## GENERAL ELECTRIC

GENERAL ELECTRIC COMPANY, 175 CURTNER AVE., SAN JOSE, CALIFORNIA 95125 MC 682 (408) 925-5040

## NUCLEAR POWER

SYSTEMS DIVISION
MFN 059-83
JNF 018-83

March 18, 1983
U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Washington, DC 20555

Attention: Mr. D.G. Eisenhut Division of Licensing

Gentlemen :
SUB JECT: IN THE MATTER OF 238 NUCLEAR ISLAND
GENERAL ELECTRIC STANDARD SAFETY ANALYSIS REPORT (GESSAR II) DOCKET NO. STN 50-447

REVISED DRAFT RESPONSES, RESPONSES TO DISCUSSION ITEMS AND
TEXT CLARIFICATIONS TEXT CLARIFICATIONS

Attached please find revised final draft responses to selected questions of the Commission's August 25, 1982 and October 5, 1982 information requests. Only modifications (new or revised) to the responses of the referenced letters are provided. Also attached are proposed resolution discussion items. The following are provided:

Attachment
Number

1

2

3

4

Proposed Resolution of Chemical Engineering Branch Discussion Items on Fire Protection and Appendix 9A Text Clarifications

Proposed Resolution of Containment Systems Branch Discussion Items

Draft Responses to Instrumentation and Control Systems Questions

Draft Responses to Structural and Geotechnical Engineering Branch Questions


GTenn G. Sherwood, Manager
Nuclear Safety \& Licensing Operation
cc: F.J. Miraglia (w/o attachments)
C.O. Thomas (w/o attachments)
D.C. Scaletti
L.S. Gifford (w/o attachments)

## ATTACHMENT NO. 1

PROPOSED RESOLUTION OF CHEMICAL ENGINEERING BRANCH DISCUSSION ITEMS ON FIRE PROTECTION AND APPENDIX 9A TEXT CLARIFICATIONS

The purpose of this attachment is to resolve the GE/NRC discussion items listed below pertaining to fire protection:

1. Qualifications of fire rated barriers
2. Qualifications of fire rated penetration seals
3. Qualifications of fire rated doors
4. Lack of 3-hour fire rated dampers
5. Safe Shutdown Capability
6. Alternate Shutdown Capability
7. Ventilation Systems
8. Separation of the Control Room
9. Lack of smoke detectors in the control room outside air intakes
10. Separation of the cable rooms
11. Separation of the remote shutdown panel

If the resolution to these items described herein are accepted by the NRC, the detailed changes to the GESSAR II design will be provided to the NRC prior to the first Applicant referencing GESSAR II. Any GESSAR II/Applicant interface requirements pertaining to the resolution of these items will be included in Section 1.9, Interface requirements in the next amendment.

Also included in this attachment are Appendix 9A text clarifications requested by the NRC during the fire protection review.

## PROPOSED RESOLUTION OF DISCUSSION ITEMS

Discussion Items $1,5,8,10$ and 11
For the type 1,2 and 3 wall assemblies, the GESSAR II design will provide completely equivalent construction to tested wall assemblies or testing will be required. All three assemblies will be required to have a 3 hour rating. In addition, a wall and fire door rated 3 hours will be added in the corridor at the (-) $16^{\prime} 10^{\prime \prime}$ elevation of the auxiliary building. The combination of these two actions should resolve discussion items $1,3,8,10$ and 11 .

## Discussion Item 2

GESSAR II will require qualification of all penetrations by test if possible or by analysis if testing is impractical or impossible. The penetrations are already required to have a fire rating equivalent to the barrier which they penetrate.

## Discussion Item 3

GESSAR II will require that, with the exception of the fuel building railroad door, all door assemblies be tested to prove their ability to provide the required fire rating. The exterior railroad door for the fuel building is too large to be tested in a furnace. Also, for the GESSAR II design, a 3 hour fire rating for the railroad door is not required to meet the requirements of BTP ASB 9.5-1. The plant design objective was to provide a 3 hour fire rating for external walls. The construction of this door is equivalent or better than that which would be required to provide a 3 hour fire rating. On this basis, the requirements to resolve discussion item 3 should be met.

## Discussion Item 9

Smoke detectors will be added to the air intakes for the control building. This will resolve discussion item 9 .

## Discussion Item 6

Discussion item 6 is an NRC staff action item concerning the shutdown capability. Since the GESSAR II design will have redundant remote shutdown capability which meets the requirements for fire separation, no future concerns are expected.

## Discussion Items 4 and 7

These two items concern fire dampers in ventilation ducts used for smoke venting. Some of these ventilation ducts are shared systems in that they also provide normal ventilation. Other ducts are for smoke venting only. Based on the discussion below the present GESSAR II design should be adequate and should be acceptable to the NRC, so that items 4 and 7 should be resolved.

The auxiliary building smoke removal system is shown on Figure 9.4-4 and described in Section 9.4.3.2.1.11. Each set of duct work serves and traverses only fire areas of one safety division. There is a smoke vent intake in each fire area with a remote manually operated fire damper which is normally closed. There is a fusible link from the air operator to the vanes so that the damper will close on high temperature. The fire rating of the dampers is $1 \frac{1}{2}$ hours. The duct is heavy gage, welded construction which exceeds the requirements for 3 hour fire rated construction. Hence, the design is considered completely adequate for the service.

One of the design objectives of GESSAR II is to avoid fire dampers in smoke vents, as their automatic closure would render the smoke vent inoperative at the very time it was needed. With two exceptions, smoke vents pass through safety areas only of the same division as the vented area. The two exceptions are the Division 2 cable tunnel vent and the primary containment vent.

The Division 2 cable tunnel located in the corridor of (-) $6^{\prime}-3^{\prime \prime}$ elevation of the auxiliary building has a dedicated smoke removal system. Which passes through the division 1 area. The inlet to the duct is fitted with a standard sprinkler head. Any heat or smoke that exceeds $165^{\circ} \mathrm{F}$ will fuse the link allowing fire water to flow through the head. The duct opening is 2.5 sq ft . This deluge spray will be sufficient to cool inlet gases from either direction below a temperature that could cause duct failure which could allow migration of heat to other fire resistence areas. This is consistent with NFPA 13 using sprinklers to protect openings in fire resistence walls where dampers cannot be fitted for other overriding criteria. The calculated flow rate from the cable tunnel during smoke venting is 3000 cfm , a relatively low flow rate. The sprinkler is designed to flow .15 gpm per 100 square foot of floor area or a minimum of 15 gpm , therefore, 3000 cfm will be cooled by a minimum of 15 gpm water. This is sufficient flow to cool gases or smoke below the temperature that would weaken or collapse even a duct of standard gage construction. The duct has a thick wall and is all welded construction, which adds a redundant degree of protection.

The other exception is the vent for primary containment. It has two inboard (l manual) isolation valves and one outboard isolation valve. If a fire occurs, either the inboard valves or the outboard valve would be located out of the fire area and could be closed. The valve within the fuel building is located in a room with 2 hour rated walls. The room is directly accessible from the fuel building or the stair tower between the fuel and auxiliary building. All return registers except for the pool sweep are located high in the containment so that bulk mixing, aided by the dome mixing system, would occur before any combustion gases enter the ventilation duct. The containment is more sensitive to bulk air temperature than the ventilation duct. If a fire raised the bulk temperature excessively, containment spray would be initiated to protect the containment at a temperature well below the threshold of damage to the ventilation duct. For these reasons, the current GESSAR II design for the containment ventilation is considered proper and adequate.

