cal'ed the mean value function of the NHPP. For the homogeneous case
where » is a constant, m(t) = At and

y
PIN(t) = y] = y‘ e ¥

where the mean value u = it. Choosing the mean value function m(t) to be equal
to the cumulative number of errors n(t) yields

m(t) = a(l - e %),



implying that

ht

v

(t) = abe”

and

s+t b
R(t) = exp f (x)dx] = exp[-a{e™™

where

time the last failure occurs

conditional reliability function describes reliability since the last

L

comments

A deterministic model for n(t) is required to obtain the
functional representation of m(t) which satisfies the
the )

NHPP conditic rather than

onsS » COonve

lyzes data sequences of
of failures in calenrndar

Brooks and Mot]eiique[

treats each program as a set cf modules. The expected number of
in the portion of the total system which is under test on occasion i
found by taking the summation over all modules which are being tested.
imate of the number of errors prior to test i for the portion of the
nd

y '/(,{“’ 1¢ ;:1',,;'~ .y'

the set of modules tested on occasion i

4 s 2 + " .
summation over

of the set ),




66
= number of errors in system before the first
testing occasion

= probability of correcting errors witrout reinserting
additional errors

i-1
p "mj and is the number of errors actually detected in

N. =
i-1,3 oy

that portion of the system prior to the ith occasion.

If one defines

probability that any given error is detected during a unit
of test effort

q

(ad
—-—e
"

the system test effort on occasion i; it can be given as the
execution (CPU) time, calendar time, number of tests, etc.,

then the probability of detecting any given error during the i-th test
occasion will be

Y
qi=]’(]‘Q) .

Since R, errors are exposed during the i-th test occasion, the probability
of deteéting x; errors will be given by the binomial distribution

R %, R, - x,
p(xi) =( 1) qi ! (- qi) ! !

b
1

The probability of detecting no more than M errors during the i-th test
occasion is given by

M M R R.-x
T plx) = Z ( i) qfx (1 - q) e

x=0 x=0 \*

The relationship between the Brooks-Motley mod2l and other J-M type models
hecomes more apparent if t. is regarded as execution or calendar time. Then
the reliability as a funct‘on time t, after the end of the (i-1)st testing
period is obtained by settiny M=0 in the preceding equation. Then
N t. R
i
T=01-9q

and for the failure rate,

R = (1-Qi) s



the expected number of failures in time t.. The failure rate is proportional
' s ™ 1 2
the number of undetected errors remaining in the system,

Comments

Basic assumptions are very similar to the J-M model, where the
proportionality factor ¢ in the J-M model and q in the B-M model
are the measure or probability of error detection.

T

'he B-M model has an advantage over the others in that it treats
nodular level and system level reliabilities. This is desirable
in analyzing complex reactor design and safety codes. The B-M
model examines the modular level reliability by assigning
“probability-of-usage" weights, W., the determination of which
nav be non-trivial. This trPdtmG*t accommodates the fact that
programs may be used for years without error i1f program use

icted to a set of well validated modules.

imilar to B in the Musa model. All three parameters,
and a, are estimated by the maximum likelihood method.

model can make estimates of the following items based on the

$

of form n failures in period j.

current and future reliability,

time to achieve specified reliability,

probability of passing a reliability requirement tast,

Stochastic Model
final model is a stochastic model, developed by Littlewcod and Verrall,
which treats the execution time and the failure rate as random variables.

Littlewood and Verrall Model

count for the random process of input selection and
the times to failure and the associated failure

model The function




e probabilliity per
the failure rate

that the failure rate between the i-lst
notonicaliy increasing function of i, e.
distribution for time between failure:

f

dered as constituting a random process (f

a family of Gamma distributions for the failure

lexibility (having two parameters, y(i) and
athematical tractability.

