50-537 Hool Add: NSIC

science applications inc.

An Estimate of Release Frequencies for CRBRP

Potential Core Disruptive Accidents

January 1983

Prepared by:

Bijan Najafi

Science Application, Inc. 5 Palo Alto Square, Suite 200 Palo Alto, CA 94306

Prepared For:

Division of Project Management Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission

Sil

SCIENCE APPLICATIONS, INC • 5 PALO ALTO SQUARE, SUITE 200, PALO ALTO, CA 94304 ALBUQUERQUE • ANN ARBOR • ARLINGTON • BOSTON • CHICAGO • HUNTSVILLE • LA JOLLA LOS ANGELES • ROCKVILLE • SUNNYVALE • TUCSON

CONTENTS

Sect	ion				Page
1.0	INTR	ODUCTION			1-1
2.0	SUMM	ARY OF T	HE LIMITAT	TIONS AND RESULTS	2-1
	2.1	SCOPE A	ND LIMITAT	TIONS	2-1
	2.2	RESULTS	S SUMMARY		2-3
3.0	METH	ODOLOG Y	OVERVIEW		3-1
4.0	ACCI	DENT SEC	UENCE MODE	LING	4-1
	4.1	DESCRIP	TION OF KE	Y PLANT SAFETY FUNCTIONS	4-1
		4.1.1	Turbine B	Sypass System (TBS)	4-2
		4.1.2	Plant Pro	otection System (PPS)	4-2
		4.1.3	Shutdown	System (SCRAM)	4-2
		4.1.4	Pump Trip	p (PT)	4-3
		4.1.5	Shutdown	Heat Removal System (SHRS)	4-3
			4.1.5.1	Shutdown Heat Removal Via Main Transport System (MHTS)	4-3
			4.1.5.2	Shutdown Heat Removal via Direct Heat Removal System (DHRS)	4-4
		4.1.6	Containme	ent Systems	4-5
			4.1.6.1	Containment Isolation System	4-5
			4.1.6.2	RCB Annulus Air Cooling System	4-6
			4.1.6.3	Reactor Containment Building Vent and Purge System	4-6
			4.1.6.4	Reactor Containment Building Clean-Up System	4-7
	4.3	EVENT	TREE DEVEL	OPMENT	4-12
		4.3.1	Accident	Initiator Event Tree	4-12
		4.3.2	Shutdown	Heat Removal Event Tree	4-12

CONTENTS (Continued)

Sect	ion	Page
	4.3.3 CDA-Initial Core Damage Matrix	4-16
	4.3.4 Reactor Vessel Event Tree	4-24
	4.3.5 Reactor Cavity Event Tree	4-24
	4.3.€ Upper Reactor Containment Building Event Tree	4-28
	4.4 SYSTEM FAULT MODELING	4-34
5.0	ACCIDENT SEQUENCE QUANTIFICATION	5-1
	5.1 PLANT SAFETY LOGIC MODY	5-1
	5.2 DATA BASE	5-6
	5.3 DOMINANT ACCIDENT SEQUENCES	5-6
6.0	EXTERNAL EVENTS	6-1
	6.1 SIESMIC ACCIDENTS	6-1
	6.2 FIRE ACCIDENTS	6-8
	6.3 OTHER EXTERNAL INITIATORS	6-15
	6.4 CONCLUSION	6-16
7.0	RESULTS AND CONCLUSIONS	7-1
8.0	SENSITIVITY ANALYSIS AND UNCERTAINTY	8-1
REFE	RENCES	R-1
APPE	NDIX A	A-1
APPE	NDIX B	B-1

TABLES

Tabl		Page
2.1	Estimated Frequency of Core Disruptive Accidents (CDA's) for CRBRP	2-4
2.2	Summary of CRBRP Containment Release Frequencies	2-6
4.1	List of Accident Initiating Events for CRBRP	4-9
4.2	Accident Initiator Event Tree Headings Description and Success Criteria	4-14
4.3	SHRS Event Tree Headings Description and Success Criteria	4-19
4.4	Reactor Vessel Event Tree Heading Description and Success Criteria	4-26
4.5	Upper Reactor Containment Building Event Tree Headings Description and Success Criteria	4-32
4.6	Dependent Events, Description and Method of Treatment in This Study	4-37
5.1	List of Dominant CDA Sequences for Internally Initiated Accidents	5-7
5.2	Containment Release Frequencies for Internally Initiated Accidents	5-8
6.1	Categories of Earthquakes and Their Frequencies	6-2
6.2	Conditional Frequencies Eventns Under Three Sizes of Earthquakes	6-5
6.3	List of Dominant CDA Sequences for Siesmically Initiated Accidents	6-6
6.4	Containment Release Frequencies Initiated by Three Magnitudes of Earthquakes	6-7
6.5	Frequency Estimate of Fire Initiation in Critical Areas of CRBRP	6-11
6.6	Frequencies of CDA and Containment Unfiltered Release for Internally and Externally Initiated Accident	6-14
7.1	List of Dominant CDA Sequences	7-2
7.2	Comparison of Accident Category Frequency Estimates from Four Different Accident Analysis Studies for CRBRP	7-4
7.3	Dominant Accident Sequences for Each Release Mode	7-5
8.1	Results of Sensitivity Analysis of the CDA and Containment Release Frequencies	8-4

TABLES (Continued)

Tabl	le	Page
8.2	Results of Sensitivity Analysis of the CDA and Containment Release Frequencies for Internally Initiated Accidents	8-5
8.1	Equipment and Human Failure Data	B-2
8.2	Phenomenological Uncertainties Mean Estimates	B-5

FIGURES

Figu	ire	Page
3.1	CRBRP Accident Sequence Modeling Flow Diagram	3-3
4.1	Initiator Event Tree for CRBRP	4-13
4.2	Shutdown Heat Removal System Event Tree for CRBRP	4-18
4.3	Core Disruptive Accident - Initial Core Damage Matrix	4-22
4.4	Reactor Vessel Event Tree for CRBRP	4-25
4.5	Reactor Cavity Event Tree four CRBRP	4-29
4.6	Upper Reactor Containment Building Event Tree for CRBRP	4-31
5.1	Example of Plant Safety Logic Model Structure	5-2
6.1	Pre-Initiator Event Tree (Siesmic) for CRBRP	6-4

ABBREVIATIONS AND ACRONYMNS

- AC Annulus Cooling (Containment System)
- CDA Core Disruptive Accidents
- CI Containment Isolation
- CRBRP Clinch River Breeder Reactor Plant
 - CU Clean-Up (System, Scrubbers and Filters)
 - DHRS Direct Heat Removal System
 - EDV Early Dirty Venting
 - EPS Electric Power System
 - LDV Late Dirty Venting
 - LOCA Loss of Coolant Accident
 - LOHS Loss of Heat Sink
 - MHTS Main Heat Transfer System
 - OP (Containment) Overpressure
 - PACC Protected Air-Cooled Condenser
 - PPS Plant Protection System
 - PRA Probabilistic Risk Assessment
 - PT Pump Trip
 - PWST Protected Water Storage Tank
 - RCB Reactor Containment Building
- SCRAM (Shutdown System)
- SHRS Shutdown Heat Removal System
- TBS Turbine Bypass System
- ULOF Unprotected Loss of Flow
- UTOP Unprotected Transient Overpower
- VPS (Containment) Vent and Purge System

Section 1.0 INTRODUCTION

The purpose of the report is to describe the results of an analysis which evaluates various types of releases for potential core disruptive accidents at the Clinch River Breeder Reactor Plant (CRBRP). Event tree methodology is used to define potential internally and externally initiated accident sequences which cause release of radionuclides from the CRBRP primary system and containment. These accident sequences are quantified by simplified fault tree models of the safety systems and best estimate values of the phenomenological events.

Results indicating dominant accident sequences and their relative contributions to potential Core Disruptive Accidents (CDA's) and associated types of containment release modes are provided. These containment release (or response) modes are defined in a form suitable for use in radiological risk analysis. Once the containment leak rates and source terms are identified and calculated for each containment release mode, the radiological health effects can be assessed by combining the frequency and radiological source term for each containment release mode.

Five separate event trees were constructed to analyze the progression of the accident in an orderly and systematic manner using both phenomenological uncertainties and functional frequencies (or system unavailabilities).

