NUREG/CR-2525, Vol. 6 ORNL/NUREG/TM-407/V6

ORNL Rod Bundle Heat Transfer Test Data

Volume 6. Thermal-Hydraulic Test Facil: Experimental Data Report for Test 3.05.5B—Double-Ended Cold-Leg Break Simulation

C. B. Mullins	S. S. Gould
D. K. Felde	D. G. Morris
A. G. Sutton	J. J. Robinson
K. N. Schv	vinkendorf

Prepared for the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Under Interagency Agreements DOE 40-551-75 and 40-552-75.

OPERATED BY UNION CARBIDE CORPORATION FOR THE UNITED STATES

ornl

RIDGE NATIONAL LABORATORY

UNION

OAK

8209270427 820731 PDR NUREG CR-2525 R PDR Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161

Available from

GPO Sales Program Division of Technical Information and Document Control U.S. Nuclear Regulatory Commission Washington, D.C. 20555

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

NUREG/CR-2525, Vol. 6 ORNL/NUREG/TM-407/V6 Dist. Category R2

Contract No. W-7405-eng-26

Engineering Technology Division

.

*

.

100

ORNL ROD BUNDLE HEAT TRANSFER TEST DATA

VOLUME 6. THERMAL-HYDRAULIC TEST FACILITY EXPERIMENTAL DATA REPORT FOR TEST 3.05.5B - DOUBLE-ENDED COLD-LEG BREAK SIMULATION

С.	В.	Mullins	S.	S.	Gould
D.	K.	Felde	D.	G.	Morris
Α.	G.	Sutton	J.	J.	Robinson
		K. N. Schw	ink	ende	orf

Manuscript Completed - May 18, 1982 Date Published - June 1982

Prepared for the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Under Interagency Agreeements DOE 40-551-75 and 40-552-75

NRC FIN No. B0125

Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY

CONTENTS

iii

and a start

· ·

100

LIST OF FIGURES	v
ACKNOWLZDGMENTS	ir
ABSTRACT	1
1. INTRODUCTION	1
2. THERMAL-HYDRAULIC TEST FACILITY DESCRIPTION	2
3. DATA PRESENTATION	10
REFERENCES	113
APPENDIX A. TEST PHENOMENOLOGY	115
APPENDIX B. MASS FLUX CALCULATIONS	117
APPENDIX C. ROD POWERS	149
APPENDIX D. INSTRUMENT UNCERTAINTY ANALYSIS FOR THE THIF LOOP	181
APPENDIX E. DENSITY OBTAINED FROM THREE-BEAM DENSITOMETER	227

.

LIST OF FIGURES

Figure

1. C. S.

31

1	THTF system with instrumented spool pieces labeled 3	
2	Identification of THTF heater rods, subchannel loca- tion, and inactive rods in THTF heater bundle	
3	Cross section of a typical fuel rod simulator 4	
4	Axial location of spacer grids and fuel rod simula- tor thermocouples	
5	Diagram of THTF 6	
6	Positions of differential pressure and pressure in- strumentation for THTF Test 3.05.5B	
7	THTF instrumentation diagram 8	
B.1	Mass flux vs time at BI1 site using TBM-GAM 3 model 118	
B.2	Mass flux vs time at BI1 site using TBM-DD model 118	
B.3	Mass flux vs time at BI1 site using DD-GAM 3 model 119	
E.4	Mass flux vs time at BO1 site using TBM-GAM 3 model 119	
B.5	Mass flux vs time at BO1 site using TBM-GAM model 120	
B.6	Mess flux vs time at BO1 site using TBM-DD model 120	
B.7	Mass flux vs time at BO1 site using DD-GAM 3 model 121	
B.8	Mass flux vs time at BO1 site using DD-GAM model 121	
B.9	Mass flux vs time at BI2 site using DD-GAM 3 model 122	
B.10	Mass flux vs time at BI2 site using TBM-DD model 122	
B.11	Mass flux vs time at BI2 site using DD-GAM 3 mcdel 123	
B.12	Mass flux vs time at SVI site using TBM-GAM model 123	
B.13	Mass flux vs time at SVI site using TBM-DD model 124	
E.14	Mass flux vs time at SVI site using DD-GAM model 124	
3.1.5	Mass flux vs time at SHI site using TBM-GAM model 125	
B.16	Mass flux vs time at SHI site using TBM-DD model 125	
B.17	Mass flux vs time at SHI site using DD-GAM model 126	
8.18	Mass flux vs time at SVO site using TBM-GAM model 126	
B.19	M ss flux vs time at SVO site using TBM-DD model 127	
B.20	Mass flux vs time at SVO site using DD-GAM model 127	
B.21	Mass flux vs time at SHO site using TBM-GAM model 128	
B.22	Mass flux vs time at SHO site using TBM-DD model 128	

Figure

۴.

·@!

4

B.23	Mass flux vs time at SHO site using DD-GAM model	129
B.24	Diagram showing uniform density regions used in an- nular model for reduction of three-beam densitometer data	130
B.25	Comparison of mass flux models vs pressure at the B01 spool piece	133
B.26	Comparison of mass flux models vs equilibrium quality at the BO1 spool piece	133
B.27	Comparison of mass flux models vs inlet mass flux at the BO1 spool piece	134
B.28	Comparison of turbine meter — densitometer model using single-beam and three-beam densitometers at the BO1 spool piece	124
B.29	Comparison of the drag disk - densitometer model using single-beam and three-beam densitometers at the BO1	134
B.30	Comparison of mass flux models vs equilibrium quality	135
B.31	Comparison of mass flux models vs equilibrium quality at the SHO spool piece	130
B.32	Mass flux comparison of the transient and homogeneous models for Test 3.06.6B	140
B.33	Effect of the correlation coefficient, C , on mass flux for Test 3.06.6B	141
B.34	Mass flux comparison of the transient and homogeneous models for Test 3.05.5B	142
B.35	Effect of slip ratio on mass flux for Test 3.05.5B	143
B.36	Relationship between the input and output parameters of the transient model for Test 3.05.5B	144
C.1	Rod power vs time for rod 1	149
C.2	Rod power vs time for rod 2	150
C.3	Rod power vs time for rod 3	150
C.4	Rod power vs time for rod 4	151
C.5	Rod power vs time for rod 5	151
C.6	Rod power vs time for rod 6	152
C.7	Rod power vs time for rod 7	152
C.8	Rod power vs time for rod 8	153
C.9	Rod power vs time for rod 9	153

vi

Page

٠

.

 \mathcal{L}_{t}

10

.

.

.

.

Å

vii

Figure

C.10	Rod	power	vs	time	for	rod	10	 154
C.11	Rod	power	vs	time	for	rod	11	 154
C.12	Rod	power	vs	time	for	rod	12	 155
C.13	Rod	power	vs	time	for	rod	13	 155
C.14	Rod	power	vs	time	for	rod	14	 156
C.15	Rod	power	vs	time	for	rod	15	 156
C.16	Rođ	power	vs	time	for	rod	16	 157
C.17	Rod	power	vs	time	for	rod	17	 157
C.18	Rod	power	vs	time	for	rod	18	 158
C.19	Rod	power	vs	time	for	rod	20	 158
C.20	Rod	power	vs	time	for	rod	21	 159
C.21	Rod	power	vs	time	for	rod	23	 159
C.22	Rod	power	vs	time	for	rod	24	 160
C.23	Rod	power	vs	time	for	rod	25	 160
C.24	Rod	power	vs	time	for	rod	25	 161
C.25	Rod	power	v s	time	for	roá	27	 161
C.26	Rođ	power	vs	time	for	rod	28	 162
C.27	Rod	power	v s	time	for	rod	29	 162
C.28	Rod	power	vs	time	for	rod	30	 163
C.29	Rod	power	vs	time	for	rod	31	 163
C.30	Rođ	power	vs	time	for	rod	32	 164
C.31	Rod	power	vs	time	for	rod	33	 164
C.32	Rod	power	v s	time	for	rod	34	 165
C.33	Rođ	power	vs	time	for	rod	35	 165
C.34	Rod	power	vs	time	for	rod	37	 166
C.35	Rod	power	vs	time	ior	rod	38	 166
C.36	Rođ	power	vs	time	for	rod	39	 167
C.37	Rođ	power	vs	time	for	rod	40	 167
C.38	Rođ	power	vs	time	for	rod	41	 168
C.39	Rod	power	v s	time	for	rod	42	 168
C.40	Rod	power	vs	time	for	rod	43	 169
C.41	Rod	power	vs	time	for	rod	44	 169
C.42	Rod	power	vs	time	for	rod	45	170

Page

Figure

C.43 Rod power vs time for rod 47 170 C.44 Rod power vs time for rod 48 171 C.45 Rod power vs time for rod 49 171 C.46 Rod power vs time for rod 50 172 Rod power vs time for rod 51 C.47 172 Rod power vs time for rod 52 C.48 173 C.49 Rod power vs time for rod 53 173 C.50 Rod power vs time for rod 54 174 C.51 Rod power vs time for rod 55 174 C.52 Rod power vs time for rod 56 175 C.53 Rod power vs time for rod 57 175 C.54 Rod power vs time for rod 58 176 Rod power vs time for rod 59 C.55 176 C.56 Rod power vs time for rod 60 177 C.57 Rod power vs time for rod 61 177 C.58 Rod power vs time for rod 62 178 C.59 Rod power vs time for rod 63 178 C.60 Rod power vs time for rod 64 179 D.1 Amplifier 183 D.2 Generalized form for a large system 187 Error due to turbine linearity: characteristic D.3 189 CUTVE D.4 Typical densitometer calibration 192 197 D.5 Sensitivity calibration 197 D.6 Zero offse calibration PDE-200 ortput from Test 101 D.7 198 Rod power schematic 201 D.8 Instrument reading as a function of response time D.9 assuming first-order lag 204 Instrument error as a function of DAS sampling D.10 assuming first-order lag 205 Test 3.05.5B double-ended cold-leg break simulation E.1 227 . . . Test 3.05.5B double-ended cold-leg break simulation E.2 228 ...

Page

ACKNOWLEDGMENTS

In the conduct of a large experimental and analytical program, there are always a great many individuals whose contributions should be recognized. The dedicated efforts of the entire Blowdown Heat Transfer Program staff are reflected in this report. The authors express sincere appreciation to the following personnel:

M. C. Adair
T. M. Anklam
J. L. Bartley
D. H. Cook
W. G. Craddick
R. D. Dabbs
R. L. Durall
R. M. Flanders
D. J. Fraysier
R. H. Greene
R. C. Hagar

ø

-

D. F. Hunt C. R. Hyman A. F. Johnson R. W. McCulloch D. G. Madewell G. S. Mailen R. W. Murphy L. J. Ott H. R. Payne W. Ragan, Jr. N. R. Raulston R. D. Stulting J. W. Teague, Jr. R. E. Textor M. S. Thompson H. E. Trammell B. J. Veazie J. D. White M. D. White J. E. Wolfe G. L. Yoder

ORNL ROD BUNDLE HEAT TRANSFER TEST DATA

VOLUME 6. THERMAL-HYDRAULIC TEST FACILITY EXPERIMENTAL DATA REPORT FOR TEST 3.05.5B - DOUBLE-ENDED COLD-LEG BREAK SIMULATICN

c.	В.	Mulli	ins	S.	S.	Gould
D.	K.	Felde		D.	G.	Morris
Α.	G.	Sutto	n	J.	J.	Robinson
		K. N.	Schw	inke	nde	orf

ABSTRACT

Thermal-Hydraulic Test Facility (THTF) Test 3.05.5B was conducted by members of the Oak Ridge National Laboratory (ORNL) Pressurized-Water Reactor (PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on July 3, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents.

Test 3.05.5B was designed to provide transient thermalhydraulics data in rod bundle geometry under reactor accidenttype conditions. Reduced instrument responses are presented. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

1. INTRODUCTION

The Oak Ridge National Laboratory (ORNL) Pressurized-Water Reactor (PWR) Blowdown Heat Transfer (BDHT) Program is studying several aspects of heat transfer thought to occur in accident situations in PWRs, including dispersed flow film boiling. The study involves experimental as well as analytical efforts. This report presents reduced instrument responses obtained during Test 3.05.5B in the Thermal-Hydraulic Test Facility (THTF). Test 3.05.5B data are analyzed in Ref. 1.

đ

2. THERMAL-HYDRAULIC TEST FACILITY DESCRIPTION

The THTF is a heavily instrumented, non-nuclear pressurized-water loop (Fig. 1) containing 64 full-length rods (of which 60 are electrically heated) arranged in an 8 x 8 bundle. Rod diameter and pitch are typical of a PWR with 17 x 17 fuel assemblies. Figure 2 is a schematic diagram of the THTF rod bundle cross section. Figure 3 shows a simplified cross section of a typical fuel rod simulator. Note that at each axial location where a rod has thermocouples (T/C), there are three individual thermocouples spaced azimuthally around the rod. The axial and radial power profile of the THTF bundle is flat. The axial locations of fuel rod simulator thermocouples are shown schematically in Fig. 4. The heated length of the bundle is 3.66 m (12 ft), and there are six spacer grids in the heated length.

Figure 5 is a simplified diagram of the THTF included to help aid in visualizing the facility. In the steady-state mode, fluid flows from the pump through the hor hontal inlet (SHI) and vertical inlet (SVI) speed pieces respectively. From the SVI speed piece, fluid enters the external downcomer (BI1) speed piece into the test section lower plenum. Fluid flows from the lower plenum through the heated length of the bundle, into the test section upper plenum, through the outlet speed pieces (B01, SVO, SHO) into the main heat exchangers, and back to the inlet of the pump. The test section steady-state conditions prior to transient initiation are shown in Table 1.

Figure 6 is a more detailed diagram showing the location of pressure and differential pressure instrumentation for Test 3.05.5B. Figure 7 is a detailed diagram of the entire THTF piping system and its associated instrumentation. The THTF is described more completely in Ref. 2.

The transient was initiated by breaking both inlet and outlet rupture disk assemblies. The outlet break area was $3.512 \times 10^{-4} \text{ m}^2$ (0.00378 ft²); the inlet break area was $4.013 \times 10^{-4} \text{ m}^2$ (0.00432 ft²). The transient phenomenology is discussed in Appendix A.

Table 1. Test section steady-state conditions

602 K (624°F)
550 K (530°F)
14.46 MN/m ² (2097 psi)
0.0317 m ³ /s (502 gpm)
7.453 MW

ORNL-DWG 81-7835R ETD

Fig. 1. THTF system with instrumented spool pieces labeled.

3

1915 Sec.

÷**

Ð.

Nî S

> 20 20 20

ی چ

ia. N Quiy

are and the second

Fig. 2. Identification of THTF heater rods, subchannel location, and inactive rods in THTF heater bundle.

Fig. 3. Cross section of a typical fuel rod simulator.

ORNL-DWG 79-17049R2 ETD

1.

٠

*

Fig. 4. Axial location of spacer grids and fuel rod simulator thermocouples.

ORNL-DWG 79-4231AR ETD

•

.

..

.

*

.

.

Fig. 5. Diagram of THTF.

.

6

.

ORNL-DWG 81-7832 ETD

Fig. 6. Positions of differential pressure and pressure instrumentation for THTF Test 3.05.5B.

7

AN 100 100

TA.

1

a

۰.

Fig. 7. IHIF instrumentation diagram.

Fig. 7 (continued)

3. DATA PRESENTATION

The recorded instrument responses for IHTF Test 3.05.5B are shown graphically on the microfiche in the back of this report. Three types of tables have been constructed to assist in the use of the data. Table 2 lists instrumentation in terms of instrument function, type, and location; also included are a brief description of each instrument and an instrument application number (IAN), which is a unique identifier associated with each instrument. The following example illustrates the format:

Example

BUNDLE TEMPERATURE	Heading denoting function				
SHEATH THERMOCOUPLE	Heading denoting type				
LEVEL A	Subheading denoting location				

application number	Instrument description
TE-306 AA	SHEATH THERMOCOUPLE, ROD 6, LEVEL A

Table 3 lists instruments in the order they are shown graphically on the microfiche in the back of this report. Included are figure number, IAN, instrument description, instrument range, and comments on the functionability of the instrument. There are two possible comments: "Failed instrument" means the instrument was expected to function but failed to function properly. "Questionable" implies the instrument could be functioning properly but the data from such an instrument could be faulty.

Table 4 lists instruments alphabetically in terms of the IAN. Included are IAN, corresponding figure number, and instrument type code, (see Appendix D). Table 4 coordinates the information in Tables 2 and 3. One can look up an instrument by function using Table 2; then, by the use of the IAN and Table 4, the associated figure number can be determined. Table 3 can be used to check the instrument status.

Table 5 presents the nomenclature used in designating thermocouples. This table, together with Figs. 2 and 4, allows location of thermocouples in the THTF test section.

The reduced instrument responses presented in this report were recorded by a computer-controlled digital data acquisition system. Further information on this system can be found in Ref. 2.

Graphical results and a discussion of the calculation of mass flux at various THTF spool pieces are included in Appendix B. Appendix C is a graphical presentation of rod powers for THTF Test 3.05.5B. Appendix D is devoted to discussion and calculation of uncertainties for THTF instrumentation. Appendix E presents a composite density from the three-beam densitemeters.

.

Table 2

SENSOR

DESCRIPTION

11

BUNDLE TEMPERATURE

SHEATH THERMOCOUPLES

LEVEL A 1068B	HHHHHHHHHHHH	THERRY MOCCOUPLEE, THERRY MOCCOUPLEE, THERRY MOCCOUPLEE, THERRY MOCCOUPLEE, THERRY MOCCOUPLEE, THERRY MOCCOUPLEE, THEERRY MOCCOUPLEE, THE THE THE THE THE THE THE THE THE THE	R R R R R R R R R R R R R R R R R R R	6. LEVELL A A A A VELL A LEVELL A A A A A A A A A A A A A A A A A A A
LEVEL B TE-302AB TE-3066CB TE-3006CB TE-311CB TE-3112CB TE-3114CB TE-3114CB TE-3214AB TE-3224AB TE-3224AB TE-32255BB TE-32255BB TE-32255BB TE-32256B TE-3227AB TE-3229AB	HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	THERMOCOUPLE: THERMOCOUPLE:	00000000000000000000000000000000000000	248911 24897 2497 2497 2497 2497 2497 2497 2497 24

.

 \bigcirc

SENSOR

DESCRIPTION

BUNDLE TEMPERATURE (CONT.)

SHEATH THERMOCOUPLES (CONT.)

LEVEL TE-329CCB TE-333CB TE-333CB TE-333CB TE-333CB TE-3340CB TE-343CCB TE-3440CB TE-3449CB TE-3449CB TE-3449CB TE-34514CB TE-3557AB TE-3557AB TE-3557AB TE-3557AB TE-3561AB TE-36612AB TE-36612AB TE-36612AB	В	(CONT.) ATH SHEAATH SHEAATH SHEAATH SHEA	THERMOCOUPLE, ROD 29, LEVEL B THERMOCOUPLE, ROD 30, LEVEL B THERMOCOUPLE, ROD 35, LEVEL B THERMOCOUPLE, ROD 35, LEVEL B THERMOCOUPLE, ROD 39, LEVEL B THERMOCOUPLE, ROD 40, LEVEL B THERMOCOUPLE, ROD 44, LEVEL B THERMOCOUPLE, ROD 44, LEVEL B THERMOCOUPLE, ROD 44, LEVEL B THERMOCOUPLE, ROD 51, LEVEL B THERMOCOUPLE, ROD 55, LEVEL B THERMOCOUPLE, ROD 56, LEVEL B THERMOCOUPLE, ROD 56, LEVEL B THERMOCOUPLE, ROD 56, LEVEL B THERMOCOUPLE, ROD 66, LEVEL B	
$LFVEL \\ IE - 302BC \\ TE - 307AC \\ TE - 307AC \\ TE - 308BC \\ TE - 3109CC \\ TE - 3112BC \\ TE - 3112BC \\ TE - 314AC \\ TE - 314AC \\ TE - 325BC \\ TE - 3225BC \\ TE - 327BC $	c	HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	I HER MOCOUPLEROD2.LEVELCI HER MOCOUPLEROD4.LEVELCCI HER MOCOUPLEROD8.LEVELCCI HER MOCOUPLEROD9.LEVELCCI HER MOCOUPLEROD10.LEVELCCI HER MOCOUPLEROD10.LEVELCCI HER MOCOUPLEROD11.LEVELCCI HER MOCOUPLEROD13.LEVELCCI HER MOCOUPLEROD13.LEVELCCI HER MOCOUPLEROD14.LEVELCCI HER MOCOUPLEROD21.LEVELCCI HER MOCOUPLEROD23.LEVELCCI HER MOCOUPLEROD25.LEVELCCI HER MOCOUPLEROD25.LEVELCCI HER MOCOUPLEROD25.LEVELCCI HER MOCOUPLEROD25.LEVELCCI HER MOCOUPLEROD27.LEVELCCI HER MOCOUPLEROD27.LEVELCCI HER MOCOUPLEROD27.LEVELCCI HER MOCOUPLEROD27.LEVELCCI HER MOCOUPLEROD27.LEVELCCI HER MOCOUPLEROD27.LEVELCCI HER MOCOUPLEROD27.LEVELC </td <td></td>	

12

. . . .

* +

SENSOR

. .

DESCRIPTION

.

13

BUNDLE TEMPERATURE (CONT.)

SHEATH THERMOCOUPLES (CONT.)

LEVEL 15: -32299BACC 15: -32299BACC 15: -32299BACC 15: -32299BACC 15: -32299BACC 15: -3249BBCC 15: -3255 15:	c	(CONT -) STHH SSHEELE	THERMOCOUPLE: ROD 28. LEVEL CC THERMOCOUPLE: ROD 28. LEVEL CC THERMOCOUPLE: ROD 29. LEVEL CC THERMOCOUPLE: ROD 30. LEVEL CC THERMOCOUPLE: ROD 38. LEVEL CC THERMOCOUPLE: ROD 38. LEVEL CC THERMOCOUPLE: ROD 39. LEVEL CC THERMOCOUPLE: ROD 40. LEVEL CC THERMOCOUPLE: ROD 44. LEVEL CC THERMOCOUPLE: ROD 44. LEVEL CC THERMOCOUPLE: ROD 50. LEVEL CC THERMOCOUPLE: ROD 50. LEVEL CC THERMOCOUPLE: ROD 55. LEVEL CC	
LEVEL TE-305BU TE-334BU TE-334CU TE-352AU TE-352BU TE-352CU	U	SHEATH SHEATH SHEATH SHEATH SHEATH SHEATH	THERMOCOUPLE, ROD 5, LEVEL U THERMOCOUPLE, ROD 34, LEVEL U THERMOCOUPLE, ROD 34, LEVEL U THERMOCOUPLE, ROD 52, LEVEL U THERMOCOUPLE, ROD 52, LEVEL U THERMOCOUPLE, ROD 52, LEVEL U	
LEVEL TE-3058H TE-3348H TE-334CH TE-334CH TE-348AH TE-352AH TE-3528H TE-352CH	н	SSEATTH SSEATT	THERMOCOUPLE, ROD 5, LEVEL H THERMOCOUPLE, ROD 34, LEVEL H THERMOCOUPLE, ROD 34, LEVEL H THERMOCOUPLE, ROD 34, LEVEL H THERMOCOUPLE, ROD 48, LEVEL H THERMOCOUPLE, ROD 52, LEVEL H THERMOCOUPLE, ROD 52, LEVEL H THERMOCOUPLE, ROD 52, LEVEL H	

LEVEL S

SENSOR

DESCRIPTION

BUNDLE TEMPERATURE (CONT.)

SHEATH THERMOCOUPLES (CONT.)

LEVEL TE-305AS TE-334AS TE-334AS TE-334CS TE-352AS TE-352AS TE-352CS LEVEL TE-305CY TE-334AY TE-334BY TE-334CY	Y	(CONT.) SHEAATH SHEEAATH SHEEAATH SHEEAATH SHEEAATH SHEEAATH SHEEAATH SHEEAATH SHEEAATH SHEEAATH		ARARARA RARA				RODDDDD RRODDDDD RRRRRR RRODD RCODD RCODD RCODD	17551555 51.55 51.555 51.55	L			
TE-348AY TE-352AY TE-352BY TE-352CY		SHEATH SHEATH SHEATH SHEATH	THE	ARRA	1000	00000	LLLL	 ROD ROD ROD	45555	•	LELLE	VEVE	Y Y Y Y Y Y
LEVEL TE-301AD TE-302AD TE-302AD TE-303CD TE-308AD TE-308AD TE-308CD TE-3108D TE-3108D TE-3108D TE-312CD TE-3148D TE-3148D TE-318AD TE-318AD TE-3188CD TE-3218D TE-3208D TE-321AD TE-321AD TE-321AD TE-321AD TE-321AD TE-321AD TE-321AD	D	HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000000000000000000000000000000000000000			CODDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	····· · · · · · · · · · · · · · · · ·				000000000000000000000000000000000000000

SENSOR

-

DESCRIPTION

15

BUNDLE TEMPERATURE (CONT.)

SHEATH THERMOCOUPLES (CONT.)

LEVEL	0	(CONT-)			
TE-3226AD TE-3226AD TE-3226AD TE-3226AD TE-3226BD TEE-3227BD TEE-3227BD TEE-3228BD TEE-3227BD TEE-3229BD TEE-3229BD TEE-3229BD TEE-3229BD TEE-3229BD TEE-3229BD TEE-3229BD TEE-3229BD TEE-3229BD TEE-3229BD TEE-3229BD TEE-323355BD TEE-355BD TEE-355BD TEE-355BD TEE-355BD TEE-355BD TEE-355BD TEE-355BD		HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	THERMOCOUPLEE TH	**************************************	000000000000000000000000000000000000000

SENSOR

DESCRIPTION

BUNDLE TEMPERATURE (CONT.)

SHEATH THERMOCOUPLES (CONT.)

E		THEFTER SARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		60. LEVEL DDDDDDD 60. LEVEL DDDDDDD 60. LEVEL DDDDDDD 660. LEVEL LEVEL 664. LEVEL 864. L
177CABEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH			17. LEVEL LE

16

. .

* *

.

SENSOR DESCRIPTION BUNDLE TEMPERATURE (CONT.) SHEATH THERMOCOUPLES (CONT.) LEVEL E (CONT.) TE-330BE SHEATH THERMOCOUPLES (CONT.) IE-331CE SHEATH THERMOCOUPLE, ROD 30, LEVEL E TE-332CE SHEATH THERMOCOUPLE, ROD 32, LEVEL E TE-333BE SHEATH THERMOCOUPLE, ROD 32, LEVEL E TE-333BE SHEATH THERMOCOUPLE, ROD 32, LEVEL E TE-333BE SHEATH THERMOCOUPLE, ROD 33, LEVEL E TE-335BE SHEATH THERMOCOUPLE, ROD 33, LEVEL E TE-335BE SHEATH THERMOCOUPLE, ROD 33, LEVEL E TE-335BE SHEATH THERMOCOUPLE, ROD 37, LEVEL E TE-335BE SHEATH THERMOCOUPLE, ROD 42, LEVEL E TE-342BE SHEATH THERMOCOUPLE, ROD 444, LEVEL E TE-342BE SHEATH THERMOCOUPLE, ROD 444, LEVEL E <th></th> <th></th> <th></th> <th></th>				
BUNDLE TEMPERATURE (CONT.) SHEATH THERMOCOUPLES (CONT.) LEVEL E (CONT.) TE-330BE SHEATH THERMOCOUPLE, ROD 30, LEVEL E TE-331CE SHEATH THERMOCOUPLE, ROD 31, LEVEL E TE-332AE SHEATH THERMOCOUPLE, ROD 32, LEVEL E TE-332AE SHEATH THERMOCOUPLE, ROD 32, LEVEL E TE-333BE SHEATH THERMOCOUPLE, ROD 33, LEVEL E TE-333CC SHEATH THERMOCOUPLE, ROD 33, LEVEL E TE-335AE SHEATH THERMOCOUPLE, ROD 33, LEVEL E TE-335BE SHEATH THERMOCOUPLE, ROD 35, LEVEL E TE-335CC SHEATH THERMOCOUPLE, ROD 35, LEVEL E TE-335CC SHEATH THERMOCOUPLE, ROD 35, LEVEL E TE-335CE SHEATH THERMOCOUPLE, ROD 35, LEVEL E TE-335CE SHEATH THERMOCOUPLE, ROD 37, LEVEL E TE-337AE SHEATH THERMOCOUPLE, ROD 37, LEVEL E TE-337AE SHEATH THERMOCOUPLE, ROD 37, LEVEL E TE-345AE SHEATH THERMOCOUPLE, ROD 42, LEVEL E TE-345AE SHEATH THERMOCOUPLE, ROD 44, LEVEL E TE-345BE SHEATH THERMOCOUPLE, ROD 44, LEVEL E TE-345BE SHEATH THERMOCOUPLE, ROD 44, LEVEL E TE-345BE SHEATH THERMOCOUPLE, ROD 45, LEVEL E TE-345BE SHEATH THERMOCOUPLE, ROD 45, LEVEL E TE-345BE SHEATH THERMOCOUPLE, ROD 45, LEVEL E TE-345BE SHEATH THERMOCOUPLE, ROD 50, LEVEL E	SENSOR		DESCRIPTION	
	SENSOR BUNDLE TEMPERATURE SHEATH THERMO LEVEL E TE-330BE TE-331CE TE-332CE TE-332CE TE-333CE TE-335AE TE-335AE TE-335AE TE-335AE TE-335AE TE-335AE TE-335AE TE-335BE TE-335AE TE-345BE TE-349AE TE-349AE TE-349AE TE-349AE TE-349AE TE-349BE TE-350CE	(CONT.) COUPLES (CONT.) (CONT.) SHEATH THERMOCOU SHEATH THERMOCOU	DESCRIPTION DESCRIPTION PLEERROD 30, LEVEL ROD 31, LEVEL EVEL ROD 32, LEVEL PLEERROD 32, LEVEL PLEERROD 33, LEVEL PLEERROD 33, LEVEL PLEERROD 35, LEVEL PLEERROD 35, LEVEL PLEERROD 37, LEVEL PLEERROD 37, LEVEL PLEERROD 37, LEVEL PLEERROD 37, LEVEL PLEERROD 44, LEVEL PLEERROD 44, LEVEL PLEERROD 44, LEVEL PLEERROD 45, LEVEL PLEERROD 45, LEVEL PLEERROD 45, LEVEL PLEERROD 45, LEVEL PLEERROD 45, LEVEL PLEERROD 45, LEVEL PLEERROD 50, LEVEL PLEERROD 50, LEVEL	

LEVEL F TE-303BF SHEATH THERMOCOUPLE, ROD 3, LEVEL F SHEATH THERMOCOUPLE, ROD 4, LEVEL F TE-307AF SHEATH THERMOCOUPLE, ROD 7, LEVEL F 17

.

.

SENSOR DESCRIPTION

BUNDLE TEMPERATURE (CONT.)

SHEATH THERMOCOUPLES (CONT.)

LEVEL F TE-3078F TE-3108F TE-3108F TE-3138F TE-3138F TE-31366F TE-31568F TE-3168F TE-31888F TE-31888F TE-31888F TE-32208F TE-32208F TE-32208F TE-32208F TE-32208F TE-32208F TE-332288 F TE-332288 F TE-332288 F TE-332208F TE-332288 F TE-332288 F TE-33228 F TE-33228 F TE-33228 F TE-33228 F TE-33228 F TE-33228 F TE-33228 F TE-33228 F TE-33228 F TE-33228 F TE-33228 F TE-33228 F TE-33228 F TE-33228 F TE-33228 F TE-33228 F TE-33228 F TE-33228 F TE-33228 F TE-3355 C F TE-355 S S S S S S S S S S S S S	CONSTRUCTOR SOURCE STATES STAT	THERMOCOUPLE THERMOCOUPLE		7. LEVEL F FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
TE-303CG TE-31686	SHEATH	THERMOCOUPLE, THERMOCOUPLE, THERMOCOUPLE.	ROD	3. LEVEL G 16. LEVEL G 16. LEVEL G

. .

SENSOR

· .

P

DESCRIPTION

4

BUNDLE TEMPERATURE (CONT.)

SHEATH THERMOCOUPLES (CONT.)

LEVEL TE - 318AG TE - 318BG TE - 318CG TE - 320AG TE - 320CG TE - 320CG TE - 3322CG TE - 342CG TE - 342CG TE - 345AG TE - 345AG TE - 345CG TE - 345CG TE - 345CG TE - 345CG TE - 345CG TE - 345CG	G	(CONT.) SHELAATHH SSEELAATHH	THERMOCOU THERMOCOU THERMOCOU THERMOCOU THERMOCOU THERMOCOU THERMOCOU THERMOCOU THERMOCOU THERMOCOU THERMOCOU THERMOCOU THERMOCOU THERMOCOU THERMOCOU THERMOCOU		00000000000000000000000000000000000000	112222344444444556		<i>ຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉ</i>
LEVEL TE-361CJ TE-361BJ	J	SHEATH	THERMOCOU	PLE . PLE .	ROD	61. 61.	LEVEL	J
MIDDLE THE	RMO	COUPLES						
LEVEL TE $-306MA$ TE $-311MA$ TE $-321MA$ TE $-325MA$ TE $-325MA$ TE $-328MA$ TE $-340MA$ TE $-340MA$ TE $-340MA$ TE $-355MA$ TE $-355MA$ TE $-355MA$ TE $-355MA$ TE $-360MA$	A	MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE	THERMOCOU THERMOCOU THERMOCOU THERMOCOU THERMOCOU THERMOCOU THERMOCOU THERMOCOU THERMOCOU THERMOCOU THERMOCOU		00000000000000000000000000000000000000	6114 112258 413 443 55560 9	EVEL LEVEL LEVEL LEVEL LEVEL LEVEL LEVEL LEVEL LEVEL LEVEL LEVEL LEVEL	A44444444444
LEVEL TE-302MB TE-303M8 TE-309MB TE-312MB TE-314MB	B	MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE	THERMOCOU THERMOCOU (HERMOCOU THERMOCOU THERMOCOU	PLE. PLE. PLE.	ROD ROD ROD ROD ROD	2. L 8. L 9. L 12.	EVEL B EVEL B EVEL B LEVEL B LEVEL	BB

.0

. .

SENSOR

. . .

.....

DESCRIPTION

BUNDLE TEMPERATURE (CONT.)

MIDDLE THERMOCOUPLES (CONT.)

TE-321MB TE-3225MB TE-3227MB TEE-3227MB TEE-3320MB TEE-3358MB TEE-3358MB TEE-33590MB TEE-33590MB TEE-33401MB TEE-33590MB TEE-33557MB TEE-33557MB TEE-33557MB TEE-33557MB TEE-336612MB TEE-336612MB		MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE	THERMOCOUPLE: ROD 21. LEVEL B THERMOCOUPLE: ROD 25. LEVEL B ROD 25. LEVEL B ROD 27. LEVEL B ROD 29. LEVEL B ROD 35. LEVEL B ROD 35. LEVEL B ROD 40. LEVEL B ROD 40. LEVEL B B ROD 44. LEVEL B B ROD 44. LEVEL B B B THERMOCCOUPLE: ROD 55. LEVEL B B THERMOCCOUPLE: ROD 55. LEVEL B THERMOCCOUPLE: ROD 55. LEVEL B THERMOCCOUPL
LEWC TE-3006MMCC TEE-3006MMCC TEE-3006MMCC TEE-3009MMCC TEE-3009MMCC TEE-3111MMCC TEE-3111MMCC TEE-3111MMCC TEE-31254MMCC TEE-3322568MMCC TEE-3322568MMCC TEE-332303MMCC TEE-333357MCC TEE-333357MCC TEE-33357MCC TEE-33357MCC TEE-33357MCC TEE-33357MCC TEE-33357MCC TEE-33357MCC TEE-33490MCC	c	MIDDDLLEE MIDDDLLEE MIDDDLLEE MIDDDDLLEE MIDDDDDLLEE MIDDDDDLLEE MIDDDDDLLEE MIDDDDDLLEE MIDDDDDLLEE MIDDDDLLEE MIDDDDDLLEE MIDDDDDLLEE MIDDDDDLLEE MIDDDDLLEE MIDDDDLLEE MIDDDDLLEE MIDDDDLLEE MIDDDDLLEE MIDDDDLLEE MIDDDDLEE MIDDDDDLEE MIDDDDLEE MIDDDDLEE MIDDDDLEE MIDDDDLEE MIDDDDLEE MIDDDDLEE MIDDLEE MIDDLEE MIDDLEE MIDDLEE MIDDLEE MIDDLEE MIDDLEE MIDDLEE MIDDLEE MIDDLEE MIDDLEE MIDDLEE MIDDLEE MIDDL	THERMOCOUPLE, ROD 23, LEVEL C THERMOCOUPLE, ROD 4, LEVEL C THERMOCOUPLE, ROD 7, LEVEL C THERMOCOUPLE, ROD 7, LEVEL C THERMOCOUPLE, ROD 7, LEVEL C C C C C C C C C C C C C C C C C C C

DESCRIPTION

.

. . .

CCNCCC.

LEVEL Y TE-305MY TE-348MY TE-352MY

LEVEL D TE-302MD TE-303MD TE-304MD TE-306MD TE-307MD

50

.

SENSOR		DESCRIPTION
BUNDLE TEMPERATURE (C	ONT.)	
MIDDLE THERMOCOU	PLES (CONT.)	
LEVEL C (CO TE-342MC TE-3443MC TE-3449MC TE-3450MC TE-3551MC TE-3554MC TE-3554MC TE-3556MC TE-3556MC TE-3560MC TE-3661MC TE-3662MC TE-3663MC	NT.) MIDDLE THERMOCOUPLE: MIDDLE THERMOCOUPLE:	ROD 41. LEVEL C ROD 43. LEVEL C ROD 44. LEVEL C ROD 50. LEVEL C ROD 51. LEVEL C ROD 55. LEVEL C ROD 55
LEVEL U TE-305MU TE-348MU TE-352MU	MIDDLE THERMOCOUPLE. MIDDLE THERMOCOUPLE. MIDDLE THERMOCOUPLE.	ROD 5, LEVEL U Rod 52, LEVEL U Rod 52, LEVEL U
LEVEL H TE-305MH TE-334MH TE-348MH TE-352MH	MIDDLE THERMOCOUPLE. MIDDLE THERMOCOUPLE. MIDDLE THERMOCOUPLE. MIDDLE THERMOCOUPLE.	POD 5. LEVEL H ROD 34. LEVEL H ROD 43. LEVEL H ROD 52. LEVEL H
LEVEL S TE-305MS TE-334MS TE-348MS TE-352MS	MIDDLE THERMOCOUPLE, MIDDLE THERMOCOUPLE, MIDDLE THERMOCOUPLE, MIDDLE THERMOCOUPLE,	ROD 5. LEVEL S ROD 34. LEVEL S ROD 48. LEVEL S ROD 52. LEVEL S

MIDDLE THERMOCOUPLE. ROD 5. LEVEL Y MIDDLE THERMOCOUPLE. ROD 48. LEVEL Y MIDDLE THERMOCOUPLE. ROD 52. LEVEL Y

MIDDLC THERMOCOUPLE, ROD 2, LEVEL D MIDDLE THERMOCOUPLE, ROD 3, LEVEL D MIDDLE THERMOCOUPLE, ROD 4, LEVEL D MIDDLE THERMOCOUPLE, ROD 6, LEVEL D MIDDLE THERMOCOUPLE, ROD 7, LEVEL D 21

.

.

SENSOR

DESCRIPTION

BUNDLE TEMPERATURE (CGMI.)

MIDDLE THERMOCOUPLL_ (CONT.)

IFVEL D	(CONT.)			
$\begin{array}{l} \text{TE} = -30\text{PMD}\\ \text{TE} = -311\text{PMD}\\ \text{TE} = -3112\text{MD}\\ \text{TE} = -312\text{MD}\\ \text{TE} = -312\text{MD}\\ \text{TE} = -312\text{MD}\\ \text{TE} = -312\text{MD}\\ \text{TE} = -322\text{MD}\\ \text{TE} = -322\text{MD}\\ \text{TE} = -322\text{MD}\\ \text{TE} = -322\text{SMD}\\ \text{TE} = -332\text{SMD}\\ \text{TE} = -333\text{SMD}\\ \text{TE} = -334\text{SMD}\\ \text{TE} = -334\text{SMD}\\ \text{TE} = -334\text{SMD}\\ \text{TE} = -35\text{SMD}\\ \text{TE} = -36\text{SMD}\\ \text{SMD}\\ \text{TE} = -36\text{SMD}\\ \text{SMD}\\ \text{TE} = -36\text{SMD}\\ \text{SMD}\\ \text{SMD}\\ \text{TE} = -36\text{SMD}\\ \text{SMD}\\ S$	MINDODOLLEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	THERMOCOUPLE THERMOCOUPLE		20. LEVEL D 10. LEVEL D 11. LEVEL D 12. LEVEL D 15. LEVEL D 18. LEVEL D 20. LEVEL D 21. LEVEL D 22. LEVEL D 22. LEVEL D 22. LEVEL D 22. LEVEL D 22. LEVEL D 23. LEVEL D 23. LEVEL D 35. LEVEL D 37. LEVEL D 38. LEVEL D 39. LEVEL D 39. LEVEL D 41. LEVEL D 43. LEVEL D 53. LEVEL D 55. LEVEL D 56. LEVEL D 57. LEVEL D 56. LEVEL D 57. LEVEL D 56. L
LEVEL E TE-303ME TE-304MF TE-307ME TE-310ME TE-312ME TE-316ME TE-317ME TE-317ME TE-317ME	MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE	THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE	ROD ROD ROD ROD ROD ROD	3. LEVEL E 4. LEVEL E 7. LEVEL E 10. LEVEL E 12. LEVEL E 16. LEVEL E 17. LEVEL E 18. LEVEL E

SENSOR

DESCRIPTION

BUNDLE TEMPERATURE (CONT.)

MIDDLE THERMOCOUPLES (CONT.)

LEMMERIZEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	E	(CONT.) MIDDLE	THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE THERMOCOUPLE	R R R R R R R R R R R R R R R R R R R	4. LEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
LEVEL 3 0 3 MF E - 3 0 4 MF E - 3 0 7 MF E - 3 1 8 MF E - 3 3 1 8 MF E - 3 3 2 8 MF E - 3 3 5 6 MF E - 3 5 5 6 MF E - 3 5 5 9 MF E - 3 5 6 MF E - 3 6 MF	F	MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE	THER MOCOUPLE THER MOCOUPLE	R 000 R 000 R 000 D 000 R R 000 D 000 R 000 D 000 R 000 D 00 D 000 D 00	3. LEVEL F 4. LEVEL F 7. LEVELL F 16. LEVELL F 128. LEVEL F 128. LEVEL 2337. LEVEL F 558. LEVEL 558. LEVEL 558. LEVEL 558. LEVEL
LEVEL E-303MG E-316MG E-320MG E-332MG E-345MG E-345MG E-345MG E-358MG	G	MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE MIDDLE	THERMOCOUPLE, THERMOCOUPLE, THERMOCOUPLE, THERMOCOUPLE, THERMOCOUPLE, THERMOCOUPLE, THERMOCOUPLE,	ROD ROD ROD ROD ROD ROD	3. LEVEL 6 16. LEVEL 6 20. LEVEL 6 32. LEVEL 6 45. LEVEL 6 47. LEVEL 6 58. LEVEL 6

	SENSOR	DESCRIPTION	
BUND	LE TEMPERATURE (DESCRIPTION S (CONT.) DOLE THERMOCOUPLE, ROD 64, LEVEL 6 UPLES ROUD BOX THERMOCOUPLE, LEVEL A, WEST SIDE ROUD BOX THERMOCOUPLE, LEVEL B, EAST SIDE ROUD BOX THERMOCOUPLE, LEVEL B, SOUTH SIDE ROUD BOX THERMOCOUPLE, LEVEL C, WEST SIDE ROUD BOX THERMOCOUPLE, LEVEL C, WEST SIDE ROUD BOX THERMOCOUPLE, LEVEL D, EAST SIDE ROUD BOX THERMOCOUPLE, LEVEL D, EAST SIDE ROUD BOX THERMOCOUPLE, LEVEL C, WEST SIDE ROUD BOX THERMOCOUPLE, LEVEL C, WEST SIDE ROUD BOX THERMOCOUPLE, LEVEL G, EAST SIDE ROUD BOX THERMOCOUPLE, LEVEL G, SOUTH SIDE ROUD BOX THERMOCOUPLE, LEVEL G, WEST SIDE ROUD BOX THERMOCOUPLE, GRID 19, SUBCHANNEL 22, LEVEL A RAY ROD THERMOCOUPLE, GRID 19, SUBCHANNEL 22, LEVEL B RAY ROD THERMOCOUPLE, GRID 19, SUBCHANNEL 22, LEVEL B RAY ROD THERMOCOUPLE, GRID 19, SUBCHANNEL 22, LEVEL B RAY ROD THERMOCOUPLE, GRID 19, SUBCHANNEL 22, LEVEL C	
	MIDDLE THERMOCO	UPLES (CONT.)	
	LEVEL G (C TE-364MG	MIDDLE THERMOCOUPLE, ROD 64, LEVEL G	
	SHROUD BOX THER	MOCOUPLES	
	LEVEL A	SHROUD BOX THERMOCOUPLE, LEVEL A, WEST SIDE	
	LEVEL B TE-182E TE-182S	SHROUD BOX THERMOCOUPLE, LEVEL B, EAST SIDE Shroud box Thermocouple, Level B, South Side	
	LEVEL C TE-183N TE-183W	SHROUD BOX THERMOCOUPLE, LEVEL C. NORTH SIDE Shroud box Thermocouple, Level C, West side	
	LEVEL D TE-184E TE-184S	SHROUD BOX THERMOCOUPLE, LEVEL D. EAST SIDE Shroud box Thermocouple, Level D. South Side	
	LEVEL E TE-185W	SHROUD BOX THERMOCOUPLE, LEVEL E, WEST SIDE	
	LEVEL G TE-186E TE-186S TE-187N TE-187W	SHROUD BOX THERMOCOUPLE, LEVEL G, EAST SIDE SHROUD BOX THERMOCOUPLE, LEVEL G, SOUTH SIDE SHROUD BOX THERMOCOUPLE, LEVEL G, NORTH SIDE SHROUD BOX THERMOCOUPLE, LEVEL G, WEST SIDE	
	THERMOCOUPLE AR	RAY ROD	
	LEVEL A TE-188AA TE-188BA	ARRAY ROD THERMOCOUPLE, GRID 19, SUBCHANNEL 22, LEVEL A ARRAY ROD THERMOCOUPLE, GRID 19, SUBCHANNEL 30, LEVEL A	
	LEVEL B TE-188A8 TE-18888	ARRAY ROD THERMOCOUPLE, GRID 19, SUECHANNEL 22, LEVEL B ARRAY ROD THERMOCOUPLE, GRID 19, SUBCHANNEL 30, LEVEL B	
	LEVEL C TE-188AC TE-188BC	ARRAY ROD THERMOCOUPLE, GRID 19, SUBCHANNEL 22, LEVEL C ARRAY ROD THERMOCOUPLE, GRID 19, SUBCHANNEL 30, LEVEL C	
	LEVEL D TE-188AD TE-1888D	ARRAY ROD THERMOCOUPLE, GRID 19, SUBCHANNEL 22, LEVEL D ARRAY ROD THERMOCOUPLE, GRID 19, SUBCHANNEL 30, LEVEL D	

1.4.1.1.1.1.1.

-	-		-	-	-	
SC 1	5	Ri.	10	n	8	
- 27	۰.	19	12	0	27.	

.4

mil da

.

DESCRIPTION

BUNDLE TEMPERATURE (CONT.)

THERMOCOUPLE ARRAY ROD (CONT.)

LEVEL TE-188AE TE-188BE	.Ε		AR	R I	AY	RIR	00	T	H	R	MO		00	PL	Ε.		GR	I	00	1	9,		su	B	CH	A	NI	NENE	L	2:31	2.	L	E V	EL	
LEVEL TE-188AF TE-188BF	F		AR	RARA	Y	RI	00	T	HE	R	MO		00	PL	Ε,		G R G R	I	D	11	9,		su	B	CH	A	NIN	NE	L	22	2.,	L	EV	EL	
LEVEL TE-188AG	G		AR	R #	Y	R	DO	T	н	ERI	MC	oco	ou	PL	ε,		GR	I	D	1	9,		su	8	сн	A	NI	NE	L	22	2.	L	EV	EL	
SPACER GRI	D T	HERM	100	01	JPI	E	s																												
GRID TE-291A TE-291B TE-291C TE-291C TE-291D	N0.	2	SSSSS	ACAC	EFFE	~~~~~	GRAGR					EFFE	NNNN	22222	ТН	menen	RAMA	0000	C0 C0 C0		PL	mmmm	****	SISSIS		0000	ннни		NENE	LLL	3457	2370			
GRID TE-292A TE-292B TE-292D	N0.	3	SPPS	ACAC	EF		SR					EFE	NAN	300	тн тн тн	E	R M R M R M	10			PL	EEE		SISI		000	ни		NENE	LLL	34	230			
GRID TE-293A TE-293B TE-293C TE-293C TE-293D TE-293E TE-293F	N0.	4	SPAPPAP	ACACAC	EFFFFFFF		RRRRRRR						RARRAR	444444		MUMMMMM	RANNER	000000			PLPL	mmmmmm	****	SISSIS		000000	THHHH		NNNNN		345713	23707B			
GRID TE-2948 TE-2940 TE-294E TE-294E TE-294F	N0.	5	SPPP	ACAC	E E E E E	0000	RRRR		n n n		N B B B B B B B B B B B B B B B B B B B	EFFE	~~~~~	5555	TH TH TH	ENER	MMMM	0000			PL	mmmm	• • • •	SUSSI	18 18 18	0000	HHHH	NNAN	NENE		41713	3073			
GRID IE-295A IE-295B IE-295C IE-295D	NO.	6	SPPSPSP	ACAC	ERRE	0000	RRRR				18	EEEEE	~~~~	5656	ТН ТН ТН	EFEE	AMMM	00000	00000		PL	ELEE		SUSU	JB JB JB	0000	НАНАННА	NNN	NENENE		3457	2570			

GRID NO. 7

25

. .

.................

Lu Lu

FF

G

SENSOR		DESCRIPTION
BUNDLE TEMPERATURE (CONT.)	
SPACER GRID THE	RMOCOUPLES (CONT.)	
GRID NO. 7 TE-2968 TE-2960	(CONT.) SPACER GRID NUMBER SPACER GRID NUMBER	7 THERMOCOUFLE, SUBCHANNEL 43 7 THERMOCOUPLE, SUBCHANNEL 70
SUBCHANNEL THER TE-1201 TE-1205 TE-1209 TE-1211 TE-1213 TE-1216 TE-12220 TE-12220 TE-12220 TE-12220 TE-12220 TE-12220 TE-12220 TE-12227 TE-12226 TE-12230 TE-12237 TE-12237 TE-12237 TE-12239 TE-12239 TE-12239 TE-12239 TE-12239 TE-12239 TE-12249 TE-12249 TE-12249 TE-12249 TE-12249 TE-12249 TE-12249 TE-12249 TE-12249 TE-12249 TE-12249 TE-12249 TE-12251 TE-12251 TE-12259 TE-12558 TE-12558 TE-1259 TE-12260	MOCOUPLES SUBCHANNEL NUMBER 1 SUBCHANNEL NUMBER 3 SUBCHANNEL NUMBER 3 SUBCHANNEL NUMBER 3 SUBCHANNEL NUMBER 3 SUBCHANNEL NUMBER 3 SUBCHANNEL NUMBER 4 SUBCHANNEL 3 SUBCHANNEL 3 SUB	THERMOCOUPLE THERMOCOUPLE

. .

.

1

26

*

.

SENSOR

4

DESCRIPTION

-

BUNDLE TEMPERATURE (CONT.)

CHECKANNE!	THERMOCOURIES ICO	NT-)		
SUBLMANNEL	CHOCHANNEL	NUMBER A	6.1	THERMOCAUPLE
11-1261	CUDCHANNEL	NUMBER	C R	THERMOCOUPLE
IE-1265	SUDCHANNEL	NUMBER	45	THERMOCOUPLE
IE=1265	SUBCHANNEL	NUMPER	20	THERMOCOUPLE
TE-1266	SUBCHANNEL	NUMBER	00	TUCOMOCOUPLE
TE-1268	SUBCHANNEL	NUMBER	00	THERMOCOUP, F
TE-1269	SUBCHANNEL	NUMBER	57	THENHOLDUPLE
TE-1270	SUBCHANNEL	NUMBER	10	THERMOCOUPLE
TE-1271	SUBCHANNEL	NUMBER	11	THERMOLOUPLE
TE-1273	SUBCHANNEL	NUMBER	13	THERMOCOUPLE
TE-1275	SUBCHANNEL	NUMBER	75	THERMOCOUPLE
TE-1277	SUBCHANNEL	NUMBER	77	THERMOCOUPLE
TE-1279	SUBCHANNEL	NUMBER	79	THERMOCOUPLE
TE-1281	SUBCHANNEL	NUMBER	81	THERMOCOUPLE

SPOOL PIECE INSTRUMENTS

TEMPERATURE. HORIZONTAL INLET SPOOL TEMPERATURE VERTICAL INLET SPOOL TEMPERATURE HORIZONTAL OUTLET SPOOL TEMPERATURE HORIZONTAL OUTLET SPOOL TEMPERATURE BUNDLE OUTLET SPOOL TEMPERATURE BUNDLE INLET LOWER SPOOL TEMPERATURE TE-24 TE-172 TE-222 TE-40 TE-208 TE-266 PRESSURE HORIZONTAL INLET SPOOL TRANSIENT PRESSURE HORIZONTAL OUTLET SPOOL TRANSIENT PRESSURE VERTICAL INLET SPOOL TRANSIENT PRESSURE VERTICAL OUTLET SPOOL TRANSIENT PRESSURE BUNDLE OUTLET SPOOL TRANSIENT PRESSURE BUNDLE INLET LOWER SPOOL PRESSURE BUNDLE INLET LOWER SPOOL PRESSURE PE-26 PE-42 PE-174 PE-224 PE-209 PE-256 BUNDLE INLET LOWER SPOOL PRESSURE PE-268 PRESSURE DROP HORIZONTAL INLET SPOOL TRAPSIENT DIFFERENTIAL PRESSURE HORIZONTAL OUTLET SPOOL TRANSIENT DIFFERENTIAL PRESSURE BUNDLE INLET SPOOL DIFFERENTIAL PRESSURE PDE-21 PDE - 35 PDE-251 VOLUMETRIC FLOW HORIZONTAL INLET SPOOL VOLUMETRIC FLOW VERTICAL INLET SPOOL VOLUMETRIC FLOW HORIZONTAL OUTLET SPOOL VOLUMETRIC FLOW FE-19 FE-166 FE-34 VERTICAL OUTLET SPOOL VOLUMETRIC FLOW FE-216 MOMENTUM FLUX

.

SENSOR	DESCRIPTION	
SPOOL PIECE INSTRUME	NTS (CONT.)	
MOMENTUM FLUX (FMFE-22 FMFE-38 FMFE-170 FMFE-220 FMFE-206 FMFE-254 FMFE-264	CONT.) HORIZONTAL INLET SPOOL DRAG DISC HORIZONTAL OUTLET SPOOL DRAG DISC VERTICAL INLET SPOOL DRAG DISC VERTICAL OUTLET SPOOL DRAG DISC BUNDLE OUTLET SPOOL DRAG DISC BUNDLE INLET UPPER SPOOL DRAG DISC BUNDLE INLET LOWER SPOOL DRAG DISC	
FLUID DENSITY DE-20 DE-36 DE-168 DE-218 DE-204A DE-204B DE-204B DE-204C DE-262A DE-262B DE-262C	HORIZONTAL INLET SPOOL DENSITY BUNDLE INLET SPOOL 2 DENSITY VERTICAL INLET SPOOL DENSITY VERTICAL OUTLET SPOOL DENSITY BUNDLE OUTLET SPOOL DENSITY BUNDLE OUTLET SPOOL DENSITY BUNDLE OUTLET SPOOL DENSITY BUNDLE INLET SPOOL DENSITY BUNDLE INLET SPOOL DENSITY BUNDLE INLET SPOOL DENSITY	
TEST SECTION INSTRUM	ENTS	
TEMPERATURE TE-210A TDE-28	TEST SECTION OUTLET LINE STEADY-STATE TEMPERATURE	

TE-48 TE-150 TE-151 TE-152 TE-29 TE-29 TE-284 TE-284 TE-9221 TE-9221 TE-9222	BASE PRIMARY STEADY-STATE TEMPERATURE TEST SECTION BOTTOM FLANGE TEMPERATURE SIDE TEST SECTION BOTTOM FLANGE TEMPERATURE SIDE TEST SECTION BOTTOM FLANGE TEMPERATURE SIDE INLET BLOWDOWN PLENUM TEMPERATURE OUTLET BLOWDOWN PLENUM TEMPERATURE TEST SECTION INLET TEMPERATURE OLD DOWNCOMER PURGE LINE RETURN TEMPERATURE PURGE LINE RETURN TEMPERATURE INNER SEAL COOLANT SUPPLY TEMPERATURE
PRESSURE	TEST SECTION INLET TRANSIENT PRESSURE
PE-156	TEST SECTION OUTLET TRANSIENT PRESSURE
PE-201	DOWNSTREAM HCV 2 TRANSIENT PRESSURE
PE-27	INLET PLENUM TRANSIENT PRESSURE
PE-43	OUTLET PLENUM TRANSIENT PRESSURE
PE-425	INLET BLOWDOWN LINE TRANSIENT PRESSURE
PE-286	SHROUD PLENUM OUTLET PRESSURE

28

. . . .

.

.

		DESCRIPTION
	SENSOR	DESCRIPTION
TEST	SECTION INSTRUME	NTS (CONT.)
	PRESSURE (CONT.) PE-32	TEST SECTION OUTLET STEADY-STATE PRESSURE
	PRESSURE DROP PDE-180 PDE-181 PDE-182 PDE-183 PDE-184 PDE-185 PDE-186 PDE-187 PDE-188 PDE-188 PDE-188 PDE-203 PDE-203 PDE-203 PDE-201 PDE-271	SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL A TO LEVEL B SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL B TO LEVEL C SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL C TO LEVEL D/E SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL C TO LEVEL D/E SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL D/E TO LEVEL E SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL E/F TO LEVEL F SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL E/F TO LEVEL F SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL F TO LEVEL F/G SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL F/G TO 'EVEL F/G SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL F/G TO 'EVEL G SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL F/G TO 'EVEL G SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL F/G TO 'EVEL G SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL F/G TO 'EVEL G SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL F/G TO 'EVEL G SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL F/G TO 'EVEL G SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL F/G TO 'EVEL G SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL F/G TO 'EVEL G SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL F/G TO 'EVEL G SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL F/G TO 'EVEL G SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL F/G TO 'EVEL G SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL F/G TO 'EVEL G SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL F/G TO 'EVEL G SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL F/G TO 'EVEL G SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL F/G TO 'EVEL G SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL F/G TO 'EVEL G SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL G TO UPPER TAP BUNDLE TRANSIENT DIFFERENTIAL PRESSURE SHROUD SON STEADY STATE DIFFERENTIAL PRESSURE SHROUD SON STEADY STATE DIFFERENTIAL PRESSURE SFLIT DOWNCOMER TRANSIENT DIFFERENTIAL PRESSURE SFLIT DOWNCOMER TRANSIENT DIFFERENTIAL PRESSURE
	VOLUMETRIC FLOW FE-18A FE-232 FE-202 FE-250 FE-260 FE-280	TEST SECTION INLET STEADY-STATE VOLUMETRIC FLOW INNER SEAL COOLANT VOLUMETRIC FLOW BUNDLE OUTPUT LOWER VOLUMETRIC FLOW BUNDLE INLET UPPER VOLUMETRIC FLOW BUNDLE INLET LOWER VOLUMETRIC FLOW PURGE LINE RETURN VOLUMETRIC FLOW
	LIQUID LEVEL LE-1400 LE-1401 LE-1402 LE-1403 LE-1404 LE-1406 LE-1406 LE-1408 LE-1408 LE-1409 LE-1410 LE-1412 LE-1412 LE-1413 LE-1415 LE-1416	BUNDLE LIQUID LEVEL PROBE 0 BUNDLE LIQUID LEVEL PROBE 1 BUNDLE LIQUID LEVEL PROBE 3 BUNDLE LIQUID LEVEL PROBE 4 BUNDLE LIQUID LEVEL PROBE 6 BUNDLE LIQUID LEVEL PROBE 7 BUNDLE LIQUID LEVEL PROBE 9 BUNDLE LIQUID LEVEL PROBE 10 BUNDLE LIQUID LEVEL PROBE 11 BUNDLE LIQUID LEVEL PROBE 12 BUNDLE LIQUID LEVEL PROBE 14 BUNDLE LIQUID LEVEL PROBE 13 BUNDLE LIQUID LEVEL PROBE 14 BUNDLE LIQUID LEVEL PROBE 14

29

*

....

	SENSOR	DESCRIPTION
TEST	SECTION INSTRUME	ENTS (CONT.)
	LIQUID LEVEL (CO LE-1417 LE-1418 LE-1419	DNT.) BUNDLE LIQUID LEVEL PROBE 17 BUNDLE LIQUID LEVEL PROBE 18 BUNDLE LIQUID LEVEL CALIBRATION
PRES	SURIZER INSTRUMEN	ITS
	TEMPERATURE TE-101 TE-1 TE-2 TE-116	PRESSURIZER VAPOR STEADY-STATE TEMPERATURE PRESSURIZER VAPOR TEMPERATURE PRESSURIZER WATER TEMPERATURE PRESSURIZER EXIT SPOOL TEMPERATURE
	PRESSURE PE-106 PE-118 PE-102	PRESSURIZER VAPOR TRANSIENT PRESSURE PRESSURIZER LINE SPOOL PRESSURE PRESSURIZER STEADY-STATE PRESSURE
	PRESSURE DROP PDE-111	PRESSURIZER LINE SPOOL DIFFERENTIAL PRESSURE
	LEVEL LE-100	PRESSURIZER LIQUID LEVEL
	MOMENTUM FLUX FMFE-114	PRESSURIZER LINE SPOOL DRAG DISC
	VOLUMETRIC FLOW FE-110	PRESSURIZER LINE SPOOL VOLUMETRIC FLOW
PRIM	ARY PUMP INSTRUME PDE-78 FE-1A PE-76 SE-72 EWE-77A	NTS PRIMARY PUMP TRANSIENT DIFFERENTIAL FRESSURE PRIMARY PUMP FLOW PRIMARY PUMP SUCTION TRANSIENT PRESSURE PRIMARY PUMP SPEED PRIMARY PUMP POWER
PUMP	BYPASS INSTRUMEN PE-15	PUMP BYPASS SPOOL PRESSURE
PRESS	SURE SUPPRESSION PE-412 TE-4088 TE-901	SYSTEM INSTRUMENTS PRESSURE SUPPRESSION TRANSIENT PRESSURE PRESSURE SUPPRESSION TANK SPRAY TEMPERATURE PRESSURE STEAM KILLER AIR VENT TEMPERATURS

DEMINERALIZED WATER SYSTEM INSTRUMENTS

	SENSOR	DESCRIPTION
DEMI	NERALIZED WATER S PE-616 TE-615 TE-5208	CTEM INSTRUMENTS (CONT.) DEMINERALIZED WATER SUPPLY HEADER PRESSURE DEMINERALIZED WATER 6 INCH HEADER STEADY-STATE TEMPERATURE 4 INCH DEMINERALIZED WATER HEADER TEMPERATURE
HEAT	EXCHANGER INSTRU	AENTS
	PRIMARY SIDE	
	TEMPERATURE TE-58 TE-57 TE-62 TE-67 TE-288	HEAT EXCHANGER D OUTLET TEMPERATURE HEAT EXCHANGER A SPOOL TEMPERATURE HEAT EXCHANGER B SPOOL TEMPERATURE HEAT EXCHANGER C SPOOL TEMPERATURE MAIN HEAT EXCHANGER MIXING TEE STEADY-STATE TEMPERATURE
	VOLUMETRIC FE-51 FE-59 FE-64	FLOW HEAT EXCHANGER A SPOOL VOLUMETRIC FLOW HEAT EXCHANGER B SPOOL VOLUMETRIC FLOW HEAT EXCHANGER C SPOOL VOLUMETRIC FLOW
	PRESSURE PE-44 PE-58 PE-63 PE-68	UPSTREAM MAIN HEAT EXCHANGER TRANSIENT PRESSURE HEAT EXCHANGER A SPOOL PRESSURE HEAT EXCHANGER B SPOOL PRESSURE HEAT EXCHANGER C SPOOL PRESSURE
	PRESSURE DR PDE-46 PDE-48 PDE-53 PDE-60 PDE-65	DP MAIN HEAT EXCHANGER BYPASS TRANSIENT DIFFERENTIAL PRESSURE MAIN HEAT EXCHANGER STEADY-STATE DIFFERENTIAL PRESSURE HEAT EXCHANGER A SPOOL DIFFERENTIAL PRESSURE HEAT EXCHANGER B SPOOL DIFFERENTIAL PRESSURE HEAT EXCHANGER C SPOOL DIFFERENTIAL PRESSURE
	MOMENTUM FL FMFE-55 FMFE-61 FMFE-66	JX HEAT EXCHANGER A SPOOL DRAG DISC HEAT EXCHANGER B SPOOL DRAG DISC HEAT EXCHANGER C SPOOL DRAG DISC
	SECONDARY SIDE	
	TEMPERATURE TE-525 TE-627 TE-727 TE-727 TE-557	HEAT EXCHANGER A SECONDARY OUTLET STEADY-STATE TEMPERATURE HEAT EXCHANGER B SECONDARY OUTLET STEADY-STATE TEMPERATURE HEAT EXCHANGER C SECONDARY OUTLET STEADY-STATE TEMPERATURE HEAT EXCHANGER D SECONDARY OUTLET STEADY-STATE TEMPERATURE

Table 2 (continued)										
	SENSOR				DESCR	IPTION				
HEAT	EXCHANGER INSTRU	MENTS	(CONT.)							
	SECONDARY SIDE	CONT.)							
	VOLUMETRIC FE-522 FE-620 FE-720 FE-550	FLOW HEAT HEAT HEAT	EXCHANGER EXCHANGER EXCHANGER EXCHANGER	ABCO	SECONDARY SECONDARY SECONDARY SECONDARY	COOLING COOLING COOLING COOLING	WATER WATER WATER WATER	VOLUMETRIC VOLUMETRIC VOLUMETRIC VOLUMETRIC	FLOW FLOW FLOW	
	PRESSURE PE-526	HEAT	EXCHANGER	A	SECONDARY	INIET P	ESSUR			
GENE	RATOR POWER									
	GENERATOR VOLTAG EEE-9 EEE-10 EEE-11 EEE-12	GENE GENE GENE	RATOR 9 VO RATOR 10 V RATOR 11 V RATOR 12 V		AGE TAGE TAGE TAGE					

. .

GENERATOR CURRENT

E1E=9	GENERATUR	7	LURRENI
EIE-10	GENERATOR	10	CURRENT
EIE-11	GENERATOR	11	CURRENT
EIE-12	GENERATOR	12	CURRENT

HEATER ROD POWER

. .

HEATER CURRENT			
HEATER CORRENT EIE-1301 EIE-1302 EIE-1303 EIE-1304 EIE-1305 EIE-1306	ROD ROD ROD ROD	1 HEATER CURRENT 2 HEATER CURRENT 3 HEATER CURRENT 4 HEATER CURRENT 5 HEATER CURRENT 6 HEATER CURRENT	
EIE-1307 EIE-1308	ROD	7 HEATER CURRENT 8 HEATER CURRENT	
EIE-1310 EIE-1311	ROD	10 HEATER CURRENT 11 HEATER CURRENT	
EIE-1313 EIE-1313 EIE-1314	ROD	12 HEATER CURRENT 13 HEATER CURRENT 14 HEATER CURRENT	
EIE-1315 EIE-1316 EIE-1317 FIE-1318	ROD	15 HEATER CURRENT 16 HEATER CURRENT 17 HEATER CURRENT 18 HEATER CURRENT	
EIE-1320	ROD	20 HEATER CURRENT	

SENSOR		DESTRIPTION
ATER ROD POWER (CO	NT.)	
HEATER CURRENT ELLE-13223 ELLE-13223 ELLE-13224 ELLE-13226 ELLE-13226 ELLE-13227 ELLE-13229 ELLE-13229 ELLE-133301 ELLE-133330 ELLE-1333357 ELLE-13334 ELLE-13334 ELLE-133443 ELLE-133443 ELLE-1334457 ELLE-133554 ELE-133554 ELLE-133554	(CONT.) RATTERR RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	CURRENT CURRENT CURRENT CURRENT CURRENT CURRENT CUURRENT

BREAKWIRE DETECTORS

Table 2 (continued)

.

.

. .

33

. .

	SENSOR	DESCRIPTION
ENE		AN ARTECTRICALLY CONT. Y
PENEI	CAL INSTRUMENTATIO	IN TELECTRICAL, TOUTO,
	BREAKWIRE DETECTI XE-4308 XE-430A	DRS (CONT.) INLET BREAKWIRE DETECTOR OUTLET BREAKWIRE DETECTOR
	RTD POWER EIE-1001B	RTD POWER SUPPLY CURRENT
	DATA ACQUISITION EEE-1026AZ EEE-1026BZ EEE-1026JZ EEE-1026JZ EEE-1026KZ EEE-1026KZ EEE-1026AZ EEE-1026AC EEE-1026AC EEE-1026BC EEE-1026JC EEE-1026JC EEE-1026KC EEE-1026KC EEE-1026KC EEE-1026NC	CALIBRATION SIGNALS ZERO INPUT CHANNELSO TO 127 ZERO INPUT CHANNELS 128 TO 255 ZERO INPUT CHANNELS 1024 TO 1151 ZERO INPUT CHANNELS 1152 TO 1279 ZERO INPUT CHANNELS 1152 TO 1535 ZERO INPUT CHANNELS 1408 TO 1535 ZERO INPUT CHANNELS 1536 TO 1663 ZERO INPUT CHANNELS 1536 TO 1663 ZERO INPUT CHANNELS 128 TO 255 CALIBRATION INPUT CHANNELS 128 TO 255 CALIBRATION INPUT CHANNELS 1024 TO 1151 CALIBRATION INPUT CHANNELS 1024 TO 1151 CALIBRATION INPUT CHANNELS 1152 TO 1279 CALIBRATION INPUT CHANNELS 1152 TO 1279

\$

MISCELLANEOUS INSTRUMENTS TE-521 PURIFICATION COOLING WATER OUTLET TEMPERATURE

IGURE	INSTRUMENT NAME	DESCRIPTION			BANGE		COMMENTS
1	EEE- 1026AZ	ZERO INPUT CHANNELSO TO 127	0	TO	40	MV	
2	EEE-1026AC	CALIERATION INPUT CHANNELS 0 TO 127	0	TO	40		
3	PDE-180	SHPOUD EOX DIFFERENTIAL PRESSURE FROM LEVEL A TO LEVEL B	0	TO	151	INCHES	QUESTIONABLE
	PDE- 181	SHROUD BOX DIFFERENTIAL PLASSABLE PROM LEVEL B TO LEVEL C	0	10	151	INCHES	CUZSTIONABLE
5	PDE-182	SHROUD BOX DIFFEENTIAL PRESSURE FROM LEVEL C TO LEVEL D	0	TO	151	INCHES	QUESTIONAULE
6	PDE-183	SHROUD BOX DIFFERENTIAL PRESSURE PROM LEVEL D TO LEVEL D/E	0	TO	151	INCHES	QUESTIONABLE
7	PDE-184	SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL D/E TO LEVEL E	0	TO	151	INCHES	QUESTIONABLE
8	PDE-185	SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL E TO LEVEL E/P	0	TU	151	INCHES	QUESTIONABLE
9	PE-26	HORIZONTAL INLET SPOOL TRANSIENT PRESSURE	0	IO	3000	PSIG	
10	PE-42	BORIZONTAL COTLET SPOOL TRANSIENT PEZSSURE	0	TO	3000	PSIG	
11	PE-44	UPSTREAM MAIN HEAT EXCHANGER TRANSIENT PRESSUPE	0	TO	3000	PSIC	
12	2E-76	PRIMARY PUMP SUCTION TRANSIENT PRESSURE	0	10	3000	PSIG	
13	PE-106	PRESSURIZER VAPOR TRANSIENT PRESSURE	0	10	3000	PSIG	
14	PE-156	TEST SECTION INLET TRANSIENT PRESSURZ	0	TO	3000	PSIG	
15	PE-201	TEST SECTION OUTLET TRANSIENT PRESSURE	0	TO	3000	PSIG	
16	PE-412	PRESSURE SUPPERSSION TRANSIENT PRESSURE	0	TO	200	PSIG	QUESTIONABLE
17	PE-526	HEAT EXCHANGER A SECONDARY INLET PRESSURE	0	TO	350	PSIC	
18	PE-616	DEMINEBALIZED WATER SUPPLY HEADER PRESSURE	0	TO	350	PSIG	
19	PDE-46	MAIN HEAT EXCHANGER RYPASS TRANSIENT DIFFERENTIAL PRESSURE	-200	то	200	PSID	
20	PDE-78	PRIMARY PUMP TRANSIENT DIFFERENTIAL PRESSURE	- 1000	TO	1000	PSLO	
21	PDE-200	BUNDLE TRANSIENT DIFFERENTIAL PRESSURE	-50	70	50	PSID	

Table 3. Thermal-Hydraulic Test Facility Test 3.05.5B

FIGURE	INSTRUMENT NAME	DESCRIPTION			PANGE		COMMENTS
22	PEPE-22	HORIZONTAL INLET SPOOL DRAG DISC	-250000	Tu	250000	13/752	
23	PEPE-38	FORIZONTAL OUTLET SPOOL DRAG DISC	-250000	TO	250000	LB/PS2	
24	PMFE-170	VERTICAL INLET SPOOL DEAG DISC	-250000	TO	250000	L3/PS2	
25	PRPE-220	VEPTICAL OUTLET SPOOL DRAG DISC	-250000	to	250000	LB/FS2	
26	FE-18A	TEST SECTION INLET STRADY-STATE VOLUMETRIC	0	ro	700	G211	
27	PDB-21	HORIZONTAL INLET SPOOL TRANSIENT DIFFERENTIAL PRESSURE	-200	TO	200	2510	
28	PDE-35	HORIZONTAL CUTLET SPOOL TEANSIENT DIFFERENTIAL PRESSURE	-200	TO	200	PSID	
29	PE-179	VERTICAL INLET SPOCE TRANSIENT PRESSURE	- 0	TL	3000	PSIG	
30	PE-224	VERTICAL OUTLET SPOOL TRANSIENT PRESSURE	n	TO	3000	PSIG	
31	EIE-1339	ROD 39 HEATER CURRENT	0	TO	800	AMPS	
32	EIE-1331	BOD 31 HEATER CURRENT	0	TO	800	ARPS	
33	EIE-1314	BOD 14 HEATER CURRENT	0	TO	800	AMPS	
34	EIE-1313	BOD 13 HEATEB CUEPENT	0	TO	800	AMPS	
35	EIE-1308	BOD 8 HEATER CURRENT	0	TO	800	AMPS	
36	EIE-1306	ROD 6 HEATER CURRENT	0	20	800	AMPS	
37	EIE-1312	ROD 12 HEATER CURRENT	0	TO	800	AMPS	
38	EIE-1307	ROD 7 HEATER CUBRENT	0	TO	800	ANPS	
39	EIE-1321	BOD 21 BEATER CUBRENT	0	TO	300	AMPS	
40	E18-1316	ROD 16 HEATER CURPENT	0	TO	800	AMPS	
41	EIE-1324	ROD 24 HEATER CURRENT	0	TO	800	AMPS	
42	EIE-1362	ECD 62 HEATER CURRENT	0	то	800	AMPS	
43	ELE-1361	BOD 61 HEATER CURRENT	0	TO	800	AMPS	
44	EIE-1364	BOD 64 HEATER CURRENT	0	TO	800	AMPS	
45	EIE-1363	ROD 63 HEATER CUBRENT	0	70	800	AMPS	

FIGURE	INSTRUMENT NAME	DESCRIPTION	* ANGE	COMMENTS
46	EIE-1347	HOD 47 HEATER CURRENT	O TO BOO AMPS	
47	EIE-1338	ROD 38 HEATER CURBENT	0 TO 300 AMPS	
48	EIE-1332	BOD 32 HEATER CURRENT	0 TO 800 AMPS	
49	EIE-1340	ROD 40 HEATER CURSENT	0 TO 300 AS25	
50	ELE- 1348	BOD 48 HEATER CURRENT	0 TO 800 AMPS	
51	EIE-1355	ROD 55 HEATER CUBRENT	0 TO 800 AMPS	
52	BIE-1354	ROD 54 HEATER CURRENT	O TO 800 AMPS	
53	EIE-1345	ROD 45 HEATER CUPRENT	0 TO 800 AMPS	
54	EIE-1349	ROD 49 HEATER CURBENT	O TO BOO AMPS	
55	EIE-1325	ROD 25 HEATER CORBENT	0 TO 800 AMPS	
56	BIE-1335	BOD 35 HEATER CURRENT	0 TO 800 AMPS	
57	EIE-1309	ROD 9 HEATER CURBENT	0 TO 800 AMPS	
58	EIE-1317	ROD 17 HEATES CURRENT	O TO BOO AMPS	
59	E1E-1328	ROD 28 HEATER CURRENT	O TO BOO AMPS	
60	EIE-1301	ROL 1 MEATER CURRENT	0 TU 900 AMPS	
61	E1E-1318	ROD 18 HZATER CUREENT	D TO BOD AMPS	
62	EIZ-1334	BOD 34 HEATER CUREENT	0 TO 800 AMPS	
63	EIE-1326	ROD 26 HEATER CURRENT	O TO 300 AMPS	
64	EIE-1333	BOD 33 HEATER CURBENT	O TO ROO AMPS	
65	EIE-1350	ROD 50 MEATER CUEBERT	O TO BOO AMES	
66	EIE-1344	ROD 44 HEATER CUERENT	O TO 800 AMPS	
67	EIE-1343	ROD 43 HEATER CURRENT	0 TO 800 MPS	
68	EIE-1352	ROD 52 HEATER CURRENT	0 TO 800 AMPS	
69	EIE-1351	ROD 51 HPATER CURRENT	O TO 800 AMPS	
70	EIE-1320	ROD 20 HEATER CURRENT	0 TO 200 ANTS	

. .

the side and i second one

.

.

FIGURE	INSTRUMENT NAME	DESCRIPTION	BANGE	Сомизить
71	EIE-1303	ROD 3 HEATER CURRENT	0 10 800 1	#PS
72	EIE-1305	ROD 5 HEATER CURBENT	0 TO 800 A	8P3
73	EIE-1311	ROD 11 HEATER CURRENT	0 TO - 800 A	#PS
74	EIE-1357	ROD 57 HEATER CUARENT	0 TO 300 A	MPS
75	EIE-1358	ROD 58 HEATER CURRENT	0 TO 800 A	82S
76	EIE-1359	ROD 59 HEATER CURRENT	A 006 OT 0	895
77	EIE-1353	ROD 53 HEATER CUPRENT	A 006 OT 0	NPS
78	FMFE-206	BUNDLE OUTLET SPOOL D2AG DISC	-250000 TO 250000 L	3/FS2
79	SE-72	PRIMARY PUMP SPEED	100 TO 5400 R	PA
80	EIE-1315	ROD 15 HEATER CURRENT	0 TO 800 A	325
81	EIE-1330	BOD 30 HEATER CURRENT	A 008 OT 0	#PS
82	EIE-1323	ROD 23 HEATER CURRENT	0 TO	395
83	EIE-1329	ROD 29 HEATER CUBRENT	0 TO 800 A	825
84	E1E-1356	ROD 56 HEATER CUBRENT	A 006 CT 0	1 95
85	BIE-1337	BOD 37 MEATER CURRENT	A 006 OT 0	NPS
86	EIE-1360	ROD 60 HEATER CURRENT	A 008 OT 0	MPS
87	EIE-1327	ROD 27 HEATER CUERENT	0 TO 800 A	895
88	EIE-1341	ROD 41 HEATER CURBENT	0 TO 800 A	825
89	EIE-1342	ROD 42 HEATER CURPENT	0 TO 800 A	825
90	ELE-1302	BOD 2 HEATER CURSENT	0 TO 800 A	MPS
91	EIE-1310	ROD 10 HEATES CURRENT	0 TO 800 A	MPS
92	EIE- 1304	ROD 4 HEATER CURRENT	0 TO 800 A	MES
93	EIE-9	GENERATOR 9 CURRENT	0 TO 10000 A	MPS
94	EIE-10	SENERATOR 10 CURRENT	G TO 10000 A	89S
95	EIE-11	GENERATOR 11 CURRENT	0 TO 10000 A	MPS

Table 3 (continued)

-

.

.

FIGURE	INSTRUMENT NAME	DESCRIPTION			BANGE			CONNEATS
96	EIE-12	GENERATOR 12 CURRENT	0	10	10000	AMPS		
97	EEE-9	GENERATOR 9 VOLTAGE	0	TO	300	VOLIS		
98	EEE-10	GENERATOR 10 VOLTAGE	0	TO	300	VOLTS		
99	EEE-11	GENERATOR 11 VOLTAGE	0	TO	300	VOLTS		
100	EEE-12	GENERATOR 12 VOLTAGE	0	ro	100	VOLTS		
101	TE-210A	TEST SECTION OUTLET LINE STEADY-STATE TEMPERATURE	32	то	800	DEGREES	2	
102	EIE-10018	BTD POWER SUPPLY CUBRENT	0	TO	2	**		
103	TE-525	HEAT EXCHANGES A SECONDARY OUTLET STEADY-STATE TEMPERATURE	32	то	800	DRGRRES	F	
104	TE-627	HEAT EXCHANGER B SECONDARY OUTLET STEADY-STATE TEMPERATURE	32	₫C	310	DEGREES	P	
105	PE-16	DOWNSTREAM HCV 2 TRANSIENT PRESSURE	0	TO	3000	PSIG		
106	PE-27	INLET PLENUM TRANSIENT PRESSURE	0	ro	3000	PSIC		
107	PE-43	OUTLET PLENUM TRANSIENT PRESSURE	0	T'D	3000	PSIG		
108	EWE-77A	PRIMARY PUMP POWER	0	Tu	750	RW		
109	FE-19	HORIZONTAL INLET SPOOL VOLUMETRIC FLCW	-906	TO	900	GPM		
110	FE-166	VERTICAL INLET SPOOL VOLUMETRIC PLOW	-960	TO	900	GPM		
111	PE-425	INLET BLOWDOWN LINE TRANSIENT PRESSURE	0	TO	3000	PSIG		FAILED INSTRUMENT
112	FE-522	HEAT EXCHANGER A SECONDARY COOLING WATER VOLUMETRIC PLOW	đ	20	150	GPM		
113	FE-550	HEAT EXCHANGER D SECONDARY COOLING WATER VOLUMETRIC FLOW	9	TG	50	628		
114	FE-620	HEAT EXCHANGER & SECONDARY COOLING WATER VOLUMETRIC FLOW	0	TO	150	GPM		
115	FE-720	HEAT EXCHANGER C SECONDARY COOLING WATER VOLUMETRIC FLOW	1	то	150	GPM		
116	EEE-102682	ZERO INPUT CHANNELS 128 TO 255	0	. O.	40	a v		
117	EEE-1026 BC	CALIBRATION INPUT CHANNELS 128 TO 255	0	10	4.7	AV		

39

14

NA ME	DESCRIPTION		RANGE	SINSESO,
DE-186	SHROUD BOX DIFFERRITAL PRESSURE FROM LEVEL	0 10	151 INC	HRS QUESTIONAELS
DE-187	SHROUD BOX DIFFRENTIAL PRESSURE FROM LEVEL PRESSURE FIG	0 10	151 ING	HES QUESTIONABLE
DZ-188	SHROUD BOX DIFFERINTIAL PRESSURE FROM LEVEL "7,6 TO LEVEL G	0 10	151 ISI	RES QUESTIONABLE
08-189	SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL G TO UPPER TAP	0 10	151 IN	HES QUESTYONABLE
##E55	BEAT EXCHANGER A SPUOL DRAG DISC	-20000 TO	20000 18,	PS2
MPE-61	REAT EXCHANGER 3 SPOOL DEAG DISC	-20000 TO	20000 LB	2 S.d.
MF 8-66	HEAT EXCHANGES C SPECL DRAG DISC	-20000 70	20000 LB,	PS 2
#FE-114	PRESSORIZER LINE SPOOL DRAG DISC	-20000 10	20000 LB,	PS 2
#FE-254	BUNDLE INLET UPPER SPOOL DRAG DISC	-20000 70	20000 LB,	PS 2
MFE-264	BUNDLE INLET LOWER SPOOL DAAG DISC	-20000 10	20000 LB,	PS2
8-15	PUMP BYPASS SPOUL PERSSURE	0 TO	3000 PS	6
E-58	REAT EXCHANGER & SPOOL PRESSURE	0 70	3000 23	6
E-63	HEAT EXCHANGER B SPUOL PRESSURE	0 TO	3000 PS	6
8-68	HEAT EXCHANGES C SPOOL PRESSURE	0 70	3000 PS	
E-118	PRESSURIZER LINE SPOOL PRESSURE	0 70	3000 PS	9
E-203	BUNDLE OUTLET SPOOL TRANSIENT PRESSURE	0 TO	3000 25	10
E-258	BUNDLE INLET LOWER SPOOL PRESSURE	0 10	3000 PS	6
E-268	BUNDLE INLET LOWER SPOOL PRESSURE	0 TO	3000 PS	5
8-286	SHROUD PLENUM OUTLET PRESSURE	0 TO	3000 25	6
DE-53	HEAT EXCHANGER A SPOOL DIFFEENTIAL PRESSURE	-50 10	50 PS	D
DE-60	HEAT EXCHANGER B SPOOL DIFFERENTIAL PRESSURE	-50 70	50 PS.	0
DE-65	HEAT EXCHANGER C SPOOL DIFFERENTIAL PAESSURE	-50 TO	50 PS	0
02-111	PAESSUAIZER LINE SPOOL DIFFERENTIAL PRESSURE	-50 70	50 PS	a.
	02-13/ 02-138 02-138 02-138 7872-55 7872-55 7872-55 7872-55 7872-254 7872-254 7872-254 7872-254 78-268 78-258 78-258 78-258 78-258 78-258 78-258 78-258 78-258 78-268 78-258 78-268 78-2887 78-2887 78-2887 78-2887 78-2887 78-2887 78-2887 78-2887 78-2887 78-2887 78-2887 78-2887 78-2887 78-28	DEF-18/ DROUD DOX DIFFERENTIAL PRESSURE FROM LEVEL 0E-188 SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL 0E-189 SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL 0E-189 SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL 0FE-55 SHROUD BOX DIFFERENTIAL PRESSURE FROM LEVEL 0FE-55 BEAT EXCHANGER SPOOL DRAG DISC MFE-114 PRESSORIZER LINE SPOOL DRAG DISC MFE-114 PRESSORIZER LINE SPOOL DRAG DISC MFE-114 PRESSORIZER LINE LOVE DRAG <td>DE-101 SHROUD DOX DIFFERENTIAL PERSONA CAUN LEVEL 0 10 D2-108 SHROUD DOX DIFFERENTIAL PERSONA CAUN LEVEL 0 10 D2-108 SHROUD DOX DIFFERENTIAL PERSONA CAUN LEVEL 0 10 D2-108 SHROUD DOX DIFFERENTIAL PERSONA CAUN LEVEL 0 10 D2-109 SHROUD DOX DIFFERENTIAL PERSONA CAUN LEVEL 0 10 MFE-55 BEAT EXCHANGER A SPOOL DRAG DISC -20000 TO 10 MFE-66 BEAT EXCHANGER C SPECIL DRAG DISC -20000 TO 10 MFE-114 PRESSONCENER INLET UPER SPOOL DRAG DISC -20000 TO 10 MFE-554 BUNDLE INLET UPER SPOOL DRAG DISC -20000 TO 10 MFE-264 PRESSONCENER SPOOL DRAG DISC -20000 TO 10 MFE-264 BUNDLE INLET LOWER SPOOL DRAG DISC -20000 TO 10 MFE-264 BUNDLE INLET LOWER SPOOL PRAG DISC -20000 TO 10 MFE-264 BUNDLE INLET LOWER SPOOL PRAG DISC -20000 TO 10 PE-63 HEAT EXCHANGER A SPOOL PRAG DISC -20000 TO 10 PE-64 BUNDLE INLET LOWER SPOOL PRAG DISC -20000 TO 10 PE-258<!--</td--><td>DE-191 5H0UU POLULETESSURFACTAL PRESSURE FROM LETTL 0 151 140 DE-189 SHROUU POLULETESSURFACTAL PRESSURE FROM LETTL 0 151 140 DE-189 SHROUU POLUETESSURFACTAL PRESSURE FROM LETTL 0 151 140 PRE-189 SHROUU BOLUP POLUPERS TAL 152 0 151 140 PRE-65 BEAT EXCHANCER A SPOUL PAG DISC -20000 10 20000 191 MRE-19 SHROUD BORDE INVESR S SPOUL PAG DISC -20000 10 20000 10 MRE-114 PRESSURTE INVESR S SPOUL PAG DISC -20000 10 20000 10 MRE-254 BURDE INVEST OFFER SPOUL PAG DISC -20000 10 20000 10 MRE-264 BURDE INVEST OFFER SPOUL PRESSURE 0 10 20000 10 20000 10 MRE-264 BURDE INVEST OFFER SPOUL PRESSURE 0 10 20000 10 20000 10 20000 10 20000 10 20000 10 20000 10 20000 10 20000</td></td>	DE-101 SHROUD DOX DIFFERENTIAL PERSONA CAUN LEVEL 0 10 D2-108 SHROUD DOX DIFFERENTIAL PERSONA CAUN LEVEL 0 10 D2-108 SHROUD DOX DIFFERENTIAL PERSONA CAUN LEVEL 0 10 D2-108 SHROUD DOX DIFFERENTIAL PERSONA CAUN LEVEL 0 10 D2-109 SHROUD DOX DIFFERENTIAL PERSONA CAUN LEVEL 0 10 MFE-55 BEAT EXCHANGER A SPOOL DRAG DISC -20000 TO 10 MFE-66 BEAT EXCHANGER C SPECIL DRAG DISC -20000 TO 10 MFE-114 PRESSONCENER INLET UPER SPOOL DRAG DISC -20000 TO 10 MFE-554 BUNDLE INLET UPER SPOOL DRAG DISC -20000 TO 10 MFE-264 PRESSONCENER SPOOL DRAG DISC -20000 TO 10 MFE-264 BUNDLE INLET LOWER SPOOL DRAG DISC -20000 TO 10 MFE-264 BUNDLE INLET LOWER SPOOL PRAG DISC -20000 TO 10 MFE-264 BUNDLE INLET LOWER SPOOL PRAG DISC -20000 TO 10 PE-63 HEAT EXCHANGER A SPOOL PRAG DISC -20000 TO 10 PE-64 BUNDLE INLET LOWER SPOOL PRAG DISC -20000 TO 10 PE-258 </td <td>DE-191 5H0UU POLULETESSURFACTAL PRESSURE FROM LETTL 0 151 140 DE-189 SHROUU POLULETESSURFACTAL PRESSURE FROM LETTL 0 151 140 DE-189 SHROUU POLUETESSURFACTAL PRESSURE FROM LETTL 0 151 140 PRE-189 SHROUU BOLUP POLUPERS TAL 152 0 151 140 PRE-65 BEAT EXCHANCER A SPOUL PAG DISC -20000 10 20000 191 MRE-19 SHROUD BORDE INVESR S SPOUL PAG DISC -20000 10 20000 10 MRE-114 PRESSURTE INVESR S SPOUL PAG DISC -20000 10 20000 10 MRE-254 BURDE INVEST OFFER SPOUL PAG DISC -20000 10 20000 10 MRE-264 BURDE INVEST OFFER SPOUL PRESSURE 0 10 20000 10 20000 10 MRE-264 BURDE INVEST OFFER SPOUL PRESSURE 0 10 20000 10 20000 10 20000 10 20000 10 20000 10 20000 10 20000 10 20000</td>	DE-191 5H0UU POLULETESSURFACTAL PRESSURE FROM LETTL 0 151 140 DE-189 SHROUU POLULETESSURFACTAL PRESSURE FROM LETTL 0 151 140 DE-189 SHROUU POLUETESSURFACTAL PRESSURE FROM LETTL 0 151 140 PRE-189 SHROUU BOLUP POLUPERS TAL 152 0 151 140 PRE-65 BEAT EXCHANCER A SPOUL PAG DISC -20000 10 20000 191 MRE-19 SHROUD BORDE INVESR S SPOUL PAG DISC -20000 10 20000 10 MRE-114 PRESSURTE INVESR S SPOUL PAG DISC -20000 10 20000 10 MRE-254 BURDE INVEST OFFER SPOUL PAG DISC -20000 10 20000 10 MRE-264 BURDE INVEST OFFER SPOUL PRESSURE 0 10 20000 10 20000 10 MRE-264 BURDE INVEST OFFER SPOUL PRESSURE 0 10 20000 10 20000 10 20000 10 20000 10 20000 10 20000 10 20000 10 20000

.

