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ABSTRACT

This report describes a computer program package that aids in
assessing the impact of floods on risk from nuclear power plants. The
package consists of two distinct computer programs: ESP and NOAH.

The ESP program improves the efficlency of a flood analysis by
screening accident sequences and identifying accident sequences that
are potentially significant contributors to risk in the event of a
flood. Input to ESP includes accident sequences from an existing risk
assessment and flood screening criteria. The output from ESP
includes:

e accident sequences that are potentially significaut
contributors to risk,

e specific plant systems contained in these accident
sequences that may require detailed analysis, and

e a quantitative estimate of the flood contribution to
risk.

The NOAH program provides detailed qualitative analysis of the
plant systems identified by ESP. Input to NOAH includes:

e the system fault tree from the existing risk
assessment,

e vulnerability elevations for each component represented
in the fault tree, and

e a detalled flood level profile for the plant.

NOAH performs a qualitative flood simulation of the fault tree to
determine:

e flooded minimal cut sets; that 1s, minimal cut sets
that have all their components submerged by the flood,

e partially flooded minimal cut sets when no flooded
minimal cut sets are found,

e flood protection sets; that 1{s, groups of components
that can be protected to mitigate the flood effects on
the system, and

e the critical flood level; that is, the lowest flood
level where at least one minimal cut set is submerged.
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ESP AND NOAH - Computer Prograus
for Flood Risk Analysis

of Nuclear Power Plants

1. INTRODUCTION

This document {is the user's manual for two computer programs
developed to aid in flood risk analysis of nuclear power plants.
These computer programs are an integral part of a methodology for
analyzing the effects of floods on nuclear power plant systems(fs.

B?Sh the Reactor Safety Study(z) and the Lewis Committee
Report ) identify floods as external hazards that warrant further
fovestigation in assessing the risk associated with nuclear power
plants. The importance of floods results from their potential to
produce multiple component faflures via submersion of {individual
components. These multiple component failures are called common cause
fallures and can result in system failures which contribute to the
overall risk from nuclear power plants. Thus, consideration of common
cause faillures due to floods Is an important aspect of the overall
risk assessment of nuclear power plants.

The flood risk analysis methodology 1is designed to identify and
quantify these flood effects using existing risk assessment results as
input. The ESP computer program alds 1in idertifying accident
sequences and systems that are potentially significant coantributors to
plant risk due to flood effects. ESP accepts as input accident
sequences and system fallure probablilities from an exlsting risk
assessment , englneering criteria describing system susceptibility to
floods and a potential flood probability. ESP screens the accident
sequences based on the engineering criteria and determines Important
system fallures and accident sequences along with a quantitative
estimate of each sequence's contribution to risk due to floods. The
important accldent sequences identified by ESP provide input to the
quantitative evaluation of flood effects. The {important system
failures Ildentified by ESP are candidates for detalled system analysis
using the NOAH computer program.

The NOAH computer program accepts system fault trees from
existing risk assessments as {input. Other required input 1ncludes
flood level increments within the plant (discretized flood level
profile) and the effective elevation (component vulnerability
elevation) of each component in the fault tree. NOAH simulates
flooding of the components in the fault trees based on the flood level
profile and the components' vulnerablility elevation. The output of
the flood simulation includes the order of component submersion and
the flooded system miaimal cut sets, If any exist. If no flooded
min'mal ecut sets exist, NOAH determines partially flocded system



minimal cut sets. The flooded and partially flooded minimal cut sets
represent the importint system failure modes in the event of a flood

and are esasential inputs to the quantitative evaluation to determine
the system failure probability as a function of flood level.

Section 2 of this document 1is a glossary of terms used in
describing both the ESP and NOAH computer programs. Sections 3
through 7 comprise the user's manual for the ESP computer program.
Sections 8 through 12 contain the user's manual for the NOAH computer
program. Each user's manual 1is complete with examples of program

input and output. References for both user's manuals are contained in
Section 13.



2. CONCEPTS AND DEFINITIONS

This section describes the concepts of the flood risk analysis
methodology applicable to the ESP and NOAH computer programs. A
complete discussion of the methodology is found in Reference 1.

2.1 Event Sequence

Event trees are event sequence models that graphically display
postulated accident scenarios (Figure 2.1). The elements of an event
sequence, or accidant sequence as they are often called, are an
initiating event, branching operator failures and an identification of
the consequence category to which the sequence leads. An initiating
event i{s an undesirable event (component or system failure, transient
or external 2vent) that starts an accident sequence. The branching
operators generally represent actions taken by plant systems or
personnel which, if successful, act as barriers to the propagation of
the event sequence or mitigate the e’ fects of the initiating event.
The success or failure of these branching operators determines the
magnitude of the consequence of an accident. The consequence category
identification defines the consequence to which the accident sequence
leads.

The occurrence frequency of a particular accident sequence is the
product of the {nitiating event occurrence frequency and the
conditional probabilities of failure on demand of the branching
operators. The probabilities of failure on demand of the branching
operators are usually very small; therefore, the probabilities of
success on demand of the branching operators are very close to one for
systems encountered in nuclear power plants. In practice, the success
on demand probabilities ar~ assumed to be one and the accident
sequence occurrence frequency contains .aly failure events.

2.2 Component Vulnerability Elevation

The "vulnerability elevation” for a component 1is defined as the
lowest physical elevation that the flood level must surpass to affect
the component. The vulnerability elevation includes the case where a
component may be affected by the flood but 1is noi yet submerged
itself. For example, a pump whose function is dependent on electrical
connections at an elevation that {s physically lower than the pump
will be assigned the lower elevation as its vulnerability elevation.
However, 1f the pump's vital electrical connections are physically
higher than the pump, the pump's vulnerability elevation may be the
physical elevation of the pump. A component's vulnerability elevation
will be physically higher than the component where specific barriers
prevent the flood from affecting the component until {t overflows the
barrier. 1In this case, the vulnerabllity elevation corresponds to the
physical elevation where the flood overflows the barrier.
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ESP

A Computer Program for Identifying
Potentially Significant Accident Sequences
for Flood Analysis



3. ESP: INTRODUCTION

The ©SP (Event Sequence Screening Program) computer program
identifies accident sequences and elements within these sequences that
are potentiall'y significant contributors to increased risk due to
flood effects ESP is written 1in FORTRAN IV for the IEM 360/370

computers.

ESP screens accident sequences that vresult in a particular
consequence category and selects only those whose increased occurrence
frequency due to flood effects would result in a significant increase
in the total occurrence frequency of that consequence category.
Within these selected accident sequences, ESP identifies those
elements that are considered likely to fail in the event of a flood.
These identified elements are candidates for more detailed analysis.

The screcning procedure examines each accident sequence in a
particular consequence category to determine 1if the sequence is
significant in the event of a flood. EGSP estimates upper bounds for
the flooded occurrence frequencies of the accident sequences and
compares these values to a user-specified criterion for the
appropriate consequence categories. Accident sequences whose flooded
occurrence frequencies are greater than this criterion are considered
significant and the program identifies the flood susceptible systems
in these accident sequences. ESP also calculates an upper bound for
the total occurrence frequency of the consequence categories,
including both wunflooded and flooded effects, and ranks the
significant accident sequences in order of contribution to the
consequence category's flooded occurrence frequency.

Section 4 presents screening concepts used in the ESP computer
program. % general description of ESP is provided in Section 5.
Sectic. 6 describes the ESP input groups in detail and the ESP program
output is described in Section 7. Appendix A is a programmer's guide
for the ESP computer program. Included in this guide are descriptions
of ESP subroutines, major program variables, diagnostic information
and subroutine calling sequences. Error messages generated by ESP are
contained 1in Appendix B. Appendix C describes the required job
control language. A condensed version of ESP input parameters and
formats are given in Appendix D.



4. ESP: SCREENING CONCEPTS

Nuclear power plant probabilistic risk assessments (PRA's)
usually postulate a large number (>100) of possible accldent
sequences. Each accident sequence contributes to one of several
consequence categories. The accident sequence frequencies
collectively determine the frequency at which consequences of various
magnitudes occur, thereby providing a measure of risk. Usually, only
a small number of sequences (termed dominant accident sequences)
contribute significantly to the category frequency and these sequences
are the ones analyzed in greatest detail.

The ESP proyram uses the structure of accident sequences and
consequence categories from an existing risk assessment to identify
significant accident sequences in the event of a flood. Accident
sequences which were previously considered less important because of
their relatively low expected frequencies may contribute significantly
to risk due to flood-induced fallures. ESP uses an analyst's
assessment of the susceptibility to flood-induced fallure for each
element 1in an accident sequence, a user-specified criterion for
identifying significant sequences, and a description of the accident
sequences for a consequence category to identify accident sequences
{mportant to that consequence category.

To reduce the number of accident sequences which must be input to
ESP, the user should prescreen the consequence categories to eliminate
certaln categories from further consideration. For example,
categories with relatively minor consequences may be 1insignificant
relative to the consequences of a flood. Also, if the flood frequency
is relatively low compared to the unflooded consequence category
occurrence frequency, flooding will make an insignificant contribution
even 1f 1t fails all the elements of an accident sequence. In such a
case, it 1s not necessary to further analyze the sequences which

comprise such a category.

4.1 Flood Susceptible Event Sequence Element

To perform accident sequence screening using ESP, the analyst
muet identify acclident sequence elements (initiating events or
brunching operators) that are considered susceptible to flood effects.
An event sequence element 1is considered flood susceptible 1f it is
expected to be significantly degraded or to fail in the event a flood
occurs. To determine which sequence elements are flood susceptible,
qualitative considerations are required. Flood susceptibility may
arise from one of several considerations, such as the vulnerability
elevation of equipment or the timing iavolved in demanding a braaching
operator relative to the time the flood first affects the plant.
Reference 1 gives guidelines to ald in identifying flood susceptible
event sequence elements. The flood susceptible initiating eveuts and
branching operators output by ESP are a subset of the flood

11



susceptible event sequence elements {initially Identified by the
analyst. Those sequence elements output are ones that are flood
susceptible and are members of accident sequences that are potentially
significant contributors to risk in the event of a flood.

4.2 Screening Procedure

The ESP computer program combines the accident sequence elements,
the flood frequency and the screening criterion to identify accident
sequences and elements within these accident sequences that are
potentially significant contributors to risk. The general flow of the
ESP computer program 1is shown in Figure 4.1. The procedure for
screening accident sequences 1s as follows:

1. ESP selects accident sequences that contribute to
a particular consequence category from the input
list of accident sequences.

2. ESP calculates the unflooded occurrence frequency
of an accident sequence.

3. If an accident sequence contains no flood
susceptible elements, then that sequence {is
eliminated from further screening. If the
sequence does contain flood susceptible elements,
ESP assumes these elements occur with prebability
one and calculates the flooded occurrence
frequency of the accident sequence. The
sequence's flooded occurrence frequency 1is the
product of the occurrence probabilities for the
remaining sequence elements (if any) and the
occurrence frequency of the flood being analyzed.*
The flooded accident sequence occurrence frequency
is compared to the unflooded consequence category
occurrence frequency to determine if it {is
significant using the following relationship:

Flooded accident sequence
occurrence frequency

2> CRITRA,
Unflooded consequence
category occurrence frequency

*In some accident sequences, the probability of occurrence
of the flood should be used in place of the flood occurrence
frequency. For rare floods, the occurrence frequency may be
an acceptable estimate of the flood occurrence probability.

12
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where CRITRA is the user-specified screening criteria (>0).
If the ratio of the flooded sequence occurrence frequency to
the total unflooded <consequence category occurrence
frequency 1s less than CRITRA, the ac~ident sequence 1s
discarded. If the ratio is greater than or equal to CRITRA,
the accident sequence 1s considered significant and flood
susceptible systems 1in that accident sequence are
identified. The value of this ratio 1s used to rank the
significant accident sequences 1in order of contribution to
the consequence category's flooded occurrence frequency.

4. ESP repeats this process (Steps 2 & 3) for each accident
sequence in the consequence category.

5. After all accident sequences of a particular consequence
category have been analyzed, the procedure 1is repeated for
the next consequence category.

ESP prints screening results for each consequence category lmmediately
after analyzing each category.

4.3 Consequence Category Occurrence Frequency

The consequence category unflooded occurrence frequency is often
estimated in probabilistic risk assessments by summing the unflooded
occurrence frequencies of all accident sequences that result in that
category. This method requires modification to include flood effects.
ESP uses the following equation to estimate the total occurrence
frequency, 1including wunflooded and flooded effects, of each
consequence category:

k k k
' T P(f P(s, | £) - (s, | T
1-11P($1| A, “:21 : 1' ) 1-11 ¢ 1' ),

P(C) =
where
c 2 the event a sequence resulting 1in consequence
category C occurs,
P(C) = the probability per unit time (frequency) of a category
C occurrence,
S‘ £ the event accident sequence Si oczcurs, resulting in a

consequence category C occurrence,

k = the number of accldent sequences contained in
consequence category C,

f = the event no flood occurs, and

14



f = the event a flood occurs.

This expression, for the total consequence category occurrence
frequency, 1s a first-order overpredicting approximation and may, in
sone cases, greatly overestimate the total occurrence frequency. For
example, when all the elements of an event sequence are susceptible to
a flood, the probability of the sequence, given a flood occurs,
approaches one. If this is true for several event sequences, the
summat’on of the event sequences' probabilities will exceed one. That
is,

i
L8y | £) > 1.0,
1=1

given that several sequences are highly susceptible to floods. The
summation of the sequence probabilities is a first order approximation
of the logical union of these sets of events, and correction terms for
the intersection of these sets are not included in the equation given
above. These correction terms will be significant for groups of
sequences that are highly susceptible to floods. Therefore, the
equation described above will significantly overpredicr* the flood
contribution to the category total for sequences that are highly
susceptible to floods. In cases where

k
[ L

k
B(Sy [ £) = L e(sg| B)] > 1.0,
1 i=1

1

the ESP program imposes an upper bound on the flood contribution to
the consequence category occurrence frequency. The maximum
contribution 1s the flood frequency 1itself. Although this 1is
generally an overprediction of the flood's effect also, it represents
a better bound than that provided by the equation for the category
occurrence frequency given above.

For the reasons discussed above, the analyst should exercise
caution when interpreting the fluoded occurrence frequencies contained
in the ESP output. These results must be viewed as upper bounds for
use In the screening processa. More exact determination of the
quantitative flood effects is possible after detailed systems analysis
using the NOAI computer program.

15
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6. ESP: INPUT DESCRIPTION










Table 6.2 Example Problem Initiating Event/Branching Point Data

Occurrence

Sequence Code Preq*ency Feilure On
Element Name (hr™%) Demand Probability

Pipe Break PB 3.0 x W4

Emergency Core EC 9.5 x 1072
Cooling*

Post Accident RR 6.0 x 1077
Rad . Removal

Fost Accident HR 1.0 x 1074
Heat Removal*

Containment Cl 2.0 x 10-3
Isolation

*Sequence element i{s flood susceptible.






Table 6.5 ESP Input Group Keywords

Input Group Keyword
1 SYSTEM
2 FLOOD
3 CATEGORY
4 SEQUENCE

24



- * CATEGORY
[ CONSEQUENCE CATEGORY DESCRIPTIONS AND UNFLOODED OCCURRENCE

FREQUENCY)
END
[ COMMENT CAR:'S]

e  * SEQUENCE
[ACCIDENT SE( 'ENCE DESCRIPTIONS]
END
[ COMMENT CARDS)

e  STOP CARD

Figure 6.2 shows an ESP input deck in the proper corder.

6.2 Title Card

The first card in the ESP input deck must be the title card. The
user can use any alphanumeric information (up to 80 characters)
describing the set of accident sequences to be screened. Only one
title card is used and it must be the first card in the data deck. TIf
no title is desired, a blank card must be supplied.

6.3 Input Group 1, SYSTDIM(leIO 6.6, u.!r‘ 6. 3)

The SYSTEM input group describes the {nitiating events and
branching operators contained in the accident sequences. Input Group
1 defines three variables.

NAME 1is a 24-character description of an initiating event or
branching operator. CODE 1s a two-character code name for the
initiating event or branching operator. FREQ 1is the occurrence
frequency or failure on demand probability of the initiating
event /branching operator described by NAME. One card is supplied for
each unique 1initiating event or branching operator in the accident

sequences.

6.4 Input Group 2, FLOOD (Table 6.7, Figure 6.4)

Input Group 2 provides the occurrence frequency of the flood to
be analyzed and the screening criterion. This {1input group also
identifie. flood susceptible initiating events or branching operators.
FFREQ 1is the occurrence frequency of the flood belng analyzed and
CRITRA is the screening criteria used to determine whether or not an
accident sequence 1s significant (Section 4.2). FFREQ and CRITRA are
input on the first input card in Input Group 2.

FCODE is the two-character code name (CODE from Input Group 1) of
the initiating events or branching operators that are considered flood

25



Accident Sequernce
Descriptions

Consequence Category
Desc.iptions and Data

Event Sequence

SYSTEM Element Data

Figure 6.2 ESP Input Deck Using All Input Groups
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Table 6.5 Input Format for Input Group 1, SYSTEM

Variable Card

Name Format Columns Ad justment

NAME 3A8 1-24 LEFT

CODE A2 30-31 LEFT

FREQ E10.6 35-44 RIGHT

10 20 30 40 S50 60

B S e e W A e D R A T il bl Y
# SYSTEM
PIPE BREARK PB 3.E-4
EMERGENCY CORE COOLING EC 9.5€E-S
POST ACC RAD REMOVAL RR 6.0E-3
POST ACC HEAT REMCVAL HR 1.0E~-4
CONTAINMENT ISOLATION CI 2.0E-3

END

Figure 6.3 SYSTEM Input Example
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One code name per card 1s supplied for each flood
initiating event or branching operator.

6.5 Input Group 3, CATEGORY (Table 6.8, Figure 6.5)

Input Group 3 identifies the consequence categories for which
{dent

sequences are screened. ESP screens only those accident

quences that result in a consequence category identified in Input

wup 3. CAT is the identification number of the consequence category
which accident sequence screening 1is to be performed and FCAT 1is
unflooded occurrence frequency of that consequence category. One
msequence category number and consequence category unflooded

frequency 1is supplied per card for each set of consequence
accident sequences to be screened.

6.6 1Ioput Group 4, SEQUENCE (Table 6.9, Figure 6.6)

Group 4 describes the accident sequences to be screened
sequences leading to consequence categories not listed
3 may also be input, but they will not be screened.
sequence per card is described. Three variables describe
{dent sequence . ICAT is the consequence

«'J{!o‘);()r\
ition number to which the accident sequence

belongs. NLOA is
number of elements in the accident sequence and the SEQN(I) are
code names of the initiating event ard branching operators that
)5 ¢ e acclident sequence.

6.7 STOP Card

card in the ESP input deck 1s a STOP card, with STOP
ard column one. The STOP card hh’,!lnlﬂ the computer
input deck is complete.




