NUREG/CR-2689 SAND81-2520 R3 Printed May 1982

TOM MIX: A Computer Code for Calculating Steam Explosion Phenomena

Douglas S. Drumheller

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 for the United States Department of Energy under Contract DE-AC04-76DP00789

8209270414 820731 PDR NUREG CR-2689 R PDR

Prepared for U. S. NUCLEAR REGULATORY COMMISSION

SF29000(8-81)

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, of the results of such use, of any information, apparatus product or process disclosed in this report, or represents that its way by such third party would not infringe privately owned rights

.

.

Available from

GPO Sales Program Division of Technical Information and Document Control U.S. Nuclear Regulatory Commission Washington, D.C. 20555

and

National Technical Information Service Springfield, Virginia 22161 NUREG/CR-2689 SAND81-2520 R3

TOM MIX: A COMPUTER CODE FOR CALCULATING STEAM EXPLOSION PHENOMENA

Douglas S. Drumheller Thermomechanical & Physical Division 5534

Printed May 1982

Sandia National Laboratories Albuquerque, New Mexico 87185 operated by Sandia Corporation for the U. S. Department of Energy

Prepared for Division of Accident Evaluation Office of Nuclear Reactor Research Washington, DC 20555 Under Memorandum of Understanding DOE 40-550-75 NRC FIN No. Al030

ABSTRACT

A mathematical model for a mixture of hot liquid drops mixed and in film boiling with water is developed. It is used to examine the propagation and growth of pressure disturbances which result in a steam explosion.

.

The model is incorporated into a wave-propagation computer code and an example problem is examined. These calculations suggest that pressure disturbances will propagate and grow in the mixture even if the drops do not fragment. These pressure pulses initiate fragmentation which ultimately controls the release of energy during a steam explosion.

PREFACE

The purpose of this report is to present a mathematical model to describe steam explosions and to document its implementation into a computer code. This report does not contain a review of the extensive literature on the subject. For such reviews, the reader is referred to Croneberg and Benz¹ and to Nelson and Duda.² The limited references recorded in this work are specific to the construction of the theory and the computer code.

The reader is warned that this code is still experimental. Errors may still exist in the program logic.

CONTENTS

		Page
I.	Introduction	1
II.	Field Equations	3
11.	Constitutive Relations	11
IV.	Numerical Analysis	19
v.	Example Problem	21
VI.	References	29
	Appendix A. Nomenclature	31
	i. Mathematical Symbols	31
	ii. Ccde Variable Names	34
	Appendix B. Code Listing	37
	Appendix C. Input Instructions	55
	Appendix D. List of Input Values for Example Problem	57

~

I. INTRODUCTION

When hot molten materials are mixed with a more volatile fluid, a sudden and violent vaporization of the fluid sometimes occurs. Such events present a potential hazard to the safe operation of water-cooled nuclear power reactors.¹

The accidental melting of a reactor core can introduce a large number of molten drops into the reactor coolant. In a pressurized water reactor these drops go into stable film boiling with the coolant. The resulting vapor films which surround each drop effectively insulate the drops from additional loss of heat by thermal conduction to the coolant; however, small disturbances can disrupt these films causing a sudden and explosive vaporization of the coolant.²

Board and Hall³ propose that this event behaves as a detonation wave propagating through a high explosive. They surmise that the initial disturbance fragments a small number of drops which results in increased contact area and vaporization of the coolant. This process in turn fragments neighboring drops and causes the disturbance to propagate and grow. Board and Hall do not offer a quantitative description of the fragmentation process.

Recently, "rumheller⁴ proposed a film collapse model which describes the fragmentation process. In this model, the disturbance elevates the pressure locally in the coolant. Some of the vapor films are compressed and condensed. As a result, the coolant impacts and fragments some of the drops. Thus, the coolant acts like a "hydraulic hammer" applied in a spherically symmetric fashion to the surface of the drop.

A model to describe the propagation of a steam explosion through an array of molten drops in water can be constructed by incorporating

the single-drop model of Drumheller into a mixture theory. The mixture theory of Bedford and Drumheller^{5,6,7} is used since it easily accommodates the microstructural phenomena associated with the vapor-film collapse.

Each constituent is assigned a balance of mass equation, and exchange of mass between the vapor and coolant is allowed. The model ignores relative translation of the melt, vapor, and coolant. Consequently, only one balance of momentum equation is used.* Each constituent is assigned an individual temperature and is described by a separate balance of energy equation which accounts for the exchange of thermal and mechanical energy between the constituents.

In addition to these equations which account for changes in mass density, velocity, and temperature, auxiliary equations are employed to compute changes in the drop radii and vapor-film thicknesses. These relations have the form of the classical Rayleigh cavitation equation for a bubble in an infinite fluid. The structure of the completed theory is similar to those constructed for bubbly liquids.^{8,9,10} A brief derivation of the theory will be given in the next section. This will be followed by a description of the constitutive assumptions.

Section IV contains a description of the numerical solution procedure. The theory is incorporated into a conventional, one-dimensional, wave propagation code, WONDY IV.¹¹ The method is similar to that described in Ref. 10.

An example problem is worked in Section V. In this problem a weak trigger pulse is applied to the boundary of a mixture of molten iron drops in water.

^{*}The spherically symmetric collapse of the vapor film does not result in a net translation of the coolant with respect to the drops.

II. FIELD EQUATIONS

The equations of balance of mass, momentum, and energy are derived by a method employing Hamilton's variational principle. This method is described in several papers by Bedford and Drumheller.⁵⁻⁷

These papers also outline the basic motivations behind the mixture theory used in this work; that is, this theory preserves the identity and internal structure of each constituent in the mixture. The constitutive relations for water, steam, and molten drops are used unaltered in the theory; the theory explicitly accounts for the volume fractions occupied by each constituent; and information about the geometry of the individual molten drops and their vapor films is preserved.

The particular microstructural model used in this work is described in Drumheller.⁴ The works of Drumheller and Bedford^{8,9} give details on how a similar microstructural model for gas bubbles in a liquid is incorporated into a mixture theory.

These works on bubbly liquids have particular relevance to the present problem since the basic microstructure of the steam explosion is viewed as a mixture of steam bubbles in water. The steam bubbles exist because each bubble contains a drop of hot molten material. Pressure disturbances cause condensation and evaporation as well as mechanical oscillation of the steam bubbles. When sufficient pressure is applied to an individual steam bubble, the bubble collapses and the coolant impacts and fragments the molten drop inclusion.

Hamilton's variational principle is based on an energy postulate. As shown in Refs. 5-7, various kinematical constraints can be embedded into this energy postulate. Application of the variational procedure then yields

equations of motion which are consistent with the combined energy and kinematical statements. The derivation of the equations of motion will be outlined by first postulating the form of the kinematical constraints.

To begin, in one spatial dimension the original position of a material particle is given by X and the current position is given by $x.^{\dagger}$ The variable J, called the Jacobian of the motion, is given by

$$J = \frac{\partial x}{\partial x} \cdot \star \tag{1}$$

The mass densities and volume fractions of the molten material, vapor, and coolant are given by $\overline{\rho}_{f}$, $\overline{\rho}_{v}$, $\overline{\rho}_{c}$, ϕ_{f} , ϕ_{v} , and ϕ_{c} . The density of the mixture, ρ , is given as

$$\rho = \phi_{f} \overline{\rho}_{f} + \phi_{v} \overline{\rho}_{v} + \phi_{c} \overline{\rho}_{c}$$
(2)

where

$$\phi_f + \phi_v + \phi_c = 1 \quad . \tag{3}$$

The balance of mass postulate for the mixture is

$$\rho J = \rho_0 \tag{4}$$

where ρ_0 is the original value of ρ . A more familiar form of Eqn. (4) is

$$\rho + \rho \frac{\partial v}{\partial x} = 0 \tag{5}$$

where the dot denotes the material time derivative and v is the particle velocity

*A nomenclature is included in Appendix A.

*This work does not contain a rigorous derivation of the theory. Rather, only an outline is presented. A more precise derivation is given in Refs. 5-7. Similarly, the balance of mass postulates for the constituents are

$$\phi_f \,\overline{\rho}_{fJ} = \phi_{fo} \,\overline{\rho}_{fo} \,, \tag{7}$$

(6)

$$\phi_{\rm V} \,\overline{\rho}_{\rm V} J = \phi_{\rm VO} \,\overline{\rho}_{\rm VO} + c_{\rm V} \,, \tag{8}$$

and

$$\phi_{\rm C} \,\overline{\rho}_{\rm C} J = \phi_{\rm CO} \,\overline{\rho}_{\rm CO} - c_{\rm V} \quad (9)$$

Note that Eqn. (4) can be recovered by adding Eqns. (7), (8), and (9). In the above equations c_v represents the exchange of mass between the vapor and the coolant. During evaporation, c_v is positive. Furthermore, these equations imply absence of relative translational motion between the constituents.

If R_f . R_v , and R_c represent the radii of the molten drop, the vapor film, and the unit cell of coolant which encloses the drop (see Fig. 1) then another set of constraints is obtained. These constraints are

$$\phi_{\rm c} = 1 - R_{\rm v}^3 / {\rm J} R_{\rm co}^3 , \qquad (10)$$

$$\phi_{\rm f} = R_{\rm f}^3 / J R_{\rm CO}^3 \quad , \tag{11}$$

and

$$\phi_{v} = (R_{v}^{3} - R_{f}^{3})/JR_{CO}^{3} . \qquad (12)$$

Note that these relations satisfy Eqn. (3). Also

$$R_c^3 = JR_{co}^3 av{13}$$

FIGURE 1. The Unit Cell

Next, if m_v is the mass of vapor in a given vapor film, the particle velocity of the coolant at $R = R_v$ relative to drop center is

$$V_{\rm R} = \dot{R}_{\rm v} - \dot{m}_{\rm v} / 4\pi R_{\rm v}^2 \bar{\rho}_{\rm C} \qquad (14)$$

Noting that the number of drops per unit mixture volume is

$$N = \phi_{f} / \frac{4}{3} \pi R_{f}^{3}$$
(15)

and

$$\dot{c}_{v}/J = \phi_{f} m_{v}/\frac{4}{3} \pi R_{f}^{3} ,*$$
 (16)

then

$$v_{\rm R} = \dot{R}_{\rm v} - \dot{c}_{\rm v} R_{\rm f}^3 / 3 J \phi_{\rm f} \tilde{\rho}_{\rm c} R_{\rm v}^3 \quad . \tag{17}$$

This completes the kinematical description of the problem. The kinetic energy statement will be considered next.

The kinetic energy of the mixture due to translational motion is

$$\int_{v} \frac{1}{2} \rho \mathbf{v}^2 \, \mathrm{d} \mathbf{v} \tag{18}$$

where *r* is the volume occupied by the mixture. Now consider a single unit cell of the mixture. The kinetic energy of this cell is not simply described by the translational motion of the cell. If the cell has a radial oscillation, this will also contribute to the kinetic energy by an amount

$$2\pi R_v^3 \overline{\rho}_c v_R^2 \quad . \tag{19}$$

*Note from Eqn. (11) that $\phi_f J/R_f^3$ is a constant.

This expression which is derived in Ref. 8 ignores kinetic energy contributions of the radial motions of the drop and vapor, and only considers contributions of the radial oscillation of the coolant.

By using Eqns. (15), (18), and (19), the total kinetic energy expression is

$$T = \int_{e} \left[\frac{1}{2} \rho v^{2} + \frac{3}{2} \overline{\rho}_{c} \phi_{f} v_{R}^{2} R_{v}^{3} / R_{f}^{3} \right] de \quad .$$
 (20)

The final postulate required for the variational principle is the virtual work statement. It is assumed to be

$$\delta W = \int_{v} \left[-\phi_{f} P_{f} \delta \overline{\rho}_{f} / \overline{\rho}_{f} - \phi_{v} P_{v} \delta \overline{\rho}_{v} / \overline{\rho}_{v} - \phi_{c} P_{c} \delta \overline{\rho}_{c} / \overline{\rho}_{c} + L_{v} \delta c_{v} / J - L_{c} \delta c_{v} / J + \rho f \delta x \right] dv + \int_{s} \overline{\sigma} \delta x \, ds \quad . \tag{21}$$

The postulated forces P_f , P_v , and P_c are the average pressures in each constituent. The forces L_v and L_c drive the phase change. The function f is the specific external body force, and $\overline{\sigma}$ is the applied surface traction on the boundary s of the mixture.