The remainder of the report is organized as follows: Section 2 provides a summary of the limitations and the results of this study. Section 3.0 provides an overview of the methodology, and Section 4.0 describes the procedure for defining the accident sequences. Section 5.0 details the quantification of defined accident sequences and the CRBRP containment

response. Assessment of the effect of external events on the plant behavior is presented in Section 6.0. Section 7.0 contains a more detailed presentation of the results and conclusion of the study. Finally Section 8.0 contains a brief analysis of sensitivity of the results and a discussion of the uncertainties.

Section 2 SUMMARY OF THE LIMITATIONS AND RESULTS

This section briefly discusses the limitations and the results obtained for the CRBRP in this accident analysis study.

2.1 SCOPE AND LIMITATIONS

This study is a limited effort to identify and evaluate contributors to core disruptive accidents and containment releases for the CRBRP. In most instances system and event data were selected from available literature and are deemed to represent conservative values for initiator frequencies and system function unavailabilities. No detailed fault tree analysis has been performed and potential modifications to enhance the reliability of specific systems are not considered in the baseline analysis. (A sensitivity study is included in Section 8 which indicates that increased redundancy of the DHRS would reduce the frequency of protected core disruptive events.)

While numerical values are presented for various core disruptive accident categories and containment release modes, they should be considered as rough, figure of merit type indicators. The major effort of this work was to qualitatively structure the plant safety logic into a format suitable for presentation of predominate core disruption and containment release sequences. This work also attempted to include both internal and external initiators to provide a more comprehensive picture of the total spectrum of contributions to core disruption and containment release. Thus quantification of the core disruptive and containment release frequences was performed, primarily, to gain perspective on the relative importance of the different accident sequences which were constructed. A logical next follow-on step would be to critically review the quantification process to increase our understanding and confidence in the calculated estimates.

The sources of the uncertainties in the analysis are generally recognized, but the scope of the effort has permitted only a modest effort in estimating the effect of these uncertainties on the results of this study. Some of the sources of uncertainties and limitations are:

- Uncertainties in the data used for system unavailabilities and phenomenological uncertainties
- Uncertaintites in the modeling regarding the physical behavior of the core, vessel, cavity, and the containment under accident conditions; e.g., how the dispersion of the fuel debris inside the cavity can affect upper RCB overpressurization and does it lead to early (<24 hours) or late (>24 hours) venting to prevent a threat to containment integrity.
- Accidents occuring originally within the core at power are analyzed. Other sources and conditions of accidents are not assessed. However, they are judged not to be dominant accident sequences.
- The basemat penetration mode of containment response was not investigated to identify distance of penetration of the molten debris and material into the basemat.
- Loss of Flow (LOF) driven Transient Overpower (TOP) accidents are not analyzed as part of this study. They are judged not to be dominant sequences, however.
- This study estimates the frequency of the containment release caused by low-probability beyond design basics (Class 9) accidents, and is not intended to analyze the Design Basis Accidents (DBA's). However, it is believed that the design basis accidents will not have significant risk implications compared to Class 9 accidents (limitation).

2.2 RESULTS SUMMARY

The reader is directed to Section 7.0 for detailed results of this analysis. Table 2-1 shows the estimated frequency of the Core Disruptive Accidents (CDA's) for CRBRP. Table 2-1 shows that more than 58 percent of the frequency of core disruptive accidents are caused by protected Loss of Heat Sink (LOHS) accidents. More than 90 percent of the LOHS frequency is contributed by simultaneous failure of all three rupture disks in the Intermediate Heat Transport (IHT) loops accompanied by activation of the Sodium-Water Reaction Pressure Relief System (SWRPRS) which dumps the IHTS Sodium into a dump tank. Decay Heat Removal System (DHRS) would be the only means of post-accident decay heat removal in this situation.

Following LOHS accidents the most dominant CDA is an Unprotected Loss of Flow (ULOF) accident, which comprises 24% of all CDAs. Two of every three ULOFs is initiated by a spurious Plant Protection System (PPS) signal followed by the trip of the primary sodium pumps and failure of both primary and secondary shutdown systems.

The third most frequent core disruptive accident is a Transient Overpower accident (TOP) and represent 8 percent of the fequency of the core disruptive accidents. Almost all of the TOP Core disruptive accidents are initiated by earthquakes, more than 70 percent of which are those earthquake greater than Safe Shutdown Eathquake (>SSE).

TABLE 2-1

ESTIMATED FREQUENCY OF CORE DISRUPTIVE ACCIDENTS (CDA'S) FOR CRBRP

Accident Category ^{a)}	Estimated CDA Reccurance ^b) Frequency, Initiated by Internal (Random) Events Mean per Year (Percent of Total)	Estimated CDA Recurrance Frequency by External Events, Mean Per Year (Percent of the Total)
ULOF	5.5 x 10 ⁻⁵ (24)	1.0×10^{-7} (<1)
UTOP	1.7×10^{-6} (1)	3.9×10^{-8} (<1)
UTOP & ULOF	2.2×10^{-6} (1)	1.1×10^{-6} (1)
ULOHS	1.1×10^{-5} (5)	1.6×10^{-9} (<1)
ULOCA	4.3 x 10 ⁻¹¹ (<1)	8.9 × 10 ⁻⁸ (<1)
Total Unprotected	7.0 x 10 ⁻⁵ (31)	1.3×10^{-6} (1)
LOHS	1.3 x 10 ⁻⁴ (58)	7.0 x 10 ⁻⁷ (<1)
LOCA	1.0×10^{-6} (<1)	4.9×10^{-6} (2)
ТОР	1.0×10^{-7} (<1)	1.8×10^{-5} (8)
Total Protected	1.3 x 10 ⁻⁴ (58)	2.4 x 10 ⁻⁵ (10)
Total	2.0 x 10 ⁻⁴ (89)	2.5 x 10 ⁻⁵ (11)

a) See definitions on page 4-13

b) Total number of challenges = 23 mean frequency/year

These three dominant sequences all together cause almost 75 percent of the frequency of core disruptive accidents, and close to 60% of the frequency of unfiltered releases from the containment.

Additional results of this analysis are frequency estimates of the CRBRP containment releases. Table 2-2 shows the containment release frequencies.

For this analysis nine different containment response modes have been defined; some represent containment failure and some imply successful operation of the containment as designed. The most frequent responses of the containment are early (before 24 hours) or late (after 24 hours) venting of the containment atmosphere through the clean-up system (scrubbers and filters). This occurs at a mean frequency of 2.4×10^{-4} per year or nearly 95 percent of the time a CDA occurs. A considerable uncertainty is associated with the timing of different physical phenomena, and, therefore, the distribution of the filtered releases betweeen early and late release is subject to great uncertainty until further investigations and/or studies are carried-out.

Seven modes of unfiltered containment releases have been identified for the CRBRP containment. These modes vary over a wide range of release characteristic, from a slowly leaking containment after a core disruptive accident and vessel failure (low consequence), to a gross instantaneous failure of the containment due to a CDA initiated missile or sodium spray fire (high consequence).

The mean frequency of the unfiltered release from CRBRP containment is estimated to be 1.3×10^{-5} per year or 5 out of every one hundred CDA events. The most frequent of these release modes are either an overpressure failure caused by total loss of AC power or leakage accross the confinement/containment if a venting cannot be established when necessary and the containment maintains its integrity. These two release modes comprise 73% of the frequency of the unfiltered releases.