The remaining smoke vents which do not have fire dampers are the two in the control building. Each one of these smoke vents serves and traverses one division. Since it is impossible for these smoke vents to allow the fire in the area of one division to spread to another division, the current GESSAR II design is considered to be adequate and proper.

## 238 NUCLEAR ISLAND

22A7007
Rev. 0

9A.5.6 Carbon Dioxide Storage (Continued)

After initial discharge, a second discharge for the largest single hazard area must be maintained in the storage tank. Therefore, the Applicant must maintain a minimum of $11,200 \mathrm{lb}$ of $\mathrm{CO}_{2}$ for Diesel-Generator Building fire protection.

In the event of malfunction of the automatic sequencing for $\mathrm{CO}_{2}$ discharge to a hazard area, manual activation of the discharge sequence is provided in the control room.

## 9A.5.7 HVAC Systems

The majority of the HVAC systems are provided with fire dampers where the duct penetrates a fire-resistive wall; however, there are some exceptions. There are some cases where divisional control valves are in the same fire area. These cases are presented, and the justification and/or effect on the plant operation relative to reactor safe shutdown is presented.

## 9A.5.7.1 Control Building

The smoke removal systems for the cable rooms and control room are a function of damper arrangement, utilizing the existing air conditioning system. The cable room tunnel exhaust ducts are not provided with fire dampers ${ }^{D}$ The cable rooms are provided with automatic wet pipe sprinklers and POC detectors. The cable trays are solid bottom, covered metal trays. A postulated electrically initiated XLPE, R cable insulation fire in a closed tray or PGCC would evolve little smoke or heat. The anticipated transitory combustible load, a function of the Applicant's fire safety program, is expected to be negligible. Inlet ducts are equipped with fire dampers to prevent hot smoke or gases from entering the areas from fire sources exterior to the areas.
(1) Since separate smoke removal systems are provided for division 1 and division 2 areas, a fire in either cable room would not preclude safe shutdown utilizing the other division. For a fire in 9A.5-23 the control room the remote shutdown panel is available.

The Division 2 cable tunnel is provided with a dedicated smoke removal system. This system is not fitted with a fire damper. The duct inlet is fitted with a posibible link spray nozzle fed from the cable tunnel automatic wet pipe sprinkler system. (2) Poc detection is provided. The cable trays are solid bottom, covered metal trays. A postulated electrically initiated XLPE-FR cable insulation fire in a closed tray would involve little smoke or heat. The anticipated transitory combustible load, a function of the Applicant's fire safety program, is expected to be negligible. Inlet and exhaust ducts from the normal ventilation system are fitted with fire dampers to prevent hot smoke or gases from
(2) The entering the tunnel via fire sources exterior to the tunnel. protectur nozzle will cool any hot gasts suficiently to provide 9A.5.7.3 SGTS Exhaust Stack - Fuel Building

The SGTS exhaust stack begins at the (-)5 ft 3 in . level of the Fuel Building and extends through the roof of the building. There are no fire dampers in this stack; however, fire stops are provided where the stack penetrates a fire-resistive floor. The stack is fabricated of $3 / 8-i n$. steel plate and is 18 in . in diameter. Since the exhaust gases that enter the stack pass through a charcoal filter bed equipped with water sprays that preclude a high temperature condition, and the stack must function to maintain safe plant conditions, fire dampers are not necessary or desirable. The functionality of the SGTS exhaust stack has no effect on the ability to accomplish safe stuttown. The exhaust stack does not penetrate any forst which provide flre separation requined to insure safe shutdown
Capabidy.7.4 Reactor Building HVAC Penetrations

There are two Reactor Building HVAC penetrations. These ducts are 42 in . diameter and are manufactured from $3 / 8-i n$. seamless SA106 grade B pipe with the divisional isolation valves welded to the pipe. Transition to ductwork is provided downstream of each valve. The valves are positioned on either side of the Reactor Building wall. Fire dampers are not provided for these penetrations. The consequences of venting hot gases through these valves, should they fail Close during a fire in Containment, Cannot prevent safe shutdoun

HVAC divisional isolation valves within the Reactor Building are located in opposite quadrants of the building. Since the Reactor Building has no fire separations and is considered one fire area, fire dampers are not provided. There is no HVAC penetration between the Reactor Building and the drywell portion of the Reactor Building. The state of these valves, open or closed, cannst Prevent safe skutdown of the reactor.

9A.5.7.6 Auxiliary Building: (-) 32 ft 0 in., Zone 1 , Col. E-11

There are two air-operated divisional valves located 3 ft 6 in . apart. Failure of these valves as a result of an area fire would result in a loss of corridor ventilation at this level of the building. Rooms containing ECCS equipment would not be affected, since they are separately exhausted from this system. The dedicated smoke removal system would provide ventilation from this area; safe reactor shutdown would not be prevented. The area is provided with POC detection.

9A.5.7.7 Auxiliary Building: (-) 32 ft 0 in., Zone 1 , Col. D-11

The normal ventilation system for the ECCS areas is supplied by divisional valves located 4 ft 0 in . apart in this area. Loss of both of these valves as a result of an area fire would result in loss of ECCS room pressure conteo1) (7) The SGTS can provide pressure control for these areas if normal exhaust is lost as a result of fire or other system failures. The area is provided with POC detection. the room room cooling is provided by internal fan coil units operation of the ESF suptems within a room. Thereffere. it the ability to safely ESF syotems whin the plant is unaffected by the, 9A.5.7.8 Auxiliafy Building: $(-) 6 \mathrm{ft} 10 \mathrm{in}$.

Two divisional SGTS valves are on $5-\mathrm{ft}$ centers in this area. Failure of both of these valves as a result of fire or other
occurrence would result in failure of the SGTS to exhaust the ECCS areas. Since these valves and the area are protected with wet pipe sprinklers and POC detection, it is unlikely that the valves would be affected by fire. The normal valve mode is fail closed upon loss of the air-operated motor. Loss of either or both valves would not prevent safe reactor shutdown.

## 9A.5.7.9 Auxiliary Building: (-) 6 ft 10 in .

Two divisional valves that provide ventilation to the RWCU area are located on $3-\mathrm{ft}$ centers in the corridor. Loss of these air motor-operated valves, as a result of fire or other causes, would result in loss of ventilation to the RWCU area. These valves provide ventilation only if the area is entered for surveillance or maintenance activities. The valves are protected by automatic wet pipe sprinklers and POC detection. The RwCU is not required for safe Shutdown.

$$
\begin{aligned}
& \text { 9A.5.7.10 Auxiliary Building: } 28 \mathrm{ft} 6 \mathrm{in} \text {. HVAC Equipment Room, } \\
& \text { Zone } 1
\end{aligned}
$$

The pressurizing air supply to the Reactor Building has two divisional valves located in this room. These valves are separated by 12 ft . The loss of both valves as a result of fire or other causes would result in loss of pressurizing air to containment. (9) Leakage of air from the reactor to the annulus, as a result of this loss, would be handled by the annular ventilating system and would be routed to either the plant exhaust or SGT System if high radiation occurs. The HVAC room is provided with POC detection systems. (9) the operability of this safe stutewn dows not

9A.5.7.11 Fuel Building: (-) 17 ft 0 in .