FIGURE	INSTRUMENT NAME	DESCRIPTION			RANGE			COMMENTS
141	PDE-203	TEST SECTION TRANSIENT DIPPERENTIAL PRESSURE	-50	TO	50	PSID		
142	PDE-251	BUNDLE INLET SPOOL DIFFERENTIAL PRESSURE	-50	TO	50	PSID		
143	FE-34	HOBIZONTAL OUTLET SPOOL VOLUMETRIC FLOW	-900	TO	900	GPM		
144	FE-216	VERTICAL OUTLET SPOOL VOLUMETRIC FLOW	-819	TO	819	GPR		
145	DE-20	HOBIZONTAL INLET SPOOL DENSITY	0	TO	63	LB/CF		
146	DE-36	BUNDLE INLET SPOOL 2 DENSITY	0	TO	63	LB/CF		
147	DE- 168	VERTICAL INLET SPOOL DENSITY	0	TO	63	LB/CF		
148	DE-218	VEBTICAL OUTLET SPOOL DENSITY	0	TO	63	LB/CP		
149	XE-430B	INLET GETAKNIRE DETECTOR	0	TO	5	VOLTS		
150	XE-430A	OUTLET BREAKWIRE DETECTOR	0	TO	5	VOLTS		
151	FE-1A	PRIMARY PUMP FLOW	0	TO	800	GPM		
152	TDE-28	DIFFERENTIAL TEMPERATURE TRANSMITTER	-50	TO	50	DEGREES	Y	OUESTIUNABLE
153	PDE-30	TEST SECTION STEADY-STATE DIFFERENTIAL PRESSURE	0	ro	50	PSIO		
154	PE-32	TEST SECTION OUTLET STEADY-STATE PRESSURE	500	10	3951	PSIG		
155	PDE-43	MAIN HEAT EXCHANGER STEADY-STATE DIFFERENTIAL PRESSURE	0	TO	24	PSID		
156	LE-100	PRESSUBIZER LIQUID LEVEL	0	TO	150	INCHES		
157	PE-102	PRESSURIZER STEADY-STATE PRESSURE	500	TO	2500	PSIG		
158	TE-727	HEAT EXCHANGER C SECONDARY OUTLET STEADY-STATE TEMPERATURE	32	TO	800	DEGREES	٢	
159	TE-557	HEAT EXCHANGER D SECONDARY OUTLET STEADY-STATE TEMPERATURE	32	TO	800	DEGREES	ų	
160	TE-288	MAIN HEAT EXCHANGER MIXING TEE STPADY-STATE TEMPERATURE	32	то	800	DEGREES	2	
161	T 2~4B	BASE PRIMARY STEADY-STATE "EMPERATORE	32	то	800	DEGREES	8	
162	TE-101	PRESSURIZER VAPOR STEADY-STATE TEMPERATORS	32	TO	800	DEGREES	8	
163	TE-615	DEMINERALIZED WATER 6 INCH HEADER	32	то	800	DEGREES	۴	

....

* . . *

	e	5		
		5		
		i		
		2		
	÷	ł		
	ŝ	ŝ		
	1			
	ę	9		
	¢	з		
ŝ		2		
		2		
1	1	ŋ		
	4	6		
1	2	i		
2	2			
1	e	2		
	3	ę	Ŀ	
1	ŀ	4		

10 202-261 30012 TANGLET DIFFIGATION (MEMBER) 500 70 100 </th <th>FIGURE</th> <th>I NSTRUMENT NAME</th> <th>DESCEIPTION</th> <th>SANGE</th> <th>COMPANES</th>	FIGURE	I NSTRUMENT NAME	DESCEIPTION	SANGE	COMPANES
10 202-71 311.T 321.SECCONS TANTANT DIFFUNCTION -> 1 0	164	202-261	BUBDLE TRANSIERT DIFFERRATIAL ARCSING	Sou sou sou INCERS way	2.H
16 08-044 080017 07117 5001 36417 36017 36117 36017 36117 36017 36117 36017 36117 36017 36117 36017 36117 36017 36117 36017 36117 36017 36117 36017 36117 36017 36117 <	165	PDE-271	SPLIT DUARCORER TRANSIGNT DIFFURINTIAN PRESSURE	-0 TO 6 PSID	
(b) D^2-2004 $03N0L$ $071TT$ $500L$ $DMMTT$ $500L$	166	DE-204A	BUNDLE OUTLET SPOOL DENSITY	0 TO 6.3 LE/CF	
16 05-204C 58012 01111 57041 01111 57041 01111 57041 01111 57041 17 15-1030 013012 11111 11111 1111 1111 1111 1111 1111 111111 111111 111111 11111<	167	DE-2048	BUNDLE CUTIET SPOOL DENSITY	0 70 0 Lb/CF	
103 DE-26.2M 0900.12 ISUET SPOOL DEMOLE ISUET DEMOLE DEMOLE ISUET DEMOLE DEMOLE<	168	DE-204C	BUNDLE OUTLET SPOOL DENSITY	0 70 63 1.9/CF	
(1) DE-2628 GADLE INFE FOOL DEF DE DE <thde< th=""> <thde< th=""> <thde< th=""></thde<></thde<></thde<>	169	DE-2628	BUNDLE INLET SPOOL DENSITY	0 TO 63 LB/CF	
(1) LE-1400 UJIBAL L[GUT LEVEL PROS 1 -10 10 VOLIS LEVEL PROS 1 PROS QUESTIONALT 173 LE-1401 60Y0LE LLVUTD LEVEL PROS -10 10 VOLS QUESTIONALT 173 LE-1403 60Y0LE LLVUTD LEVEL PROS -10 10 VOLS QUESTIONALE 174 LE-1403 60Y0LE LLVUTD LEVEL PROS -10 10 VOLS QUESTIONALE 174 LE-1403 60Y0LE LLVUTD LEVEL PROS -10 10 VOLS QUESTIONALE 174 LE-1407 60Y0LE LLVUTD LEVEL PROS -10 10 VOLS QUESTIONALE 174 LE-1407 60Y0LE LLVUTD LEVEL PROS QUESTIONALE QUESTIONALE 174 LE-1407 60Y0LE LLVUTD LEVEL PROS QUESTIONALE QUESTIONALE 174	170	DE-2623	PUNDLE INLET SPOOL DEWSITY	3 TO 63 12/CP	
(17) LET-1401 60 80 LE LEV FUGE	171	LE-1400	DURDER FIGUED LEVEL PRORE 0	-10 TO 10 VOLTS	QUESTICALL?
173 LB-140.2 BONDLE LIQUID LEVEL FOOR 3	172	L2-1401	BUNDLE LIQUID LEVEL PEOBE 1	-10 TO 10 VOLTS	QUESTIONAPLE
174 LE-1403 BBNDLE LTOUD LEVEL FOBE 3 -10 TO TO VULTS QUESTIONNUE 175 LE-1405 BBNDLE LLOUD LEVEL FOBE -10 TO 10 VULTS QUESTIONNUE 177 LE-1405 BBNDLE LLOUD LEVEL FOBE -10 TO 10 VULTS QUESTIONNUE 177 LE-1405 BBNDLE LLOUD LEVEL FOBE -10 TO 10 VULTS QUESTIONNUE 178 LE-1407 BBNDLE LLOUD LEVEL FOBE -10 TO 10 VULTS QUESTIONNUE 179 LE-1407 BBNDLE LLOUD LEVEL FOBE -10 10 VULTS QUESTIONNUE 170 LE-1407 BBNDLE LLUUD LEVEL FOBE -10 10 VULTS QUESTIONNUE 180 LE-1410 BBNDLE LUUD LEVE FOBE -10 <	173	LE-1462	BUNDLE LIQUID LEVEL PROBE 2	-10 TO 10 NOLTS	OUESITONAALE
175 LE-1404 BUBDLE LUULD LEVEL PODE 6 177 LE-1405 BUBDLE LUUD LEVEL PODE 6 -10 10 VULTS	174	LE-1403	BUNDLE LIQUID LEVEL PROBE 3	-10 TO 10 VOLTS	DIESTIONABLE
176 LE-1405 BUNDE LAUUD LEVEL PROBE 6 -10 70 10 7015 QUESTIONALE 177 LE-1407 BUNDE LAUUD LEVEL PPOBE 6 -10 70 10 7015 QUESTIONALE 178 LE-1407 BUNDE LAUUD LEVEL PPOBE 7 -10 70 10 7015 QUESTIONALE 179 LE-1407 BUNDE LAUUD LEVEL PFOBE 7 -10 70 10 7015 QUESTIONALE 180 LE-1403 BUNDE LAUUD LEVEL PFOBE 7 -10 70 10 7015 QUESTIONALE 180 LE-1410 BUNDE LAUUD LEVEL PFOBE 7 10 7017 VIDE VIDE VIDE 10 7 10 7 10 7 10 7 10 7 10 7 10 10 10 10 10 </td <td>175</td> <td>LE-1404</td> <td>BUNDLE LIQUID LEVEL PROBE 4</td> <td>-10 TO 10 VOLTS</td> <td>CHESTICNASLE</td>	175	LE-1404	BUNDLE LIQUID LEVEL PROBE 4	-10 TO 10 VOLTS	CHESTICNASLE
177 LE-1406 ENMULE LJUUD LEVEL PMOBE 6 178 LE-1407 BUMUL LUUD LEVEL PMOBE 7 -10 10 VULTS UUESTIDNALE 179 LE-1407 BUMUL LUUD LEVEL PMOBE 7 -10 10 VULTS CUESTIDNALE 180 LE-1440 BUMUL LUUD LEVEL PMOBE 9 -10 10 VULTS CUESTIDNALE 180 LE-1441 BUMUL LUUD LEVEL PMOBE 9 -10 10 VULTS CUESTIDNALE 181 LE-1441 BUMUL LUUD LEVEL PMOBE 10 VULTS CUESTIDNALE 182 LE-1441 BUMUL LEVEL PMOBE 10 LVUTS CUESTIDNALE 183 LE-1441 BUMUL LVUT PMOBE 10 VULTS CUESTIDNALE 184 LE-1441 BUMUL LVUT PMOBE 10 V	176	LE-1405	BUNDLE LIQUID LEVEL PROBE 5	-10 TO 10 VOLTS	QUESTICHABLE
178 LE-1407 d030L2 LQUID LEVEL P705E 7 -10 T0 T0 <tht0< th=""> T0 T0 <tht0< td="" th<=""><td>177</td><td>LE-1406</td><td>BUNDLE LIQUID LEVEL PROBE 6</td><td>-10 LO 10 VOLTS</td><td>UESTIONALS.</td></tht0<></tht0<>	177	LE-1406	BUNDLE LIQUID LEVEL PROBE 6	-10 LO 10 VOLTS	UESTIONALS.
179 LE-1408 BUNDLE LUUID LEVIL FOUE	178	LE-1407	BUNDLE LIQUID LEVEL PROBE 7	-10 10 10 VULTS	CUESTIONACE
180 LE-1409 BUNDLE LUCID LEVEL FROME 9 -10 10 VULTS QUESTIONABLE 181 LE-1410 BUNDLE L'QUID LEVEL PROME 10 VULTS QUESTIONABLE 182 LE-1411 BUNDLE L'QUID LEVEL PROME 10 VULTS QUESTIONABLE 183 LE-1411 BUNDLE L'QUID LEVEL PROME 10 VULTS QUESTIONABLE 184 LE-1412 BUNDLE LYQUID LEVEL PROME 12 PNO PTO	179	LE-1408	BUNDI - TIGBID TEAST BROBE 3	-10 TO 10 VOLTS	QUESTIONABLE
181 LE-1410 BUNDLE L.VulD LEVEL FOUR FOUR <td>180</td> <td>E041-31</td> <td>BUNDER LIGGID LEVEL PROBE 9</td> <td>-10 TO 10 VOLTS</td> <td>QUESTIONABLE</td>	180	E041-31	BUNDER LIGGID LEVEL PROBE 9	-10 TO 10 VOLTS	QUESTIONABLE
182 LE-1411 BUNDLE LEVEL FOBE 11 -10 T0 V0 V0 CUESTIONANT 183 LE-1412 BUNDLE LIQUT ERVEL FROBE 12 -10 V0 10 V0 <its< td=""> CUESTIONANT 184 LE-1412 BUNDLE LIQUT ERVEL FROBE 12 -10 V0 10 V0ITS CUESTIONANT 184 LE-1413 BUNDLE LIQUT ERVEL FROBE 13 -10 T0 V0ITS QUESTIONANLE 185 LE-1416 BUNDLE LIQUT LEVEL FROBE 13 -110 T0 V0ITS QUESTIONANLE 186 LE-1416 BUNDLE LIQUT LEVEL FROBE 14 -110 T0 V0ITS QUESTIONANLE 187 LE-1417 BUNDLE LIQUT LEVEL FROBE 14 -110 T0 V0ITS QUESTIONANLE 188 LE-1417 BUNDLE LIQUT LEVEL FROBE 15 V0 T0 QUESTIONANLE 180<td>181</td><td>LE-1410</td><td>04 20098 TRATT CIPS. T ATOMDS</td><td>-10 To. 10 VOLTS</td><td>CORSTONABLE</td></its<>	181	LE-1410	04 20098 TRATT CIPS. T ATOMDS	-10 To. 10 VOLTS	CORSTONABLE
133 LE-1412 BUNDLE LIQUTD LEVEL PROBE 12 -10 .0 10 VOLTS (UNSTIDMAL) 164 LE-1413 BUNDLE LIQUTD LEVEL PROBE 13 -10 10 VOLTS QUESTIDMAL) 165 LE-1414 BUNDLE LIQUTD LEVEL PROBE 13 -10 10 VOLTS QUESTIONARLE 165 LE-1414 BUNDLE LIQUTD LEVEL PROBE 14 -11 10 VOLTS QUESTIONARLE 166 LE-1415 BUNDLE LIQUTD LEVEL PROBE 15 -11 10 VOLTS QUESTIONARLE 187 LE-1416 BUNDLE LIQUTD LEVEL PROBE 15 -10 20 10 VOLTS QUESTIONARLE 188 LE-1417 BUNDLE LIQUTD LEVEL PROBE 17 -10 20 10 VOLTS QUESTIONARLE	182	LE-1411	BUNDLE LI, UID LEVEL PROBE 11	-10 TO 10 VOLTS	CURSTIONARI P
184 LE-1413 BUBDLE LEVEL PROME 13 -10 T0 T0 T0 VOLTS QUESTIONABLE 185 LE-1414 BUBDLE LZVEL PROME 14 -10 T0 VOLTS QUESTIONABLE 185 LE-1414 BUBDLE LZVEL PROME 14 -10 T0 VOLTS QUESTIONABLE 186 LE-1415 BUNDLE LZVEL PROME 15 -10 T0 VOLTS QUESTIONABLE 188 LE-1417 BUNDLE LEVEL PROME T0 VOLTS QUESTIONABLE	183	LE-1412	BUNDLE LIQUID LEVEL PROBE 12	-10 10 10 VOLTS	STILVAULTS'S
185 LE-1414 BUNDLE LEVEL ROMP 14 -1.1 10 10 VOLTS QUESTIONARLE 186 LE-1415 BUNDLE LEVEL PROBE 15 -10 10 VOLTS QUESTIONARLE 186 LE-1415 BUNDLE LEVEL PROBE 15 -10 10 VOLTS QUESTIONARLE 188 LE-1417 BUNDLE LEVEL PROBE 17 -10 20 10 VOLTS QUESTIONARLE	184	LE-1413	BUNDLE LIGUI LEVEL PROBE 13	-10 TC 10 VOLTS	QUPSTIONAPLE
186 LE-1415 BUNDLE LEVEL PROBE 15 -10 10 10 VOLTS QUESTIONALE 187 LE-1417 BUNDLE LEVEL PROBE 15 -10 10 VOLTS QUESTIONALE 189 LE-1417 BUNDLE LEVEL PROBE 17 -10 10 VOLTS QUESTIONALE	185	LE-1414	BUNDLE LIGUID LEVEL PROPP 14	-1: TO 1 9 VOLTS	QUESTIONARLY
187 LE-1416 BUNDLE LIQUID LEVEL PROBE 16 -10 Tr 10 VOLTS URESTIONABLE 188 LE-1417 BUNDLE LIQUID LEVEL PROBE 17 -10 TO 10 VOLTS QUESTIONABLE	186	LE-1415	SUNJER LIQUID LEVEL PROBE 15	-10 10 10 VOLTS	QUESTIONADLE
188 LE-1417 BUNDLE LIQUID LEVEL PROBE 17 -10 70 10 VOITS QUESTIONABLE	187	LE-1416	BUNDLE LIQUID LEVEL PROBE 15	-10 TY 10 VOLIS	QUESTIONARSE
	188	LE-1417	BUNDLE LIQUID LEVEL PROBE 17	-10 TO 10 VOLTS	QUESTIONABLE

.

+

FIGURE	INSTRUMENT NAME	DESCRIPTION	RANGE	COMMENTS
189	LE-1418	BUNDLE LIQUID LEVEL PROBE 18	-10 TO 10 VOLTS	QUESTIONABLE
190	LE-1419	BUNDLE LIQUID LEVEL CALIBRATION	-10 TO 10 VOLTS	FAILED INSTRUMENT
191	FE-51	HEAT EXCHANGER & SPOOL VOLUMETRIC FLOW	-225 TC 225 GPM	
192	FE-59	HEAT EXCHANGER & SPOOL VOLUMETRIC FLOW	-225 TO 225 GPM	
193	FE-64	HEAT EXCHANGER C SPOOL VOLUMETRIC FLOW	-225 TO 225 GPM	
194	FE-232	INNER SEAL COOLANT VOLUMETRIC FLOW	-10 1.) 10 GPM	
195	FE-110	PRESSURIZER LINE SPOOL VOLUMETRIC FLOW	-5/ 10 57 GPM	
196	FE-202	BUNDLE OUTPUT LOWER VOLUMETRIC FLOW	-900 TO 900 3PH	
197	FE-250	BUNDLE INLET UPPER VOLUMETPIC FLOW	- 900 TO 900 GPM	
198	FE-260	BUNDLE INLET LOWER VOLUMETRIC PLON	-900 TO 900 GPM	
199	FE-280	PURGE LINE RETURN VOLUMETRIC PLOP	-66 10 60 3PM	
200	DE-262C	BUNDLE INLET SPOCE DENSITY	0 TO 63 L8/CP	
201	EEE- 102612	ZERO INPUT CHANNELS 1024 TO 1151	0 TO 40 MV	
202	EEE-10261C	CALIBRATION INPUT CHANNELS 1024 TO 1151	0 TO 40 MV	
203	TE-3298C	SHEATH THERBOCOUPLE, ROD 29, LEVEL C	J2 TO 1897 DEGREES F	
204	TE-32980	SHEATH THERMOCOUPLE, ROD 29, LEVEL D	32 TO 1897 DEGREES F	
205	TE-32942	SHEATH THERMOCOUPLE, ROD 29, LEVEL E	32 TO 1897 DEGERES P	
206	TE-32988	SHEATH THERMOCOUPLE, ROD 29, LEVEL B	12 TO 1697 DEGREES P	
207	TE-33980	SHEATH THERMOCOUPLE, EUD 39, LEVEL D	32 TO 1397 DEGREES P	
208	TE-33988	SHEATH THERMOCOUPLE, ROD 39, LEVEL B	32 TO 1897 DEGREES P	
209	TE-339AC	SHEATH THERMOCOUPLE, ROD 39, LEVEL C	32 TO 1697 DEGREES F	
210	TE-353BE	SHEATH THERMOCOUPLE, FOD 53, LEVEL E	32 TO 1897 DEGREES P	
211	1E-338BC	SHEATH THEBNOCOUPLE, ROD 38, LEVEL C	32 TO 1397 DEGREES F	
212	TE-33860	SHEATH THEENOCOUPLE, 200 38, LEVEL D	32 TO 1997 DEGREES F	
213	TE-J38AB	SHEATH THERMOCOUPLE, ROD 38, LEVEL B	32 TO 1417 DEGREES F	

43

· · ·

FIGURE	INSTRUMENT NAME	DESCRIPTION	ZANGE	COMMENTS
214	T8-354CC	SHEATH THERMOCOUPLE, ROD 54, LEVEL C	32 TO 1897 DEGREES F	
215	TE-354 AD	SHEATH THERBOCOUPLE, ROD 54, LEVEL D	32 TO 1897 DEGREES P	
2 16	18-354CA	SHEATH THERMOCOUPLE, BOD 54, LEVEL A	32 TO 1897 DEGREES P	
217	TE-354CB	SHEATH THERMOCOUPLE, NOD 54, LEVEL B	32 TO 1897 DEGREES F	
218	TE-1234	SUBCHANNEL NUMBER 34 THERMOCOUPLE	32 TO 1897 DEGREES F	
219	TE-331CF	SHEATH THERBOCOUPLE, ROD 31, LEVEL F	32 TO 1897 DEGREZS P	
220	TE-331CE	SHEATH THERROCOUPLE, BOD 31, LEVEL E	32 TO 1897 DEGREES P	
221	TE-331CD	SHEATH THERMOCOUPLE, NOD 31, LEVZL D	32 TO 1897 DEGEEES F	
222	TE-345AD	SHRATH THERROCOUPLE, BOD 45, LEVEL D	32 TO 1897 DEGREES F	
223	TE-347CG	SHEATH THERMOCOUPLE, ROD 47, LEVEL G	J2 TO 1897 DEGREES F	
224	18-345CP	SHEATH THERMOCOUPLE, ROD 45, LEVEL P	32 TO 1897 DEGREES F	
225	TE-345AG	SHEATH THERMOCOUPLE, BOD 45, LEVEL G	32 TO 1897 DEGREES F	
226	TE-1252	SUBCHANNEL NUMBER 52 THERMOCOUPLE	32 TO 1897 DEGREES F	
227	TE-3618E	SHEATH THERMOCOUPLE, ROD 61, LEVEL E	32 TO 1897 DEGREES F	
228	TE-361AE	SHEATH THERMOCOUPLE, HOD 61, LEVEL E	32 TO 1897 DEGREES F	
229	TE-363AE	SHEATH THERMOCOUPLE, ROD 63, LEVEL E	32 TO 1897 DEGREES P	
230	TE-340CB	SHEATH THERMOCOUPLE, BOD 40, LEVEL B	32 TO 1897 DEGREES F	
231	TE-340CA	SHEATH THERROCOUPLE, ROD 40, LEVEL A	32 TO 1897 DEGREES P	
232	TE-34080	SHEATH THERMOCOUPLE, ROD 40, LEVEL D	32 TO 1997 DEGREES F	
233	TE-340BC	SHEATH THERROCOUPLE, ROD 40, LEVEL C	12 TO 1897 DEGREES P	
234	TE-330AC	SHEATH THERMOCOUPLE, ROD 30, LEVEL C	32 TO 1897 DEGREES F	
235	TE-330AE	SHEATH THERMOCOUPLE, RO. 30, LEVEL E	32 TO 1897 DEGREES F	
236	TE-330CB	SHEATH THERMOCOUPLE, ROD 30, LEVEL B	32 TO 1897 DEGREES P	
237	TE-1242	SUBCHANNEL NUMBER 42 THERMOCOUPLE	32 TO 1897 DEGREES F	
238	TE-1245	SUBCHANNEL NUMBER 45 THER OCOUPLE	32 TO 1897 DEGREES :	

44

6.

, ,

.

*

*

FIGURE NUMBER	18STRUMENT NAME	DESCRIPTION	RANGE	COMMENTS
239	TE-1258	SUBCHANNEL NUMBER 58 THERMOCOUPLE	32 TO 1897 DEGREES F	
240	TE-1244	SUBCHANNEL NUMBER 44 THERMOCOUPLE	32 TO 18"7 DEGREES F	
241	TE-1209	SUBCHANNEL NUMBER 9 THEBHOCOULLE	32 TO 1897 DEGREES P	
242	TE-1217	SUBCHANNEL NUMBER 17 THERMOCOUPLE	32 TO 1897 DEGREES F	
243	TE-1226	SUBCHANNEL NUMBER 26 THERMOCOUPLE	32 TO 1897 DEGEEES F	
2 .4	TE-1249	SUBCHANNEL NUMBER 49 THERNOCOUPLE	32 TO 1897 DEGREES F	
245	TE-1225	SUBCHANNEL NUMBER 25 THERMOCOUPLE	32 TO 1897 DEGREES F	
246	TE-3534E	SHEATH THERMOCOUPLE, ROD 53, LEVEL E	32 TO 1897 DEGREES F	
247	TE-1227	SUBCHANNEL NUMBER 27 THEREOCOUPLE	32 TO 1897 DEGREES P	
243	TE-353CC	SHEATH THERMOCOUPLE, ROD 53, LEVEL C	32 TO 1897 DEGREES F	
249	T2-361CE	SHEATH THERMOCOUPLE, ROD 61, LEVEL E	32 TO 1897 DEGREES P	
250	TE-36148	SHEATH THERMOCOUPLE, ROD 61, LEVEL B	32 TO 1897 DEGREES P	
251	TE-361AC	SHEATH THEPROCOUPLE, ROD 51, LEVEL C	32 TO 1897 DEGREES F	
252	TE-361AD	SHEATH THERMOCOUPLE, ROD 61, LEVEL D	32 TO 1897 DEGREES F	
253	TE-364 AG	SHEATH THERMOCOUPLE, BOD 64, LEVEL G	32 TO 1897 DEGREES F	
254	TE-36488	SHEATH THERMOCOUPLE, ROD 64, JEVEL E	32 TO 1897 DEGREES F	
255	TE-364 AD	SHEATH THERMOCOUPLE, ROD 64, LEVEL D	32 TO 1897 DEGREES P	
256	TE-3648F	SHEATH THERMOCOUPLE, ROD 64, LEVEL F	32 TO 1897 DEGREES F	
257	TE-3638E	SHEATH THERMOCOUPLE, ROD 63, LEVEL E	32 TO 1897 DEGREES F	
258	TE-3638C	SHEATH THERMOCOUPLE, ROD 63, LEVEL C	32 30 1897 DEGREES F	
259	TE-353CB	SHEATH THERMOCOUPLE, ROD 63, LEVEL B	32 TO 1897 DEGRERS F	
260	TE-1263	SUBCHANNEL NUMBER 63 THERMOCOUPLE	32 TO 1997 DEGREES F	FAILED INSTRUMENT
261	TE-313CP	SHEATH THERMOCOUPLE, GOD 13, LEVEL F	32 TO 1897 DEGREES F	
262	TE-348AH	SHEATH THEREOCOUPLE, ROD 48, LEVEL H	32 TO 1897 DEGREES F	
263	TE-340AY	SHEATH THERMOCOUPLE, ROD 48, LEVEL Y	32 TO 1897 DEGREES F	
and the second	a se la claracia			

45

.

. .

FIGURE	INSTRUMENT NAME	DESCRIPTION	LAN SF	COMSENTS
264	16-331BF	SHEATH THE. NOCOOPLE, NOD 31, LEVEL F	32 TO 1997 DEGREES P	
265	TE-355CB	SHEATH THEPMOCOUPLE, FOD 55, LEVEL B	32 TO 1897 DEGREES F	
266	TE-355AA	SHEATH THERMOCOUPLE, FOD 55, LEVEL A	32 TO 1597 DEGREES F	
207	TE-3558C	SHEATH THERMOCOUPLE, ROD 55, LEVEL C	32 10 1897 DEGREES F	
268	TE-3375F	SEZATH THERMOCOUPLE, ROD 37, LEVEL F	32 10 1397 DEGREES F	
269	TE-356AC	SHEATH THEFROCOUPLE, ROD 56, LEVEL C	32 TO 1497 DEGREES F	
270	TE-356CD	SHEATH THEPROCOUPLE, BOD 56, LEVEL D	32 TO 1857 DEGREES F	
271	TE-356AF	SHEATS THERROCOUPLE, ROD 56, LEVEL F	32 TO 1-97 DEGREES #	
272	TE-356AE	SHEATH THERMOCOUPLE, FOD 56, LEVEL E	32 TO 1897 DEGREES F	
273	TE-3620D	SHEATH THERMOCOUPLE, EOD 62, LEVEL D	32 TO 1897 PEGRERS F	
274	TE-3624E	SHEATH THERROCOUPLE, ROD 62, LEVEL 2	3. TO 1837 DEGERES P	
275	TE-362A8	SHEATH THEEMOCOUPLE, ROD 62, LEVEL B	32 TO 1997 DEGREES F	
276	TE-33788	SHEATH THEFMOCOUPLE, ROD 37, LEVEL 2	32 TO 1897 DEGREES F	
277	TE-33780	SHEATH THEPROCOUPLE, SOD 37, LEVEL D	32 TO 1897 DEGREES F	
278	TE-337CF	SMEATH THEEMOCOUPLE, SOD 37, LEVEL P	32 10 1957 DEGREES F	
279	TE-33748	SHEATH THERMOCOUPLE, ROD 37, LEVEL E	32 TO 1897 DEGREES F	
280	TE-334CY	SHEATH THERMOCOUPLE, BOD 34, LEVEL Y	TO 1897 DEGREES F	
281	TE-334AS	SHEATH THERMOCOUPLE, ROD 34, LEVEL S	32 TO 1897 DEGREES P	
282	TE-334CH	SHEATH THERMOCOUPLE, ROD 34, LEVEL H	32 TO 1897 DEGREES F	
283	TE-360AC	SHEATH THEPHOCOUPLE, ROD 60, LEVEL C	32 TO 1897 DEGREES P	
284	TE-360AD	SHEATH THERKOCOUPLE, ROD 60, LEVEL D	32 TO 1097 DEGREES F	
285	TE-360CD	SHEATH THERMOCOUPLE, ROD 60, LEVEL D	2 TO 1697 DEGREES F	
286	TE-312BC	SHEATH THERMOCOUPLE, ROD 12, LEVEL C	32 TO 1897 DEGREES P	
287	TE-3124E	SHEATH THEPMOCOUPLE, ROD 12, LEVEL E	32 TO 1897 DEGREES F	
288	TE-312CB	SHEATH THERMOCOUPLE, ROD 12, LEVEL B	32 TO 1897 DEGREES F	

Table 3 (continued)

Table 3 (continued)

÷

Cost Actions

FIGURE	INSTRUMENT NAME	DESCRIPTION	RANGE	COMMENTS
289	TE-34948	SHEATH THERNOCOUPLE, ROD 49, LEVEL E	32 TO 1897 DEGREES F	
290	TE-34388	SHEATH THEPROCOUPLE, ROD 43, LEVEL B	32 TO 1897 DEGREES F	
291	TE-3438C	SHEATH THEEMOCOUPLE, GOD 43, LEVEL C	32 TO 1897 DEGREES F	
292	TE-326AD	SHEATH THERMOCOUPLE, ROD 26, LEVEL D	32 TO 1897 DEGREES P	
293	TE-34384	SHEATH THERROCOUPLE, ROD 43, LEVEL A	32 TO 1897 DEGREES F	
294	TE-327AC	SHEATH THERMOCOUPLE, RUL 27, LEVEL C	32 TO 1897 DEGREES F	
295	TE-32780	SHEATH THERMOCOUPLE, ROD 27, LEVEL D	32 TO 1897 DEGREES F	
296	TE-1235	SUBCHANNEL NUMBER 35 THERMOCOUPLE	32 TO 1897 DEGREES F	
297	TE-327CA	SHEATH THERMOCOUPLE, ROD 27, LEVEL A	32 TO 1897 DEGREES F	
298	TE-341AB	SHEATH THERMOCOUPLE, HOD 41, LEVEL B	32 TO 1897 DEGREES P	
299	TE-34246	SHEATH THERMOCOUPLE, ROD 42, LEFEL G	32 TO 1897 DEGREES #	
300	TE-343AD	SHEATH THERMOCOUPLE, RUD 43, LEVEL D	32 TO 1897 DEGREES F	
301	TE-321AD	SHEATH THERMOCOUPLE, ROD 21, LEVEL D	32 TO 1897 DEGRSES F	
302	TE-342CG	SHEATH THERMOCOUPLE, ROD 42, LEVEL G	32 TO 1897 DEGREES P	
303	TE-3428E	SHEATH THERMOCOUPLE, ROD 42, LEVEL E	32 TO 1897 DEGREES F	
304	TE-3428P	SHRATH THEPHOCOUPLE, ROD 42, LEVEL F	32 TO 1897 DEGREES F	
305	TE-34280	SHEATH THEEMOCOUPLE, ROD 42, LEVEL D	32 TO 1897 DEGREES P	
306	TE-2928	SPACER GRID NUMBER 3 THERMOCOUPLE, SUBCHANNEL 43	32 TO 1697 DEGREES F	
307	TE-292D	SPACER GRID NUMBER 3 THERNOCOUPLE, SUBCHANNEL 70	32 IO 1847 DEGREES P	
308	TE-2958	SPACER GRID NUMBER 6 THERMOCOUPLE, SUBCHANNEL 43	32 TO 1897 DEGREES P	
309	TE-295D	SPACER GRID NUMBER 6 THERMOCOUPLE, SUBCHANNEL 70	32 TO 1897 DEGREES P	
310	TE-2910	SPACER GPID NUMBER 2 THERMOCOUPLE, SUBCHANNEL 70	32 TO 1897 DEGREES P	
311	TE-294F	SPACER GRID NUMBER 5 THERMOCOGPLE, SUBCHANNEL 38	32 TO 1897 DEGREES F	

FIGURE	INSTRUMENT NAME	DESCRIPTION	RANGE	COMMENTS
312	7E-338CD	SHEATH THERMOCOUPLE, ROD 38, LEVEL D	32 TO 1897 DEGREES F	
313	TE-34286	SHEATH THERMOCOUPLE, BOD 42, LEVEL G	37 TO 1897 DEGREES P	
3 14	TE-3308E	SHRATH THERMOCOUPLE, BOD 30, LEVEL E	32 TO 1897 DEGREES P	
315	TE-2938	SPACEE GRID NUMBER 4 THERMOCOUPLE, SUBCHANNEL 32	32 TO 1897 DEGREES F	FAILED INSTRUMENT
316	TE-295C	SPACER GPID NUMBER 6 THERMOCOUPLE, SUBCHANNEL 57	32 TO 1897 DEGREES F	
317	TE-295A	SPACEE GRID NUMBER 6 THERMOCOUPLE, SUBCHANNEL 32	32 TO 1897 DEGREES F	FAILED INSTRUMENT
318	EEE-1026JZ	ZERO INPUT CHANNELS 1152 TO 1279	0 TO 40 MV	
319	EEE-1026JC	CALIBRATION INPUT CHANNELS 1152 TO 1279	G 1C 40 MV	
320	TE-292A	SPACER GRID NUMBER 3 THERMOCOUPLE, SUBCHANNEL 32	32 TO 1897 DEGREES F	
321	TE-291C	SPACER GEID NUMBER 2 THERMOCOUPLE, SUBCHANNEL 57	37 TO 1897 DEGREES P	
322	TE-2918	SPACER GRID NUMBER 2 THERMOCOUPLE, SUBCHANNEL 43	J2 TO 1897 DEGREES P	
323	TE-293P	SPACER GRID NUMBER 4 THERMOCOUPLE, SUBCHANNEL 38	32 TO 1897 DEGREES F	
324	TE-1865	SHROUD BOX THERMOCOUPLE, LEVEL G, SOUTH SIDE	32 TO 1697 DEGREES F	
325	TE-1818	SHROUD BOX THERMOCOUPLE, LEVEL A, WEST SIDE	32 TO 1897 DEGREES F	
326	TE-185W	SHROOD BOX THERMOCOUPLE, LEVEL E, MEST SIDE	32 TO 1897 DEGREES F	
327	TE-291A	SPACER GRID NUMBER 2 THERMOCOUPLE, SUBCHANNEL 32	32 TO 1897 DEGREES P	
328	TE-293C	SPACER GRID NUMBER 4 THERMOCOUPLE, SUPCHANNEL 57	32 TO 1897 DEGREES P	
329	TE-294B	SPACER GRID NUMBER 5 THERMOCOUPLE, SUBCHANNEL 43	32 TO 1897 DEGREES P	
330	TE-294E	SPACER GRID NUMBER 5 THERMOCOUPLE, SUBCHANNEL 17	32 TO 1957 DEGREES P	
331	TE-2940	SPACER GRID NUMBER 5 THERMOCOUPLE, SUBCHANNEL 70	32 TO 1897 DEGREES F	

1

. .

Table 3 (continued)

FIGURE	INSTRUMENT NAME	DESCRIPTION	RANGE	COMMENTS
332	TE-2938	SPACEE GRID NUMBER 4 THERROCOUPLE, SUBCHANNEL 17	32 TO 1897 DEGREES F	
333	TE-293D	SPACER GRID NUMBEE 4 THERMOCOUPLE, SUBCHANNEL 70	32 TO 1397 DEGREES ?	
334	TE-293B	SPACER GRID NUMBER 4 THERMOCOUPLE, SUBCHANNEL 43	32 IC 1897 DECREES F	
335	TE-2968	SPACER GRID NUMBER 7 THERMOCOUPLE, SUBCHANNEL 43	32 TC 1897 DEGREES P	
336	TE-296D	SPACEE GRID NUMBER 7 THERMOCOUPLE, SUBCHANNEL 70	32 TO 1897 DEGREES F	FAILED INSTRUMENT
337	TE-352AU	SHEATH THERMOCOUPLE, ROD 52, LEVEL U	32 TO 1897 DEGREES F	
3.38	TE-35285	SHEATH THERMOCOUPLE, BOD 52, LEVEL S	32 "1 1897 DEGREES 2	
3.39	TE-352CH	SHEATH THERMOCOUPLE, ROD 52, LEVEL H	32 TO 1897 DEGREES F	
340	TE-352CT	SHEATH THERMOCOUPLE, ROD 52, LEVEL Y	32 TO 1897 DEGREES F	
341	TE-350BE	SHEATH THERMOCOUPLE, ROD 50, LEVEL E	32 TO 1897 DEGREES P	
342	TE-34988	SHEATH THERMOCOUPLE, BOD 49, LEVEL E	32 TO 1897 DEGREES P	
343	TE-350CD	SHEATH THERMOCOUPLE, BOD 50, LEVEL D	32 TO 1897 DEGREES F	
344	TE-3508F	SHEATH THERMOCOUPLE, ROD 50, LEVEL F	32 TO 1897 DEGREES F	
345	TE-349CB	SHEATH THERMOCOUPLE, HOD 49, LEVEL B	32 TO 1897 DEGREES P	
346	TE-349CD	SHEATH THERMOCOUPLE, ROD 49, LEVEL D	31 TO 1897 DEGREES F	
347	TE-349CC	SHEATH THERMOCOUPLE, ROD 49, LEVEL C	32 TO 1897 DEGREES P	
348	TE-349CE	SHEATH THERMOCOUPLE, ROD 49, LEVEL E	32 TC 1897 DEGREES F	
349	1E-326CE	SHEATH THERMOCOUPLE, ROD 26, LEVEL E	32 10 1897 DEGREES F	
350	TE-326 AC	SHEATH THERMOCOUPLE, BOD 26, LEVEL C	32 TO 1897 DEGREES F	
351	TE-3268D	SHEATH THERMOCOUPLE, ROD 26, LEVEL D	32 TO 1897 DEGREES F	
352	TE-32688	SHEATH THERMOCOUPLE, FOD 26, LEVEL E	32 TO 1897 DECREES F	
353	TE-3518C	SHEATH THEENOCOUPLE, BOD 51, LEVEL C	32 TO 1897 DEGICES P	
354	TE-35143	SHEATH THERMOCOUPLE, ROD 51, LEVEL &	32 TO 1997 DEGREES ?	