Table 2.2

Containment ^a) Response Mode	Description of Containment Response Model	Mean Frequency Per Year Caused by Internal Accidents (Percent of Total Release)	Mean Frequency Per Year Caused by External Events (Percent of the Total Release)
R1 (MIS)	Early Containment Failure due to CDA Initiated Missile	1.2 x 10 ⁻⁸ (<1)	2.0 x 10 ⁻⁹ (<1)
R2 (EOP)	Early Containment Overpressure Failure due to CDA Initiated Sodium Fire	2.4 x 10 ⁻⁸ (<1)	3.9 x 10 ⁻⁹ (<1)
R3 (CI)	Containment Isolation Failure	5.1 x 10 ⁻⁷ (<1)	1.0 x 10 ⁻⁷ (<1)
R4 (EDV)	Early Dirty Vent, Unfiltered Release	1.7 x 10 ⁻⁷ (<1)	1.3 x 10 ⁻⁶ (0.5)
R5 (OP)	Containment Overpressure Failure	1.2 x 10 ⁻⁶ (0.5)	3.3 x 10 ⁻⁶ (1.3)
R6 (LDV)	Late Dirty Vent, Unfiltered Release	1.7 x 10"7 (41)	1.3 x 10 ⁻⁶ (0.5)
R7 (LKS)	Leakage Accross the Steel Shell	3.4 x 10 ⁻⁷ (<1)	4.2 x 10 ⁻⁶ (1.6)
R8 (ECV)	Early Clean Vent Through the Scrubbers and Filters	1.0 x 10 ⁻⁴ (38.5)	2.4 x 10 ⁻⁵ (9)
R9 (LC¥)	Late Clean Vent Through the Scrubbers and Filters	1.0 x 10 ⁻⁴ (38.5)	2.4 x 10 ⁻⁵ (9)
Total	Filtered	2.0 x 10 ⁻⁴ (77)	4.8 x 10 ⁻⁵ (18)
Frequency of Release	Unfiltered	2.5 x 10 ⁻⁶ (1)	1.0 x 10 ⁻⁵ (4)

SUMMARY OF CRBRP CONTAINMENT RELEASE FREQUENCIES

a) See definitions on page 4-26

The mean frequency of hypothetically based ultra-high energetic CDAs causing early releases by missile ejections is estimated to be about 1.4 x 10^{-8} /yr or one per 20,000 CDAs.

Additionally, early containment failures could possibly occur because of a large sodium spray fire. The ejection of sufficient sodium spray into the upper reactor containment building would, as in the missile case, require an ultra-high energetic CDA. In this sequence, however, there is also the consideration of how much oxygen would be available to react with the sodium spray. Some investigators (2) have limited the oxygen supply to that in the head access area, and thus, limited the extent of potential spray fires. This analysis presumes that a spray fire might not be terminated early because of oxygen starvation.

Within the assumption of this analysis there is a small possibility of containment of radionuclides within the primary system given a CDA. The mean frequency of a CDA and core retention within the primary system is about 3.4×10^{-8} per year or once out of every seven thousand CDAs. This is primarily due to estimates of little or no core retention capability of the reactor vessel following a CDA.

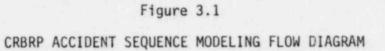
Section 3 METHODOLOGY OVERVIEW

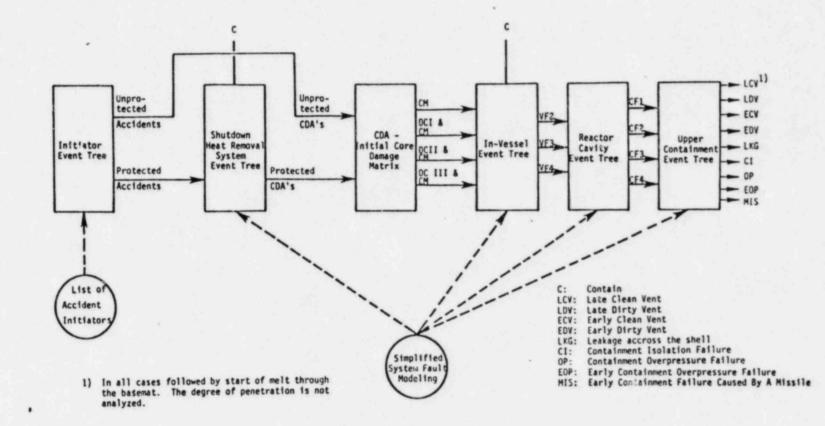
In this study probabilistic methods are employed to identify potential accident sequences and to evaluate the expected frequency of the CRBRP containment responses. The methodology involves the use of event trees to define the possible accident sequences. These sequences are then quantified using simplified system fault models to identify potentially significant sequences.

As a first step, potential accident initiators were derived from appropriate safety and reliability studies. Possibility of omitting significant sequences was minimized by a thorough review of their documents by those experienced with PRAs for special classes of reactors as well as for LMFBR's.

Once the accident initiators were identified, five separate event trees were constructed for different phases of accidents in order to follow their progression in a systematic manner. These event trees are:

- Accident Initiator Event Tree
- Shutdown Heat Removal Event Tree
- Reactor Vessel Event Tree
- Reactor Cavity Event Tree
- Upper Reactor Containment Building Event Tree


These event trees identify potential scenarios which can cause containment failure. The frequency of potential Core Disruptive Accidents (CDAs) were evaluated with the accident initiator event tree. This event tree was evaluated for each one of the identified accident initiator groups to estimate the frequency of different CDAs. Once the frequency of CDAs are know, this information is converted into different initial core damage category frequencies. Four categories of core damage were defined ranging from benign core melt to an extremely high energetic core distruptive accident with potential for failing the vessel and containment building directly. These core damage categories were then used as initiating events in the reactor vessel event tree. The phenomenological events inside the reactor vessel produce the outcomes which are grouped into four different modes of vessel response.


The four vessel response modes are initiating events in the reactor cavity event tree. Different phenomenological events in the cavity result in four modes of cavity response.

The four cavity response modes then initiate events in the upper RCB which are then analyzed using the upper RCB event tree. The outcome of the upper RCB event trees are the containment response modes. Nine different modes of containment response are identified and evaluated in this study.

Once the accident sequences are defined by means of event trees, simple fault tree models were constructed to represent each safety function (i.e., to define event tree branch points). The event trees togeter with the simplified fault trees form the basis of a safety logic model, which evaluates the frequency of these sequences and containment responses.

Figure 3.1 shows the interrlationship among the steps of this study to model the CRBRP accidents.

Section 4.0 ACCIDENT SEQUENCE MODELING

This section describes the systematic approach to define and model the potential accident sequences which can result in release of radionuclide from the containment.

4.1 DESCRIPTION OF KEY PLANT SAFTEY FUNCTIONS

The accident analysis of the CRBRP requires the investigation of the following systems or functions to assess the frequency of their failure:

- Turbine Bypass System (TBS)
- Plant Protection System (PPS)
- Emergency Shutdown System (SCRAM)
- Pump Trip (PT)
- Shutdown Heat Removal System (SHRS)
- Containment Isolation (CI)
- Containment Annulus Cooling System (AC)
- Containment Vent and Purge System (VPS)
- Clean-Up System, Scrubbers and Filters (CU)
- Electric Power System (EPS)

This section is intended to provide a brief description of these systems and their functions. Further information can be obtained in various documents published concerning the CRBRP (References, 1, 2, and 3).

4.1.1 Turbine Bypass System (TBS)

The TBS provides electrical power to the plant auxiliary loads during loss of load events, by keeping the turbine generator online. Upon load rejections, the TBS is designed to initiate steam dumping by bypassing steam to the condenser and throttling down on the steam flows to the turbine generator to reduce the power at 3%/min. from 100% to 15% in order to supply plant auxiliary electric loads. The present design of CRBRP accomplishes this objective except when loss of off-site power results from emergency or faulted events.

4.1.2 Plant Protection System (PPS)

For the purposes of this study the PPS is defined as part of the reactor shutdown system which detects any condition in the plant which may affect the generation or orderly transport of heat. This system also initiates the appropriate response to these abnormalities in the plant to mitigate their consequences. In most cases this response is emergency shutdown by activating the pump trip and SCRAM systems. This system consists of two separate logic trains which provide functional redundancy and partial diversity.

4.1.3 Shutdown System (SCRAM)

SCRAM refers to the mechanical subsystem of the reactor shutdown system, and includes the primary and secondary control rod systems and their actuators. The primary SCRAM system has 9 rod assemblies and their associated actuator mechanisms. SCRAM is initiated by removing power from the stator winding of a stepping motor for each rod. The primary rods drop into the core by gravity, assisted by springs. The secondary SCRAM system has 6 rods and their

associated actuator mechanisms. SCRAM is initiated by removing power from two of three solenoid valves for each of the six assemblies. In addition, the secondary rods are aided by coolant flow for insertion. The secondary SCRAM system is not designed for a safe-shutdown earthquake. Primary control rods are used for both Control and SCRAM, but the secondary rods are only used foor SCRAM.