There are two divisional valves located on 8 -ft centers in this area that control room ventilation to the divisional SGT system.

## 9A.5.7.11 Fuel Building: (-) 17 ft 0 in . (Continued)

Loss of these air motor-operated valves, from fire or other accidental causes, will result in the loss of comfort ventilation in the SGTS rooms. The SGTS is separately cooled; therefore, there would be no loss of SGTS availability nor would safe shutdown be prevented. The area is provided with POC detection.

9A.5.7.12 Fuel Building: (-) 17 ft 0 in .

There are two divisional valves located on $8-\mathrm{ft}$ centers, separated from the valves discussed in Subsection 9A.5.7.11 by about 20 ft . These air-operated valves are part of the outside air system that supplies cooling air to the SGTS charcoal filter beds. One valve is normally closed except when needed for system operation. The loss of these valves, from fire or other accidental causes, will result in lack of ability to provide air cooling to the SGTS. The SGTS is provided with water sprays in the charcoal filters that can be initiated manually upon high temperature alarm should the outside air system be inoperative. POC detection is provided. SGTS (A) is located in a separate fire rated compartment from SGTS(B), so that a single failure would not fail the entire system. The SGTS is not required for safe shutdown under fine conditions 9A.5.7.13 Fuel Building: (-) 5 ft 3 in .

There are two divisional valves located on $8-\mathrm{ft}$ centers, that are part of the fuel pool air sweep system. This system is used only when low level radioactivity is present in the fuel pool. Loss of the system would result in loss of sweep air. High radiation level in the Fuel Building exhaust is monitored and, if detected, the air is sent to the SGTS. The valves are protected by an automatic wet pipe sprinkler system and POC detection is provided. The pool sweef Suptem is not required for safe shutdown.

## 9A.5.7.14 Fuel Building: (-) 5 ft 3 in .

There are two divisional valves, located in an identical configuration as described in Subsection 9A.5.7.12, and which perform the same function. This building level has wet pipe sprinkler provided as well as POC detection. The analysis and justification is the same. The fire dampers in the common duct, which feeds both divisions of SGTS, could close as a result of fire in an area which feeds SGTS. However, since fire and LOCA are not required to be considered concurrently, the SGTS is not required for safe shutdown under fire conditions.

9A.5.7.15 Fuel Building: E1 28 ft 6 in .

There are several sets of divisional valves, located on this memzanine floor level, associated with the fuel and reactor building ventilation system. These valves are located in pairs, about 4 to 12 ft on centers, and there are three pairs spatially separated from each other around the building walls. The loss of any pair of valves, from any cause, would result in using the SGTS at a reduced flow rate to pick up the affected system. The area has POC detection. No plant operations are performed on this level and the possibility of fire is remote. The operational conditions of these syotems cannot prevent safe shutdown under fire conditions.

## 9A.5.7.16 Control Building: El 28 ft 6 in .

The HVAC equipment systems for the Control Building are housed in two $3-h r$ fire-resistive rooms. The systems are divisional and 100\% redundant. There are two valves of the opposite division in each area. The loss of either division, for any cause, will result in transferring the HVAC load to the standby division. Both divisional areas have POC detection systems.

The operational state of a valve in a single fire area Can only affect the operation of the HUAC train in that area. For a fire in an area the redundant train in the other area will be available so that safe shutdown may be accomplished.

$$
9 \text { A. } 5-28
$$

Table 9A.5-2
NONFIRE RATED DOORS


Table 9A.5-2
NONFIRE RATED DOORS (Continued)


Table 9A.5-2
noNFIRE RATED DOORS (Continued)


Table 9A.5-2
NONFIRE RATED DOORS (Continued)


ATTACHMENT NO. 2

PROPOSED RESOLUTION OF CONTAINMENT SYSTEMS BRANCH DISCUSSION ITEMS

## Item 3a

The following change will be made in GESSAR Section 6.2.1.6.1.4, Page 6.2-70. The first tine of that section will read: "The drywell is so subjected to of preoperational and periodic low pressure integrated leak rate tests to confirm continuing adequate leak-tightness."

### 6.2.1.6.1.3.2 High-Pressure Leak-Rate Test

Irmediately following the high-pressure structural proof test, the drywell pressurization source is shut off and the change in drywell pressure and temperature is monitored for the next 30 minutes.

The drywell pressure and temperature decay information is used to establish that the orywell leak rate is less than the allowable value. The drywell air-flow rate from the 1 -hr structural test holding period is used as a gross check on the drywell leak rate. Figure 6.2-37 shows the expected pressure decay rate for the drywell from the 30 -psig starting point, the possible effect of temperature, and the calculated allowable and technical specification limits. The figure demonstrates that adequate accuracy in the drywell leak rate can be obtained by a 30 -min test.

The acceptance criterion for the high-pressure leak-rate test is demonstration that the drywell has a bypass $A / \sqrt{K}$ of less than $10 \%$ of the $A / \sqrt{K}$ value for bypass capability under DBA conditions (i.e., less than $10 \%$ of $4.3 \mathrm{ft}^{2}$ or $0.43 \mathrm{ft}^{2}$ ).

### 6.2.1.6.1.4 Post-Construction Drywell Test

 The drywell is subjected to purperiodic low pressure integrated leak rate tests to confirm continuing adequate leak-tightness. The frequency of these tests will be identified in the technical specifications. The differential pressure selected for the periodic tests is sufficient to simulate controlling SBE conditions, but slightly less than the differential pressure required to clear the top row of horizontal vents. That is, the head of suppression pool water above the top row of horizontal vents, under test conditions, is sufficient to seal the vents without having to install temporary closures.Item 3 b
GESSAR Sectime 6.2.1.6.2, Page 6.2-72 and 6.2.1.7, page 6.2-74 will be changed to include the repuivenente for visual inspection of vacuum breakers, te. The change are as follows:

The acceptance criteria for the bypass $A / \sqrt{K}$ for the drywell at 3 psig is less than 108 of the $A / \sqrt{K}$ value of $1.45 \mathrm{ft}^{2}$, as calculated in Subsection 6.2.1.1.5.5. Figure 6.2-39 shows the expected pressure decay for the drywell, assuming several leak rates and rates-of-temperature changes. The figure demonstrates that the low pressure leak rate test can be completed within the $30-\mathrm{min}$ period and the gross effects of temperature change can be accounted for.

### 6.2.1.6.2 Post-Operational Leakage Rate Tests

The containment vacuum relief valves will be tested once a year. The leaktightness of the valves will not be tested separately but will be tested along with the entire containment, during the containment leak rate tests. Operability of the vacuum relief valves will be verified by position-limit switches on the valves, after the valve has been activated locally or remotely. Accerssisce pontions

 For descriptions of the containment intedrated leak rate test Nocicn (ILRT) and other post-operational leakage rate tests (10CFR50 dack. R. RTH.W. Appendix J tests Type A and B) see Subsection 6.2.6.

### 6.2.1.6.3 Design Provisions for Periodic Pressurization

In order to assure the capability of the containment to withstand the application of peak accident pressure at any time during plant life, for the purpose of performing integrated leakage rate tests, close attention has been given to certain design and maintenance provisions. Specifically, the effects of corrosion on the structural integrity of the containment have been minimized by the use of stainless steel cladding in the suppression pool area. Other design features which have the potential to deteriorate with age, such as flexible seals, will be carefully inspected and tested as outlined above. In this manner, the structural and leak integrity of the containment will remain essentially the same as originally accepted.