»




1
urnal




i}
ijata sets aenerate v

r b | TR .
Rome Air evelopmen










L

Failure Data Set 4










Table B.5 (Cont'd)

i ti di i t‘ di i t‘ d1
FL] ] Sletu, 295 17 S4n0p, 509 a7 “na, Jel
PLY $2600, €95 HlA 119100, t50 ela 1710, 143
w3 elima, 29s 519 TamrAn, 35% 61y sd00, 343
ELT éileh, ¢9s aéy J. N nle 185724, Sus
565 1S6ud, v 8l 1290, 551 wlr “Souu, Sar
PLLY unbud, 97 edd S220u. 832 aln 2levv, 3Sa1
567 55498, o1 LT4) “unun, S ol% 1Fue, Ja7
Sha 1eidns . 2%9 nen 5860, 3%a Hhy Joud, 347
Yoy anvli, sty wes 5499, 834 L) v, 347
STe 3vlev. SOu nle 1énh, 5§33 tae v. a7
ST 85118, Loy nel seapu, 3155 (33} s132v, Yan
a2 23un2,  Sug ul8 Plevd, 38s CLL A1, Sam
S73 1osge, S92 6l 1h09, 354 LY Zolnu, 3J4m
S7a FALED P ] 530 Ve 83n CLEY 4. San
7S 10518, 345 ol Jenn, 330 ud? Tevu, Hes
Sie §15941, 565 S P teuu, $5a any sSqn0, 349
277 Svis, us ol Jaq0n, LT S8 Ine, 349
S78 “ulrs. 300 “54 nAdgd, 187 692 11499, 349
Sy Tocou, 3u? 635 Senou, §87 6% Sise, Se9
S8 31200, Su1 LR 1Y 1200, 387 £92 S1%0e, a9
581 seun, S0 o7 Solv, 337 ~94 uen, 349
oS82 175980, 309 (3L} STene, 3ie ER 154790, 353
583 2Sae2r. 310 L & 12890, 33 095 124000, 55%
S84 16366u, 3511 LR 2100, 538 ER L 15600, 358
P LA sdv, 311 LER] 120). 33%e 697 been, 353
ELLY Aan, 111 nu2 Siou, 38 SR 2h4de0, 353
587 sll8e, 312 648 30800, 338 0%y Gh4e, §5%
L) 11490, M taq o0u, 3358 700 258, v
>89 1ede, Mg 645 3000, 33% b | 3959, '
S% 12494, 512 ban 120, 3AMA Ta2 $1ve, -3
SN 20680, 312 nal 2ERa,  Ain w3 “ausS, 35%
S9e 82000, 318 648 10Au, 333 Tad T399I, 54
593 10870u, 314 CER whl2a, 337 Tu% 3a0R, 354
5%« aias0, 315 559 0., 339 708 an’s, 354
59% 2160, 315 851 Sovow, 339 167 598,  35a
2%8 115920, $17 652 15800, sS40 ToR N9e2., 3¥S4
99 195600, M7 5S% 7200, Say Tu9 2¢5%%. 3%
S9e 192000, M19 oS4 15309, San 710 1700, 3%
59y 118n, 319 555 Sun, 40 71t 4avs, 354
660 “Sela,  Siv aSs Jeou, Sd4e 71 €591, 3%«
LI | fdas, 320 ©S? J. a0 713 aFnov, 3%
502 52192, S2v 658 1500, 3Ju0 Tla Stoeg, 858
503 au7sr, %21 659 sBluu, ey 715 6822, 855
ola ne. 321 LY Ispo, 343 Tin evlu, 3%%
505 Ars, N2 b61 tene, Me) ne 1928209, 3%9
6048 “u32e. st bbe Yean,  Sa) T8 PN, 35y
607 voolu, 32¢ vb} 1=y, 341 719 210, 559
008 59110, Y22 LY Jaeda, 342 720 2au0, 359
»09 S38%, 5¢5 tEnsS 7889, S« 12y 1éve, §59
slu 3%ug0,. $2¢ ene 1081, Sa2 ree 102, 359
611 15090, 24 CLY) a0, sap 723 clun, 389
ol 800, 24 CLL) 9530, 343% Tl sow, 59
sl 35523, 2% HhG h, Suy 125 1os9a, 359
LR 1aa0u, $25 sl0 LICE PP T § 126 cany, 35S
81s S2uas, e L34 ] I8y, 3aj} lel? ¢evn, 359
slo 158752, sen ole YRe2, Say 724 RIS, 8959