4.1.4 Pump Trip (PT)

The purpose of this function is to shift the primary and intermediate sodium pump drives from the main motors to the pony motors when a PPS signal shuts down the reactor. Each pump circuit has two breakers in series which receive signals from the PPS. The two redundant trains of PPS provide separate signals to the breakers which removes the power from the motor of the breaker and, therefore, trips the pump.

4.1.5 Shutdown Heat Removal System (SHRS)

This system is designed to remove the sensible and decay heat from the reactor following a reactor shutdown. This heat can be transferred to the ultimate heat sink via two different paths, each operating in forced or natural circulation mode. One path is via the primary and intermediate transport loops by using the steam-water subsystem as the ultimate heat sink. The other path is the Direct Heat Removal System (DHRS) and deposits the heat into the atmosphere through air blast heat exchangers.

4.1.5.1 Shutdown Heat Removal Via Main Heat Transport System (MHTS)

The MHTS subsystem can transfer the decay heat to normal or emergency heat sinks in the steam-water subsystem via three primary and intermediate sodium loops. Decay heat can be removed via MHTS with either forced or natural circulation in the primary and intermediate sodium loops. Heat from each intermediate loop is then transferred to the steam-water subsystem through a steam generator system consisting of two evaporator modules and one steam superheater module on each loop. The heat then can be removed from the steam

generators by either main feedwater or auxiliary feedwater system. The main feedwater system uses three motor-driven feedwater pumps and three motor-driven condensate pumps and takes water from the condenser hot well or condensate water storage tank. The auxiliary feedwater system has two 50% motor-driven pumps and one 100% steam turbine-driven pump, and they take suction from the Protected Water Storage Tank (PWST) with the condensate storage tank providing an unprotected source of make-up. The steam is then vented directly into the atmosphere and it is also condensed through the three Protected Air-Cooled Condensers (PACCs). The venting, used for short-term heat removal, is provided through two power-operated relief valves on each steam drum. One PACC is associated with each steam generator. Saturated steam is supplied to each PACC from its related steam drum and is returned as saturated water to the steam drum, which is at a lower elevation, by gravity Two fans, each on a separate class IE power source, force the air flow. across the PACC tubes.

For decay heat removal via MHTS in the natural circulation mode, all primary and intermediate loops should remain intact and active operation of either main feedwater or auxiliary feedwater is required to remove the heat from the steam generators.

However, studies are being conducted which show that the decay heat can be removed adequately from the steam drums using the PACCs in the natural draft operation mode. In this mode natural circulation is established between each steam drum and its associated PACC, with the help of natural draft across the PACC tubes, and higher elevation of PACC with respect to its associated steam drum.

4.1.5.2 Shutdown Heat Removal via Direct Heat Removal System (DHRS)

If the process of decay heat removal through MHTS is unavailable, the DHRS can remove the decay heat from the reactor vessel provided that at least one of the primary loop pony motors is operational to provide coolant mixing inside

the reactor vessel, and all primary loops are capable of providing a flow path. This system draws spill-over sodium from an overflow vessel and circulates it through the overflow heat exchanger by two Electro Magnetic (EM) pumps. The heat is then extracted from the overflow heat exchanger via two NaK loops and is transferred to the atmosphere using two air blast heat exchangers. Both NaK loops are necessary to provide adequate heat removal which makes DHRS a single train non-redundant system. The DHRS must be initiated manually.

4.1.6 Containment Systems

The reactor confinement/containment system is designed as a last barrier to prevent the release of radioactivity to the environment. Several auxiliary systems and engineered safety systems are provided to mitigate the consequences of an accident which may threaten containment integrity.

4.1.6.1 Containment Isolation System

The containment isolation system is designed to seal-off all reactor containment building penetrations in the event of an accident in order to prevent any escape of radioactive material from within the containment building to the environment. The system is comprised of isolation valves with their control and actuating equipments. The control system includes both automatic and manual operation in most cases. The isolation valves and their associated actuators close on loss of air or electric power. All lines, except those that lead into closed Class II Systems (i.e., the IHTS), which penetrates the containment have redundant isolation valves in series, with one located within and one located outside the RCB. This ensures operation following either internal or external accidents.

4.1.6.2 RCB Annulus Air Cooling System

This system is provided to maintain the temperature of the steel containment shell and confinement concrete structure so as to prevent the structural failure of the confinement/containment system.

Six redundant 133,000 CFM (cubic feet per minute) fans are provided (3 on each train) which push the outside air into the annulus between the steel containment and concrete confinement. The annulus is partioned to provide a spiral air flow path discharing at the top of the confinement dome. The intake and the exhaust opening are protected against missiles, and screens are used at the intake to protect the fans from the debris. The fans use redundant power sources from either off-site or emergency power. The Reactor Containment Building (RCB) annulus air cooling system must be manually initiated.

4.1.6.3 Reactor Containment Building Vent and Purge System

This system is designed to relieve the containment pressure build-up within the upper RCB. The system consists of two vent lines with redundant fans to provide forced venting of the containment atmosphere. This system is designed to remain functional with sodium aerosols entering the system. The RCB vent and purge system in combination with clean-up system maintain a 1/4-inch of water gauge (or 0.622 m bars) negative pressure inside the containment after the initial ventdown. The vent system is connected to the clean-up system through redundant pipes. The purge system is operated by opening redundant isolation valves after containment is at negative pressure. Check valves and narrow range pressure instrumentation interlocks on the purge lines prevent backflow from the containment. Both vent and purge requires remote manual actuation from the control room.

4.1.6.4 Reactor Containment Building Clean-Up System

The RCB clean-up system is comprised of three filtration stages located on the vent lines before venting through the discharge at the top of the confinement dome. There are two 100% redundant filter units consisting of a heating coil, demister, prefilter bank (jet scrubber) and HEPA (wet scrubber) filter bank. The system is required to remove 99% of solids and/or liquid radioactive material and 97% of the vapors. The system is designed to remain functional with predictable sodium aerosol ingestion and contained radioactivity and heat generation from fission products.

4.2 ACCIDENT INITIATING EVENTS

The starting point for modeling of the accident sequences which result in releases of radionuclides from the containment is to identify the initiating events which may start such a sequence of events.

There are two basic causes for initiating an accident:

- An increase in the reactor power beyond the design capacity of the heat transport system (overpower transients).
- Imbalance between the heat produced in the core and the heat being removed from the core due to inadequate (or loss of) heat removal (undercooling transients).

either of these two conditions require the shutdown of the reactor and remova of the decay heat.

In order to account for all the possible initiating events in a systematic fashion six different accident initiating event categories were defined. These categories are defined for each subsystem which is part of the plant normal operation for generation and transport of heat in a controlled manner.

These categories are:

- I Operator Subsystem
- II Reactor Subsystem
- III Heat Transport Subsystem
- IV Steam/Water Subsystem
- V Electrical/Control Subsystem
- VI External Events

The first category is the accidents which do not require fast automatic shutdown of the reactor, but the reactor must be shutdown manually for repair. The secondary category of accidents are the ones happening in the reactor system such as fuel failure or other reactivity related accidents. The accidents initiated in the heat transport system (primary or secondary sodium loops) are grouped in category three. Category four includes the accidents involving steam, feedwater or condensate systems. The accidents which start in the electrical or control systems are in category five. And the last category includes the accidents which are initiated due to external causes. Table 4.1 shows a list of these accident initiators and their estimated mean recurrence frequency.