Table 6.8 Input Format for Input Group 3, CATEGORY

Variable Card
o cC mrQ
Nam Columns Ad justment

CAT

10 20 30 40 S0 60

UL QIR UL GRS SR P e s TR DL

# CATEGORY

2 2.32E-10
3 3.236-0
“ 3.02E-4




Ad justment

40 S0 60

e A e Y

# SEQUENCE

=NNNNNNOUONUDWDLWLPAS
AL 2LULBULVLUNI2IPUVUGCGNLUNN-
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Figure 7.1

L T I I

FEE R 2 T T U I D I

> LISTING OF INPUT DATA DECK

ESP SAMPLE PROBLEM

« SYSTEM

PIPE BREAK

EMERGENCY CORE COOLING
POST ACC RAD REMOVAL
PUST ALC HEAT REMOVAL
CONTAINMENT ISOLATION

END
* FLODOD
1.06E-S 0.05

EC

HR

END

» CATEGORY
2 2.32e-10
3 3.23E-8
4 3.02E-4

END

ESP Output Example:

ESP - - EVENT SEQUENCE SCREENING PROGRAM -

A PROGRAM FOR IDENTIFYING POTENTIALLY -

SIGNIFICANT ACCIDENT SEQUENCES FOR
FLOOD ANALYSIS

- e wm W e W e e W e e e W W W o e = -

<<

Input and Calculated Parameters

VERSION - 1

- DEC.

1981



a¥

4

B
by
A
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INPUT CHECK: SYSTEM NAMES.

PI1VE BREAK

EMERGENCY CORE COOLING

POST ACC RAD REMOVAL
POST ACC HEAT REMOVAL
CONTAINMENT ISOLATION

CODES. AND FREQUENCIES

PB
EC
RR
HR
1

INPUT CHECK: FLOOD FREGUENCY,

FLOOD FREGUENCY!:

EC
HR

1.0000E-03

3.0000E-04
9,.3000E-0%
6.00005~-03
1.0000E-04
2.0000E~-03

CRITERION. AND FLOOD-SUSCEPTIBLE SYSTEM CODES

CRITERIA: S.0C00E-02

INPUT CHECK: CATEGORY NUMBERS AND FREGUENCIES

2 2.3200E-10
3 3,2300E-08
E 3.0200E-04

INPUT CHECK: EVENT SEGUENCES

HMNNNNNNUNUQLQSLUGLL
AL AW WUWUNBMLDWUNWNN-

Figure 7.2 ESP OQutput Example:

PE
PB
PE
P8
4]
PB
PB
FBe
P8
FB
P8
P8
P8
PB
PB
PB

CI
HR
HR
RR
RR
RR
RR
EC
EC
EC
EC
EC
EC
EC
EC

c1
CI

C1

HR
RR

cI

CcI
C1

HR
HR CI

Input Check of Data



UNFLOODED
OCCURRENCE OCCURRENCE
SIOGNIFICANT ACCIDENT SEQUENCES DUE TO FLOOD EFFECTS FREQUENCY FREQUENCY RANK

S # 85 % B B B 8 B BB F R R s BN S #F B B B B E S AR

PB EC RR QQO0E~-10 1.7999898€E-11
PB EC RR HR 0000E~14 1.799999€E~11

NN

PB EC HR 2.850000E~-12 3.000000E-08
1.71
1.71

5 % P B % P B B BB EEEEE RS B 8 8 & B OB OB B R B E S EREE AR R RN

L I I I I D R I R I

FLOOD SUSCEPTIBLE ELEMENTS IN
SIGNIFICANT ACCIDENT SEQUENCES
FOGR CATEGORY 2

EEE R I R I

CODE - SYSTEM DESCRIPTION

LR . B
EC EMERGENCY CORE COOLINC
HR POST ACC HEAT REMOVAL

LR N I N N I B B

LI R T O N I R N N

ESTIMATED OCCURRENCE FREGLENCY
OF CONSEQUENCE CATLGORY 2

UNFIL.OODED CONTRIBUTIONI 2.320000E-10
FLOOD CONTRIBUTICNI 3.048060E-09
ESTIMATED TOTAL: 3.2B80060E-08

LR T I N IR T TN DR O B D R N

Figure 7.3 ESP Output Example: Accident Sequence Screening Results
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P T U T R R T S S S T T T T T I I N R N N N B N O O B A N B I I

UNFLOODED FLOODED
CONSEQUENCE OCCURRENCE CCCURRENCE
CATEGORY SIGNIFICANT ACCIDENT SEQUENCES DUE TO FLOOD EFFECTS FREGUENCY FREQUENCY RANK

.0..0'..Q..C....'....."O......l...000..000.'.’.........

3 PB EC

2.850000E-08 3.000000E-09 1

.l........'........0.0..............DQ.....Q....Q.Q.IC..

Figure 7.3 Continued

D T O

FLOOD SUSCEPTIBLE ELEMENTS IN

SIGNIFICANT ACCIDENT SEQUENCES
FOR CATEGORY 3

LR T R T I O I O I I

CODE - SYSTEM DESCRIPTION

P I R B N N

EC EMERGENCY CORE COOLING

LR T T I I R B I I

I T T O T SRR T T R N R B

ESTIMATED OCCURRENCE FREQUENCY
OF CONSEGUENCE CATEGORY 3

UNFLOODED CONTRIBUTION: 3.230000E-08
FLOOD CONTRIBUTION: 3.023709€E-09
ESTIMATED TOTAL: 3.8532370€E-08

P N R R R R O I
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Figure 7.3 Continued

L R O T TR IR TR IR I I
L T I R T N R TR TR Y

NO
SIGNIFICANT ACCIDENT SEQUENCES
FOR CATEGORY 4

L L N R I R T TR R
L R TR T I IR TN I

L I I O B R T TR D R T T

ESTIMATED OCCURRENCE FREGUENCY

OF CONSERUENCE CATEGORY a
UNFLOODED CONTRIBUTION: 3.020000E-04
FLOOD CONTRIBUTION: 2.999699€-09
ESTIMATED TOTAL: 3.02002BE-04

L I I O I B N I I R IR I DR TR I N T



NOAH

A Computer Program for Qualitative

Flood Analysis




8. INTRODUCTION

The NOAH computer program aids in assessing the impact of floods
on nuclear power plant systems by identifying flooded system minimal
cut sets as the flood level increases. A flooded minimal cut set is a
minimal cut set that has all its components submerged by the flood.
If 211 the componente 1in the minimal cut set are failed upon
submersion, then the flood is a single event that results in the
system failure of interest.

The system fallures of interest in flood risk analysis are the
important branching operator failures that are identified by the ESP
computer program. The NOAH computer program is intended to provide
detailed flood analysis of {important system (branching operator)
falilures using the system fault tree from the existing risk assessment
and the flood profile within the plant. The primary output from NOAH
is the order of component submersion and the flooded minimal cut sets
for the flood levels of interest. This output can then be used in a
quantitative evaluation to determine the system failure probability as
a function of flood level. The NOAH computer program can also
identify flood protection sets which provide information for making
safety~related design changes tc protect against flood events.

NOAH is written in FORTRAN IV for the IBM 360/370 computers and
can be used in conjunction with the KIrT-2(4) computer program to
determine the quantitative effect the flood has on system reliability.

Concepts and definitions of the NOAH methodology are presented in
Section 9. Section 10 provides a general description of the program
and input groups are described in detail in Section 11. Section 12
describes the NOAH program output.

Appendix E provides a detalled programmer's guide for the NOAH
program. Included in this guide are descriptions of NOAH subroutines,
ma jor program variables, diagnostic information and subroutine calling
sequences. A sample problem 1is given in Appendix F. Error messages
generated by NOAH are explained in Appendix G, and Appendix H lists
the required job control language. A condensed version of the NOAH
input parameters and their formats 1is given in Appendix I.
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NOAH: CONCEPTS AND DEFINITIONS

9.1 Flooded Minimal Cut Seg!

Critical Flood Level

9.3 Pnr(‘uli; Flooded Minimal

9.4 Flood Protection Sets

Flood Des« l‘.Pti;A'.'.
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Flood
Level

time —

Figure 9.1 Hypochetical Flood Level Profile
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LEVEL |

FAULT TREE
MODEL WITH
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Figure 9.4 NOAH Computer Program Simplified Flowchart
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NOAH : INPUT DESCRIPTION







Table 11.1 Basic Event Vulnerability Elevations for the
Example Problem

Basic Event Elevation
PMPO1FTO 30
PWSOLOFF 30
VALO1CLD 38
VALO2CLD 14
PWSO20FF 12
PMPO2FTO 12
VAL3ACLD 33
PMPO3FTO 50
PWSO30FF 40
VAL3BCLD 50
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e  * ELEVATION
[BASIC EVENT ELEVATIONS AND FAILURE/REPAIR INFORMATION]
END
[ COMMENT CARDS)

* * HOUSE
[ HOUSE EVENT INFORMATION]
END
[ COMMENT CARDS]

e  * SEARCH
[BASIC EVENT SEARCH INFORMATION)
END
[ COMMENT CARDS)

- * PROFILE
[ FLOOD PROFILE VERSUS TIME)
END
* STOP CARD
Figure 11.3 shows a NOAH input deck using all input groups in the

proper order.

11.2 Title Card

Each fault tree {nput to NOAH must be preceded by a title card.
The title ~an use any alphanumeric information (up to 80 characters)
describing the flood analysis. Only one title card is used and must
be placed as the first card In the data deck. If no title is desired,
a blank card mest be supplied.

11.3 Input Group 1, CUGNTROL (Table 11.3, Figure 11.4)

Input Group 1 s {npuc to NOAH using the NAMELIST* opticn of
FORTRAN. The form of the NAMELIST statement for NOAH is:

Column 1 Column 2 Columns 3-6
blank 8 NOPT

The wvariables for Input Group 1 are then Input as assignment
statements beginning 1in column 8. Each assignment statement I1s
followed by a comma. The final assignment statement is followed by at
least one blank space and the NAMELIST statement 1s concluded by $SEND.
An END card completes the input group.

*NAMELIST is not ANSI standard; however, it is implemented in all the
major dialects of FORTRAN, e.g., IBM, CDC, DEC and UNIVAC.
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Table 11.3 Input Format for Input Group 1, CONTROL
Variable Variable Default
Name Type Value Format
DEPTH Integer 0 NAMELIST
NDEP Integer 0 NAMELIST
MAXD Integer NDFP NAMELIST
DOPT Logical T NAMELIST
FIND Loglcal NALELIST
SEEPTH Logical F NAMELIST
ORDER Integer 10 NAMELIST
MAXIN Integer 7 NAMELIST
DEEPER Logical T NAMELIST
TIMPT Integer 0 NAMELIST
NTPT Integer 0 NAMELIST
DSRCH Logical F NAMELIST
DIIMP Logical F NAMELIST
TRACE Lug!-al B NAMELIST
ECHO Loglicel T NAMELIS™
CFD logical F NAMELIST
10 20 30 40 50 80
m—mepemmen\cecapeccn\cecepeccs\ccnapecnn \cecapmn=-—- \emmmpmmm=)
# CONTROL

&NOPT NDEP=B., MAXD=8., FIND=T, MAXIN=4, DEEPER=T, DSRCH=T,
SEEPTH=T, TIMPT=1, NTPT=3, DUMP=F., TRACE=T &END
END

Figure 11.4 CONTROL Input Example




Group 1 iescribes the manner 1Iin which the flood
will be performed and defines output options. Input Group
sgixteen variables.
NOAH an simulate two types f floods which are defined by the
iriable DEPTH DEPTH O signifies a flood beginning at the lowest
wod 1 el (flood levels to b« ialyzed are defined in KEY) and more
in O flood level 1s considered in the simulation. Assigning DEPTH
ralue other than zero specifics that only one specific flood level
3 considered submerged 1in the analysis, with the value of DEPTH
fentifying the vel of interest. For example, DEPTH = 3 indicates
it only the third flood level is t b onsidered submerged. DEPTH
fault t A 1lue of zero
NDEP identifies the maximum number of flood levels used in the
blem de ription and corresponds to the number of flood levels
ribed t K 1put roup. MAXD identifies the maximum number
flood levels msidered submerged in this analys's. NDEP defaults
1 val of zero and MAXD defaults to the value of NDEP.
The variable DOPT specifies how flood levels to be analyzed are
put to NOAH When DOPT = T (true), the flood levels are supplied in
it Group 2. DOPT = F (false) indicates that NOAH will divide the
imum flood height into NDEP equal intervals for analysis. When
I false), only the maximum heig 't of the flood is supplied in
1put I lhe default value of DOPT is T (true).
FD allow the inalyst 0o determine the svstem's ritical flood
el with t findin fl 1¢ inimal ut sets. Whe CFD T (true),
W eter C t he tem'’ ritical flood level and then
Y t wit ut finding fl led minimal it sets. CFD = F (false)
truct iCA t find flooded minimal ut set CFD def 1ts t F
! airiable FIN 1t the ethod of flood analysis after
i reached wt FINI [ true ind eached before the
1 ! 1 1 el, NOAH determines L he looded {inimal
t i i tection set for the fault tree submerged to
T ¢ FIND f fa 3 € , NOAH ter i Ehe flood analysis after
L 1 rea ed FINI letfault to ¢ a.se)
il it LEFVEK pe ifles how NOAH rea es8 Lhe analysis end
t Wi JEEPER | rue), the f] d level is increased level by
til ¢t f i ¢ eache \ When EEPER = F (false),
£ el ‘!' N -. | '.,, g } OrRe :'r> '\'I'.
true
} H try the print b f flood protectio t When
i flood protection sets are output in addition t
1 I partia £l led 1 1 ] it jets when EPTH I
‘ d protection sets are not tput




ORDER sets the maximum size of the flooded nminimal cut sets.
ORDER 1is set equal to the maximum size of flooded winimal cut set
desired and defaults to 10.

MAXIN sets the maximum number of inputs to any gate in the fault
tree descriptioa (Input Group 3). NOAH uses this variable lnternally
to detarmine the array storage required for the analysis. MAXIN
defaults to the maximum value of 7. Setting MAXIN to the maximum
number of inputs to a gate in the fault tree description will
eliminate excess space in the internal arrays and ald the efficiency
of program execution.

DSRCH identifles whether or not a search {s requested on
i{ndividual basic events at the end of the analysis. DSRCH = T (true)
indicates that a search is requested and that the user will provide
Input Group 6. DSRCH defaults to F (false) which Indicates no search.

DUMP determines whether or not detailed diagnostic output for
error debugging Is printed by NOAH. The output Includes the starting
addresses of the work arrays, a cross reference table between the
fndices and ates in the fault tree, a threaded pseudo-binary
representation 3) of the fault tree and results of intermediate steps
in determining the minimal cut sets for a flood level. DUMP = T
(true) indicates that this detailed diagnostic information is to be
output. The default value of DUMP is F (false), which Indicates unone
of this diagnostic information 1s output. Appendix F contains sample
output from NOAH when DUMP = T.

TRACE defines whether or not a detallad program flow trace is
printed by NOAH. TRACE = T (true) indicates that NOAH will print a
l1ist of the subroutines as they are used In performing a flood
simulation. The default value of TRACE is F (false), indicating no
program flow trace is printed.

The ECHO variable is used to obtain a listing of the input arrays
as they are filled. This listing is obtained by setting ECHO = T
(true), the default value. Setting ECHO = F (false) indicates the
{nput arrays are not listed in the output.

TIMPT indicates the type of time-dependent flood profile supplied
in Input Group 7 and whether or not NOAH output 1is to be punched in a
format compatible with the KITT-2 computer program. A linear flood
profile must be supplied when TIMPT = -1 and a discretized flood
profile must be supplied when TIMPT = 1. TIMPT = O indicates that
Input Group 7 and the basic eveat fallure data In Input Group 4 are
not supplied and that NOAH output will not be punched. The default
value of TIMPT is O. NTPT is the number of time points used to
describe a discretized flood profile. NTPT is supplied ounly when
TIMPT = 1. The default value of NTPT is O.

hé






Table 11.4 Input Format for Input Group 2, KEY

— —

Array

Name Format Ad justment

KEY 1615 RIGHT

KEYDSC 10A8 NONE

10 20 30 40 50 60

B N e s S St e e b Tttt il
* KEY

15 30 a5 40 45 50
JERO FEET TO FIFTEEN FEET
FIFTEEN FEET TO THIRT: EET
THIRTY FEET TO THIRTY- .JE FEET
THIRTY-FIVE FEET 70 FORTY FEET
FORTY FEET TO FORTY-FIVE FEET
FORTY-FIVE FEET TO FIFTY FEET
END

Figure 11.5 KEY Input Example
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Table 11.5 Input Format for Input Group 4, ELEVATION

Variable Card
Name Format Columns Ad justment

NAME A8 1-8 LEFT
ELEV 15 20-24 RIGHT
LMBDAl* E10.6 30-39 RIGHT
TAUL* E10.6 40-49 RIGHT
LMBDA2* E10.6 50-59 RIGHT
TAU2* E10.6 60-69 RIGHT

*Required only wheai1 TIMPT = 1 or -1.

Lo 20 30 40 S0 60 7.
-— i B e B e B i B e e e e e §
* ELEVAYION
PHMPOLIFTU Jo 1.6-7 0,0 . E- 0.0
PSSO UrF 30 I N 0.0 Bl N.0
VAL LCLp Jb t.E~4 L0 J.E-4 N0
ALOZELD 14 1.E- 4 3.9 3. t~-4 0.0
PHRSOZOFF i2 1-E~3 0,0 S.E~-1 0.2
PMPO2ZF IO 12 B E=3 0.0 1.E~1 0,0
YAL3ACLD 43 1.E-4 0.0 W 00
PMPOIFTO S0 1.E~3 0.0 Y+E~1 LAPR A
PUSO30FF 4 1. E=3 Q.0 SyE=§ 0,0
VAL 3BCLD 20 1.E~4 0.0 I E~8 0.0

END

Figure 11.7 ELEVATION Input Example
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Table 11.7 Lambda and Tau Interpretations

LAMDA TAU Interpretation

Positive Positive Component with failure
rate LAMDA and constant
repair time TAU

Positive 0.0 or blank Nonrepairable component
with failure rate LAMDA

0.0 Between 0.0 and 1.0 Inhibit condition with

constant probability of
failure TAU
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11.7 Input Group 5, HOUSE (Table 11.8, Figure 11.8)

Input Group 5 is required only when house events are used in the
fnput fault tree (Input Group 3). NAME is the house event name as
identified in Input Group 3. The variable STATE specifies whether the
house event is ON (exists) or OFF (does not exist). The variable
FLOOD is input for house events that are expected to change states
upon submersion. If the house event 1is expected to change states,
FLOOD is coded FAILS. If the house event is not expected to change
states, the variable FLOOD is not {input. The example problem defined
for i{llustrating NOAH input and output does not contain house events.
An example HOUSE input is given in Figure 11.8 and is not related to
the example problem.