When Hamilton's principle is applied to relations (20) and (21) subject to the constraints (3), (7), (8), (9), (11), and (12), the following equations of motion are obtained:

$$\dot{\rho v} = -\partial \lambda / \partial x + \rho f , \qquad (22)$$

$$R_{v} \dot{v}_{R} + \frac{3}{2} [1 - (1 - \phi_{c}) / \phi_{c}] v_{R}^{2} + R_{v} v_{R} \dot{\overline{\rho}}_{c} / \overline{\rho}_{c}$$

$$+ [1/3(1 - \phi_{c}) - 1/\phi_{c} + 1/\phi_{f}] \dot{c}_{v} R_{v} v_{R} / J \overline{\rho}_{c} = (P_{f} - P_{c}) / \overline{\rho}_{c} , \qquad (23)$$

$$R_{v}c_{v}V_{R}/\phi_{c}J = P_{f} - P_{v} , \qquad (24)$$

$$\lambda = P_{c} - R_{v}c_{v}V_{R}/\phi_{c}J + \frac{3}{2}\phi_{f}R_{v}^{3}\rho_{c}V_{R}^{2}/\phi_{c}R_{f}^{3} , \qquad (25)$$

and

$$\phi_{f}\overline{\rho}_{f}(\overline{R_{v}V_{R}}/\overline{\rho}_{f}) - P_{v}/\overline{\rho}_{v} + P_{c}/\overline{\rho}_{c} + L_{v} - L_{c} = 0$$
(26)

in the volume "; and

$$\lambda = -\overline{\sigma}$$
 (27)

on the boundary surface s.

Because Hamilton's principle is an energy statement, it implies the following energy balance statements:

$$\phi_{f}\overline{\rho}_{f}E_{f} = \phi_{f}P_{f}\overline{\rho}_{f}/\overline{\rho}_{f} + \phi_{f}\overline{\rho}_{f}r_{f} + \varepsilon_{f}^{+} , \qquad (28)$$

$$\phi_{\mathbf{v}} \,\overline{\rho}_{\mathbf{v}} \mathbf{E}_{\mathbf{v}} + \mathbf{c}_{\mathbf{v}} \mathbf{E}_{\mathbf{v}} / \mathbf{J} = \phi_{\mathbf{v}} \mathbf{F}_{\mathbf{v}} \overline{\rho}_{\mathbf{v}} / \overline{\rho}_{\mathbf{v}} - \mathbf{L}_{\mathbf{v}} \mathbf{c}_{\mathbf{v}} / \mathbf{J} + \phi_{\mathbf{v}} \overline{\rho}_{\mathbf{v}} \mathbf{r}_{\mathbf{v}} + \varepsilon_{\mathbf{v}}^{+} , \qquad (29)$$

and

$$\phi_{c}\overline{\rho}_{c}E_{c} - \dot{c}_{v}E_{c}/J = \phi_{c}P_{c}\overline{\rho}_{c}/\overline{\rho}_{c} + L_{c}\dot{c}_{v}/J + \phi_{c}\overline{\rho}_{c}r_{c} + \varepsilon_{c}^{+}$$
(30)

where E_f , E_v and E_c are the internal energies, r_f , r_v , and r_c are the specific external heat supplies, and ε_f^+ , ε_v^+ , and ε_c^+ are the energy exchange functions which are subject to the constrain

$$\varepsilon_{\rm f}^+ + \varepsilon_{\rm v}^+ + \varepsilon_{\rm c}^+ = 0 \quad . \tag{31}$$

Equations (1), (3), (4), (7), (8), (9), (11), (12), (17), (22), (23), (24), (25), (26), (28), (29), (30), and (31) form a system of 18 equations in the 32 variables \overline{p}_{v} , \overline{p}_{c} , \overline{p}_{f} , ϕ_{v} , ϕ_{c} , ϕ_{f} , v, R_{f} , R_{v} , V_{R} , J, λ , P_{c} , P_{f} , P_{v} , L_{c} , L_{v} , ρ , ε_{f}^{+} , ε_{v}^{+} , ε_{c}^{+} , f, E_{f} , E_{c} , E_{v} , θ_{f} , θ_{c} , θ_{v} , r_{f} , r_{v} , r_{c} , and

 c_v . The variables θ_f , θ_c , and θ_v are the constituent temperatures. In order to form a determined system of equations, constitutive relations must be specified for P_c , P_f , P_v , L_v , ε_f^+ , ε_v^+ , f, E_f , E_c , E_v , r_f , r_v , r_c , and \dot{c}_v .

.

III. CONSTITUTIVE RELATIONS

Constitutive relations are required for the variables P_c , P_f , P_v , L_v , ε_f^+ , ε_v^+ , f, E_f , E_c , E_v , r_f , r_v , r_c , and c_v . The body force f and specific external heat supplies r_f , r_v , and r_c are assumed to be zero. The vapor and coolant pressures, P_v and P_c , and specific internal energies, E_v and E_c are given by a tabular "steam-table" subroutine listed in Appendix B. The pressure and specific internal energy of the molten drops are given by the relations

$$P_{f} = S_{f}(1 - \overline{\rho}_{fr}/\overline{\rho}_{f}) + Q\overline{\rho}_{f}$$
(32)

and

$$c_{f} = c_{pf} \theta_{f}$$
(33)

where the bulk modulus S_f , reference mass density $\overline{\rho}_{fr}$, damping factor Q, and specific heat c_{pf} are specified constants.

E

The damping term in Eqn. (32) is introduced to model fragmentation of the molten drops. When vapor separates the drop from the coolant, $\dot{\overline{p}}_{f}$ is small; however, when the coolant impacts the drop, large values of $\dot{\overline{p}}_{f}$ result. Previous calculations on the behavior of single fluid drops subjected to spherically symmetric impacts indicate that the resulting motion is quickly damped due to the energy absorbed by fragmentation of the drop.⁴

From Eqn. (32), the energy available to fragment the drop E_d can be computed from the relation

$$\overline{\rho}_{f} \dot{E}_{d} = Q \overline{\rho}_{f}^{2} / \overline{\rho}_{f} \qquad (34)$$

Given the surface tension coefficient of the molten material, denoted as σ ,

the potential increase in the surface area of a drop is $\phi_f \overline{\rho}_f E_d/N\sigma$ where the number of drops per unit volume N is given by Eqn. (15). Only a fraction of this energy will actually result in new contact area between the drop and the coolant. If γ denotes the efficiency of this process, the increase in contact area A_d is

$$A_{d} = \phi_{f} \overline{\rho}_{f} E_{d} \gamma / N \sigma \quad . \tag{35}$$

The current contact area is $4\pi R_f^2$ plus A_d . If A represents the current contact area per unit volume of the mixture

$$A = 4\pi R_f^2 N + \phi_f \overline{\rho}_f E_d \gamma / \sigma = 3\phi_f / R_f + \phi_f \overline{\rho}_f E_d \gamma / \sigma .$$

The mass exchange rate per unit contact area between the vapor and the coolant is

$$U = \alpha (M_v / 2\pi R_u)^{1/2} (P_v / \theta_s^{1/2} - P_w / \theta_w^{1/2})$$
(37)

(see Ref. 9). The accommodation coefficient is denoted by α and is a specified constant (normally 0.2 for a water-steam phase transition); M_v is the molecular weight of the vapor; R_u is the universal gas constant; θ_s is the saturation temperature at P_v ; θ_w is the temperature of the coolant at the vapor interface; and P_w is the pressure of the vapor when its temperature is θ_w instead of θ_s . It is assumed that

$$P_{\rm W}/\theta_{\rm W} = P_{\rm V}/\theta_{\rm S} \quad . \tag{38}$$

The required constitutive expression for cv is

$$\dot{c}_{v}/J = -AU$$

$$= -(3\phi_{f}/R_{f} + \phi_{f}\overline{\rho}_{f}E_{d}Y/\sigma)$$

$$\times \alpha(M_{v}/2\pi R_{u})^{1/2} P_{v}(\theta_{s}^{-1/2} - \theta_{w}^{1/2}/\theta_{s}) \qquad (39)$$

where Eqns. (36-38) have been used.

The variables θ_w , ε_f^+ , and ε_v^+ are specified through consideration of the local temperature profile in the neighborhood of a single drop.

Figure 2 is a schematic illustration of the temperature profile assumed in this work.* The heat flux in the drop due to the temperature gradient at $R = R_f$ is given as

$$q_{f} = \kappa_{f} \left[\frac{\alpha_{f} R_{f} + 1}{R_{f}} \quad (\theta_{f} - \theta_{\ell}) \right]$$
(40)

where

$$\alpha_{\rm f}^2 = \omega \overline{\rho}_{\rm f} c_{\rm pf} / K_{\rm f} \quad . \tag{41}$$

 K_f is the thermal conductivity of the drop, θ_l is the temperature at the drop-vapor interface, and ω is the dominant frequency associated with the mechanical deformation in the mixture. It is assumed that

$$\omega = |R_{v}/(R_{v} - R_{f})| .$$
 (42)

Discussion of these assumptions can be found in Drumheller, Kipp and Bedford.¹⁰

Similarly, the heat flux into the vapor at this interface is

$$q_{fv} = \kappa_{v} \left[\frac{\theta_{\ell} - \theta_{s}}{R_{v} - R_{f}} + \frac{\alpha_{v}R_{f} + 1}{R_{f}} \left(\theta_{v} - \frac{\theta_{\ell} + \theta_{s}}{2} \right) \right]$$
(43)

*During solution of an explicit problem, the values of θ_f , θ_v , θ_ℓ , θ_s , θ_w , and θ_c change continuously in both time and space. The situation illustrated in Fig. 2 (especially the dome in the temperature profile of the vapor) is highly transient. Depending on the computed values of θ_v , θ_ℓ , θ_s , a well could appear in the temperature profile for the vapor.

FIGURE 2. Local Temperature Profile

where $K_{\mathbf{V}}$ and $\alpha_{\mathbf{V}}$ are defined in the same manner as $K_{\mathbf{f}}$ and $\alpha_{\mathbf{f}}.$ It is noted that

$$q_{f} = q_{fv} \tag{44}$$

must hold.

). $R = R_V$, the vapor-coolant interface, the heat flux from the vapor film is

$$q_{VC} = K_{C} \left[\frac{\theta_{\ell} - \theta_{s}}{R_{V} - R_{f}} + \frac{\alpha_{V}R_{V} + 1}{R_{V}} \left(\theta_{V} - \frac{\theta_{f} + \theta_{s}}{2} \right) \right], \quad (45)$$

and heat flux into the coolant is

$$q_{c} = K_{c} \left[\frac{\alpha_{c} R_{v} + 1}{R_{v}} \left(\theta_{w} - \theta_{c} \right) \right] .$$
 (46)

At this interface the following relation must hold

$$q_{VC} - h_V U = q_C + h_C U \tag{47}$$

where U is given by Eqns. (37-38) and $\rm h_V$ and $\rm h_C$ are the enthalpies of the vapor and the coolant.

Equations (44) and (47) can be solved to obtain

$$\theta_{g} = \left[\kappa_{f} \left(\frac{\alpha_{f} R_{f} + 1}{R_{f}} \right) \theta_{f} + \kappa_{v} \left(\frac{\alpha_{v} R_{f} + 1}{R_{f}} \right) \theta_{v} + \kappa_{v} \left(\frac{1}{R_{v} - R_{f}} - \frac{\alpha_{v} R_{f} + 1}{2R_{f}} \right) \theta_{s} \right] \left[\kappa_{f} \left(\frac{\alpha_{f} R_{f} + 1}{R_{f}} \right) + \kappa_{v} \left(\frac{1}{R_{v} - R_{f}} + \frac{\alpha_{v} R_{f} + 1}{2R_{f}} \right) \right]^{-1}$$

$$(48)$$

and

$$\theta_{w} = \left[(-b + \sqrt{b^{2} + 4ac})/2a \right]^{2}$$
(49)

where

$$a = K_{C} \left(\frac{\alpha_{C} R_{V} + 1}{R_{V}} \right) , \qquad (50)$$

$$b = (h_v - h_c) \alpha (M_v / 2\pi R_u)^{1/2} P_v / \theta_s , \qquad (51)$$

and

$$c = K_{c} \left(\frac{\alpha_{c} R_{v} + 1}{R_{v}} \right) \theta_{c} + q_{vc} + b \theta_{s}^{1/2} \quad .$$
 (52)

Equations (48) and (49) determine θ_w and θ_s in terms of the system variables. Consequently, the local heat fluxes are also determined by the system variables.