LIST OF ACCIDENT INITIATING EVENTS FOR CRBRP

Accident Initiator	Estimated Frequency Mean Per Year	Reference
I. Operator System		
1. Mormal Shutdown with SHRS Available	3.3	CRBRB Safety Study
2. Normal Shutdown with one HT loop unavailable	2.2	CRBRP Safety Study
3. Normal Shutdown with DHRS unavailable	6.3 x 10 ⁻¹	CRBRP Safety Study
1. Reactor Safety		
4. Local Fault Propagation, Subassembly Faults	2.7 x 10-4	CRBRP Safety Study
5. Fuel Pin Failure, Local Radial Motion	2.7 x 10-5	CRBRP Safety Study
6. Core Support Structure Failure	5.2 x 10-7	CRBRP Safety Study
7. Large Scale Core Motion	6.2 x 10 ⁻⁶	CRBRP Safety Study
8. Loss of Hydraulic Koldown	2.7 x 10-4	CRBRP Safety Study
9. Single CR Assembly Withdrawal, Low Speed	3.8 x 10 ⁻³	CRBRP Safety Study
10. Single CR Assembly Withdrawal, High Speed	2.7 x 10 ⁻⁶	CRBRP Safety Study
11. Control Assembly Group Withdrawal, Low Speed	3.8 x 10 ⁻²	CRBRP Safety Study
12. Control Assembly Group Withdrawal, High Speed	8.0 x 10-7	CRBRP Safety Study
13. Voiding or Gas Bubble in the Core	2.7 x 10-5	CRBRP Safety Study
14. Moderator in the Coolant	2.7 x 10-5	CRBRP Safety Study
15. Spurious DHRS Injection, Valve Faults	2.9 x 10-3	NUREG/CR - 2681
16. Uncontrolled CR Assembly Drop, CRDM Faults	6.5 x 10 ⁻¹	EPRI NP-2230

LIST OF ACCIDENT INITIATING EVENTS FOR CRBRP (Continued)

Accident Initiator	Estimated Frequency Mean Per Year	Reference
II. Heat Transport System		
17. Primary Pipe Rupture	5.2 x 10 ⁻⁶	CRBRP Safety Study
18. Reactor Vessel Rupture	5.2 x 10 ⁻⁶	CRBRP Safety Study
19. Loss of Flow in 1 Primary Loop	7.5 x 10 ⁻¹	NUREG/CR-2681
20. Loss of Flow in 2 Primary Loops	2.5 x 10-2	NUREG/CR -2681
21. Loss of Flow in all 3 Primary Loops	1.3 x 10 ⁻²	NUREG/CR -2681
22. Spurious PPS Signal	8.8	CRBRP Safety Study
23. Intermediate Pipe Rupture	5.2 x 10 ⁻⁶	CRBRP Safety Study
24. Intermediate Heat Exchanger Rupture	5.2 x 10 ⁻⁶	CRBRP Safety Study
25. Loss of Flow in 1 Intermediate Loop	7.5 x 10 ⁻¹	NUREG/CR-2681
26. Loss of Flow in 2 Intermediate Loops	2.5 x 10-2	NUREG/CR-2681
27. Loss of Flow in All 3 Intermediate Loops	1.3 x 10 ⁻²	NUREG/CR-2681
28. Failure of the Poture Disk in 1 Int Loop	1.0	WARD-0-0118
29. Failure of the Rupture Disks in 2 Int Loops	3.8 x 10 ⁻²	WARD-0-0118
30. Failure of the Rupture Disks in all 3 Int Loops	2.5 x 10-2	WARD-0-0118
31. Drain Valve Failure Dumping Na into the IHTS	2.7 x 10-5	Failure Data

LIST OF ACCIDENT INITIATING EVENTS FOR CRBRP (Continued)

Accident Initiator	Estimated Frequency Mean Per Year	Reference
IV. Steam/Water System		
32. Loss of One Steam Generator Loop	1.3 x 10 ⁻¹	CRBRP Safety Study
33. Loss of All 3 Steam Generator Loops	3.8 x 10 ⁻⁵	CRBRP Safety Study
34. Steam Generator Tube Rupture (Leak)	1.3 x 10 ⁻¹	CRBRP Safety Study
35. Steam Pipe Rupture	2.0 x 10 ⁻³	Zion Prob. Safety Study
36. Loss of Main Feedwater (inc) FW Pipe Rupture)	2.6	NUREG/CR-2681
37. Loss of Main Conderser	3.3 x 10 ⁻¹	CRBRP Safety Study
38. Turbine-Generator Trip	1.1	CRBRP Safety Study
V. Electrical/Control System		
39. Loss of DC Power	5.2 x 10 ⁻⁷	CRBRP Safety Study
40. Loss of I & C to Vital Plant Components (due to fire)	6.2 x 10 ⁻⁵	CRBRP Safety Study
VI. External Events		12 and 12 and 14
41, Loss of Offsite Power	1.4 x 10 ⁻¹	EPRI NP-2230
42. Operating Basis Eathquake (OBE)	2.3 x 10 ⁻³	CRBRP PSAR
43. Safe Shutdown Eathquake (SSE)	2.4 x 10-4	CRBRP PSAR
44. Greater than SSE (BFE)	5.5 x 10-5	CRBRP PSAR

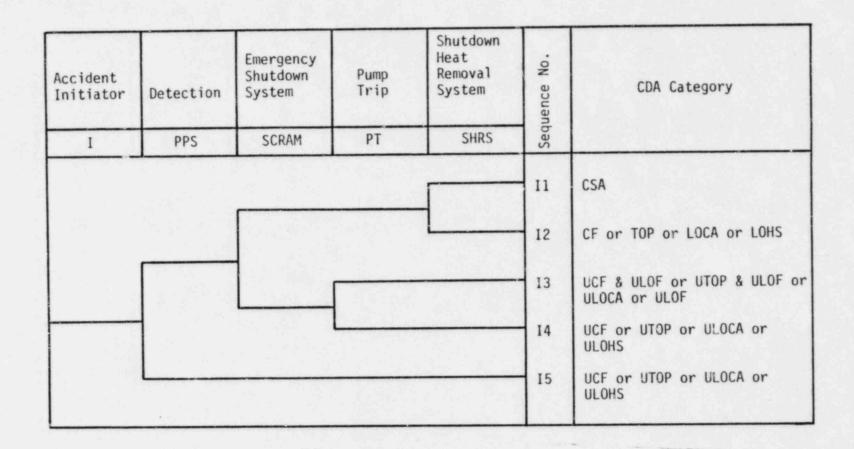
TOTAL	23.1	

4.3 EVENT TREE DEVELOPMENT

This section describes the event trees developed to define the possible accident scenarios for CRBRP. The following five event trees were constructed:

- Accident Initiator Event tree
- Shutdown Heat Removal Event tree
- Reactor Vessel Event tree
- Reactor Cavity Event Tree
- Upper Reactor Containment Building Event tree

4.3.1 Accident Initiator Event Tree


This event tree defines the relationship between each accident initiator and the accident category (CDA) resulting from it. A generalized accident initiator event tree is shown in Figure 4.1. The event heading descriptions and their success criteria are defined in Table 4.2. The outcome of this event tree will be different types of accident categories (or CDAs), such as protected Loss Of Heat Sink (LOHS), Unprotected Loss Of Flow (ULOF), etc.

4.3.2 Shutdown Heat Removal Event Tree

This event tree defines the modes of failure of shutdown heat removal system. The starting event is a protected accident, i.e., an accident with successful shutdown of the reactor, and the outcoming events are either termination of the accident, Cold Shutdown Available (CSA) or a Protected Core Disruptive Accident (PCDA). The Unprotected Core Disruptive Accidents (UCDA's) will be the outcome of the initiate event tree.

						•
Fi	12.2	1.20	0	1		
			-	-	-	
	-		~	ः ह	•	

. .

Initiator Event Tree for CRBRP

. . . .

ACCIDENT INITIATOR EVENT TREE HEADINGS DESCRIPTION AND SUCCESS CRITERIA

leading	Description	Success Criteria
PPS	Detection - Plant Protection Signal	To detect and provide signal at least on one of the two redundant channels.
SCRAM	Emergency Reactor Shutdown	Opening of at least 2 out of 3 SCRAM breakers to release the primary control rods or opening of at least 2 out of 3 solenoid operated valves to vent the argon pressure, actuating the SCRAM latch in each secondary rod. The number of rods required will depend on the power level and the type of incident.
PT	Primary Sodium Pump Trip	Trip of all three primary sodium pumps given an emergency shutdown signal.
SHRS	Shutdown Heat Removal System	Success criteria for the SHRS is defined in Section 4.3.2

Four protected and seven unprotected core disruptive accidents are the outcome of these two event trees. The protected accidents are:

- CF Core Fault, the accidents which are initiated within the fuel such as a fuel pin failure and failure of SHRS after successful SCRAM.
- TOP Transient Overpower, a reactivity insertion transient followed by successful SCRAM and failure of SHRS.
- LOCA Loss of Coolant Accident, primary system ruptures spilling the primary sodium into the cavity, drops the sodium level in the tank. The reactor is shutdown but SHRS fails.
- LOHS Loss of Heat Sink, the accident starts in the heat sink (secondary sodium loops or steam/water system or electrical/control system). The fuel is initally intact, no overpower transient occurs and the primary system boundary remains intact maintaining the level of sodium. The reactor is shutdown and the SHRS fails.