11.8 Input Group 6, SEARCH (Table 11.9, Figure 11.9)

Input Group 6 {identifies those basic events or components for
which a search is requested. BENAM identifies the eight-character
basic event name as used ia Input Group 3. COMPNT specifies a
portion of a basic event name for searches where the portion of the
basic event name identifies the specific item of interest in the
gearch. Any portion of the basic event name used must includc blank
spaces as necessary to maintain the eight-character format of the
basic event names. For example:

basic event: PXVOl151C
ecceptable COMPNT input: PXVbbbbb
bbb0151C
bbb0151b
PXVbbbbC

where b represents a blank space and is not typed on the input card.
Only one search request may be input per card. Input Group 6 is
optional and is supplied only when DSRCH = T in Input Group l. Figure
11.9 provides irput required to conduct two searches, one for basic
event PMFOLFTO ani one for the specific item PWS.

11.9 Input Group 7, PROFILE (Table 11.10, Figure 11.10)

Input Group 7 describes the time-dependent flood profile. This
input group is optional and is required only when TIMPT in Input Group
1 is 1 or -1. When TIMPT = 1, a discretized flood profile is
specified and NTPT pairs of flood levels (LEVEL) and the times (TIME)
to reach these flood levels are required. One LEVEL/TIME pair is
supplied per card. When TIMPT = =1, a linear flood profile is
specified. The equation for a linearly increasing flood level is:

y =mt + b









Table 11.10 Input Format for Input Group 7, PROFILE

Variable Card

Name Format Columns Ad justment
LEVEL* 110 1-10 RIGHT
TIME* F10.2 11-20 RIGHT
SLOPE** F10.2 1-10 RIGHT
NTRCPT** F10.2 11-20 RIGHT

- —
-

*This data 1is supplied only when TIMPT = 1 in Input Group 1.

**This data 1s supplied only when TIMPT = =1 in Input Group 1.

10 20 30 40 50 80
B e B e e T e L il T
#* PROFILE

10 5.0

20 15.0

30 30.0

40 50.0

50 80.0

END

Figure 11,10 PROFILE Input Example

73



STOP Card




NOAH :
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the execution f the

played for 6

oss~-reference
JAH and the
addresses

These may

ff“,’uYo 1
( Input ;TOUf

] 4
i

yO A










VERSION - 2 - DEC. 1981

LR I R R I I N I T U I N B N N I N N

L R T I I N R B I N R L B B N N R I N N B R A B B

>> LISTING OF INPUT DATA DECK <<

NOAM USERS MANUAL SAMPLE PROBLEM
* CONTROL
SNOPT
DEPTH= O.NDEP= 6. MAXD= 6.DOPT=T,FIND=T,SEEPTH=T,ORDER= 10, MAXIN= 4. DEEPER=T,CFD=F,
TIMPTs 1,NTPT= S,DSRCH=T , DUMP=F ,ECHO=T, TRACE=T
SEND
END
* KEY
13 30 33 . &0 43 30
ZERO FEET TO FIFTEEN FEET
FIFTEEN FEET TO THIRTY FEET
THIRTY FEET TO THIRTY-FIVE FEET
THIRTY-FIVE FEET TO FORTY FEET
FORTY FEET TO FORTY-FIVE FEET
FURTY~-FIVE FEET TO FIFTY FEET

8L

END

* TREE

TOP AND 2 O GATEB GATEG

GATER or 2 0 GATEC GATED

GATEG or 0 4 VAL3ACLD PMPOIFTO PWSO30FF VALJBCLD

GATEC OoRrR 0O 2 PHMPOIFTO PNSOL10FF

GATED AND 2 O GATEE GATEF

GATEE orR 0 2 PWSOI0FF VALOICLD

GATEF ORrR 0 3 VALOZ2CLD PWSO20FF PMPO2FTOD

END

» ELEVATION

PMPOLIFTO 30 1.E-D 0.0 1.E-1 0.0
PWSO10FF 30 1.E-3 0.0 S.E-1 0.0
VALOICLD 38 1.E-8 0.0 3.E-4 0.0
VALO2CLD 14 1.E~-4 0.0 J.E-4 0.0
PHSOZ0FF 12 1.E-3 0.0 S.E-1 0.0
PMPOZFTOD 12 1.E-3 c.o 1.E~-1 0.0

Figure 12. NOAH Output Example: Input Data Listing
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2> LISTING OF INPUT DATA DECK << NCAH USERS MANUAL SAMPLE PROBLEM

VAL3ACLD 33 1.E~4 0.0 J.E-4 0.0
PHMPO3FTO 1) 1.E~-3 0.0 1.E-1 0.0
PWSO30FF 40 1.E-3 0.0 5.E-1 0.0
VAL3BCLD S0 1.E~-4 0.0 3.E-4 0.0
END
* SEARCH
PMPOLIFTO
PHS

END
* PROFILE

10 5.0

20 15.0

30 30.0

40 50.0

50 80.0
END

>> ENTERING ROUTINE GETNG <<
>> ENTERING ROUTINE GETNBE <<
>> LEAVING RCOUTINE << PROGRAM FLOW TRACE

>> ENTERING ROUTINE GETMAX <<
>> LEAVING ROUTINE <<

Figure 12.1 Continued’
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[

- - - - NOAH PARAMETERS FOR THIS RUN - - — — =

NUMBER OF UNIGUE GATES, NG --~=—===========r=ssos === 7
NUMBER OF UNIQUE BASIC EVENTS, NBE -—-=—-==--=—==== 10
TOTAL NUMBER OF GATES, NGATE ~=-======== ——————————— 7
TOTAL NUMBER OF BASIC EVENTS, NCOMP ——--—-========= 11
MAXIMUM TIMES AN EVENT APPEARS, MAXREP ~~==-====--= 2

»> LEAVING ROUTINE <<

LEVEL YO FLOOD: DEPTH ~——=-—-—ercs=s=cceeccconos ———— 0
LEVELS IN THE PLANT: NDEP ~~=o~-oevew—amemo=s o 6
MAXIMUM LEVEL TO FLOOD, MAXD -========esc==ss==sooss 6
LEVEL KEY OPTION: DOPT ~—==m===--==—=s—scsssoossoses L
CONTINUOUS FLOOD. DEEPER --~--——=-==-=-==ssossses—= T
DO FLOOD SCREENING ONLY: CFD ==-—=-=-s-s=ssssosse=- F
£IND SETS AFTER MAXD, FIND --r-==—s-sssesssom=se=es T
PRINT FLOOD PROTECTION SETS, SEEPTH ~—--=--===-——=== T
ORDER SETS TO FIND: ORDER ==—~=—mersamsasmmnomecsse 10
MaXIMUM INPUTS TO ANY GATE, MAXIN ———-===-===mosoe== K
SEARCH FOR BE/COMPONENT NAME. DSRCH ~—-—-—==-<===-==== X
INTERFACE/TIME~POINT PARAMETER, TIMPT ~-—-========= 1
NUMBER TIMEPOINTS FOR INTERFACE,; NTPT ~-o-——mmes=== 5
DUMP INTERMEDIATE INFORMATIUN, DUMP ---—=======—m=- F
PRINT CONTENTS OF INPUT ARRAYS: ECHO -===——=-===s== T
PRINT PROGRAM FLOW TRACE, TRACE =~==-ss-msom—moocos T

sure 12.2 NOAH Output Example: Input and Calculated Parameters

VERSION

2 - DEC.
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INPUT CHECK: LEVEL KEYS AND DESCRIPTIONS VERSION - 2 - DEC,

KEY( 1)= 19° DESCRIPTION ‘ZERO FEET TO FIFTEEN FEET

KEY( 2)= 30" DESCRIPTION ‘FIFTEEN FEET TO THIRTY FEET
KEY( Q)= I’ DESCRIPTION ‘THIRTY FEET TO THIRTY-FIVE FEET
KEY( 4)= 40" DESCRIPTION ‘THIRTY-FIVE FEET TO FORTY FEET
KEY( S)= 45 DESCRIFTION 'FORTY FEET TO FORTY-FIVE FEET
KEY( B)= S0 DESCRIPTION 'FORTY-FIVE FEEY TO FIFTY FEET

12.3 NOAH Output Example: Input Check of Level Keys and Descriptions

CHECK: GATES AND THEIR INPUTS VERSION - 2 - DEC.

TYPE INPUTS =) => =)

AND GATES GATEG

GATEC GATED

VALIACLD PMPO3FTO PWSO30FF VAL3BLLD
PMPOLFTO PWSOL0FF

GATEE GATEF

PRSOL10FF VALOICLD

VALO2CLD PWSO20FF PMPO2FTC

LNONSOO

Figure 12.4 NOAH Output Example: Input Check of Fault Tree Gates and Inputs
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INFUT CHECK: COMPONENT ELEVATIONS VERSION - 2 - DEC. 1981

------ UNFLOODED --~--~- cenceee FLOODED -==—=—-
NAME ELEVATION LAMEDA TAU LANBDA TAU
PMPOLIFTO 30 0.1000E-02 0.0 0.1000E 00 0.0
PHSO10FF 30 0.1000E-02 0.0 0.5000& 00 0.0
VALOICLD 38 0.1000E-03 0.0 0.3000E~-03 0.0
VALO2CLD 14 0.1000€-03 0.0 0.3000E-03 0.0
PRSOZ0FF 12 0.1000€-02 0.0 0.5000€ 00 0.0
PRPOZFTO 12 0.1000€-02 0.0 0.1000€E 00 0.0
VALJACL D 33 0.1000E-03 0.0 0.3000E-03 0.0
PRMPOJIFTO SO 0.1000E-02 0.0 0.1000€ 00 0.0
PHSO30FF 40 0.1000E~02 0.0 0.5000€ 00 0.0
VALIBCLD S0 0.1000E-03 0.0 0.3000E-03 0.0

Figure 12.5 NOAH Output Example: Input Check of Basic Event Vulnerability Elevations, Failure
Rates and Mean Downtimes

INPUT CHECK: SEARCH DATA VERSION - 2 - DEC. 1981

BASIC
EVENT COMPONENT

PHPOLFTO
PHS

Figure 12.6 NOAH Output Example: Imput Check of SEARCH Data
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INPUT CHECK: FLOOD TIMES

LEVEL TimE
10 5.00
20 15.00
30 30.00
30 50.00
14 80.00

Figure 12.7 NOAH Output Example: Input Check of the Flood Profile

NO ERRORS DISCOVERED IN RUUTINE INPUT
>> ENTERING ROUTINE CHEKIT << PROGRAN FLOW TRACE
>> LEAVING ROUTINE <<

NO ERRORS DISCOVERED IN ROUTINE CHEKIT
>> LEAVING ROUTINE <<

>> ENTERING ROUTINE BUILD << PROGRAM FLOW TRACE

Figure 12.8 NOAH Output Example: Conclusion of Input Data Check

VERSION - 2 - DEC.,

1881
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VERSION - 2 - DEC. 1981
CPOSS REFERENCE FOR INTERNAL CODES AND EXTERNAL NAMES AND ELEVATIONS

INDEX NAME ELEVATION
1 VALJIACLD 33
2 PMPO3FTO 30
3 PRSO30FF 40
4 VAL3BCLD S50
S PMPOLIFTO 30
) PHSO10FF 30
7 VALOLICLD 38
8 VALO2CLD 14
9 PHSOZOFF 12

10 PMPO2FTO 12

>> LEAVING ROUTINE <<

Figure i2.9 NOAH Output Example: Cross Reference of Internal Codes, External Names and Elevations

RELATIVE STARTING ADDRESSES FOR ARRAYS VERSION - 2 - DEC., 1981
IWt 1)= S0 IW( B)= 125 IW(1S)= 220 IN(22)= 258 IN(29)= 350
Wt 2)= 68 IWe 9)= 130 IW(16)= 223 IW(23) = 266 IW(30)= 3ss
IH( J)= 8z IW(10)= 132 IW(17)= 2286 INi(24)= 268 IW(31)» 400
IW( &)= 108 Inti1)= 148 IWc18)= 236 IN(2S)= 288 IN(32)= 405
IW( S)= 112 IN(12)= 154 IW(18)= 241 IN(2B)= 276 IW(33)= 430
IH( B)= 115 IW(13)= 214 IW(20)= 243 IN(27)= 300 IW(34)= 458
Wt 7)= 120 IW(14)= 217 IW(21)= 246 IN(28)= 305 IN(33S)= 424

>> ENTERING ROUTINE DOIT <<

Figure 12.10 NOAH Output Example: Intermal Array Starting Address- s
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NDAH USERS MANLAL SAMPLE PROBLENM VERSION -

FLOODDED MINIMAL CUT SET ANALYSIS OF LEVEL 2
KEY 18 * 30° DESCRIPTION= FIFTEEN FEET TO THIRTY FEET

2 8 8 8 B B R B R R R R R R R AR RS TR RS EREERE R
2 BASIC EVENTS ARE FLOODED AT THIS LEVEL

PMPOIFTO PHSOQ10FF

PUEPE O T B T T R R N R R A O T R B R R I O O R A A
O NEW MINIMAL CUT SETS ARE FLOODED BY A FLOOD TO LEVEL 2

O TOTAL MINIMAL CUT SETS ARE FLOODED BY A FLOOD TO LEVEL 2

QOQ.QQQQ...Q.....'....IQQ.Q.Q....'..........

Figure 12.11 Continued

DEC. 1981

L B

LR I B

4 F B R e R












06

LA A A S sl At St A A Rl A A A R A R R R R L R R R R R T e
AR RS Rl e Rl Rl e T T T
LA A AR SR A LR R R R Rl R e T T

o -
. FLOOD PROTECTION SET ANALYSIS FLOOD PROTECTION SET ANALYSIS FLOOD PROTECTION SET ANALYSIS *
“ »

LA AR A A A AL S A S s d i A S AR R Rl R R e R R R R R R R L )
LA A RS AR S S R s s e e R R R R R R T T P T T I )
LA A AR RS SRR A s At A ARt Al R R Rl e R R e Al A R R P P T e T Y

NOAH USERS MANUAL SAMPLE PROBLEM VERSION - 2 -~ DEC. 1981

FLOOD PROTECTION SET ANALYSIS OF LEVEL 3
REY 18 * 33° DESCRIPTION="THIRTY FEET TO THIRTY-FIVE FEET .

LA T N I I N N I U N N A I I I N I R L R N N I N R TN D I DEE I I R N L IR N N IR R R I R I I I N O
L I N B B N N I O T N N N S I I I I I I I N I N I N D N N I N N O I R N - .

COCICDCIEDCICDOICICICILICICICICICICICICILICICICDCICICICDCILICICIC DI IC DI I I DICILCICICICIILICIC DI ICICIC)D

D s L T s L e
B LT T Ty LEVEL 3 KEY * 35 IS THE CRITICAL FLOOD LEVEL B T Y
# CRITICAL FLOOD LEVEL = # CRITICAL FLDOD LEVEL »
BB BpasenansnBnsRsResnenr THIRTY FEET TO THIRTY-FIVE FEET REBBARBRBLBRBNBARDIRBNRES
B LR R T T

IO ICICDICICICIL DI IIICICICICICICICICICICDCICDCICICICIIOICICICICICICICICICICICICICICICICIIICD)
I I I T A A
2 TOTAL MINIMAL CUT SETS ARE FLOODED BY A FLOOD TO LEVEL 3
2 FLOOD PROTECTION SETS EXIST AT A FLOOD TO LEVEL 3

L I T T O T I I I N I R I R R R T T I N I D R I N N B O N N B N N N N N N N

FLOOD PROTECTION SETS AT LEVEL 3

( 1) VAL3ACLD 33
( 2) PMPOLIFTO 30 PWSO10FF 30

Figure 12.12 NOAH Output Example: Flood Protection Set Results



NOAH USERS MANUAL SAMPLE PROBLEM

FLOOD PROTECTION SET ANALYSIS OF LEVEL

KEY IS * &0O°

DESCRIPTION= "THIRTY-FIVE FEET TO

FORTY FEET

VERSION

LR TN TN T R T I T I R I O R O T O I I O I O

10 TOTAL MINIMAL CUT SETS ARE FLOODED BY A FLOOD TO LEVEL

3 FLOOD PROTECTION SETS EXIST

P TN U U T T T R O T I R T I I I N N N R N N N L R A

FLOOD PROTECTION SETS AT LEVEL -

{ 1) VAL3ACLD 33 PHSOJ30FF
( 2) PMPOIFTOD 30 PHSO10FF
( 3) PHPOIFTOD 30 PHSO10FF

NOAH USERS MANUAL SAMPLE PRUOBLEM

40
30
20

FLOOD PROTECTION SET ANALYSIS OF LEVEL

KEY I8 * So’

R I I A A I N I I R R
20 TOTAL MINIMAL CUT SETS ARE FLOODED

3 FLOOD PROTECTION SETS EXIST AT

LR I N N N O N N A T I N B L N N I N N N N IR

FLOOD PROTECTION SETS AT LEVEL 6

( 1) PHPOIFTO 30 PWSO10FF
( 2) VAL3ACLD 33 PHSO30FF
( 3) PHMPOIFTOD 30 PHSO10FF

Figure 12.12 Continued

30
40
30

VALOICLD
VALOZCLD

VALOI1CLD
PHMPOIFTO
VALOZCLD

38
14

38
30
14

AT A FLOOD TO LEVEL 4

PHSO20FF

DESCRIPTION="FORTY-FIVE FEET TO FIFTY FEET

VAL3IBCLD
PHSO20FF

12

So
12

PNMPO2FTO

VERSION

P I
BY A FLOOD TO LEVEL
A FLOOD TO LEVEL 8

L I I B

PMPOZFTO

- DEC., 1981

(]

L 2R R BN B B Ok I B B B B

L I I I I

12

- DEC- l"

L N N I I I N B

12
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NOAM USERS MANUAL SAMPLE PROBLEM VERSION - 2 - DEC, 1981
P S T E R R R E I I A A A AT AR AR I I A R O T AR R

SEARCH FOR BASIC EVENT ‘PMPOIFTOD’

....I....Q..'.0..0.0.......0.................I....C.....

LEVEL © 239’ PMPOIFTO 30 VAL3ACLD 33
LEVEL * 40° PMPOLIFTO 30 PWSO30FF 40
EVEL " 30° PMPOL1FTO 30 PMPOJFTO S0
LEVEL * 950’ PMPOLIFTO 30 VAL3BCLD S0
NOAH USERS MANUAL SAMPLE PROBLEM VERSION - 2 - DEC, 1981

P T I T SRR A A A AR IR O R A R IR I R I A I B A A
SEARCH FOR COMPONENT ’PHWS

.....0.QODQOQQQIQI..O.........'..Q......QQ..Q.....Q...I.