The required expressions for ϵ_{f}^{+} and ϵ_{v}^{+} are

$$\varepsilon_{\mathbf{f}}^{+} = -\mathrm{Aq}_{\mathbf{f}}$$
 (53)

and

$$\varepsilon_v^+ = -\varepsilon_f^+ - Aq_{vc} + h_v c_v / J . \qquad (54)$$

Finally, L_{V} is assumed to always be given by its equilibrium value

$$L_v = P_v / \bar{\rho}_v$$
 (55)

(see Ref. 7; Eqn. (4.23)).

This completes the constitutive description for the mixture under conditions of relatively thick vapor films; however, as complete collapse of a vapor film approaches, two auxiliary conditions are applied. Both E_v and ω are limited in magnitude. After collapse and until a relatively thick vapor film is reestablished, $\dot{E}_v = 0$ and \dot{c}_v is either zero or positive.

.

.

10

all.

Transient numerical solutions to the equations presented in the previous two sections are obtained by incorporating the model into the explicit -Lagrangian finite-difference code WONDY IV.¹¹ The mass and momentum equations of this code are identical to Eqns. (4) and (22). In the structure of this code, the constitutive equations as well as the energy equations are solved in the material description subroutine.

The code generates solutions by first advancing the values of ρ and v in time through explicit finite-differenced forms of the relations (4) and (22). Next, the pressure λ is advanced through the material subroutine. In this subroutine the density ρ is linearly interpolated between the old-time and new-time values. This interpolation is substituted into the remaining system equations, Eqns. (1), (3), (7), (8), (9), (11), (12), (17), (23), (24), (25), (26), (28), (29), (30), and (31). These equations then reduce to a set of ordinary differential equations in time which are integrated to the new time using an auxiliary integrator DE.¹² The system is recast into eight first-order ordinary differential equations in the variables

$$[c_v, R_f, R_v, \psi, E_d, E_f, E_v, E_c]$$
 (56)

where

$$\psi = \overline{\rho}_{\rm C} V_{\rm R} \quad . \tag{57}$$

The update coding required to incorporate this mixture model into WONDY IV is included in Appendix B. A key relating the coding variable names to the mathematical symbols is included in Appendix A. The input instructions are given in Appendix C. In this section the code input for an example problem will be presented. A sample of the computed results is also given.

This problem involves a mixture of water and molten iron. The temperature of the water is 303.2 K and of the iron is 2443.2 K. The coolant occupies 80 percent of the mixture volume. Each drop of iron has a radius of 10 mm and a vapor film 0.2-mm thick. The mixture is at an ambient pressure of 0.1 MPa and the left boundary pressure is instantaneously raised to 2.1 MPa for 30 µs and then lowered to 0.1 MPa.

A list of code input values is contained in Appendix D. Several points about this list should be noted. The stability sound speed is 5 km/s which is well above the sound speed of water. The efficiency factor for fragmentation is set at zero. Thus, film collapse and fragmentation will not increase the contact area between the drop and the coolant. The mesh dimension is quite small, one quarter of the drop radius. This can be increased without affecting the results, but experience indicates it should not exceed the drop radius. The viscosity coefficients, B1 and B2 on card number 4, are smaller than the values normally used in this code because of the low pressures incurred in the calculations.

The value of Q, Eqn. (32), is evaluated through consideration of Eqn. (23). If it is assumed that $R_v = R_f$ and mass exchange is ignored, then Eqn. (23) can be linearized to obtain

$$(\overline{\rho}_{e}R_{f}^{2}/3\overline{\rho}_{f})\ddot{\epsilon} + Q\epsilon + S_{f}\epsilon/\overline{\rho}_{f} = 0$$
(58)

where Eqn. (32) is used and ε represents a small perturbation of $\overline{\rho}_f$ so that

$$\overline{\rho}_{f} = \overline{\rho}_{fo} + \varepsilon \quad . \tag{59}$$

Equation (58) describes a damped oscillator. Critical damping occurs when

$$\varrho^2 = 4R_f^2 \overline{\rho}_c s_f / 3\overline{\rho}_f^2 \quad . \tag{60}$$

The listed value of Q was computed from Eqn. (60).

Computed results are plotted in Figs. (3) through (6). The evolution and growth of the pressure wave is evident. The peak pre-sure in the wave profile occurs simultaneously with the film collapse. The initial film collapse at the left boundary occurs approximately 55 µs into the problem. Successive collapses propagate to the right at an average rate of approximately 900 m/s. The peak pressure quickly reaches values which exceed the limits of the steam and water constitutive expressions used in the calculations.

The pressure disturbance which is applied to the left boundary will not grow unless the initial disturbance is of sufficient strength to cause film collapse. If the initial collapse occurs, the disturbance propagates and grows even if fragmentation is completely suppressed.

In previous work on bubbly liquids,^{8,9,10} it was observed that pressure disturbances resulted in irreversible flow of heat from the bubble to the liquid. This flow of heat was driven by the pressure disturbance which hewted the gas in the bubble more than the surrounding liquid. Consequently, the flow of heat represented a drain of energy from the pressure disturbance and provided the dominant wave attenuating mechanism in these types of problems.

In the present problem, irreversible flow of heat to the coolant is also triggered by the pressure disturbance. In this case however, a natural source of heat is present in the bubble. The flow of this heat causes additional vaporization of the coolant which adds to the energy of the pressure disturbance. Any fragmentation which occurs enhances this process, but fragmentation does not appear to be necessary to the early development of the steam explosion. At later times fragmentation plays a far more important role in the release of energy.

The rapid growth of the amplitude of the computed pressure pulse may be an artifact of this particular calculation. Physical situations usually involve the growth of pressure pulses in an expanding spherical geometry through a medium containing a range of drop sizes and vapor film thicknesses. These effects tend to limit the growth and coherence of the pressure pulse. Future work could investigate these effects through modifications of this computer code.

FIGURE 3. Example Calculation

FIGURE 4. Example Calculation

FIGURE 5. Example Calculation

FIGURE 6. Example Calculation

REFERENCES

- A. W. Cronenberg and R. Benz, "Vapor Explosion Phenomena with Respect to Nuclear Reactor Safety Assessment," <u>Adv. Nucl. Sci. Technol.</u> 12, 247-334 (1980).
- L. S. Nelson and P. M. Duda, "Steam Explosion Experiments with Single Drops of Iron Oxide Melted with a CO₂ Laser," NUREG/CR-2295, Sandia National Laboratories (1981).
- S. J. Board and R. W. Hall, "Thermal Explosions at Molten Tin/Wat." Interfaces," <u>Moving Boundary Problems in Heat Flow and Diffusion</u>, J. R. Ockendon and W. R. Hodgkins, Eds., Clarendon Press, Oxford (1975).
- D. S. Drumheller, "The Initiation of Melt Fragmentation in Fuel-Coolant Interactions," Nucl. Science Engr. 72, 347-356 (1979).
- A. Bedford and D. S. Drumheller," A Variational Theory of Immiscible Mixtures," Arch. Rat. Mech. Anal. 68, 37-51 (1978).
- 6. D. S. Drumheller and A. Bedford, "On the Mechanics and Thermodynamics of Fleid Mixtures," Arch. Rat. Mech. Anal. 71, 345-355 (1979).
- D. S. Drumheller and A. Bedford, "A Thermomechanical Theory for Reacting Immiscible Mixtures," Arch. Rat. Mech. Anal. 73, 257-284 (1980).
- D. S. Drumheller and A. Bedford, "A Theory of Bubbly Liquids," J. Acoust. Soc. Am. 66, 197-208 (1979).
- D. S. Drumheller and A. Bedford, "A Theory of Liquids with Vapor Bubbles," J. Acoust. Soc. Am. 67, 186-200 (1980).
- D. S. Drumheller, M. E. Kipp and A. Bedford, "Transient Wave Propagation in Bubbly Liquids," J. Fluid Mech. 119, 347-365 (1982).
- R. J. Lawrence and D. S. Mason, "WONDY IV -- A Computer Program for One-Dimensional Wave Propagation with Rezoning," SC-RR-71-0284, Sandia National Laboratories (1971).
- 12. L. F. Shampine and M. K. Gordon, <u>Computer Solution of Ordinary Differ-</u> <u>ential Equations: The Initial Value Problem</u>, Freeman, San Francisco (1974).
- K. H. Haskell and W. H. Vandevender, "Brief Instructions for Using the Sandia Mathematical Subroutine Library (Version 8.0)," SAND79-2382, Sandia National Laboratories (1979).
- 14. R. K. Cole, Sandia National Laboratories, (private communication).

APPENDIX A: NOMENCLATURE

This appendix contains two lists. The first list gives the definition of the mathematical symbols used in the derivation of the theory. This list also contains the equation number where the symbol is first used and the corresponding code variable name. The second list gives the definitions of the code variable names:

i) Mathematical Symbols:

Symbol	Code Name	Definition
A		contact area, Eqn. (36)
Ad		increase in contact area, Eqn. (35)
a		parameter, Eqn. (50)
b		parameter, Eqn. (51)
cpc	CPC	specific heat capacity of coolant
cpf	CPF	specific heat capacity of drop, Eqn. (33)
cpv	CPV	specific heat capacity of vapor
c.A.	Y(1)	mass exchange parameter, Eqn. (8)
с		parameter, Eqn. (52)
E _C	Y(8)	specific internal energy of coolant, Eqn. (30)
Eđ	Y(5)	fragmentation energy, Eqn. (34)
Ef	Y(6)	specific internal energy of drop, Eqn. (28)
Ev	¥(7)	specific internal energy of vapor, Eqn. (29)
f		specific external body force, Eqn. (21)
hc	HC	enthalphy of coolant, Eqn. (47)
hy	HV	enthalpy of vapor, Eqn. (47)
J	ROR	Jacobian of the deformation, Eqn. (1)
Kc	AKC	thermal conductivity of the coolant, Eqn. (45)

Symbol	Code Name	Definition
Kf	AKF	thermal conductivity of the drop, Eqn. (40)
ĸ _v	AKV	thermal conductivity of the vapor, Eqn. (43)
L _c	AALC	mass exchange force, Eqn. (21)
Lv	AALV	mass exchange force, Eqn. (21)
Mv		molecular weight of vapor, Eqn. (37)
m _v		mass of vapor in a film, Eqn. (14)
N		drop number density, Eqn. (15)
P _C	PC	coolant pressure, Eqn. (21)
Pf	PF	drop pressure, Eqn. (21)
Pv	PV	vapor pressure, Eqn. (21)
Pw		interface pressure, Eqn. (37)
Q		damping coefficient, Eqn. (32)
qc		heat flux, Eqn. (46)
qf		heat flux, Eqn. (40)
qfv	QV	heat flux, Eqn. (43)
qvc		heat flux, Eqn. (45)
R		radial coordinate
R _C		unit cell radius, Eqn. (13)
R _{co}		initial R _c , Eqn. (10)
Rf	Y(2)	drop radius, Eqn. (11)
r _v	¥(3)	vapor film radius, Eqn. (10)
Ru		universal gas constant, Eqn. (37)
r _c		specific external heat supply of coolant, Eqn. (30)
rf		specific external heat supply of drop, Eqn. (28)
rv		specific external heat supply of vapor, Eqn. (29)

Symbol	Code Name	Definition
s		mixture surface, Eqn. (21)
Sf		bulk modulus of drop, Eqn. (32)
Т		kinetic energy, Eqn. (20)
t		time, Eqn. (6)
υ		mass exchange parameter, Eqn. (37)
e		mixture volume, Eqn. (18)
VR		radial velocity, Eqn. (14)
v		translational velocity, Eqn. (6)
δw		virtual work, Eqn. (21)
x		original position, Eqn. (1)
x		current position, Eqn. (1)
α		accommodation coefficient, Eqn. (37)
α _C	ALC	thermal diffusivity of coolant, Eqn. (45)
αf	ALF	thermal diffusivity of drop, Eqn. (41)
α_{V}	ALV	thermal diffusivity of vapor, Eqn. (43)
Y		fragmentation efficiency parameter, Eqn. (35)
δ		variational operator, Eqn. (21)
ϵ_c^+	ECP	energy exchange of coolant, Eqn. (30)
ϵ_{f}^{+}	EFP	energy exchange of drop, Eqn. (28)
ϵ_v^+	EVP	energy exchange of vapor, Eqn. (29)
θ _c	THC	coolant temperature, Eqn. (46)
θf	THF	drop temperature, Eqn. (33)
θε	TF	drop-vapor interface temperature, Eqn. (40)
θ _s	TSAT	vapor saturation temperature, Eqn. (37)
θν	THV	vapor temperature, Eqn. (43)
θ₩	TW	vapor-coolant interface temperature, Eqn. (37)

1 .