FIGURE NUMDE2	INSTRUMENT NAME	DESCALPTION	BANGE	CONMERIS
355	TE-35180	SHEATH THERMOCOUPLE, ROD 51, LEVEL D	32 TO 1897 DEGREES F	
356	TE-351AB	SHEATH THERMOCOUPLE, BOC 51, LEVEL B	32 TO 1897 DEGREES P	
357	TE-1205	SUBCHANNEL NUMBER 5 THERMOCOUPLE	32 10 1697 DEGREES F	
358	TE-1223	SUBCHANNEL NUMBER 23 TRERMOCOUPLE	32 TO 1397 DEGREES P	
359	TE-1214	SUBCHAUNEL NUMBER 14 THERMOCOUPLE	32 TO 1897 DEGREES P	
360	TE-1232	SUBCHANNEL NUMBER 32 THERMOCOUPLE	32 TO 1897 DEGREES F	
361	12-1211	SUBCHANNEL SURBER 11 THERMOCOUPLE	32 TO 1697 DEGREES F	
362	TE-1221	SUBCHANNEL NUMBER 21 THERBOCOUPLE	32 10 1897 DEGREES F	
363	TE-1231	SUBCHANNE', NUMBER 31 THERMOCOUPLE	32 70 1897 DEGREES F	
364	TE-1201	SUBCHANNEL NUMBER 1 THERMOCOUPLE	32 TO 1897 DECLEES F	
365	TE-1251	SUBCHANNEL NUMBER 51 THERMOCOJPLE	32 TO 1897 DECREES P	
366	TE-1248	SUBCHANNEL NUMBER 48 THERMOCOUPLE	32 TO 1897 DEGERPS F	
367	TE-1273	SUBCHANNEL NUMBER 73 THEEMOCUJPLE	32 TO 1897 DEGREES F	
368	TE-1265	SUBCHANNEL NUMBER 65 THERMOCOUPLE	32 TO 1897 DEGREES P	
369	TE-1256	SUBCHANNEL EUMBER 56 THERADCOUPLE	32 TO 1397 DEGREES F	
370	TE-1240	SUBCRANNEL NUMBER 40 THERMOCOUPLE	32 TO 1897 DEGENES 2	
371	TE-1230	SUBCHANNEL NUMBER 30 THERMOCOUPLE	32 TO 1897 DEGREPS 7	
372	TE-1237	SUBCHANNEL NUMBER 37 THEAMOCOUPLE	32 TO 1897 DEGREES F	
373	TE-1238	SUBCHANNEL NUMBER 33 THEEMOCOUPLE	32 TO 1397 DEGREES ?	
374	TE-1239	SUBCHANNEL NUMBER 39 THERMOCOUPLE	32 TO 1397 DEGREES 2	
375	TE-1260	SUBCHANNEL SUMBER 60 THERMOCOUPLE	32 TO 1897 DEGREES ?	
376	TE-1270	SUBCHANNEL NUMBER 70 THERMOCOUPLE	32 TO 1397 DEGREES P	
377	TE-1259	SUBCHANNEL NUMBER 59 THERMOCOJPLE	32 TO 1897 DEGREES P	
378	TE-1277	SUBCHANNEL NUMBER 77 THERMOCOUPLE	32 TO 1897 DEGREES F	
379	72-1261	SUBCHANNEL NUMBER 61 THERMOCOUPLE	32 TO 1897 DEGREES 8	

Table 3 (continued)

FIGURE	INSTRUMENT NAME	DESCRIPTION	RANGE	COMMENTS
380	TE-1271	SUBCHANNEL NUMBER 71 THERMOCOUPLE	32 TO 1897 DEGREES F	
381	TE-1241	SUDCHANNEL NUMBER 41 THERMOCOUPLE	32 TO 1897 ORGLERS P	
382	TE-1250	SUBCHANNEL NUMBER 50 THERMOCOUPLE	32 TO 1897 DEGERES F	
383	TE-1268	SUBCHANNEL NUNBER 68 THERMOCOUPLE	32 TO 1897 DEGREES F	
384	TE-1281	SUBCRANNEL NUMBER 81 TREEMOCOSPLE	32 TO 1897 DEGREES F	
385	TE-182E	SHROND BOX THERMOCOUPLE, LEVEL B, EAST SIDE	32 TO 1897 DEGREES F	
386	1E-187N	SHROUD BOX THERMOCOUPLE, LEVEL G, NORTH SIDE	32 TO 1997 DEGREES F	
387	TE-183N	SHEOUD BOX THERMOCOUPLE, LEVEL C, NONTH SIDE	32 TO 1897 DEGREES P	
388	TE-184E	SERCED BOX THERMOCOUPLE, LEVEL D, EAST SIDE	32 TO 1897 DEGREES F	
389	TE-150	TEST SECTION BOTION FLANGE TEMPERATURE SIDE	32 TO 1897 DEGREES F	
390	TE-151	TEST SECTION BOTTOM PLANGE TEMPERATURE SIDE	32 TO 1897 DEGREES P	FAILED INSTRUMPNT
391	TE-152	TEST SECTION BOTTON FLANGE TEMPERATURE SIDE	32 TO 1897 DEGREES F	
192	TE-1	PRESSURIZER VAPOR TEMPERATURE	32 TO 1897 DEGREES P	
393	TE-2	PRESSURIZER WATER TEAPERATURE	32 TO 1897 DEGREES P	
394	TE-116	PRESSUPIZER EXIT SPOOL TEMPERATURE	32 TO 1547 DEGREES F	
395	TE-24	HORIZONTAL INLET SPOUL TEMPERATURE	37 10 1897 DEGREES F	
396	TE-172	VERTICAL INLET SPOO. TEMPERATURE	32 TO 1897 DEGREES F	
397	TE-222	VERTICAL OUTLET SPOO . TEMPERATURE	32 TO 1897 DEGREES F	
398	TE-40	HORIZONTAL OUTLET SPUIL TEMPERATURE	32 TO 1897 DEGREES F	
399	TE-29	INLET BLOWPOWN PLENUS TEMPERATURE	32 TO 1897 DEG87FS F	
400	TE-45	OUTLET BLOWDOWN PLENUE TEMPERATURE	32 TO 1897 DEGREES F	
401	TE-58	HEAT EXCHANGER D OUTLET TEPPEPATURE	32 TO 1897 DECREZS F	
402	TE-57	HEAT EXC. ANGES A SPOOL TEMPERATURS	32 TO 1897 DEGREES F	
403	TE-62	HEAT SXCHANGER B SPCOL TEMPERATURP	32 TO 1897 DEGREES 7	
404	TE-67	HEAT EXCHANGES C SPOOL TEMPERATURE	32 TO 1497 DEGREES P	

1

51

7
2
P
7
P
7
7
7
F
۶
F
8
F
. 8
P
P
F.
F
, ?
P
1
18
and the second se

4

52

1

FIGURE	INSTRUMENT NAME	DESCHIPTION	BANGE	CORMENTS
430	TE-327CD	SHEATH THERMOCOUPLE, ROD 27, LEVEL D	32 10 .697 DZGREES F	
431	TE-327CC	SHEATH THERMOCOUPLE, ROD 27, LEVEL C	32 70 1897 DLOREES F	
432	TE- 3278A	SHEATH THERMOCOUPLE, BOD 27, LEVEL A	02 "1 1497 LRGPRES F	
433	EEE- 1026 KZ	ZERO INPUT CHANNELS 1280 TO 1407	0 71 *0 - 1	
434	388-1026KC	CALIBRATION INPUT CHANNELS 1280 TO 1407	0 TG 40 MY	
435	TE-307AC	SHEATH THERMOCOUPLE, ROD 7, LEVEL C	32 "J 1897 DEGREES F	
436	TE-332CE	SHEATH THERMOCOUPLE, ROD 32, LEVEL E	32 TO 1027 "EGPEES F	
437	TE-307AF	SHEATH THERMOCOUPLE, ROD 7, LEVEL F	32 10 1097 DIJEEKS 2	
438	TE-307CE	SHEATH THREMOCOUPLE, FOD 7, LEVEL E	32 70 1897 DEGEEES F	
439	TE-3168G	SHEATH THERMOCOUPLE, BOD 16, LEVEL G	12 TO 1897 DEG. SES P	
440	TE-332CF	SHEATH THERMOCOUPLE, ROD 32, LEVEL F	32 TO 1897 D'OPRES F	
441	TE-332CD	SHEATH THERMOCOUPLE, ROD 32, LEVEL D	32 TO 1897 DEGLEPS F	
442	TE-318 AG	SHEATH THERMOCOUPLE, ROD 18, LEVEL G	12 10 1897 DES-RES F	
443	TE-314AB	SHEATH THERMOCOUPLE, BOD 14, LEVEL B	32 10 1897 DECESES P	
444	TE-332CG	SHEATH THERMOCOUPLE, ROD 32, LEVEL G	32 TO 1897 DLCIBES P	
445	TE-318AE	SHEATH THERMOCOUPLE, ROD 18, LEVEL E	37 10 1397 DE HERES P	
446	TE-324AE	SHEATE THERMOCOUPLE, BOY 24, LEVEL E	2 TO 1897 DT SEES P	
447	TE-30580	SHEATH THERMOCOUPLE, ROD 5, LEVEL U	32 10 1897 DEGREES P	
448	TE-SOSAS	SHEATH THERMOCOUPLE, ROD 5, LEVEL S	12 20 1897 DEGRERS F	
449	TE-30588	SHEATH THERMOCOUPLE, ROD 5, LEVEL H	32 70 1097 DEGREZS P	
+50	TE-305CY	SHEATH THERMOCOUPLE, ROD 5, LEVEL Y	37 TJ 1197 REGEERS P	
451	TE-188AC	ARRAY KOD THERMOCOUPLE, GEID 19, SUBCHANNEL 22, LEVEL C	32 TO 1097 DEGREES F	
452	TE-308CD	SHEATH THEPMOCOUPLE, ROD 8, LPVEL	32 10 1897 TEGREES 7	
453	1E-1835E	ARRAY ROD TREEMOCOUPLE, GRID 19. SUBCHANNEL 30, LEVEL E	32 13 1497 DEGRESS F	

PIGURE	18STRUMENT NAME	DESCRIPTION	PANGE	COXMENTS
454	TE- 1884F	ARSAY EOD THERMOCOUPLE, SEID 19, SUBCHANNEL 22, LEVEL P	32 TO 1897 DEGREES P	
455	TE-188B2	ABBAY ROD THERMOCOUPLE, GRID 19, SUBCHASNEL 30, LEVEL B	32 10 1897 DEGREES F	
456	TE-188AD	FREAY 20D THEEAOCOUPLE, GRID 19, SURCHASHEL 22, LEVEL D	32 10 1397 DEGREES F	
457	TE-188AG	ARRAY ROD THERMOCOUPLE, GRID 19, SUBCHANNEL 22, 12VEL G	32 TO 1897 DEGREES F	
458	TE-188 AB	ARRAY LOD THERMOCOUPLE, GRID 19, SUBCHASNEL 22, LEVEL B	32 TO 1897 DEGREES F	
459	TE-18850	ARRAY BOD THERMOCOUFLE, GRID 19, JURCHANABL 30, LEVEL D	32 TO 1897 DFGREES F	
460	TE-1885A	ARRAY BOD THERMOCOUPLE, GRID 19, SUBCHANSEL 30, LEVEL A	32 TO 1997 DEGREES P	QUESTIONIBLE
461	TE-1888F	ARRAY ROD FRENMOCOUPLZ, GSID 19, SUBCHAUNEL 30, LEVEL F	32 TO 1897 DEGREES 7	
462	TE-188BC	APPAY BOD THERMOCOUPLE, GRID 19, SUBCHANNEL 30, LEVEL C	32 TO 1897 DEGREES 7	
463	TE-188AE	APRAY BOD THEPMOCOUPLE, GRID 19, SUBCHANNEL 22, LEVEL E	32 TO 1897 DEGREES ?	
464	TE-188AA	ALEAY EOD THERROCOUPLE, GRID 19, SUBCHANNEL 22, LEVEL A	32 TO 1397 DEGFRES P	
465	TE-315AF	SHEATH THEEROCOUPLE, BOD 15, LEVEL F	32 TO 1897 DEGREES F	
466	TE-3078F	SHEATH THEEMOCOUPLE, BOD 7, LEVEL F	32 TO 1997 DEGSEES ?	
467	TE-315AC	SHEATH THERROCOUPLE, FOD 15, LEVEL C	32 TO 1397 DEGZERS F	
468	TE-3078E	SHEATH TEERNOCOUPLE, FOD 7, LEVEL E	32 TO 1897 DEGREES F	
469	TE-318CG	SHEATH THERNOCOUPLE, ROD 18, LEVEL G	32 TO 1897 DEGLESS P	
470	TE-306AA	SEEATH THERSOCOUPLE, ROD 6, LEVEL A	32 TO 1897 DEGREZS F	
471	TE-306AB	SREATE THEFROCOUPLE, POD 6, LEVEL B	32 TO 1897 DEGREES F	
472	TE-30884	SHEATH THERMOCOUPLE, ROD 8, LEVEL A	32 TO 1897 DEGREES F	
473	TE-308CB	SREATH THUSLOCOUPLE, BOD 8, LEVEL 8	32 TO 1897 DEGREES F	

Table 3 (continued)

ŝ

FIGURE NUMBER	INSTRUMENT NAME	DESCRIPTION	RAMCE	CORNENTS
474	TE-30880	SHEATH THLANOCOUPLE, EOD 8, LEVEL D	32 TO ::007 DE.ESES r	
475	TE-308BC	SHEATH THEPROCOUPLE, POD 8, LEVEL C	32 TO 1047 HEGENES F	
476	TE-316BP	SHEATH THERMOCOUPLE, BOD 16, LEVEL P	32 TO INST JOGNEES P	
477	TE-316CE	SHEATH THERMOCOUPLE, ROD 16, LEVEL &	32 TO 1997 DEGREES F	
478	TE-316 AD	SHEATH THERMOCOUPLE, FOD 16, LEVEL D	32 TO 1897 DEGLEES F	
479	TE-316CG	SHEATH THERMOCOUPLE, ROD 16, LEVEL G	32 TO 1997 5354885 7	
480	TE-324CE	SHEATH THERMOCOUPLE, DOD 24, LEVEL E	32 TO 1847 DEGREES F	
481	TE-324CB	SHEATH THERMOCOUPLE, FOD 24, LEVEL B	32 10 1657 DEGREES 1	
482	TE-324AC	SHEATH THELMOCOUPLE, FOD 24, LEVEL C	32 TO 18-7 DEGREES (
483	TE-3243D	SHEATH THERMOCOUPLE, ROD 24, LEVEL D	32 TO 1097 DEGREES F	
484	TE-344CD	SHEATH THERMOCOUPLE, ROD 44, LEVEL D	32 TO 1697 DECD2.** *	
485	TE-344CC	SHEATH THERMOCOUPLE, FOD 44, LEVEL C	32 TO 1447 DEGREES F	
486	TE-344CB	SHEATH THERMOCOUPLE, FOD 44, LEVEL B	32 TO 1897 DEGREES F	
487	TE-344CE	SHEATH THERBOCOUPLE, ROD 44, LEVEL E	32 TO 18"7 DEGREES F	
488	TE-317BE	SHEATE THERMOCOUPLE, EOD 17, LEVEL E	32 10 1857 DEGREES F	
489	TE-33588	SHEATH THERMOCOUPLE, FOD 35, LEVEL 5	32 TO 1397 DEGREES r	
490	TE-317CE	SHRATH THRRMOCOUPLE, ROD 17, LEVEL E	32 TO 1897 DEGREES P	
491	TE-335BE	SHEATH THERROCOUPLE, ROD 35, LEVEL E	32 TO 1097 DEGREES F	
492	TE-333CB	SHEATH THEEMOCOUPLE, NOD 33, LEVEL D	32 TO 1897 DEGREES F	
493	TE-333CE	SHZATH THERMOCUUPLE, ROD 33, LEVEL E	32 10 1697 DEGREES F	
494	TE-333AC	SHEATH THERMOCOUPLE, BOD 33, LEVEL C	32 TO 1805 DEGEBES F	
495	TE-333AD	SHEATH THERMOCOUPLE, BOD 33, LEVEL D	32 TO 1397 DEGREES F	
496	TE-317AE	SHEATH THERMOCOUPLE, BOD 17, LEVEL E	32 TO 1097 DEGREES P	
497	TE-317CC	SHEATH THER SCOUPLE, ROD 17, LEVEL C	32 TO 1397 DEGREES F	
498	TE-317CD	SHEATH THERMOCOUPLE, ROD 17, LEVEL D	32 TO 1807 DEGREES F	

55

a

Tab: 3 3 (continued)

FIGURE NUMBER	INSTRUMENT NAME	DESCRIPTION	RANGE	COMMENTS
499	TE-317CB	SHEATH THERMOCOUPLE, BOD 17, LEVEL B	32 70 1397 DZGRSES P	
500	TE-1216	SUBCHANNEL NUMBER 16 THEFROCOUPLE	32 TO 1897 DEGREES P	
501	TE-359C8	SHEATH THERMOCOUPLE, ROD 39, LEVEL 2	32 TO 1897 DEGLES P	
502	TZ-12880	SHEATH THERMOCOTPLE, ROD 28, LEVEL D	32 TO 1897 DEGRESS F	
503	TE-328CP	SHEATH THERMOCOUPLE, DOD 28, LEVEL F	32 TO 1897 DEGESES F	
5.04	TE-32086	SHEATH THER OCOUPLE, ROD 20, LEVEL G	32 TO 1897 DEGREES F	
505	TE-320CG	SHEATH THEEROCOUPLE, ROD 20, LEVEL C	32 TO 1897 DEGLESS F	
506	TE-320AD	SHEATH THERMOCOUPLE, BOD 20, LEVEL D	32 TO 1897 DEGREES P	
507	TE-32087	SHEATH THERMOCOUPLE, BOD 20, LEVEL F	32 TO 1897 DEGREPS F	
508	TE-32538	SHEATH TREEMOCOUPLE, DOD 25, LEVEL B	32 10 1897 DEGREES F	
509	TE-32500	SHEATE THERMOCOUPLE, SOD 25, LEVEL C	32 TO 1897 DEGREES F	
510	TE-325CD	SHEATH THEBROCOUPLS, ROD 25, LEVEL D	32 TO 1897 DEGREES F	
511	TE-325CA	SHEATH TREEMOCOJPLE, ROD 25, LEVEL A	32 TO 1897 DEGREES P	
512	TE-318AD	SHEATH THERMOCOGPLE, POD 18, LEVEL D	32 TO 1897 DEGREES F	QUESTIC MABL ?
5.13	TE-3188G	SHEATH THERMOCOUPLE, ROD 18, LEVEL G	32 TO 1897 DEGEZES *	QUESTIONABLE
614	TE-31BAF	SHEATH THERMOCOUPLE, ROD 18, LEVEL P	32 TO 1397 DEGSEES F	QUESTICEABLE
515	TE-318BE	SHEATE THEREOCOUPLE, ROD 18, LEVEL E	32 70 1897 DEGREES F	
5.16	TE-359AE	SHEATE THERMCCOUPLE, ROD 59, LEVEL E	32 TO 1897 DEGREES F	
517	TE-359AD	SHEATH THREMOCOUPLE, ROD 59, LEVEL D	32 TO 1897 DEGREES F	
5.18	TE-359CP	SHEATH THPENOCOUPLE, ROD 59, LEVEL F	32 TO 1397 DEGREES F	
519	TE-359CC	SHEATH THERMOCOUPLE, ROD 59, LEVEL C	32 TO 1397 DEGREES F	
520	TE-158CD	SHEATH THERMOCOUPLE, ROD 54, LEVEL D	32 TO 1897 DEGREES P	
521	TE-158BE	SHEATH THERMOCOUPLE, ROD 58, LEVEL E	32 TO 1897 DEGREES F	
522	TE- 358CG	SHEATH THERMOCOUPLE, ROD 5d, LEVEL G	12 TO 1897 DEGREES F	
523	TE-309CD	SHEATH THERMOCOUPLE, ROD 9, LEVEL D	32 TO 1397 DEGREES F	
	the second se			

. . .

- N

×.,

56

2

.

1.00

7

PIGURE	INSTRUMENT NAME	PESCRIPTION	HANGE	COMMENTS
524	TE-JOPAC	SHEATH THERMOCOUPL SOD 9, LEVEL C	32 TO 1897 DEGSEES P	
525	TE-311CC	SHEATH THERROCOUPLE, GOD 11, LEVEL C	32 TO 1897 DRGREES F	
526	TE-311CB	SHEATH THERMOCOUPLE, BOD 11, LEVEL B	32 TO *397 DEGEBES F	
527	TE-311AB	SHEATH THERMOCOUPLS, ROD 11, LEVEL 5	32 TO 1897 DECERES F	
528	TE-311AA	SHEATH THERMOCOUPLE, BOD 11, LEVEL A	37 TO 1897 JEGEPES F	
529	TE-35788	SHEATH THERMOCOUPLE, ROD 57, LEVEL B	32 TO 1897 DEGRE 23 P	
530	TE-3578C	SHEATH THERMOCOUPLE, ROD 57, LEVEL C	32 TO 1897 DEUPEES F	
531	TE-357AA	SHEATH THERMOCOUPLE, ROD 57, LEVEL &	32 70 1997 DEGREES F	
532	TE-35780	SHEATH THERMOCOUPLE, NOD 57, LEVEL D	32 10 1897 DEGREES F	
533	TE-304AF	SHEATH THERMOCOUPLE, FOD 4, LEVEL F	32 TO 1997 DEGREES F	
534	TE-309CB	SHEATH THERMOCOUPLE, FOD 9, LEVEL 3	32 TO 1397 DEGREES F	
535	TE-303CD	SHEATH THERMOCOUPLE, FOD 3, LEVEL D	32 TO 1897 DEGREES F	
536	TE-303BE	SHEATH THERMOCOUPLE, FOD 3, LEVEL E	32 TO 1397 DEGREET F	
537	TE-303CG	SHEATH THERMOCOUPLE, NOD 3, LEVEL G	32 TO 1897 DEGREES F	
538	TE-3036F	SHEATH THERMOCOUPLE, SOD 3, LEVEL F	32 TO 1897 PEGLERS F	
539	EEE- 102612	ZEBO INPUT CHANNELS 1408 TO 1535	0 70 90 87	
540	EEE-1026LC	CALIBEATION INPUT CHANNELS 1408 TO 1535	0 70 60 87	
541	TE-310CD	SHEATH THERMOTOUPLE, BOD 10, LEVEL D	32 ~J 1897 DEGREES F	
542	TE-3108:	SHEATH THERMOCOUPLE, POD 10, LEVEL F	32. TO 1617 DEGEZES F	
543	TE-310CC	SHEATH THERMOCOUPLE, FOD 10, LEVEL C	32 TO 1897 DEGREES 2	
544	TE-310B2	SHEATH TRESMOCOUPLE, SOD 10, LEVEL E	32 TO 1897 DEGREPS F	
545	TE-30482	SHEATH THEFAOCOUPLE, ROD 4, LEVEL E	32 TO 1897 CHESEES F	
546	TE-304AC	SHEATH THERMOCOUPLE, FCD 4, LEVEL C	32 TO '397 DEGREES F	
547	TE-303CE	SHEATH THERMOCOUPLE, FOD 5, LEVEL E	32 TO 1897 DEGLEES F	
>48	75-312CD	SHEATH THERMOCONFLE, BOD 12, LEVEL D	32 TO 1897 DEGREES F	

FIGURE	INSTHUMENT NAME	DESCRIPTION	BAUGE	COMMENTS
549	TE-301AD	SHEATH THEPBOCOUPLE, EGD 1, LEVEL D	32 TO 1697 23GallES t	
550	TE-3438D	SHEATH THERMOCOUPLE, ROL 43, LEVEL D	32 TO 1397 CLOBSES F	
551	TE-302AD	SHEATH THERMOCOUPLE, KOD 2, LEVEL D	32 TO .891 DECREES 4	
552	TE-302A5	HEATH THERMOCOUPLE, POD 2, LEVEL &	32 TO 1497 DESTRES F	
553	TE-302AE	SHEATH THARROCOUPLE, FOD 2, LEVEL E	32 TO 397 DEGRELS -	
554	TE-302BC	SHEATH THERMOCOUPLE, ROD 2, LEVEL C	32 TO 189' DEGE285 /	
555	TE-3108F	SHEATH ISERMOCOUPLE, BOD 10, LEVEL F	32 TO 1397 DISPEES P	
556	TE-310CF	SHEATH THERROCOUPLE, ROD 10, LEVEL P	32 TO 1897 DEGRRES F	
557	TE-358AE	SHEATH THEPMOCOUPLE, NOD 58, LEVEL E	32 TO 1372 DEGREES "	
558	TE-357AC	SHEATH THERMOCOUPLE, NOD 57, LEVEL C	32 TO 1337 UFCREES F	
559	TE-3578A	SHEATH THERBOCOUPLE, ROD 57, LEVEL A	32 TO 1397 DEGERES 2	
560	TE-357CB	SHEATE THERMOCOUPLE, ROD 57, LEVEL B	32 TO 1-97 DEGIELS ?	
561	TE-357AB	SHEATH THERMOCOUPLE, ROD 57, LEVE B	32 TO 1997 DEGREES 7	
562	TE-359AP	SHEATH THERMOCOUPLE, ROD 59, LEVEL F	32 TO 1897 DEGREES F	
553	TE-357CD	SHEATH THERMOCOUPLE, EOD 57, LEVEL D	32 TO 1997 DE03235 ?	
564	TE-3598F	SHEATH THERROCOMPLE, ROD 59, LEV21 F	32 TO 1007 DEGREES F	
565	TE-329AB	SHEATH THERMOCOUPLE, ROD 29, LEVEL B	32 TO 1097 DEGRESS r	
566	TE-329CD	SHEATH THERMOCOUPLE, ROD 29, LEVEL D	32 TO 1 97 DEGREES F	
567	1E-329CB	SHEATH THERMOCOUPLE, ROD 29, LEVEL B	32 TO 1097 DEGREES P	
568	TE-329CE	SHEATH THERMOCOUPLE, KOD 29, LEVEL E	32 TO 1837 DECEPSE F	
569	TE-329AC	SHEATH THERMOCOUPLE, ROD 29, LEVEL C	32 TO 1897 DEGAL" . F	
570	TE-32988	SHEATH THERROCOUPLE, ROD 29, LEVEL E	32 TO 1897 DEGREES F	
571	TE-329AD	SHEATH THERMOCOUPLE, EOD 29, LEVEL D	32 TO 1897 DEGREES F	
572	-347CF	SHEATH THERMOCOUPLE, ROD 47, LEVEL F	32 TO 10 J7 DEGREES F	
573	TE-34580	SHEATH THERMOCOUPLE, ROD 45, LEVEL D	32 TO 1897 DEGREES P	

٠

٠

.

.

Table 3 (continued)

FIGURE	INSTRUMENT NAME	DESCHIPTION	87.46)	CONNENTS
5.74	TE-3458P	SHEATH THERMOCOUPLE, ROD 45, LEVEL F	32 TO 1097 DEGREES T	
575	TE-34548	SHEATH THERMOCOUPLE, ROD 45, LEVEL E	32 TO PUST POGEEES P	
576	TE-3458E	SHEATE THERNOCOUPLE, BOD 45, LEVEL E	32 TO 1-97 PEIRE-S F	
577	T8-3458G	SHEATH THERMOCOUPLE, ROD 45, LEVEL G	32 TO 1697 DEGREES F	
578	TE-345AF	SHEATH THERMOCOUPLE, ROD 45, LEVEL F	32 TO 1397 DEGREES P	
579	TE-345CG	SHEATH THERMOCOUPLE, ROD 45, LEVEL G	32 TO 199" DEGREES P	
580	TE-361CJ	SHEATH THERMOCOUPLE, ROD 61, LEVEL J	32 TO 1857 PEGREES P	PAILED INSTRUMENT
581	TE-3618J	SHEATH THERMOCOUPLE, ROD 61, LEVEL J	32 TO 1-97 DEGREES P	FAILED INSTRUMENT
582	TE-3646D	SHEATH THERNOCOUPLE, ROD 64, LEVEL D	32 20 1897 JEGREES r	
583	TE-3538P	SHEATH THERMOCOUPLE, BOD 59, LEVEL F	32 TO 1497 DEGREES F	
584	TE-364AE	SHEATH THERMOCOUPLE, ROD 64, LEVEL E	32 TO 1897 DEGREES ?	
585	TE-364AF	SPEATH THERMOCOUPLE, ROD 64, LEVEL P	32 TO 1097 DEGREFS 6	
586	TE-313AE	SHEATH THERMOCOUPLE, EOD 13, LEVEL E	32 TO 1997 DEGREES F	
587	TE-364CF	SHEATH THERMOCOUPLE, ROD 64, LEVEL F	32 TO 1897 DEGREES F	
588	TE-364CD	SHEATH THERMOCOUPLE, ROD 64, LEVEL D	32 TO 1147 DEGREET F	
589	TE-364CG	SHEATH THERMOCOUPLE, BOD 64, LEVEL G	32 TO 1697 0009255 5	
590	TE-334CU	SHEATH THFRMOCOUPLE, ROD 34, LEVEL U	32 TO 1847 DRAWEVS P	
591	TE-33485	SHEATH THERMOCOUPLE, NOD 34, LEVEL S	32 10 1:497 DEGREES F	
592	TE-334CS	SHEATH THERMOCOUPLE, ROD 34, LEVEL S	32 TO 1897 DEGLEES F	
593	TE-33480	SHEATH THERMOCOUPLE, ROD 34, LEVEL U	32 TO 1897 DEGREES F	
594	TE-360AB	SHEATH THEPHOCOUPLE, ROD 60, LEVEL B	32 TO 1857 DEGELAS F	
595	18-360AA	SHEATH THERMOCOUPLE, ROD 60, LEVEL A	32 fo 1097 DEGREES F	
596	TE-3608D	SHEATH THEEMOCOUPLE, ROD 60, LEVEL D	32 TO 1997 DEGTTET I	
597	TZ-334AH	SHEATH THERSOCOUPLE, ROD 34, LEVEL H	32 TO 1097 DEGREES F	
598	TE-334AT	SHEATS THERMOCOUPLE, BUD 34, LEVEL Y	32 TO 1997 DEGREES P	

IGURE	INSTRUMENT	DESCRIPTION	RANGE	CONNELTS
99	TE-3348Y	SHEATH THERROCOUPLE, NOD 34, LEVEL Y	32 TO 1897 DEGREES F	
600	TE-334BH	SHEATH THERMOCOUPLE, BOD 34, LEVEL h	32 TO 1897 DEGREES F	
100	TE-1845	SHROUD BOX THERMOCOUPLE, LEVEL D, SOUTH SIDE	32 TO 1897 DEGREES F	
02	TE-1839	SHROUD BOX THERMOLOUPLE, LEVEL C, WEST SIDE	32 TO 1897 DEGREES F	
03	TE-187W	SBROUD BOX THERMOCOUPIE, LEVEL G, MEST SIDE	32 TO 1897 DEGREES F	
04	TE-1825	SHROUD BOX THERMOCOUPLE, LEVEL 5, SOUTH SIDE	32 TO 1897 DEGREES F	
05	TE-352B0	SHEATH THERROCOUPLZ, ROD 52, LEVEL U	32 TO 1897 DEGREES P	
06	TE-352CU	SHFATH THERMOCOUPLE, FOD 52, LEVEL U	32 TO 1897 DEGREES F	
07	TE-352AS	SHEATH THERMOCOUPLE, ROD 52, LEVEL S	32 TO 1897 DEGREES P	
08	TE-352CS	SHEATH THERMOCOUFLE, NOD 52, LEVEL S	32 TO 1897 DEGREES F	
09	TE-352BH	SHEATH THERMOCOUPLE, BOD 52, LEVEL H	32 TO 1897 DEGREES F	
10	TE-352AH	SHEATH THERMOCOUPLE, ROD 52, LEVEL H	32 TO 1897 DEGREES F	
11	TE-3528Y	SHEATH THERMOCOUPLE, NOD 52, LEVFL Y	32 TO 1897 DEGREES F	
12	TE-352AY	SHEATH THEEMOCOUPLE, FOD 52, LEVEL Y	32 TO 1897 DEGREES P	
13	TE-350AC	SHEATH THEBROCOUPLE, EOD 50, LEVEL C	32 TO 1397 DEGREES F	
14	TE-3508D	SHEATH THERMOCOUPLE, BOD 50, LEVEL D	32 TO 1897 DEGREES F	
15	TE-326 AE	SHEATH THEEMOCOUPLE, RoD 26, LEVEL 2	32 TO 1997 DEGREES P	
16	TE-350CE	SHEATH THERMOCOUFLE, ROD 50, LEVEL E	32 TO 1897 DEGREES F	
17	TE-350AF	SHEATH THEREOCOUPLE, ROD 50, LEVEL F	32 TO 1897 DEGREES F	
18	TE-350CF	SHEATH THEREOCOUPLE, ROD 50, LEVEL F	32 TO 1997 DEGREES F	
19	TE-350AD	SHEATH THERMOCOUPLE, NOD 50, LEVEL D	32 TO 1897 DEGREES P	FAILED INSTRUMENT
20	TE-350BC	SHEATH THERMOCOUPLE, EOD 50, LEVEL C	32 TO 1897 DEGREES F	
21	TE-3218D	SHEATH THERMOCOUPLE, ROD 21, LEVEL D	32 TO 1897 DEGREES F	
22	TE-1229	SUBCHANNEL NUMBER 29 THERMOCOGPLE	32 TO 1897 DEGREES F	
~~	00.33400	CARATH THERE COULT FOR 26 LEVEL F	32 TO 1897 DEGREES F	

PIGURE NUMBER	INSTRUMENT NAME	DESCRIPTION	RANGE	COMMENTS
624	TE-1213	SUBCHANNEL NUMBER 13 THERMOCOUPLE	32 NO 1897 DEGREES F	
625	TE-3518E	SHEATH THELMOCOUPLE, ROD 51, LEVEL E	32 TO 1897 DEGREES F	
626	TE-186E	SHROUD BOX THERMOCOUPLE, LEVEL G, EAST SIDE	32 TO 1897 DEGREES ?	
627	TE-328CD	SHEATH THERMOCOUPLE, ROD 28, LEVEL D	32 TO 1897 DEGREES F	
628	TE-320CE	SHEATH THERMOCOUPLE, ROD 20, LEVEL E	32 TO 1897 DEGEEES P	QUESTIGRABL?
629	TE-320BE	SHEATH THERMOCOUPLE, ROD 20, LEVEL 2	32 TO 1897 DEGISES P	
630	TE-320AE	SHEATH THERMOCOUPLE, ROD 20, LEVEL E	32 TO 1897 DEGREES 7	
631	TE-320CD	SHEATH THERMOCOUPLE, EOD 20, LEVEL D	32 TO 1897 DEGREES F	
6.32	TE- 320CF	SHEATH THERMOCOUPLE, GOD 20, LEVEL F	32 TO 1897 DEGREES F	
633	TE-320AF	SHEATH THERMOCOUPLE, BOD 20, LEVEL F	32 TO 1397 DEGREES F	
634	TE-32080	SHEATH THERMOCOUPLE, NOD 20, LEV T. D	32 to 1897 DEGREES F	
635	TE-316BE	SHEATH THERMOCUULLE, FOD 16, LEVEL E	32 TO 1397 DESPEES "	
636	TE-355CD	SHEATH THERNOCOUPLE, ROD 55, LEVEL D	32 TO 1397 DEG22ES P	
637	18-314 AC	SHEATH THERMOCOUPLE, RCD 14, LEVEL C	12 TO 1397 DEGURES #	
6.38	TE-31444	SHEATH THERMOCOUPLE, ROD 14, LEVEL A	32 TO 1897 DEGREES P	
639	TE-3188D	SHEATH THERROCOJPLE, BOD 18, LEVEL D	32 TO 1897 DEGLEES T	
640	TE-1207	SUBCHANNEL NUMEER 7 THERMOCOUPLE	32 TO 1097 DEGL®ES F	
641	TE-1255	SUBCHANNEL NUIBEL 55 THERMOCOUPLE	32 TO 1897 DEGREES F	
642	TE-318CD	SHEATH THEFMOCOUPLE, FOD 16, LEVEL D	32 TO 1897 DEGREES F	
643	TE-320AG	SERATH THERMOCOUPLE, FOD 20, LEVEL G	32 TO 1897 DEGESES F	
644	TE-325AB	SHEATH THERMOCOUPLE, FOD 25, LEVEL 8	32 TO 1897 DEGREES F	
645	TE-325AA	SHEATH THERROCOUPLE, HOD 25, LEWIL A	32 TO 1897 DEGERES F	
646	TE-32584	SHEATH THERMOCOUPLE, FOD 25, LEVEL A	32 TO 1097 DEGREES F	
647	TE-3258C	SLEATH THELROCOUPLE, FOD 25, LEVEL C	32 TO 1897 DEGERES F	
648	TE-325CB	SHEATH THEREOCOUPLE, ROD 25, LEVEL E	32 TO 1897 DEGREPS F	
A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT. CONTRACTACT OF A CONTRACT OF A CONTRACT. CONTRACTACT OF A CONTRACT OF A				

FIGURE	INSTRUMENT NAME	DESCRIPTION	PANGE	COMMENTS
649	TE-325AC	SHEATH THEENCCOUPLE, ROD 25, LEVEL C	32 TO 1897 : PGLEES F	
650	TE-32550	SHPAIN THEFROCOUPLE, ROD 25, LEVEL D	32 TO 1897 PEGRES F	
651	EEE-102682	ZERO INPUT CHANNELS 1536 TO 1663	0 70 40 89	
652	EEE-1026MC	CALIBEATION INPUT CHANNELS 1536 TO 1663	0 TO 40 MV	
653	TE-337MC	MIDDLE THEPMOCOUPLE, EOD 37, LEVEL C	35 TO 1900 JEGT 385 "	FAILED INSTRUMENT
654	TE-337ME	MIDDLE THERMOCOUPLE, ROD 37, LEVEL E	35 TO 1900 FRGREES .	
655	TE-337MD	MIDDLE THREMOCOUPLE, ROD 37, LEVEL D	35 TO 1900 DEGREES F	
0.56	TE-337MF	MIDDLE THEFMOCCUPLE, FOD 37, LEVEL F	35 TO 1900 DEGEZES F	
657	TE-345ME	MIDDLE THERMOCOMPLE, ROD 45, LEVEL E	35 TO 1900 CEGLEES P	
658	TE-3458G	MIDDLE THERMOCOUPLE, POE 45, LEVEL G	15 TO 1950 DEGLERS *	
659	TE-345MD	MIDDLE THERMOCOUPLE, ROD 45, LEVEL D	35 TO 1900 DEGREES P	
660	TE-332AE	SHEATH THERMOCOUPLE, ROD 32, LEVEL E	32 TO 1897 DEGREES P	
661	TE-328#C	MIDDLE THERMOCOUPLE, ROD 24, LEVEL C	35 TO 1900 DEGREES F	
662	TE-328ME	MIDDLE THERMOCOUPLE, ROD 23, LEVEL E	35 TO 1990 DEGREES F	
663	TE-328#F	MIDDLE THERMOCOUPLE, ROD 28, LEVEL F	35 TO 190 DEGREES F	
664	TE-328MD	MIDDLE THERMOCOUPLE, ROD 28, LEVEL D	35 TO 1900 DEGREES P	
665	TE-3298E	MIDDLE THEREOCOUPLE, ROD 29, LEVEL E	35 TO 1900 DEG3EES F	
666	TE-329MC	MIDDLE THERMOCOUPLE, ROD 29, LEVEL C	35 TO 1900 DEGREES F	
667	TE-329MD	MIDDLE THERMOCOUPLE, BOD 29, LEVEL D	35 TO 1900 DEGREES F	
668	TE-329MB	MIDDLE THERMOCOUPLE, ROD 29, LEVEL B	35 TO 190" DEGRESS P	
669	TE-338MD	MIDDLE THERMOCOUPLE, ROD 33, LEVEL D	35 TO 1900 CBG .875 *	
670	TE-33888	MIDDLE THERMOCOUPLE, ROD 38, LEVEL B	35 TO 1900 DEGREES F	
671	TE-3388A	MIDDLE THERMOCOUPLE, ROD 38, LEVEL A	35 TO 1000 HEGREES P	
672	TE-338MC	MIDDLE THERMOCOUPLE, POD 38, LEVEL C	35 TO 1930 DEGREES P	
073	TE-355MA	MIDDLE THERMOCOUPLE, ROD 55, LEVEL A	35 TO 1900 DEGREES P	

Table 3 (continued)

the second se

1

- -

FIGURE	INSTRUMENT NAME		DESCI	ILAIN	NO		RANGE		COMMENTS	
674	TE-355#8	MIDDLE	THERMOCOUPLE.	DDE	25,	LEVEL 5	35 TO 1900	DEGREES P		
675	TE-355AC	RIDDLE	THE PROCOUPLE.	ROD	.55	LEVEL C	35 TO 1900	DEGREES P		
676	TE-355MD	RIDDLE	THERMOCOUPLE.	CCS	.55	LEVEL D	35 TO 1900	DEGREPS F		
677	TE-343MA	MIDDLE	THERMOCOJPLE.	ROD	13.	LEVEL A	35 TO 1980	DEGRESS P	FATLED INSTRUMENT	
678	TE-343AC	MIDDLE	THERMOCOUPLE.	ROD	13.	LEVEL C	35 TO 1903	UEGREES P	PALLED INSPRING	
619	TE-34 3MB	AIDULE	THERMOCOUPLE,	ROD	121	LEVEL B	35 20 1990	DEGREES F	PAILED LESTBURENT	
680	TE-343MD	ALDOLE	THERMOCOUPLE.	TOD	13.	LEVEL D	35 TO 1900	DEGREES P	FAILED INSTRUMENT	
681	TE-3443C	MIDDLE	THERMOCOUPLE.	COT	14.	LEVEL C	35 70 1900	DEGREES F	FAILED INSTRUMENT	
682	TE-324AB	SHEATH	THEENOCOUPLE,	E03	24.	LEVEL B	32 70 1897	DEGREES P		
683	TE-344MB	SIDCIE	THEBROCOUPLE.	ROD		LEVEL B	35 TO 1900	DEGREES P	QUESTIONABLE	
684	TE-3443E	SIDDLE	THERMOCOUPLE.	CO3	* 17 *	LEVEL P	35 TO 1900 1	DEGREES F	QUESTIONABLE	
585	TE-354 MD	MIDDLE	THERMOCOUPLE.	EOD.	. 11 5	LEVEL D	35 TO 1900	DEGREES F		
686	TE-354BC	MIDDLE	THERMOCOUPLE,	800	. 44	LEVEL C	19001 01 51	PRGEEES P		
687	TE-3544B	MIDDLE	THEREOCOUPLE.	R0D	.4.	LEVEL B	35 TO 1900 1	DEGREES P		
688	TE-3548A	MIDDLE	THERSOCOUPLE,	ROD	. 4.	LZVEL A	35 TO 1900 1	DEGREES P		
689	TE-353MC	MIDDLE	TAZRACCOUPLE.	202	.83	LEVEL C	35 TO 1900	DEGRESS P		
06.9	TE-353MD	MIDDLE	THEBROCOUPLE,	603	.3.	0 TEAT	35 TO 1900 1	DEGREES P		
169	TE-353ME	NIDDLF	THEREOCOUPLE.	4 UD	3.	LEVEL E	35 TO 1900 1	DEGRESS F		
692	TE-360MA	ALDDLE	THERMOCOUPLE,	ROD 6	.0.	LEVEL A	35 TO 1900 1	DEGREES P		
693	TE-360NB	#IDDLE	THLEROCOUPLE.	800 6	.0.	LEVEL D	1 C061 01 58	DEGREES F		
th69	TE-360MD	RIDILE	THERROCOUPLE,	BOD +	.0	C TEAST	35 TO 1900	PEGRERS P		
695	TE-360MC	ALDDLE	"REEMOCOUPLE,	ROD 6	.0.	LEVEL C	3 0061 01 SE	DEGREES F		
696	TE-3613C	SIDDLE	THEREOCOUPLE,	NOD 6		PART C	35 TO 1900 F	PEGREPS F		
697	TE-361MB	#IDDLE	THERMOCOUPLE,	ROD 6		SVEL B	35 70 1330 0	A SESENT		
698	TE-3613D	MIDDLE	THEFACCOUPLE.	ROD +	1.	EVEL D	35 70 1900 5	A SZAESZ		

63

-

· Pr

6

ð
4-

A . A

3

FIGURE	INSTRUGENT			COWNERT
NG NBER	NAME	DESCRIPTION	1.1.1111.1111.1111.1111.1111.1111.111	
66.9	TE-309AD	SHEATH THERMOCOUPLE, ROD 3, LEVEL D	35 T. 1930 DECRENT P	
7.00	TE-35988	WIDDLE THERMOCOGPLE, ROD 59, LEVEL 2	35 TO 1900 DEGREES 2	
701	T8-3598F	MIDDLE THERMOCOUPLE, ROD 59, LEVEL F	35 TO 1900 ALGREES T	
702	TE-3598C	MIDDLE THERMOCOUPLE, BOD 59, LEVEL C	35 TK 1930 DEGRERS F	
203	TE-3628E	MIDDLE TAREMOCOUPLE, ROD 62, LEVEL E	35 TO 1900 DEGREES P	
7.04	TE-316CP	SHEATH THREMOCOUPLE, SOD 16, LEVEL F	35 TO 1500 DEGREDS F	
705	TE-362MC	SIDDLE THERMOCOUPLE, SOD 62, LEVEL C	35 TO 190" CEG-REE F	
706	TE-36288	MIDDLE THEREOCOUPLE, BOD 52, LEVEL B	35 TV 1500 DEGREZS F PAILED IN	10100100
707	72-35280	MIDDLE THERMOCOUPLE, POD 52, LEVEL U	35 TU 1+00 PEGRECS *	
708	TE-3528S	MIDDLE THERMOCOUPLE, ROD 52, LEVEL S	35 20 1900 D.GFERS P	
40L	TE-35288	MIDDLE THERMOCOUPLE, EOD 52, LEVEL R	15 200 1900 DECERES 2	
7 10	TE-352M1	MIDDLE THERMOCOUPLE, ROD 52, LEVEL T	35 10 1000 0801 26 2	
711	TE-33980	RIBBLE THERROCOUPLE, ROD 39, LEVEL D	35 TC 1929 DSGPREA F	
732	TE-3394E	MIDDLE THERMOCOUPLE, SOD 39, LEVEL E	35 TO 2295 2368 F	
713	TE-339MC	MIDDLE THERMOCOUPLE, SOD 39, LEVEL C	35 TC 100C 010 15	
7 34	TE-33988	MIDDLE THERSOCOUPLE, SOD 39, LEVEL B	35 TO 1900 DEGREFS P	
7 15	TE-330AC	MIDDLE THERMOCOUPLE, ROD 30, LEVEL C	35 IO 1900 DEGREES P	
716	TE-3308B	MIDDLE THERMOCOUPLE, SOD 30, LEVEL E	35 TO 1940 AEGERES P	
717	TE-335AD	SHEATH THERMOCOUPLE, KOD 35, LEVEL D	35 TO 1900 JEARLES F	
7.18	TE-330AE	MIDDLE THERMOCODPLE, ROD 30, LEVEL 2	35 TC 1906 DECRERS F	
719	TE-3147A	MIDDLE THERMOCOUPLE, AOD 14, LEVPL A	35 TO 1900 DEG. 753 F	
720	TE-314MB	MIDDLE THERMOCOUPLE, BOD 14, LEVEL B	35 TO 1900 DEGELS F	
721	TR-3144C	MIDDLE THERMOCOUPLE, ROD 14, LEVEL C	35 TU 1930 BadSELS P	
722	TE-344AE	SHEATH THERROCOUPLE, BOD 44, LEVEL E	35 TO 1100 U26.EES &	
723	TE-3148D	E CEATH THERMOCOUPLE, BOD 14, LEVEL D	32 TO 1297 DEGREES P	

64

14

.