LEVEL * 33’ PWSO10FF 30 VAL3ACLD 33
LEVEL * 40’ PMPOLFTO 30 PWSOJ0FF 40
LEVEL * 40’ PHSO10FF 30 PWSO30FF 40
LEVEL * 40’ VALOI1CLD 38 PHSO30FF 40 VALOZCLD 14
LEVEL * 407 VALO1CLD a8 VAL3ACLD 33 PHSOZ0FF 12
LEVEL * 40’ VALOLICLD 38 PWSO30FF 40 PHSOZOFF 12

LEVEL * 40’ VALOLICLD 38 PRSO30FF 40 PMPO2ZFTO 12

LEVEL * S0’ PHSO10FF 30 VAL3BCLD 30
LEVEL * 3S0° PWSO10FF 30 PMPO3FTO 50
LEVEL * S0’ VALOICLD 38 PMPOJFTO 59 PHSOZOFF 12
LEVEL * S0’ VALOICLD 38 VAL3BCLD S0 PHSO20FF 12

>» LEAVING ROUTINE <<

Figure 12.13 NOAH Output Example: Component SEARCH Results



1 2
30.0000 B1.0000

0
0.1000E~030.0 0.3000E-030.0
0.0
2 2
80.0000 81.0000
0
0.1000E-020.0 0.1000E 000.0
0.0
3 2
50.0000 81.0000
0
0.1000E-020.,0 0.5000E 000.0
0.0
4 2
80.00000 81.0000
0
0.1000E-030.0 0.3000E-030.0
0.0
) 2
30.0000 B81.0000
0
0.1000€E~-020.0 0.1000E 000.0
0.0
8 2
30.00Q00 81.0000
0
0.1000£~020.0 0.5000E 000.0
0.0
? 2
30.0000 81.0000
0
0.1000E~030.0 0.3000E-030.0
0.0
e 2
3.0000 81.0000
0
0.1000E-030,0 0.3000E-030.0
0.0
8 2
S$.0000 B81.0000
0
0.1000£-020.0 0.5000E 000.0
0.0
10 2
5.0000 81.0000
o
0.1000€-020.0 0.1000E 000.0
0.0

Figure 12.14 NOAH Output Example: KITT-2 Data (This information is
punched on cards if requested but is not printed with
other results)
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A.l1 INTRODUCTION

The ESP computer program screens large sets of accident sequences
associated with a power plant to determine those sequences that are
potentially significant coantributors to risk in the event of a flood.
ESP screens accident sequences within a consequence category by
comparing thelr occurrence frequency in the event of a flood to a user
gpecified fraction of the unflooded consequence category occurrence
frequency. After completing the screening for a consequence category,
ESP calculates an estimated consequence category occurreonce frequency
(including unflooded and flooded effects), 1lists elements of the
significant accident sequences considered flood susceptible and ranks
the screened accident sequences according to thelr relative
contribution to the flooded occurrence frequency of the consequence
category.

ESP is written in ANSI-66 FORTRAN for the IBM 360/370 computers
using a FORTRAN H compiler.* Using a dynamic array allocation scheme
(Section A.2.1), ESP can easily handle a problem of any size,
providing there 1ls sufficlent computer memory available. Section A.2
describes in detail the subroutines that compose the ESP program.

*ANSI-77 FORTRAN was not used because a production compller for large
mainframes was not avallable.
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A.2 ESP SUBROUTINE DESCRIPTIONS

This section describes the subroutines contained 1in the ESP
computer program. Included in each description Is a discussion of the
subroutine function, a list of other subroutines that call or are
called by the subroutine belng described, and the names and purposes
of the major varlables In the subroutine. The section title provides
the parameter list for the subroutine.

A.2.1 MAIN

Routine MAIN 1s the program flow controller of ESP. The purpose
of MAIN 18 to lavoke the proper subroutines fos reading and processing
the Ilnput data and outputting the results. MAIN calls subroutines
GOOFUP, COUNT. ALOCAT, INPUT and DOIT. No subroutines call MAIN.
Table A.1 lists ilmportant variables used by MAIN. The value of PLINES
is set Iin the data statement to control the number of lines on a page

of paper.

A.2.2 ALOCAT (MAX)

Subroutine ALOCAT 1is a dynamic array space allocation scheme.
Most arrays used in ESP are stored in one large array W. ALOCAT
determines the starting address of each smaller array stored in arrvay
W. These starting addresses are stored in the IW array, which
occupies the flrst 49 spaces of the W array. Starting addresses for
arrays stored in W are determined by adding the dimension of the last
array stored in W to {ts starting address. Table A.2 1lists the
equations used by ALOCAT to determine the next starting address when
the previous array stored Iin W contalined smaller than doubleword
values.

For example, given the following array, dimensions and storage
values,

1 A1(NSYS) R*8
2 A2(NSUS) L*1
3 A3(NSUS) 1*2
4 A4(NSUS) R*4
5 AS(NSUS) I*4

and the fact that the flrst location in IW is at 50, the following
code would be used to allocate the array space:

IW(l) = 50
IW(2) IW(1l) + NSYS*3

IW(3) = IW(2) + (NSUS + 7)/8
IW(4) = IW(3) + (NSUS + 3)/4
IW(5) = IW(4) + (NSUS + 1)/2
IW(6) = IW(S5) + (NSUS + 1)/2
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Table A.1 MAIN Variables

Word

Variable Type Description

TITLE(10) R*8 Problem title

NSYS [*4 Number of systems input (returned from
subroutine COUNT)

NSUS I*4 Number of flood susceptible systems
(returned from subroutine COUNT)

NCAT I*4 Number of consequence categories to
test (returned from subroutine NCOUNT)

NSEQ I*4 Number of accident sequences in a con-
sequence category (returned from
subroutine COUNT)

W R*8 ESP work array

1w I*4 Work array starting addresses (see
ALOCAT)

PLINES I*4 Number of lines per page of paper

(installation dependent)
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Table A.2 Starting Addresses Calculated By ALOCAT

Array Dimension Word Size Dimension Valuet

NDIM Doubleword (R*8)

Fullword (I*4,R*4,1L%4)

Halfword (I*2)

Byte (L*1)

tAddresses are determined using integer arithmetic.




COUNT (NUM, NLINE, PLINES,

DOIT (CODE, FREQ, FLOOD,




Table A.3 ALOCAT Variables

Variable Type Description

MAX I*4 Size of arr=y W. If the space needed to
store information In W exceeds MAX, an
error message is printed and program
execution terminates.

NSYS I*4 Number of systems input (determined in
subroutine COUNT)

NSUS I*4 Number of flood susceptible systems
(determined in subroutine COUNT)

NCAT I*4 Number of consequence categories to
test (determined in subroutine COUNT)

NSEQ I*4 Number of accident sequences input
(determined in subroutine COUNT)
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Table A.4 Arrays Stored In W

Array Word

Array Name Type Description

IW(1l) NAME(NSYS, 3) R*8 System names/descriptions

IW(2) CODE( NSYS) I*2 System code names

IW(3) FREQ( NSYS) R*4 Occurrence frequency/
failure on demand probabi-
lity of each system

IW(4) FLOOD( NSYS) L*1 System susceptibility to
floods

IW(5) CAT( NCAT) I*4 Consequence categories to
test

IW(h) FCAT(NCAT) R*4 Consequence category
occurrence frequencies

IW(7) RANK( NCAT) R*4 Flooded accident sequence
frequency

IW(8) IRANK( NSEQ) I*2 Flooded accident sequence
rank

IW(9) SUS(NSYS) 1*2 System reference numbers

NSYS is the number of systems input.
NCAT is the number of consequence categories for test.
NSEQ is the number of accident sequences input.

106






1J 1t
ITT¢
‘:.v

scriptior
ing read
line numbe
out

1

eileme

nts




Table A.6 DOIT Variables

Word
Variable Type Description

CODE (NSYS) I*2 System code names

FREQ (NSYS) R*4 Occurrence frequency/failure on ‘emand
probability of each system

FLOOD (NSYS) L*1 System susceptibility to flood

CAT (NCAT) I*4 Consequence categories to test

FCAT (NCAT) R*4 Consequence category occurrence fre-
quencies

RANK {NSEQ) R*4 Relative rank of VALUE for an acci lent
sequence with respect to other accident
sequence VALUES in the same corsequence
category

FFREQ R*4 Flocd occurrence frequency

CRITRA R*4 Criteria for accepting or rejecting a
flooded accident sequence as signifi-
cant

FREQA R*4 Unflooded accident sequence occurrence
frequency

FREQB R*4 Product of the occurrence frequency
failure on demand probability of all
non-flood susceptible elements in a
flood susceptible accident sequence

FREQC R*4 Unflooded occurrence frequency of an
accident sequence _.ontaining flood
susceptible eleme its

SUMA R*4 Unflooded occurrence frequency of a

consequence category

sumr = | FREQA,
1=1

where m 1s the number of accident |

sequences in the consequence category |
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Table A.6 DOIT Variables (continued)

Word
Variable Type Description

SUMB R*4 suMB = |” FREQB,,
i=1
where n is the number of flood suscep-
tible accident sequences fn a con-
sequence category

SUMC R*4 SUMC = ? FREQCi.
i=1
where n is the number of flood suscep-
tible accident sequences in a con-
sequence category

IICAT I*4 Category under analysis

NLOA I*4 Number of elements in the accident
sequence currently being analyzed

SEQN(21) I*2 Reference number for the accident
sequence currently being analyzed

SEQNJ I*2 Code name of element currently being
considered in the accident sequence
currently being analyzed

NRANK I*4 Number of accident sequences in a con-
sequence category that pass the
screening criteria

TOTAL R*4 Total consequence category occurrence
frequency, including both unflooded and
flooded effects.

TOTAL = SUMA + FFREQ*(SUMB - SUMC)

LUNI) 1*4 Disk units which store the accident

LUN2 sequences. LUNl stores the accident
sequences belonging to the consequence
category currently analyzed. LUN2
stores all other accident sequences.
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Table A.6 DOIT Variables (continued)

Word
Variable Type Description
VALUE R*4 VALYE is the ratio of the flooded acci-

dent sequence occurrence frequency to
its unflooded consequence category
occurrence frequency. VALUE is used to
screen and rank accldent sequences.

NSYS is the number of systems input.

NCAT 1is
NSEQ 1is

the number of consequence categories to test.
the number of accident sequences input.
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Table A.7 GOOFUP Variables
Word
Variable Type Description
1ER I*4 Error reference number
WORD1 R*8 Eight byte dummy variable printed in
error message
NUM1 1*4 Four byte dummy variable printed in
error message
NUM2 I*4 Four byte dummy variable printed in
error message
CARD{10) R*8 Input card in error printed in error
message
NERR I*4 Counter for errors

]
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A.2.6 INPUT (NAME, CODE, FREQ, FLOOD, CAT, FCAT, FFREQ, CRITRA)

Subroutine INPUT reads the input data and stores it in the proper
arrays. INPUT also checks the input data for inconsistencies betwern
data groups. Errors detected in the Input are deecribed by subroutine
GOOFUP. Program execution halts upon completion of input if any
errors are discovered.

INPUT calls only one subroutine, GOOFUP. MAIN is the only
routine that calls INPUT. Table A.8 lists important variables used in
subroutine INPUT.

A.2.7 PRINT (ICAT, ISEQ, CODE, FLOOD, SUS, NAME, FCAT, TOTAL,
FCONT, IRANK, FIX)

Subroutine PRINT prints the results for each conseguence
category. Subroutine DOIT calls PRINT. PRINT does not call any
subroutines. Table A.9 lists important variables used in PRINT.

A.2.8 RANKIT (RANK, IRANK, NRANK)

Subroutine RANKIT orders the screened accident sequences from the
largest to the smallest contributor to the total consequence category
occurrence frequency. Accident sequences that do not pass the
screening criteria are not ranked. Subroutine DOIT calls RANK.
Subroutine RANK does not call any other subroutines. Table A.10 lists
{mportant variables used in RANK.
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Table A.8 INPUT Variables

Word

Variable Type Description

NAME(NSYS, 3) R*8 System names/descriptions

CODE( NSYS) I*2 System code names

FREQ(NSYS) R*4 Occurrence frequency/failure on demand
probability of each system

FLOOD(NSYS) I*1 System susceptibility to floods

CAT(NCAT) 1*4 Consequence categories to test

FCAT( NCAT) R* 4 Consequence category occurrence fre-
quencies

FFREQ R*4 Flood occurrence frequency

CRITRA R*4 Criteria for accepting or rejecting a
flooded accident sequence as signifi-
cant

[CAT 1*4 Consequence category on accident
sequence

NLOA 1*4 Number of elements the accident
sequence contalns

SEQN(21) I*2 Accident sequence

SEQNJ 1*2 Member of accident sequence

0K L*4 Flag to indicate if any errors found in
accident sequence

STOP R*8 End of a complete set of data for an
ESP run

SYSTEM R*8 Title of Input Group 1 (* SYSTEM)

FLUD R*8 Title of Input Group 2 (* FLOOD)
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Table A.8 INPUT Variables (continued)

Word
Variable Type Description
CATGRY R*8 Title of Input Group 3 (* CATEGORY)
SEQNCE R*8 Title of Input Group 4 (* SEQUEN)

NSYS and NCAT are the number of systems input and the number of con-
sequence categories to test, respectively.



Table A.9 PRINT Variables

Word

Variable Type Description

ICAT 1*4 Consequence category being analyzed

ISEQ I*4 Number of accident sequences that pass
CRITRA

CODE( NSYS) I*2 System code names

FLOOD( NSYS) L*1 System susceptibility to floods

SUS{NSYS) I*2 Temporary array containing the index of
each system in the accident sequence in
question

NAME( NSYS, 3) R*8 System names/descriptions

FCAT R* 4 Unflooded consequence category
occurrence frequency

TOTAL R*4 Total consequence category occurrence
frequency, including unflooded and
flooded effects

FCONT R*4 Flood contribution to the category
occurrence frequeacy

IRANK I*2 Relative importance contribution rank
for each accide «t sequence

FIX L*4 Indicates whether or not an upper bound
is used in calculating FCONT

FREQU R*4 Accident sequence unfiooded occurrence
frequency

FREQF R*4 Flood contribution to the accident
sequence flooded occurrence frequency

NLOA I*4 Number of members in accident sequence

SEQN(21) I*2 Accident sequence

1CODE I*2 Member of accident sequence

THERE I*4 Number ¢! flood susceptible systems for

this citegory

NSYS is the number of systems Input.
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Table A.10 RANK Variables

Word
Variable Type Description
RANK(NSEQ) R* 4 Value to rank =
flooded accident sequence
occurrence frequency
unflooded consequence category
occurrence frequency
IRANX( NSEQ) I*2 Relative rank of RANK
NRANK 1*4 Number of values to rank
EPSLON R*4 Used in ranking
DELTA R*4 Used in ranking

NSEQ is the number of accldent sequences ln a consequence category.
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ESP ERROR MESSAGES
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B. ESP ERROR MESE

ERROR MUMBER 1: MISSING OR INVALID STOP/END CARDS

ERROR NUMBER 2: INVALID CONTROL CARI

{ )
s

ERROR NUMBER 3: INSUFFICIENT STORAGE. YOU HAVE

“NUM1™ WORDS AND
fOU NEED "NUM2".

ERROR NUMBER 4: OR INVALID

INPUT GROUP "WORD1"

AS INDICATED AS SUSCEPTIBLE TO FL
I WAS NOT INCLUDED IN * SYSTEM

INVALID SYSTEM NAME "NUM2
"CARD"




ERROR NUMBER 7: BLANK SYSTEM NAME ON THIS CARD >> "CARD"

A blank was encountered {in the string of accident sequence
elements listed on the input card following the pointer >>. Check for
the correct number of sequence elements Iin the accident sequence and
for format errors.
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Table D.2 Input Group 1, SYSTEM

Format: 3A8, 5X, A2, 3X, E10.6

One card per initiating event/branching operator.

Variable Card
Name Format Columns Description
NAME 3A8 1-24 Accident seq ~nce initiating
event/branching operator
description
5X 25-29 Blank
CODE A2 30-31 Accident sequence initiating
event/branching operator code
name
3X 32-34 Blank
FREQ E10.6 35-44 Initiating event/branching

operator occurrence frequency
or failure on demand
probability




Table D.3 Input Group 2, FLOOD

Format: 2F10.0

First card.

A2 Additional cards, one per susceptible element.
Variable Card
Name Format Columns Description
FFREQ F10.0 1-10 Flood occurrence frequency
CRITRA F10.0 11-20 Accident sequence screening
criteria
FCODE A2 1-2 Code name of flood susceptible

accident sequence elements
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Table D.4 Input Group 3, CATEGORY

Format: I10,F10.0

One card per consequence category analyzed.

Variable Card
Name Format Columns Description
CAT 110 1-10 Consequence category iden-
tification number
FCAT F10.0 11-20 Consequence category unflooded

occurrence frequency
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Table D.5 Input CGroup 4, SEQUENCE

Format: 215, 5X, 21(A2,1X)

One card per accident sequence.

Variable Card
Name Format Columns Description
ICAT 15 I=5% Consequence category the acci-
dent sequence results
NLOA I5 6-10 Number of elements in the acci-
dent sequence
X - .5 Blank
SEQN(1) A2 16-17 Code name of first accident
sequence element
1X 18 Blank
SEQN(2) A2 19-20 Code name of second element
1X 21 Blank
. - v
- - -
SEQN( NLOA) 79-560 Coae name of last element in

sejuence
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E.2 NOAH SUBROUTINE DESCRIPTIONS

This section describes the subroutines contained in the NOAH
computer program. Included in each description is a discussion of the
subroutine's function, the subroutine parameter statement, a list of
subroutines that call or are called by the subroutine being described
and the names and purposes of the major variables in the subroutine.
Flowcharts are also provided for the larger, more complex subroutines.
The section title provides the parameter list for the subroutine.

E.2.1 MAIN

Routine MAIN is the program flow controller of NOAH. The purpose
of MAIN is to invoke the proper algorithms for reading and processing
the Input data and outputting the results. MAIN calls subroutines
GOOFUP, GETNG, ALOCAT, INPUT, BUILD, ALOCT2, and DOIT. No subroutines
call MAIN.

Table E.l1 describes important variables used in MAIN. The major
variables in MAIN are 1input parameters, which are read in wusing
NAMELIST. NAMELIST permits input and output of variables and arrays
with an identifying name instead of a format specification. (1f
namelist 1is not supported at the user's facility then the variables
can be input using "standard” READ statements.) While NAMELIST is not
ANS1 standard, it is
supported on IBM, CDC, DEC and UNIVAC machines.

The NAMELIST option includes two types of statements: (1) the
NAMELIST statement and (2) associated READ/WRITE statements.

The NAMELIST statement has the following format:
NAMELIST /GNAM/ VBL1, VBL2, VBL3,...VBLN

wher: GNAM 1is the NAMELIST group name and VBL are the associated
variables.