The seven unprotected accidents are:1)

- UCF Unprotected Core Fault, starts the same way as CF, but no SCRAM and no primary pump trip.
- UCF & Unprotected Core Fault and Loss of Flow, same as
 ULOF UCF with trip of primary sodium pumps.
- UTOP Unprotected Transient Overpower, a reactivity insertion transient and failure to SCRAM the reactor and trip the primary pumps.
- UTOP Unprotected Transient Overpower and Loss of & ULOF Flow, same as UTOP with trip of primary sodium pumps
- ULOCA Unprotected Loss of Cooling Accident, same as LOCA except the failure to shutdown the reactor
- ULOF Unprotected Loss of Flow, an undercooling accident with failure to shutdown the reactor and trip the primary pumps
- ULOHS Unprotected Loss of Heat Sink, same as ULOF except that the primary sodium pumps do trip

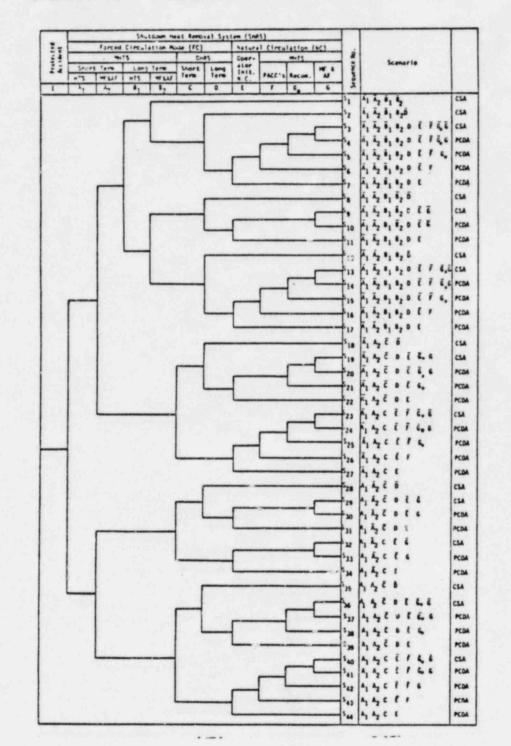
1) The LOF driven TOP is not considered in this study

Figure 4.2 shows the SHRS event tree. The description of the event tree headings and their success criteria is presented in Table 4.3.

4.3.3 CDA-Initial Core Damage Matrix

The purpose of this matrix is to define the distribution of the initial energetics of core disruptive accidents. The energy of a core disruption is important in determining structural and mechanical integrity of the primary system (i.e., reactor vessel head) and the possiblity of early containment failure due to extermely high initial energetics, or the timing of thermal vessel failure.

The element A_{ij} of this matrix is the conditional probability that the core disruptive accident CDA, will have an energetic of the magnitude ICD_i.


The outcome of the initiator and shutdown heat removal event trees, i.e., CDA Vector is multiplied by the CDA-Initial Core Damage (CDA-ICD) matrix to obtain the initial core damage vector. This vector defines the core disruptive accidents in terms of four energy categories:

- CM Melting of the core, no energetic disassembly (like LWR core melt)
- DCI Benign core disruption, (partial) fuel dispersal, no vessel head damage
- DCII Moderate core disruption, fuel dispersal in the vessel, moderate head seal leakage
- DCIII Large core disruption, extensive head damage, permitting free communication of gases and liquids between vessel and upper RCB

These categories are the input events for the reactor vessel event tree. Figure 4.3 shows the CDA-ICD matrix.

The initial core damage categories are the responses of the core in the initiation phase of the core disassembly and do not reflect the following energetic disassemblies which may happen due to energetic recriticality and/or Fuel Coolant Interaction (FCI). These phenomena are considered in the reactor vessel event tree. In other words the transition and termination phases of the disassembly and their effect on the primary system integrity is reflected in the reactor vessel event tree.

Figure 4.2

SHUTDOWN HEAT REMOVAL SYSTEM EVENT TREE FOR CRBRP

SHRS EVENT TREE HEADINGS DESCRIPTION AND SUCCESS CRITERIA

Heading	Description	Success Criteria	
HTS (S)	Short Term forced decay heat removal through main heat transport loops	Forced operation of one heat transport loop (one pony on of the primary loops and the pony on its associated secondary loop) for four hours	
MF&AF (S)	Short term forced decay heat removal by main or auxiliary feedwater system	Either main feedwater system or one turbine driven AFW pump or two motor driven AFW pumps help remove the decay heat for four hours	
HTS (L)	Long term forced decay heat removal through main heat transport loops	Same as HTS (S) for after 4 hours up to 24 hours	
MF&AF (L)	Long term forced decay heat dissipa- tion in the main or auxiliary feed- water system	Either main feedwater system or one of the AFW pumps are available to dissipate the decay heat	
DHRS (S)	Short term forced operation of decay Heat Removal System (DHRS)	One EM pump in the sodium loop, both NaK loops and airblast heat exchangers, and all three primary ponys are needed for successful removal of the decay heat in the first four hours	

SHRS EVENT TREE HEADINGS DESCRIPTION AND SUCCESS CRITERIA (Continued)

Heading	Description	Success Criteria
DHRS (L)	Long term forced operation of decay Heat Removal System (DHRS)	One EM pump in the sodium loop, both NaK loops and airblast heat exchangers, and at least one primary pony motor is needed for successful removal of the decay heat beyond the first four hours
OP (NC)	Initiation of natural circulation by the operator	Success in this event requires the operator intervention, shutting off all the primary ponys, if decay heat can not be removed by forced circulation
PACC	Dissipation of the decay heat through the Protected Air Cooled Condensers (PACC's)	The success requires operation of one of the PACC Systems in the forced or natural draft mode in the same heat transport loop. If feedwater is not available the cooldown of the system with complete natural circulation is possible for two hours before the dry-out of the steam system. However, it would take several hours to heat the system to a temperature at which core damage can occur.

SHRS EVENT TREE HEADING DESCRIPTION AND SUCCESS CRITERIA (Continued)

Heading	Description	Success Criteria		
REC	Recovery of main or auxiliary feedwater system	The success implies the recovery of the main or auxiliary feedwater system within 2 hours after the start of natural draft in the PACC's		
MF & AF	Operation of the main auxiliary feedwater system after either is recovered given they had failed previously	The success of this event requires operation of the main feedwater pump after recovery for a period of 24 hours		

Figure 4.3

CORE DISTRUTIVE ACCIDENT - INITIAL CORE DAMAGE MATRIX

		Thermal	· .	Mechanical	
Initial Core Damage Category Accident Classes		Core Melt (CM)	Benign Core Disruption (DCI)	Moderate Core Disruption (DCII)	Large Core Disruption (DCIII)
p	CF	1.0	ε	ε	ε
Protected	тор	1.0	ε	ε	ε
Pro	LOCA	1.0	ε	3	· e
	LOHS	1.0	ε	ε	ε
Unprotectad	UCF	ε	0.8	0.2	0.05
	UCF & ULOF	ε	0.8	0.2	0.05
	UTOP Slow Ramp Med. Ramp Fast Ramp Step	е е е	0.9 0.9 0.9 0.9 0.9	0.1 0.1 0.1 0.1	0.02 0.02 0.02 0.02 0.02
Unpro	UTOP & ULOF	ε	0.8	0.2	0.05
	ULOCA	ε	0.8	0.2	0.05
	ULOF	ε	0.9	0.1	0.01
	ULOHS	ε	0.8	0.2	0.05

In a protected accident the control rods successfully insert and the core power (and energy) will drop. During the iniation phase of the protected accidents the core is disrupted by melting until possible recriticality in the later phases of the accident occurs (in most cases such a recriticality is expected to occur, Ref. 7).

On the other hand if the control rods fail to terminate the reaction, the high reactivity insertion rates will cause super-prompt criticality and extremely high power levels. If this high power level and pressure is maintained for a long enough period of time (few milliseconds) an adequate amount of energy will be created causing fuel vaporization and subsequent energetic disassembly (Ref. 3, 14, 15). It is conservatively assumed that all unprotected accidents result in core disassembly. The energetics of the disassembly, however, vary from benign to very high energies which may cause damage to the core support structures, core barrel, vessel head or even indirectly to the containment. The distribution of the initial energetics of the unprotected accidents were estimated after thorough investigation of the relevent literature (references 2, 3, 14, 15). Wherever necessary conservative assumptions were made to produce a defensible upper bound considering present knowledge of the behavior of the LMFBR core under transient conditions.