i= fault number, ti= execution

time, df= day of failure

d i . d
k t 4 5 i
129 14205, 59 a% Sant sy, Sve
%20 18y, 5959 14e sienha, 498
5 2520, ¥y Tal Te%g, §v§
152 1PeEva, ) Inn AneSy,  3ve
s 12448,  In a9 asung, :95
73« cdunsS, 82 Su Sinue, 89S
155 6in, &2 %1 119c52., 399
13¢ Jel, ool 19¢ Sdads, 00
157 093y, §~2 s I L |
158 1195, =2 Tea te"ye, <u2
139 oifiun, sn}l s 1Hlaned,  «0S
Tav e, 3a3 Tve 157278, w09,
Tal 2n98, &) 197 14700, @uv
T2 IETA T T § 19 S528, wwuy
Tus $719¢, a4 199 15vvs2, <12
Tuw LHea2, Yoy L) 15400, 4«le
Tas FARE LN int =21 ¥ 130y, wlw
Tas susT, joe noe SnSsu, &1
Tar 2n52n,  3sn sul 1ulgey, «de
Tuw §5393, a7 B 1320, wge
Tas 15716, 3o@ nusS ovly, wcu
50 funsa, Son LRI aenl, ale
%51 BySur, 3o su? whe, wla
15¢ 1ilod, ATu L by, <24
5% tviod, SN LR n, w«ls
754 119272, 513 LI 1152, eeéa
5% 512% . 37a ol j2uen, «2a
756 54557, 1S bie Govle, Q¢
57 Tayr. 371S L1B} Than, «de
i5e 213, s ale Séuno, 27
% Zulez, sle eSS 2. @27
180 9890, A7 sie Juse, <21
Tot aSi1e, 3tie ey 2ndin, w27}
782 o433, sle LI 9., «?
763 195¢84e, VIV el9 $5a, 027
Tea SThon, S=y s20 Suilss, a2e
78S ees2, 3M #el 3216,  wdn
Toe Tasy, 3sn Be2 14le, &2o
sl 280, My LES | Pian,  w2»
Ths aren,  sPy Ll Snua, wls
Ihs “is, In "es dasd,  ues
ire 1517, My Lr Y Saga, agv
m Tesl. 3§81 827 arers, aso
Tre eens,. At see 9405, @M
s 1833, My 529 s7ea. %)
a FURLE T 1] L3 20 Siemd, <32
s PETE IR sr2 LE}} 15088, al¢
170 S6o3d, 368

m BUSY, 3N

718 1232, W4

ire Sedu’. IS

130 Sale. 45

181 12%221. %}

182 129623, W

T} 52951, vy

LT Ivae. 1

9









tion time,










aJn|ies jo Aep u.pv .m&ﬁ:o_u:umxm u.J ....un:.:c::ou

*ee2e92 019 ‘096 2% Svs  ‘ooeSs? oog nos  Ctoniezs
*ngleil 019 ‘*o09s2e (141 s Comiesl 662 08 0282+
*00y%2 109 *esgg (741 eSS ‘o2nyivd g8 ger  “Owew?
*omi2? . 109 “o0o24s5t [ L41 1eg  *onsg2s ie? 9tn  ‘Onpthept
*eefi2 09 “oo0el2 12% ofsS ‘009 S62 Sep C0angn?
‘00015 n09 “OD@svve 0es pES  ‘ome2 2en  C099(wn
‘oneg2t LeS "0nsone (2 51 LIS R B agn ‘uleil
‘oeens vas  ‘oouw2l wit 186  “uZageg Sen  *o20neg
*agesr? 2¢S  toeanef Ls 125 ‘oet fone  "02%%r
*oe129 9IS “ommi 91y 25 ‘*ep2191 2en  *09sy
‘reliel 9Us to2e (451 128  "e21s Zen  "0alsy?
*emoly S to9sg?e vif 92¢  *e2yhis elr 00222
‘0251 s tomn22y f1s Y5 tomas Siw  “Oye
‘orss? 196 ‘091202 FA%1 1S ‘udus St “hel
tegw2 85S  "092%¢ s IS “eRnyt Ser tapl
*reel 1SS  ‘09sg12 ols SIS *opt0% Sin  “0ghoto
feerds »SS  tosantd 60§ *henGy 0ty “Doag?
*u2ss 26 “099s!t LAY *09<st e taannsy
*0ses? 26  ‘Orone {08 tang2 nan  *092(%
*pagent 15§  ‘onge ens *oroset fqp  *o9rifl
"rosee 1SS "0a004 so% *noomt CL U L TR R
*oeresS 08S  *02s10n *nogen? nsn  ‘ORfllS
fomeg il ens  ‘oRfts ‘reaeg LU LT
‘oerey UL LS 1 | *n99ang (rr *nhoew?
*p2aenl Ges  Coplge ‘02wt ten  *hegy

L
2 ‘p ' !