The NAMELIST name identifies which group to use in any associated
1/0 statement (L.e. READ (5,GNAM)). A variable or array name may
belong to one or more NAMELIST groups. Data read by a single NAMELIST
name READ statement must contain only names referenced in that
NAMELIST statement. However, they do not all need to be included so
that defaults may be taken. The variables on the data card do not
need to be 1in the particular order specified on the NAMELIST
statement. If more than one NAMELIST group appears ian the input data,
the groups must appear in the order and at the location specified by
the READ statemerts. If not, an end-of-file will result, as the
program will read data until it finds the specified card.

The format for the NAMELIST input card(s) is:
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Table E.1l

MAIN Variables

Word

Variable Type Description

ORDER *4 Maximum size of minimal cut sets to find

DEPTH I*4 Number of levels to flood

NDEP I*4 Number of levels used in describing a plant

MAXD 1*4 Maximum level to flood

DOPT LX4 Option for method of determining plant flood
levels (user supplied vs. NOAH calculated
levels)

FIND L*4 Defines whether or not partial common cause
candidates are found given MAXD is reached
and the TOP event has not occurred

SEEPTH L*4 Defines whether or not flood protection sets
are printed for each flood level

MAXIN I*4 Maximum number of inputs to any gate

DEEPER L*4 Defines the type of flood analysis performed
(analyze only on individual level at each
step vs. analyzing levels 0 through 1 at
each step)

DSRCH L*4 Defines whether or not to identify minimal
cut sets from the final minimal cut set list
that contain a specified basic event or com~
ponent

TIMPT I*4 Defines the type of flood profile fnput (if
any) and whether or not to punch KITT-2 data

DUMP L*4 Defines whether or not intermediate results

are to be printed
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Table E.1 MAIN Variables (continued)

Word

Variable Type Description

TRACE L*4 Defines whether or not to print a program
trace during program execution

ECHO L*4 Defines whether or not to print program
arrays as they are filled

NDIM I*4 Sum of NCOMF and NGATE. NDIM is used as an
array dimension

XYZ I*4 A dummy variable used to preserve word boun-
daries

W(10000) R*8 Array containing all in-core storage space
used by NOAH

PLINES *4 Number of lines per page of paper

(installation dependent)
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E.2. ALOCAT




Hal fwor




IW(6) is the maximum space for this example. To pass arrav A3 to a
subroutine, W(IW(3)) would appear in the parameter list. (See the
calls to INPUT, BUILD and DOIT in routine MAIN.) This method does not
require array A3 to be in the calling routine before it can be passed.

ALOCAT 1is divided into three major sections; ALOCAT, ALOCT2 and
ALOCT3. The ALOCAT section alocates array space for input data and
for work arrays used throughout the execution of NCAH. ALOCT2
overwrites the 1input array space with arrays used in finding minimal
cut sets. ALOCT3 overwrites the input array space with arrays used in
finding partlially flooded minimal cut sets. ESP invokes ALOCT3 only
i{f MAXD 1is reached before the critical flood depth and FIND = T
(true).

MAIN and DOIT are the only programs that call subroutine ALOCAT.
ALOCAT calls subroutines LAYOUT and GOOFUP. Tables E.3 and E.4
describe the 1important variables used in this subroutine and the
arrays stored in W, respectively.

E.2.3 BLOCK DATA

Routine BLOCK DATA initializes all the common blocks used in the
NOAH subroutines except for WORK (Section E.2.1). The common blocks
initialized by BLOCK DATA are ERR, LEVL, OPT, OPTl, OPT2, OPT3, PARMI1,
PARM3, PRINT, and VRSN. Table E.5 describes important variables in
the common blocks initialized by BLOCK DATA.

E.2.4 BUILD (TREE, TREEX, TRENDX, IGATYP, NAM, LEVATN, NREP,
HOUSE, FLOOD, LAMBDA, TAU, NGI, NCI, IGTYP, GATE,
ELVATN, INDEX, IHOUSE, IFLOOD, ILAMDA, ITAU, GNUM)

Subroutine BUILD generates a threaded pseudo-binary image of the
fault tree input to NOAH (Figure E.l1). NOAH manipulates this image of
the fault tree in determing the flooded minimal cut sets.

Figure E.2 1s a flowcha-t of BUILD. The development of the
pseudo-binary image begins by reading the inputs to the TOP event into
a circular queue. Each entry in the queue, beginning with the first,
is then analyzed. If the item is a gate, BUILD adds the gate's inputs
to the bottom of the queue and adds a node representing this gate to
the tree. This node contains the following four items of information
about the gate (Figure E.3):

1. the gate or basic event index number,

2. a pointer to the first element input to this
gate (its son),

3. a pointer from this element to the next

element input to this gate's father (its
brother), and
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Table E.3 ALOCAT Variables

— - —
Word

Variable Type Description

MAX T*4 Size of array W. If the space needed to
store information in W exceeds MAX, an errcr
message is printed and program execution
terminates.

ORDER I*4 Maximum size of minimal cut sets to find

DEPTH I*4 Number of levels to flood

NDEP I*4 Number of levels used in describing a plant

MAXD I*4 Maximum level to flood

DOPT L*4 Option for method of determing plant flood
levels (user supplied ve. NOA' calculates
levels)

FIND L*4 Defines whether or not partial common cause
candidates are found given MAXD i{s reached
and the TOP event has not occurred

SEEPTH L*4 Defines whether or n.t flood protection
sets are printed for =ach flood level

MAXIN I*4 Maximum numbe: of inputs to any gate

DEEPER L*4 Defines the type of flood enlysis performed
(analyze only on individual level at each
step va. analyzing levels o through { at
each step)

DSRCH L*4 Defines whether or not to {dentify minimal
cut sets from the final minimal cut set list
that contain a specified basic evert or com-
ponent

TIMPT I*4 Defines the type of flood profile input (1if
any) and whether or not to punch KITT-2 data

NBE T4 Number of unique basic events in the fault
tree

NG I*4 Number of unique gates in the fault tree
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Table E.3 ALOCAT Variables (continued)

Word

Variable Type Description

NGATE ™4 Total number of gates in the fault tree

NCOMP I*4 Total number of basic events in the fault
tree

MAXREP I*4 Maximum number of times a basic event is
repeated in the fault tree

NTROW I*4 Estimated number of Bonlean
Indicated Cut Sets (BICS)

PROW I*4 Estimated number of Boolean
Indicated Path Sets (BIPS)

ROWMAX I*4 Maximum number of rows Iln the in-core cut
set /path set array

CCOL I*4 Estimated order of the BICS

PCOL I*4 Estimated order of the BIPS

DUMP L*4 Defines whether or not intermediate results
are to be printed

TRACE L*4 Defines whether or not to print a program
trace during program execution

ECHO 4 Defines whether or not to print program
arrays as they are filled

NDIM I*4 Sum of NCOMP and NGATE. NDIM is used as an
array dimension.

XYz 1*4 A dummy variable used to preserve word
boundaries

IW(50) I*4 Array containing all in-core storage space

used by NOAH




Table E.4 Arrays Stored In W

Word
Array Name Type Description

The following array space is filled initially by ALOCAT:

w(l) TREE(NDIM,4) I*2 Threaded pseudo-binary iwage of
the fault tree

1W(2) TRESAV(NDIM,3) 1*2 Pseudo-binary tree image
storage area

IW(3) TPESV2(NDIM,6) 1*2 Pgseudo-binary tree image
storage area

1W(4) TREEL(NDIM) L*1 Pseudo~binary tree lmage state
array

IW(S) STREEL(NDIM) L*1 Pseudo-binary tree image state
work area

IW(h) LTREE(NDIM,2) L*1 Pseudo-binary tree image state
work area

IwW(7) TREEX(NBE ,MAXREP) 1*2 Basic event indices which locate
the basic events in the fauit
tree

IW(8) TRENDX 1*2 Location in TREE where each

( NGATE+NCOMP) member first appears

IwW(Y9) IGATYP(NG) I*2 Type of gate (0=0R, 1=AND)

IW(10) NAM( NBE+NG) R*8 Gate and basic event names

IW(1l) LEVATN(NBE) 1*4 Basic event elevations

IW(12) KEYDSC(NDEP, 10) R*8 Flood level increment descrip-
tions

IW(13) KEY(NDEP) I*4 Flood level keywords

IW(14) NREP(NBE) I*2 Number of times a basic eveui is
repeated in the tree

IW(15) HOUSE( NBE) I*2 House event identifier

IW(16) FLOOD( NBE) 1*2 Change of state {dentifier for
house events

IW(17) PNAM( NBE) R*8 Array for printing basic event
names
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Table E.4 Arrays Stored In W (continued)

Array Word

Array Name Type Description

IW(18) PEVTN( NBE) I*4 Array for printing basic event
elevations

IW({19) NPL( NDEP) I*2 Number of minimal cut sets found
at each level

iW(20) ONES( NBE) Y One-event minimal cut sets

Iw(21) LAMBDA(NBE, 2) ik Basic event unflooded and
flooded failure rates

IwW(22) TAU(NBE, 2) R*4 Basic event unflooded and flood
mean downtimes

IW(23) TIME( NDEP) R*4 Time poiuts used In describing a
discrete flood profile

IW(24) TDEEP( NTPT) i*2 Elevations used with time points

The following arrays temporarily hold
write over these arrays.

IW(25)

1IW(26)

1wW(27)
IW(28)
1w(29)

IW(30)

IW(31)
IW(32)

1W(33)

NGI(NG)

NCI(NG)

IGTYP(NG)
GATE( NG ,MAXIN)
ELVATN( NG ,MAXIN)

INDEX( NG ,MAXIN)

THOUSE( NG ,MAXIN)

IFLOOD( NG MAXIN

I*2

I*2

I*2
R*8
I*4

I*2

I*2

[*2

LAMBDA(NG ,MAXIN,2) R*4

input data. ALOCT2 and ALOCT3

Number of gates Input to gate

Number of basic events input to
a gate

Gate type

Fault tree gate arr.y

Basic event elevation array

Gate and basic event indices for
constructing the pseudo-binary
tree image

Houee event array

House event state change array

Baslc event unflooded and
flooded faillure rates
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Table E.4 Arrays Stored in W (continued)

Array Word
Array Name Type Description
IW(34) ITAU(NG ,MAXIN,2) R*4 Basic event unflooded and
flooded mean down times
IW(35) IGNDX( NG) [*2 Work space
IW(36) GNUM( NG* NBE ) I*2 Work space

During program execution, ALOCT2 writes over several of the input
arrays after they are no longer needed for input data. These arrays
become the following:

IW(25) IMIC(CROW) 1*2 Number of basic events in each
minimal cut set

IW(2€) MICS(CROW,CCOL) I*2 Minimal cut sets

IW(27) IPATH( PROW) 1*2 Number of basic events in each
flood protection set

Iw(28) TIPATH( PROW,PCOL) 1%*2 Flood protection sets

IW(29) IPTH( PROW) I*2 Number of basic events in tem-

porary intermediate flood pro-
tection sets

IW(30) IIPTH( PROW, PCOL) I*2 Temporary intermediate flood
protection sets synthesized from
only level 1 minimal cut sets

IW(31) IWORK( PROW) I*2 Number of basic events in the
flood protection set work area

IW(32) TIWORK( PROW,PCOL) 1I*2 Flood protection set wcrk area

IW(33) ISGATE( CROW) 1*2 location of the first gate in

the cut set array
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Table E.4 Arrays Stored in W (continued)

Array Word
Array Name Type Description

During program execution, if MAXD is reached before the critical flood
level and the user specifies partial common cause candidates are to be
{dentified, ALOCT3 writes over the input arrays. These arrays become
the following:

IW(25) IMIC(CROW) I*2 Number of basic events in each
minimal cut set

1W(26) IIMIC(CROW,CCOL) I*2 Minimal cut sets

wW(27) ISGATE( CROW) 1*2 First gate in the cut set array

IW(28) Spare array space

IW(29) 1TWO( NBE, 2) I*2 Two-event unflooded sets that

cause the TOP to occur with
flooded events on

1W(30) Spare array space

IW(31) IPATH( PROW) I*2 Number of basic events per flond
protection set

IW(32) IIPATH( PROW,PCOL) I*2 Flood protection sets

1W(33) IWORK( PROW) I*2 Number of basic events per flood

protection set in the work space

IW(34) IIWORK( PROW,PCOL) 1*2 Flood protection set work area

For definitions of dimension variables see Table E.S5.
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Table E.5 BLOCK DATA Common Block Variables

Commcn Word Initial

Block Variable Type Value Description

ALL NCUT [*4 0 Number of cut sets

'RR ERROR L*4 F Flag for the occurrence of any errors

in the lonput data

LEVL ILEV 1*4 0 Reference number of the flood level
currently under analysis

LEVL THSLOC 1*4 0 Elevation of flood level currently
under analysis

LEVL LSTLOC I*4 0 Elevation of the last flood level
previously analyzed

OPT1 NDEP I*4 0 Number of levels used in describing a
plant

OPT1 DEPTH I*4 0 Number of levels to flood

OPTI MAXD [*4 NEP Maximum level to flood

OPT1 DEEPER  L*4 T Defines the type of flood aalysis

performed (analyze only on Individual
level at each step vs. analyzing
levels o » {1 at each step)

OPT1 DOPT L*4 T Option for method of determining
plant flood levels (user-supplied vs.
NOAH calculated levels)

OPT2 TIMPT I*4 0 Defines the type of flood profile
input, and whether or not to punch
KITT-2 data

OPT2 NTPT [*4 0 Number of time points

OPT2 DSRCH L*4 F Lefines whether or not to identify

minimal cut sets from the final cut
set list that contaln a specified
basic event

OPT2 CFD L*4 F Defines whether or not to determfne
flooded minimal cut sets

oPT3 ORDER 1*4 0 Maximum size of cut sets to find

149



Table E.5 BLOCK DATA Common Block Variables (continued)

Common Word initial
Block Variable Type Value Description
OPT3 FIND L*4 T Defines whether or not partial common

cause candidates are found glven MAXD
is reached and the TOP event has not

occurred

OPT3 SEEPTH  L*4 F Defines whether or not flood protec-
tion sets are printed for each flood
level

OPT3 MAXIN I*4 7 Maximum uumber of inputs for any gate

PARM1 NBE [*4 0 Number of unique basic events in the
fault tree

PARM1 NG 1*4 0 Number of unique gates in the fault
tree

PARM1 NGATE 1*4 0 Total number of gates in the fault
tree

PARM1 NCOMP 1*4 0 Total number of basic events i{n the
fault tree

PARMI1 MAXREP I*4 0 Maximum number of times any basic
event appears in the fault tree

PARM3 CCoL 1*4 0 Order of the longest possible Boolean
Indicated Cut Sets (BICS)

PARM3 CROW 1*4 0 Estimated number of BICS

PARM3 ROWMAX  I*4 500 Maximum number of rows in the in-core
cut set/path set array

PARM3 PCOL I*4 0 Order of the longest possible Boolean
Indicated Path Sets (BIPS)

PARM3 PROW 1*4 0 Estimated number of BIPS

PRNT DUMP L*4 F Defines whether or not intermediate

results are to be printed

PRNT TRACE L*4 F Defines whether or not to print a
program trace during program execu-
tion
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Table E.5 BLOCK DATA Common Block Variables (continued)

Common Word Initial
Block  Variable Type Value Description

PRNT ECHO L*4 Def ines whether or not to print
program arrays as they are filled

TIME SLOPE R* 4 .0 Slope of linear flood profile

TIME NTRCPT  R¥*4 .0 Intercept

VRSN VERSN R*8 'Version-2' Program version
'Dec., 1981°'

VRSN TITLE R*8 Bank Job title
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FAULT TREE PSEUDO-BINARY IMAGE

Figpure E.1 Fault Tree Psuedo-binary Image Cenerated by BUILD
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Figure C.2
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Figure E.3
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4. a pointer from this element to the gate to
which it 1s fnput (its father).

1f the next item in the queue is a basic event, BUILD adds a node to
TREE for the basic event and stores descriptive information about the
basic event in the appropriate arrays. Basic event nodes contain the
same information as gate nodec, except the "son" pointer 1is null.
Upon completing the pseudo-binary image, BUILD checks to see that all
repeated basic events have been included and their pointers are
correctly set.

Subroutine BUILD calls the following subroutines: XREFI, GOOFUP,
SEARCH, and XREFN. MAIN is the only routine that calls BUILD. Table
E.6 describes important variables used in this subroutine.

E.2.5 CHEAT (COMPNT, BENAME, *, *)

Subroutine CHEAT determines 1{f a string supplied by the
user 1in the * SEARCH input data is contained within any basic event
names . CHEAT checks the basic event names one at a time. After
checking a basic event name, CHEAT returns to the calling subroutine
via RETURN 1 or RETURN 2. If RETURN 1 is used, the string 1is
contained within the given basic event name and the calling subroutine
is signaled to continue execution of the search. If RETURN 2 is used,
the calling subroutine is signaled that the basic event name does not
contain the searck string and no further searching with that basic

event 1s necessary.

DOSRCH and INPUT are the only subroutines that call CHEAT. CHEAT
does not call any subroutines. Table E.7 lists important variables
used in this subroutine.

E.2.6 CHEKIT (GATE, FGI, NCI, IGNDX, ELVATN, KEY, LAMBUA, TAU,
HOUSE, FLOOD, NHOUSE)

Subroutine CHEKIT checks the fault tree, basic event and house
event input data for errors. CHEKIT checks the fault tree for the

following possible errors:

1. a gate described in the fault tree that fis
not input to any other gate,

2. a gate 1is described more than once in the
fault tree (duplicate cards),

3. the same gate has more than one set of inputs
(possibly a misspelled gate name),

4. more than one gate has the same set of
inputs, and
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Table E.6 BUILD Variables

Word

Variable Type Description

TREE(NDIM,4) I*2 Threaded pseudo-binary image of the fault
tree

TREEX( NBE ,MAXREP) I*2 Basic event indices which locate the basic
event in the fault tree

TRENDX(NDIM) I*2 Location in TREE where each member first
appears

IGATYP( NG) I*2 Type of gate (0 = OR, 1 = AND)

NAM( NBE+NG) R*8 Basic event and gate names

LEVATN( NBE) I*4 Elevation of each basic event

NREP(NBE) I*2 Number of times each basic event is repeated
in the tree

HOUSE( NBE) I*2 State of each house event in the tree

FLOOD( NBE) T*2 Flood susceptibility of each house event

LAMBDA(NBE, 2) R*4 Basic event unflooded and flooded failure
rates

TAU(NBE, 2) R*4 Basic event unflooded and flooded mean down
times

NGI(NG) I*2 Number of gates input to each gate

NCI(NG) I*2 Number of basic events input to each gate

IGTYP( NG) I*2 Gate type of each gate (0 = OR, 1 = AND)

GATE( NG ,MAXIN) R*8 Input descriptions of fault tree

ELVATN(NG ,MAXIN) TI*4 Basic event elevations

INDEX( NG ,MAXIN) I*2 Gate and basic event iIndices. (Each gate is

numbered from 1 to NG and each gate input is
numbered starting with NG+1. These indices
are used to build the circular queue).
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HOUSE( NG ,MAXIN) 3t of each house event

FLOOD( NG ,MAXIN) i susceptibility of each house event

unflooded and flooded failure

unflooded and flooded mean down

( NGATE*NCOMP) ; Arcul ' * building the pseudo-
fault tree

in GNUM to process
gate retrieved from GNUM

basic event retrieved from GNUM

1sic event index number (NGE or
item currently being processed




Table E.7 CHEAT Variables

e e — =
Word

Variable Type Description

COMPNT(8) L*1 String requested by the user

BENAME(8) L*1 Basic event name
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Se the fault tree contains circular logic.