.

FIGURE NUMBER	INSTRUMENT NAME	DESCRIPTION	¢	COMMENTS
724	TE-306 MA	MIDDLE THEAMOCOUPLE, ROD 6, LEVEL A	35 TO 1900 PEGDEES F	
725	12-30680	MIDDLE THERNOCOUPLE, ROD 6, LEVEL D	35 TO 1900 DEGREES F	
726	TE-33580	SHEATH THERMOCOUPLE, ROD 35, LEVEL D	32 TC 1897 DEGREES F	
727	TE-306 MC	MIDDLE THERMOCOUPLE, ROD 6, LEVEL C	35 TO 1900 DEGREES F	
728	TE-33188	MIDDLE THERMOCOUPLE, ROD 31, LEVEL P	35 TO 1900 DEGEESS F	
729	TE-920	PURGE LINE RETURN TEMPERATORE	JS TO 1900 DEGREES P	
730	TE-921	INNER SEAL COOLANT SUPPLY TEMPERATURE	35 TO 1900 DEGREES F	
731	TE-922	INNER SEAL COOLANT SUPPLY TEMPERATURE	35 TO 1900 DEGRERS F	
732	TE-34786	MIDDLE THERMOCOUPLE, BOD 47, LEVEL G	35 TO 1900 DEGREES F	
733	TE-34762	MIDDLE THERMOCOUPLE, ROD 47, LEVEL E	35 TU 1900 DEGREES F	
734	TE-34760	MIDDLE THERMOCOUPLE, NOD 47, LEVEL D	25 TO 1900 DEGREES F	
735	TE-3478F	MIDDLE THERMOCOUPLE, ROD 47, LEVEL P	35 TO 1900 DEGREES P	
736	TE-318CP	SHEATH THERMOCOUPLE, EOD 18, LEVEL F	35 TO '900 DEGREES P	
737	TE-318BF	SHEATH THERMOCOUPLE, ROD 18, LEVEL F	35 TO 1900 DEGRERS P	
738	TE-315MD	MIDDLE THERMOCOUPLE, ROD 15, LEVEL D	35 TO 1900 DEGREES P	
739	TE-3158C	MIDDLE THERMOCOUPLE, ROD 15, LEVEL C	35 TO 1900 DEGREES F	
740	TE-305NU	MIDDLE THERMOCOUPLE, ROD 5, LEVEL U	15 TO 1940 DZGREES P	
741	TE-30585	MIDDLE THERMOCOUPLE, ROD 5, LEVEL S	34, 1" (900 DEGREES F	
742	TE-30588	MIDDLE THERMOCOUPLE, ROD 5, LEVEL H	35 TO 1900 DEGREES P	
743	TE-305AY	MIDDLE THEREOCOUPLE, BOD 5, LEVEL Y	35 TO 1900 DEGREES F	
744	TE-307MF	MIDDLE THERMOCOUPLE, ROD 7, LEVEL F	35 TO 1900 DEGREES F	
745	TE-307ME	MIDDLE THERMOCOUPLE, ROD 7, LEVEL E	35 TC 1300 DEGESES P	
746	TE-3078C	MIDDLE THERMOCOUPLE, ROD 7, LEVEL C	35 *5 1900 DEGREES F	FAILED JASTADAENT
747	TE-30780	MIDDLE THERMOCOUPLE, ROD 7, LEVEL D	35 TO 1900 DEGREES F	
748	T 344 AD	SHEATH THERMOCOUPLE, ROD 44, LEVEL D	35 m 1900 DEGEDES F	
1.1.0				

I GURE	TRICERCENT		DESC	ILAIS				 	84	NGE	and shows a second to se	NEWNON
611	TE+340MC	RIDDLE	TRERACCOUPLE,	ROD	10. LF	TZ AL		35 T	0	0061	DEGRERS F	
150	TE-340AB	MIDDLE	THERMOCOUPLE,	800	40° LB	N ST.		35 7	0	1900	DEGREES F	
151	TE-340MA	MIDDLE	THERMOCOUPLE.	RCD	10. 13	AEL		35 T	0	1900	DEGREES F	
152	TE-3568C	RIDDLE	THERMOCOUPLE.	ROD	56. 1.8	TEAD		35 1	0	0061	DEGREES F	
753	TE-3568D	RIDDLE	THEREOCOUPLE.	GOR	56. LB	VEL		35 T	0	1300	PEGREES F	
154	TE-356#6	MIDDLE	TERENCCOUPLE.	808	56. LS	AEL.		35 7		1900	UZGREES P	
755	TE-356MP	SIDDLE	THERESCOUPLE,	ROD	10. LB	A EL		35 T	0	1900	DFGREES P	
756	TE-328AD	SHFATH	THLWMOCOUPLE.	RUD	28, L2	A RL		32 7		1031	DEGREES F	
151	TE-324ME	MIDDLE	THERBOCOUPLE.	800	24, Lb	VEL	63	35 T	0	1900	DEGREES F	
758	TE-324MC	RIDDLE	THERMOCOUPLE.	ROD	24. LE	TEL .		35 T	0	1900	DEGREES F	
159	TE-3248D	MIDDLE	THEREOCOUPLE.	EOD	24. Lb	VEL		35 T	0	1900	DEGREES P	
760	TE-363MD	ALDOLE	THERMOCOUPLE.	6 OD	53. Lb	VEL		35 7	0	1900	A STREET	
761	TE-3638E	MIDDLE	THERMOCOUPLE.	RUD	53. LI	WEL.		35 7	0	1900	DEGRERS F	
762	TE 363MB	RIDDLE	THERMCCCOPLE,	RCD	53. LB	W EL		35 T	0	1900	DEGREES P	
763	TE-363AC	ALDDLE	THABROCOUPLE.	ROD	53. Lb	VEL.		35 T	0	1930	DEGREKS F	
764	222-1026MZ	ZERO IN	IPUT CEAASELS	1664	ro 179	11		L O	0	0 1	RV V	
765	ZZZ-10268C	CALIBEA	HI LOSAL NOIL	ANHEL	5 1664	10	1521	0 1	0	40	AN	
166	TE-3168E	RIDDLE	THERMOCOUPLE.	800	16, Lb	TEAD		35 7	0	1990	DEGREES P	
767	TE-316MD	RIDDLE	THERMOCOUPLE.	ROD	16, LB	V EL		35 7	0	1900	DPGREES P	
768	TE-3168F	RIDDLE	THERMOCOUPLE.	ROD	16. LB	13 43		35 T	0	1930	A SECESS	
769	TE-3168G	RIDDLE	THERMOCOUPLE.	800	16. LB	TEAL		35 7	0	1900	DEGREES F	
770	TE-3648G	MIDDLE	THERMOCOLDER.	ROD	54. LB	WEL (35 1	0	1900	DEGREES F	
171	TE-3648F	AIDDLE	THERMOCOUPLE,	RUD	54. LE	VEL 1		35 T	0	1900	DEGREES P	
272	TE-3285P	SHEATH	THERAOCOUPLE.	ROD	28, Lh	NET		32 T		1897	DEGRERS P	
272	TP- 364MD	WI DULY	THERMOCOUDER.	ROD .	14. LP	A EL		35 T	0	1900	DEGREES P	

R.

Table 3 (continued)

đ

.

UNBER	INSTRUMENT NAME	DESCRIPTION	HANGE	COMMENTS
774	TE-308MB	MIDDLE THERMOCOUPLE, ROD 8, LEVEL B	35 TO 1900 DEGREES P	
775	TE-328 AF	SHEATH THERMOCOUPLE, BOD 28, LEVEL F	32 TO 1897 DEGREES F	
776	TE-308MD	MIDDLE THERMOCOUPLE, ROD 8, LEVEL D	35 TO 1900 DEGREES P	
777	TE-308MC	MIDDLE THREMOCOUPLE, ROD 8, LEVEL C	35 TO 1900 DEGREES F	
778	TE-328AC	SHEATH THEFMOCOUPLE, BOD 28, LEVEL C	32 TO 1897 DEGREES F	
779	TE-3328D	MIDDLE THERMOCOUPLE, ROD 32, LEVEL D	35 TO 1900 DEGREES F	
780	TE-332MG	MIDDLE THERMOCOUPLE, ROD 32, LEVEL G	35 TO 1900 DEGREES F	
781	TE-332ME	MIDDLE THERMOCOUPLE, ROD 32, LEVEL E	35 TO 1900 DEGREES F	
782	TE-34880	MIDDLE THERMOCOUPLE, ROD 46, LEVEL U	35 TO 1900 DEGREES F	
783	TE-3488H	MIDDLE THERMOCOUPLE, ROD 48, LEVEL H	35 TO 1900 DEGREES F	
784	TE-348MS	MIDDLE THERMOCOUPLE, ROD 48, LEVEL S	35 TO 1900 DEGREES F	
785	TE-34887	MIDDLE THERMOCOUPLE, ROD 48, LEVEL Y	35 TO 1900 DEGREES F	
786	TE-3578C	MIDDLE THERMOCOUPLE, BOD 57, LEVEL C	35 TO 1900 DEGREZS P	
787	TE-357MB	MIDDLE THERMOCOUPLE, BOD 57, LEVEL B	35 TO 1900 DEGREES F	
788	TE-3578D	MIDDLE THERMOCOUPLE, BOD 57, LEVEL D	35 TO 1900 DEGREES F	
789	TE-357MA	MIDDLE THERMOCOUPLE, ROD 57, LEVEL A	35 TO 1900 DEGREES F	
790	TE-349ME	MIDDLE THERMOCOUPLE, ROD 49, LEVEL E	35 TO 1900 DEGREES F	
791	TE-349MD	MIDDLE THERMOCOUPLE, ROD 49, LEVEL D	35 TO 1900 DEGREES F	
792	TE-3498C	MIDDLE THERMOCOUPLE, BOD 49, LEVEL C	35 TO 1900 DEGREES F	
793	TE-349MB	MIDDLE THERMOCOUPLE, ROD 49, LEVEL B	35 TO 1900 DEGREES P	
794	TE-318CE	SHEATH THERMOCOUPLE, BOD 18, LEVEL E	35 TO 1900 DEGREES F	
795	TE-31782	MIDDLE THERMOCOUPLE, ROD 17, LEVEL E	35 TO 1900 DEGREES F	FAILED INSTRUMENT
796	TE-333AE	SHEATH THERMOCOUPLE, ROD 33, LEVEL E	35 TO 1900 DEGREES F	
797	TE-33388	SHEATH THERMOCOUPLE, BOD 33, LEVEL E	35 TO 1960 DEGREES F	
798	TE-335A2	SHEATH THERMOCOUPLE, BOD 35, LEVEL E	35 TO 1900 DEGREES P	

1. .

FIGURE	INSTRUMENT NAME	DESCRIPTION	RANCE	CORMENTS
799	TE-333MC	MIDDLE IMERMOCOUPLE, ROD 33, LEVEL C	35 TO 1900 DEGREES P	
800	TE-1247	SUBCHANNEL NUMBER 47 THERMOCOUPLE	35 TO 1900 DEGREES P	
801	TE-335CE	SHEATH THERMOCOUPLE, KOD 35, LEVEL E	35 TO 1900 DEGREES P	
802	78-341MA	MIDDLE THERMOCOUPLE, FOD 41, LEVEL :	35 TO 1990 DEGREES F	
803	TE-34180	MIDDLE THERMOCOUPLE, ROD 41, LEVEL D	35 TO 1900 DEGREES F	
804	TE-341MB	MIDDLE THERMOCOUPLE, ROD 41, LEVEL B	35 TO 1900 DEGREES F	
805	TE-341MC	MIDDLE THERMOCOUPLE, BOD 41, LEVEL C	35 TO 1900 DEGREES F	
806	TE-325MC	MIDDLE THERMOCOUPLE, ROD 25, LEVEL C	35 TO 1990 DEGREES P	
807	TE-325MD	MIDDLE THERMOCOUPLE, ROD 25, LEVEL D	35 TO 1900 DEGREES F	
808	TE-32588	MIDDLE THERMOCOUPLE, BOD 25, LEVEL B	35 TO 1900 DEGREES F	
809	TE-325MA	MIDDLE THERMOCOUPLE, ROD 25, LEVEL A	35 TO 1900 DEGEBES F	
810	TE-303ME	MIDDLE THERMOCOUPLE, ROD 3, LEVEL E	35 TO 1900 DEGREES P	
811	TE-303MG	MIDDLE THERMOCOUPLE, ROD 3, LEVEL G	35 TO 1900 DEGREES P	
812	TE-303 AP	MIDDLE THERMOCOUPLE, ROD 3, LEVEL P	35 TO 1900 DEGREES P	
813	TE-3038D	MIDDLE THERMOCOUPLE, ROD 3, LEVEL D	35 TO 1900 DEGREES P	
814	TE-3588F	MIDDLE THERMOCOUPLE, ROD 58, LEVEL P	35 TO 1900 DEGREES F	
8 15	TE-358MD	MIDDLE THERMOCOUPLE, ROD 58, LEVEL D	35 TO 1900 DEGREES F	
816	TE-358ME	MIDDLE THERMOCOUPLE, HOD 58, LEVEL E	35 TO 1900 DEGREES P	
8 17	TE-35886	MIDDLE THERMOCOUPLE, BOD 58, LEVEL G	35 TO 1900 DEGREES F	
8 18	TE-309MC	MIDDLE THERMOCOUPLE, ROD 9, LEVEL C	35 TO 1900 DEGREES P	
8 19	TE-304AE	SHEATH THERMOCOUPLE, KOD 4, LEVEL E	35 TO 1900 DEGREES F	
820	TE-304CE	SHEATH THERMOCOUPLE, ROD 4, LEVEL E	35 TO 1900 DEGREES P	
821	TE-30988	MIDDLE THERMOCOUPLE, BOD 9, LEVEL B	35 TO 1900 DEGREES F	
822	TE-328AE	SHEATH THERMOCOUPLE, ROD 28, LEVEL E	32 TO 1897 DEGREES P	
823	TE-334MS	MIDDLE THERNOCOUPLE, ROD 34, LEVPL S	35 TO 1900 DEGREES F	

128C. 63

٠

. . .

.

.

4

.

.

-

IGURE	INSTEUMENT NAME	DESCRIPTION	EANGE	COMMENTS
824	TE-334MH	MIDDLE THERMOCOUPLE, ROD 34, LEVEL H	35 TO 1900 DEGREES F	
825	TE-1279	SUBCHANNEL NUMBER 79 TREEMOCOUPLE	35 TO 1900 DEGREES F	
826	TE-310MC	MIDDLE THEPMOCOUPLE, ROD 10, LEVEL C	35 TO 1900 DEGREES F	
327	TE-1266	SUBCHANNEL NUMBER 66 THERMOCOUPLE	35 TO 1900 DEGREES F	
328	TE-310ME	MIDDLE THERMOCOUPLE, NOD 10, LEVEL E	35 TO 1907 DEGREES P	
3 29	TE-310MD	MIDDLE THERMOCOUPLE, ROD 10, LEVEL D	35 TO 1900 DEGREES P	
30	TE-302MC	MIDDLE THERMOCOUPLE, ROD 2, LEVEL C	35 TO 1900 DEGREES F	QUESTIONABLE
331	TE-1269	SUBCHANNEL NURBER 69 THERNOCOUPLE	35 TO 1900 DEGREES F	
32	TE-302MB	MIDDLE THERMOCOUPLE, ROD 2, LEVEL B	35 TO 1900 DEGREES F	QUESTIONABLE
133	TE-3028D	MIDDLE THERMOCOUPLE, ROD 2, LEVEL D	35 TO 1900 DEGEBES F	OUESTIONABLE
34	TE-350MF	MIDDLE THERMOCOUPLE, ROD 50, LEVEL P	35 TO 1900 DEGREES F	
35	TE-350MC	MIDDLE THERMOCOUPLE, ROD 50, LEVEL C	35 TO 1900 DEGREES F	
36	TE-350 ME	MIDDLE THERMOCOUPLE, ROD 50, LEVEL E	35 TO 1900 DEGREES F	
37	TE 5080	MIDDLE THERMOCOUPLE, ROD 50, LEVEL D	35 TO 1900 DEGREES F	
38	TE-318ME	MIDDLE THERMOCOUPLE, ROD 18, LEVEL E	35 TO 1900 DEGREES F	QUESTIONABLE
39	TE-318MD	MIDDLE THERMOCOUPLE, ROD 18, LEVEL 0	35 TO 1900 DEGREES P	
40	TE-318MF	MIDDLE THERMOCOUPLE, PCL 18, LEVEL F	35 TO 1900 DEGREES F	
41	TE-1275	SUBCHANNEL NUMBER 75 THERMOCOUPLE	35 TO 1900 DEGLEES F	
12	TE-312ME	MIDDLE THERMOCOUPLE, ROD 12, LEVEL 8	35 TO 1900 DEGREES F	
43	TE-312MD	MIDDLE THERMOCOUPLE, ROD 12, LEVEL D	35 TC 1900 DEGREES F	
44	TE-3128C	MIDDLE THERMOCOUPLE, NOD 12, LEVEL C	35 TO 1900 DEGREES F	
45	TE-312MB	MIDDLE THERMOCOUPLE, ROD 12, LEVEL B	35 TO 1900 DEGREES F	
46	TE-3218D	BIDDLE THERMOCOUPLE, POD 21, LEVEL D	35 TO 1900 DEGREES F	
47	TE-328CE	SHEATH THERMOCOUPLE, ROD 28, LEVEL E	32 TO 1897 DEGREES F	
48	TE-32188	MIDDLE THERMOCOUPLE, HOD 21, LEVEL B	35 TO 1900 DEGREES P	

Table 3 (continued)

FIGURE	INSTRUMENT NAME	DESCRIPTION	PANGE	COMMENTS
849	TE-32184	MIDDLE THREMOCOUPLE, NOD 21, LEVEL A	35 70 1900 DEGLEES P	FAILED INSTRUMENT
850	TE-335ME	MIDDLE THERMOCOUPLE, ROD 35, LEVEL E	35 TO 1900 DEGREES F	
851	TB-335MC	MIDDLE THERMOCOUPLE, ROD 35, LEVEL C	35 TO 1900 DEGREES P	
852	TE-335MD	MIDDLE THERMOCOUPLE, ROD 35, LEVEL D	35 TO 1900 DEGREES P	
853	TE-33588	MIDDLE THERBOCOUPLE, EOD 35, LEVEL 8	35 TO 1900 DEGREES F	
854	1E-358AD	SHEATH THERMOCOUPLE, ROD 58, LEVEL D	35 TO 1900 DEGREES F	
855	TE-32788	MIDDLE THEEMOCOUPLE, ROD 27, LEVEL B	35 TO 1900 DEGREES P	
856	TE-301CD	SHEATH THERMOCOUPLE, ROD 1, LEVEL 5	35 TO 1900 DEGERES P	
857	TE-3588F	SHEATH THEEMOCOUPLE, ROD 58, LEVEL F	35 TO 1900 DEGREES F	FAILED INSTRUMENT
858	TE-32080	MIDDLE THERBOCOUPLE, ROD 20, LEVEL D	35 TO 1900 DEGREES F	
859	TE-320MG	MIDDLE THERMOCOUPLE, ROD 20, LEVEL G	35 TO 1900 DEGREES F	
860	TE-328CC	SHEATH THERMOCOUPLE, ROD 28, LEVEL C	32 TO 1897 DEGREES P	
861	TE-304AD	SHEATH THERMOCOUPLE, ROD 4, LEVEL D	35 TO 1900 DEGREES F	
862	TE-337CD	SHEATH THEBMOCOUPLE, ROD 37, LEVEL D	35 TO 1900 DEGREES F	
863	TE-310BD	SHEATH THERMOCOUPLE, BOD 10, LEVEL D	35 TO 1900 DEGREES P	
864	TE-3518C	MIDDLE THERMOCOUPLE, ROD 51, LEVEL C	35 TO 1900 DEGREES F	
865	TE-311MC	MIDDLE THERMOCOUPLE, ROD 11, LEVEL C	35 TO 1900 DEGREES F	
866	TE-311MD	MIDDLE THERMOCOUPLE, BOD 11, LEVEL D	35 TO 1900 DEGREES F	
867	TE-35988	SHEATH THERMOCOUPLE, BOD 59, LEVEL E	35 TO 1900 DEGREES P	
868	TE-311MA	MILDLE THERMOCOUPLE, ROD 11, LEVEL A	35 TO 1900 DEGREES F	
869	TE-326MD	MIDDLE THERMOCOUPLE, ROD 26, LEVEL D	35 TO 1900 DEGREES F	
870	TE-3268C	MIDDLE THERMOCOUPLE, ROD 26, LEVEL C	35 TO 1900 DEGREES F	
871	TE-310AE	SHEATH THERMOCOUPLE, BOD 10, LEVEL E	35 TO 1900 DEGBEES 2	
872	TE-326ME	MIDDLE THERMOCOUPLE, BOD 26, LEVEL E	35 TO 1900 DEGREES F	
873	TE-304 8D	MIDDLE THERMOCOUPLE, BOD 4, LEVEL D	35 TO 1900 DEGREES P	

	1
	2
	-0
	-
	8
	a
	-
	22
	=
	문
	æ.
	-
1	-
1	-
2	
	-
	*
1	-
4	æ
1	-
4	e –

174 TE-304AC MIDDLE TAREMOCOUPLE, SUD 4 * * VEL C 35 TO 1900 DEGRE 175 TE-304ME MIDDLE THERMOCOUPLE, SUD 4, LEVEL S 35 TO 1900 DEGRE 176 TE-304ME MIDDLE THERMOCOUPLE, FOD 4, LEVEL S 35 TO 1900 DEGRE	GURE	INSTRUMENT NAME	DESCRIPTION	RANGE	COMPANIS
75 TE-304ME MIDDLE THERMACOUPLE, RUD 4, LEVEL E 35 TO 1900 DEGIE 76 TE-304KF MIDDLE THERMACOUPLE, FOD 4, LEVEL F 35 TO 1900 DEGRE	74	TE-3048C	MIDDLE TAREMOCOUPLE, SOD 4 * * WEL C	35 TO 1900 DEGREES P	
76 TE-304KF MIDDLE THERMOCOUPLE, FOD 4, LEVEL F 35 TO 1900 DEGR	15	TE-304ME	MIDDLE THERMOCOUPLE, SUD 4, LEVEL S	35 TO 1900 DEGLEES P	
	16	TE-304KF	MIDDLE THERMOCOUPLE, FOD 4, LEVEL F	35 TO 1900 DEGRES P	

 NAME	FIGURE NUMBER	TYPE CODE	
DE-168	147	106	
DE-20	145	106	
DE-204A	166	106	
DE-204B	167	106	
DE-204C	168	106	
DE-218	148	106	
DE-262A	169	106	
DE-262B	170	106	
DE-262C	200	106	
DE-36	146	106	
EEE-10	98	33	
EEE-1026AC	2	39	
EFE-1026AZ	1	38	
EEE-1026BC	117	39	
EEE-1026BZ	116	38	
EEE-1026IC	202	39	
EEE-102612	201	38	
EEE-1026JC	319	39	
EEE-1026JZ	318	38	
EEE-1026KC	434	39	
EEE-1026KZ	433	38	
EEE-1026LC	540	39	
EEE-1026LZ	539	38	

Table 4. Thermal-Hydraulic Test Facility Test 3.05.5B

NAME	FIGURE NUBBER	TYPE CODE
8-1026MC	652	39
8-1026MZ	651	38
E-1026NC	765	39

 NAME	NUBBER	CODE	
EEE-1026MC	652	39	
EEE-1026MZ	651	38	
EEE-1026NC	765	39	
EEE-1026NZ	764	38	
EEE-11	99	33	
EEE-12	100	33	
EEE-9	97	33	
EIE-10	94	32	
EIE-1001B	102	30	
EIE-11	95	32	
EIE-12	96	32	
EIE-1301	60	31	
EIE-1302	90	31	
EIE-1303	71	31	
EI 2-1304	92	31	
EIE-1305	72	31	
EIE-1306	36	31	
EIE-1307	38	31	
EIE-1308	35	31	
EIE-1309	57	31	
EIE-1310	91	31	
EIE-1311	73	31	
EIE-1312	37	31	

*

NAMP	FIGURE	TYPE	
	NUNBER	CODE	
EIE-1313	34	21	
EIE-1314	33	31	
EIE-1315	80	31	
EI E-1316	40	31	
EIE-1317	58	31	
BIE-1318	61	31	
EIE-1320	70	31	
BIE-1321	39	31	
EIE-1323	82	31	
EIE-1324	41	31	
EIE-1325	55	31	
EIE-1326	63	31	
EIE-1327	87	31	
EIE-1328	59	31	
EIE-1329	83	31	
EIE-1330	81	31	
EIE-1331	32	31	
EIE-1332	48	31	
EIE-1333	64		
EIE-1334	62	31	
EIE-1335	56	31	
EI 8-1337	85	31	
EIE-1338	47	31	

NAME	FIGURE NUMBER	TYPE CODE	
SIE-1339	31	31	
EIE-1340	49	31	
EIE-1341	88	31	
ETE-1342	89	31	
EIE-1343	67	31	
EIE-1344	66	31	
EIE-1345	53	31	
EIE-1347	46	31	
EIE-1348	50	31	
EIE-1349	54	31	
EIE-1350	65	31	
EIE-1351	69	31	
EIE-1352	68	31	
EIE-1353	77	31	
EIE-1354	52	31	
EIE-1355	51	31	
EIE-1356	84	31	
EIE-1357	74	31	
EIE-1358	75	31	
EIE-1359	76	31	
EIE-1360	86	31	
EIE-1361	43	31	
EIE-1362	42	31	

Table 4 (continued)

Tab1	le 4	1 1	cont	tinued)
					•

NAME	FIGURE NUMBER	TYPE CODE	
EIE-1363	45	31	
EIE-1364	44	31	
EIE-9	93	32	
EWE-77A	108	34	
FE-1A	151	107	
FE-110	195	109	
FE-166	110	109	
FE-13A	26	108	
FE-19	109	109	
FE-202	196	109	
FE-216	144	109	
FE-232	194	109	
FE-250	197	109	
FE-260	193	109	
FE-280	199	109	
PE-34	143	109	
FE-51	191	109	
FE-522	112	95	
FE-550	113	96	
FE-59	192	109	
FE-620	114	95	
FE-64	193	109	
FE-720	115	95	

Table 4	conti	inued)
---------	-------	--------

PTCHEP		
NUMBER	CODE	
125	40	
24	35	
78	35	
22	35	
25	35	
126	40	
127	40	
23	35	
122	40	
123	40	
124	40	
156	105	
171	50	
172	50	
173	50	
174	50	
175	50	
176	50	
177	50	
178	50	
179	50	
180	50	
181	50	
	FIGURE NUMBER 125 24 78 22 25 126 127 23 122 123 124 156 171 172 173 174 175 176 177 178 179 180 181	FIGURE NUMBERTYPE CODE125402435783522352535126401274023351224012340124401561051715017250173501745017550176501775017850179501805018150

NAHE	FIGURE NUMBER	TYPE CODE	
LE-1411	182	50	
LE-1412	183	50	
LE-1413	184	50	
LE-1414	185	50	
LE-1415	186	50	
LE-1416	187	50	
LE-1417	188	50	
LE-1418	189	50	
LE-1419	190	50	
PDE-111	140	28	
PDE-180	3	75	
2DE-181	4	75	
PDE-182	5	75	
2DE-183	6	75	
PDE-184	7	75	
PDE-185	8	75	
2DE-186	118	75	
PDE-137	119	75	
PDE-188	120	75	
PDE-189	121	75	
PDE-200	21	28	
2DE-203	141	28	
PDE-21	27	26	

			-
NAKE	FIGURE NUMBER	TYPE CODE	
PDE-251	142	28	
PDE-261	164	42	
PDE-271	165	43	
PDE-30	153	98	
PDE-35	28	20	
PDE-46	19	26	
PDE-48	155	97	
PDE-53	137	28	
PDE-60	138	28	
PDE- 65	:39	26	
PDE-78	20	27	
PE-102	157	24	
26-100	13	23	
2E-118	132	23	
PE-15	128	23	
PE-156	14	23	
PE-16	105	23	
2E-174	29	23	
PE-201	15	23	
PE-209	133	23	
£ E-224	30	23	
PE-258	134	23	
PE-26	9	23	

Table 4 (continued)

 	the second se		
 NACE	FIGUNE NOFBER	TYPE CODE	
PE-268	1.15	22	
PE-27	106	23	
PR=286	130	23	
PR-32	154	24	
PE-u1	16		
PE-42	10	23	
PF=425	111	23	
PE-43	107	23	
08-40	11	22	
PS-54	17	2.3	
02-59	120	4	
25-58	129	43	
1.2-010	10	24	
PE-63	130	23	
PE-68	131	23	
28-76	12	23	
SE-72	79	36	
TDE-28	152	99	
12-1	392	6	
TE-101	162	110	
TE-110	394	6	
TE-1201	364	3	
TE-1205	357	3	
TE-1207	640	3	

Table 4 (continued)

NAME	FIGUFE NUMBEL	TYPE CODE	
TE-1209	241	3	
TE-1211	361	3	
TE-1213	624	3	
TE-1214	359	3	
FE-1216	500	3	
PE-1217	242	3	
TE-1219	419	3	
TE-1220	418	3	
12-1221	362	3	
4E-1223	358	3	
TE-1225	245	3	
TE-1226	243	3	
1E-1227	247	3	
TE-1229	622	3	
TE-1230	371	3	
13-1231	363	3	
TE-1232	360	3	
TE-1234	218	3	
re-1235	296	3	
TE-1237	372	3	
TE-1233	373	3	
TE-1239	374	3	
TE-1240	370	3	

k

.

-				
	NAME	FIGURE NUMBER	TYPE CODE	
	TE-1241	381	3	
	TE-1242	237	3	
	$TE = 1 \ge 4.4$	240	3	
	TE-1245	238	3	
	TE-1247	008	3	
	TE-1248	366	3	
	TE-1249	244	3	
	TE-1250	382	3	
	TB-1251	365	3	
	rL-1252	226	3	
	TE-1255	641	3	
	TE-1256	369	3	
	12-1258	239	3	
	TE-1259	377	3	
	TE-1260	375	3	
	TE-1201	379		
	TE-12b3	260	3	
	TE-1265	368	3	
	TE-1206	827		
	TE-1268	383	1	
	75-1269	8.11		
	0.8-1270	376	3	
	2 - 1 - 7 1	3.00	2	
	15-12/1	300	3	

-

NAME	FIGURE NUABER	TYPE CODE	
rz-1273	367	3	
TE-1275	841	3	
TE-1277	378	3	
TE-1279	825	3	
TE-1281	384	3	
TE-150	369	6	
TE-151	390	6	
₩ E =152	391	6	
TE-172	396	6	
TE-181W	325	4	
11-102E	385	4	
TE-1825	604	4	
TE-183N	387	u	
TE-1834	602	4	
TE 1846	388	4	
TE+1845	601	4	
2E-1356	326		
2E-1868	626	u u	
10-100L	324		
15-1005	306		
15-1078	500	4	
TE-10/N	003	4	
16-10344	40.9	0	
1E-188AB	458	8	

ς.

4

١.

Table 4 (continued)

-

 NARE	FIGURE	TYPE CODE	
TE-188AC	451	8	
TE-188AD	456	8	
TE-188AE	463	9	
TE-188AF	454	8	
TE-188AG	457	8	
TE-183BA	460	8	
TE-188BB	455	8	
TE-188BC	462	8	
TE-188BD	459	8	
TE-18882	453	8	
TE-138BF	461	8	
TE-2	393	6	
TE-208	409	6	
TE-210A	101	110	
TE-222	397	6	
TE-24	395	6	
TE-250	410	6	
TE-266	411	6	
TE-285	160	71	
TE-284	412	o	
TE-29	399	6	
TE-291A	327	7	
TE-291B	322	1	

Table 4 (continued)

FIGURE NUMBER	TYPE CODE	
321	7	
310	7	
320	7	
306	7	
307	7	
315	7	
334	7	
328	7	
3 13	7	
552	7	
32.1	7	
329	7	
331	7	
330	7	
311	7	
317	7	
309	7	
316	7	
303	7	
335	7	
330	7	
549	1	
856	1	
	READEE 321 310 320 306 307 315 334 328 331 329 331 329 331 329 331 329 331 329 331 329 331 329 331 329 331 329 331 329 331 329 331 329 331 329 331 329 331 330 311 309 316 309 335 336 549 856	FIGURE NUMBERTYPE CODE32173107320730673077315733473287333732973317329733173307311730973097309730973357336754918561

Table 4 (continued)

Table 4 (continued)

NAME	FIGURE	TYPE CODE
TE-302AB	552	1
TE-302AD	551	1
TE-302AE	553	1
1 E-302 BC	554	1
1E-302MB	832	2
TE-302MC	830	2
TE-302MD	833	2
TE-303BE	536	1
TE-3035F	538	1
TE- :03CD	535	3
TE-303CE	547	1
TE-303CG	537	1
TE-303MD	813	2
TE-303ME	810	2
TE-303MF	8 1 2	2
TE-303MG	811	2
TE-304AC	536	1
TE-304AD	861	1
TE-304AE	819	1
TE-304AP	533	1
TE-364FE	545	1
TE-304CE	820	1
TE-304MC	874	2

NAME	FIGURE NUMBER	TYPE CODE
TE-304MD	873	2
TE-304 ME	875	2
TE-304MF	876	2
TE-305AS	448	1
TE-305BH	449	1
TE-305BU	447	1
TE-305CY	450	1
TE-305MH	742	2
TE-305MS	741	2
TE-305MU	740	2
TE-305MY	743	2
TE-306 AA	470	1
TE-306AB	471	1
TE-306 MA	724	2
TE-306MC	727	2
TE-306MD	725	2
TE-307AC	435	1
TE-307AF	437	1
TE-307BE	468	1
TE-3078F	466	1
TE-307CE	438	1
TE-307MC	740	2
TE-307MD	747	2

Table 4 (continued)

NAME	FIGURE	TYPE	
TE-307ME	745	2	
TE-307MF	744	2	
TE-308AD	699	1	
TE-308BA	472	1	
TE-308BC	475	1	
TE-308BD	474	1	
TE-308CB	473	1	
TE-308CD	452	1	
TE-308MB	774	2	
TE-308MC	777	2	
TE-303MD	776	2	
TE-309AC	524	1	
TE-309CB	534	1	
TE-309CD	523	1	
TE-309MB	821	2	
TE-309MC	818	2	
TE-310AE	871	1	
12-310AF	542	1	
TE-310BD	863	1	
TE-310BE	544	1	
TE-310BF	555	1	
TE-310CC	543	1	
TE-310CD	541	1	

Table 4 (continued)

and a second

é

 NAME	FIGURE NUMBER	TYPE CODE	
T2-310CF	556	1	
TE-310MC	826	2	
TE-310 MD	829	2	
TE-310ME	828	2	
TE-311AA	528	1	
TE-311AB	527	1	
TE-311CB	°26	1	
TE-311CC	525	1	
TE-31 14	868	2	
18-311MC	365	î	
TE-311MD	866	2	
TE-312AE	287	1	
TE-312BC	286	1	
TE-312CB	288	1	
TE-312CD	548	1	
TE-312M8	845	2	
TE-312MC	844	2	
TE-312MD	843	2	
TE-312ME	842	2	
TE-313AE	586	1	
TE-313BC	414	1	
TE-313BF	416	1	
TE-313CD	413	1	

Table 4 (continued)

1

ę.

NAME	FIGURE NUMBER	TYPE CODE	
TE-313CE	415	1	
TE-313CF	261	1	
TE-314AA	638	1	
TE-314AB	443	1	
TE-314AC	637	1	
TE-314BD	723	1	
TE-314MA	719	2	
1E-314MB	720	2	
TE-314MC	721	2	
TE-315AC	467	1	
18-315AF	465	1	
TE-315MC	739	2	
TE-315MD	738	2	
TE-316AD	478	1	
TE-316BE	635	1	
TE-316BF	476	1	
TE-316BG	439	1	
TE-316CE	477	1	
TE-316CF	704	1	
TE-316CG	479	1	
TE-316MD	767	2	
TE-316ME	766	2	
TE-316MF	768	2	

Table 4 (continued)

1 x 19 m /

5

8

ıA,

.

\$ · · · •

-				
	NAME	FIGURE NUMBER	TYPE CODE	
	TE-316 MG	769	2	
	TE-317AE	496	1	
	TE-3178E	488	1	
	TE-317CB	499	1	
	TE-317CC	497	1	
	TE-317CD	498	1	
	TE-317CE	490	1	
	1E-317ME	795	2	
	TE- 318AD	512	1	
	TE-3104E	445	1	
	TE-3194F	\$14	1	
	TE-310AG	442	1	
	TE-318BD	639	1	
	TE-318BE	515	1	
	TE-318BF	737	1	
	TE-318BG	513	1	
	TE-318CD	642	1	
	16-318CE	794	1	
	TE-318CF	736	1	
	TE-318CG	469	1	
	TE-318MD	839	2	
	TE-318ME	838	2	
	TE-318MF	840	2	

NAME	FIGURE NUMBER	TYPE CODE	
TE-320AD	506	1	
TE-320AE	630	1	
TE-320AF	633	1	
TE-320AG	643	1	
TE-320BD	634	1	
TE-320BE	629	1	
TE-320BF	507	1	
TE-320BG	504	1	
TE-320CD	631	1	
TE-320CE	628	1	
T 320CF	63.2	1	
TE-320CG	505	1	
TE-320MD	858	2	
TE-J20MG	859	2	
TE-321AA	422	1	
TE-321AB	421	1	
TE-321AD	301	1	
TE-321BC	423	1	
TE-3218D	621	1	
TE-321CD	424	1	
TE-321MA	849	2	
TE-321MB	848	2	
TE-321MD	846	2	

-

	NAME	FIGURE NUMBER	TYPE CODE
	TE-323AA	420	1
	TE-323BC	417	1
	TE-324AB	682	1
	TE-324 AC	482	1
	TE-324AE	446	1
	TE-324BD	483	1
	TE-324CB	481	1
	TE-324CE	480	1
	TE-324 MC	758	2
	TE-324MD	759	2
	TE-324ME	757	2
	TE-325AA	645	1
	TE-325AB	644	1
	TE-325AC	649	1
	TE-3258A	646	1
	28-325BB	508	1
	TE-325BC	647	1
	TE-325BD	650	1
	1E-325CA	511	1
	TE-325CB	648	1
	TE-325CC	509	1
	TE-325CD	510	1
	TE-325MA	809	2

FIGURE NUMBER TYPE CODE NAME TE-325MB TE-325MC TE-325MD TB-326AC 1E-326 AD 1E-320AE TE-32663 TE-32660 TE-326BE TE-326CD TE-320CE TE-326 MC TE-326 MD TE-326ME TE-327AA

TE-327AC

TE-327AD

TE-1276A

TE-3275C

TE-3278D

TE-327CA

18-327CB

TE-327CC

Į,

Table 4 (continued)

NAME	FIGURE NUMBER	TYPE CODE	
TE-327CD	430	1	
TE-32783	855	2	
TE-328AC	778	1	
1E-320AD	756	1	
TE-328AE	822	1	
TE-328AF	775	1	
TE-328BD	502	1	
TE-320BF	772	1	
TE-328CC	860	1	
TE- 328CD	627	1	
TE-328CE	047	1	
TE-328CF	503	1	
TE-328MC	661	2	
TE-328MD	664	2	
TE-328ME	662	2	
TE-328MF	603	2	
TE-329AB	565	1	
TE-329AC	569	1	
TE-329AD	571	1	
TE-329AE	205	1	
TE-32988	206	1	
TE-329BC	203	1	
TE-3290D	204	1	

Table 4 (continue	(d)	
-------------------	-----	--

NAME	FIGURE NUMBER	TYPE CODE
TE-329BE	570	1
TE-329CB	567	1
TE-329CD	566	1
TE-329CE	568	1
TE-329MB	668	2
TE-329MC	666	2
TE-32981	667	2
TE-32985	665	2
TE-330AC	23.	1
TE-330AE	235	1
TE-330BE	314	1
TE-330CB	230	1
TE-330MB	716	2
TE-330MC	715	2
TE-330ME	718	2
TE-3310F	264	1
TE-331CD	221	1
TE-331CE	220	1
TE-331CF	219	1
TE-331MF	728	2
TE-332AE	660	1
T2-332CD	441	1
TE-332CE	436	1

-

NAIE	FIGURE NUME IN	TYPE Code	
TE-332CF	440	1	
TE-332CG	444	1	
TE-332MD	779	2	
TE-332ME	781	2	
TE-332MG	780	2	
TE-333AC	494	1	
TE-333AD	495	1	
TE-333AE	796	1	
TE-333BE	797	1	
TE-333CB	492	1	
T2-333CE	493	1	
TE-333MC	799	2	
TE-334AH	597	1	
TE-334AS	281	1	
TE-334AY	598	1	
TE-334BH	600	1	
TE-33405	591	1	
TE-33480	593	1	
TE-SBUBY	599	1	
11-314CH	282	1	
TE-334CS	592	1	
TE-334CU	590	1	
TE-334CY	280	1	

5 6

P ...

.

00

.

 NAE3	FIGURE NUMBER	TYPE CODE
TE-334MH	824	2
TE-334MS	823	2
TE-335AD	717	1
TE-335AE	798	1
TE-33588	489	1
TE-335BD	726 -	1
1E-335BE	991	a.
"E-33 CE	301	:
1E-035MB	855	5
2F-3054C	854	2
TC-335ML	852	2
TE-335ME	850	2
TE-337AE	279	1
TE-33780	277	1
18-337BE	276	1
CE-3378F	268	1
TE-337CD	862	1
16-337CF	278	1
TE-337MC	653	2
TE-337MD	655	2
TE-337ME	654	2
TE-337MF	656	2
TE-338AB	213	1

S.