4.3.4 Reactor Vessel Event Tree

This event tree uses the initial core damage categories as initiating events and the outcome of this event tree consists of four different vessel response modes. These modes are as follows:

- VF1 No vessel head failure, no melt-though the bottom of the vessel, fuel is retained inside the vessel
- VF2 No vessel head failure, melt-through the bottom of the vessel
- VF3 Moderate vessel head failure, meit-through the bottom of the vessel
- VF4 Large vessel head failure caused by either the energetic of the initial CDA or energetic recriticality of FCI in the vessel. A spray fire or missile may be generated by ultra-high energetics in this category and directly fail the containment/confinement builiding. Melt-through of the bottom of the vessel follows.

Figure 4.4 shows the reactor vessel event tree. A brief description of the reactor vessel event tree headings and their success criteria is presented in Table 4.4.

4.3.5 Reactor Cavity Event Tree

The reactor vessel response modes are input to the cavity event tree. Because of the simplicity of the cavity system, only one question is asked once the vessel fails and the debris and other materials are transferred into the cavity. The only question of concern seems to be the distribution of the hot debris on the liner which may affect the timing of the liner failure (faster liner failure in the case of localized accumulation of the debris), and therefore, heat and gas generation due to sodium and concrete interaction. The faster the liner breaks, the earlier the venting of the upper RCB must be initiated.

Figure 4.4

Accident Category	Initial Core Damage Category	Fuel is Mostly Dispersed Out of Vessel	Energetic Recriti- cality in the Vessel	Energetic FCI in the Vessel	Mechanical Integrity of the Vessel Head is Retained	Mechanical Integrity of the Vessel Bottom is Retained	Seq. Name	Vessel Response Mode
CDA	DC	FD	ER	FCI	VHR	VBR		
							¥1	VF1
	+ 1	fes					V2	VF2
							¥3	VF3
					L		VA	VF4
		ю					¥5	YF1
			1.2.2.2			1	V6	VF2
			1.5.5	L			¥7	VF3
			1.5.25				VB	VF4
	ON		-				vs	VF1
	1.77		1000				¥10	VF2
	1.11		1000				¥11	VF3
	1		1.038				¥12	VF4
	1.1			1			¥13	VF1
	1.1.1						¥14	VF2
	1.4.1						¥15	VF2
	1							VF3
	1.1.1.1						¥16	
	1.1			-			¥17	VF4
	1		1.0				V18	VF2 VF3
			1.1					1
	DC I		-				V20	VF4
	-						¥21	VF2
			1 (Sec)				¥22	VF3
	1.1			1			453	VF4
	1			L			¥24	VF2
							426	Ac3
	1.1.1		the second		L		127	VF4
	1						¥29	VF3
	DC 11		1.1.1.1		1		¥30	VF4
			7	1.16			¥32	VF3
				-	1		¥33	VF4
	1.1.1			L			¥34	YF3
	1000	_					¥35	VF4
	DC 111						¥36	VF4
				1			¥37	¥F4
			-				¥38	VF4
				1			139	VF4

REACTOR VESSEL EVENT TREE FOR CRBRP

REACTOR VESSEL EVENT TREE HEADING DESCRIPTION AND SUCCESS CRITERIA

Heading	Description	Success Criteria
FD	Fuel dispersion after a core distruptive accident	Success implies that the fuel is mostly dispersed out of the vessel such that there is signi- ficantly less heat-producing material left inside.
ER	In-Vessel energetic recriticality	Top branch implies that the fuel and clad motion following core disruption results in a critical mass which in turn causes an energetic reaction which may be sufficient to inflict damage on the system. However, recriti- cality of high enough energy to cause severe structural damage is usually considered very un- likely.
FCI	In-Vessel energetic fuel coolant interaction	Top branch implies that an energetic FCI occurs either as a consequence of subcooled liquid sodium entry into the mostly de- stroyed core area or upon contact of the melt draining downward into the lower plenum. However this question is included for completeness and an FCI of signi- ficant energy is very unlikely.

Table 4.4 (Continued)

REACTOR VESSEL EVENT TREE HEADING DESCRIPTION AND SUCCESS CRITERIA

Heading	Description	Success Criteria	
VHR	Mechanical integrity of the vessel head	This heading has three branches, The top branch represents no head damage given an energetic recriticality and/or FCI. The middle branch is a moderate damage to the vessel head caused by energetic recriticality and/ or FCI. And the lower branch shows large head damage and release caused by an energetic recriticality and/or FCI.	
VBR	Mechanical integrity of the vessel bottom	Success implies that no melt through the bottom of the vesse occurs.	

The following four reactor cavity response modes have been identified:

- CF1 Late/moderate basemat penetration. The fuel is reasonably uniformly dispersed within the reactor cavity, no potential for coincident containment failure
- CF2 Early/severe basemat penetration. More localized debris concentration within the reactor cavity e.g., fuel jet, no potential for coincident containment failure
- CF3 Same as CF1, except that coincident containment failure by missile ejection or sodium spray fire due to sodiuim pool boiling is possible
- CF4 Same as CF2, except that coincident containment failure by missile ejection or sodium spray fire due to sodium pool boiling is possible

Figure 4.5 shows the event tree for the reactor cavity.

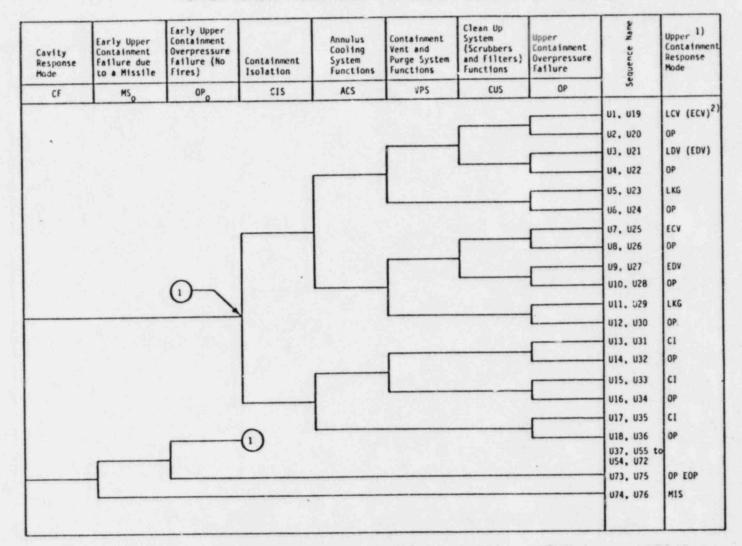
4.3.6 Upper Reactor Containment Building Event Tree

The upper RCB event tree analyzes the physical relationship between the reactor cavity response modes and the responses of the upper RCB. The following nine modes of upper RCB responses were defined for the CRBRP containment:

- LCV Late (after 24 hours) clean (filtered) venting of the containment
- ECV Early (before 24 hours) clean (filtered) venting of the containment
- LDV Late dirty (unfiltered) venting of the containment
- EDV Early dirty (unfiltered) venting of the containment
- CI Containment isolation failure
- LKG Leakage beyond the design basis accross the reactor containment building, containment building intact

Figure 4.5

REACTOR CAVITY EVENT TREE FOR CRBRP


Vessel Response Mode	Debris Coolability in the Cavity - Fuel Dispersion	Sequence Name	Cavity Response Mode
VF	CD		
	es 0	C1,3	CF1
		C2,4	CF2
VF2 or VF3	· · ·	C2,4 C5	CF2 CF3

- OP Containment overpressure failure late in the accident
- MIS Early failure of the containment caused by CDA generated missile
- EOP Early containment overpressure failure due to CDA, mainly caused by sodium spray fire after large vessel head damage and transfer of large quantities of sodium sodium into the upper RCB

All of these containment release modes are followed by the debris attacking the concrete basemat. However, the degree of concrete basemat pentration was not analyzed in this study.

Figure 4.6 shows the event tree for the upper RCB. The headings for this event tree are briefly described and the success criteria for each event is given in Table 4.5.