The basic events are checked for valid elevations and the failure
rates and mean down times are checked for validity. CHEKIT checks the
appropriate house event arrays to Iinsure that the existence or
nonexistence of house events is properly indicated.

Subroutine INPUT calls CHEKIT and CHEKIT calls subroutine GOOFUP.
Table E.8 describes important variables used in this subroutine.

E.2.7 CONDNS (NSET, IMIC, MICS, IDIM)

Subroutine CONDNS removes supersets from the cut set array by
compressing the cut set array to eliminate the holes left by supersets
and ad justs the number of sets accordingly.

Subroutine CONDNS does mnot call any other subroutines.
Subroutines DEQUAL, DSUPER, FIXIT, PARTAL and TOOBIG call CONDNS.
Table E.9 lists important variables used in this subroutine.

E.2.8 DEQUAL (NSET, IMIC, IIMIC)

Subroutine DEQUAL deletes duplicate cut sets in the cut set
array. DEQUAL compares each of the basic events in one cut set with
the basic events in another cut set. If all the basic events in the
two sets match, DEQUAL deletes one of the cut sets.

Subroutine DEQUAL calls subroutine CONDNS and {s called by
subroutine GATHER. Table E.10 describes important variables used in
this subroutine.

E.2.9 DISK (NSET, ORDER, IIMIC, LUN1, LUN2, NUN1)

Subroutine DISK deletes supersets from the cut sets stored on
disk. The array IIMIC contains only cut sets of a given order. Cut
sets larger than this given order are stored on disk 2 1 are
eliminated by not belng transferred from LUN1 to LUN2. chereby
eliminating supersets.

DISK does not call any subroutines and 18 called only by

subroutine GATHER. Table E.l1l1 describes important variables used in
this subroutine.

E.2.10 DOIT (TREE, TRESAV, TREEL, STREEL, TREEX, LEVATN, KEY,
HOUSE, FLOOD, NPL, ONES, MAX)

Subroutine DOIT controls the flood simulation. As the fault tree
is flooded 1level by level, DOIT determines *f any cut sets are
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Table E.8 CHEKIT variables

Word

Vartable Type Description

GATE( NG ,MAXIN) R*8 Input fault tree

NGI(NG) 1*2 Number of gates input to each gate

NCI( NG) 1*2 Number of basic events input to each
gate

IGNDX( NG) I*2 Internal array used in testing for cir-
cular logic

ELVATN( NG ,MAXIN) I*4 Basic event elevations

KEY{ NDEP) 1*4 Flood levels used in performing a floo!
analysis

LAMBDA( NG ,MAXIN,2) R*4 Basic event unflooded and flooded
failure rates

TAU( NG ,MAXIN,2) R*4 Basic event unflooded and flooded mean
down times

HOUSE( NG ,MAXIN) I*2 State of each house event

FLOOD( NG ,MAXIN) I*2 Flood susceptibility of each house
event

NHOUSE I*4 Number of house events

For definition of dimension variables see Table E.S5.
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Table E.9 CONDNS Variables

Variable Description

NSET Number of cut sets

IMIC( IDIM) Size of cut set 1

MICS(IDIM,1) Cut set array

IDIM Parameter used to dimension array MICS
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Table E.10 DEQUAL Variables

Word
variable Type Description
NSET I*4 Number of cut sets
IMIC(CROW) 1*2 Order of each cut set
1IMIC(CROW,CCOL) 1I*2 Cut sets

CROW is the estimated number of BICS.

CCOL is the estimated order of the longest possible BICS.
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Table E.11 DISK Variables

Word
Variable Type Description
NSET *4 Number of cut sets stored on disk LUNI1
ORDER 1*4 Order of the cut sets on disk LUNL

[IMIC{CROW,CCOL) 1T*2

LUN1 I*s
LUN2 i*4
NUNL I*4

Cut sets
Disk file cut sets to be tested

Disk file where non-supersets will
reside

Number of cut sets on LUN2

CROW 18 the estimated number of BICS.

CCOL is the estimated order of longest possible BICS.
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submerged . If cut sets are submerged, DOIT invokes the proper
algorithms to determine these cut sets and shrink them to minimal

form.

Figure E.4 1is a flowchart of DOIT. To begin the flood
simulation, all the basic eveants in the fault tree are turned off and
the fault tree is set to false. DOIT then floods the fault tree to
the appropriate level and turns on all the basic events whose
elevations are at or below this level. DOIT tests this flooded fault
tree. If the fault tree is true, DOIT invokes the proper algorithms
to identify the minimal cut sets. If the fault tree 1s false, the
flood is raised to the next level and the fault tree is retested.

In determining tne minimal cut sets, DOIT first identifies tue
one-event minimal cut sets. It then eliminates these basic events
from the fault tree before searching for higher-order minimal cut
sets. DOIT determines the higher-order minimal cut sets using one of
two algorithms (a standard top-down algorithm or a cut set/path set
aigorithm), depending on whether the TOP event has previously occurred
or not.

After finding the minimal cut sets, the fault tree is restored
and, if specified, the next level is flooded. If the fault tree never
tests true during the flood simulation to level MAZD, DOIT finds the
partial common cause candidates. Final output 1is produced and the
search capability invoked after DOIT completes the flood simulation.

MAIN is the only routine that calls DOIT. GSubroutines called by
DOIT are SOTRUE, RESET, SETIT, PRSET, FIND1S, OUTPUT, PRINTS, TRAVRS,
FATRAM, DOPATH, PRINT, ALOCT3, PARTAL, DOSRCH and KITOUT. Table E.12
describes important variables used in DOIT.

E.2.11 DOPATH (IPATH, IIPATH, IPTH, IIPTH, IMIC, ITMIC, NREP,
TREEX, TREEL, LTREE, TREE, TREE2, NMIC, NPATH)

Subroutine DOPATH identifies minimal cut sets for a flooded fault
tree that has already tested true at a lower flood level. The DOPATH
algorithm {dentifies new minimal cut sets without refinding minimal
cut sets previously identified at lower flood levels. Figure E.5 is a
flowchart of DOPATH.

DOPATH uses the following procedure to 1identify flooded minimal
cut sets for the nt! flood level:

1. Path sets (PATH) are synthesized from the
minimal cut sets found for the previous n-1
levels tested (1f path sets do not already
exist).

2. The fault tree 1is tested with all the basic
events in the first PATH set turned off. If
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Table E.12 DOIT Variables

Word

Variable Type Description

TREE(NDIM, 4) 1*2 Threaded pseudo-binary tree image

TRESAV(NDTM, 3) 1*2 Duplicate of the pseudo-binary tree
pointers (save area)

TREEL( NDIM) L*1 Logical state of the tree

STREEL(NDIM) L*1 Duplicate of the state of the tree
(save area)

TREEX( NBE ,MAXREP) 1*2 location in TREE of each basic event

LEVATN( NBE) 1*4 Basic event elevations

KEY(NDEP) I*4 Flood levels used in performing a flood
analysis

HOUSE( NBE) I*2 State of rach house event

FLOOD( NBE) I*2 Flood susceptibility of each house
event

NPL(NLEV) I*2 Number sets per level

ONES( NBE) I*2 One-event cut sets

MAX I*4 Amount of room in common block /WORK/

THSLOC 1*4 Upper bound on this depth

LSTLOC I*4 Lower bound on this depth

For definitions of dimension variables see Table E.5.
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Table E.13 DOPATH Variables

Word

Variable Type Description

IPATH( PROW) I*2 Order of each path set

TIPATH( PROW,PCOL) I*2 Path sets

1PTH( PROW) I*2 Order of each secondary PTH set

LIPTH( PROW,PCOL) 1*2 Secondary PTH sets

IMIC(CROW) 1*2 Order of each cut set

1IMIC(CROW,CCOL) 1*2 Cut sets

NREP(NBY) 1*2 Number of times each basic event is
repeated in the fault tree

TREEX( NBE ,MAXREP) 1*2 Location of each basic event in the
fau'® tree

TREEL(NDIM) L*1 State of the fault tree

LTREE(NDIM,2) L*1 Duplicate of the state of the tree
(save area)

TREE(NDIM,4) I*2 Threaded pseudo-binary Ilmage of the
fault tree

TREE2(NDIM,3) I*2 Duplicate of the threaded pseudo-binary
image of the fault tree (save area)

NMIC I*4 Number of cut sets

NPATH I*4 Number of path sets

For definitions of dimension variables see Table E.5.
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DOSR

Basic event names
Basic event elevations

Number of MICS per level

Height of each flood level

Minimal cut sets
Basic event name searched for

Character string searched for

dimension variables see Table E.




E.2.13 DSUPER (NXTEL, IMTC, s, IDIM)

Subroutine DSUPER deletes supersets from the list of cut sets.
DSUPER compares lower-order cut sets against higher-order cut sets and
deletes those higher-order cut sets in which the lower-order cut sets
are completely contained. DSUPER deletes a cut set by setting the
value in IMIC to zero.

Subroutine DSUPER calls CONDNS. It is called by FATRAM, FIXIT,
GATHER, GENPTH, GENP2, and GENP3. Table E.15 describes {important
variables used in subroutine DSUPER.

E.2.14 EXIST (ISON, IGATYP, KEY)

Logical function EXIST determines the gate types input to the
loglc gate currently being resolved.

Function EXIST does not call any other subroutines and is invoked
by subroutine FATRAM. Table E.l16 describes {important variables in
subroutine EXIST.

E.2.15 FATRAM (TREE, TRENDX, IGATYP, ISGATE, FLAG, IMIC, MICS,
NCUT, NHOLD)

Subroutine FATRAM identifies the minimal cut sets for the fault
tree. The FATRAM subroutine 1in NOAH 18 a modified version of a
MOCUS~type top-down replacement algorithm developed by D. M. Rasmusson
and N. H. Marshall.

Figure E.6 is a flowchart of subroutine FATRAM. FATRAM begins by
expanding the highest gate in the tree (TOP gate) into pseudo-cut sets
composed of gates and/or basic events. FATRAM then expands all AND
gates 1in these pseudo-cut sets until only OR gates and basic events
are left. Next, FATRAM expands all OR gates in the pseudo-cut sets
until only AND gates and basic events are left. FATRAM then deletes
supersets from this pseudo-cut set list. AND gates are then resoclved
until no AND gates are left. OR gates in the pseudo-cut sets are
resolved. The process of resolving AND and OR gates In the pseudo-cut
sets and deleting supersets continies uatil the cut sets contain only
basic events. These are the system minimal cut sets. Subroutine
FIXIT {is called any time the cut set array fills up during the
expansion of OR gates.

After identifying the minimai cut sets, minimal cut sets of order
larger than variable ORDER are deleted. If any cut sets are stored on
disk, FATRAM calls subroutine GATHER to complete the processing. Tt
no cut sets are stored on disk, FATRAM cails subroutine OUTPUT.
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Table E.15 DSUPER Variables

Varlable

Description

NXTEL
IMIC(IDIM)
MICS(IDIM,1)
IDIM

NSET

SHORT

ILONG

[ SHORT

Next empty slot in the MICS array
Size of cut sets

Cut sets

Dimension of IMICS array

Number of cut sets or flood protection
sets In MICS array

Order of the longer cut set/flood pro-
tection set stored in MICS

Order of the sherter cut set/flood pro-
tection set stored in MICS

Index of the longer cut set/flood pro-
tection set stored in MICS

Index of the shorter cut set/flood pro-
tection set stored in MICS




Table E.l6

EXIST Variables

Word
Variable Type Description
ISON I*4 Index of input gate examined
ICATYP(NG) I*2 Gate type of each fault tree gate
KEY I*4 Gate type of gate curreatly being
resolved
EXIST L*4 Flag indicating whether or not ISON and

KEY gate types match
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Subroutine FATRAM calls subroutines FIXIT, DSUPER, FINDG, TOOBIG,
GATHER, OUTPUT, EXIST, FGATE, and PREXST. Subroutines that call
FATRAM are DOIT, DOPATH, PARTAL. Table E.17 describes important
variables used in this subroutine.

E.2.16 FGATE (MICS, NWIDE, NSET)

Function FGATE determines which columns (if any) In the row
currently being analyzed in MICS (NSET,I) contaln a gate. 1f the
element index number in any column 1{s greater than NBE, then that
¢lement 18 a gate.

FGATE does not call any subroutines ani is called only by FATRAM.
Table E.18 describes important variables in FGATE.

E.2.17 FINDG (NMIC, IMIC, IIMIC, ISGATE, FIRST)

After supersets are deleted, FINDG suts the array ISGATE for the
first column containing a gate for each cut set. It also returns the
first row contalning a gate. FINDG calls no routines. FINDG 1is
called by FATRAM and FIXIT. Table E.19 describes important variables
fn FINDG.

K.2.18 FIND1S (TREE, TREEL, TREEX, NREP, ONES, NAM, IGTYP,
KEY, LEVN)

Subroutine FIND.S identifies one-event minimal cut set for the
fault tree., If the basic event was not repeated FINDIS determines 1if
the event 1s a one-event minimal cut set by tracing the path of the
basic event through the fault tree to the TOP event. If a basic event
encounters no AND gates in 1its pa"h to the TOP eveant, it 1is a
one-event minimal cut set. If an event 1s repeated, the tree 1is
turned off, all occurrences of the event are set true and the tree is
tested for occurrence of the TOP. If the TOP occurs, the basic event
i{s a one-event cut set. After finding the one-event minimal cut sets,
FIND1S stores them on unit 21.

FIND1S calls SETRUE and SETIT and is called only by DOIT. Table
£.20 describes important variables used in FINDILS.

E.2.19 FIXIT (*, MICS, IMIC, NSETP1, NHOLD, ISGATE, FIRST)

Subroutine FIXIT removes cut sets from the MICS array that
contain only basic events and stores these cut sets on unit 15.
Subroutine FIXIT is called whenever the MICS array becomes full. If
no cut sets can be rvemoved from MICS (each cut set still contalns at
least one unresolved gate), an error message Is generated and program
execution stops.
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Table E.17 FATRAM Variables

Word

Variable Type Description

TREE(NDIM,4) I*2 Threaded pseudo-binary image of the
fault tree

TRENDX(NDIM) 1*2 Index number of each gate in the tree

IGATYP( NG) I*2 Gate type of each gate

ISGATE( CROW) I*2 Index number of the first gate in each
row of the MICS array

FLAG L*4 Flag indicating whether or not:
1) there are too many cut sets for the

cut set array (FLAG = F), or
2) FATRAM is called from DOPATH (FLAG =
)

IMIC(CROW) [*2 Size of each row in MICS

MICS( CROW,CCOL) I*2 Cut sets

NMIC [*4 Number of cut sets in MICS array when
leaving the FATRAM subroutine

NHOLD I*4 Number of cut sets stored on disk

FIXUP L*4 Flag indicating whether or not cut sets
are stored on disk

NXTEL I*4 Next empty row in MICS

LGATE 1*4 Row in array TREE currently being
processed

IGTYP I*4 Type of gate currently belng expanded

SON I*4 First input to gate curreatly being

expanded

For definitions of dimension variables see Table E.5.
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Table E.17 FATRAM Variables (continued)

Word

Variable Type Description

1SON I*4 Index number of the first input to the gate
currently belng expanded

BRO I*4 Next input to the gate currently being
expanded

IBRO I*4 Index number of the next input to the gate
currently being expanded

IWIDE I*4 Order of pseudo-cut set containing a gate
currently being expanded

NWIDE I*4 order of current pseudo-cut set containing a
gate currently being expanded

NSET i*4 Number of pseudo-cut sets that currently
exist

MATIJ I*4 Index number of item in the MICS array that
is currently being examined

PREXST L*4 Function to determine pre-existence of ISON
in the row currently being analyzed in MICS
(see section D.2.38)

EXIST L*4 Function to determine the gate type of the
item just placed in the row currently belung
analyzed in MICS (see [.2.14)

FGATE I*2 Functisn to determine the first column in
the MiCS row currently being analyzed that
contains a gate (see E.2.16)

AGAIN L*4 logical variable set to true (T) if EXIST is
true

ACOUNT [*4 Number of AND gates expanded

OCOUNT [*4 Number of OR gates expanded
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Table E.19 FINDG Variables

Word
variable Type Description
NMIC [*4 Number of cut sets
IMIC(CROW) I*2 Size of cut set
TIMIC(CROW,CCOL) 1*2 Cut set
1SGATE( CROW) I*2 Array containing location of first gate
in row
FIRST I*4 First row that coantains a gate (1if

FIRST = 0 then done)

CROW is the estimated number of BICS.

CCOL is the order of BICS.




FIND1S Variable

MAXREP)




Subroutine FIXIT calls DSUPER, FINDG, GOOFUP, and CONDNS. It is
called by FATRAM. Table E.21 lists important variables used in FIXIT.

E.2.20 GATHER (MICS, IMIC, NSETPl, NHOLD)

Subroutine GATHER reads the cut sets stored on unit 15 and
deletes supersets. GATHER uses one of two procedures for deleting
supersets, depeanding on the number of cut sets that were determined.
If all of the cut sets stored on unit 15 will fit in MICS, the first
procedure is used. In this case, GATHER copies the unit 15 cut sets
inty MICS, deletes all the supersets, and calls OUTPUT.

I1f there are too many cut sets on unit 15 to fit in MICS, the
second procedure 1s used. Using the second procedure, GATHER writes
all cut sets curreantly inm the MICS array to unit 15. Then all
two-event sets are read in and all higher-order sets are written to
unit 16. GATHER then deletes any duplicate two-event minimal cut sets
in MICS and coples the two-event minimal cut sets onto unit 22. The
unit used corresponds to the order of the cut sets plus twenty (2 + 20
= 22). Finally, GATHER compares the cut sets on unit 16 with the
two-event minimal cut sets In MICS to identify supersets. Those unit
16 cut sets that are not supersets are rewritten to unit 15. At this
point”, GATHER starts the process over again with three-event cut sets
stored in MICS. This procedure is repeated until all minimal cut sets
are found.