3 2 p N

(p,3u0)) 2,8 298]




aunjiey jo Aep ='p ‘3wl uoiIndexa ='3  ‘uaqunu ines =1

asy  ‘nralfl 022 081 *pelsly w9l § * .

£SEf “o2ssll §see nal “0esey 31 un“ .nnn"a w"" wu .w~o~m 5+

PEE  “n2agr 22?2 £81  “Gunge s9l 121 *o2we2 ot savres o

.cnwwM. u~w neg  Conoss 122 vl *oe2iy s91 121 ‘0021 s01 nu .“uumw "M
¢ an§  Conng ne? 681 *Aggat el 0 .

”"um"u_ "nw mfn “peedll 812 0et  te2ig1t f9l HM" .emw_ Mn" N" .wnwux mm
: “Rf  COPPSw w2 6L C099¢n 291 S *

.aea_a~ 12 opf  “Oves? e LI} .o-qw_ 191 “M“ .“uuh_. “”” - ey -

.o.-~ 212 fof  ‘oereff e el tosg02 0yl @2t *a2t ot ”- .aoo -

.uu”M,. "“n MnM .oxaw"“ s12 sV tagn 51 821 “h¥ewe fet m" ."uwum wu
J (3 “eRo 12 Bl taesgy w51 S21  ‘ne2iwl 201 %

09859 LXT4 eff  tag2usy f12 Ly *oens2? 51 £21 ‘o @c . i . 4 4
MLITEA! we2 wEE tonis 21¢ £L1 Coaus 951 ] e s 4 o e -
‘eenfnt 92 858 02 1 fel “o908§ 551 ATERE -t - “oo~.a .
“ aus 92 “0ree? 012 i1 "tQ2ese nst ”““ .Mw“““a "n ot .ooom~ 2
. LT se2 T4l s02 W1 o248 51 £t " is "M .Muka.- i
.ooonvn 8o “oete w02 Sel  *azcg2 251 §11 “oe e 5% .oeuow. o
.uo-._ fer ‘oestfl Lo Se1  *as21g st 11 ‘ootew <o ’ - e
gt 292 *onctat ez S8l *@sssin 051 211 “ogol v v S op e
.“”an. MNM .No“o—w so? 681 “anineg enl 211 “uosne? n" uM .""“MM. "M

Tomizeg 0a2 w51 “omags wnt ®01  “oesge 26 .
6s2? *oeett f02 8s1  *a2e2r2 inl Lol *ge2cs 1 - .oc~1o 5
852 02121 202 §s1 “ools LA 101 *oeduel ao -+ .s-¢o -
152 ‘02522 102 §51  *02esst sol §01 “oou52 . po- sdetas -
LAT4 "0919s oe? 51 695 enl for  *es = -+ .o-.oa i
852 ‘orsoy LT} 251 towi2i i L Al fo01 .e'ﬂ~ i o . .oa_.ow -
»52 *omot el 251 ‘o0eqenml 2ol tos * ah = 5 R rbiay -
52 ‘ovoetol Ty 051 tomi2y1 ol LTS .~h" 3 e < -1t .8
44 *o0sLns Ssl LLE B TN | onl 9 .Mano- 4 o “aoe- o
12 ‘er1s29 Set (vl “o9ese 651 S Ll H 4 o oty i
ne2 *oangnl el el “onwng w5l Rty - -+ ”o~aow o
™ 60?2 LLLTY] fal Sel “omv2ot hu. “n .wuuwu~ mu . .oo.a- by
. @ wn2 ‘285089 281 pel  ‘Om0G0f e5 1 Sw foessy [ - .so.ns =
in? ‘Qrocii tel fsl “ons sf1 b “tesl »n 4 .awew-_ 4
LT *fQoics ost 0el  ‘*o2» LN} ve ‘onstew - s .aaewu 44
g otooda b -5 4 - it - atae €l i .avyho_ 22
"2 “outs? oot onl  ‘ong 251 ot AR o - S i '
LD ‘eanag 181 ort *ors %1 69 *owi ; . . .oo- o
ﬂ"w .“wo>.. Gul oel  “osy1e ngt 1] ‘oete w“ w .uw:mu "“
“0P¢er wl el Cosys - Syp
a2 ‘or=ols ewl b5l .aouc_ "w“ ”u .MHMM~_ Mh - .ns¢¢ .
"n~ ”evc~a~ ful a5t “onfefl 21 5% AT -n u .eoooo .
LTI .0 _oeso0l 2el (51 “omog2y w21 89 *Qeustl ot .,rmeo -+
= 52 212 *02s¢s 1ol 951 “asnin 21 29  "g0%+s 3 e A
.o~cao. eg2 112 *woies L vil te222 r21 29 B - ot s v -
e NS, 012 “oneeer eyl "l to2ng 2t A g - *  0o@e? 21
.”“o- LI T4 §n2  “onegsn TRl ofl  “huse2 221 19 .::wnv uu g ”oo.w o
s 52 TR toww2 Gt PEl  “on0e9 121 0% "okezs? [ . M-+ -4
"age s §02  “nazeed et F€1 “aogge 021 S coeigly + - - o s
Pl 54 N2 oens) st SET "oetee o1t 'S “ezes te .. g
ar pird oAl Coxinit  w2) IS1 “feng? it §8  esize A : s 3 -
.nuu~ (44 Sel  Copeing 11 og1 “asgeit Iy 2% .:s"wo 4 : “az.._ g
! (4 Ll4d Sal  “Ooese 2 6Et  *02e 1 2% . N - o144 -
T0ey (22 Sal  “nogal e 851 “sey €t i .ma”c” 09 2 ”ann.. »
oo .unﬂu 2 Mww ”n“ .auaun ot 01 “*ogs sit ng .:uan ”N w .WMMWQ w
v “H25al .
a1 evl o5t d0st (11 s “or2 s i *00eg 1
L L L L L L
: L i L
p h ‘ p " p h 1 b K L T {