The acceptance criteria for the bypass $A / \sqrt{K}$ for the drywell at 3 psig is less than 108 of the $A / \sqrt{K}$ value of $1.45 \mathrm{ft}^{2}$, as zalculated in Subsection 6.2.1.1.5.5. Figure 6.2-39 shows the expected pressure decay for the drywell, assuming several leak rates and rates-of-temperature changes. The figure demonstrates that the low pressure leak rate test can be completed within the $30-\mathrm{min}$ period and the gross effects of temperature change can be accounted for.


The containment vacuum relief valves will be tested once a year. The leaktightness of the valves will not be tested separately but will be tested along with the entire containment, during the containment leak rate tests. Operability of the vacuum relief valves will be verified by position-limit switches on the valves, after the valve has been activated locally or remotely.

For descriptions of the containment integrated leak rate test (ILRT) and other post-operational leakage rate tests (10CFR50 Appendix $J$ tests Type A and B) see Subsection 6.2.6.

### 6.2.1.6.3 Design Provisions for Periodic Pressurization

In order to assure the capability of the containment to withstand the application of peak accident pressure at any time during plant life, for the purpose of performing integrated leakage rate tests, close attention has been given to certain design and maintenance provisions. Specifically, the effects of corrosion on the structural integrity of the containment have been minimized by the use of stainless steel cladding in the suppression pool area. Other design features which have the potential to deteriorate with age, such as flexible seals, will be carefully inspected and tested as outlined above. In this manner, the structural and leak integrity of the containment will remain essentially the same as originally accepted.

### 6.2.1.7 Instrumentation Requirements (Continued)

containment. Similar transmitters, which sense containment-to-shield-annulus differential pressure, are initiating inputs to the Containment Vacuum Relief System. Vmeung reeler yours ARE CWEKKED FOR OPERABILITY AT LEAST ONE MONTH.

 to the Leak Detection System. Four thermocouples are mounted at appropriate elevations of the drywall space, and 12 thermocouples monitor drywell HVAC differential temperatures. Sixteen thermocouples are mounted in the containment RWCU rooms.

Four suppression pool-level sensors are immersed in the suppression pool water, and the assocaited level transducers are mounted above the water level. The level signals are transmitted to SPMII System logic in the control room. Eighteen thermocouples are immersed in the suppression pool water. Suppression pool temperature readouts and alarms are located in the control room.

Two hydrogen analyzers are mounted in the drywall, and two ¿:: :...... こ. in the containment. Each analyzer daws a sample from an appropriate area of the drywell or containment.

Hydrogen concentration alarms and recorders are located in the control room.

Radiation detectors are mounted in the containment ventilation exhaust ducts. Radiation monitors and containment isolation trip circuitry is located in the control room.

Refer to Section 7.2 for a description of drywall pressure as an input to the Reactor Protection System, and Section 7.3 for a description of containment and drywell pressure, contairment-to-

Item 4
GESSAR Sutin 6.2.3.3.1.3, Page 6.2.93 will be charged to iniclnde blowout parmel teste, a followe:

### 6.2.3.3.1.2.5 Residual Heat Removal (RHR-C) Compartment (Continued)

There are no high energy lines in the RHR-C compartment; therefore, the DBA for this compartment is the moderate energy line crack of the steam condensing line in the RHR-B compartment.

### 6.2.3.3.1.2.6 Main Steam Tunnel

The Auxiliary Building main steam tunnel is located in between the 48-in. concrete walls separating it from the RHR-A and B compartments. The steam tunnel houses the high energy and highly radioactive main steam and feedwater lines along with some portions of the high energy RCIC steam bypass lines, RHR steam condensing lines, and RWCU piping.

The DBA for the Auxiliary Building steam tunnel is the doubleended break of one of the $26-\mathrm{in}$. main steamlines which route from the vessel, into the tunnel and through, into the Turbine Building. There is $658 \mathrm{ft}^{2}$ of open vent space into the Turbine Building in the event of the postulated DBA or any other high energy line break occurring in the Auxiliary Building compartments.

### 6.2.3.3.1.3 Design Evaluation

Blowout panels are used in place of open vent pathways when the environmental conditions of one compartment must be isolated from the environment in another compartment, for the benefit of personnel during maintenance periods. The RWCU pump and valve room, and the RHR-A and B compartments utilize one-way blowout panels for this purpose. The panels are designed to open upon a differential pressure of 0.25 psid. The panels are assumed to be fully opened after 0.1 sec following their release. Performance tests shall be performed to velify that thepanditwill oped at specified ressure aus openive time nus proouca u. oamatida missiles.
The RELAP4 computer program was used to calculate the mass and energy release rates and the resultant compartment pressures and

## Item 5a

The following note is to be added to Table 6.2-21 on Page 6.2-185 of GESSAR. This note is to be attached to the last column of the table an that page which indicates the status of opening and if they are displayed in the control room. The note is to read as follows: "The applicant will provide that openings not indicated as having status lights must be under administrative control with alarm indications in the control room."

Table 6.2-21
SECONDARY CONTAINMENT PENETRATIONS - ARCHITECTURAL

## AUXILIARY BUILDING



FUEL BUILDING


It en 5 a
Table 6.2-21
SECONDARY CONTAINMENT PENETRATIONS - ARCHITECTURAL (Continued) FUEL BUILDING (Continued)


REACTOR BUILDING

| Door | 50 | $(-) 32 \mathrm{ft} \mathrm{O} \mathrm{in} FB to Annulus$. | $R-8-1$ <br> $\mathrm{~F}-8-1$ | No |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Manhole | 50 | $(+) 35 \mathrm{ft} 3 \mathrm{in}$. | Steam Tunnel <br> (AB) to <br> Annulus | 85 | No |

Notes
(1) The appucnut will provide that openings not inoicarces As having status lights must be under administrative control with alarm.indicstions in the control room.

Item 5 c (i)
As a result of the server of potential seances of bypass leakage, change will be made to GESSAR Tabla 6.2-20 and 6.2-24, and Figure 6.2-48 to adduces the foll ming enbejets:

1) The $4^{\prime \prime}$ SPCU from demineralizer line will be added to secondary containment Table 6.2-20.
2) HCSS and RCIC from condensate storage system inineswill be added to Table 6.2-24 as a footnote. This footnote will be attached to a penetration $\mathrm{N}_{0} .16 \mathrm{C}$ and 17 C .
3) A note will be added to Figure 6.2-48 on GESSAR Page 6.2-279 indicating that the Type 4 penetration has a sealing system on the inner set of valves.