33

.

Symbol	Code Name	Definition
λ		mixture pressure, Eqn. (22)
ρ	DENS	mixture density, Eqn. (2)
ρ _c	RC	coolant density, Eqn. (2)
ρ _f	RF	drop density, Eqn. (2)
$\overline{\rho}_{\mathbf{v}}$	RV	vapor density, Eqn. (2)
σ		drop surface tension, Eqn. (35)
σ		surface traction, Eqn. (21)
¢c	PHV	coolant volume fraction, Eqn. (2)
¢f,	PHF	drop volume fraction, Eqn. (2)
φ _v	PHV	vapor volume fraction, Eqn. (2)
ψ	Y(4)	parameter, Eqn. (57)
ω	OMG	heat conduction parameter, Eqn. (41)

ii) Code Variable Names:

Code Name	Mathematical Symbol
AKC	κ _c
AKF	Кf
AKV	κ _v
ALS	h _v - h _c
CPC	cpc
CPF	$c_{\rm pf}$
CPV	c _{pv}
БJ	j
DPHC	¢c
DPHF	¢f
DPHV	¢v

Code Name	Mathematical Symbol
DRC	÷,
DRF	; p _f
DRV	i pv
ECP	6 *
EFP	ε _f
FAC	$1 + A_d/A$
HC	hc
HV	h _v
OMG	ω
PC	Pc
PF	Pf
PHC	¢c
PHF	¢£
PHV	¢ν
PRC	¢cρc
PRF	\$fpf
PRV	$\phi \overline{v} \overline{v} v$
PV	Pv
QV	qv
RC	ρ _c
RF	ρ _f
ROR	J
RV	$\overline{\rho}_{\mathbf{v}}$
TF	θε
THC	θ _c
THF	θ _f

Code Name	Mathematical Symbol
THV	$\theta_{\mathbf{v}}$
TSAT	θs
TW	θω
Y(1)	cv
Y(2)	Rf
Y(3)	Rv
Y(4)	ψ
¥(5)	Ed
Y(6)	Ef
¥(7)	Ev
Y(8)	Ec

APPENDIX B: CODE LISTING

This appendix contains a listing of the code updates for WONDY IV.¹¹ The STAT5 subroutine modifications require a call to the ODE subroutine. This is a library subroutine¹³ which is based on the DE scheme of Shampine and Gordon.¹² The ODE subroutine requires the F subroutine which computes the material derivatives of the array in Eqn. (56). Function TEXTND computes values of θ_3 above the critical point for purposes of continuity in the heat conduction and mass exchange calculations. Subroutine COND computes values of K_f , K_v , and K_c . The remaining routines describe the behavior of water and were supplied by Cole.¹⁴

The update listing follows:

```
*IDENT, BNDLFT
*D ONEDY. 1056, 1057
      IF(NONE) 8=ADDATA(8)
      SN= ADDATA(8)
      IF(T.GE.ADDATA(10)) BN=ADDATA(9)
*IDENT, ARTVIS
*I ONEDY.1126
      GO TO 5008
*IDENT, MEKST5
*D MAXPA. 16, 338
C
C
      STAT5 MODIFICATIONS
C
      DIMENSION Y(8), YPOUT(8), WORK(268), IWORK(6)
      COMMON/WITHF/PC, VR, PHF, PHC, RC, PF, PV, PRC, PRF, FRV, ROR, THCO, THVO
     1 .THFO, AKF, AKC, AKV
      COMMON/TIMESF/ DELTIM, TZERO, TEND
      COMMON/ARGLET/ TE, RHO, PR, ER, SY, CV, DRT, DPR
      TYPE INTEGER PLATE, #4020
      EXTERNAL F
      DELTIM=DELT(1)
      TZERO=T-DELTIM
      TEND=T
      DO 10 I=1,8
10
     Y(I)=DATB(I)
      THYO=DATE(9)
      THCO=DATB(10)
      TPRES=TZERO
      NEQN=8
      EPS=CES(26, PLATE)
      EP2=EP8
      IFLAG=-1
206 CONTINUE
      CALL ODE (F, NEQN, Y, TPRES, TEND, EPS, EP2, IFLAG, WORK, IWORK)
      IF(IFLAG.LT.-2) PRINT 205, N.L. IFLAG
205 FORMAT(10X, *N=* I5, * L=*, I5, *IFLAG=*, I5)
      IF (TPRES.LT. TEND) GO TO 206
      DO 11 I=1.8
      DATB(I)=Y(I)
11
      DATE(9)=THVO
      DATB(10)=THCO
      CALL F(TEND, Y, YPOUT)
      PN=PC-Y(3)/PHC*YPOUT(1)/ROR*VR-1.5*PHF/PHC*(Y(3)/Y(2))**3.*RC
     1*VR**2.
      SN=PN
      ZN=0.
      EN=(PRF*Y(6)+PRV*Y(7)+PRC*Y(6))/(PRF+PRV+PRC)
      CN=CES(2,PLATE)
      DATB(11)=PV
      RETURN
C
C
      STA75 INITIALIZATION
C
      ENTRY STIN5
      NINT=0
```

	TE=CEB(7,PLATE)
	RH0=CEB(1, PLATE)/1000.
55	CALL STMTBL
	RHA=RHO+(CES(28, PLATE)*10, -PR)/DPR
	AB=ABS((RHA-RHO)/RHO)
	TE(AB LE 1 OF-7) GO TO 12
	NUU-NIA NIVT-NIVT-1
	RINI-NINITI
	1F(N1N1.L1.10) GU 10 55
	PRINT 14
14	FORMAT(* COOLANT INITIALIZATION DID NOT CONVERGE*)
12	CES (1, PLATE) = RHA \$ 1000.
	NINT=0
	TE=CES(8, PLATE)
	RH0=CES (3, PLATE) / 1000.
20	CALL STMTBL
	RHA=RHO+(CES(29, PLATE)*10PR)/DPR
	AB-=ABS((RHA-RHO)/RHO)
	IF(AB.LE.1.0E-7) GO TO 22
	REC=REA
	NINT=NINT+1
	IF (NINT. LT. 10) GO TO 20
	PRINT 24
24	FORMAT(* VAPOR INITIALIZATION ID D NOT CONVERGE*)
22	CES (3 PLATE) = RHA + 1000
	CES(15 PLATE)=CES(10 PLATE) **3 /(1 -CES(5 PLATE))
	CES(6 PLATE) = (CES(10 PLATE) **3 - CES(11 PLATE) **3)/CES(15 PLATE)
	JA=(LA-1) +NYAR
	TE=CEB(8, FLATE)
	RHD=CES(3, PLATE)/1000.
	CALL STMTBL
	STORE (JA+17) = ER+1.0E-4
	PRESS=PR*O.1
	TE=CES(T, PLATE)
	RH0=CES(1, PLATE)/1000.
	CALL STMTBL
	STORE (JA+18)=ER+1.0E-4
	STORE (JA+16) = CES (16, PLATE) * CES (9, PLATE)
	CES(4, PLATE)=CES(18, PLATE)/(1PRESS/CES(17, PLATE))
	CES(12, PLATE)=CES(1, PLATE)*CES(5, PLATE)
	CES(13, PLATE) = CES(4, PLATE) * (1 CES(5, PLATE) - CES(6, PLATE))
	CES(14, PLATE)=CES(3, PLATE)*CES(6, PLATE)
	CES(27, PLATE)=CES(12, PLATE)+CES(13, PLATE)+CES(14, PLATE)
	STORE(JA+11)=0.
	STORE(JA+12)=CES(11.PLATE)
	STORE (JA+13) =CE8 (10, PLATE)
	STORE (JA+14)=0.
	STORE (14+15)=0
	GTODE (14+T) - DDEGE
	BIUNE(JA+19)=CEB(C, PLATE)
	STURE (JA+20)=CES(T, PLATE)
40	CONTINUE
	RETURN

```
END
      SUBROUTINE F(TB, Y, YP)
*CALL . SHORTEN
      COMMON/HDOG/REXIND
      COMMON/TIMESF/ DELTIM, TZERO, TEND
      COMMON/ARGLST/ TE, RHO, PR, ER, SY, CV, DPT, DPR
      COMMON/THERMO/PM, EM, SM, CVM, DPTM, DPRM, KPA, RVV, EV, SV, CVV, DPTV, DPRV
     1, RLL, EL, SL, CVL, DPTL, DPRL
      COMMON/WITHF/PC, VR, PHF, PHC, RC, PF, PV, PRC, PRF, PRV, ROR, THC, THV
     1 . THF . AKF . AKC . AKV
      DIMENSION Y(8), YP(8)
      TYPE INTEGER PLATE, W4020
      LOGICAL ERR
      DENS=((RN-R)*TB+R*TEND-RN*TZERO)/DELTIM
      RDT=(RN-R)/DELTIM
      ROR=CES (27, PLATE) /DENS
      RDOT=RDT/DENS
C
C
          CHECK FOR IMPACT OR TOTAL EVAPORATION
С
      IF(Y(3) . LE. Y(2)) GO TO 601
      IF(-Y(1) .GE.CES(14, PLATE)) GO TO 601
C
      USE SI UNITS
С
C
      COMPUTE VOL FRACT
C
      PHC=1.-Y(3)**3./ROR/CES(15.PLATE)
      PHF=Y(2) **3. /ROR/CE8(15, PLATE)
      PHV=1.-PHC-PHF
      DDFF=Y(3)-Y(2)
      IF (PHV.LE.O.O) PRINT 151, PHV, DDFF
      FORMAT (* PHV=+, E10.3, * Y3-Y2=*, E10.3)
151
C
C
      COMPUTE DENSITIES
C
      RC=(CES(12,PLATE)-Y(1))/PHC/ROR
      RF= CES(13, PLATE) / PHF/ROR
      RV=(CES(14,PLATE)+Y(1))/PHV/ROR
      IF (RV. GT. RC) GO TO 601
      IF (RV.LE.O.O ) PRINT152, RV. Y(1), CES(14, PLATE)
152
      FORMAT (* RV=*, E10.3, * Y(1)=*, E10.3, * CES14=*, E10.3)
224
      CONTINUE
C
С
      COMPUTE TEMPS
      START WITH OLD TEMP
C
C
      NINT=O
      TE=THC
      RH0=RC/1000.
      CALL STMTBL
51
      THA=TE-(ER-Y(8)*1.0E4)/CV
      AB=ABS((THA-TE)/TE)
       IF(AB.LE.1.0E-6) GO TO 50
      TE=THA
      NINT=MINT+1
```

.