BSNW "0 "[ 30 J1SS 38§

e1eQ a4njtej €1°g 9|qe}






85

3Jn|Les jo Aep u_v ‘awty

uoL3INd3AXI n_a ‘Jaqunu j|nej =1

Zer  *oanpip? n2? 028 ‘owene wel 222 ‘ovSens 21 201 “onifin LT3
S9r  *aveisg §22 sif  “owsoe 51 S12 “oeois i *oee2? ss
159 *oueiok 724 090 *00S3s elf  “o0lipsrk 991l S1e  "oudegi ol *oow2e
59 0%l e oSt “anijdg S1f ‘09992 591 012 *oey ‘ooRie
#89  Coli22s ez 20 CorZgsit #if  “owoyve LT 012 “oniss) *onfefy
189 *ole se fir ‘*ovog vol LA 191 @02 “o09wWose (o1 L
159 “oqi nie ti0 “ouSaiy fos oot 202  “owi 901 ‘o222
189 *02y%iir fee f2v  “oge2enl ted “ovg 202 “Owil0y sol *ons
909 "0ESyes! 22 T LI ted v 202 wi eol “oyr
19 ‘owlaer e 600 *r2upig {e? oel 202 026e5% fol “oacEvo
29 ‘*025oe oee Soe  "neSghn led “owi Sel "usia 2ot NIil]
(TA R TTIED a9 sef  "newa? te?  “owiiel oetl ‘orag '] T TS (Y
(29 “oelpat w2 tel  ?oneed 282 “o¥Syet oVt ool (T}
£29 “oe22%¢ 192 ¥sf  ‘en2y iwd “oveie owleng TS polule i
29 0909 982 Ywe ‘o9 5 e *o0elL9e v
IR TTY 3 9 98¢  “oung *0o0Real is ‘02f02% e
Q9 095N LTS 92 ‘09540 *omiiy 9 *ogre% o
20%  “oewmind (14 $e?  “our oione Ss ‘02se (34
o85S *o0gsol 29¢ egd  “p02901 *oue ve *o2rs 1Y
(TS TITTE Y 192 82 “o014% *00tsg fs oiol i
$a%  “0%igr 092 182 “o9%sv2¢ 02wy 20 02l 9
$8% ‘oe2d 52 242 A TEY Ie esf 15 £1%
95  Coist e e Os ‘osda 111
SS9  ‘ogiey 152 99 Y] “oeve9 it
LS 09fwer e o o e OuveSL 41
oS "oS0le $5¢ 592 i *nzee 111
9%  CoN1eS 05 Se¢ Sy Gugws of
(9% ‘om2su 152 (114 Sw “ooiow 62
995 01082 282 ive LT ‘o021 w2
9%9s  “ofog2! 152 29¢ ie 09i0w L2
"9S “DUeS: 0se 394 2% *029%in 92
95  *05ei2 114 0s¢ *0099n2 g *nosie 52
£9% o251y UL (114 ‘owion 0w “ogr (T4
€95  “Qonvesv 2 e ‘e9role (Y “roeesSe §2
455  *00sieS L1} wod ‘o2v LT *os024 22
188 *oelil sw2 e ‘owess i 0ot 12
188 *0lec2¢ LT (114 “ovveil v ‘092 22
68S  “Dede §e2 sne "0rSess Se ‘ot (Y]
erS  “Deeion 22 088 *peogst fnd ‘02 LT “0ge el
oS 0oy In2 el Coyeia 2pe *o0% ¥ ookl o
$eS  Cowsu9l oe2 vk tnpsis ene *09s21 2L ‘021 L 1]
eSS  “0%9%10w 114 Sef  “o2isly Zne “oowoy 1 1 “on2 s
1% “On2eld Wiz lef fosiow T4 oel [ NI el
0ESs  "o0eg218 e Opd  TPp@w w2 ogeyge (1] 3 ‘ose £
25 “o%e e off  “e2izen wie “owl Ve ® TS 21
£28 *o20) (374 9Kt “n92 i8¢ “oely 9 'y ‘ogisl i
£25 ‘Ompics ni? GiE towsSid a5 M T1Y 9% & “oewor 01
9IS ‘Omeved (214 SiE Trg0y 95 ¢ Iol “0C0feiw 59 . “oewyt &
§18  ‘ovgio? 21¢ s “toe 942 0§l “0usee? vy v "o2uiis v
805 ‘Odusyinr we 9fL  “ouye 952 el 21 tosipy i ® *ooine I
Sus  to0gge2e 04 e Teguoe2 LIY4 Wil g2l “eing 29 £ *aciqe a
205  *oue 622 fff “ooioe §i¢ (i 921 togl e i *0ge 3
205 ‘*omee wee eis reg22ig Y44 et 621 *0n%yng 09 i “ogwh v
20% *0oskne e wiLr  *fgesis Y43 S1t il toc¢cugs 39 4 ‘oet f
105 *0009% 922 02i  “ers 2¢e LR 11l ‘oevesy ws e ‘o221 2
0esS  ‘emeles S22 628 “oew eee fin ol “i1oeuss is 4 “apri0y 1
L
b K t b N { bk ' L { b K