The specific GESSAR andes are as follow:

Table 6.2-20
SECONDARY CONTAINMENT PENETRATIONS
AUXILIARY BUILDING PIPING


Table 6.2-20
SECONDARY CONTAINMENT PENETRATIONS AUXILIARY BUILDING PIFING (Continued)


Table 6.2-20
SECONDARY CONTAINMENT PENETRATIONS AUXILIARY BUILDING PIPING (Continued)


2-in. PLCS12-ECB
3-in. ESW170-ADC
3-in. ESW169-ADC
1-1/2-in. SA153-ADC
3-in. CW304-ADC
3-in. CW306-ADC
14-in. RHR32-BAB
10-in. MS201-ECB
l-in. RHR136-AAB
6-in. MS202-ECB
4-in. COND21-AAC
l-in. IA7-ADC
10-in. MS204-ACB
-in. RWCU96-AEC
3/4-in. CRW46-EAC
3/4-in. CRW47-EAC
3/4-in. CRW48-EAC
3/4-in. CRW49-EAC
20-in. RHR20-BAB
6-in. RWCU4-EAC
6-in. RWCU5-EAC
3-in. ESW39-ATC
3-in. ESWIl-ATC
3-in. ESW53-ATC
3-in. ESW54-ADD
12-in. FPCC95-AAC
10-in. RHR52-BAC
3/4-in. ADS54-ADC
4-in. CSSW4-ADC
4-in. CSSW3-ADC
1-in. COND76-AA
10-in. HPCS7-EAB
-

1-in. COND80-AAC
l-in. SA69-ADC
3-in. COND27-AAC
10-in. MS201-ECB
14-in. RHR33-BAB
3-in. DMW22-ABC
3-in. COND31-AAC
2-in. CCW21-ADC
2-in. CCW22-ADC
l-in. SAll2-ADC

| Isolation |
| :--- |
| Icheme |
| 3ch |
| Type 8 |
| Type 8 |
| Type 8 |
| Type 1 |
| Type 9 |
| Type 9 |
| Type 8 |
| Type 8 |
| Type 8 |
| Type 8 |
| Type 6 |
| Type 2 |
| Type 8 |
| Type 3 |
| Type 8 |
| Type 3 |
| Type 3 |
| Type 3 |
| Type 3 |
| Type 8 |
| Type 1 |
| Type 8 |
| Type 8 |
| Type 3 |
| Type 8 |
| Type 8 |
| Type 3 |
| Type 4 |
| Type 3 |
| Type 3 |
| Type 3 |
| Type 1 |
| Type 3 |
| Type 8 |
| Type 8 |
| Type 3 |
| Type 3 |
| Type 5 |
| Type 5 |
| Type 3 |
|  |
|  |

Penetration
972 AP
447 AP
446 AP
357 AP
356 AP
355 AP
309 AP
310 AP
524 FAP
104 FAP
103 FAP
536 FAP
102 FAP
106 FAP
523 FAP
534 FAP
534 FAP
534 FAP
534 FAP
170 FAP
297 AP
295 AP
746 AP
747 AP
772 AP
773 AP
6 AP
7 AP
312 AP
8 AP
9 AP
255 AP
99 AP
132 AP
13? AP
257 AP
121 AP
316 AP
442 AP
441 AP
128 AP
124 AP
123 AP
122 AP
10 AP



Item 5 c (i)
Table 6.2-20
SECONDARY CONTAINMENT PENETRATIONS AUXILIARY BUILDING PIPING (Continued)

(1) See Figure 6.2-5248
(2) See Figure 6.2-4.52
(3) Linealvaye water filled -water leakage bypasstecen dang containment -leakage included ir Table 6.5-5; dose effect is negligible.
(4) Containment isolation value prided with positive leakage control.
(5) Normally deactivated valve.
(6) Capped spare line.

Table 6.2-24
EVALUATION OF POTENTIAL CONTAINMENT BYPASS LEAKAGE PATHS


## Table 6.2-24 <br> EVALUATION OF POTENTIAL CONTAINMENT BYPASS LEAKAGE PATHS (Continued)

## Primary Containment Penetration

|  | 54. | LPCS Pump Discharge |
| :---: | :---: | :---: |
|  | 55 C . | LPCS Pump Test Line |
|  | 56 C . | LPCS SRV Discharge to Suppression Pool |
|  | 57C. | Air Positive Seal to Air System |
|  | 58C. | HPCS Pump Discharge |
|  | 59 C . | HPCS Pump Suction |
|  | 60 C . | HPCS SRV Discharge |
|  | 63 C. | RWCU Pump Suction From Recirc Pump |
|  | 64. | RWCU Return to Feedwater Line |
|  | 65 C. | RWCU Discharge to Mair Condenser |
| o | 68 C . | Containment Supply Purge (HVAC) |
| N | 69 C . | Containment Exhaust (HVAC) |
| $\stackrel{1}{5}$ | 70 C . | Containment Vacuum Relief Outlet |
| 0 | 72 C . | Containment Vacuum Relief Outlet |
| 0 | 78 C . | Skimmer Drain to FPCC |
|  | 79 C . | Demineralizer to FPCC Pool |
|  | 83 C . | 24-in. Pipe Spare |
|  | $84 C_{1}$ | Instrument Line |
|  | $84 C_{2}-84 C_{4}$ | Spares |
|  | 114 C . | Drywell CRW Sump to CRW |
|  | 115C. | Drywell DRW Sump to DRW |
|  | 116C, 117C. | 12-in. Pipe Spares |
|  | 118 C . | 24-in. Pipe Spare |
|  | 119C. | RWCU Backwash Drain |
|  | 120C. | CCW To Containment |
|  | 1.10. | CCW Return from Containment |
|  | 124C. | 12-in. Pipe Spare |
|  | 125 C . | NI Chilled Water to Containment |
|  | 1260. | NI Chilled Water from Containmenc |
|  | 127C. | Condensate Dist to Containment |
|  | $128 \mathrm{Cl}_{1}$ | $3 / 4-i n$. Pressure Sensing Line for ILRT |
|  | $128 \mathrm{C}_{2}$ | Spare |

Line Size
$\begin{aligned} & \text { Penetrating } \\ & \text { Containment }\end{aligned}$ $\begin{gathered}\text { Termination } \\ \text { Region(1) }\end{gathered}$

| $12-i n$. | $S$ |
| ---: | :--- |
| $12-i n$. | $S$ |
| $2-i n$. | $S$ |
| $3 / 4-i n$. | $S$ |
| $12-i n$. | $S(5),(6)$ |
| $24-i n$. | $S(5),(6)$ |
| $12-i n$. | $S(5),(6)$ |
| $6-i n$. | $S$ |
| $6-i n$. | $S$ |
| $4-i n$. | $E$ |
| $42-i n$. | $E$ |
| $42-i n$. | $E$ |
| $24-i n$. | $S$ |
| $24-i n$. | $S$ |
| $10-i n$. | $E$ |


| Bypass Leakage Barrier ${ }^{(2)}$ | Potential <br> Bypass Path |  |
| :---: | :---: | :---: |
| NA | No |  |
| C (5) | No (7) |  |
| (5). (6) | No |  |
| (5), (6) | No |  |
| C | No | N |
| C | No | $\infty$ |
| C, (6), (3) | No | z |
| C. (3) | No | CO |
| C. (3) | No | 5 ¢ |
| C | No | To |
| c | No | \% 0 |
| C. (3) | No | HH |
| L | No | ${ }^{\text {¢ }}$ |
| NA | No |  |
| NA | No | - |
| NA | No |  |
| C. (3) | No |  |
| C. (3) | No | - |
| NA | No | - |
| NA | No |  |
| C. (3), (4) | No | 3 |
| C. (3) | No |  |
| C, (3) | No | OH |
| NA | No | 0 |
| C, L | No | $\sim$ |
| C. (3) | No | N |
| C. L | No | $\checkmark 0 \geqslant$ |
| NA | No | -0 |
| NA | No | 00 |

Table 6.2-24

> EVALUATION OF POTENTIAL CONTAINMENT BYPASS LEAKAGE PaTHS (Continued)