NANE	FIGURE NUMBER	TYPE CODE	
TE-338BC	211	1	
TE-338BD	212	1	
1E-338CD	312	1	
TE-338MA	671	2	
TE-338MB	670	2	
TE-338MC	672	2	
TE-338MD	669	2	
TE-339AC	209	1	
TE-339BB	208	1	
12-3396D	207	1	
TE-339MB	714	2	
TE-339MC	713	2	
TE-339MD	711	2	
TE-3398E	712	2	
TE-340BC	233	1	
TE-340BD	232	1	
TE-340CA	231	1	
TE-340CB	230	1	
TE-340 MA	751	2	
TE-340MB	750	2	
1E-340MC	749	2	
TE-341AB	298	1	
TE-3414A	802	2	

Table 4 (continued)
Table 4 (con	tinued)
--------------	---------

	FIGURE	TYPE	
NAME	JUMBER	CODE	
TE-341MB	804	2	
TE-341MC	805	2	
TE-341MD	803	2	
TE-342AG	299	1	
TE-342BD	305	1	
TE-342BE	303	1	
TE-342BF	304	1	
TE-342BG	313	1	
TE-342CG	302	1	
TE-343AD	300	1	
TE-343DA	293	1	
TE-343DB	290	1	
ТЕ-3438С	291	1	
TE-343BD	550	1	
T8-343MA	677	2	
TE-343 Mb	679	2	
TE-343MC	678	2	
TE-343MD	680	2	
TE-344AD	743	1	
TE-344AE	722	1	
TE-344CB	486	1	
TE-344CC	485	1	
TE-344CD	484	1	

0

ø

ð

NAME	FIGURE NOMBER	TYPE CODE	
TE-344CE	487	1	
TE-344MB	683	2	
TE-344MC	681	- 2	
TE-344ME	6.84	2	
TE-345AD	222	1	
TE-345AE	575	1	
18-345 AF	578	1	
11-345 AG	225	1	
16-345BD	572	1	
TE-3457E	576	1	
12-345BF	5 7 g		
TE-345BG	577	1	
TE-345CF	2.24	1	
TE-345CG	579	1	
TE-345MD	659	2	
TE-345ME	057	2	
1E-345MG	658	2	
TE-347CF	572	1	
TE-347CG	223	1	
TE-347MD	734	2	
1E-347ME	733	2	
TE-347MF	735	2	
TE-347MG	732	2	

Table 4 (continued)

NAME	FIGURE NUMBER	TYPE CODE	
TE-348AH	262	1	
TE-348AY	263	1	
TE-348MH	783	2	
TE-348MS	784	2	
TE-348MU	782	2	
TE-348MY	785	2	
TE-349AE	289	1	
TE-349BE	342	1	
TE-349CB	345	1	
TE-3196C	307	1	
TE-3.3CD	246	5	
1E-349CE	348	1	
TE-349MB	793	2	
TE-349MC	792	2	
TE-349MD	791	2	
TE-349M2	790	2	
TE-350AC	613	1	
TE-350 AD	619	1	
TE-350AF	617	1	
1E-350BC	620	1	
TE-350BD	614	1	
TE-350BE	341	1	
TE-350BF	344	1	

ME	FIGURE NUMBER	TY CC
OCD	343	
OCE	616	
OCF	618	
OMC	835	

NAME	FIGURE NUMBEE	TYPE CODE	
TE-350CD	343	1	
TE-350CE	616	1	
TE-350CF	618	1	
TE-350MC	835	2	
TE-350 MD	837	2	
TE-350ME	836	2	
TE-350MF	834	2	
TE-351AB	356	1	
TE-351AE	354	1	
TE-351BC	353	1	
TE-3518D	355	1	
TE-351BE	625	1	
TE-351MC	864	2	
TE-352AH	610	1	
TE-352AS	607	1	
TE-352AU	337	1	
TE-352AY	612	1	
TE-3528H	609	1	
TE-352BS	338	1	
TE-352BU	605	1	
TE-3528Y	611	1	
TE-352CH	339	1	
TE-352CS	608	1	

.

Table 4 (continued)

NAME	FIGURE NUMBER	TYPE CODE
TE-352CU	606	1
TE-352CY	340	1
TE-352MB	709	2
TE-3524S	708	2
TE-352MU	177	2
TE-352MY	710	2
TE-353AE	246	1
TE-353BE	210	1
TE-353BF	583	1
TE-353CC	248	1
TE-353MC	689	2
TE-353MD	690	2
TE-353ME	691	2
TE-354AD	215	1
TE-354CA	210	1
TE-354CB	217	1
TE-354CC	214	1
TE-354MA	688	2
TE-354MB	687	2
TE-354 MC	686	2
TE-354 MD	685	2
TE-355AA	266	1
TE-355BC	267	1

AV800

Table 4 (continued)

.

lable 4 (c	onti	nued)	
------------	------	-------	--

NAME	FIGURE NUMBER	TYPE CODE
TE-355CB	265	1
TE-355CD	636	1
TE-355MA	673	2
TE-355MB	674	2
TE-355MC	675	2
TE-355MD	676	2
TE-356AC	2+9	1
TE - 356 AE	272	1
28-3568F	271	1
"E-050CL	276	1
TE-356MC	752	2
TE-356 MD	753	2
TE-356 ME	754	2
TE-356MF	755	2
TE-357AA	531	1
TE-357AB	561	1
1E-357AC	558	1
1E-3578A	559	1
TE-357BB	529	1
TE-357BC	530	1
TE-357BD	532	1
TE-357CB	560	1
TE-357CD	563	1

-				
	NAME	FIGURE NUMBER	TYPE CODE	
	TE-357MA	789	2	
	TE-357MB	787	2	
	TE-357MC	786	2	
	TE-35780	788	2	
	TE-358AD	854	1	
	TE-358AE	557	1	
	TE-358BE	521	1	
	TE-3588F	857	1	
	TE-358CD	520	1	
	TE-358CG	522	1	
	TE-358MD	815	2	
	TE-353ME	816	2	
	TE-358MF	814	2	
	TE-358MG	817	2	
	TE-359AD	517	1	
	TE 359AE	516	1	
	TE-359AF	562	1	
	TE-359BE	867	1	
	TE-359BF	564	1	
	TE- 159CC	519	1	
	TE- 59CE	501	1	
	TE-359CF	518	1	
	TE-359MC	702	2	

Table 4 (continued)

Table 4 (continued)

 NAME	FIGURE NUMBER	TYPE CODE
TE-359MP	700	2
TE-359MP	701	2
TE-360AA	595	1
TE-360AB	594	1
TE-360AC	283	1
TE-360AD	28-	1
1E-360BD	596	1
TE-360CD	285	1
TE-360MA	692	3
TE-360MB	693	2
TE-360MC	695	2
TE-360KD	694	2
TE-361AB	250	1
TE-361AC	251	1
TE-361AD	252	1
TE-361AE	228	1
TE-361BE	227	1
TE-361BJ	581	9
TE-361CE	249	1
TE-361CJ	580	9
TE-361MB	697	2
TE-361MC	696	2
TE-361MD	698	2

0

.9

Table 4 (continued)

FIGURE NUMBER	TYPE CODE	
275	1	
274	1	
273	1	
706	2	
705	2	
703	2	
229	1	
258	1	
257	1	
259	1	
762	2	
763	2	
760	2	
761	2	
255	1	
584	1	
585	1	
253	1	
582	1	
254	1	
256	1	
588	1	
587	1	
	FIGURE NUMBER 275 274 273 706 705 703 229 258 257 259 762 763 760 761 255 584 585 253 584 585 253 582 254 254 256 588 587	FIGURE NUMBERTYPE CODE2751274127312731706270322291258125712591762276327641585158415851256158815871

6-0

5.

ι.

Tabl	le	4 (cont	int	ied)	1

NAME	FIGURE NUMBER	TYPE CODE	
TE-364CG	589	1	
TE-364MD	773	2	
TE-364MF	771	2	
TE-364 MG	770	2	
TE - 4B	161	110	
TE-40	398	6	
TE-408B	405	5	
TE-45	400	6	
TE-5B	401	5	
TE-520B	405	5	
TE-521	407	5	
TE-525	103	110	
TE-557	159	110	
TE-57	402	6	
TE-615	163	110	
TE-62	403	6	
TE-627	104	110	
TE-67	404	6	
TE-727	158	110	
TE-901	408	5	
TE-920	729	5	
TE-921	730	5	
TE-922	731	5	
XE-430A	150	37	
XE-430B	149	37	

.

.

Table 5. Thermocouple nomenclature

Fuel rod simulator thermocouples: TE-3nnal

nn - a number 01-64 equal to the rod number.

- a one of three letters, A, B, or C, designating the position of the thermocouple relative to the other two thermocouples in that rod at the designated level (or the letter M denoting middle thermocouple). The three sheath thermocouples at a level are labeled A, B, and C in a clockwise direction as viewed from the top of the rod.
- 1 the level of the thermocouple. A letter A-G (heated zone); J (above the heated zone); or Y, H, S, or U (the four levels grouped around the D level in the "special" fuel rod simulators).

Spacer grid thermocouples: TE-29na

n - a number 1-6 designating the spacer grid level as follows:

Number	Between T/C level		
1	A&B		
2	B&C		
3	C&D		
4	D&E		
5	E&F		
6	F&G		

a - a letter A-F designating the subchannel into which the thermocouple is projecting as follows:

Letter	Subchannel	
A	32	
В	43	
C	57	
D	70	
E	17	
F	38	

The spacer grids numbered 1, 2, 5, and 6 have four thermocouples in subchannels designated A-D. The spacer grids numbered 3 and 4 have six thermocouples in subchannels designated A-F.

Table 5 (continued)

Shroud box thermocouples: TE-18na

n - a number 1-7 designating the level of the thermocouple in the shroud box as follows:

Number	T/C level
1	A
2	В
3	С
4	D
5	E
6	F
7	G

a - a letter designating the side of the box through which the thermocouple protrudes, N, E, S, and W (being the compass direction most closely matching the direction the side faces).

Subchannel thermocouples: TE-12nn

.

nn - a number 01-81 equal to the number of the subchannel in which the thermocouple is located.

Thermocouple array rod thermocouples: TE-18nal

n - the number 8 or 9 designating the bundle site in which the thermocouple array rod is located.

8 - grid position No. 19
9 - grid position No. 36

a - a letter A or B designating which of two subchannels associated with that rod the thermocouple protrudes into.

Position	A subchannel No.	B subchannel No.
19	22	30
36	41	49

1 - the thermocouple level A-G (same as fuel rod simulator thermocouple level designations).

REFERENCES

- 1. Test 3.05.5B Final Analysis Report.
- D. K. Feide et al., Thermal-Hydraulic Test Facility (THTF) MOD 3, ORNL Blowdown Heat Transfer Program, ORNL/TM-7842 (to be published).

-

Appendix A

TEST PHENOMENOLOGY

The transient experiment was initiated by breaking both inlet and outlet rupture disk assemblies to simulate a double-ended cold-leg break loss-of-coolant accident. Following blowdown initiation, there was an almost instantaneous subcooled decompression from the steady-state operating pressure to the saturation pressure corresponding to the outlet fluid temperature. The measured outlet pressure is shown on microfiche Fig. 15. Coolant within the test section, which had been subcooled before transient initiation, began to increase in temperature until the saturation temperature was reached (microfiche Fig. 436). The upper portion of the rod bundle underwent immediate increases in surface heat flux and decreases in surface temperature subsequent to transient (Ditiation, indicating improved heat transfer due either to nucleate builing at those thermocouple levels initially in a forced-convection mode or to the enhancement of nucleate boiling that accompanied the drop in coolant saturation temperature during initial depressurization. The lower part of the bundle continued in a forced-convective mode for a short period before shifting to a nucleate boiling heat transfer mode. As the coolant temperature reached the saturation temperature, departure from nucleate boiling (DNB) occurred (microfiche Figs. 554, 819, and 535).

Flow began to decrease after a very short-lived positive surge (microfiche Fig. 196), and a flow stagnation point soon developed. Between 0.2 and 5.0 s, flow was positive through the outlet spool piece and negative through the inlet spool piece, indicating flow out of the test section through both inlet and outlet. After 5.0 s and until about 10.0 s, flow through the test section was positive. Flow then reversed to negative again and remained negative throughout the remainder of the transient (microfiche Figs. 196 and 197).

After DNB, the bundle did not undergo any significant cooling. Only thermocouple level G, the uppermost level in the test section, experienced any rewet, and that occurred after the flow reversal (to downflow) at 10.0 s.

Appendix B

MASS FLUX CALCULATIONS

This appendix describes the method by which mass flux is calculated at the THTF test section boundaries and the estimated uncertainties in those calculations. Included are the mass flux calculations for the transient periods of interest.

B.1 <u>Mass Flux Calculations for THTF Instrumented</u> Spool Pieces

At the THTF, instrumented "spool pieces" are used to provide measurements of volumetric flow rate, momentum flux, density, pressure, and temperature at the boundaries of the test section. A spool piece consists of a fluid thermocouple, an absolute pressure tap, a turbine meter for measuring volumetric flow or velocity (V), a drag disk for measuring momentum flux (ρV^2) , and a gamma densitometer for measuring an average chordal density (p) of the fluid. Since the mass flux is not directly measured, it is necessary to use combinations of these instruments to determine mass flux. Homogeneous models may be used combining the turbine meter and gamma densitometer (pV), the drag disk and the gamma densitumeter $(\sqrt{\rho \cdot \rho V^2})$, and the turbine meter and drag disk $(\rho V^2/V)$ to obtain mass flux. These mass flux models are incorporated into the mass flux code AMICON 1 which operates on the transient instrument data. Where conditions ermit, in subcooled or superheated flow, the density for the models is deduced from water properties based on temperature and pressure measurements and replaces the densitometer-measured density. The uncertainty in density determined in this manner is significantly less than the uncertainty inherent in the densitometer's measured density. Logic in the AMICON and water properties codes determines whether a temperatureand pressure-deduced density or a densitometer-measured density is appropriate (based on a comparison of measurements by these same instruments). For saturated flow conditions, the logic also prevents the use of a densitometer-measured density that is less than the saturated vapor density (within uncertainty bands) for the measured temperature and pressures in the spool piece. For high-quality mass flows, this effectively reduces uncertainties on the low side of the density measurements.

The mass flux results generated by AMICON are shown in Figs. B.1-B.23 for the different models and spool pieces. The locations of the spool pieces are indicated in Fig. 1 of the main text. The Bundle Outlet spool piece BO1 contains a three-beam gamma densitometer. Results are shown using both a single-beam and a three-beam annular densitometer model for this spool piece. The single-beam model at the BO1 site uses the center beam measurement from the three-beam densitometer. The various models

Fig. B.1. Mass flux vs time at BI1 site using TBM-GAM 3 model.

Fig. B.2. Mass flux vs time at BI1 site using TBM-DD model.

Fig. B.3. Mass flux vs time at BI1 site using DD-GAM 3 model.

,

Fig. B.4. Mass flux vs time at BO1 site using TBM-GAM 3 model.

-8

Fig. B.6. Mass flux vs time at BO1 site using TBM-DD model.

Fig. B.7. Mass flux vs time at BO1 site using DD-GAM 3 model.

Fig. B.8. Mass flux vs time at BO1 site using DD-GAM model.

Fig. B.10. Mass flux vs time at BI2 site using TBM-DD model.

Fig. B.11. Mass flux vs time at BI2 wite using DD-GAM 3 model.

Fig. B.12. Mass flux vs time at SVI site using TEM-GAM model.

Fig. B.14. Mass flux vs time at SVI site using DD-GAM model.

Fig. B.15. Mass flux vs time at SHI site using TBM-GAM model.

Fig. B.16. Mass flux vs time at SHI site using TBM-DD model.

Fig. B.18. Mass flux vs time at SVO site using TBM-GAM model.

Fig. B.20. Mass flux vs time at SVO site using DD-GAM model.

Fig. B.22. Mass flux vs time at SHO site using TBM-DD model.

Fig. B.23. Mass flux vs time at SHO site using DD-GAM model.

are designated as:

turbine meter - single-beam densitometer = TBM-GAM
turbine meter - three-beam densitometer = TRM-GAM 3
drag disk - single-beam densitometer = DD-GAM
drag disk - three-beam densitometer = DD-GAM 3
turbine meter - drag disk = TBM-DD

A three-region annular model² was used to reduce the three-beam densitometer results to a composite density suitable for use in the mass flux models. The model solves for a uniform density for each region in Fig. B.24 using the density indicated by each of the three beams and the length of each beam within each region. The composite pipe density is then calculated as an area-weighted average of the three region densities. The resulting equation for the composite density is

$$\overline{\rho}_{Annular} = 0.3784\rho_A + 0.5117\rho_B + 0.1099\rho_C$$
, (B.1)

where ρ_A , ρ_B , and ρ_C are indicated in Fig. B.24 and are the densities measured by the three beams.

Fig. B.24. Diagram showing uniform density regions used in annular model for reduction of three-beam densitometer data.

B.2 Uncertainties in Mass Flux Calculations

Although the uncertainties obtained using the homogeneous models should be fairly small in single-phase flow, significant uncertainties may exist in two-phase flow where effects such as slip, void fraction, flow regime, and transient response affect the physical interpretation of the instrument output. This section will look first at estimated uncertainties in subcooled flow. This will be followed by discussion of uncertainties in steady-state and transient two-phase flow.

B.2.1 Subcooled flow uncertainty analysis

The Transient Upflow Film Boiling Test series (3.03.6AR, 3.06.6B, and 3.08.6C) was designed specifically to maintain subcooled inlet flow over most of the primary transient periods of interest in the heated bundle. The subcooled inlet flow conditions provide significantly lower and quantifiable uncertainties in the calculation of bounding conditions for the test section than are possible with two-phase flow conditions.

The mass flux (G) for subcooled flow conditions is calculated from a turbine meter measured velocity (V) and a fluid temperature— and pressure—

deduced density (p);

$$G = \rho V$$
,

It should be noted that the primary inlet flow measurement instruments in the Upflow Film Boiling Test configuration are the 2-in. turbine weters, FE-250 and FE-260. The larger 4-in. inlet turbine meters, FE-19 and FE-166, approach or fall below the lower limits of their calibrated range over most of the transient.

The mass flux uncertainty may be estimated by the standard propagation of errors method [Eq. (D.4) in Appendix D] using individual instrument uncertainties as stated in Tables D.5-D.6, Appendix D. The variance of the mass flux is given in an analogous form to Eq. (D.4) in Appendix D:

Variance (G) =
$$\sigma_{G}^{2} = \left(\frac{\partial G}{\partial \rho}\right)^{2} \sigma_{\rho}^{2} + \left(\frac{\partial G}{\partial V}\right)^{2} \sigma_{V}^{2}$$
. (B.3)

Expressed in terms of the standard deviation, σ , this equation becomes:

$$\sigma_{\rm G} = \sqrt{(V\sigma_{\rm p})^2 + (\rho\sigma_{\rm V})^2} . \tag{B.4}$$

where

 σ_{p} = density measurement uncertainty, σ_{v} = velocity measurement uncertainty.

Since the uncertainties for the turbine meter are stated in terms of percent of reading, it is convenient to express the mass flux uncertainty in a similar manner. Equation (B.4) may be restated as

$$\sigma_{\rm G}(\%) = \sqrt{c_{\rho}(\%)^2 + \sigma_{\rm V}(\%)^2} \quad . \tag{B.5}$$

For the subcooled portion of the transients, the 2 σ error bands (95% confidence bands) for the turbine meter ($2\sigma_V$) are stated as 4.1% of reading (Tables D.5-D.6 of Appendix D). Transient effects are assumed negligible after the initial subcooled decompression at blowdown. A 2 σ estimate for the density is based on uncertainties generated from water properties assuming 2 σ deviations of temperature ($2\sigma_T$) and pressure (2σ) from measured values. The 2 σ uncertainties from Tables D.5-D.6 of Appendix D are

$$2\sigma_m = 3.7 \text{ K} (6.7^{\circ}\text{F})$$

and

 $2\sigma_{p} = 200 \text{ kPa} (29 \text{ psi})$,

(B.2)

where again transient uncertainty effects are assumed negligible after the initial subcooled decompression at blowdown. For the pressures and temperatures of interest, the 2σ variation in temperature is the dominant effect and results in an estimated 2σ of 1.0% of reading. Substituting the 2σ measurement uncertainties into Eq. (B.5) results in a 2σ mass flux uncertainty for subcooled flow of 4.22% of reading.

B.2.2 Two-phase flow uncertainty analysis

The two-phase mass flux uncertainty estimates will be made based on results from the Steady-State Upflow Film Boiling Test series (3.07.9) and the application of a transient turbine meter model developed by Kamath and Lahey (Ref. 3) to the Transient Upflow Film Boiling Test (3.06.6B) and the Double-Ended Cold Leg Break Test (3.05.5B). Test series 3.07.9 were tests run with upflow in steady state; these tests provide a good benchmark for steady-state two-phase uncertainties. The Kamath and Lahey model provides an assessment of the effects of slip, flow regime, and transient response on the physical interpretation of the instrument output. Test 3.05.5B was a violent transient test that will provide a worst-case transient assessment.

B.2.2.1 Steady-state two-phase flow uncertainty analysis. A limited amount of steady-state two-phase mass flux uncertainty data over an equilibrium quality range of approximately 0.8-1.4 is available from the Steady-State Upflow Film Boiling Test series. Dispersed flow is expected at the test section outlet for the high-quality flow conditions. Steadystate, subcooled flow at the test section inlet provides a reference standard for estimating the two-phase mass flux uncertainty at the test section outlet spool pieces. The various homogeneous mass flux models discussed earlier are compared with each other as functions of pressure, equilibrium quality, and inlet mass flux. Results from a steady-state version of the Kamath and Lahey model (K&L) are also provided for comparison. The comparison is useful in providing confidence limits on the transient model as applied to the THTF instruments. The Kamath and Lahey model is discussed in more detail later. The steady-state model results are plotted as the ratio of the model mass flux to the reference inlet mass flux, G(MODEL)/G(REFERENCE), where perfect agreement is at 1.0. It should be noted that the reference subcooled inlet mass flux has 95% confidence bands of +4.22% as discussed earlier.

Comparisons of the mass flux models DD-GAM 3, TBM-DD, TBM-GAM 3, and Kamath and Lahey are shown in Figs. B.25-B.27 as functions of pressure, equilibrium quality, and inlet mass flux, respectively. The results are from the horizontal Bundle Outlet spool piece (BO1). All of the models generally fall within 95% confidence bands of ±50%. Data scatter increases somewhat for lower pressures and mass flux. The DD-GAM 3 and TBM-DD models show somewhat smaller uncertainty bands (approximately ±30%) than the TBM-GAM and K&L models. The TBM-GAM 3 and the K&L models agree quite closely with each other over the range of test parameters.

The three-beam densitometer was used in the previous comparisons. The use of a single-beam densitometer in the models results in significantly higher uncertainties, as indicated in Figs. B.28 and B.29. Comparisons are made between the TBM-GAM and TBM-GAM 3 models in Fig. B.28

Fig. B.25. Comparison of mass flux models vs pressure at the BO1 spool piece.

Fig. B.26. Comparison of mass flux models vs equilibrium quality at the BO1 spool piece.

Fig. B.28. Comparison of turbine meter - densitometer model using single-beam and three-beam densitometers at the BOI spool piece.

and between the DD-GAM and DD-GAM 3 models in Fig. B.29 at the BO1 spool piece. Uncertainty bands increase from approximately $\pm 50\%$ for the TBM-GAM 3 model to $\pm 80\%$ for the TBM-GAM model. Uncertainty bands for the DD-GAM model are ~10% higher than for the DD-GAM 3 model.

Mass flux model comparisons were also made at the other two outlet spool pieces, SVO and SHO. Spool piece SVO is a vertical spool piece with downflow and follows the BO1 spool piece in the normal flow direction. Spool piece SHO is a horizontal spool piece that follows SVO. As mentioned earlier, flow conditions at the upper end and outlet of the test section were primarily dispersed flow with considerable nonequilibrium for many of the data points. As the flow moves downstream from the test section outlet, equilibrium is eventually reached as the liquid droplets evaporate. For equilibrium qualities greater than 1.0, single-phase superheated steam conditions should eventually exist. The three homogeneous models are compared with equilibrium quality for the SVO spool piece in Fig. B.30. Uncertainty bands for the DD-GAM model (~70%) and for the TBM-DD model (~140%) are significantly higher than those observed at the BO1 spool piece. A trend is observed with decreasing uncertainty at higher equilibrium qualities. This may indicate that the flow is approaching equilibrium conditions and that the flow is essentially singlephase superheated steam. Figure B.31 shows the same comparisons for the SHO spool piece. It appears that the flow has reached equilibrium at this spool piece. The uncertainties for all of the models at the SHO spool piece are approaching the uncertainty bands expected for single-phase

Fig. B.31. Comparison of mass flux models vs equilibrium quality at the SHO spool piece.

flow. (That is, the 2 σ uncertainty bands for the drag disk instruments in subcooled flow are $\pm 19\%$ of reading over 10-100% of range; as a result, models using this instrument would have 2 σ uncertainty bands greater than 19%.)

B.2.2.2 <u>Transient two-phase flow uncertainty analysis</u>. The application of the Kamath and Lahey transient two-phase turbine meter model to THTF test data is made in an attempt to assess the effects of slip, void fraction, flow regime, and transient response on the physical interpretation of the instrument output. Verification of the model in transient two-phase flow is not possible for the THTF due to the nature of the tests and system. The intent rather is to look at effects that are not accounted for in the simpler homogeneous flow models as they apply to THTF test conditions.

The turbine flowmeter model developed by Kamath and Lahey will be briefly described along with its assumptions and limitations. The computer solution technique and input parameters are also discussed.

The turbine flowmeter dynamic equation was derived from the principle of angular momentum conservation. The equation accounts for effects of nonuniformity of velocity and void profiles in conduit, imperfect guidance of the fluid by the rotor blades, rotor inertia, slip ratio, bearing friction, and windage losses. A detailed derivation of the equation of motion is presented in Ref. 3. The resulting equation of motion is shown below:

$$\frac{d\langle V_{Z_{\mathcal{R}}}\rangle}{dt} = \langle |V_{Z_{\mathcal{R}}}|\rangle \frac{V_{t}}{(\Delta x)} - \langle V_{Z_{\mathcal{R}}}\rangle \frac{R_{1}}{(S+R_{1})\rho_{g}} \frac{d\rho_{g}}{dt} + \frac{S}{(S+R_{1})\rho_{y}} \frac{d\rho_{v}}{dt}$$

$$\frac{S-R_{2}}{S+R_{1}} \frac{1}{\langle \alpha \rangle} \frac{d\langle \alpha \rangle}{dt} + \frac{1}{(S+R_{1})} \frac{dS}{dt} - \frac{C_{\ell}R_{1} + C_{V}S^{2}}{(S+R_{1})(\Delta x)} \langle V_{Z\ell} x | V_{Z\ell} | \rangle$$

+
$$V_t \frac{R_1}{(S+R_1)} \frac{1}{\rho_0} \frac{d\rho_{\ell}}{dt} + \frac{S}{(S+R_1)} \frac{1}{\rho_v} \frac{d\rho_v}{dt} + \frac{1-R_1}{S+R_1} \frac{1}{\langle \alpha \rangle} \frac{d\langle \alpha \rangle}{dt}$$

+
$$\frac{dV_t}{dt} \frac{1 + R_1}{S + R_1} + \frac{I_{rotor}(1 + \eta_v)}{(S + R_1)R^2A_{xs}(\Delta x)\rho_v \langle \alpha \rangle}$$

$$\frac{\mu^{\circ\cdot43}\rho_{g}^{\circ\cdot57}|\omega|^{\circ\cdot57}\omega(1+\eta_{v})}{(S+R_{x})RA_{xs}(\Delta x)\tan\beta\rho_{v}\langle\alpha\rangle} [0.039(Ct_{b}N)R_{T}^{2\cdot57}(R_{b}-R_{T})^{-\circ\cdot43}$$

+ 0.078(
$$L_{jb}R_{S}^{3.57}$$
) x ($R_{h} - R_{S}^{-0.43}$]. (B.6)
The angular brackets in the equation are cross-sectional average operators. The variables R_1 , R_2 , and V_+ are defined by

$$R_1 = R_2 \frac{(1-a)}{a}$$
, (B.7)

$$R_{2} = \frac{\rho_{\ell}}{\rho_{v}} \frac{1 + \eta_{v}}{1 + \eta_{\ell}} , \qquad (B.8)$$

and

$$V_{t} = \frac{\omega R}{\tan \beta} . \tag{B.9}$$

The variable definitions are listed in the nomenclature. Equation (B.6), a classical separated flow equation, is derived for arbitrary void fraction and velocity profiles by assuming that cross-sectional average products may be separated into products of averages using correlation coefficients. In this case the correlation coefficients C_{ℓ} and C_{ν} relate commonly measured values such as average cross-sectional void fraction (average density) and average cross-sectional velocity to void fraction and velocity profile weighted averages of the separate phase momentum flux. The correlation coefficients appearing in Eq. (B.6) are defined as

$$C_{g} = \frac{\langle (1-\alpha)V_{g}^{2} \rangle}{\langle 1-\alpha \rangle \langle V_{g} \rangle^{2}}$$
(3.10)

and

$$C_{v} = \frac{\langle \alpha V_{v}^{2} \rangle}{\langle \alpha \rangle \langle V_{v} \rangle^{2}}$$
(B.11)

for the liquid and vapor phases, respectively. These coefficients relate the net momentum flux to the mean velocities of the components and may assume different values for various flow regimes. The parameters are, in effect, adjustments to homogeneous model inputs for nonhomogeneous flow effects. The magnitude of the effect of these coefficients on the mass flux as applied to THTF test conditions will be discussed later.

The dynamic equation is solved using an IBM subroutine, CSMP III (Continuous System Modeling Program III), designed to solve a system of first-order differential equations with initial values.⁴ The subroutine is limited, however, to input parameters with analytical forms.

The main input to the program includes the turbine meter geometry, transient pressure, two-phase cross-sectional average density, and the turbine meter counting rate, which is proportional to the blade angular velocity. The turbine meter is a 5-bladed, 3.5-in. Flow Technology turbine meter. The gamma densitometer is a Measurements, Inc., three-beam densitometer. Discrete data are recorded during the transients by a DAS at 10-ms intervals. Analytical forms of the data were produced from the discrete data for input to the CSMP III program.

The equation for steady-state flow in a conduit may be obtained by setting all time derivatives to zero in Eq. (B.6). For steady-state model comparison, it is of interest to note that the steady-state model reduces to the Rouhani model⁵ under certain simplifying assumptions. If the correlation coefficient between void fraction and velocity profiles is unity (i.e., $C_{g} = C_{v} = 1$), the guidance of the fluid by the rotor blade is perfect ($\eta_{g} = \eta_{v} = 0$), and the drag torque is assumed negligible, then Eq. (B.6) may be further reduced to the Rouhani model equation,

$$\langle a \rangle \rho_{v} \langle |V_{v}| \rangle \langle \langle V_{v} \rangle - V_{t} \rangle = \langle 1 - a \rangle \rho_{v} \langle |V_{v}| \rangle \langle V_{t} - \langle V_{v} \rangle \rangle , \qquad (B.12)$$

which assumes a momentum balance between two phases on the turbine blades. Values of η_{ℓ} and η_{v} for the transient results that follow are assumed to be 0.2, a typical value for single-phase flow reported in Ref. 2. Parametric studies by Kamath and Lahey indicate very little difference between the 0.0 and 0.2 assumed values for η_{ℓ} and η_{v} . For the purposes of this analysis, a steady-state and transient model reference case is defined that assumes typical parameter values of S = 1, $C_{\ell} = 0.99$, $C_{v} = 1.06$, $\eta_{\ell} = 0.2$, and $\eta_{v} = 0.2$. Values of C_{ℓ} and C_{v} are from Ref. 3 where power law velocity and void profiles were assumed:

$$V_{k} = V_{cl_{k}} (1 - r/R_{o})^{1/n}$$
 for $n = 2-7$,

and

$$a = a_{c1} (1 - r/R_0)^{1/m}$$
 for $m = 2-7$.

B.2.2.3 <u>Transient two-phase solution</u>. As stated earlier, the model incorporates the effects of rotor inertia, velocity and void profiles in the conduit, slip ratio, imperfect guidance of the fluid by the rotor blades, bearing friction, and windage losses. Of these parameters, the effects of the velocity and void profiles of the liquid phase, rotor inertia, and slip ratio were found to be the most significant for the transients of interest.

Transient model solutions were obtained from data from portions of two transient tests run at the THTF. Since reference mass flux information is not available under the transient conditions, the model results are compared with a homogeneous mass flux model. The homogeneous mass flux is obtained from the product of the average mixture density as measured by the three-beam gamma densitometer and the average velocity as deduced from the volumetric flow measurement of the turbine meter (based on subcooled water calibration factors). Comparing the homogeneous, no slip model to the transient model will provide insight into the effects of nonhomogeneous flow for the THTF transient test conditions.

Figure B.32 shows the transient model reference case compared to the homogeneous model for the initial transient portion of Test 3.06.6B. Test 3.06.6B involved a relatively slow depressurization rate, and the observed transient peaks in mass flux for the two models appear to be in phase. The smoothed input for the transient model did not include the fine structure observed for the homogeneous model and as a result i: not seen in the transient model results. Differences of ~30-40% are observed from 0.5 to 2.0 s into the transient and near the mass flux peak seen at ~3 s. From 5 s to the end of the transient period shown, the fine structure of the homogeneous model varies around that of the transient model. Figure B.33 shows the effect of varying the liquid-phase distribution coefficient for the same test. The effects are considerable for higher mass flux but negligible for mass flux below ~610 kg/m² ·s (125 1b /ft² ·s), with the magnitude of the mass flux increasing with decreasing C₀. It is difficult to

Fig. B.32. Mass flux comparison of the transient and homogeneous models for Test 3.06.6B.

Fig. B.33. Effect of the correlation coefficient, C_{ℓ} , on mass flux for Test 3.06.6B.

characterize the appropriate value of C_{ϱ} , especially during the initial voiding of the test section, since flow regimes may be varying considerably. Simple approximations for velocity and void profiles may yield values over the ranges indicated in Fig. B.33. A simple model for an annular flow regime results in a value of 1.35 when substituted into Eq. (B.10). A stratified flow in horizontal spool pieces may produce a value of 0.7. Flow with flat profiles both in void fraction and velocity generates a C_o of 1. Without experimental validation, however, values of C_o obtained from simple models and applied to two-phase flow regimes, where velocity and void profiles are varying in time as well as space, may be misleading. It is of interest to note that for Test 3.06,6B, the important heat transfer data of interest is obtained from ~6 s to the end of the transient period shown. During this time, the effects of varying Co are negligible. Also, during this period, the conditions in the upper test section bundle and outlet spool pieces were similar to those of the steady-state data discussed earlier.

The reference model case is compared with the homogeneous model for the faster transient of Test 3.05.5B in Fig. B.34. The reference model leads the homogeneous model by ~50 ms, presumably due to rotor inertia effects. The second peak agrees well temporally although the peak magnitude differs by ~25%. The two models do not agree very well for times shown after 1.25 s. Figure B.35 shows the effect of varying the slip ratio for the transient model for Test 3.05.5B. A change in slip ratio leads to a change in amplitude as well as temporal phase (the larger the slip ratio, the smaller the magnitude and the earlier the peak). The slip ratio of 5 is probably higher than would be expected under THTF test conditions, but the comparison shows the trends clearly.

An example of the relationship between the input data and the reference case transient model output is shown in Fig. B.36 for Test 3.05.5B. The curves for pressure (P), average mixture density (D), and counting rate (CR) are smoothed analytical forms of discrete data measured during the test. The void fraction (α) and mass flux (G) are generated by the

Fig. B.34. Mass flux comparison of the transient and homogeneous models for Test 3.05.5B.

model. The mass flux and turbine meter counting rate are seen to be intimately related as the impulse and response. The effect of rotor inertia is observed in the second peak where the counting rate of the turbine meter lags the model-predicted mass flux.

B.3 Summary

Mass flux uncertainties for subcooled flow using a turbine meter for volumetric flow measurements and a pressure- and temperature-deduced density are estimated at $\pm 4.22\%$ of reading (95% confidence bands).

Steady-state tests indicate two-phase flow uncertainty bands of less than $\pm 50\%$ of reading (95% confidence hinds) for all models at the B01 spool piece where a three-beam densitemeter is used in applicable models. The DD-GAM 3 and TBM-DD models actually show somewhat smaller uncertainty bands ($\pm 30\%$) than the TBM-GAM 3 model at the Bundle Outlet spool piece (B01). However, at the Vertical Outlet spool piece (SVO), uncertainty

Fig. B.36. Relationship between the input and output parameters of the transient model for Test 3.05.5B.

. .

5

.

1.1

144

.

*

bands for the DD-GAM model (70%) and the TBM-DD model (140%) are significantly higher. The large uncertainties in models that use measurements from the drag disks are not particularly suprising from the standpoint of previous operating experience. The drag disks are the least reliable of the spool piece instruments in terms of repeatability and consistency of instrument response.

Significant uncertainty band increases result from using a singlebeam densitometer as compared to using a three-beam densitometer. At the B01 spool piece for the turbine meter-densitometer model, the use of a single-beam densitometer results in an increase of uncertainty bands from $\pm 50\%$ (three-beam) to $\pm 80\%$ of reading. Similar results are observed for the drag disk-densitometer model, where the use of a single-beam densitometer adds an additional 10% of reading to the uncertainty bands.

The application of a transient turbine meter model to transient THTF test data provides insight into possible transient uncertainties included in turbine meter-densitometer models. Comparison of the Kamath and Lahey transient model with the homogeneous model TBM-GAM 3 indicates that the effects of the velocity and void profiles of the liquid phase, rotor inertia, and slip are the most significant for the THTF transients of interest.

During the initial transient portion of the Upflow Film Boiling Test (3.06.6B) and for mass flux greater than ~610 kg/m²s (125 lb /ft²s), variations in the transient model mass flux of 30-50% are observed as the void and velocity profile correlation coefficient C_{g} is varied from 1.0 over a range of 0.7-1.5. For the same test, when mass flux is less than 610 kg/m²s (the time period in which film boiling heat transfer data of interest are available), the effect of varying C_{g} is negligible.

Increases in slip from 1.0 reduce the magnitude of the model mass flux and slow time response of the turbine meter.

Rotor inertia effects are significant for fast transients such as the early portions of the Double-Ended Cold Leg Break Test (3.05.5B). The reference case transient model leads the homogeneous model by ~50 ms during portions of the transient, resulting in significant mass flux differences. Response time effects were not as significant for the slower transients of the Upflow Film Boiling Test (3.06.6B) although mass flux differences of 30-40% between the transient model reference case and the homogeneous model are observed.

Since the actual mass flux is not known for the transient cases, neither model may be verified. The model comparisons are able to proyide test-specific information on mass flux sensitivity to uncertainties in two-phase flow parameters.

The Kamath and Lahey model results agreed well with the TBM-GAM 3 model for the Steady-State Upflow Film Boiling Test data. For this reason and because there is no additional information, in order to estimate uncertainties during the faster transient portions of the THTF tests the addition of the steady-state uncertainty estimates and the transient uncertainty estimat a based on transient model comparisons to obtain a total transient uncertainty estimate would appear to be warranted. It should be noted that during the important periods of interest for the Transient Upflow Film Boiling Tests in terms of heat transfer data, the mass flux is changing fairly slowly. In addition, the outlet flow conditions of the Steady-State Upflow Film Boiling Tests were similar to the higher quality portions of the transient tests. Application of the steady-state uncertainty bands over these conditions can be made with a good degree of confidence.

Although the steady-state uncertainty data provide a good estimate of uncertainty bands over the flow conditions and parameter ranges observed for those steady-state tests, uncertainties for different quality ranges and flow regimes may be considerably different. Without data over other ranges, however, it is felt that these are the best available uncertainty estimates for use in two-phase flow conditions at the THTF. Table B.1 contains the mass flux uncertainties discussed in this appendix.

Table B.1. Mass flow errors

Steady state single phase

 $2\sigma = 4.22\%$ of reading

Horizontally mounted spool piece steady state two phase

DD-GAM 3, TBM-DD $2\sigma = 30\%$ of reading TBM-GAM 3 $2\sigma = 50\%$ of reading

Vertically mounted spool piece steady state two phase

DD-GAM	$2\sigma = 70\%$ of reading	
TBM-DD	$2\sigma = 140\%$ of readin	g
TBM-GAM	$2\sigma = 60\%$ of reading	

Transient effects on two-phase flow

 $G > 610~kg/m^2 \cdot s$ (4.5 x 10^s 1b /h·ft²) add extra 30-50% of reading $G < 610~kg/m^2 \cdot s$ (4.5 x 10^s 1b $_m^m/h \cdot ft^2$) negligible effect

G	Mass flux
TBM	Turbine meter
GAM 3	Three-beam densitometer
DD	Drag disk
GAM	Single-beam densitometer

References

- 1. J. Teague, II, AMICON A Multi-Model Interpretive Code for 2¢ Flow Instrumentation with Uncertainty Analysis, K/CSD/TM-38 (August 1981).
- K. G. Turnage et al., Advanced Two-Phase Flow Instrumentation Program Quarterly Progress Report for April-June 1978, ORNL/NUREG/TM-279 (January 1979).

- 3. P. S. Kamath and R. T. Lahey, A Turbine Meter Evaluation Model for Two-Phase Transients, NES-459, Rensselaer Polytechnic Institute (October 1977).
- 4. Continuous System Modeling Program III (CSMP III) Program Ref 2e Manual, SH19-7001-3, IBM (December 1975).
- S. Rouhani, Application of the Turbine Type Flow Meters in the Measurement of Steam Quality and Void, presented at the Symposium on In-Core Instrumentation, Oslo, June 15, 1964.

Nomenclature

A	effective annular flow area through the blading
c	chord length of the blade
c ₂ , c _v	correlation coefficients for the liquid (2) and vapor (v) phases, respectively
G	mass flux
Lib	length of the journal bearing
r	radius measured from conduit axis
R	effective radius of the rotor
R	radius of the meter shroud
R	conduit radius
RR	bearing radius
R	journal radius
RT	blade tip radius
S	slip ratio
t	time
t _b	blade thickness
Vclk	centerline velocity of phase k
V _k	velocity of phase k
V _t	turbine axial velocity
Vz 2	velocity of the liquid in the axial direction
α	void fraction
a _{c1}	void fraction at centerline
β	blade angle
η_{ℓ}, η_{v}	flow deviation factor for the liquid (2) and vapor (v) phases, respectively

μ	dynamic viscosity of saturated liquid
P ₂ , P _v	density of saturated liquid (ℓ) and vapor (v), respectively
ω	angular velocity of the rotor

ROD POWERS

.

.

.

Calculated rod power versus time is shown in Figs. C.1-C.60 for each of the electrically heated rods. Rods 19, 22, 36, and 46 were unheated. Section D.6 of Appendix D is a discussion of rod power uncertainty. As shown there, one standard deviation in power is 0.55% of reading.

Fig. C.1. Rod power vs time for rod 1.

Fig. C.3. Rod power vs time for rod 3.

Fig. C.5. Rod power vs time for rod 5.

Fig. C.7. Rod power vs time for rod 7.

Fig. C.9. Rod power vs time for rod 9.

Fig. C.11. Rod power vs time for rod 11.

Fig. C.13. Rod power vs time for rod 13.

Fig. C.14. Rod power vs time for rod 14.

Fig. C.15. Rod power vs time for rod 15.

Fig. C.16. Rod power vs time for rod 16.

ORNL-DWG 82-4999 ETD

Fig. C.17. Rod power vs time for rod 17.

.

.

ORNL-DWG 82-5003 ETD

ORNL-DWG 82-5006 ETD

Fig. C.23. Rod power vs time for rod 25.

Fig. C.24. Rod power vs time for rod 26.

Fig. C.25. Rod power vs time for rod 27.

.

.

.

.

.

.

Fig. C.27. Rod power vs time for rod 29.

.

Fig. C.28. Rod power vs time for rod 30.

Fig. C.29. Rod power vs time for rod 31.

Fig. C.31. Rod power vs time for rod 33.

Fig. C.35. Rod power vs time for rod 38.

.

ø

167

s

Fig. C.39. Rod power vs time for rod 42.

đ

Fig. C.43. Rod power vs time for rod 47.

Fig. C.44. Rod power vs time for rod 48.

Fig. C.45. Rod power vs time for rod 49.

.

Fig. C.47. Rod power vs time for rod 51.

₽.

Fig. C.49. Rod power vs time for rod 53.

Fig. C.50. Rod power vs time for rod 54.

.

ŧ

Fig. C.51. Rod power vs time for rod 55.

Fig. C.55. Rod power vs time for rod 59.

Fig. C.57. Rod power vs time for rod 61.

.

0

. 2

Fig. C.59. Rod power vs time for rod 63.