BSAW ‘0 [ 40 £5S 335 ®IRQ BUn||e4

SL°8 9(qe}



aJanirej jo0 Aep upu ‘WLl uoLINIAX3 u*u ‘Jaqunu j|nej =1

liv 02952 091 0sf  “erifis 0z 2 “ouiet 0y 12t 192089 op

*0esSids 85! fet  ‘po2e el 382 “owingl (Y el (11

rewa @sl 2ol *0%eiid Wil £52 “ogivg i el ek

%0 *oul23 51 s ologly it 252  "0%dse? it 1L I3

*ow2sre sl 951 o628 “omefis S 822 “e2ei1s L7 pil 9
0noee Sel $51 §2%  “oViswt St S22 “ouSene St 1t st
*0290001 ool (3] 2¢i “odoaye LEY 222 "ol (X3 LEL) (11
*05259 sl st o1t “oleiis £ 222 “ocvose ¢ el it
28l 251 YIS T LT it 912 *02ing 2y ¢ol “ogwi 2%

Isi 151 10f  “origll (3R} S12  “%isSes I 00t *r2vo%s 15

ool o5t So0b to¥ oLl 202 *099%2¢v 0L be (14
'Th 3! 908 “owiyeS 01 TSR T4 41 b 82
wel ol “0%i5e 8ot 0el ‘0ewse2 X w2
el Jin *ep22eg ol “owe2s tet  “owis ' L2
wl sie  *0di{ 9ol “o0rgse (et “ogreos '3 92
swl pin  *00lge sel 099 el “ec208s 1] St 52
*ooge¢tl vel 2in  ‘ogl roi LT T4 S oot gl Co9®Ze 3 Se LT4
*p2oiss T 2iv  “egls (13 wid “owvgile fol 99l *o¢vi is LT §2
‘0950 24l i *oaeve 2nt fe¢2 “eioi 2ot 991 *9iis§e 4] (XY 22
*oagead el Ite  *090p5% int 12 *edgs '} £91  “o%elniy 19 5 12
AT owi o1n *n2t (T3 992  “owis ool 281 “ocnsi 09 15 ne
P2l sl eir  “owiple el 992 “o9e2es2 1Y 291 “oveivel (19 0s b1
09692 Wt Soe  ‘one wil £92 “00s9 e 091 “o0ns vs 0s 91
*d01es Ty S$o0r  *eyr (51 £9¢ “o®aie te 09l  toc¢ig {5 sn '
LTI Ll Sor  *om2 18 ¥52  T09ugse Se 091  “9sVaif 95 9r el
sl Sur  *aid Sil £5¢ “Se0p9s $s 951 ‘ol S5 Se 51