## NOTES:

(1) Termination Region
$S=$ Secondary containment (ECCS Rooms or Fuel Building). Lines terminating within the secondary containment are not potential throughline leakage path.
$E=$ Environmental, beyond secondary containment. Such lines either pass directly through the secondary containment to the environment, or are connected to branch lines which pass through the secondary containment to the environment. For either case, potential throughline leakage is perecluded by a combination of leakage barrier.
(2) Bypass Leakage Barriers
$\mathrm{C}=$ Redundant Primary Containment Isolation Valves
$\mathrm{A}=$ Redundant Secondary Containment Isolation Valves
L = Water Leg Seal

$$
\begin{aligned}
V= & \text { Vented to Secondary Containment with CLOC (Closed Loop } \\
& \text { Outside Containment, see Subsection } 6.5 .3 .2 .1 \text { ) }
\end{aligned}
$$

(3) Containment Seal Leakage Control System Provided.
(4) Third Isolation Valve (Remote Manual) Provided.
(5) The system generally operates in a closed-loop mode, within the secondary containment. However, there are several lines such as flushing water, etc, which penetrate the secondary containment and offer a potential leakage path from the primary containment to environment. For such case, however, throughline leakage and bypass of the secondary containment is precluded by the following:
a. If the line provides a source of makeup water to the RPV, no isolation is necessary.
b. If the line does not provide makeup to the RPV, isolation is provided by redundant valves at the secondary containment or a single valve with redundant solenoids.
(6) Secondary containment leakage control is provided. Type of protection is shown in Figure 6.2-52 for each individual case.
(7) HPCS \& RCIC test, tum line to condensate are potential suppression pool bypass path to eminons. Lines have redundant saffety-grad. valves and are below suppression pool level. Byprse water leatenge is included in Table 6.5-5.


Figure 6.2-48. Secondary Containment Penetration Types for Leakage Control

## Item 5d

$$
6.5 .1,4.1 \text { and }
$$

It was agreed to revise the GESSAR text in Sections, 6.5 .1 .4 .2 , inservice testing, on Page 6.5 to read as follows:
(6) adsorber bed residence time verification test
(8) in-place HEPA test
(9) in-place adsorber test
(10) laboratory test of adsorbent electric heater test.

After installation of the ESF filter trains, a performance test of system capabilities to meet the specified requirements is conducted. The test is to demonstrate the ability to maintain the prescribed ne ge pressure and the ability to respond to flow transients, if required. The $56 T 5$ to at areal eimunatecte the



 fapervice testing of the ESF-filtration systems is conducted in accordance with the surveillance requirements given in the plant technical specifications, Chapter 16.

### 6.5.1.5 Instrumentation Requirements

Controls and instrumentation for CBOACS and SGTS charcoal filter trains are discussed in Section 7.3. Each system is designed to function automatically upon receipt of an applicable ESF actuation signal.

Differential pressure indicators are provided to measure the pressure drop across each filter and charcoal bed. Pressure drop across each filter train is measured and an indication of high differential pressure is alarmed in the Control Room.
6.5.1.4.2 Ansenvice Testing
drsumer testing $n$ ESF filiation systence in to he conducted at each refueling on at intervale mot exceeding 18 month. Specify details of the testis progon-are given in the least tertial Spuification, chapter 16 (to le purveluad an opplieat). Ansumee testing of S6TS adele demansticte
 Testing check of eroundary containment ta mainton migotum puseure Testing shale ala melude measuentint of secondary entennent

Iten 5 e
A) Chang Table 6.2-19 to correct post-LOCA conditime.
B) GESSAR chanje were included in reaponse to Item $5 d$, Beleted Fig. 6.5-10.
C) Claify ascumptine and add perescures to the chroologieal aquence in Section 6.5.1.3.2.2 m pagee 6.5-9 and 10 .
D) Modify Fig. 6.5-11

Chargee are shoun on attached sheete.

Table 6.2-19
DESIGN AND PERFORMANCE DATA OF THE SECONDARY CONTAINMENT STRUCTURES
$\sigma$
$N$
$\vdots$
$\vdots$
$\sim$

Seconaary Containment Design
A. Free Volume $\left(f t^{3}\right)$
B. Pressure (inches water)

1. Normal Operation
2. Post-LOCA
C. Leak Rate at Post-LoCA

Pressure ( $\mathrm{g} / \mathrm{day}$ )
D. Exhaust Fans (c)

1. Number
2. Type
2-100\%
Centrifugal
E. Filters (in SGTS)*

Auxiliary Annulus

433,000
(-) 5.0
$(-) 0.25$ max
$>100(e)$

270,000
$(-) 0625 \mathrm{max}$
(-) $0.500 \mathrm{max}(*)$
$\gg 0$ (e)

2-1008
Centrifugal

Fuel Building 400,000 (a) 304,000 (b)
(-) $1,0 \max$
(-) $0.500 \mathrm{~mA} \times(f)$
$>100$ (e)

$$
2-1008
$$

Centrifugal

Same as Shield Annulus
*Flow diverted to SGTS on high radiation ${ }^{\text {signal. }}$ Notes:
(a) Above operating floor.
(b) Below operating floor.
(c) Not including Standby Gas reatment System, Nonmbe ovratuon.
(d) At (-) 5 in $\mathrm{H}_{2} \mathrm{O}$ normal operating
pressure.
(e) At :-)0.25 in $\mathrm{H}_{2} \mathrm{O}$ post-LOCA pressure.
F) 0.25 in Hio margiv for wiso effects.

### 6.5.1.3.2.2 Auxiliary Building ECCS and RWCU Pump Rooms Pressure Response Analysis

The Auxiliary Building pressure control exhaust system fan maintains the ECCS and RWCU pump rooms under a negative pressure differential of 0.625 in WG during normal plant operation by withdrawing the amount of air equal to the in-leakage. Ductwork connection and damper switch control are provided between the ECCS pressure control exhaust system and the SGTS.

In the event of a LOCA coincidental with the loss of normal AC. (Lope), the Auxiliary Building pressure control exhaust system fan stops.. The SGTS fan operates at its rated flow 27 sec after, a LOCA, and picks up the exhaust flow required maintain the ECCS and RWCU Pump Rooms under a negative pressure. The ECCS equipinent is also activated to providencooling, to the core in the RPV at 27 sm . RC, C and Rwcis outer not cotimatid.
Activation of the ECCS equipment generates heat to the space and consequently causes both pressure and temperature to rise. An exhaust flow rate of 2980 cfm to the SGTS is required. The ECCS Pump Room coolers afe assumed effective when space temperature reaches $122^{\circ} \mathrm{F}$. The chronological sequence associated with LOCA signal generation is as follows:

```
T = 0 sec, All dampers assume their failure mode position and
``` the ECCS pressure control system fans stops.
\(T=10 \mathrm{sec}\). Diesel Generators start and provide emergency


on = 27 seo . SGTS fans have started and reach men tory capacity, associated dampers are at least three-fourths open allowing the SGTS fan to draw 2980 cfm from the ECCS and RWCU Pump Rooms avar to pent prem nus from Volumetric exponace due to hiatiig are firth unleatiog.
* Eccl pour load at ind indualey.