¢

Appendix D

INSTRUMENT UNCERTAINTY ANALYSIS FOR THE THTF LOOP

Summary of Results

Two standard deviation uncertainty bands are described for critical instrumentation in the Thermal Hydraulic Test Facility (THTF). The analyzed instruments and their minimum, steady-state, 20 error bands [root sum square (RSS), 95% confidence interval] include:

1.	Turbine flowmeter	4.1% reading
2.	Gamma densitometer	10.4% FS*
3.	Strain gage pressure cell	1.0% FS*
4.	Differential pressure cell	2.0% FS* min to 9.9% FS* max
5.	Thermocouples	3.7°C min to 10.3°C max
6.	Rod power instrumentation	1.1% reading
7.	Strain gage drag disk	56% reading below 10% FS*
		19% reading above 10% FS*

Summary of Theory

The measure of the value of a group of n data points (x_i) with satistical significance is the mean (\bar{x}) or expected value given by

$$\overline{\mathbf{x}} = \sum \frac{\mathbf{x}\mathbf{i}}{\mathbf{n}} \quad , \tag{D.1}$$

where Σ is the usual sum from data point 1 to data point n. The standard measure of the dispersion of the data is the variance $[\sigma^2 \text{ or } V(x)]$ defined by

$$\sigma^{2} = \sum \frac{(x_{i} - \overline{x})^{2}}{n}$$
 (D.2)

However, V(x) has dimensions of engineering units squared, which may be inconvenient. The square root of V(x), the standard deviation (σ), is usually reported. Furthermore, in normally distributed data with mean \overline{x}

*Full-scale values are found in Tables D.5-D.8 under instrument range.

and variance σ^2 (a good approximation for much variation in physical data), statistical inferences may be drawn in terms of probabilities based on the measured values of \overline{x} and σ as follows:

68% probability that $\overline{\mathbf{x}} = \sigma \langle \mathbf{x}, \langle \overline{\mathbf{x}} + \sigma \rangle$

95% probability that $\overline{x} = 2\sigma < x_{\star} < \overline{x} + 2\sigma$,

and

99.7% probability that $\overline{x} = 3\sigma \langle x_{+} \langle \overline{x} + 3\sigma \rangle$,

where x is the true value of the variable. Brownlee has shown¹ that the variance of a linear function

$$Z = A_0 + A_1 X_1 + A_2 X_2 = \dots A_n X_n$$

is a linear function of the variance of the variables as long as the correlation coefficients are zero, i.e., as long as they are physically unrelated. (Linearly independent variables have zero correlation coefficients, but linear independence is not a requirement.) That is,

$$V(Z) = A_1 V(X_1) + A_2 V(X_2) + \dots A_2 V(X_1)$$
, (D.3)

where the A_1 's are constants and the X_1 's are independent variables.

Similarly, Scarborough has shown² that an analogous relation holds for a system where the independent variables are not linear:

$$Z = F(Y_1, Y_2, ..., Y_n)$$
.

The variance of Z is given by

$$V(Z) = \left(\frac{\partial Z}{\partial Y_1}\right)^2 V(Y_1) + \left(\frac{\partial Z}{\partial Y_2}\right)^2 V(Y_2) + \dots + \left(\frac{\partial Z}{\partial Y_n}\right)^2 V(Y_n) , \qquad (D.4)$$

where the correlation coefficients of the Y 's are zero and the value of V(Y) is small compared to $(\partial Z/\partial Y_{i})^{2}$. Notice that in situations where the standard deviation can be expressed legitimately as a percentage of the value of $\partial Z/\partial Y_{i}$, Eq. (D.4) can be rewritten as

$$\sigma\%(Z) = \sqrt{(\sigma\%Y_1)^2 + (\sigma\%Y_2)^2 + \dots + (\sigma\%Y_n)^2} . \tag{D.5}$$

The above equations can best be understood through the use of an illustrative example. Consider the amplifier of Fig. D.1. The uncertainty in the input voltage can be derived from the function $V_{i} = F(V_{offset}, GAIN)$, given the measured values for V_{out} , $V(V_{out})$, Vin_{out} , $V(V_{offset})$, and GAIN, V(GAIN), when V_{in} is the input voltage, GAIN is the amplifier gain, and V_{offset} is the offset voltage. Assuming the following data, the value of V_{in} is given by

$$V_{in} = \frac{V_{out} - V_{offset}}{GAIN}$$

and the variance in the input voltage can be found by applying Eq. (D.4) or (D.5):

$$V(V_{in}) = \frac{V(V_{out})}{GAIN^2} + \frac{V(V_{offset})}{GAIN^2} + \frac{V(GAIN) (V_{offset} - V_{out})^2}{GAIN^4} , \quad (D.6)$$

where

.

$$V_{out}$$
 max = 20.0 volts,
 V_{out} = 10.0 volts,
 $V(V_{out})$ = (0.2 volts)² = (2%)² reading,
 V_{offset} = 0.5 volts,
 $V(V_{offset})$ = (0.05 volts)² = (0.5%)² reading,
GAIN = 200 volts/volt,
 $V(GAIN)$ = (1 volt/volt)² = (0.5%)² reading,

$$V_{in} = \frac{(10.0 \text{ volts} - 0.5 \text{ volts})}{200} = 0.0475 \text{ volts},$$

Fig. D.1. Amplifier.

$$V(V_{in}) = \frac{(0.2)^2}{(200)^2} + \frac{(0.05)^2}{(200)^2} + 1^2 \frac{(-9.5)^2}{(200)^4}$$

and

$$\sigma(V_{in}) = 10^{-3}$$
 volts or 2.1% reading .

Because V is a function of V , V , offset, and GAIN in the form given above, it is reasonable to assume that stating the variances as percentages of the readings is equivalent to stating the variances as percentages of the respective partial differentials. In fact, this will always be reasonable as long as the variables are of the first order. The arithmetic for computing $\sigma(V_{in})$ becomes simply

$$\sigma(V_{in}) = (2\%)^2 + (0.5\%)^2 + (0.5\%)^2 = 2.1\%$$
 reading.

Equation (D.4) or (D.5) applied to each major component of a complex information loop is often the only method available to arrive at an uncertainty value. However, in the case of the gamma densitometer and the strain gage pressure cell, in situ standards are available that allow direct measurement of the uncertainty. Heise gages are used as in situ standards for strain gage pressure cells. Pressure and temperature measurements in subcooled water can be used to determine density with steam tables for comparison with the gamma densitometers. Such a comparison is made using a linear regression analysis based on the method of Gauss.

The equation of a line in slope-intercept form is given by

$$y = Ax + B$$
,

where A is the slope $(\Delta y / \Delta x)$ and B is the value of the y intercept.

The best-fit values of A and B can be found by minimizing the sum of the distances between the experimentally determined points and the bestfit line.

The pertinent equations are

$$A = \frac{\sum \mathbf{x}_{i} \sum \mathbf{y}_{i} - \mathbf{n} \sum (\mathbf{x}_{i} \mathbf{y}_{i})}{(\sum \mathbf{x}_{i})^{2} - \mathbf{n} \sum (\mathbf{x}_{i})^{2}}$$
(D.7)

and

$$B = \frac{\Sigma(\mathbf{x}_{i}\mathbf{y}_{i}) \Sigma \mathbf{x}_{i} - \Sigma \mathbf{y}_{i} \Sigma (\mathbf{x}_{i})^{2}}{(\Sigma \mathbf{x}_{i})^{2} - n \Sigma (\mathbf{x}_{i})^{2}}, \qquad (D.8)$$

where the x_i 's are the values determined by the instrument under discussion and the y_i 's are the corresponding values determined by the in situ standard. The uncertainty of the instrument values can then be defined analogously to Eq. (D.2):

$$\sigma = \sqrt{\sum \frac{(\tilde{Y}_i - y_i)}{n}}, \qquad (D.9)$$

where the Y_i 's are computed from the best-fit equation and the instrument values are y_i . A perfectly calibrated and properly operating instrument will have A = 1.0, B = 0, and $\sigma \ll$ reading.

Although the slope-intercept form of an equation is one of the easiest to interpret, it does have a disadvantage: A and B are not linearly independent variables, so drawing statistical inferences about A and B in terms of their variances is hindered. A solution to this problem is to solve for the best-fit line equation in the form

 $Y = \alpha(x - \overline{x}) + \beta , \qquad (D.10)$

The variances of α and β are then known to be

$$V(\alpha) = \frac{\sigma^2}{n}$$
(D.11)

and

$$V(\beta) = \frac{\sigma^2}{\Sigma(x_i - \overline{x})^2} , \qquad (D.12)$$

as shown by Brownlee,³ where σ is defined as in Eq. (D.9). We can still arrive at an estimate of V(A) and V(B) by modifying Eq. (D.10) to show

$$Y = ax - a\overline{x} + \beta ,$$

which implies $\alpha = A$ and $B = (-\alpha \overline{x} + \beta)$. Applying Eq. (D.4) yields

$$V(A) = \frac{\sigma^2}{n}$$
(D.13)

$$V(B) = \frac{\sigma^2}{n} \,\overline{x}^2 + \frac{\sigma^2}{\Sigma(x_1 - \overline{x})^2} = \sigma^2 \,\frac{x^2}{n} + \frac{1}{\Sigma(x_1 - x)^2} \,. \tag{D.14}$$

Equations (D.2)-(D.5) and (D.9) should be applied with caution for several reasons.

Definitions for variance assume perfect knowledge. However, actual sampling procedures are limited to finite sample sizes, and formulas impose limits on the degrees of freedom by imposing constraints. To adjust for the limits to the number of degrees of freedom, Eq. (D.2) is modified to provide an estimator for the standard deviation denoted S such that

$$E = \frac{\Sigma(x_{i} - \bar{x})^{2}}{(n-1)} , \qquad (D.15)$$

Equation (D.9) becomes

 $S = \frac{\Sigma(Y_i - y_i)^2}{(n-2)} . \qquad (D.16)$

Equations (D.15) and (D.16) are the proper equations to use in all sampling situations where the standard deviation is to be used as the measure of the uncertainty. Furthermore, the value for S should be substituted for the value of σ and S² for V(X) or V(Y) in each of the other equations where σ appears. Because of the common association between the standard deviation defined by Eqs. (D.15) and (D.16) with the symbol σ , the symbol σ will be used for S in the balance of this report. In a practical sense, where the standard deviation is reported as two significant figures, there is essentially no difference between σ and S [Eqs. (D.4) and (D.9) versus Eqs. (D.15) and (D.16)] as long as the number of data points is large.

A class of practical problems that arises in the actual error analysis is centered around the interpretation placed on uncertainties supplied by manufacturers. These uncertainties are often supplied as percentages in such a manner that it is difficult to determine whether it is reasonable to apply Eq. (D.5). Either it is difficult to determine how the stated error relates to the standard deviation, or it is difficult to determine whether the error can be applied as a percentage of the partial differentials required by Eq. (D.5). Furthermore, it is seldom stated whether the given uncertainties meet the required criterion of zero correlation coefficient. It is common for manufacturers to quote error bands as 2σ (95% confidence) or 3σ (99% confidence) though sometimes without assigning confidence limits. In this report it is conservatively assumed that the error reported by instrument manufacturers is 2σ . Unless otherwise stated, it is also assumed that a statement of error as a percent

186

and

with respect to the partial differentials of Eq. (D.5) is reasonable and that the correlation coefficient is zero for all variables.

The second class of problems relating to the uncertainty analysis dealt with multiple estimates of σ for a class of instruments where σ varied widely from instrument-to-instrument and from trial-to-trial. The method of choice was to use a value of σ large enough to include about 95% of the measured values. This was accomplished by using

 $\sigma = \overline{\sigma} + \sigma(\sigma)$.

That is, the value of the standard deviation used was the average value for all instruments and files read plus one standard deviation of σ . This is different from the probability statements above because σ is a span that includes zero to σ . Such a distribution cannot be normal in the sense that the probability statements require.

A generalized procedure for data analysis follows:

A common form for a large system is generalized in Fig. D.2. This system consists of a number of transducers (T_{1}) , their associated signal conditioning equipment (S_{1}) , and the data acquisition system (DAS). The DAS is understood to include both the hardware and the software. The standard deviations of the output signals are measured by reading the information from the magnetic tape written by the DAS and applying Eq. (D.2) or D.14) over an arbitrary length of time where the process is defined as being in a steady state. The measured value of the DAS output can then be incorporated with other measures of uncertainty using Eq. (D.5). If an in situ standard is going to be used to develop the total uncertainty directly, the data for the secondary standard need to be accessed and correlated in time and space with the instruments under consideration.

The development of software to perform the above estimates may be the most time-consuming part of the analysis. The software has to be able to perform the following functions for a magnetic-tape-based system:

- 1. Confirm that the tape is at the beginning.
- Confirm that the tape density and number of tracks are system compatible.
- 3. Locate the instrument data base (IDB) and transfer the IDB to disk or core in a rapid access format.
- 4. Extract certain system constants from the IDB (record length, etc.).
- 5. Locate the scan table.
- 6. Use the scan table and instrument identifier code to determine the location of the desired instrument data in data records.
- 7. Locate the first data file of the type desired.

Fig. D.2. Generalized form for a large system.

- 8. Read a fixed number of records from the data file.
- 9. Store data in arrays or keep running totals for averaging.
- 10. Compute averages and standard deviations for steady-state data in the file.
- 11. Write the desired combinations of data, averages, and standard deviations to arrays.
- 12. Locate the next data file of the type desired and repeat steps 8-12 until end-of-tape is detected.
- 13. At end-of-tape, write the arrays to disk for later analysis.
- 14. At each tape operation, check for proper positioning.
- 15. Analyze data written to disk as required.

The following sections provide a detailed analysis of the critical instrumentation in the THTF loop. As stated above, the exact nature of the uncertainties is not always known. The RSS value of the uncertainty is the statistically defined one if variables are unrelated (correlation coefficient = 0) and the percentage uncertainty is given as a percent of partials required for Eq. (D.5). However, to the extent that the uncertainties stated do not comply with the assumptions, the more conservative strict sum of errors may need to be applied. Both the RSS value and the strict sum value are given in the text. The RSS values are reported in tabular form at the end of this Appendix. The superscript (*) is used to denote manufacturer derived data.

D.1 Turbine Flowmeter

The turbine flowmeter channel consists of a turbine flowmeter with integral magnetic pickup, an electronics package that conditions the signal to provide an output voltage proportional to flow rate, and the DAS, which converts the analog signal in volts to digital information and writes it onto magnetic tape. In operation, the turbine blade generates an electrical pulse as it passes the magnetic pickup. The ORNE electronics package senses this pulse and with 250 µs resets the count registers and begins accumulating the count until the next pulse disables the count. During the disabled period the count is passed to the digital-to-analog converter where it is converted to millivolt reading. The voltage divider then inverts the millivolt signal and outputs a voltage proportional to the angular velocity of the turbine blade, with 10-V full scale (FS) corresponding to 1200-Hz input signal from the flowmeter pickup. The DAS then converts the output of the ORNL electronics to a digital value and writes it onto magnetic tape. The identified sources of error in the turbine flowmeter are:

Channel noise (blade angle tolerance)	3.2%
Calibration uncertainty	2.4%
Inherent turbine linearity*	0.5%
ORNL electronics package	0.4%
A/D conversion at DAS*	0.3%
Effect of bearing change each run*	0.3%
Strict sum, 2g error band	7.1%
RSS, 2σ error band	4.1%

The following items need to be considered when applying the above error bands to THTF data:

1. The above uncertainties are all reasonably expressed as a percent of reading. However, the value of turbine linearity quoted applies only over the range 10% rated FS through 100% rated FS. Below 10% rated FS, error bands increase rapidly (see Fig. D.3) as frictional drag becomes more significant, with a cutoff of useful information occurring near 6% of rated FS flow due to signal-to-noise problems in the electronics.

2. Random noise was measured for 30 records of data taken during Reactor Simulation Test 3.05.5B. When the standard deviation was computed for each of the 10 flowmeters without excessive channel noise, the average value (1.53% of reading) was found to agree very well with the predicted channel noise because of blade manufacturing tolerances ($72^{\circ} \pm 1.56\%$). It would be optimistic, however, to conclude that this is the only source of random error. Data taken over a much wider range of flows would be needed to confirm this conclusion.

3. The calibration uncertainty was estimated from two different calibration laboratories (Flow Technology, Inc., and Measurements, Inc.) independently calibrating the same turbine flowmeters. The results of those calibrations indicated approximately 1.2% (as 1σ) differences from laboratory-to-laboratory. The supposed calibration uncertainty according to the laboratories was an order of magnitude smaller based on their NBS traceability standards. The reasons for the large difference were never satisfactorily determined. This comment applies solely to turbine meters located at the SVO, SVI, SHI, and SHO spool pieces.

4. The most troublesome problems of interpreting flowmeter era are those that occur during two-phase flow. In a 1977 report⁴ MPA Associates, Inc., investigated the possible errors due to slug flow, annular flow regimes, steam-water ratios, and differential two-phase velocities. This

Fig. D.3. Error due to turbine linearity: characteristic curve.

investigation was strictly theoretical, based on momentum exchange between the blade and the fluid. These analyses were based on steady-state flow, balancing the transverse momentum of one phase against that of the second. Assuming no net momentum exchange with the rotor, the turbine response was interpreted in light of the point effective radius (established as the calbration constant) in the presence of two phases with different flow regimes and different velocity profiles. The conclusion reached was that errors up to +25% might be expected.

By assuming equal probabilities for the parameters investigated, it was determined that a 1 σ error band of 10% might zeasonably be expected. However, until experimental verification of both model and results can be obtained, it would only be prudent to use the above figures in a qualitative manner.

D.2 Gamma Densitometer

The gamma densitometers consist of a nearly monoenergetic ¹³⁷Cs gamma source, an ionization chamber to dotect the gamma rays, an instrument amplifier, and the DAS. In use, the gamma rays pass through the steel pipe, through the water (in whatever phase) in the pipe, and into the ionization chamber. In the ionization chamber the gamma rays are converted into an electric current such that the current is proportional to the intensity of the impinging gamma rays. The instrument amplifier takes this current and converts it into a voltage that is proportional to the input current. At the DAS the voltage is converted to a digital value and stored on magnetic tape.

Given that the source approximates a point source, the density of the water (ρ_{-}) in the pipe should be given by

$$\rho_{w} = \text{KFACTR } \ln \left(\frac{V_{p} - V_{o}}{V - V_{o}} \right)$$
,

where KFACTR is an experimentally determined constant that includes the effect of pipe diameter and the mass absorption coefficient of the water (including any dissolved salts), V is the output voltage when the pipe is empty, V is the output voltage with the source shielded (dark voltage or zero offset), and V is the output voltage when there is water in the pipe.

Due to the strong theoretical dependence of density error as a function of density, the 1 σ error band was investigated as a statistical function of the density reading compared to an in situ standard based on the physical properties of the water in the pipe under known conditions of temperature and pressure and a steady-state, one-phase flow. Ten camma densitometers in service during Test 3.05.5B were used as a basis of the study. The output voltage of each instrument was sampled 150 times in each of ten 3-s files. The output voltage was then used to compute the water density using values of KFACTR, V, and V measured in a recent calibration run. Those densities were then compared to the expected densities based on water properties derived from the temperature and pressure instruments located adjacent to each gamma densitometer.

The measured uncertainty expressed as 1 σ in kg/m³ (and 1b/ft³) is shown in Table D.1. It was discovered, however, that at least part of the large variation in the uncertainties resulted from a systematic error that varied from instrument to instrument (see Fig. D.4, where the densitometer density is plotted against the water property density for DE-204B). Furthermore, the expected strong dependence of error on total density is not obvious over the range of data compared. Not all densitometers showed positive deviations from the standard as did DE-204B.

Densitometer	σ (kg/m ³)	σ (1b/ft*)
DE-20	18.9	1.18
DE-36	199.0	12.42
DE-168	3.6	0.22
DE-218	87.5	5.46
DE-204A	4.4	0.27
DE-204B	57.7	3.60
DE-204C DE-262A ^a	33.6	2.10
DE-262B	22.9	1.43
DE-262C	37.5	2.34
Average	52.0	3.20

Table D.1.	Absolute	error an	alysis
------------	----------	----------	--------

^aProbable equipment failure during test.

The data for each densitometer were fit to a straight line, densitometer calculated density to water property density, using linear regression analysis. The random error, expressed as 1σ , was then calculated for each gamma densitometer using Eq. (D.16), but Y is the best average value from the linear regression equation. The value of uncertainty was much more uniform from densitometer to densitometer (see Table D.2). A preliminary analysis of the calibration procedure indicates that it may be possible to recalibrate the densitometers analytically to remove the systematic error. Since the analysis performed on the experimental data does not use the densitometer responses, it was not deemed worthwhile to expend the effort required to perform this recalibration.

Since the density of water at room temperature is approximately $1 \ge 10^{-3} \text{ kg/m}^3$ (62.4 lb/ft³), the above results can be summarized as follows:

2σ error band under current operating procedures 10.4% FS

ORNL-DWG 81-22674 ETD

Fig. D.4. Typical densitometer calibration.

Densitometer	A	В	σ (kg/m ³)	σ (1b/ft³)
DE-20	0.945	64.9	8.6	0.54
DE-36	0.131	745.0	9.7	0.61
DE-168	1,000	-0.4	0.9	0.06
DE-218	0.711	176.0	2.5	0.16
DE-204A	0.981	14.0	4.4	0.27
DE-204B	1,190	-85.9	6.0	0.37
DE-204C_	1.010	24.8	12.4	0.77
DE-262A				
DE-262B	0.740	246.0	5.3	0.33
DE-262C	1.160	-100.0	4.5	0.28
Average			5.8	0.36

Table D.2. Least-squares best-fit line (RHO = A x DERHO + B)

^aProbable equipment failure during test.

The following items need to be considered when applying the above error bands to THTF data analysis:

1. An analysis of data scatter indicates an average σ of 31 kg/m³ or 3.1% FS over 150 point data files. Therefore, individual points within 1 file have much higher uncertainties than those stated for files as a whole.

2. No other factor has been identified which would degrade the error bands beyond the steady-state, one-phase flow values listed above. However, it should be understood that the densities computed from densitometer voltages during transients and two-phase flow are time-and-path averaged values. Furthermore, a direct application of the above data to transient, two-phase flow is done at the risk of the data user until experimental verification can be obtained.

D.3 Strain Gage Pressure Cells

The pressure channel invertigated consists of a strain gage pressure cell, an instrument amplifier, and the DAS. In operation, pressure on the diaphragm of the pressure cell causes a change of resistance in the foil strain gages attached to the diaphragm. The change in resistance in the gages causes a voltage output from the cell that is proportional to the applied pressure. This output is amplified by the instrument amplifier. The DAS converts the amplifier output to digital format and writes it onto magnetic tape.

The following errors were identified as contributing to the pressure cell uncertainty:

Nonlinearity (P-sensor)*	0.3%	FS
Repeatability (P-sensor)*	0.1%	FS
Hysteresis (P-sensor)*	0.1%	FS
Tempco, gage factor (P-sensor)*	0.5%	Reading
Tempco, zero offset (P-sensor)*	0.5%	FS
Gain instability (instrument amplifier)*	0.1%	Reading
Output offset (instrument amplifier)*	0.1%	FS
DAS calibration*	0.3%	Reading
Location of calibration standards	0.4%	FS
Strict sum 2σ error band	2.5%	FS
RSS 2σ error band	1.0%	FS

The following items need to be considered when applying the above error bands to THTF data:

It is fairly obvious that the results of the in situ calibration run (see item 2 below) agree respectably with the 2 σ error band determined above. The probable reason that in situ calibration errors are smaller than the theoretically determined value can be attributed primarily to smaller than estimated temperature changes in actual operation for both gages an? amplifiers. In the absence of contradictory experimental evidence, the 2 σ error band for the strain gage pressure cells should be set at 1.0% FS or 200 kPa (29 psi). 1. The temperature effects were assumed to be operable over a range of only 56°C (100°F) in actual use. This seems like a reasonable assumption since the sensors themselves are installed at the end of a connecting tube ensuring cooling by ambient air flow and the instrument amplifier is mounted where ambient air flow should keep the temperature change within the 56°C (100°F) range. Channel noise was measured during Test 3.05.5B using Y_i [see Eq. (D.16)] as the average within a data file. Five instruments were sampled with 30 points per data file, 10 data files each. The 1 σ value measured in this manner was quite variable, so that it was deemed expedient to select a value of σ large rough to include about 95% of the data.

2. The strain gage pressure cell does have a usable in situ standard for comparison. With data from a recent pressure cell calibration run, the standard deviation for system pressure was determined for six strain gage pressure instruments by comparing P-cell output converted to pressure using the measured calibration constants with the average reading of two Heise bourdon tube gages acculate to 20 kPa (3 psi). The results of that comparison are:

Instrument	σ (kPa)	σ (psi)	σ (% FS)
PE-26	37.2	5.4	0.18
PE-42	66.2	9.6	0.32
PE-44	18.6	2.7	0.09
PE-76	43.4	6.3	0.21
PE-106	47.6	6.9	0.23
PE-156	91.0	13.2	0.44
Average	51.0	7.4	0.24
Plus location of cali- bration standard	40.0	5.8	0.18
Total 2σ value	130.0	18.9	0.6

3. The in situ calibration uses the average reading of two Heise gages as system pressure. These gages may be separated by 8.53 m (26 ft) vertically. The result of the difference in static water pressure can produce an offset of ~40 kPa (5.8 psi) (1 σ) depending on the location of the specific instrument.

4. The DAS seems to be the limiting factor in instrument response time, including the response time of the transducer itself since pressure waves should reach the displayer much faster than the normal sample rate. No other source of er as a been identified to degrade the error band established for states as the one-phase flow. However, the application of the above error as a transient or two-phase flow without corroborating data might be over y static, and any such use is the responsibility of the data user.

D.4 Differential Pressure (dp) Cells

The strain gage dp cell (A, B, C) instruments are very similar to the strain gage pressure cells above, except that they have lower full-scale capability.

A. The identified sources of error in the BLH strain gage (1380 and 6870 kPa or 200 and 1000 psi, respectively) dp cell are

Bench calibration (note 1)	2.4%	FS	
Tempco, gage factor (P-sensor)*	0.1%	FS	
Tempco, zero offset (P-sensor)*	0.1%	FS	
Gain instability (instrument amplifier)*	0.1%	FS	
Output offset (instrument amplifier)*	0.1%	FS	
A/D inaccuracy (DAS)*	0.3%	FS	
Random noise (note 2)	2.0%	FS	
Strict sum 20 error band	5.1%	FS	
RMS 2σ error band	3.1%	FS	

B. The identified sources of error in the BLH strain gage (1386 kPa or 200 psi) (pit) dp cell are

Bench calibration (note 1)	2.4%	FS
Tempco, gage factor (P-sensor)*	0.5%	Reading
Tempco, zero offset (P-sensor)*	0.5%	FS
Gain instability (instrument amplifier)*	0.1%	Reading
Output offset (instrument amplifier)*	0.1%	FS
A/D inaccuracy (DAS)*	0.3%	Reading
Random noise (note 2)	9.6%	FS
Strict sum 20 error band	13.5%	FS
RMS 2σ error band	9.9%	FS

C. The identified sources of error in the GENISCO (41 kPa or 6 psi) strain gage dp cell

Static pressure offset	2.6%	FS
Zero balance*	2.0%	FS
Linearity, hysteresis*	0.4%	FS
Tempco, sensitivity*	0.3%	FS
Tempco, zero offset*	0.3%	FS
Noise (note 1)	2.0%	FS
A/D conversion DAS*	0.3%	FS
Strict sum 2σ error band	7.9%	FS
RSS 2σ error band	3.9%	FS

D. The identified sources of error in the ITT Barton (25 kPa or 100 in.) dp cell are

Transdu	ction	accu	racy*					d,	÷	÷		 				()	.25%	FS
Static	pressu	re e	ffect									 1				- (0	.4%	FS
Tempco,	zero	offs	et*		 	Ļ					÷	 .,	*		i.	(0	.2%	FS

Tempco, sensitivity*	0.2% FS
Noise	2.0% FS
DAS*	0.3% FS
Strict sum 20 error band	3.4% FS
RSS 2g error band	2.1% FS

E. The identified sources of error in the Rosemount Capacitance dp cell are (see note 4)

	6.2 and 7.4 kPa 37 and 50 kPa (25 and 30 in.) (150 and 200 in.)
Transduction accuracy	0.25% FS 0.25% FS
Tempco, combined*	. 0.95% FS 0.14% FS
Static pressure offset	. 1.0% FS 1.0% FS
Stability*	0.25% FS 0.25% FS
Noise	0.2% FS 0.2% FS
DAS*	0.3% FS 0.3% FS
Strict sum 20 error band	3.0% FS 2.1% FS
RSS 20 error band	1.5% FS 1.1% FS

F. The identified sources of error in the FOXBORO force balance dp cell are

Tı	an	s d	lu	ct	ti	14	21	1	2	10	: 0	20	IT	a	c	y															()	.2 5%	FS
No	is	e																			<i>"</i>	,									2	2	.0%	FS
DA	S																														()	.3%	FS
	St	ri	c	t	1	51	15	n	2	20	5	4	. r	1	0	r	b	a	n	d											2	2	.6%	FS
	RS	S	2	σ		93	.,	c (01	c.	ł	08	n	d	I.																2	2	.0%	FS

The following items need to be considered in evaluating the above 2σ error bands:

1. Bench calibration data were substituted for the values of nonlinearity, repeatability, and hysteresis since bench data were available and indicated significantly larger error bands for strain gage. The dp sensors in use show a dependence on system pressure for both gain and offset (see Figs. D.5 and D.6). The approach has been to use a calibration equation based on a linear regression calibration of both gain and zero offset in the four

 $P_{dp} = (PAg + Bg)[V - (PAz + Bz)],$

where P_{dp} is the differential pressure measured by the dp cell; Ag, Bg, Az, and Bz are the calibration coefficients; V is the sensor output voltage; and P is the system pressure. However, the linear correlation of system pressure and constants Ag, Bg, Az, and Bz is not high enough to make the correlation better than 1.2% (as 1 σ) overall.

2. When the error band was checked using digital data from Reactor Simulation Test 3.05.5B, an average value of σ equivalent to 1.0% FS was measured using 13 PDE's in service prior to blowdown. The average output was used as the standard.

3. When the strain gage dp cells are used as pit dp cells, they are connected to different parts of the system by long lines of small diameter tubing. Analysis of Test 101 showed that resonant ringing could account for an increase in the noise level (as 1σ) to 4.8% FS just prior to blowdown and up to 65% FS after blowdown when the 28-Hz (the measured resonant frequency) notch filter is used as a standard (see Fig. D.7).

4. An in situ calibration was made during steady-state scans for the Small Break LOCA II tests of October and November 1980. The uncertainty estimate used water properties as a basis of known differential pressure. The results indicated an average 1 σ uncertainty of ± 0.05 kPa (0.2 in.) (0.8% FS).

5. Temperature coefficients were applied over a range of 15°C (27°F).

6. No parameter was identified that would degrade error bands beyond those listed above during two-phase flow. However, extension of the stated error bands to two-phase flow or transient conditions without supporting experimental evidence is done at the data user's risk.

Fig. D.7. PDE-200 output from Test 101.

2

D.5 Thermocouple Temperature Instruments

The thermocouple instruments consist of Chromel-Alumel thermocouples, a "cold-junction" reference box, and the DAS.

The following error sources were identified for thermocouple instruments:

	Minimum (°C)	value (°F)	Above 350°C (660°F)
Thermocouple material*	2.2	4.0	0.76%
Random noise	0.5	1.0	
DAS calibration	1.8	3.2	0.46%
Reference junction calibration	2.2	4.0	2.2°C (4.0°F)
Reference junction controller	0.16	0.3	0.16°F (0.3°F)
Strict sum 2σ error band	6.9	12.4	(See below)
RSS 2σ error band	3.7	6.7	(See below)

Conversion of the above percentage values to degrees centigrade above $350^{\circ}C$ (660°F) results in the following:

Tempe (°C)	(°F)	2σ Erron (°C)	(°F)	2 Erro strict (°C)	sum (°F)
3 50	662	3.7	6.7	7.4	13.3
400	7 52	4.2	7.6	8.3	14.9
450	842	4.7	8.5	9.1	16.4
500	932	5.1	9.2	10.0	18.0
550	1022	5.6	10.1	10.8	19.4
600	1112	6.1	11.0	11.7	21.1
6 50	1202	6.6	11.9	12.5	22.5
700	1292	7.1	12.8	13.4	24.1
750	1382	7.6	13.7	14.2	25.6
800	1472	8.0	14.4	15.1	27.8
850	1562	8.5	15.3	15.9	28.6
900	1652	9.0	16.2	16.8	30.2

The following items need to be considered when applying the above error band estimates to THTF data:

1. The reference junction box calibration error was determined by analyzing long-term calibration data from February 4, 1976, to February 10, 1981, and includes any offset from the mean set-point value of 2.666 mV. Reference junction box anomalies were discovered during a 7-day steady-state period. Controller errors up to 0.08°C (0.14°F) were observed for periods of approximately 1-h duration. Operating four units continuously over 7 days, the average error was determined to be less than 0.006°C (0.01°F).

2 .. 1 - 104

2. Random noise was determined by analyzing the data from Reactor Simulation Test 3.05.5B for five Type Code = 6 and nine Type Code = 1 thermocouples in operation during that test for steady-state, one-phase flow conditions. Because of considerable scatter from instrument-toinstrument and file-to-file, a value of σ large enough to include approximately 95% of all data was chosen. In an effort to provide a conservative estimate, it was assumed that the noise at higher temperatures would be proportional to the millivolt signal above 350°C (660°F).

3. Data Acquisition System calibration was checked after a test calibration with the voltage output compared with a 32.0-mV input signal.

4. A thermocouple that had been in service at the THTF facility was analyzed by R. L. Anderson⁵ of the I&C standards lab to determine the effect of nickel crystal reordering. The results indicate that errors from 1.2°C (2.2°F) [near 150°C (1300°F)] to 16.3°C (29.3°F) [near 900°C (1650°F)] may be expected in addition to the above values. However, the recent history of a specific thermocouple coupled with its end-to-end temperature gradient makes it difficult to extrapolate to all THTF thermocouples. The effect of crystal reordering would be to produce readings higher than actually experienced at the junction.

5. An isothermal scan taken during Test 3.06.6B was used to compare the output of 615 thermocouples believed to be operational. The measured standard (2 σ) deviation of 4.0°C (7.2°F) agrees closely with the RSS estimated value of 3.7°C (6.7°F) (2 σ).

D.5 Rod Power Instrumentation

The rod power instrumentation consists of two operational amplifiers, a calibrated low resistance shunt, and the DAS (see Fig. D.8). Amplifier 1 reads the voltage across the rod itself. V_1 is the output from the voltage divider. Amplifier 2 reads the voltage across the shunt. The current in the rod is then inferred using Ohm's law such that

$$I = V_2 / R_3,$$

where I is the current in amps, V_2 is the potential across the shunt in volts, and R_2 is the resistance of the shunt in ohms.

The following items were identified as probable sources of error when determining rod power:

Rs	Calibration inaccuracy*	0.26% Reading
Rs	Temperature coefficiency*	0.2% Reading
V ₂	Nonlinearity*	0.01% Reading
V ₂	Channel noise	0.72% Reading
V ₃	Tempco, gain*	0.02% Reading
V ₂	Tempco, offset*	0.03% FS

Fig. D.8. Rod power schematic.

V ₂	DAS calibration inaccuracy*	0.30% Reading
V,	Nonlinearity*	0.01% Reading
V,	Channel noise	0.7% Reading
V1	Tempco, gain*	0.02% Reading
V,	Tempco, offset*	0.03% Reading
V,	DAS calibration inaccuracy*	0.30% Reading
	Strict sum 20 error band	2.6% Reading
	RSS sum 2σ error band	1.1% Reading

The following items need to be considered when applying the above error bands to THTF rod power data:

1. Temperature changes at the amplifiers were assumed to be less than or equal to $20^{\circ}C$ (36°F). The temperature changes at the shunt were

.

assumed to be less than or equal to 40°C (72°F). The temperature changes chosen may be excessively large resulting in larger than necessary error bands.

2. Power determined using IV (amps times volts) above does not always agree well with an I²R (amps squared times rod resistance) power calculation. No adequate explanation for the difference is known. Since both methods should yield the same value of power to the rods, actual error bands may be larger than stated.

3. No error source was identified that would degrade the steadystate, 20 error band beyond those listed above.

4. Because of matched voltage divider temperature coefficients and the current calibration procedures, the error contributed by the voltage dividers is considered negligible. However, channel noise was measured at low power, so that the values used might be unnecessarily conservative. Furthermore, the resistance of the shunt is very much less than the rod, so that the voltage drop across the rod is essentially unaffected by the shunt.

D.7 Strain Gage Drag Disks

An analysis of steady-state, single-phase drag disk uncertainties based on subcooled flow calibrations from four THTF tests is presented. The data are from pretest drag disk calibrations performed on the same day of the test during heatup to blowdown conditions for Tests 3.04.7, 3.05.5B, 3.06.6B, and 3.08.6C.

The drag disks are calibrated using the turbine flowmeters (velocity, V) and pressure- and temperature-deduced density (ρ) to obtain an in situ standard momentum flux $[(\rho V^2)_{std}]$. A calibration equation is generated from a least-squares fit to the drag disk signal corresponding to the momentum flux over a range of momentum fluxes. The measured momentum flux $[(\rho V^2)_{meas}]$ is obtained by applying the calibration equation to the instrument signal. The calibration equation takes the form:

$$(\rho V^2)_{meas} = A(IS - Z)^E$$
,

where IS is the instrument signal in millivolts and A, Z, and E are calibration parameters determined by the least-squares fit. The value of E is generally near 1.0.

An estimate of the uncertainty in the drag disk instrument is made by comparing the in situ standard to the instrument-measured momentum flux. The errors are formulated in terms of percent of actual momentum flux, which is approximately equivalent to percent of reading. For each data point, the percent error is calculated from

% error =
$$\frac{(\rho V^2)_{std} - (\rho V^2)_{meas}}{(\rho V^2)_{std}}$$

Two different drag disk instrument ranges and two different geometries (2-in. and 4-in. spool piece configurations) resulted in three different instrument measurement ranges. It was observed that values of σ for the three different types of drag disks (target and geometry) agree well with each other. It would appear reasonable to combine the data for all three types and to report average uncertainties. However, separate uncertainty estimates are made for instrument signals below 10% of maximum range due to a pronounced temperature effect that is especially noticeable at the lower readings. This effect is caused by the strain gage elements being in intimate contact with the fluid. The value of Z is the average of values taken at two different temperatures. The attempted temperature compensation is not very accurate at low signal values.

The resulting uncertainty bands for strain gage drag disks are:

2σ error band below 10% FS 56% reading 2σ error band above 10% FS 19% reading

The following items need to be considered when applying the above error bands to THTF data:

1. Percentage error estimates for the drag disks were compared with the subcooled data immediately preceding blowdown for the tests from which the calibration data were obtained. Average error values of 9.2% of readings (1 σ) above 10% FS and 30% of readings (1 σ) below 10% FS tend to support the uncertainty bands derived from calibration runs.

2. The strain gage transducer elements are exposed to the temperature environment of the loop. Temperatures significantly outside of the temperature range used during calibration will degrade the accuracy of the instrument further, especially below 10% FS.

D.8 Transient Response and Transient Errors

It is generally understood that no instrument responds infinitely fast to changes in the physical parameters being measured. That is, if the environment were to change suddenly from 200 arbitrary units to 400 arbitrary units, an instrument would initially read some value near 200 units and would approach a reading of 400 units asymptotically. A good approximation for many instruments is first-order 1ag (see Fig. D.9) defined by

$$V_{r} = V_{o} + (1 - e^{-T/\tau})(V_{f} - V_{o})$$
.

That is, the value indicated by the instrument (V) is equal to the original value (V) plus the value of the step function $(V_f - V_o)$ multiplied by an exponential delay factor, where T is the elapsed time and τ is the 63.2% instrument response time, and V_f is the final value of the step function. Instrument error as a function of time would be represented by the area between V_f and the instrument reading line.

ORNL-DWG 81-22679 ETD

Fig. D.9. Instrument reading as a function of response time assuming first-order lag.

An additional problem in the THTF uncertainty analysis is introduced because the signal is sampled over discrete time intervals instead of continuously. It may be difficult to identify the exact starting point of a step function. If the step change in physical parameter occurs very near in time to the DAS sample (relative to the instrument response time), the instrument reading at that point will be in error by the total value of the change. If the DAS samples five or more response times after the step function, less than a one percent error (expressed as percent of the step function) will result.

Some arbitrariness is required, therefore, to provide a consistent definition of transient error. The method chosen was to assume that the step function occurred midway between two DAS sampling intervals (n and r + 1 in Fig. D.10). The error is measured at each sample point as the distance in engineering units between the modeled instrument reading and the assumed final value of the physical parameter V_f (vertical dashed lines in Fig. D.10). The uncertainty is expressed as the average of all the errors observed during an averaging interval (typically, 150 or 500 ms). The size of the step function and the length of the averaging interval were chosen with test conditions in mind.

As an example, let us consider the errors in the reading of a gamma densitometer (Sect. D.2) as a function of time. The response time on the ionization chamber is estimated at 16 ms. Assuming that the observed density decreases instantly from 750 kg/m (46.8 lb/ft) to 0 (a worst-case, blowdown situation), the errors observed at the DAS and the average error for a 100-ms averaging interval reported are shown in Table D.3.

The following items need to be considered when applying transient uncertainty values in the appendices to THTF data:

1. Although first-order lag modeling is appropriate for most instruments, it is at best a close approximation to the true instrument response.

Fig. D.10. Instrument error as a function of DAS sampling assuming first-order lag.

DAS interval n + 1p =	Error	Error
0.01 s	(kg/m ³)	(1b/ft)
1	549	34.2
3	249	18.3
3	157	9.8
4	84	5.3
5	45	2.8
6	2.4	1.5
7	13	0.8
8	7	0.4
9	4	0.2
10	2	0.1
Average	118	7.4

0

4

Table D.3

2. The instrument response times are estimates. When these estimates are known from averages, the standard deviation is large, indicating wide variation from instrument-to-instrument. As a result, a particularly slow instrument of a given type might show errors a factor of 2 or more worse than the average would indicate.

3. The average uncertainty values noted in the tables are extremely sensitive to the averaging interval chosen. Average errors that appear

insignificant over a 500-ms averaging interval ay well become significant over a 150-ms interval. A careful analysis of Table D.3 is illustrative in this light.

4. Step functions were chosen that were thought to be either representative or worst-case possibilities on a test-by-test basis. It is possible, however, that steps more severe than those chosen may have occurred.

D.9 General Comments

1. All of the above error bands were derived assuming that the specified instrument was in nominal working condition and had been recently calibrated using normal THTF calibration techniques. The error bands will not apply to defective instruments.

2. The error bands stated apply only to those items covered in the above discussion. Although every attempt has been made for the examination to be exhaustive and for the results to be conservatively stated, there is always the possibility that excessive instrument noise or out-of-spec components will cause actual readings to be outside of the given error limits (stated as 2σ).

3. The error bands given herein represent the experimenter's best judgment of the applicable uncertainties. Two points should be noted, however. First, the estimation of transient contributions to the uncertainty involves a number of assumptions and judgments. These have been documented in Sect. D.8, and the steady-state and transient contributions to the uncertainty have been listed separately in the tables to facilitate the reader who wishes to use his own estimates of the transient contribution to uncertainty if he chooses. Second, most of the data available on specific sources of instrument errors were obtained in single-phase flow. Thus, the experimenters had to rely primarily on engineering judgment to combine and extrapolate this data to two-phase flow. In most cases there is no experimental, two-phase flow data that can be used to verify the resulting uncertainty estimates.

D.10 Steady-State and Transient Instrument Uncertainties

Table D.4 provides a cross reference for instrument application numbers (IAN) and type codes. The first column provides the type code as an integer between 1 and 113, the second column lists the form of the IAN, and the "Remarks" column provides additional information to properly correlate type code to IAN for all instruments.

Tables D.5-D.6 provide a summary listing of steady-state and transient error bands by test. Table D.5 has values stated in SI units. Table D.6 is the English unit version of Table D.5. Nominal step function refers to a step size that is characteristic of transient phenomena that occur during the period when data are analyzed.