	IF(NINT.LT.50) GO TO 51
	PRINT 52,RC,TE
52	FORMAT (* COOLANT TEMP DID NOT CONVERGE RC=*, E10.3.
	1 * THC=*,E10.3)
50	THC=TE
	PC=PR=0 1
	CPC=(CV+1)/DPR+(DPT/RH0)**2)*1 OF-4
	NINT=0
	TE=THV
	BH0=BV/1000
55	CALL STATEL
	THATTE-(FR-V(T)+1 OF+A)/CV
	ABEARS ((THA-TE) /TE)
	TE(AD IE 1 OF-E) CO TO EE
	TE-TUA
	TE(TE IT 274) CO TO FO
	NTRT-NTRTA
	TE NTNE IT EA) ON SO FE
	DETNY FT BY TT
=7	FRINI DI, NY, IL
51	FURMAT(* VAPUR TEXP DID NUT CUNVERGE RV=*, E10.3,
	1 * INV=*,E10.3)
	GU TU BOI
56	THV=TE
	GO TO 59
58	TE=274
	THV=TE
	GO TO 601
59	CONTINUE
	PV=PR/10.
	CPV=(CV+TE/DPR*(DPT/RHO)**2.)*1.0E-4
	THF=Y(6)/CES(16, PLATE)
	PF=CES(17, PLATE) *(1CES(18, PLATE)/RF)
C	
C	COMPUTE THERMAL DIFUSIVITY
C	
	CALL COND
	ABC=Y(3)-Y(2)
	IF (ABC.LT.CES(25, PLATE)) ABC=CES(25, PLATE)
	OMG=ABS(Y(4)/RC/ABC)
	IF (AKY, LE. O. O) PRINT 400, AKY
	IF(RV.LE.O.O) PRINT 401 RV
	IF (CPV LE O O) PRINT 402 CPV
	IF (CPV LE 0 0) G0 T0 601
400	FORWAT (* AKV=* F15 8)
401	FORWAT(* RV=* F15 B)
402	FORMAT(+ CPV-+ FIE Q)
102	FAC-1 +V(2)+PE+V(E)/2 /CPC(00 DIATE)+CPC(04 DIATE)
	AVE-AVE+EAC
	AKC=AKC#FAC
	ALF-SWRI (UMG*HF*CES (16, PLATE) / AKF)
	ALC=SURT (OMG*RC*CPC/AKC)
	ALV=SQRT(OMG*RV*CPV/AKV)
C	
C	COMPUTE SATURATION PROPERTIES

C	
	TSAT=TBND(PR, ERR)
	IF(ERR) GO TO 66
	GO TO 60
66	CONTINUE
	TSAT=TEXTND(PV)
	ALS=CES(19, PLATE)
	NINT=0
	TE=TBAT
	RED=REXIND/1000.
	IF(RH0.LT.O.) GD TO 601
81	CALL STMTBL
	RACT=RHO+(PV*10PR)/DPR
	AB=ABS((RACT-REO)/RHO)
	IF (AB.LE.1.0E-6) GO TO 86
	RHO=RACT
	NINT=NINT+1
	IF(RHO.LE.O.) GO TO 601
	IF (NINT.LT.50) GO TO 81
	PRINT 82, TE, RHO
82	FORMAT (* SAT PROPERTIES DID NOT CONVERGE TE=*, E10.3, * RHO=*,
	1 E10.3)
86	HV=ER*1.0E-4+PV/RHC/1000.
	HC=HV
	GC TO 61
60	CALL WATER (.31681699395231 , TSAT)
	HV=(EV+PM/RVV) *1.0E-4
	HC=(EL+PM/RLL)*1.0E-4
61	ALS=HV-HC
	IF (ALS.LT.CES(19, PLATE)) ALS=CES(19, PLATE)
С	
С	COMPUTE WALL TEMPS
C	
	C1=AKF/Y(2)*(ALF*Y(2)+1.)
	C2=AKV/Y(2)*(ALV*Y(2)+1.)
	C3=AKV/(Y(3)-Y(2))
	CC1=1.+Y(2)*RF*Y(5)/3./CES(22,PLATE)*CES(21,PLATE)
	TF=(C1*THF+C2*THV+(C3-C2/2.)*TSAT)/(C1+C3+C2/2.)
	ALPHAC=CES (20, PLATE) + (1CES (20, PLATE)) *PV/22.09E6
	ALPHAC=AMIN1(1., ALFHAC)
	AL=ALS*ALPHAC*CC1*SQRT(CES(23,PLATE)/51604.43)
	C1=AKC*(ALC*Y(3)+1.)/Y(3)
	C2= AL*PV/TBAT
	QV=AKV*((TF-TSAT)/(ABC)+(THV-0.5*(TF+TSAT))*(ALV*Y(3)+1.)/
	1Y(3))
	C3=C1*THC+QV+AL*PV/SQRT(TSAT)
	TW=((-C2+SQRT(C2**2.+4.*C1*C3))/2./C1)**2.
C	전철 가장에 가장 가장 가장 것을 통해 가장 같은 것이 같은 것을 하는 것을 수 있다.
C	COMPUTE D(CV)/DT
С	
	YP(1) =-ROR*(PHV+PHF)/Y(3)*AL/ALS*PV*(1./SQRT(ISAT)-SQRT(TW)/ISAT)
	1*3.
	IF(YP(1).GT.10.) YP(1)=10.
	IF(YP(1).LT10.) YP(1)=-10.
302	CONTINUE

```
C
C
      COMPUTE D(RF)/DT
C
      YP(2)=(PF-PV+YP(1)/ROR*Y(4)/RC+Y(3)/PHF)/CE8(24, PLATE)
     1 /( 3.*RF/Y(2))
C
C
      COMPUTE D(R)/DT
C
      YP(3)=Y(4)/RC+Y(2)**3./3./PHF/RC/Y(3)**2.*YP(1)/ROR
C
C
      COMPUTE D(PSI)/DT
C
71
      YP(4)=-1.5*(1.-(1.-PHC)/PHC)*Y(4)**2./Y(3)/RC-(1./3./(1.-PHC)-1./
     1PEC+1./PHF)*YP(1)/ROR*Y(4)/RC+(PF-PC)/Y(3)
C
C
      COMPUTE D(EFRACT)/DT
C
      YP(5)=CE8(24, PLATE)*9.*(YP(2)/Y(2))**2.
C
C
      COMPUTE DERIVATIVES FOR ENERGY EQNS
C
      EFP=-AKF*(ALF*Y(2)+1.)/Y(2)*(THF-TF)*3.*PHF/Y(2)
      EVP=(TF+T8AT-2.*THV)*(ALV*Y(3)+1.)/Y(3)
     1
                 *3.*(PHF+PHV)/Y(3)+HV*YP(1)/ROR
      ECP=AKC*(TW-THC)*(ALC*Y(3)+1.)/Y(3)*3.*(PHF+PHV)/Y(3)
     1
                                         -HC*YP(1)/ROR
      EXTRA=(Y(T)+PV/RV-HV)*YP(1)/ROR
      EVP=EVP+EXTRA
      ECP=ECF-EXTRA
      DJ=-ROR*RDOT
      DPHC=(-3.*YP(3)/Y(3)+DJ/ROR)*Y(3)**3./ROR/CES(15,PLATE)
      DPHF=( 3.*YP(2)/Y(2)-DJ/ROR)*Y(2)**3./ROR/CES(15,PLATE)
      DPHV=-DPHC-DPHF
      DRC=-YP(1)/PHC/ROR-RC*(DJ/ROR+DPHC/PHC)
      DRV= YP(1)/PHV/ROR-RV*(DJ/ROR+DPHV/PHV)
      DRF=-3.*RF*YP(2)/Y(2)
      PRC=RC*PHC
      PRV=RV*PHV
      PRF=RF*PHF
C
C
      COMPUTE D(EF)/DT
C
      YP(6)=EFP/PRF
      VR=Y(4)/RC
      DVR=YP(4)/RC-Y(4)*DRC/RC**2.
      AALV=PV/RV-PC/RC+Y(3)*VR+YP(1)/PRC/ROR+1.5*PHF*(1./PHC-1.)*VR**2.
     1-PRF*(YP(3)*VR/PRF+Y(3)*DVR/PRF-Y(3)*VR/PRF**2.*(DRF*PHF+RF*DPHF))
      AALC=-AALV+PV/RV
      AALV=PV/RV
C
C
      COMPUTE D(EV)/DT
C
      IF (PRV. LT. 1 . E-5) PRV=1 . E-5
      YP(T)=(-YP(1)/ROR*Y(T)+PHV*PV*DRV/RV-AALV*YP(1)/ROR+EVP)/PRV
      IF(YP(7).GT.1.E11) YP(7)=1.E11
```

```
43
```

.

A

- 0.

IF(YP(7).LT.-1.E11) YP(7)=-1.E11 C C COMPUTE D(EC)/DT C YP(8) = (YP(1)/ROR*(Y(8)+AALC)+PHC*PC*DRC/RC+ECP)/PRCGO TO 670 601 STARE=Y(3) IF(Y(3).LT.Y(2)) Y(3)=Y(2) PHC=1.-Y(3) **3. /ROR/CES(15, PLATE) PHF=Y(2) **3. /ROL/CES(15, PLATE) PHV=1.-PHC-PHF RC=(CES(12,PLATE)-Y(1))/PHC/ROR RF= CES(13, PLATE)/PHF/ROR RV=RC IF(CES(14, PLATE)+Y(1).GT.O.) RV=2. NINT=0 TE=THC RH0=RC/1000. 602 CALL STMTBL THA=TE-(ER-Y(8)*1.0E4)/CV AB=ABS((THA-TE)/TE) IF (AB.LE.1.0E-6) GO TO 650 TE=THA NINT=NINT+1 IF (NINT LT . 50) GO TO 602 PRINT 603 RC, TE 603 FORMAT (* COOLANT TEMP DID NOT CONVERGE AFTER IMPACT RC=*, E10.3, 1 * THC=*, E10.3) 650 CONTINUE THC=TE PC=PR*0.1 CPC=(CV+TE/DPR*(DPT/RHO)**2.)*1.0E-4 THF=Y(6)/CES(16, PLATE) PF=CES(17, PLATE)*(1.-CES(18, PLATE)/RF) OMG=ABS(Y(4)/RC)/CES(25,PLATE) CALL COND FAC=1.+Y(2)*RF*Y(5)/3./CES(22,PLATE)*CES(21,PLATE) AKC=AKC*FAC AKF=AKF*FAC ALF=SQRT (OMG*RF*CES(16, PLATE) /AKF) ALC=SORT (OMG*RC*CPC/AKC) IF(Y(3).GT.Y(2)) TSAT=CES(31,PLATE) IF(Y(3).GT.Y(2)) GO TO 604 PR=10. *PF TSAT=TBND(PR, ERR) 1F(ERR) GO TO 605 GO TO 604 605 CONTINUE TSAT=TEXIND(PF) 604 CONTINUE IF(Y(3).GI.Y(2)) TW=THC IF(Y(3).LE.Y(2)) TW=(AKF/Y(3)*(ALF*Y(3)+1.)*THF+ 1 AKC/Y(3)*(ALC*Y(3)+1.)*THC)/(AKF/Y(3)*(ALF*Y(3)+1.)+ 2 AKC/Y(3)*(ALC*Y(3)+1.)) TW=THC