\subsection*{6.5.1.3.2.2 Auxiliary Building ECCS and RWCU Pump Rooms Pressure Response Analysis (Continued)}
\[
\begin{aligned}
& T=27 \mathrm{sec} \text { to } 122 \mathrm{sec} \text {. } \\
& \text { No Eccl noun coercive nave } \\
& \text { exhausted to SGTS. Wolumatii uparui aus to testis } \\
& \text { ed inlecherge ixhaustid. Chesum }\langle L\rangle 0.500^{\prime \prime} \omega 6 \\
& 131 \text { Pantancifccs Rom } \\
& T=122 \text { to } 164 \mathrm{sec} \text {. Intermediate cooling mode. heat }
\end{aligned}
\]
\[
\begin{aligned}
& \text { generation. 2025. - } 1360 \text { eam exhausted to } 86 \mathrm{TS} \text {. } \\
& \text { ond"ritoon cure present auth undumatre exporin dee the bowen A }
\end{aligned}
\]
\[
\begin{aligned}
& \text { norm esoler becomes faction. i } C(-) \text { 0.800"wh }
\end{aligned}
\]
\[
\begin{aligned}
& T=\text { Beyond } 774 \mathrm{sec} \text {. Long-term cooling mode, } 80 \mathrm{cfm} \text {. }
\end{aligned}
\]
\[
\begin{aligned}
& p<(-) 0.500^{\circ} \omega .6
\end{aligned}
\]

The temperature response profile for the ECCS and RWCU Pump Rooms ie shown in Figure 6.5-10.

 6.5.1.3.2.3 Fuel Building Pressure Response Analysis \(P<(-)=0.80 \cdot\) "w. 6 ,

The Fuel Building pressure control exhaust system fan maintains the Fuel Building under a negative pressure differential of 0.625 . in WG during normal plant operation by withdrawing the amount of air equal to the in-leakage. Ductwork connection and damper switching control are provided between the pressure control system and the SGTS. In the event of a LOCA coincidental with the loss of normal AC power, the Fuel Building pressure control system fan stops. The SGTS fan operates at its rated flow 27 sec after a LOCA and exhausts 1645 cfm continuously from the Fuel Building to maintain a subatmospheric condition. The pressure and temperature response profiles for the Fuel Building are shown in Figures 6.5-11 and \(6.5-12\), respectively.

Figure 6.5-11. Post-LOCA Fuel Building Pressure Response
6.5-74

9a) After review of the design, we concluded that we cannot meet single failure of the Division 1 power because we lose both the jockey pump and the main pump. Therefore, we must commit to an air test. We will implement the following on the RCIC, LPCI, AB\&C, LPCS and HPCS discharge lines. We will add requirements to drain the discharge piping on these systems and perform Type \(A\) tests or Type \(C\) air tests and the resulting leakage shall be added to the Type \(A\) leakage for acceptance. Table 6.2-29 will be changed as follow:

Table 6．2－29 ITEM \(q_{a}\) CONTAINMENT PENETRATION AND CONTAINMENT ISOLATION VALVE LEAKAGE RATE TEST LIST（CONEINUE

Penetration Number
Description
Equipment Hatch
Personnel Lqck－Lower
Inner Door
Outer Door
Barrel

Personnel Lock－Upper Inner Door Outer Door Barrel

8c
9c

10 c

11 c

12c
2c

3c

4c


Fuel Transfer Tube Main Steamline D

Main Steamline B

Main Steamline A

Main Steamline C
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & Inboard Isolation Barrier & & Outboard Isolation Barrier & \\
\hline Bellows Seal & \begin{tabular}{l}
Test \\
Type
\end{tabular} & Barrier Description／
\(\qquad\) & Notes & Barrier Description／ Valve Number（17） & Notes \\
\hline No & B & Double o－Ring & 1 & － & － \\
\hline No & B & Double Gasket & 1 & － & － \\
\hline No & B & － & － & Double Gasket & 1 \\
\hline No & B & Inner Door & 2 & Outer Door & 2 \\
\hline No & B & Double Gasket & 1 & － & － \\
\hline No & B & － & － & Double Gasket & 1 \\
\hline No & B & Inner Door & 2 & Outer Door & 2 \\
\hline No & B & Double O－Ring & 1 & － & － \\
\hline Yes & \(c\) & B21F022D & 3,4 & B21F028D & 3 \\
\hline Yes & 6 & & I & B21F067D & 3 \\
\hline Yes & \[
2
\] & & 4 & B21F086D & 3 \\
\hline Yes & c & B21F022B & 34 & B21P028B & 3 \\
\hline Yes & C & & \(R\) & B21F067B & 3 \\
\hline Yes & C & &  & B21F086 & 3 \\
\hline Yes & & B21F022A & & B21F028A & 3 \\
\hline &  & &  & B21F067A & 3 \\
\hline & & &  & B21F086 & 3 \\
\hline Yes & C & B21F022C & & B21F028C & 3 \\
\hline & & & \({ }^{2}\) & B21F067C & 3 \\
\hline & & &  & B21F086 & 3 \\
\hline
\end{tabular}

Table 6.2-29
ITEM \(9 x\) changer
noted with CONTAINMI: VT PE ETRA'i N AND CONTAINMENT ISOLPTION VAIVE LEAKAGE RATE TEST LIST (Continued)


Table 6.2-29
Item 9 a CONTAINMENT PENETRATION AND CONTAINMENT ISOLATION VALVE LEAKAGE RATE TEST LIST (Continued)


Table 6.2-29
Item \(9 a\) CONTAINMENT PENETRATION AND CONTAINMENT ISOLATION VALVE LEAKAGE RATE TEST LIST (Continued)


Table 6.2-29
Item \(9 a\)
CONTAINMENT PFNETRATION AND C(INTAIIMENT ISOLATION VALVE LEAKAGE RATE TEST LIST (Continued)



\section*{Outboard Isolation \\ Barrier}

Inboard Isolation Barrier
* Type A test also reavireed

UNLESS NOTED OTHERWISE.
** REmairis Water. filled during Type \(A\) TEST

Table f.2-29
Iten \(9 a\) CONTAINMI.NT PE ETRATI N AND CONTAIMMENT ISOL \(\mathcal{I}\) TION VAIVE LEAKAGE RATE TEST ,IST (Continued)


Table 6.2-29
CONTAINMENT PENETRATION AND CONTAINMENT ISOLATION VALVE LEAKAGE RATE TEST LIST (Continued)
DELETED

480.44
 SFE NOTE 3. RORFORMED WINT NATER AT PRESSURE \(=1.10\) \% 430.46 This valve is located on a non-Safety Grade piping system which is not a CIOC.
(14) The primary seal for each of the electrical penetrations consist of two concentric \(0-r i n g s\) with a test connection to permit leak testing the space between the o-ring seals. Test volume is pressurized with dry nitrogen.
(15) Influent lines terminating in the suppression pool are discussed in Subsection 6.2.4.3.2.2.1.1.
(16) These systems penetrate the containment are designed to remain intact following a LOCA. चenerpuer wary not specifically vented to the containment atmosphere or to the outside atmosphere and may remain water filled during Type A testing.
(17) Test vent + drain connections used tu facil, tate local and containment integrated leak rate testing shall, De under administrative control and subject to periodic surveillance to assure their integer i ff.

Item9c) It was agreed that we would add the following words to GESSAR Section 6.2.6.3.2, "Leakage testing of the closed ESF systemsoutside containment is performed in accordance with Section XI of the ASME BLPV code, but will comply with the testing frequencies and leakage reporting requirements of Appendix \(J\) of lOCFR50.
6.2.6.4 Scheduling and Reporting of Periodic Tests (Continued)
results shall be submitted to the NRC in a summary report approximately three months after each test.