The first column in each table gives a brief instrument description. The second column provides the instrument type code. (Use Table D.4 to

Table D.4. Type Code - Instrument Application Number Table

Type	Code	I.A.N	Remarks
			Special FRS Sheath Thermocouples [0.38 mm//0.015 inch]
	1	TE-3nna1	nn = 01, 14, 17, 21, 34, 37, 38, 50, 54, or 60
			a = A, E, or F
			1 = 1, 2, 3, 4, 5, 6, 7, 8; or E, F, or G
			Regular FRS Sheath Thermocouples [0.51 mm//0.020 inch]
	1	TE-3nna1	nn = 01-64 (except 19,22,36,46) and (excluding 01, 14, 17, 21, 34, 37, 38, 50, 54, 60 for tests 3.06.6B,
			5.08.0C, 5.07.9, 5.09.101-A and Mothball)
			1 = A, B, C, D, E, F, G, H, U, or Y
			Special FRS Middle Thermocouples [0.38 mm//0.015 inch]
	2	TE-3nnM1	nn = 01, 14, 17, 21, 34, 37, 38, 50, 54, or 60
			M = M
			1 = 1, 2, 3, 4, 5, 6, 7, 8; or E, F, or G
	2.2		Regular FRS Middle Thermocouples [0.51 mm//0.620 inch]
	2	TE-3nnM1	nn = 01-64 (except 19, 22, 36, 46) and (excluding 01,
			14, 17, 21, 34, 37, 38, 50, 54, 60 for tests
			3.06.6B, 3.08.6C, 3.07.9, 3.09.101-X and Mothball)
			I = A, B, C, D, E, F, or G
			Subchannel Thermocouples
	3	TE-12nn	nn = 01-81
			Shroud Wall Thermocouples
	4	TE-18na	n = 1, 2, 3, 4, 5, 6, or 7
			a = N, E, S, or W
	1		Miscellaneous and Process Thermocouples
	5	TE-XXX	xxx = 5B, 408B, 520B, 521, 901, 920, 921, 922, 923, 924, 925, 926, 927, or 936
			Loop and Process Thermosouples
	6	TE-TT	xx = 1 2 6 24 20 40 45 57 62 67 116 150
	0		151, 152, 153, 172, 208, 212, 222, 228, 256, 266,
			281, 282, 284
			Spacer Grid Thermocouples
	7	TE-29na	n = 1, 2, 3, 4, 5, or 6
			a = A, B, C, D, E, or F

3.

207

.5

Table D.4 (continued)

٠

.

.

Type Code	I.A.N	Remarks
		Array Rod Thermocouples
8	TE-18nal	n = 8 or 9
		a = A or B
		1 = A, B, C, D, E, F, or G
		O-ring Area Thermocouples
9	TE-361-aJ	a = A, B, or C
		1 = 1
		Shroud Box Thermocouples
10	TE-nab	n = 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9
		a = A or B
		b = E or S
		Strain Gage Pressure Cells [20700 kPa//3000 psi]
23 1	PE-xxx	xxx = 15, 16, 26, 27, 42, 43, 44, 58, 63, 68, 76, 88,
		106, 118, 156, 174, 201, 209, 224, 258, 268,
		276, 281, 282, 283, 286, 425, 427, 454, 474
24	PE-32	Force Balance Pressure Cell [both ranges]
2.5	PE-102	Strain Gage Pressure Cell [1380 kPa//200 psi]
		Strain Gage dP Cell [<u>+</u> 1380 kPa// <u>+</u> 200 psi]
26	PDE-xxx	xxx = 35, 46, 167, 217
		21 except for tests 3.09.10I-X and 3.10.10
		60 except for test 3.05.5B
27	PDE-78	Strain Gage dP Cell [<u>+</u> 6900 kPa//1000 psi]
		Strain Gage dP cell [+ 345 kPa//+ 50 psi]
28	PDE-xxx	xxx = 7, 53, 65, 111, 203
		21 only for tests 3.09.10I-X and 3.10.10
		60 only for test 3.05.5B
		200 except for 3.02.10C-H and Mothball
		251 except for 3.02.10C-H and 3.09.10I-X
		Strain Gage Pressure Cell [2400 kPa//350 psi]
29	PE-nnn	nnn = 526 or 616
		FRS Heater Rod Currents
31	EIE-13nn	nn = 01-64 (excluding 19, 22, 36, 46)
		Generator Currents
32	EIE-xx	xx = 9, 10, 11, 12

Table D.4 (continued)

Type Code	I.A.N	Remarks
		Generator Voltage
33	EEE-xx	x: = 9, 10, 11, 12
34	EWE-77A	Primary Pump Power
		Momentum Flux Flow (Drag Disk)
		[9 cm//3.5 inch spool piece]
35	FMFE-XXXX	xxx = 22, 38, 170, 220
		206 except for 3.09.101-X
		254, 264 only for 3.05.5B
36	SE-72	Primary Pump Speed
		Break Wire Detector
37	XE-430a	a = A or B
		Momentum Flux Flow (Dres Dick)
		[5 cm//2 inch spool piece]
40	FMFE-XXX	xxx = 14, 55, 61, 66, 114, 154, 155
		206 only for 3.09.10 I-X
		254, 264 except for 3.04.5B
		Strain Gage dP Cell [+ 25 kPa//+ 100 inches water]
41	PDE-200	only for tests 3.02.10C-H
		Strain Gage dP Cell [+ 125 kPa//+ 500 inches water]
42	PDE-204	only for test 3.05.5B
	PDE-261	except for 3.08.6C, 3.07.9, 3.09.10I-X, and Mothball
		Strain Gage dP Cell [+ 41 kPa//+ 6 nsi]
43	PDE-nnn	nnn = 199. 271
		204 except for 3.05.5B
		251 only for 2.02.10C-H
		261 only for 3.08.6C, 3.07.9, 3.09.10I-X, Mothball
		Experimental INEL Level Prone
50	LE-14nn	nn = 01 through 19
71	TE-28B	Linearized Resistance Thermometer Device
		Capacitive dP Cell
75	PDE-nnn	nnn = 180 through 188
		189 except on 3.09.10I-X and Mothball
		set at 0-6.2 kPa (0-30 inches) except for 3.05.5B
		set at 0-37.5 kPa (0-150 inches) only for 3.05.5B

Table D.4 (continued)

Type Code	I.A.N	Remarks
76	ZE-336 U	Inbundle Gamma Densitometer Position Indicator
	ZE-346L	except for 3.09.10I-X and Mothball
		Inbundle Gamma Densitometer Position Indicator
77	ZE-346L	only for 3.09.10I-X and Mothball
		Capacitance dP Cell [25 kPa//100 inches]
78	PDE-251	only for 3.09.10I-X
		Capacitance dP Cell [50 kPa//200 inches]
79	PDE-200	only for Mothball
		Capacitance dP Cell [7.5 kPa//30 inches]
80	PDE-189	only for 3.09.10I-X and Mothball
		Turbine Flowmeter-Heat Exchanger Sccondary Flow
95	FE-nnn	nnn = 522, 620, 720
96	FE-550	Turbine Flowmeter-Heat Exchanger Secondary Flow
97	PDE-48	Force Balance dP Cell [166 kPa//24 psi]
98	PDE-30	Force Balance dp Cell [345 kPa//50 psi]
99	TDE-28	Differential Temperature
105	PDE-761	Force Balance dP Cell
	LE-100	
		Single Beam Gamma Densitometer
106	DE-xxx	xxx = 20, 36, 168, 218
		Triple Beam Gamma Densitometer
		xxx = 204A, 204B, 204C,
		252A, 252B, 252C, 262A, 262B, 262C
		Orifice Place/Force Balance Flowmeter
107	FE-xxx	$xxx = 1A [0-5.0E-2 m^3/s \text{ or } 0-800 \text{ gpm}]$
		238 [0-1.0E-4 m ³ /s or 0-1.6 gpm] only 3.09.10I-X
		Orifice Place/Capacitance Flowmeter
		$xxx = 282 [0-2.5E-3 m^3/s \text{ or } 0-39.3 \text{ gpm}]$
		283 [0-3.3E-4 m ³ /s or 0-5.2 gpm]
		927 [0-1.4E-4 m ³ /s or 0-2.1 gpm]
Table D.4 (continued)

Type Code	I.A.N	Remarks
		Orifice Plate/Force Balance Flowmeter
108	FE-18A	[4.4E-2 m ³ /s or 700 gpm] except for 3.01.10C-H,
		3.09.10I-X and Mothball
	FE-18A	[1.7E-4 m ³ /s or 2.7 gpm] only for 3.01.10C-H,
		3.09.10I-X and Mothball
	FE-238	except for 3.09.10I-X
		Instrument Spool Piece Turbine Flowmeter
109	FE-xxx	$[3E-4 m^3/s \text{ or } 5 gpm] xxx = 250, 260 only for tests$
		3.01.10C-H, 3.09.10I-X, and Mothball
		[6E-4 m ³ /s or 10 gpm] xxx = 232, 280
		[1.4E-2 m ³ /s or 225 gpm] xxx = 3, 51, 59, 64, 110,
		$[1.4E-2 m^3/s \text{ or } 225 gpm] xxx = 250, 260 except for$
		3.01.10C-H, 3.05.5B, 3.09.10I-X, and Mothball
		$[1.4E-2 \text{ m}^3/\text{s or } 225 \text{ gpm}] \text{ xxx} = 202 \text{ only for tests}$
		3.01.10С-Н, 3.09.10І-Х
		[6E-2 m ³ /s or 1000 gpm] xxx = 19,34,166,216,440,460
		[6E-2 m ³ /s or 1000 gpm] xxx = 250, 260 for 3.05.5B
		[6E-2 m ³ /s or 1000 gpm] xxx = 202 except for tests
		3.01.10C-H, 3.09.10I-X
		Resistance Thermometer Device
110	TE-xxx	xxx = 4B, 101, 210A, 525, 557, 615, 627, 727
		Inbundle Gamma Densitometer
111	DE-xxx	xxx = 336U, 346L
		Orifice Plate/Force Balance Flowmeter
112	FE-238	same as type code 107 FE-238
113	LE-760	Force Balance dP Cell

.

.

.

.

Instrument Description	Type Code	Instrument Range	Steady State Error	Transient Error	Estimated Response Time	Assumed Value of Step Fn.
Rod Sheath		273 K	3.7K < 623 K			
Thermocouple 0.38 mm OD	1	1309 K	10.3 K	0.8 K ^a	7 m.s	300 K
Rod Sheath		273 K	3.7K < 623 K			
Thermocouple 0.51 mm OD	1	1309 K	10.3 K	3.8 K ^a	12 ms	300 K
Rod Middle		273 K	3.7K < 623 K			
Thermocouple 0.38 mm OD	2	1309 K	10.3 K	0.8 K ^a	7 ms	300 K
Rod Middle		273 K	3.7K < 623 K			
Thermocouple 0.51 mm OD	2	1309 K	10.3 K	3.8 K ^a	12 ms	300 K
Bundle Subenn		273 K	3.7K < 623 K			
Thermocouple 1.02 mm OD	3	1309 K	10.3 K	1.5 K	140 ms	5 K
Shroud Box		273 K	3.7K < 623 K			
Thermocouple 1.57 mm OD	4	1309 K	10.3 K	2.7 K	350 ms	5 K
System		273 K	3.7K < 623 K			
Thermocouple 3.2 mm OD	5	1309 K	10.3 K	3.8 K	870 ms	5 K
System (Nanmac)		273 K	3.7K < 623 K			
Thermocouple 6.4 mm OD	b	1309 K	10.3 K	0.1 K	18 ms	5 K

3.7K < 623 K

10.3 K

3.7K < 623 K

10.3 K

1.4 K

1.4 K

140 ms

140 ms

273 K

1309 K

273 K

1309 K

7

8

Spacer Grid

Thermocouple

Array Rod Thermocouple

1.02 mm OD

1.02 mm OD

and the second second		and the second se	the line line into the line is	
Table D	E 7		2 0 6 6 0	
18016 12		LOSE .	3,03,30	
A 36 10 10 10 10			v . v	

THTF Instrument Error Bands

of

5 K

5 K

.

Table D.5 (continued)

	THTF Instrument Error Bands					
Instrument Description	Type Code	Instrument Range	Steady State Error	Transient Error	Estimated Response Time	Assumed Value of Step Fn.
Rod Sheath Thermocouple 0.51 mm OD	9	273 K 1309 K	3.7K < 623 K 10.3 K	3.8 K ²	12 ms	300 K
Shroud Box Thermocouple 1.57 mm OD	10	273 E 1309 K	3.7K < 623 K 10.3 K	2.7 K	350 ms	5 K
Strain Gage Pressure Cell	23	20700 kPa	200 kPa	N.S. ^j	0.16 ms	550 kPa
Force Balance Pressure Cell	24	3400 kPa 17000 kPa	100 kPa	430 kPa	300 ms	550 kPa
Force Balance Pressure Cell	24	3400 kPa 27000 kPa	160 kPa	430 kPa	300 ms	550 kPa
Strain Gage Pressure Cell	25	1380 kPa	17 kPa	N.S.	0.32 ms	550 kPa
Strain Gage D.P. Cell	26	<u>+</u> 1380 kPa	43 kPa	N.S.	0.32 ms	550 kPa
Strain Gage D.P. Cell	27	<u>+6900 kPa</u>	210 kPa	N.S.	0.32 ms	35 kPa
Strain Gage ^g D.P. Cell	28	<u>+</u> 345 kPa	11 kPa	N.S.	0.32 ms	35 kPa
Strain Gage Pressure Cell	29	2400 kPa	24 kPa	N.S.	0.16 ms	550 kPa
Rod H eater Current	31	800 amp	0.85% Rdg	24 amp	50 ms	75 amp
Generator Current	32	1000 amp	0.85% Rdg	95 imp	50 ms	300 amp
Generator Voltage	33	300 volt	0.76% Rdg	32 volt	50 ms	100 volt

Table D.5 (continued)

		THTF Instrument Error Bands					
Instrument Description	Type Code	Instrument Range	Steady State Error	Transient Error	Estimated Response Time	Assumed Value of Step Fn.	
Primary Pump Power	34	750 kW	greater of 0.5 kW or 0.3% Rdg	6.3 kW	150 ms	10 kW	
Strain Gage Drag Disk	35	<u>+0.1E5 kg/ms³</u> <u>+1.0E5 kg/ms²</u>	56% Rdg 19% Rdg	790 kg/ms ^a	16 ms	7500 kg/ms	
Primary Pump Speed	36	100 rpm 5400 rpm	20 rpm	13 rpm	150 ms	20 rpm	
Breakwire Detector	37	5 volt	30 ms	N.A.	20 ms	N.A.	
Strain Gage Drag Disk	40	<u>+0.2E5 kg/ms²</u> <u>+2.1E5 kg/ms²</u>	56% Rdg 19% Pág	790 kg/ms ²	16 ms	7500 kg/ms ³	
Strain Gage D.P. Cell	41	±25 kPa	0.8 kPa	N.S.	0.32 ms	35 kPa	
Strain Gage D.P. Cell	42	<u>+125 kPa</u>	4 kPa	N.S.	0.32 ms	35 kPa	
Strain Gage D.P. Cell	43	<u>+</u> 41 kPa	2 kPa	N.S.	0.32 ms	35 kPa	
Level ⁱ Indicator	50	±10 volts				•••	
RTD	71	273 K 700 F	1.1 K 2.7 K	9.9 K	10 sec	10 K	
Capacitive D.P. Cell	75	6.2 kPa	0.1 kPa	0.71 kPa	131 ms	1.2 kPa	
Capacitive D.P. Cell	75	37.5 kPa	0.4 kPa	0.51 kPa	74 ms	1.2 kPa	
Position Indicator	76	3.92 m	0.5% Rdg	N.A.	N.A.	N. A.	
Position	77	3.33 m	0.5% Rdg	N.A.	N.A.	N.A.	

Table D.5 (continued)

		THTF	Instrument Erro	or Bands		
Instrument Description	Type Code	Instrument Range	Steady State Error	Transient Error	Estimated Response Time	Assumed Value of Step Fn.
Capacitive D.P. Cell	78	25 kPa	1.3 kPa	13.6 kPa	110 ms	25 kPa
Capacitive D.P. Cell	79	50 kPa	0.5 kPa	14.1 kPa	68 ms	35 kPa
Capacitive D.P. Cell	80	7.5 kPa	0.1 kPa	0.07 kPa	125 ms	1.2 kPa
Turbine ^f Flowmeter	95	0.9E-3 m ³ /s 9.5E-3 m ³ /s	4.1% Rdg	1.3E-4 m³/s	11 ms 1.2 ms	6.3E-3 m ³ /s
Turbine ^f Flowmeter	96	0.3E-3 m ³ /s 3.2E-3 m ³ /s	4.1% Rdg	1.3E-4 m ³ /s	8 ms 1 ms	6.3E-3 m ⁸ /s
Force Balance D.P. Cell	97	166 kPa	1 kPa	28 kPa	300 ms	35 kPa
Capacitive D.P. Cell	98	345 kPa	18 kPa	8.7 kPa	38 ms	35 kPa
Differential Temperature	99	228 K 283 K	3.8 K	9.9 K	10 sec	10 K
Liquid Level	105	3,81 m	0.023 m	0.16 m	300 ms	0.2 m
Liquid Level	105	1408 m	8.5 m	0.16 m	300 ms	0.2 m
Gamma Densitometer	106	1000 kg/m ³	104 kg/m ³	25 kg/m ³	16 ms	240 kg/m ³
Orifice ^C Flowmeter	107	1.0E-4 m ³ /s	2.5E-5 m ³ /s	7.9E-6 m ³ /s	300 ms	1E-5 m³/s
Orifice ^C Flowmeter	107	1.35E-4 m ³ /s	3.4E-6 m ³ /s	1.1E-5 m³/s	300 ms	1.4E-5 m ³ /s
Orifice ⁰	107	3.32E-4 m ³ /s	8.3E-6 m ³ /s	2.6E-5 m³/s	300 ms	3.3E-5 m³/s

	Table	D.5	(continued)	
--	-------	-----	-------------	--

THIF Instrument Error Bands						
Instrument Description	Type Code	Instrument Range	Steady State Error	Transient Error	Estimated Response Time	Assumed Value of Step Fn.
Orifice ^C Flowmeter	107	2.48E-3 m ³ /s	6.2E-5 m ³ /s	2.0E-4 m ³ /s	300 ms	2.5E-4 m³/s
Orifice ^C Flowmeter	107	5.0E-2 m ³ /s	1.3E-3 m³/s	3.9E-3 m ³ /s	300 ms	5 <i>E</i> -3 m³/s
Orifice ^d Flowmeter	108	1.7E-4 m ² /s	4.2E-6 m ³ /s	1.3E-5 m ³ /s	300 ms	1.7E-5 m³/s
Orifice ^e Flowmeter	108	4.4E-2 m ³ /s	1.1E-3 m ³ /s	3.5E-5 m ³ /s	300 ms	4.4E-3 m ³ /s
Turbine ^{f,h} Flowmeter	109	$\pm 0.3E-4 m^3/s$ $\pm 3.0E-4 m^3/s$	4.1% Rdg	3.1E-6 m ³ /s	8 ms 1 ms	1.5E-4 m ³ /s
Turbine ^{f,h,b} Flowmeter	109	$\pm 0.6E-4 m^3/s$ $\pm 6.1E-4 m^3/s$	2.5% Rdg	N. A.	8 ms 1 ms	N. A.
Turbine ^f ,h,l Flowmeter	109	<u>+1.3E-3</u> m ³ /s <u>+1.4E-2</u> m ³ /s	4.1% Rdg	1.3E-4 m ³ /s	13 ms 2 ms	5.3E-3 m ³ /s
Turbine ^f ,h,l Flowmeter	109	$\frac{\pm 0.6 E-2 m^3/s}{\pm 6.1 E-2 m^3/s}$	4.1% Rdg	1.3E-4 m ³ /s	18 ms 2 ms	6.3E-3 m ³ /s
RTD	110	273 K 700 K	1.1 K 2.7 K	9.9 K	10 sec	10 K
Inbundle Gamma Densitometer	111	1000 kg/m³	104 kg/m ³	25 kg/m ³	16 ms	240 kg/m ³
Orifice ^C Flowmeter	112	1.0E-4 m ³ /s	2.5E-6 m ³ /s	7.9E-6 m ³ /s	300 ms	1E-5 m³/s
Liquid	113	1.18 m	0.007 m	0.16 m	300 ms	0.20 m

Table D.5 (continued)

Documentation of Steady-State and Transient Error Bands

Steady-State Error Bands: Two-standard deviations compared to in-situ standard or twice the root-sum-square of uncertainties, whichever is applicable.

Transient Error Bands: Assuming first-order lag function, response times (TAU), and step function (Vf - Vo) indicated—the average error seen by the DAS assuming the step function occurred midway between DAS samples. The averaging interval is 500 ms for thermocouples and 150 ms for all other instruments.

Total Error: The total error due to steady state error and transient error is the sum of the steady state and transient error bands.

Footnotes:

- a. Error bands apply to the environment as sensed at the surface of the thermocouple sheath. Larger errors may occur when data is modelled to provide temperatures at other points. Transient response is estimated by using the response time (25 ms or less) prior to swaging the sheath (0.71 mm swaged to 0.51 mm OD), then scaling using the rule: response time is inversely proportional to the outside diameter squared (OD**2 scaling). An additional 7% improvement in response time was allowed for packing of the boron nitride during swaging. The smaller thermocouples (0.51 mm swaged to 0.38 mm OD) were estimated from the values of the larger thermocouples by first scaling the 25 ms response time to the unswaged 0.51 mm diameter using OD**2 scaling, then applying OD**2 scaling and the 7% improvement for packing to the swaged 0.38 mm OD.
- b. This instrument is fitted with Flow Technology electronics that time 10-blade passings. Averaging improves the steady-state error bands but degrades transient response.
- c. Range applies specifically to instruments calibrated in subcooled liquid at a density of 1000 kg/m**3.
- d. Range applies specifically to instruments calibrated in subcooled liquid at a density of 860 kg/m**3.
- e. Range applies specifically to instruments calibrated in subcooled liquid at a density of 750 kg/m**3.
- f. Error bands apply specifically to instruments calibrated in subcooled liquid. Extended range electronics provide readings out to 0.227 m³/s for the 8.89E-2 meter diameter models; 0.028 m³/s for the 5.08E-2 meter diameter models, but the error bands apply only to 150% of nominal maximum range.
- g. Strain gage D.P. Cells used as pit cells are connected to different segments of the test section by long lines. These long lines induce resonant oscillations in the instrument that increase the steady-state errors bands to 35 kPa, and the transient error bands to 400 kPa.
- h. The turbine flowmeters (type code 109) have a flow range such that: -3.0E-4<Flow<-0.3E-4 .OR. 0.3E-4<Flow<3.0E-4, -6.1E-4<Flow<-0.6E-4 .OR. 0.6E-4<Flow<6.1E-4, -1.4E-3<Flow<-0.1E-3 .OR. 0.1E-3<Flow<1.4E-3, -6.1E-2<Flow<-0.6E-2 .OR. 0.6E-2<Flow<6.1E-2,</p>
- i. The INEL level probe is an experimental device, and as such, does not have well documented error bands.
- j. No significant error over a 500 ms aversging interval.
- k. N.A. implies not applicable.
- I. Flow Technology supplies calibration constants over the ranges 6.3E-4 to 1.9E-2 m³/s and 5.0E-3 to 6.3E-2 m³/s respectively. The uncertainty bands for these instruments should approach the quoted values for these ranges, but special care may be required. See the section on turbine flowmeters in the critical instruments section.

Table D.5 (continued)

	Basis for Steady-State and Trans	sient Error Bands by Type Code
Type Code	Steady State	Transient
1	Critical instrument	Manufacturer's spec. OD**2 scaling
2	Critical instrument	Manufacturer's spec. OD**2 scaling
3	Critical instrument	Work of Carroll and Sheppard
4	Critical instrument	Work of Carroll and Sheppard
5	Critical instrument	Work of Carroll and Shepperd
6	Critical instrument	Manufacturer's spec
7	Critical instrument	Work of Carroll and Sheppard
8	Critical instrument	Work of Carroll and Sheppard
9	Critical instrument	Manufacturer's spec. OD**2 scaling
10	Critical instrument	Work of Carroll and Sheppard
23	Critical instrument	Table B.2
24	Manufacturer's spec	Table B.2
25	Bench Cal. + DAS	Table B.2 (inferred)
26	Critical instrument	Table B.2
27	Critical instrument	Table B.2
28	Critical instrument	Table B.2
29	Critical instrument	Table B.2 (inferred)
31	Critical instrument	Table B.2 (inferred)
32	Inferred (type code 31)	Table B.2 (inferred)
33	Critical instrument	Table B.2 (inferred)
34	Manufacturer's spec	Manufacturer's spec
35	Critical instrument	Table B.2
36	Bench Cal. + DAS	Inferred (type code 34)
37	From test 3.03.6AR	From test 3.03.6AR
40	Critical instrument	Table B.2
43	Critical instrument	Table B.2 (inferred)
50	**************	***************
71	Beuch Cal, & specs	Table B.2
75	Critical instrument	Manufacturer's spec
76	Engineering judgement	N.A.
77	Engineering judgement	N.A.
78	Critical instrument	Inferred (type code 75)
79	Inferred (type code 75)	Inferred (type code 75)
80	Inferred (type code 75)	Inferred (type code 75)
95	Inferred (type code 109)	Work of N. Chen
96	Inferred (type code 109)	Nork of N. Chen
97	Critical instrument	Table B.2
98	Critical instrument	Inferred (typed code 75)
99	Inferred (type code 71)	Inferred (type code 71)
05	Manufacturer's spec	Table B.2 (inferred)
06	Critical instrument	Work of R. Shipp (menufacturer's spec)
07	In-situ calibration	Table B.2 (inferred)
08	Inferred (type code 107)	Table B.2 (inferred)
09	Critical instrument	Work of N. Chen
10	Bench Cal. & specs	Table B.2
11	Inferred (type code 106)	Inferred (type code 109)
12	Inforred (type code 107)	Table B.2 (inferred)
13	Manufacturer's spec	Table B.2 (inferred)

Table D.6. Test 3.05.5B

			THIF	Instrument Error	Bands			
Instrument Description	Type Code	Instrum Range	nent 9	Steady State Error	Transient Error	Estimat Respons Time	ed Assu e Valu Step	med ie of Fn.
Rod Sheath		32	F	6.7F < 662 F	a			
Thermocouple 0.015 inch OD	1	1900	F	18.5 F	1.4 F ⁴	7 ms	540	F
Rod Sheath		32	F	6.7F < 662 F				
Thermocouple 0.020 inch OD	1	1900	F	18.5 F	6.8 F ^a	12 ms	540	F
Rod Middle		32	F	6.7F < 662 F				
Thermocouple 0.015 inch OD	2	1900	F	18.5 F	1.4 F ⁴	7 ms	540	F
Rod Middle		32	F	6.7F < 662 F				
Thermocouple 0.020 inch OD	2	1900	F	18.5 F	6.8 F ^a	12 ms	540	F
Bandle Subchn		32	F	6.7F < 662 F				
Thermocouple 0.040 inch OD	3	1900	F	18.5 F	2.7 F	140 ms	9	F
Skroud Box		32	F	6.7F < 662 F				
Thermocouple 0.062 inch OD	4	1900	F	18.5 F	4.9 F	350 ms	9	F
ystem		32	F	6.7F < 662 F				
Thermocouple 0.125 inch OD	5	1900	F	18.5 F	6.8 F	870 ms	9	F
System (Nanmac)		32	F	6.7F < 662 I				
hermocouple .25 inch OD	6	1900	F	18.5 F	0.2 F	18 ms	9	F
pacer Grid		32	F	6.7F < 662 F				
hermocouple .040 inch OD	7	1900	F	18.5 F	2.5 F	140 ms	9	F
array Rod		32	F	6.7F < 662 F				
hermoccuple 0.040 inch OD	8	1900	F	18.5 F	2.5 F	140 ms	9	F

lable D.6 (continued)	ed)
-----------------------	-----

	THTF Instrument Error Bands									
Instrument Description.	Type Code	Instrument Range	Steady State Error	Transient Error	Estimated Response Time	Assumed Value of Step Fn.				
Rod Sheath Thermocouple 0.020 inch OD	9	32 F 1900 F	6.7F < 662 F 18.5 F	6.8 F ^a	12 ms	540 F				
Shroud Box Thermocouple 0.062 inch OD	10	32 F 1900 F	6.7F < 662 F 18.5 F	4.9 F	350 ms	9 F				
Strain Gage Pressure Cell	23	3000 psi	29 psi	N. S. ^j	0.16 ms	80 psi				
Force Balance Pressure Cell	2.4	500 psi 2500 psi	15 psi	62 psi	300 ms	80 psi				
Force Balance Pressure Cell	24	500 psi 3900 psi	23 psi	62 psi	300 ms	80 psi				
Strain Gage Pressure Cell	25	200 psi	2.5 psi	N. S.	0.32 ms	30 psi				
Strain Gage D.P. Cell	26	+200 psi	6.2 psi	N.S.	0.32 ms	80 psi				
Strain Gage D.P. Cell	27	+1000 psi	30 psi	N.S.	0.32 ms	5 psi				
Strain Gage ^g D.P. Cell	2.8	+50 psi	1.6 psi	N.S.	0.32 ms	5 psi				
Strain Gage Pressure Cell	29	350 psi	3.5 psi	N.S.	0.16 ms	80 psi				
Rod Heater Current	31	800 amp	0.85% Rdg	24 amp	50 ms	75 amp				
Jenerator Carrent	32	1000 amp	0.85% Rdg	95 amp	50 ms	300 amp				
Generator	33	300 volt	0.76% Rdg	32 volt	50 ms	160 volt				

Table D.6 (continued)

		THTF I	nstrument Error	Bands		
Instrument Description	Type Code	Instrument Range	Steady State Error	Transient Error	Estimated Response Time	Assumed Value of Step Fn.
Primary Pump Power	34	750 kW	greater of 0.5 kW or 0.3% Rdg	6.3 kW	150 ms	10 kW
Strain Gage Drag Disk	35	+0.7E4 1b/fts ² +7.0E4 1b/fts ²	56% Rdg 19% Rdg	530 lb/fts ³	16 ms	5000 lb/fts ²
Primary Pump Speed	36	100 rpm 5400 rpm	20 rpm	13 rpm	150 ms	20 rpm
Breakwire Detector	37	5 volt	30 m.s	N.A.	20 ms	N.A.
Strain Gage Drag Disk	40	+1.4E4 lb/fts ² +1.4E5 lb/fts ³	56% Rdg 19% Rdg	530 lb/fts ³	16 ms	5000 1b/fts ³
Strain Gage D.P. Cell	41	+100 incb	3.2 inch	N.S.	0.32 ms	141 inch
Strain Gage D.P. Cell	42	+500 inch	16 inch	N.S.	0.32 ms	141 inch
Strain Gage D.P. Cell	43	+6 psi	0.3 psi	N.S.	0.32 ms	5 psi
Level ^í Indicator	50	+10 volt		•••		
RTD	71	32 F 800 F	2.0 F 4.9 F	17.8 F	10 sec	18 F
Capacitive D.P. Cell	75	25 inch	0.4 inch	2.9 inch	131 ms	4.8 inch
Capacitive D.P. Cell	75	150 inch	1.6 inch	2.0 inch	74 ms	4.8 inch
Position Indicator	76	155 inch	0.5% Rdg	N.A.	N. A.	N. A.
Position	77	131 inch	0.5% Rdg	N.A.	N. A.	N. A.

THTF Instrument Error Bands						
Instrument Description	Type Code	Instrument Range	Steady State Error	Transient Error	Estimated Response Time	Assumed Value of Step Fn.
Capacitive D.P. Cell	78	+100 inch	5.2 inch	55 inch	110 ms	100 inch
Capacitive D.P. Cell	79	200 inch	2.0 inch	57 inch	68 ms	140 inch
Capacitive D.P. Cell	80	30 inch	0.4 inch	0.3 inch	125 ms	4.8 inch
Turbine ^f Flowmeter	95	15 gpm 150 gpm	4.1% Rdg	2.0 gpm	11 ms 1.2 ms	100 gpm
Turbine ^f Flowmeter	96	5 gpm 50 gpm	4.1% Rdg	2.0 gpm	8 ms 1 ms	100 gpm
Force Balance D.P. Cell	97	24 psi	0.15 psi	4 psi	300 ms	5 psi
Capacitive D.P. Cell	98	50 psi	2.6 psi	1.3 psi	38 ms	5 psi
Differential Temperature	99	+50 F	6.8 F	17.8 F	10 sec	18 F
Liquid Level	105	150 inch	0.9 inch	6.2 inch	300 ms	7.9 inch
Liquid Level	105	5.5E4 inch	336 inch	6.2 inch	300 ms	7.9 inch
Samma Densitometer	106	62.4 1b/ft*	6.5 1b/ft*	1.6 1b/ft*	16 ms	15 1b/ft*
Drifice ^C Nowmeter	107	1.6 gpm	4E-2 gpm	0.13 gpm	300 ms	0.16 gpm
Drifice ^C Flowmeter	107	2.1 gpm	0.054 gpm	0.17 gpm	300 ms	0.22 gpm
Drifice ^C	107	5.3 gpm	0.13 gpm	0.41 gpm	300 ms	0.52 gpm

781- 2- 8	Carlos 1	N. 16	and the second	100 B		1. 1.
1801	-e 1	0.0	100	1111	nue	a (k - 1

THTF Instrument Error Bands						
Instrument Description	Type Code	Instrument Range	Steady State Error	Transient Error	Estimated Response Time	Assumed Value of Step Fn.
Orifice ^C Flowmeter	107	39.3 gpm	9.8 gpm	3.2 gpm	300 ms	4.0 gpm
Orifice ^C Flowmeter	107	800 gpm	21 gpm	62 gpm	300 ms	80 gpm
Orifice ^d Flowmeter	108	2.7 gpm	0.067 gpm	0.21 gpm	300 ms	0.27 gpm
Orifice [®] Flowmeter	108	700 gpm	17.4 gpm	0.55 gpm	300 ms	70 gpm
Turbine ^f ,h Flowmeter	109	+0.5 gpm +5.0 gpm	4.1% Rdg	0.05 gpm	8 m.s 1 m.s	2.4 gpm
Turbine ^f ,h,b Flowmeter	109	+1.0 gpm +10 gpm	2.5% Rdg	N.A.	8 ms 1 ms	N.A.
Tarbine ^f ,h,l Flowmeter	109	+22 gpm +225 gpm	4.1% Rdg	2.1 gpm	13 ms 2 ms	100 gpm
Turbine ^f ,h,l Flowmeter	109	+100 gpm +1000 gpm	4.1% Rdg	2.1 gpm	18 ms 2 ms	100 gpm
RTD	110	32 F 800 F	2.0 F 4.9 F	17.8 F	10 sec	18 F
In-bundle Gamma Densitometer	111	62.4 lb/ft*	6.5 lb/ft*	1.6 1b/ft*	16 ms	15 lb/ft ⁴
Orifice [°] Flowmeter	112	1.6 gpm	0.04 gpm	0.13 gpm	300 ms	0.16 gpm
Liquid	113	46 inch	0.3 inch	6.2 inch	300 ms	7.9 inch

Table D.6 (continued)

Documentation of Steady-State and Transient Error Bands

Steady-State Error Bands: Two-standard deviations compared to in-situ standard or twice the root-sum-square of uncertainties, whichever is applicable.

Transient Error Eands: Assuming first-order lag function, response times (TAU), and step function (Vf - Vo) indicated-- the average error seen by the DAS assuming the step function occurred midway between DAS samples. The averaging interval is 500 ms for thermocouples and 150 ms for all other instruments.

Total Error: The total error due to steady state error and transient error is the sum of the steady state and transient error bands.

Footnotes:

- a. Error bands apply to the environment as sensed at the surface of the thermocouple sheath. Larger errors may occur when data is modelled to provide te- cratures at other points. Transient response is estimated by using the response time .25 ms or less) prior to swaging the sheath (0.028 inch swaged to 0.020 inch OD), then scaling using the rule: response time is inversely proportional to the outside diameter squared (OD**2 scaling). An additional 7% improvement in response time was allowed for packing of the boron nitride during swaging. The smaller thermocouples (0.020 inch swaged to 0.015 inch) were estimated from the values of the larger thermocouples by first scaling the 25 ms response time to the unswaged 0.0.0 inch diameter using OD**2 scaling, then applying OD**2 scaling and the 7% improvement for packing to the swaged 0.015 inch OD.
- b. This in trument is fitted with Flow Technology electronics that time 10-blade passings. Averagin, improves the steady-state error bands but degrades transient response.
- c. Range applies specifically to instruments calibrated in subcooled liquid at a density of 62.4 1b/ft**3.
- d. Range applies specifically to instruments calibrated in subcooled liquid at a density of 53.7 1b/ft**3.
- Range applies specifically to instruments calibrated in subcooled liquid at a density of e . 46.8 lb/ft**3.
- f. Error bands apply specifically to instruments calibrated in subcooled liquid. Extended range electronics provide readings out to 3600 gpm for the 3.5 inch diameter models; 445 spm for the two inch diameter models, but the error bands apply only to 150% of nominal maximum range.
- g. Strain gage D.P. Cells used as pit cells are connected to different segments of the test section by long lines. These long lines induce resonant oscillations in the instrument that increase the steady-state errors bands to 5 psi, and the transient error bands to 60 psi in the interval immediately following blowdown.
- h. The turbine flowmeters (type code 109) have a flow range such that:
 - -5.0<Flow<-0.5 .OR. 0.5<Flow<5.0,
 - -10.0<Flow<-1.0 .OR. 1.0<Flow<10.0,

 - -225 (Flow (-22 .OR. 22 (Flow (225, -1000 (Flow (-100 .OR. 100 (Flow (1000.

- i. The INEL level probe is an experimental device, and as such, does not have well documented error bands.
- No significant error over the averaging interval.
- k. N.A. implies not applicable.
- 2. Flow Technology supplies calibration constants over the ranges 10 to 300 gpm and 80 to 1000 gpm respectively. The uncertainty bands for these instruments should approach the quoted values for these ranges, but special care may be required. See the section on turbine flowmaters in the critical instruments section.

Table D.6 (continued)

Basis for Steady-State and Transient Error Bands by Type Code				
Type Code	Steady State	Transient		
1	Critical instrument	Manufacturer's spec. OD**2 scaling		
2	Critical instrument	Manufacturer's spec. OD**2 scaling		
3	Critical instrument	Work of Carroll and Sheppard		
4	Critical instrument	Work of Carroll and Shenpard		
5	Critical instrument	Work of Carroll and Sheppard		
6	Critical instrument	Manufacturer's spec		
7	Critical instrument	Work of Carroll and Sheppard		
8	Critical instrument	Work of Carroll and Sheppard		
9	Critical instrument	Manufacturer's spec, OD*#2 scaling		
10	Critical instrument	Work of Carroll and Sheppard		
23	Critical instrument	Table B.2		
24	Manufacturer's spec	Table B.2		
25	Bench Cal. + DAS	Table B.2 (inferred)		
26	Critical instrument	Table B.2		
27	Critical instrument	Table B.2		
28	Critical instrument	Table B.2		
29	Critical instrument	Table B.2 (inferred)		
31	Critical instrument	Table B.2 (inferred)		
32	Inferred (type code 31)	Table B.2 (infe. red)		
33	Critical instrument	Table B.2 (inferred)		
34	Manufacturer's spec	Manufacturer's spec		
35	Critical instrument	Table B.2		
36	Bench Cal. + DAS	Inferred (type code 54)		
37	From test 3.03.6AR	From test 3.03.6AR		
40	Critical instrument	Table B.2		
43	Critical instrument	Tablu B.2 (inferred)		
50	*************	***************		
71	Bench Cal. & specs	Table B.2		
75	Critical instrument	Manufacturer's spec		
76	Engineering judgement	N. A.		
77	Engineering judgement	N. A.		
78	Critical instrument	Inferred (type code 75)		
79	Inferred (type code 75)	Inferred (type code 75)		
80	Inferred (type code 75)	Inferred (type code 75)		
95	Inferred (type code 109)	Work of N. Chen		
96	Inferred (type code 109)	Work of N. Chen		
97	Critical instrument	Table B.2		
98	Critical instrument	Inferred (typed code 75)		
99	Inferred (type code 71)	Inferred (type code 71)		
105	Manufacturer's spec	Table B.2 (inferred)		
106	Critical instrument	Work of R. Shipp (manufacturer's spec)		
107	In-situ calibration	Table B.2 (inferred)		
108	Inferred (type code 107)	Table B.2 (inferred)		
109	Critical instrument	Work of N. Chen		
110	Bench Cal. & specs	Table B.2		
111	Inferred (type code 106)	Inferred (type code 109)		
112	Inferred (type code 107)	Table B.2 (inferred)		
113	Manufacturer's spec	Table B.2 (inferred)		

cross reference to IANs.) The third column provides the nominal instrument range. The fourth and fifth columns give the steady-state and transient error bands, respectively. The sixth and seventh columns provide the estimated response time and step function values used to estimate the transient uncertainty value.

The English version tables are intended for reference only. Exact correspondence of entries will be limited by significant figure rounding.

The values quoted for both steady-state and transient errors are estimates based on several assumptions. It is the responsibility of the data user to ascertain the appropriateness of these assumptions when using the included error bands for THTF data analysis.

References

- 1. K. A. Brownlee, Statistical Theory and Methodology in Science and Engineering, p. 80 John Wiley and Sons, Inc., New York, 1965.
- J. B. Scarborough, Numerical Mathematical Analysis, 3rd Ed., p. 429, The John Hopkins Press, Baltimore, 1955.
- 3. K. A. Brownlee, Statistical Theory and Methodology in Science and Engineering, p. 340, John Wiley and Sons, Inc., New York, 1965.
- Unpublished report, Summary Two and Three Dimensional Analysis of Turbine Flowmeter Response in Two-Phase Flow, MPR Associates, Inc. (October 11, 1977).
- 5. Internal memo from R. L. Anderson, I&C Division ORNL, to B. J. Veazie, Error in BDHT Thermocouple, June 18, 1980.

Appendix E

DENSITY OBTAINED FROM THREE-BEAM DENSITOMETER

An annular model¹ is used for obtaining composite density from the three-beam gamma densitometers installed on selected THTF spool pieces. The model solves for a uniform density for each region shown in Fig. B.24 using the density indicated by each of the three beams and the length of each beam within each region. The composite pipe density is then calculated as an area-weighted average of the three region densities. This results in an equation for the composite density of:

$$\overline{p} = 0.3784 p_1 + 0.5117 p_2 + 0.1099 p_2$$

where $\overline{\rho}$ is the composite average pipe density and ρ_A , ρ_B , and ρ_C , are the measured beam densities respectively. The calculated composite density is shown graphically in Figs. E.1 and E.2, for the external downcomer upper spool piece and bundle outlet spool piece composite densities, respectively.

An uncertainty estimate for homogeneous flows may be obtained using a standard propagation-of-errors method and the uncertainty estimates for

Fig. E.1. Test 3.05.5B double-ended cold-leg break simulation.

Fig. E.2. Test 3.05.5B double-ended cold-leg break simulation.

the individual beams. The standard deviation may be estimated as

 $\sigma = [(0.3784\sigma_{\rm A})^2 + (0.5117\sigma_{\rm B})^2 + (0.1099\sigma_{\rm C})^2]^{\circ.5}.$

Substituting the reported 2σ single-beam values of 104 kg/m³ (6.5 lb/ft³) into the above equation gives a 2σ value of 67 kg/m³ (4.2 lb^m_m/ft³) for the composite three-beam densitometer measurements.

Reference

 K. G. Turnage et al., Advanced Two-Phase Instrumentation Program Quarterly Progress Report for April-June 1978, ORNL/NUREG/TM-279 (January 1979).

NUREG/CR-2525, Vol. 6 ORNL/NUREG/TM-407/V6 Dist. Category R2 1

Internal Distribution

1-2.	w.	G.	Craddick	29.	T. W. Robinson, Jr.
3-7 .	D.	Κ.	Felde	30.	K. N. Schwinkendorf
8.	s.	s.	Gould	31.	A. G. Sutton
9.	Н.	W.	Hoffman	32.	H. E. Trammell
10.	A.	L.	Lotts	33.	ORNL Patent Office
11-15.	D.	G.	Morris	34.	Central Research Library
16-20.	c.	в.	Mullins	35.	Document Reference Section
21-23.	L.	Ј.	Ott	36-37.	Laboratory Records Department
24-28.	J.	Ј.	Robinson	38.	Laboratory Records, RC

External Distribution

- 39-43. Director, Division of Reactor Safety Research, Nuclear Regulatory Commission, Washington, DC 20555
 - 44. Office of Assistant Manager for Energy Research and Development, Department of Energy, Oak Ridge Operations Office, Oak Ridge, TN 37830
- 45-46. Technical Information Center, Department of Energy, Oak Ridge, TN 37830
- 47-391. Given distribution as shown under category R2 (10-NIIS)