(7Y Sor "ot vt 052 “pelw by S50 “0%iise ©s Se L]

it S0 “oedido! it 0s¢  “owsze ie enl  “o0si:iy} 1 19 L1 i1

2 ies  “erusdl 2% 052 “ovess 2o sptl Con025) 2s Wi 21

1wl fst  Teasge2:t 1M1 erd  “owey s 9p1  “o0f§ s 0§ 1

oLl Lt “opvs nil esd  ‘oriuls Ce 9l "02Ssfs 0s og 01

a9l et Cooe s21 ¥id  “owl be enl  “vesSes e ¥l s

wel Lif "osigag T4 €8¢ “trgoe vy el *020.% UL T4 )

9t 2i8  *o0evs T4 1§¢ ‘o9 ) Isl  *0%ign in &2 L

991 14§ *oglp2 921 i “olows %9 ont ‘090 g1 Sg 6! s

Svi s “ogsasd s21 9¢  “owdy Sv @il Towr Se - s

el el “oofany [T 9 “o0iw vy wE1 “o02e vy Il "

iV eS%i  "0es222 §21 95¢  Tove i ¥il oo fe { f

29 9%y “eowii2d rId 952  ‘ov20r 2w #E1 “origne 2e ] ?

*Ouivrl 19 058 “e22¢ 1t $i¢ “olrg 1) 21 “ocel e v 1

L L L L L
LIRS ¢ b 4 L b N ¢ v h t P t

esny ‘0 " 30 $SS 335 °3eQ I4njiey g|'F 3I|qe]




87

Appendix C
Statistical Analysis Systems

The BMDP biomedical computer program is a system developed at UCLA to provide
an easily used set of statistical algorithms [C.1]. Its various modules deal
with such topics as:

1. Data screening and description;
2. analysis of variance;

3. regression; and

4. multivariate analysis.

Two modules from the BMDP system were utilized to fit the fault discovery ard
fault probability expressions introduced in Section 3.

PAR Derivative-free Nonlinear Reqression: PAR computes least square esti-
mates of parameters in nonlinear regression. The program is used with regres-
sion functions for which analytical expressions for the derivatives are not
provided. An iterative pseudo-Gauss-Newton algorithm is used to compute the
parameter estimates. Case weights and inequality constraints on arbitrary
linear combinations of parameters can be specified and parameters can be held
fixed at initial values. Parameters can also be estimated by maximum )ikeli-
hood.

In general, this program minimizes the weighted residual sum of squares

n

RSS = _z1wi[yi-f(s1,p)]? (1)
‘.

subject to linear constraints
cg(p) = bz]pI +...+ b

tmPm " bl =0 (2)

where
$; = set of t independent variables (*11'“12'--"’1t) for the ith case,
u; = dependent variable for the ith case,
Wi = weight for the ith case,
n = set of nonzero weighted cases used,
p = set of m parameters (p]....,pm).
f = function to fit.

Step 1

The constraints (if any) are solved in terms of my(<k,<m) of the parameters.
For simplicity of notation we assume that these m parameters are p]....,pm .
1

-
Py ® 351 DygPy * By - i

Redundant constraints are ignored.



Step 2

The solution to the least squares problem is obtained through iterations,
described in Steps 2-7. At each iteration the model is linearized at the
previous value of p = (pl.....pm) to

m

y. = I (p.) + € 4

Y5 o 2;5(p5) *+ & (4)
where the p.'s are the parameter values to be estimated.