ŧ.

```
TE=TW
      RH0=RV/1000.
      CALL STMTBL
      PV=PR/10.
680
     CONTINUE
      ALPHAC=CES (20, PLATE) + (1, -CES (20, PLATE)) *PV/22.09E6
      ALPHAC=AMIN1(1., ALPHAC)
     AL=
            ALPHAC*(1.+Y(2)*RF*Y(5)/3./CES(22,PLATE)
     1 *CES(21, PLATE))*
     2SORT (CES (23, PLATE) / 51604.43)
     YP(1)=-ROB*(PHV+PHF)/Y(3)*AL *PV*(1./SQRT(TSAT)-SQRT(TW)/TSAT)
     1*3.
      IF(YP(1).GT.10.) YP(1)=10.
      IF(YP(1).LT.O.) YP(1)=0.
      YP(2)=(PF-PV
                                       +YP(1)/ROR+Y(4)/RC (3)/PHF)/
     1 CES(24, PLATE)/( 3.*RF/Y(2))
      YP(3)=Y(4)/RC+Y(2)**3./3./PHF/RC/Y(3)**2.*YP(1)/ROR
      IF(Y(3).GT.Y(2)) GO TO 733
      IF(YP(3).LT.YP(2)) YP(2)=YP(3)
      IF(YP(3).LT.YP(2)) PF=PF-3.*RF/Y(2)*YP(2)*CES(23.PLATE)
     GO TO 734
733
    PF=PF+PC
734 CONTINUE
     YP(4)=-1.5*(1.-(1.-PHC)/PHC)*Y(4)**2./Y(3)/RC-(1./3./(1.-PHC)-1./
     1PEC+1./PHF) *YP(1)/ROR*Y(4)/RC+(PF-PC)/Y(3)
      YP(5)=CES(24, PLATE)*9.*(YP(2)/Y(2))**2.
      IF(Y(3).GT.Y(2)) EFP=0
      IF(Y(3).GT.Y(2)) ECP=0
      IF(Y(3).LE.Y(2)) EFP=-AKF*(ALF*Y(3)+1.)/Y(3)*(THF-TW)
      IF(Y(3).LE.Y(2)) ECP=AKC*(TW-THC)*(ALC*Y(3)+1.)/Y(3)
      HC=0
      HV=0
      DJ=-ROR*RDOT
      DPHC=(-3.*YP(3)/Y(3)+DJ/ROR)*Y(3)**3./ROR/CES(15,PLATE)
      DPHF=( 3.*YP(2)/Y(2)-DJ/ROR)*Y(2)**3./ROR/CES(15.PLATE)
      DPHY=-DPHC-DPHF
      DRC=-YP(1)/PHC/ROR-RC*(DJ/ROR+DPHC/PHC)
      DRF=-3.*RF*YP(2)/Y(2)
      PRC=RC*PHC
      PRF=RF*PHF
      YP(6)=EFP/PRF
      YP(7)=0
      YP(8)=(YP(1)/ROR*(Y(8))+PHC*PC*DRC/RC+ECP)/PRC
      Y(3)=STARE
670
      CONTINUE
      RETURN
      END
      FUNCTION TEXTND(PV)
C
      EXTENDED SATURATION LINE
C
C
      COMMON/HDOG/REXIND
      DIMENSION T(5), P(5), R(5)
      DATA(T(I), I=1,5)/
     * 647.296,657.1,671.89,713.96,764.28/
```

.

.

.

.

```
DATA(P(I), I=1,5)/
     *22.09E6,25.E6,30.E6,50.E6,100.E6/
      DATA(R(I), I=1,5)/
     * 316.96, 336.95, 372.60, 457.47, 542.38/
      DO 101=2.5
      IF(PV.GT.P(I)) GO TO 10
      TEXTND=T(I-1)*T(I)/(T(I-1)+(T(I)-T(I-1))*ALOG(PV/P(I))
     1 /ALOG(P(I-1)/P(I)))
      REXIND=R(I)+(R(I-1)-R(I))*(PV-P(I))/(P(I-1)-P(I))
      RETURN
10
      CONTINUE
      END
      SUBROUTINE COND
      DIMENSION VA(6,6), FL(6,6), P(d), T(6)
      COMMON/WITHF/PC, VR, PHF, PHC, RC, PF, PV, PRC, PRF, PRV, ROR, THC, THV
     1 , THF, AKF, AKC, AKV
     DATA((VA(I, J), J=1,6), I=1,6)/
     * .024, .0287, .0434, .0611, .0943, .0943,
     * .024, .0287, .0434, .0611, .0943, .0943,
     * .0261, .030, .0525, .0659, .0986, .0986,
     *.125,.125,.125,.093,.113,..13,
     *.300,.300,.300,.301,.148,.148,
     * 600, 600, 600, 600, 170, 170/
     DATA((FL(I,J),J=1,6),I=1,6)/
     *.569, 681, 500, 301, 150, 150,
     *.569, 681, 500, 301, 150, 150,
     *.573.690.520.301.150.150.
     *.585,.700,.571,.301,.150,.150,
     * 606, 720, 622, 301, 148, 148,
     *.700,.700,.700,.600,.170,.170/
     DA1A(P(I), I=1,6)/
     *0.0,0.1E5,5.0E5,20.0E5,50.0E5,100.0E5/
     DATA(T(I), I=1,6)/
     *273.16,423.16,573.16,723.16,973.16,5273.16/
     DO 10 Y = 2.6
      IF(PV.LE.P(I)) GO TO 11
10
      CONTINUE
      I=6
      AKV= . 170
      GO TO 31
11
      CONTINUE
      DO 12 J = 2,6
      IF(THV.LE.T(J)) GO TO 13
12
      CONTINUE
      J=6
      AKV= . 170
      GO TO 31
13
      CONTINUE
      DP=P(I)-P(I-1)
      DT=T(J)-T(J-1)
      V1=VA(I-1, J-1)
      V2=VA(I, J-1)
      V3=VA(I-1,J)
      V4=VA(I,J)
      B=(V2-V1)/DP
```

	C=(V3-V1)/D7
	D=(V4+V1-V3-V2)/DP/DT
	AKV=V1+B*(PV-P(I-1))+C*(THV-7(J-1))+D*(PV-P(I-1))*(THV-T(J-1))
31	CONTINUE
	DO 20 I = 2,6
	IF(PC.LE.P(I)) GO TO 21
20	CONTINUE
	I=6
	AKC= . 170
	GO TO 32
21	CONTINUE
	D0 22 J = 2.6
	IF(THC.LE.T(J)) GO TO 23
22	CONTINUE
	J=6
	AKC= . 170
	G0 T0 32
23	CONTINUE
	DP=P(I)-F(I-1)
	DT=T(J)-T(J-1)
	V1=FL(T-1, J-1)
	$V_2=FL(T, J-1)$
	V3=FL(T-1, J)
	V4="L(T J)
	B = (V2 - V1) / DP
	C = (V3 - V1) / DT
	D = (V4 + V1 - V3 - V2) / DP / DT
	AKC=V1+R*(PC-P(T-1))+C*(THC-T(J-1))+D*(PC-P(T-1))*(THC-T(J-1))
32	CONTINUE
	AKT=12
	RETURN
	FND
	SURROUTINE WATER (R TIN)
c	
č	THERMODYNAMIC PROPERTIES OF WATER AS A FUNCTION OF T AND REG
č	
~	CONVON /THERMO/ PM SW SW CVW DPTW DPRM KPA RV EV SV CVV DPTV DPRV
	CONVON /ARGIST/ T RHO P E S CV DPT DPR
	DTUENSTON PPU(6) FEV(5) FEL(5) PA(6)
	FOULTVALENCE (PPW(1) PW) (EEV(1) EV) (EEL(1) EL) (PA(1) P)
	LOGICAL FRR CLOSE
	CONVON /1.V2/ TCRIT. TZERO. DT51. NTBL1. PLV2(51), RVLV2(51), RLLV2(51)
	FOUTVALENCE (PCRIT PLV2(1)) (RCRIT RVLV2(1))
	DATA FRRITW TTLTW /1 E-5.50/
	DATA RVIN2P RVAX2P SAFEV SAFEL /4 84E-6.1.00. 971.1.008/
	DATA SAFEVI SAFELS / 988 1 006/
	7=7TN
c	A - 1 AN
0	FAST CHECKS FOR SINGLE PHASE
c	VAY WANT TO BIAS AWAY FROM TORIT
C	Mare nears av Mara Annae Farme Averag
~	TE (T GE TCBIT) GE TO 90
	TF (B LT BWIN2P) (42 TO 90
	IF (B GT BWAX2P) GG TO 90
~	at furationally an in an

4

à

47

.

.

```
C
      INTERPOLATE FIRST APPROXIMATION TO PHASE DENSITIES
C
      I=(T-TZERO)/DTBL
      TLO=TZERO+FLOAT(I) *DTBL
      THI=AMIN1(TLO+DTBL, TCRIT)
      I=NTBL1-I
      SF=(THI-T)/DTBL
      IF (I.EQ.1) SF=(SF*DTBL/(TCRIT-TLO))**.33333333333333
      RV=RVLV2(I)+SF*(RVLV2(I+1)-RVLV2(I))
      RL=RLLV2(I)+SF*(RLLV2(I+1)-RLLV2(I))
C
C
      CHECK DENSITY AGAINST PHASE DENSITIES WITH SAFETY FACTORS
C
      IF (R.LT.SAFEV*RV) GO TO 90
      IF (R.GT. SAFEL*RL) GO TO 90
      PSAT=PBND(T, ERR)
      IF (ERR) STOP1
C
C
      IMPROVE FIRST APPROXIMATION TO PHASE DENSITIES
C
      CHECK DENSITY AGAINST PHASE DENSITIES WITH SAFETY FACTORS
C
      SUM=RL+RV
      3F=(PLV2(I)-PSAT)/(PLV2(I)-PLV2(I+1))
      IF (I.EQ.1) SF=SF**.33333333333333
      RV=(SF*RVLV2(I+1)*TL0/PLV2(I+1)+(1.0-SF)*RVLV2(I)*TH1/PLV2(I))
     1 *PEAT/T
      RL=SUM-RV
      IF (R.LT.SAFEV1*RV) GO TO 90
      IF (R.GT.SAFEL1*RL) GO TO 90
C
C
     ITERATE TO FIND LIQUID DENSITY
C
      CLOSE=RL.LT.R
     IF (CLOSE) RL=R
     ITL=0
   10 RHO=RL
      ITL=ITL+1
      CALL STMTBL
      IF (ITL.GT.1) GO TO 20
      IF (CLOSE AND (P.GT.PSAT)) GO TO 91
   20 DP=PSAT-P
      IF (ABS(DP).LT.ERRLIM*PSAT) GO TO 30
      IF (DPR.EQ.O.O) STOP2
     DR=DP/DPR
      RL=RL+DR
     IF (ITL.LT.ITLIM) GO TO 10
      STOP3
C
C
      CHECK DENSITY AGAINST LIQUID DENSITY
C
   30 IF (R.GT.RL) GO TO 90
     DO 31 J=1,5
   31 EEL(J)=PA(J+1)
C
    ITERATE TO FIND VAPOR DENSITY
C
```

```
C
      ITV=0
   40 RHD=RV
      ITV=ITV+1
      CALL STMT9L
      DP=PSAT-P
      IF (ABS(DP) LT ERRLIM*PSAT) GO TO 50
      IF (DPR.EQ.O.O) STOP4
      DR=DP/DPR
      RV=RV+DR
      IF (ITV.LT.ITLIN) GO TO 40
      STOP5
C
      CHECK DENSITY AGAINST VAPOR DENSITY
C
C
   50 IF (R.LT.RV) GO TO 20
      DO 51 J=1.5
   51 EEV(J)=PA(J+1)
C
C
      HAVE TWO PHASE STATE
C
      KPA=2
      PM=PSAT
      X=AMIN1(1.0,RV*(RL-R)/(R*(RL-RV)))
      EM=X*EV+(1.0-X)*EL
      SM=X*SV+(1.0-X)*SL
      DPTM=(SV-EL)*RL*RV/(RL-RV)
     FACT=PM+(EV-EL)*RL*RV/(RL-RV)
      CVM= X *(CVV+(FACT-T*DPTV)*(DPTM-DPTV)/(DPRV*RV**2))
     1 +(1.0-X)*(CVL+(FACT-T*DPTL)*(DPTM-DPTL)/(DPRL*RL**2))
      DPRM=0.0
      GO TO 999
C
C
      HAVE SINGLE PHASE STATE
C
   90 CONTINUE
      RHO=R
      CALL STMTBL
   91 KPA=1
      RV=0.0
      RL=0.0
      DO 100 J=1,5
      EEV(J)=0.0
  100 EEL(J)=0.0
      DO 110 J=1,6
  110 PPM(J)=PA(J)
  999 RETURN
      END
      FUNCTION PBND (T, ERR)
C
C
      SATURATION PRESSURE BY LINEAR INTERPOLATION OF LOG(P) VS 1/T
C
      LOGICAL ERR
      COMMON /LV2/ TCRIT, TZERO, DTBL, NTBL1, PLV2 (51), RVLV2 (51), RLLV2 (51)
      EQUIVALENCE (PCRIT, PLV2(1)), (RCRIT, RVLV2(1))
```

.