\subsection*{6.2.6.5 Special Testing Requirements}

The maximum allowable leakage rate into the secondary containment and the means to verify that the inleakage rate has not been exceeded, as well as the bypass leakage rate, are discussed in Subsections 6.2.3 and 6.5.1.3.
LEAKage ensuing on the closed ESR systems outside consuanent is perfoknat in accoronnce with Section Y or ASiA Bul code, but will cunply with the 6.2 .7 Suppression Pool Makeup System festive frequencies avo repontios requirements of Appendix J of lockeso.

The Suppression Pool Makeup System provides additional water from the upper containment pool to the suppression pool by gravity flow following a LOCA. The quantity of water is sufficient to account for all conceivable post-accident entrapment volumes (i.e., places where water can be stored while maintaining longterm drywell vent water coverage).

\subsection*{6.2.7.1 Design Basis}

The following criteria were used in the design of the Suppression Pool Makeup System:
(1) The system is redundant with two \(100 \%\) capacity lines. The redundant lines are physically separated and electrical controls are separated into two divisions in accordance with IEEE-279.
(2) The system is Safety Class 2, Seismic Category I, and Quality Group B.
(3) Minimum long-term post-accident suppression pool water coverage over the top of the top drywall vent is 2 ft .
\[
6.2-149
\]

\section*{ATTACHMENT NO. 3}

DRAFT RESPONSES TO
INSTRUMENTATION AND CONTROL SYSTEMS BRANCH QUESTIONS
\[
\text { Oraft Supplement } 3-18-83
\]

Based on our review, it appears that the proposed logic for manual initiation for several ESF systems is interlocked with permissive logic from various sensors. In some cases, it appears that the permissive logic is dependent on the same sensors as those used for automatic initiation of the system. Our position on this matter is that the capability to manually initiate each safety system should be independent of the permissive logic, the sensors and the circuitry used for automatic initiation of that system. (Refer to Section 4.17 of IEEE Std. 279). Identify each safety system which is interlocked in a manner similar to that described above. Provide proposed modifications or justification for the present design.

In this regard, manual control of actuated devices at the motor control center (MCC) has been typically provided in previous designs. Our review of drawings I-960 A through M indicates that this feature has not been provided for your proposed design. Provide your rationale for not providing local control at the MCC's.

\section*{Response Supplement}

The response submitted previously on the docket remains unchanged. However, the following information is provided to supplement the justification supporting the design of the HPCS and the Containment Spray System interlocks.

\section*{HPCS}

The HPCS injection valve can be closed without restriction using the component level manual switch. However, the same switch (spring return to AUTO from either OPEN or CLOSE) will only open the valve if a two-out-of-two level 8 signal is not present.

This interlock is important in that it prevents inadvertent overfill of the vessel. Such overfill can escalate a relatively minor occurance (loss of feedwater) to a major event (Water in the main steam lines). This could potentially expose the safety relief valves and turbine controlled safety equipment to high pressure water slugs.

In an emergency situation requiring the Standby Liquid Control System, a vessel overfill could also dilute the boron concentration in the vessel.

For these reasons, it is GE's position that the L8 signals should not be bypassed to force manual opening control. It is possible to provide separate hardware for the manual \(L 8\) control interlock. However, without a bypass, such redundant hardware could not open the valve anyway, if the automatic interlocks were forcing it closed.

It is recognized that a single failure could cause inadvertent closure of the HPCS injection valve. This loss of HPCS is acceptable from a safety standpoint because of ADS and the low pressure system which maintains water inventory in the vessel. These systems are powered from divisions 1 and 2 as opposed to discussion 3 for HPCS. Thus, their functions and interlocks are totally independent from those of HPCS.

Inadvertant failure of HPCS is a risk most certainly preferable to inadvertant flooding of the main steam lines.

Containment Spray Mode of RHR
As explained above, separate automatic vs. manual interlocks for single valves cannot function independently in both opening and closing modes of the valve. With the manual spring-return-to-"AUTO" switch, an opposing automatic closure signal would immediately reclose the valve as soon as its opening command seal-in relays dropped out. Valve cycling would thus result from opposing signals unless one permanently bypassed the other. Such a bypass would preclude the need for separate interlocks.

A manual bypass for the Containment Spray would increase the risk of inadvertent operation. In the Mark III design, the spray is located over the refueling area. During tefueg'RHR is functioning in another mode to keep the vessel cool. The bypass would pose a safety hazzard to personnel within the containment.

Operator initiated inadvertent containment spray has occured several times in both foreign and domestic plants where containment spray systems are employed. (Note recent occurrence at Oyster Creek: LER-50-219NA.)

The interlock is a deliberate preventive measure for the Mark III. A single failure of the interlock could cause loss of one train of containment spray. However, such a failure is of little consequence because of the redundant train. Thus, the risk of failure of one train is most certainly preferable to inadvertent containment spray.

DRAFT RESPONSES TO
STRUCTURAL AND GEOTECHNICAL ENGINEERING BRANCH QUESTIONS
220.11 At the time of this review, Appendix \(3 H\) which describes the effect of (3.7.2) the concrete between the containment and the shield building on the seismic analysis, is not available. Indicate when this appendix will be provided. This information should be made available prior to the forthcoming structural audit in December 1982.

\section*{Response}

The effects of the concrete between the Containnent and the Shield building on the seismic analysis is discussed in Appendix 3H which will be submitted in April 1983.

Shell forces, she?1 moments and element stresses have been obtained for various structures and for individual soil cases. These results were then enveloped to arrive at a set of final responses. These are included in the appendix and are generally within the envelope used in the design. At a few locations, the unit forces are slightly higher, for instance in the range of \(3 \%\) of the allowable stress. This is certainly within the structural design margin.

Response spectra for various structures have also been generated for individual soil cases. Envelopes were obtained for them and are included in Appendix 3H as well. The majority of the curves fall within the original envelope and are still used for conservatism. A few curves show some exceedance in accelerations and some frequency shift in the range of \(5-10 \%\). However, the increased accelerations are within engineering design margin for equipment and systems.

It is not clear in the discussion provided in Sections 3.7.2.3 and 3.7.2.5 of your FSAR how you have accounted for the vertical flexibility of floors in the generation of the vertical response spectra. Accordingly, provide the procedures you have used to account for this phenomenon.

Response
A confirmatory analysis which accgunts for the vertical flexibility of floors is in progress and will be submitted in April 1983. A brief description of this analysis follows:

Three typical floor panels were modeled by Spring-Dashpot Oscillators; they were then added to the mass point at the floor of of interest in the mathematical model of the building. A time-history analysis was performed for a soil case expected to provide the maximum response. Vertical Response Spectra for the selected floor panels and the main building mass point were generated and a comparison with the current corresponding response spectrum curves at the selected floor will be made.

By views of previous seismic analysis work the selection of the building and floor in this building will produce the maximum vertical amplification due to floor flexibility was made and resulted in the selection of the floor, at elevation \(28^{\prime} 6^{\prime \prime}\) in the Auxiliary Building. Preliminary results indicate that the existing vertical response spectrum curve (Fig. 3.10-38) will envelope the response spectra from the confirmatory analysis.```