;i ol i f(xiop) (5)
and

af(x;,p)
2, = ——— (6)
iJ apj

j=1l,....,m

[f there are any linear equality constraints,

m
-~ m 3f(xitp) 1
Yi = ¥~flxgep) + L ——5— [Py = I b py-b,] (7)
p=my+1 L J=1
and
af(x;p) m af(x,,p) i
Z:: ¥ ———m— #+ L b, -
i i p=m, +1 S
J = 1....,m1
Step 3
The program forms the matrix
A
All 12
e (9)
Az Az

(stored in lower triangular form) where All ismxm, A12 = A?l ismx 1, and
Ay is 1 x 1, with elements

n
azj = iilwiziizij (10)
where
Lyl = Y4

If there are linear constraints, m becomes m.



ial ,1‘[.; w1 th 'U' matrix inversion, .j)d!;()’id‘
“;' ,': q De the

n 1n a stepwise manner,
the pivot element one that

ep the naex
ich '5(‘?

and r has been used previously

the ?()]o'v‘l_— nce.

. : | 1 -
the juared muitiple correlat

variable:

value such that maximun
]

|f there are 1nNear

the new

the p; are

{

1terations are
1S reached




90

After each iteration the parameter values and residual sum of squares are
printed. After the last iteration the program reports the asymptotic cor-
relations and standard deviations for the estimated parameters. For each
case after the last iteration, PAR lists the predicted and observed values
versus selected variable values, residuals versus selected variables, and
normal and detrended normal probability plots of residuals can be requested.

PIR Muitiple Linear Regression: PIR computes a multiple linear regression

equation on all data ang on groups or subsets of the data; equations with or
without an intercept can be chosen. If a grouping variable is specified to

form groups, homogeneity of regression coefficients across groups is tested.
It is also possible to specify case weights.

In general the following steps are followed in PlR:
Step 1

The weighted means and covariance matrix (c) are computed. Actual minimums
and maximums for each variable are also determined.

: iwzxiz ;wz(xia'xi)(sz'xj)
X" Tw e © n-1% w (15)
R " n o ¥
where
n = number of nonzero weighted cases to be used,
o, . weight for case 2
Xj, = value of the ith independent variable for case 1.
Step 2
After all data have been read, the standard deviations are computed,

S = /(-:_1-1 . (16)

i
The means, standard deviations, minimums and maximums, and (if requested) the
correlation and/or covariance matrices are printed.

Step 3

The regression intercept and coefficients are estimated. The general form
of the equation is

P + blxlﬂ + bzle oo ¥ quq2 (17)
where
y = the dependent variable = Xqs
a = the intercept,

independent variable,
regression coefficient,

q = the number of independent variables used.

T x
" "



91

pefficients are determined by stepwise pivoting the covariance
is piveied whose squared multiple correclation with pre-
exceeds 1 - tolerance.

ach regression coeifficient (b, ) are computed

requested group the output includes mean, standard

-
and maximums, multiple R, and standard error of estimates

an analysis of variance table consisting of regression and

s, degrees of freedom and mean squares; F statistic and

equation; and the regression coefficients,
» L1 C and probabilities, The covariance ov

, normal and detrended normal robability

residual Vlu’u, residua s bred rted values

CAast

Brown, ed,, BMDP-79 Bio-medical Ccmputer Proqrams

'
' 3 ',l‘w.'.’{;ff‘;’, r‘r(.vo' {7"'—&'.‘(./' ”}"‘..




g2

Distribution for NUREG/CR-2186 (ANi-81-84)

Internal:

€. 5. Beckjord H. Komoriya

c. E. Tin E. E. Morris

R. Avery C. J. Mueller (30)
J. F. Marchaterre G. Ridges

A. J. Goldman ANL Patent Dept.
L. W. Deitrich ANL Contract File
D. Rose ANL Libraries

D. P. Weber TIS Files (6)
External:

NRC Washington, for distribution per RG and XA (300)
Manager, Chicago Operations Office, DOE
DOE-TIC (2,
President, Argonne Universities Association
Reactor Analysis and Safety Division Review Committee:
W. P. Chernock, Combustion Engineering, Inc., 1000 Prospect Hill Road,
Windsor, Conn. 06095
C. Hebel, Xerox Corp., 3333 Coyote Hill Road, Palo Alto, Calif. 94304
Kerr, U. of Michigan, Ann Arbor, Mich. 48105
Levine, NUS Corp., 4 Research Place, Rockville, Md. 2085C
Levy, S. Levy, Inc., 1501 S. Bascom Ave., Campbeil, Calif. 950n8
H. Pigfard, U. of California, Barkeley, Calif. 94720
J. Taylor, Electric Power Research Inst., P. 0. Box 104i2, Palo Alto,
Cali®. 94303

v unETT



NS #GT