Subroutine GATHER calls DSUPER, OUTPUT, DEQUAL, and DISK.
Subroutines that call GATHER are DOPATH, FATRAM, and PARTAL. Table
E.22 describes important variables used in GATHER.

E.2.21 GENPTH (IPATH, IIPATH, NPATH, IWORK, IIWORK, IMIC,
IIMIC, NMIC)

Subroutine CENPTH synthesizes the flood protection sets from the
minimal cut sets for the fault tree. Figure E.7 is a flowchart of
GENPTH. The first time GENPTH 1is called, IWIRE one-event flood
protection sets are created from the first minimal cut set where IWIDE
equals the order of the minimal cut set. This set of flood protection
sets then serves as the "current” flood protection sets. Next, GENPTH
reads the next minimal cut for the fault tree and begins synthesizing
new flood protection sets. This 1{s accomplished by generating all
possible combinations of "current” flood protection sets with single
basic events from the curreant minimal cut set. GENPTH then deletes
supersets in these combinations and makes these flood protection sets
the new "current"” flood protection sets. At this point, another
minimal cut set {s selected and the process starts over again. This
continues until the last minimal cut set i{s analyzed.

Subroutines callad by GENPTH are MYSTIC, DSUPER, and SORTP.

GENPTH is called by subroutines DOPATH and PARTAL. Table E.23 lists
fmportant variables used in GENPTH.
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Table E.22 GATHER Variables

Word
vVariable Type Description
MICS{CROW,CCOL) I*2 Cut sets
IMIC(CROW) I*2 Order of each cut set
NSETP1 I*4 Next empty row in MICS
NHOLD I*4 Number of cut zets in Unit 15
LUN1 ,LUN2 I*4 Disk file on Unit 15 or 16
NSET *4 NSETP1-1
NMAX I*4 NSET + NHOLD
ORDER I*4 Order of the cut set under analysis
NUN2 I*4 Number of cut sets on disk files

ii

CROW is the estimated number of BICS.

CCOL is the order of the longest possible BICS.
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Figure E.7
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Table E.23 GENPTH Variables

Word

Variable Type Description
IPATH( PROW) I*2 Order of each flood protection set
IIPATH 1*2 Flood protection set

( PROW, PCOL)
NPATH I*4 Number of flood protection sets
IWORK( PROW) 1*2 Order of each flood protection set in

the work array

IIWORK I*2 Flood protection set work space

( PROW,PCOL)
IMIC(CROW) I*2 Order of each cut set

IIMIC(CROW,CCOL) I*2

NMIC I*4

Cut sets

Number of cut sets

For definitions of dimension variables see Table E.S5.
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E.2.22 GENP2 (IPATH, ITPATH, NPATH, IWORK, IIWORK, NALL)

Subroutine GENP2 generates flood protection sets from minimal cut
sets. The algorithms used in GENP2 are identical to those in GENPTH.
GENP2 1is invoked instead of GENPTH whenever the minimal cut sets are
stored on disk (unit 15) instead of in memory.

Subroutine GENP2 calls MYSTIC, DSUPER, and SORTP. Subroutines
DOPATH and PARTAL call GENP2. Table E.24 describes important
variables in this subroutine.

E.2.23 GENP3 (NPATH, IPATH, IIPATH, NPTH, IPTH, IIPTH,
IWORK, IIWORK)

Subroutine GENP3 generates the final 1list of flood protection
sets for each level from the PATH sets and PTH sets (see E.2.1l1
DOPATH) . GENP3 ge¢nerates the final flood protection sets by finding
all combinations of PATH sets and PTH sets, and then deleting all
supersets.

GENP3 calls subroutines DSUPER and SORTP. GENP3 is called by
subroutine DOPATH. Table E.25 describes important variables used in
this subroutine.

E.2.24 GETMAX (GATE, NGI, NCI, GATYP, IWORK, ROW, COL)

Subroutine GETMAX determines the number and maximum order of the
Boolean Indicated Cut Sets (BICS) and Boolean Indicated Path Sets
(BIPS) for the fault tree. IWORK(1,*) and IWORK(2,*) are estimates of
the number and maximum order of the BICS, respectively. The algorithm
used in GETMAX is based on a similar algorithm in the MOCUS computer
program.

To determine the BICS's for a fault tree, GETMAX first identifies
all the gates in the fault tree that have only basic events as inputs.
GETMAX then cetermines the BICS's and marimum order of BICS for each
of these gates. If gate N being resolved is an AND gate, IWORK(1,N)
is set to 1 and IWORK(2,N) is set to the number of basic events input
to gate N. If gate N is an OR gate, IWORK(1l,N) is set to the number
of basic events input to gate N and IWORK (2,N) is set to 1.

GETMAX next resolves gates with resolved inputs. If any {input
gates are not yet resolved, GETMAX proceeds to analyze another gate.
If all input gates are resolved, GETMAX determines the values of IWORK
for this gate. First, it resolves the basic event inputs to the gate.
The rules stated previously for AND and OR gates apply here. Next,
the values of the input gates IWORK's are Incorporated into this
gate's IWORK values. If OR gate M is being resolved, IWORK(1,M)
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Table E.24 GENP2 Variables

Word
Variable Type Description
IPATH( PROW) I*2 Order of each flood protection set

TIPATH( PROW,PCOL) 1I*2
NPATH I*4

IWORK( PROW) T*2

TIWORK( PROW,PCOL) 1I*2
NALL I*4

TIMIC(20) 1*2

Flood protection sets
Number of flood protection sets

Order of each flood protection set in
the work array

Flood protection set work space
Number of cut sets on dfck

fpace for one minimal cut set

PROW is the estimated number of BIPS.

PCOL is the order of the longest possible BIPS.
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equals the sum of all the input gate IWORK(1,N)'s and IWORK(2,M)
equals the maximum of all IWORK(2,N)'s for gate M. If an AND gate is
being resclved, IWORK(1,M) equals the product of the 1iaput gate
IWORK(1,N)'s and IWORK(2,M) equals the sum of all the input gate
IWORK(2,N)'s. GETMAX repeats this process until all gates are
resolved.

Subroutine GETNG calls GETMAX. Subroutine GETMAX calls no other
subroutines. Table E.26 describes important variables used in this
subroutine.

E.2.25 GETNBE (GATE, NGI, NCI, IGTYP, NAM, NGNC, BENAM, BENUM)

Subroutine GETNBE counts the actual number of gates and basic
events in the fault tree. It also counts the number of times a basic
event appears in the fault tree and it fills the IGTYP, NGI and NCI
arrays.

Subroutine GETNBE calls GOOFUP and is called by GETNG. Table
E.27 describes important variables used in GETNBE.

E.2.26 GETNG (GATE, MAXNG, MAX)

Subroutine GETNG counts the number of unique gates (NG) and basic
events (NBE) in the fault tree input. Subroutines called by GETNG are
GOOFUP, GETNBE, and GETMAX. Subroutine MAIN calls GETNG. Table E.28
describes important variables used in GETNG.

E.2.27 GOOFUP (IER, NUM1, NUM2, WORD1l, WORDZ, CARD)

Subroutine GOOFUP prints error messages whenever errors occur in
the input. The error messages printed include a reference number and
a brief description of the error. Appendix G lists the error messages
used in NOAH, descriptions of the errors and suggested solutions.

Subroutines that call GOOFUP are MAIN, ALOCAT, BUILD, CHEKIT,
FIXIT, GETNBE, GETNG, INPUT, and LAYOUT. Subroutine GOOFUP does not
call any other subroutines. Table E.29 describes Important variables
used in this subroutine.

E.2.28 INPUT (KEYDSC, KEY, NGI, NCI, IGTYP, GATE, ELVATN,
IHOUSE, IFLOOD, ILAMDA, ITAU)

Subroutine INPUT read; the user supplied input into the proper
arrays for processing by NOAH. Arrays filled by INPUT are KEY,
KEYDSC, GATE, NGI, NCI, GATYP, ELVATN, ILAMDA, ITAU, IFLOOD, and
THOUSE . INPUT checks each input group for certain errors as it {s
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Table E.27 GETNBE Variables

Word

Variable Type Description

GATE(NDIM,7) R*8 Input fault tree

NGI(NG) I*2 Number of gates input

NCI(NG) I*2 Number of basic events input

IGTYP(NG) I*2 Gate type of each gate in the fault
tree

NAM(NG*NBE) R*8 Circular queue in counting the gates
and basic events

NGNC I*4 Dimension of NAM

BENAM( NBE) R*8 Basic event names

BENUM( NBE) I*4 Numbe' of times each basic event Is
repes ced

NGIK I*4 Numb :r of gates input to each gate

NGII I*4 Total number of gates in the fault tree

NCII I*4 Total number of basic events in ( .
fault tree

NXTG I*4 Next gate in array NAM to process

NXTE I*4 Next empty slot in array NAM

GNAM R*8 Gate in NAM currently being processed

For definitions of dimensfon variables see Table E.5.
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Table E.28 GETNG Variables

Word

Vartable Type Description

GATE(NDIM,7) R*8 Input fault tree

MAXNG I*4 Maximum number of gate cards (in the
input) NOAH can process

MAX [*4 Size of the work array

MAXIN I*4 Maximum number of inputs to any one
gate

NG I*4 Number of gates

NBE I*4 Number of basic events

NDIM is NG plus NBE.

195



Table E.29 GOOFUP Variables

Word
Variable Type Description
1iR I*4 Error reference number
NUM1 I*4 Duplicate of information in the input
data printed in the error message
NUM2 I*4 Duplicate of information in the input
data printed in the error message
WORD1 R*8 Duplicate of information in the input
data priated in the error message
WORD2 R*8 Duplicate of information in the iaput
data printed in the error message
CARD(10) R*8 Input card printed in the error message
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E.2.29 KITOUT (LAMBDA, TAU, LEVN, KEY, TPOINT, TDEEP)
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Table E.30 INPUT Variables

|

Word
Variable Type Description
KEYDSC(NDEP,10) R*8 Description of each flood level
KEY( NDEP) I*4 Height of each flood level
NGI(NG) I*2 Number of gates input
NCI(NG) I*2 Number of basic events input
IGATYP( NG ,MAXIN) I*2 Gate type
GATE(NG,MAXIN) R*8 Input fault tree
ELVATN( NG ,MAXIN) I*4 Basic event elevations
THOUSE( NG ,MAXIN) [*2 State of house events
T LuD(NG,MAXIN) I*2 Flood susceptibility of house events
ILAMDA(NG ,MAXIN,2) R*4 Basic event unflooded and flooded
faillure rates
ITAU(NG,MAXIN,2) R*4 Basic event unflooded and flooded mean

down times

For definitions of dimension variables see Table E.5.
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Table E.31 KITOUT Variables

Word

Variable Type Description

LAMBDA(NBE,2) R*4 Basic event unflooded and flooded
fallure rates

TAU(NBE,2) R*4 Basic event . ‘ooded and flooded mean
down times

LEVN(NBE) I*4 Basic event elevations

KEY(NDEP) I*4 Height of each flood level

TPOINT(NTPT) R*4 Time points used to describe the
discretized flood profile

TDEEP(NTPT) I*4 Elevations used to describe the discre-
tized flood profile

TIMI R*4 Time point the baeic event is submerged

TIM2 R*4 Time the mission ends (for quantitative
analysis)

NPHASE I*4 Number of phases for each basic event

IBPHA I*4 Basic event boundary condition flag

INIT R*4 Bagic event initial unavailability

IPATH I*4 Flag indicating minimal cut sets are
supplied as KITT-2 input

NCUT I*4 Number of minimal cut sets

SLOPE R*8 Slope of linear flood profile

NTRCPT R*8 Intercept

LINE R*8 Slope minus intercept

For definitions of dimension variables see Table E.5.
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Table E.32 LAYOUT Variables

|

Word
Variable Type Description
IMAX I*2 Amount of space needed in array W
MAX I*4 Amount of space available in array W

INDEX I*4 Number of rows to print




Table E.33

MYSTIC vVariables

—
—

Word
Variable Type Description
ITEM I*4 Number of basic events in the current

TIMIC(CROW,CCOL)  T#2

NWORK

IWORK( PROW)

%4

I*2

TIWORK( PROW,PCOL) TI*2

NHELP

IPATH( PROW)

I*4

I*2

I TPATH( PROW,PCOL) T%*2

minimal cut set
Minimal cut set array

Number of minimal cut =ets in the work
array

Order of the flood protection sets in
the work array

Work array

Number of flood protection sets moved
to the IIPATH array

Order of the flood protection sets

Flood protection sets

CPOW 1s

CCOL is

FROW is

PCOL 1:

the

the

the

the

estimated number of BICS

order of the longest possible BICS.

estimated number of BIPS.

order of the longest possible BIPS.
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Table E.34 OUTPTH Variables

Word

Variable Type Description

NAM( NBE) R*8 Basic event names

LVTN(NBE) I*4 Basic event elevations

KEYDSC(NDEP,10) R*8 Description of each flood level

KEY(NDEP) I*4 Height of each flood level

IPATH( PROW) I*2 Order of each flood protection set

NPL(NLEV) I*2 Number of cut sets on each level

PNAM( NBE) R*8 Temporary array for printing baslic
event names in each flood protection
set \

PLEV(NBE) I*4 Temporary array for printing basic
event elevations in each flood protec-
tion set

[SUM (*4 Number of basic events submerged
between the last flood level and the
current flood level

TKEY [*4 Height of flood level currently being
output

TCOUNT I*4 Number of flood protection sets at this

flood level

For definitions of dimension variables see Table E.S.
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E.2.33 OUTP2 (NAM, LVTN, KEYDSC, KEY, NPATH, IPATH, IIPATH,
PNAM, PLEV, NCUT)

Subroutine OUTP2 prints the flood protection sets for the fault
tree after the partial common cause candidates have been determined.
OUTP2 calls no other subroutines and is called by PARTAL. Table E.35
describes important variables in OUTP2.

E.2.34 OUTPUT (NMIC, IMIC, MICS, NAM, NPL)

Subroutine OUTPUT sorts the minimal cut sets according to size.
OUTPUT writes each minimal cut set to a disk file on logical unit (20
+ ITEM), where ITEM is the number of basic events in each minimal cut
set. OUTPUT calls no other subroutines and is called by subroutines
DOIT, DOPATH, FATRAM, GATHER and PARTAL. Table E.36 describes
important variables in this subroutine.

E.2.35 PARIA\L (TREE, TRE AV, TREEL, STREEL, HOUSE, FLOOD, LEVN,
KEY, IMIC, IIMIC, ITWO, IPATH, IIPATH)

Subroutine PARTAL finds partial common cause candidates for the
fault tree. It is invoked oaly if MAXD is reached and the TOP event
has not occurred. Figure E.8 1s a flowchart of subroutine PARTAL.

To 1identify partial common cause candidates, PARTAL calls
subroutine PREPIT to {identify all combinations of two basic events
above elevation MAXD that will make the fault tree true whew all basic
events below MAXD are turned on. PARTAL chen prunes from the fault
tree any basic event above MAXD that 1{s not contained in any of the
two-event sets. Next, PARTAL {dentifies minimal cut sets for the
pruned fault tree using FATRAM. Finally, PARTAL checks the 1list of
minimal cut sets to see that they contain at least one flooded basic
event and no more than two unflooded basic events. If this criterion
1{s not met, the minimal cut set is discarded. The remaining minimal
cut sets are output as partial common cause candidates and, {f
desired, flood protection sets are generated and output.

Subroutine DOIT calls PARTAL. Subroutines called by PARTAL are
PREPIT, SETRUE, RESET, TRAVRS, FATRAM, GATHER,CONDNS, OUTPUT, POUTWC,
GENP2, OUTP2, and GENPTH. Table E.37 describes important variables
used in PARTAL.

E.2.36 POUT'C (NAM, LVTN, KEYDSC, KEY, PNAM, PLEV, NMIC, TREEL)

Subroutine P0. ' prints the partial common cause candidates. It
also prints the elevation of the highest flooded basic eveant in the
partial common cause candidate that is below MAXD.



Table E.35 OUTP2 Variables

Word

Varlable Type Description

NAM( NBE) R*8 Basic event names

LVTN(NBE) I*4 Basic event elevations

KEYDSC(NDEP,10) R*8 Description of each flood level

KEY(NDEP) I*4 Height of each flood level

NPATH I*4 Number of path sets

IPATH( PROW) I*2 Order of each flood protection set

IIPATH( PROW,PCOL) I*2 Flood protection sets

PNAM( NBE) R*8 Temporary array for printing basic
event names in each flood protection
set

PLEV(NBE) I*4 Temporary array for printing basic
event elevations in each flood protec-
tion set

NCUT I*4 Number of partially flooded cut sets

ISUM I*4 Number of basic events submerged
between the last flood level and the
current flood level

TKEY I*4 Height of flood level currently being
output

ICOUNT I*4 Number of flood protection sets at this

flood level

For definitions of

dimension variables see TabLle E.S5.
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Table E.38 POUTWC Variables

Word
Variable Type Description
NAM(NBE) R*8 Basic event names
LVTN( NBE) I*4 Basic event elevations

KEYDSC(NDEP,10) R*8

KEY(NDEP) 1*4
PNAM( NBE) R*8
PLEV(NBE) I*4
NMIC I*4
TREEL( NDIM) L*1
LEVMAX I*4
ICOUNT 1*4
ISUM I*4
IDEEP I*4

Description of each flood level

Height of each flood level

Temporary array for printing basic
event names in each partial common
cause candidate

Temporary array for printing basic
event elevations in each partial common
cause candidate

Number of flood protection sets

State of tree

Elevation of flood level MAXD

Counter for partial common cause
candidates

Number of submerged basic events in a
partial common cause candidate

Elevation of the highest basic event in
each partial common cause candidate
below MAXD

NBE is the number of unique basic events.

NDEP is the number of flood levels.

NDIM i{s the number of unique basic events plus the number of unique

gates.







Table E.40 PREXST Variables

Word

Variable Type Description

MICS(CROW,CCOL) I*2 Cut sets

NSET i*4 Row in MICS currently being examined

IWIDE I*4 Size of the row in MICS currently being
examined

SON 1*4 Element Lo add to the current row

HERE I*4 Location of the gate currently being
resolved

KEY I*4 Flag identifying gate type

CROW is the estimated number of BICS.

CCOL is the order of the longest possible BICS.
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subroutines and is called by subroutines DOIT and PARTAL. Table E.43
describes important variables in PRSET.

E.2.42 PRUNOF (*, *, *, TREE, TREEL, IGTYP, IBE)

Subroutine PRUNOF deletes unflooded basic events from the fault
tree. In pruning the fault tree, PRUNOF deletes basic events and
appropriate AND gates in the fault tree. If an unflooded basic event
is input to an OR gate, PRUNOF only deletes the basic event. 1If it is
input to an AND gate, the AND gate and all coannected AND gates
encountered traversing up the tree until an OR gate 1s reached are
deleted. The appropriate portions of the fault tree are “pruned away”
by altering the pointers in the threaded pseudo-binary tree 1mage.