....

.

TH D/ S/	EMPERATURES /RE TCRIT, ATA TCRIT, TZERO, DTBL, NT ATURATION PRESSURE	(TZER0+(NTBL1-I)*DTBL TBL1 /6.4724498885354E-	,I=0,NTBL1) +02,273.16,7.5,50/
D	ATA (PLV2(I), I=1,51)/		
	2.2078404874679E+08,	2.0399624991274E+08,	1.8642191385428E+08,
	1.7021255579410E+08,	1.552131-494211E+08,	1.4131535874689E+08,
	1.2843419868665E+08,	1.1649884368919E+08,	1.0544800715997E+08,
*	9.5227210688868E+07,	8.5787036358453E+07,	7.7081943660503E+07,
	6.9069440814585E+07,	6.1709492002574E+07,	5.4964088285502E+07,
*	4.8796935477108E+	4.3173227365359E+07,	3.8059482141874E+07,
	3.3423426109402E+07,	2.9233912958101E+07,	2.5460869865993E+07,
	2.2075263818807E+07,	1.9049083126126E+07,	1.6355330301655E+07,
	1.3968023381043E+07,	1.1862203438245E+07,	1.0013946575494E+07,
	8.4003790327471E+06,	6.9996943115145E+06,	5.7911713552618E+06,
*	4.7551928909316E+06,	3.8732630329932E+06,	3.1280232026451E+06,
*	2.5032653425615E+06,	1.9839413347299E+06,	1.5561674782798E+06,
*	1.2072228766907E+06,	9.2554063696671E+05,	7.0069090921758E+05,
*	5.2335499915146E+05,	3.8529006597665E+05,	2.7928426434173E+05,
*	1.9910258410860E+05,	1.3942406296435E+05,	9.5771466827884E+04,
*	6.443492208700TE+04,	4.2391312168407E+04,	2.7221491186800E+04,
*	1.7027496270014E+04,	1.0351941204056E+04,	6.1016396936318E+03/
8	ATURATED VAPOR DENSITY		
D	ATA (RVLV2(I), I=1,51)/		
*	3.1681699395231E-01,	1.8121395566705E-01,	1.4356900039010E-01,
*	1.1970972488335E-01,	1.0211953786232E-01,	8.8257487547604E-02,
*	7.6909589525150E-02,	6.7388252174886E-02,	5.9261675528176E-02,
*	5.2239044025492E-02,	4.6114240858049E-02,	4.0735327172216E-02,
*	3.5986715230857E-02,	3.1778145127381E-C2,	2.8037554629907E-02,
*	2.4706296358921E-02,	2.1735831968490E-02,	1.9085389136779E-02,
*	1.6720265049647E-02,	1.4610574987901E-02,	1.2730313974087E-02,
*	1.1056642691794E-02,	9.5693366776109E-03,	B.2503561061553E-03,
*	7 0835058485399E-03,	6.0541639926657E-03,	5.1490629718466E-03,
*	4.3561116791474E-03,	3.6642499796053E-03,	3.0633292223428E-03,
*	2.5440139347520E-03,	2.0977010140221E-03,	1.7164535315528E-03,
*	1.3929468168818E-03,	1.1204248531978E-03,	8.92665247016502-04,
*	7.0395117245265E-04,	5.4904877214249E-04,	4.2318855348588E-04,
*	3.2204937688539E-04,	2.4174371256976E-04,	1.7880295981911E-04,
*	1.3016177997187E-04,	9.3140605236117E-05,	6.5425122493264E-05,
	4.5046609308889E-05,	3.0350482356237E-05,	1.99143008254142-05,
۰,	1.2814725672404E-05,	(AAD 121080220AT-00,	4.04100520023202-00/
-	ATORATED LIQUID DENSI		
	2 1601600005001E-01	4 76000066750015-01	E 201627620020EE-01
	3.10010493454391E-01,	4. 1082220015081E-01,	5.20102/0300305E-01,
1	5.0422942041211E-01, 6 A0711622021A6E-01	5.9341191441155E-01, 6.60843518344645-01	6 7032064704864F-01
	6 06446560423435-01	7 12438582705835-01	7 27450720238335-01
	7 4163682069091F-01	7 55071485242428-01	7 6784692120088E-01
	7 8003241180513E-01	7.9168633197001E-01	8.0285825310852E-01
	8 1359045738046E-01	8 23919063413285-01	8.3387488947819E-01
	8.4348413643457E-01	8.5276894513029E-01	8.6174786548644E-01
	8.70436253153985-01	8.7884668192274E-01	8.8698917453744E-01
	8 9487161026048E-01	9.0249996385832E-01	9 0987858730727E-01
	9.1701046223498E-01	9.2389742784102E-01	9.3054037578234E-01
	9.3693940030976E-01	9.4309368886644E-01	9.4900253548663E-01
		0 000000000000 01	0 0F0077007F1F0F 01

ŝ

50

C

С

С

C

```
# 9.7012003448037E-01, 9.7474227464802E-01, 9.7908169357815E-01,
     * 9.8312119155402E-01, 9.8683743183067E-01, 9.9019906343171E-01,
     * 9.9316471016571E-01, 9.9568091098007E-01, 9.9768056615323E-01.
     * 9.9908348266566E-01, 9.9980353189992E-01, 9.9977455442334E-01/
      ERR=. TRUE.
      IF (T.GT.TCRIT) GO TO 99
      I=(T-TZERO)/DTBL
      IF (I.LT.O) GO TO 99
      TLO=TZERO+FLOAT(I) *DTBL
     THI=AMIN1(TLO+DTBL, TCRIT)
     I=NTBL1-I
     PBND=PLV2(I)*(PLV2(I+1)/PLV2(I))**
       (TLO*(THI-T)/(T*(THI-TLO)))
      ERR= . FALSE .
   99 RETURN
      END
      FUNCTION TBND (P, ERR)
C
C
      SATURATION TEMPERATURE BY LINEAR INTERPOLATION OF LOG(P) VS 1/T
C
      LOGICAL ERR
      COMMON /LV2/ TCRIT, TZERO, DTBL, NTBL1, PLV2(51), RVLV2(51), RLLV2(51)
      EQUIVALENCE (PCRIT, PLV2(1)), (RCRIT, RVLV2(1))
      ERR=. TRUE.
      IF (P.GT.PCRIT) GO TO 99
     DO 10 I=1, NTBL1
     IF (P.LT.PLV2(I+1)) GO TO 10
     TLO=TZERO~(NTBL1-I)*DTBL
     THI=AMIN1(TLO+DTBL, TCRIT)
     TBND=THI*TLO/
     i (THI+(TLO-THI)*ALOG(P/PLV2(I+1))/ALOG(PLV2(I)/PLV2(I+1)))
     ERR= . FALSE .
      GO TO 99
   10 CONTINUE
   99 RETURN
     END
      SUBROUTINE STMTBL
C
C
     DATA FROM
C
                    STEAM TABLES
C
                    THERMODYNAMIC PROPERTIES OF WATER
C
                    INCLUDING VAPOR, LIQUID, AND SOLID PHASES
C
C
                    BY KEENAN, KEYES, HILL, AND MOORE
C
                         WILEY (1969)
C
C
      WARNING THIS DATA IS ONLY GOOD FOR
C
                    T .GE. 273.15 K
С
                    T .LE. 1589 K
C
                    P .LT. 15000 PSI
C
      COMMON /ARGLST/ T, RHO, P, E, S, CV, DPT, DPR
      EQUIVALENCE (T, TK), (RHO, R)
      DIMENSION ALP(8), A(8,7), BET(7), GAM(7)
      DIMENSION DIAJ(7), HL(7), HLP(7), HLPP(7)
```

```
DATA DE/4.8/
     DATA GASC/4.6151E6/
     DATA ALP/1857.065E7.3229.12E+4,-419.465E+1,36.6649E-2,-20.5516E-5,
     14.85233E-8,46.E7,-1011.249E4/
      DATA A/29.492937,-132.13917,274.64632,-360.93828,342.18431,-244.50
     1042, 155. 18535, 5. 9728487, -5. 1985860, 7. TTT9182, -33. 301902, -16. 254622
     2. -177.31074.127.48742.137.46153.155.97836.6.8335354.-26.149751.65.
     3326396, -26.181978, 0., 0., 0., -0.1564104, -0.72546108, -9.1734289, 4.
     43125840,0.,0.,0.,0.,-6.3972405,26.409282,-47.740374,56.3130,0.,0
     5.,0.,0.,-3.9661401,15.453061,-29.142470,29.568796,0.,0.,0.,0.,0.,-0.6
     69048554, 2.7407416, -5.102807, 3.9636085, 0., 0., 0., 0./
      DATA BET/-410.30848.337.31180.-137.46618.6.7874983.136.87317.79.84
     1797,13.041253/
      DATA GAM/-416.05860,-209.88866,-733.96848,10.401717,645.8183,399.1
     1757,71.531353/
      OTK=1./TK
C
      DETERMINE PSI FUNCTIONS
      TLOG=ALOG(TK)
      F=ALP(1)+ALP(2)*TK+(ALP(7)+ALP(8)*TK)*TLOG
      FT=ALP(2)+ALP(8)+ALP(7)*OTK+ALP(8)*TLOG
      TP=TK
      DO TO I=2.5
      FT=FT+ALP(I+1)*TP*FLOAT(I)
      TP=TP*TK
70
      F=F+ALP(I+1)*7P
      FTT=2.*(ALP(3)+TK*(3.*ALP(4)+TK*(6.*ALP(5)+10.*ALP(6)*TK)))+(ALP(8
     1)-ALP(7)*OTK)*OTK
      DETERMINE H FUNCTIONS
C
      RC=0.634
      1.4
80
      TP=R-RC
      SUM=1.
      DO 90 I=1.7
      SUM=SUM*TP
90
      DTAU(I)=SUM
100
      HL(J) = A(1, J) + A(2, J) * DTAU(1) + A(3, J) * DTAU(2) + A(4, J) * DTAU(3)
      HLP(J) = A(2, J) + 2 * A(3, J) * DTAU(1) + 3 * A(4, J) * DTAU(2)
      HLPP(J) = 2 * A(3, J) + 6 * A(4, J) * DTAU(1)
      IF (J-2) 110,110,140
110
     DO 120 I=5,8
      HL(J)=HL(J)+A(I,J)*DTAJ(I-1)
      HLP(J)=HLP(J)+A(I,J)*DTAU(I-2)*FLOAT(I-1)
120
     HLPP(J)=HLPP(J)+A(I,J)*DTAU(I-3)*FLO.T((I-1)*(I-2))
      J=J+1
      IF (J-2) 130,130,100
130
     RC=1.
      GO TO 80
      IF (J-7) 150,160,160
140
       J=J+1
150
       GO TO 100
160
      CONTINUE
      DETERMINE L FUNCTIONS
C
       ED=EXP(-DE*R)
       DO 170 J=1.7
       SUM=BET(J)+GAM(J)*R
```

.

	HL(J)=HL(J)+ED*SUM
	HLP(J)=HLP(J)-ED*(DE*SUM-GAM(J))
170	HLPP(J)=HLPP(J)+DE*ED*(DE*SUM-2.*GAM(J))
С	DETERMINE & FUNCTIONS
	TAU=1000.*0TK
	TP=TAU-2.5
	DTAU(1)=TP
	DO 180 J=2,5
180	DTAU(J)=TP*DTAU(J-1)
	DTAUC=TAU-1.544912
	Q=0.
	QR=0.
	QRR=0.
	DO 190 J=3,7
	Q=Q+DTAU(J-2)*HL(J)
	QR=QR+DTAU(J-2)*HLP(J)
190	QRR=QRR+DTAU(J-2)*HLPP(J)
	SUM=0.
	TP=0.
	DD 200 J=4,7
	SUM=SUM+DTAU(J-3)*EL(J)*FLOAT(J-2)
200	TP=TP+DTAU(J-3)*HLP(J)*FLOAT(J-2)
	QTT=O.
	DO 210 J=5,7
210	QTT=QTT+DTAU(J-4)*HL(J)*FLOAT((J-2)*(J-3))
	QT=HL(2)+Q+DTAUC*(HL(3)+SUM)
	QRT=HLP(2)+QR+DTAUC*(HLP(3)+TP)
	QTT=2.*(HL(3)+SUM)+DTAUC*(2.*HL(4)+QTT)
	QRR=HLPP(1)+DTAUC*(HLPP(2)+QRR)
	QR=HLP(1)+DTAUC*(HLP(2)+QR)
	Q=HL(1)+DTAUC*(HL(2)+Q)
	SUM=TAU*OTK
	QTT=SUM*(2.*QT*OTK+SUM*QTT)
	QRT=-SUM*QRT
	QT=-SUM*QT
	RT=GASC*TK
	Q=R*Q
	QR=R*QR*R
С	DETERMINE THERMODYNAMIC FUNCTIONS
	P=R*RT*(1.+Q+QR)
	DPR=RT*(1.+2.*Q+4.*QR+QRR*R**3)
	DPT=P*OTK+R*R*RT*(QT+R*QRT)
	CV=-TK*(FTT+R*GASC*(2.*QT+TK*QTT))
	E=F-TK*(FT+R*RT*QT)
	S=-FT-GASC*(ALOG(R)+Q+R*TK*QT)
	RETURN
	END

APPENDIX C: INPUT INSTRUCTIONS

The International System of Units (SI) must be used. The standard WONDY IV input instructions apply;¹¹ however, the vapor explosion routine must be entered through the STAT5 subroutine. The equation of state constants for the CES array are defined as follows:

CES Array Number	MathematicalSymbol	Remarks
1*	Pco	Initial value of $\overline{\rho}_{C}$.
2	° C _o	Stability sound speed. A constant normally larger than the coolant sound speed.
3*	Pvo	Initial value of $\overline{\rho}_{V}$.
4*	Pfo	Initial value of $\overline{\rho}_{f}$.
5	¢co	Initial value of ϕ_{C} .
6*	φvo	Initial value of $\phi_{\mathbf{V}},$
7	θ _{co}	Initial value of θ_{C} .
8	θ _{vo}	Initial value of θ_V .
9	θfo	Initial value of θ_{f} .
10	R _{VO}	Initial value of R _v ,
11	R _{fo}	Initial value of Rf.
12*	Pco	¢copco
13*	Pfo	\$fopfo
14*	Pvo	\$vopvo
15*	R ³ CO	Eqn. (10)
16	c _{pf}	Eqn. (33)

*Computed Internally

4

.

CES Array Number	Mathematical Symbol	Remarks
17	Sf	Eqn. (32)
18	Pfr	Eqn. (32)
19	$(h_v - h_c)_{min}$	Minimum value of latent heat used in heat transfer calculations.
20	α	Eqn. (37)
21	Ŷ	Eqn. (35)
22	σ	Eqn. (35)
23	M _V	Eqn. (37)
24	Q	Eqn. (32)
25	$(R_v - R_f)_{min}$	Minimum value of vapor film thick- ness used in Eqn. (42).
26	ERROR	Error parameter for STEP.12
27*	ρο	Initial value of p.
28	Pco	Initial value of P _C .
29	Pvo	Initial value of P _V .
30		Not used.
31	$(\theta_s)_{min}$	Minimum value of θ_s used in heat conduction calculations.
32		Not used.
33		Not used.
34		Not used.
35		Not used.

*Computed internally.

APPENDIX D: LIST OF INPUT VALUES FOR EXAMPLE PROBLEM

The following list conforms to the standard WONDY IV notation¹¹ and uses the International System of Units:

Card Number 1:

TITLE. TOM MIX - EXAMPLE PROBLEM

Card Number 2:

LPHA	1
NOP	1
NVAR	21
LHBT	4
RHBT	1
LACT	-
NJOB	-
NIL	0
NOL	1
NUL	30
MORE	0
JTAPE	0
NSTART	0
W4020	0

Card Number 3:

TMAX	1.
DELT(4)	2.0E-6
SIGSEP	-1.0E100

SIGACT	1.0E3
XZERO	0.0
LBCN	
RBCN	-

ä

1

Card Number 4:

KT1	0.95
KT2	1.05
в1	0.5
в2	0.03
SIGMAX	-
EMAX	1.0E10
HMAX	-

Card Number 5:

S1	2.8E-5
∆1	0.05E-4
S2	1.0

Card Number 6:

S1	0.0
Δ1	1.0E-6
S2	1.0

Card Number 9:

I	8
ADDATA(8)	2.1E6
ADDATA(9)	1.0E5
ADDATA(10)	30.0E-6

Card Number 10:

6

.

PLATE	1.
STATE	5.0
NOMESH	120.0
THKNS	0.6
DELTAX	0.0025
DELTAX1	0.0025
XRATIO	- 1
XGAP	

Card Number 15:

1.	958.3
2.	5000.0
3.	0.1578
4.	-
5.	0.80
6.	-
7.	303.2

Card Number 16:

8.	1373.2
9.	2443.2
10.	0.0102
11.	0.0100
12.	-
13.	-

14. -

Card Number 17:

15.	-
16.	900.0
17.	1.0E11
18.	7850.0
19.	1.0E5
20.	0.2
21.	0.0

1

1

Card Number 18:

22.	0.4
23.	18.0
24.	25.42
25.	1.0E-6
26.	1.0E-6
27.	-
28.	1.0E5

Card Number 19:

29. 1.0E5
 30. 31. 100.0
 32. 33. 34. 35. -

DISTRIBUTION:

4

US NRC Distribution Contractor (425) (CDSI) (400 copies for R3) (25 copies for NTIS) 7300 Pearl Street Bethesda, MD 20014

".S. Nuclear Regulatory Commission (6) Kraftwerk Union Lice of Nuclear Regulatory Research Hammerbackerstra Washington, DC 20555 Postfach 3220

Attn: R. Curtis C. N. Kelber J. Larkins R. Sherry M. Silverberg R. Wright

U.S. Nuclear Regulatory Commission (5) Office of Nuclear Regulatory Research Washington, DC 20555 Attn: J. K. Long

A. R. Marchese J. F. Meyer W. C. Milstead T. P. Speis

Electric Power Research Institute (2) 3412 Hillview Avenue Palo Alto, CA 94303 Attn: Gary Thomas Loren B. Thompson

Larry E. Hochreiter Westin-house Corporation Nuclear Energy Systems P. O. Box 350 Pittsburg, PA 15230

Robert A. Bari Brookhaven National Laboratory Upton, NY 11973

Peter Cybulskis Battelle Columbus Laboratories 505 King Avenue Columbus, OH 43201

D. H. Walker Offshore Power System 8000 Arlington Expressway P. O. Box 8000 Jacksonville, FL 32211 M. L. Stevenson (2) Los Alamos National Laboratory P. O. Box 1663, MS-555 Los Alamos, NM 87545

Dr. M. Peehs/Dr. K. Hassman (2) Kraftwerk Union Hammerbackerstrasse 12-14 Postfach 3220 D-8520 Erlangen 2 Federal Republic of Germany

Dr. J. P. Hosemann/Dr. S. Hagen (2) Gesellschaft fur Kernforschung 75 Karlsruhe Postfach 3640 Federal Republic of Germany

Prof. E. Mayinger Technische Universitaet Hannover 3000 Hannover 1 Federal Republic of Germany

Eric Ahlstroem/Wiktor Frid (2) Swedish State Power Board El-Och Vaermeterknik Sweden

Dr. M. V. Banaschik Gesellschaft fur Reaktorsicherheit (GRS) Postfach 101650 Glockengasse 2 5000 Koeln 1 Federal Republic of Germany

M. Georges Berthoud
Laboratoire de Thermohydraulique des Metaux Liquids
Service des Transferts et Conversion d'Energie
Commissariat a l'Energie Atomique
Centre d'Etudes Nucleaires de Grenoble
B. P. N° 85X - Centre de Tri
F-38041 Grenoble, Cedex France

Dr. W. Schwalbe Institut fur Kernenergetik und Energiesysteme (IKE) Universitat Stuttgart Postfach 801160, 7 Stuttgart Federal Republic of Germany Dipl. Ing. Manfred Burger Institut fur Kernenergetik und Energiesysteme Universitat Stuttgart Pfaffenwaldring 31 Postfach 801140 D-7000 Stuttgart 80 (Vaihingen) Federal Republic of Germany

Dr. Ing. Leonardo Caldarola Institut fur Reaktorentwicklung Kernforschungszentrum Karlsruhe GmbH Postfach 3640 D-7500 Karlsruhe 1 Federal Republic of Germany

Ing. Giovanni Scarano
Il Direttore, Laboratorio Studi
Dinamica e Sicurezza del Nocciolo
Divisione Ricerca e Sviluppo
Dipartimento Reattori Veloci
Comitato Nazionale per l'Energia
Nuclear
Centro di Studi Nucleari della
Casaccia
S. P. Anguillarese km l+ 3400
C. P. No. 2400
1-00100 Roma, Italy

Dr. Simon J. Board Section Leader, Reference and Safety Division Central Electricity Generating Board Berkeley Nuclear Laboratories Berkeley Gloucestershire GL 13 9 PB United Kingdom

Mr. Anthony J. Briggs UKAEA Atomic Energy Establishment Winfrith, Dorchester Dorset DT2 8DH United Kingdom

Dr. S. George Bankoff Chemical Engineering Department Northwestern University Evanston, IL 60201

David G. Swanson P. O. Box 2687 Palos Verdes Pen, CA 90274 Dr. Dae Cho Reactor Analysis & Safety Division Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439

Prof. Theofanis G. Theofanous School of Nuclear Engineering Purdue University West Lafayette, IN 47907

Dr. Ing. Heinz Kottowski Head of Liquid Metal Section Heat Transfer Division Commission of the European Communities Euratom - Joint Research Centre Ispra Establishment C. P. No. 1 I-21020 Ispra (Varese), Ital /

Dave Simpson, W5C178C-K TVA 400 Commerce Ave. Knoxville, TN 37902

Ivan Catton UCLA Nuclear Energy Labortory 405 Hilgard Avenue Los Angeles, CA 90024

David Yue P. O. Box X Bldg. 9104-1 Oak Ridge, TN 37830

R. Muralidharan General Electric 175 Curtner Avenue M/C 766 San Jose, CA 95125

A. J. Wickett Safety & Reliability Directorate Wighsaw Lane Culcheth Warrington WA3 4NE United Kingdom

Richard Moore WCB Bldg. EG&G Idaho P. O. Box 1625 Idaho Falls, ID 83415

M. L. Corradini Dept. Nuclear Engineering University of Wisconsin 1500 Johnson Drive Madison, WI 53706 Bill Parkinson SAL 5 Palo Alto Squire, Suite 200 Palo Alto, CA 14304 Sandia Internal Listribution: 2514 D. E. Mitchell 4400 A. W. Snyder 4410 D. J. McCloskey 4414 A. S. Benjamin J. V. Walker 4420 R. L. Coats K. Takahashi 4421 4421 4422 D. A. Powers 4423 K. O. Reil 4425 W. J. Camp 4440 4441 M. Berman (10) N. A. Evans 4441 4442 W. A. Von Riesemann 4443 D. A. Dahlgren 4444 S. L. Thompson O. E. Jones 5500 5510 D. B. Hayes 5520 T. B. Lane D. V. Swenson 5521 W. Herrmann 5530 5531 B. J. Thorne 5532 B. M. Butcher M. E. Kipp 5533 5533 J. W. Swegle J. R. Asay 5534 T. J. Burns 5534 D. S. Drumheller (20) 5534 5534 T. G. Trucano 5836 J. L. Ledman L. S. Nelson 5832 5836 P. M. Duda 8214 M. A. Pound L. J. Erickson (5) 3141 3151 W. L. Garner (3)

.

ŝ

Org.	Bldg.	Name		Rec'd by Org.	Bidg. Nan	ne	Rec'd Sy
							The second second
				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
		120 US ADM POL PDR LA WAS	NRC NRC DIV OF T ICY & PUB NUREG CO 212 HINGTON	1 ANR3 IDC ICATIONS DY	MGT BR		
					20555		
	-						
	. I				-		