PRUNOF calls no other subroutines and is called by TRAVRS. The
first three terms in the call sequence refer to RETURN statements.
Table E.44 describes the RETURN statement alternatives and other
important variables used in PRUNOF.

E.2.43 RESET (IBE, TREEL, NREP, TREEX, FLAG)

Sut routine RESET sets all occurrences of a given basic event to
false. K.'SET calls no other subroutines and is called by DOIT. Table
E.45 licrts important varlables used in the subroutine.

E.2.44 SYARCH (WORD, NAM, N, NXG,
NXE)

Sub=outine SEARCH searches the NAM array for a specific name
{basic event or gate). 1f found, SEARCH returns the index of the
element. Otherwise, a zero is returned.

SEARCH calls no subroutines and is called by BUILD. Table E.46
describes important variables used in this subroutine.

E.2.45 SETIT (TREE, TREEL, IGTY?)

Subroutine SETIT sets the value of the TOP event according to the
values of the fault tree gates. The fault tree gates are set by
traversing the fault tree from the TOP event in post order form. Post
order form is left branch, right braach, root .(3) Figure E.9 1s a
flowchart of subroutine SETIT.

SETIT begins by traversing from the TOP down the left branch of
the fault tree from son to son. When the lowest level son (a basic
event) in a branch is reached, the state of its father (a gate) is set
according to the state of the son and type of gate. The brother of
this son 18 analyzed next. If it is a gate, SETIT finds its lowest
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Table E.44 PRUNOF Variables

Word
Variable Type Description
* Alternate Return : PRUNOF uses this
RETUKRN if:
1) the basic event is flooded,
2) the basic event has already been
pruned, or
3) the cubroutine reaches normal
completion
* Alternate Return 2: PRUNOF uses this
RETURN if the basic event pruned has no
brothers
* Alternate Return 3: PRUNOF uses this
RETURN 1f the TO? event is "pruned
away"
TREE(NDIM,4) I*2 Threaded pseudo-binary fault iree image
TREEL(NDIM) Lx1 Pseudo~binary tree image state array
IGTYP{NBE) I*2 Gate type
IBE I*4 Basic event being examined
NODE I*4 Current event being examined in the
pseudo-binary tree image
DAD I*4 Father of current event being examined
1DAD I*4 DAD's gate/basic event index number
NDAD I*4 NDAD = IDAD - NBE
FSON 1*4 First input to DAD
BRO I*4 Next input to DAD
IrPOP I*4 Father of BRO

NBE is the number of unique basic events.

NDIM is the number of unique basic events plus the number of unique
gates.
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Table E.45 RESET Variables

—
———

Word

Variable Type Description

1BE I*4 Basic event index

TREEL(NDIM) L*] Pseudo-binary tree image state array

NREP( NBE) I*2 Number of times each basic event 1is
repeated

TREEX(NBE ,MAXREP) I*2 Basic event indices which locate the
basic events in the fault tree

FLAG L*4 Flag that identifies house events that
have been sei true. Once set true,
house events are not reset.

IREP I*4 Number of times a basic event is
repeated

HE«E I*4 Specific location of a basic event in
TREEX

UNDEF L*1 variable that indicates if a basic

event has been resolved. If the baslic
event is resolved, it is the value of
the basic event (true or false).

NBE is the number of unique basic events.

NDIM is the number of unique basic events plus the number of unique

gates.
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Table E.46 SEARCH Variables

Variable Description

WORD Name to find

1AM( NG+NBE) Gate/basic event names

N Index number of the WORD found
NXG Number of gate names currently in NAM

Number of basic event names currently
in NAM

NG is the number of unique gates.

NBE is the number of unique basic events.
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SETPTH (ISET, FLAG, IPATH, IIPATH, TREEL, NREP,

SETRUE (IBE, TREEL, NREP, TREEX)

ORTP (NPATH, IPATH, IIPATH, IWORK, IIWORK)




Table E.47 SETIT Variables

Word

Variable Type Description

TREE({NDIM,4) I*2 Threaded pseudo-binary fault tree
image

TREEL(NDIM) L*1 Pseudo-binary tree Ilmage state array

IGTYP(NG) I*2 Gate type

NODE I*4 Entity (gate or basic event) in
question

DAD I*4 Father of NODE

IDAD I*4 Gate index number of DAD

NG is the number of unique gates.

NDIM is the number of unique gates plus the number of unique basic
events.
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Table E.48 SETPTH Variables

Word
Variable Type Description
ISET I*4 Index number of the flood protection
sct to set
FLAG L*4 Value to set flood protection set mem—
bers (true or false)
IPATH( PROW) T*2 Number of basic events in each flood

TIPATH{ PROW,PCOL) T*2
TREEL( NDIM) L*1

NREP( NBE) I*2

TREEX(NBE ,MAXREP) I*2

protection set
Flood protection sets
Pseudo-binary tree Iimage state array

Number of times each basic event is
repeated in the fault tree

Basic event indices which locate the
basic events in the fault tree

For definitions of dimension variables see Table E.5.
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Table E.49 SETRUE Variables

Word
Variable Type Description
IBE I*4 Index number of basic event to set
TREEL( NDIM) L*1 Pseudo-binary tree image state array
NREP(NBE) I*2 Number of times each basic event is
repeated in the fault tree
TREEX( NBE ,MAXREP) [*2 Basic event indices which locate the

basic events .n the fault tree

I

NBE i{s the number of unique basic events.

NDIM is the number of unique basic events plus the number of unique
gates.
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Table E.51 TOORIG Variables

Word
Variable Type Description
MICS(CROW,CCOL) I*2 Minimal cut sets
IMIC(CROW) I*2 Size of each minimal cut set
NSET I*4 Number of minimal cut sets
COUNT I*4 Number of minimal cut sets deleted

CROW is the estimated number of MICS.

CCOL is the order of the longest possible MICS.
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E.2.51 XREFI (INDEX, GATE)

XREFN (NAME, LVTN)
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.10 Subroutine TEAVRS Flowchart
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Table E.52 TRAVRS Variables

Word

Variable Type Description

* Alternate Return: TRAVRS uses an
alternate RETURN statement if the TOP
event is “"pruned away”.

TREE(NDIM,4) I*2 Threaded pseudo-binary fault tree
image

TREEL(NDIM) L1 Pseudo-binary tree image state array

NODE I*4 Current element in the pseudo-binary

tree being analyzed

NDIM is the number of unique basic events plus the number of unique

gates.
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Table E.53 XREFI Variables

Word
Variable Type Description
INDEX( NG ,MAXIN) I*2 Index number of the fault tree gates or
basic events
GATE( NG ,MAXIN) R*8 Gate/basic event names
MAX I*4 Maximum number of inputs tc the gate

being listed

NG is the number of unique gates.

MAXIN i{s the maximcm number of inputs for any gate.
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Table E.54 XREFN Variables

Word
Variable Type Description
NAME( NBE) R*8 Basic event names
LVTN( NBE) I*4 Basic event elevations

NBE is the number of unique basic events.



APPENDIX F
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PARTIALLY FLOODED MINIMAL CUT SET EXAMPLE
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|84

INPUT CHECK . COMPONENT ELEVATIONS VERSION - 2 - DEC.

1981
NAME ELEVATION
A2 OFF B0
B2 CLOSD 60
Al OFF S0
B1 CLOSD 10
E2 OFF S0
H2 CLOSD 30
D OFF 80
G2 CLOSD 70
12 CLOSD 80
€1 OFF £9
H1 CLOSD 40
K EMPTY 20
J CLOSED 70
L CLOSED g0
M EMPTY 80
It CLOSD 80
D1 OFF 60
Gl CLOSD 30

NO ERRORS DISCOVERED IN ROUTINE INPUT

NO ERRORS DISCOVERED IN ROUTINE CHEKIT

Figure F.4 Continued



e

VERSION - 2 - DEC. 1881
CROSS REFERENCE FOR INTERNAL CODES AND EXTERNAL NAMES AND ELEVATIONS

INDEX NAME ELEVATION
1 AZ OFF 60
2 B2 CLOSD 60
3 Al OFF 30
4 B1 CLOSD 10
S E2 OFF 1
7] H2Z CLOSD 30
7 D2 OFF 80
8 G2 CLOSD 70
9 El1 OFF 60

10 H1 CLOSD 40
11 D1 OFF 60
12 G1 CLOSD 30
13 12 CLOSD 80
14 11 CLOSD 80
15 K EMPTY 20
16 J CLOSED 70
17 L CLOSED 90
18 M ENMPTY 90

Figure F.5 NUAH Example Problem 2: Cross Reference of Internal Codes, External Names and Elevation

RELATIVE STARTING ADDRESSES FOR ARRAYS VERSION - 2 - DEC., 1881

INC 1)= S0 Wt 8)= 285 IW(15)= 445 IN(22)= so08 IW(29)= 6858

IWt 2)= 107 IW¢ 9)= 300 IW(1B6)= 450 IW(23) = 526 IW(30)= 6891

Ikt )= 150 IW(10)= 304 IW(17)= 4355 IN(24)= 526 IW(31)= 7338

IWt &)= 2386 IW(11)= 336 IWi18) = 473 IW(25)» 526 IN(32)= 7371

IW( S)= 244 IW(12)= 345 IW(i8) = 482 IWe26)= 1177 IW(33)= 7819

IWt B)= 252 IW(13)= 435 IW(20)= 485 IW(27)= 8379 IW(34)= 8470

IWe 7)= 267 IWc14)= 440 IW(21)= 430 IW(28)= 6411 IN(35)= 776
RELATIVE STPRTING ADDRESSES FOR ARRAYS VERSION - 2 - DEC. 1981

IWt 1)= S0 IWe 8)= 285 IW(1S)= 445 IW(22)= 508 IW(28)= 7030

IW¢ 2)= 107 TW( 9)= 300 IW(16)= 450 IW(23)= 526 IN(30)= 6891

IWt J)= 150 IW(10)= 304 IN(17)= 455 IN(24)= 526 IW(31)= 6388

IWt 4)= 236 IW(11)= 336 IW(18) = 473 IN(25)= 526 IW(32)= B420

INt S)= 244 IW(12)= 345 IW(19) = 482 IN(26)= 1177 IW(33)= €868

IW( B)= 252 IN(13)= 435 IW(20)= 485 IW(27)= 6379 IW(34)= B900

[W( 7)= 267 IW(14)= 440 IW(21)= 480 IN(28)= B411 IW(35)= 7348

Figure F.6 NOAH Example Problem 2: Internmal Array Starting Addresses
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G. NOAH ERROR MESSAGES

This appendix 1ists the error messages written by the NOAH
program when errors are detected in the Ilnput data. The error number
and message are stated and reasons for the error message are
described. Words shown in quotes are variables whose value would be
printed in that location.

ERROR NUMBER 1: MISSING OR INVAI 'D END CARD

An END card for an input group has been omitted or mispunched.
An END card must be supplied after each lnput group.

ERROR NUMBER 2: MISSING OR INVALID * CONTROL

The * CONTROL input group 1is elther missing or unrecognizable to
the program. Supply a corrected * CONTROL input group.

ERROR NUMBER 3: MISSING OR INVALID STOP CARD

The STOP card at the end of the Ilnput deck is either missing or
mispunched.

ERROR NUMBER 4: WORK ARRAY IS TOO SMALL. YOU HAVE "NUML"™ WORDS
AND YOU NEED “NUM2".

The existing array space (NUMl) for the program run is too small.
The array space should be increased to NUM2 by changing the dimensions
of the W array in COMMON/WORK/ and the value of MAX in the data
statement in the MAIN routine.

ERROR NUMBER 5: THIS GATE HAS MORE THAN THE "NUM1"™ INPUTS
SPECIFIED. NINPUT = "NUM2"
The gate has more {inputs (NUM2) than allowed by the value of

MAXIN (NUM1). Increase MAXIN (maximum value of 7) or restructure the
inputs to more than one gate.

ERROR NUMBER 6: WORK ARRAY IS TOO SMALL. YOU HAVE "NUML™ WORDS
AND YOU NEED AT LEAST "NUM2".

Refer to Brror Number 4.
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ERROR NUMBER 7: GATE "WORDL™ HAS AN INVALID TYPE "WORD2".

The gate type (WORD2) specified for gate WORD1 is invalid. Only
AND and OR gate types are permitted.

ERROR NUMBER 8: GATE "WORD1"™ IDENTIFIED BUT NOT INPUT ANYWHERE.
Gate WORD1 has been identified on a gate card (Input Group 3) but

is not input to any other gate. Check the fault tree description in
Input Group 3.

ERROR NUMBER 9: GATE "WORD1™ WAS USED MORE THAN ONCE WITH
DIFFERENT INPUTS.

Gate WORD1 has been input with more than one set of inputs in
Input Group 3. A gzate may have only one set of finputs. A card may be
mispunched.

ERROR NUMBER 10: GATE CARD "WORD1"™ HAS BEEN INCLUDED TWICE.

More than one card describing gate WORDl is included in the faul
tree description.

ERROR NUMBER 11: CIRCULAR LOGIC IN THE TREE IS NOT ALLOWED.

Circular loglc has been identified in the fault tree description.

ERROR NUMBER 12: GATE "WORD1" USED AS INPUT, BUT NOT IDENTIFIED

AN WHERE .

Gate WORD1 has been used as an input to another gate, but no gate
card 1s suppllied for gate WORDl. Each gate must be {dentified on a

gate card.

ERROR NUMBER 13: BASIC EVENT “WORD'™ ON GATE CARD "NUM1™ HAS AN
INVALID ELEVATION "NUM2".

Basic event WORDI has been assigned an elevation that lies
outside the allowable elevations specified in Input Group 2 (* KEY).



ERROR NUMBER 14:

NOT APPEAR

ERROR NUMBER 17: BASIC EVENT “WORD ON GATE CARD "WORD2"™ NOT
IVEN AN ELEVATI

BASIC EVENT "WORD1"

! SMALL! | LNCREASE
COUNTER RGNC AND DIMENSIONS 1IN




ERROR NUMBER 20: GATE "WORD1™ AND GATE “WORD2"™ HAVE THE SAME
INPUT.

Gates WORDlI and WORD2 have identical inputs. Check the inputs to
the gates. If the 1inputs are correct, then WORDI and WORD2 are
fdentical, and one of the two gate cards must be removed. Also,
substitute the gate which 18 retained for all other times the deleted

gate appeared (i1.e. as input to gates).

ERROR NUMBER 21: SEARCH REQUESTED, BUT SEARCH DATA NOT
INCLUDED.

DSRCH=T has been coded 1in Input Group 1 (* CONTROL) and Input
Group 6 (* SEARCH) has not been supplied. Supply * SEARCH or code
DSRCH=F.

ERROR NUMBER 22: REQUESTED ANALYSIS FOR DEPTH "NUM1"™ BUT THERE
ARE ONLY "NUM2" DEPTHS IN THE PLANT.
The {input value of DEPTH (NUM1) 1is greater than NDEP (NUM2).

DEPTH cannot exceed NDEP (Input Group 1).

ERROR NUMBER 23: [INVALID CUT SET SIZE »>> ORDER="NUML"

Minimal cut sets of order NUMl have been requested in Input Group
1 (variable ORDER). The maximum value of ORDER is 10.

ERROR NUMBER 24: INVALID CONTROL CARD >> T"CARD"

This card has an asterisk In column 1 and a missing or
unrecognizable Keyword.

ERROR NUMBER 25: MISSING OR INVALID * KEY

The * KEY {nput group 1s missing or unrecognizable to the
program. Supply a corrected * KEY input group.

ERROR NUMBER 26: GATE "WORD1™ ON GATE CARD "WORD2™ HAS BEEN
ASSTIGNED AN ELEVATION.

Gate WORD1 has been assigned an elevation in Input Group 4.
Gates do not require an elevation input.



ERROR NUMBER 27: MISSING, MISPLACED, OR INVALID * ELEVATION

The * ELEVATION input group 1is missing or unrecognizable to the
program. Supply a corrected * ELEVATION input group.

ERROR NUMBER 28: EVENT "WORD1"™ HAS BEEN ASSIGNED 2 ELEVATIONS
OLD="NKUM1", NEW="NUM2".

Only one elevation 1is permitted for each event. NUMl is the
first elevation input, NUM2 is the second elevation input.

ERROR NUMBER 29: THERE IS NOT ENOUGH ROOM IN THE CUT SET ARRAY.
ROWMAX="NUM1". PLEASE INCREASE IT.

More space 18 required in the cut set array. The value of ROWMAX
in Subroutine BLOCK DATA should be increased.

ERROR NUMBER 30: BLANK INPUT CARD IN * ELEVATION.

A blank input card has been found in the * ELEVATION input group.
Blank cards are not permitted in * ELEVATION.

ERROR NUMBER 3): * PROFILE INPUT, BUT TIMPT IS O

The * PROFILE 1input group has been {included, but the user
specified TIMPT = 0 in Input Group 1. The * PROFILE input group is
not required.

ERROR NUMBER 32: BASIC EVENT “WORD1™ ON GATE CARD “NUM1"™ HAS
BEEN GIVEN AN INVALID HOUSE DESIGNATION.

One of the two parameters on the input card for the house event
is missing.

ERROR NUMBER 33: INVALID ELEVATION "NUM1"™ GIVEN IN * PROFILE

An elevation has been given in * PROFILE which lies outside the
range specified in * KEY.

ERROR NUMBER 34: BASIC EVENT "WORD1™ ON GATE CARD "WORD2" NOT
GIVEN A LANBDA
The basic event WORDL has been given a negative LAMBDA (If a

basic event has not been given a lambda, 1t 1is perceived as a lambda
of 0.0).
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ERROR NUMBER 35: BASIC EVENT "WORD1™ ON GATE CARD "WORD2™ NOT
GIVEN A TAU

The baslic event WORD1 has been given a negative TAU.
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Table 1.2 Input Group 1, CONTROL

Fermat: NAMELIST

Variable
Name

Default
Value

Description

DEPTH

NDEP

MAXD

DOPT

FIND

NDEP

DEPTH = 0 signifies that more
than one flood level increment
will be analyzed.

DEPTH = n, n#0, signifies that
only level increment n will be
analyzed.

Number of flood level increments
in the flood description.

Highest flood level increment
considered in the flood simula-
tion.

DOPT = T (true) signifies that
the user will supply all the
flood levels to be analyzed and
thelr descriptions in Input Group
2.

DOPT = F (false) signifies that
the user will provide only the
maximum flood height and NOAH
will divide it into NDEP equal
intervals.

FIND = T (true) signifies that
partially flooded minimal cut
sets will be found at MAXD if the
critical fleod level has not been
found.

FIND = F (false) signifies that
the analysis will terminate at
MAXD without finding partially
flooded minimal cut sets.
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