					100
Fi	111	1 22	0	1	Ph.
	U II		C	· · ·	0

UPPER REACTOR CONTAINMENT BUILDING EVENT TREE FOR CRBRP

- In all cases followed by start of melt through the basemat. The degree of penetration is not investigated
- 2) In the event of CF2, CF3, or CF4

Heading	Description	Success Criteria
MS	Early containment failure due to a CDA-generated missile	The success implies that the initial energetics of CDA or following energetic recrictica- lity and/or FCI are not capable of creating a large enough missile to fail the containment early in the accident.
OPo	Early containment over- pressure failure	The success of this event implies that the initial energetics of CDA or following energetic re- criticality and/or FCI do not in- ject sufficient sodium vapor into the upper RCB or the condition for large sodium spray fire to fail the containment (e.g.suffi- cient oxygen to burn all the sodium which enters the upper RCE does not exist.
CI	Containment isolation	Containment is successfully isolated to insure minimal release of radionuclides to the environment.
AC	Annulus air cooling	At least three out of the six fans are required to adequately cool the annulus.

UPPER REACTOR CONTAINMENT BUILDING EVENT TREE HEADINGS DESCRIPTION AND SUCCESS CRITERIA

UPPER REACTOR CONTAINMENT BUILDING EVENT TREE HEADINGS DESCRIPTION AND SUCCESS CRITERIA (Continued)

Heading	Description	Success Criteria
VPS	Vent and purge system	At least one of the vent lines to provide the path and one of the two blowers to provide forced vent is required.
CU	Clean up System	At least one of the two redundant scrubber/filter systems is operational.

4.4 SYSTEM FAULT MODELING

For quantification of the accident sequences defined by the event trees, frequency of the events which are the headings of the event trees have to be estimated. The accident sequences are defined in terms of both the system unavailabilities and phenomenological uncertainties. Simplified fault trees are used to estimate the unavailability of some of the systems used to mitigate the progression of the accident. These systems are:

- Main Heat Transport Systems, including the primary and the secondary sodium loops
- Auxiliary feedwater system for short and long term operation
- Decay Heat Removal System for short and long term operation
- Protected Air Cooled Condenser
- Annulus Air Cooling System
- Containment Vent and Purge System
- Clean up System
- Electric Power System

The simplified fault models constructed for these systems is shown in Appendix A as part of the plant safety logic model.

The remaining systems were not m deled using fault trees and frequency estimates were used. These systems are:

- Plant Protection system
- Emergency Shutdown System (SCRAM)
- Pump Trip
- Steam Generator System

- Main Feedwater and Condensate System
- Containment Isolation System

Estimates were also used for the phenomenological uncertainties.

4.5 ANALYSIS OF DEPENDENT EVENTS

In designing the safety systems great care has been taken to provide several independent ways in which a safety function can be performed. Generally this concern has been expressed in terms of redundancy and diversity so that, ideally, several independent system failures are necessary to fail a safety function. Yet, events occur which may affect several functions simultaneously and peopardize the redundancy of the mitigative functions. In general, two categories of equipment failure can be identified:

- Independent or random failures
- Dependent failures

Due to diversity achieved through single failure criteria, the loss of a mitigating function caused by independent random events have very low frequencies. The dependent falures (or common cause failures) can play a major role in the operability of the safety functions and overall safety of the plant.

The causes of the dependency between several events is classified in five categories:

- Initiating event dependencies
- Functional dependency intersystem or intercomponent
- Common component intersystem
- Physical dependencies intersystem or intercomponent
- Human interaction dependencies intersystem or intercomponent

4-35

All of these types of dependencies have been accounted for in this analysis and Table 4.6 describes each category and explains the method used to treat that type of dependency.

1

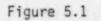
DEPENDENT EVENTS, DESCRIPTION AND METHOD OF TREATMENT IN THIS STUDY

Dependent Event Causal Category Initiating events		Description	Method of Treatment In This Analysis
		Such as Siesmic, fire, flood or etc. initiated either as an external event or in some cases initiated inside the plant.	No detailed assessment of these initiators (mostly referred to as external events) is preformed as part of this study. However, the frequency of Siesmic and fire initiators causing core damage and release of radionuclide has been estimated and is presented in Section 6.0
	Inter- System	If the function of one System is precluded by success or failure of another System.	These dependencies are accounted for during the construction of the event trees.
Functional Dependencies	Inter- Component	The effective functioning of one component is produced due to success or failure of another component. e.g. failure of one of the air blast heat exchangers in the DHRS System precludes the requirement for the other one.	These types of dependencies have been accounted for in the Simplified System fault models developed for each safety function.
Common Compon Intersystem	ent,	The failure of a single component affects two or more safety functions at the same time. e.g. loss of AC power to both SHRS and Annulus Cooling System simultane- ously.	This is accounted for by construction of the plant safety logic model explained 'n Section 5.1.
Physical Dependencies	Inter- System	This happens when failure of one function puts more stress on the operation of another function, mostly in terms of more severe environment. e.g. failure of HVAC will affect the operation of all equipments which require cooler environment to operate.	This type of dependencies were accounted for in the quantification of plant safety logic model. e.g. the numbers used for fans and filters in the vent and clean up system reflect the extreme environmental condition such as temperature, aerosols, and etc.
	Inter- Component	The same as intersystem physical dependencies except it happens between components of the same system. e.g. failure of one of the two parallel pump puts more stress on the second pump.	This is accounted for during the construction of the simplified fault trees as part of a common cause event introduced wherever effects such as this and/or others were judged to exist.
Human Interaction Dependencies	Inter- System	Two or more systems failing to perform as designed due to human error in any stages of the man-machine interface; design, manufacturing, installation, test, maintenance, or operation.	Part of this dependency caused during the emergency operation is accounted for by introducing common cause events in the plant safety logic model wherever human action is required. However the determination of the dependencies between the safety function caused by human interaction during other stages of his involve- ment needs extensive information which is not available at this stage of the project.
	Inter- Component	Failure of two or more components caused by a single human error during any stage of machine interface which fails a system.	This has been accounted for in the simplified system fault trees as part of a common cause event for the human failures committed during design, manufacturing, installation and operation. To estimate the degree of damage done by human errors committed during test and maintenance leading to common cause failures more de- tailed information about the test and maintenance procedures is required.

Section 5.0 ACCIDENT SEQUENCE QUANTIFICATION

This section presents the method and the data utilized to quantify the accident sequences, and a description of the dominant accident sequences for internal (random) initiators.

5.1 PLANT SAFETY LOGIC MODEL


An overall safety logic model was constructed for the purpose of quantifying the accident sequences. The logic of this model involves representation of the event trees as a fault tree by boolean intersections including both failure and success states. This model is being used to quantify the frequency of the system unavailabilities, core disruptive accident, and release frequencies. If desired in the same calculations other intermediate results such as frequencies of the different shutdown heat removal system failure modes can be obtained.

This approach makes it possible to keep track of all the interdependencies due to common component, common numan actions, or etc. which may affect operability of several systems through the same cause. This is evident especially due to support systems such as electric power and ultimate heat sinks.

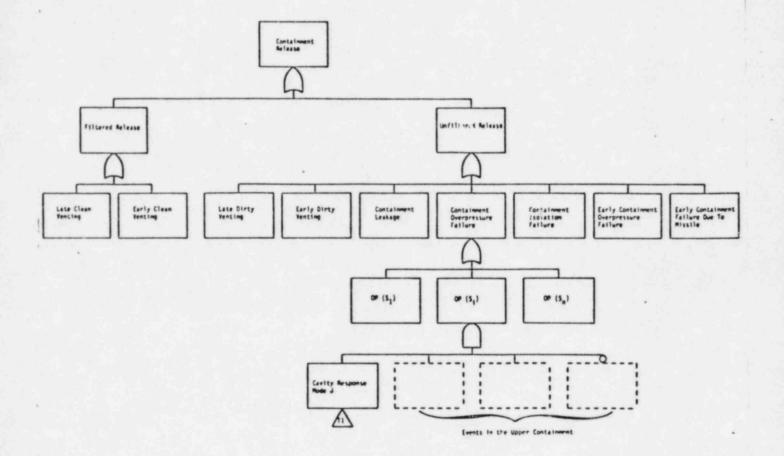
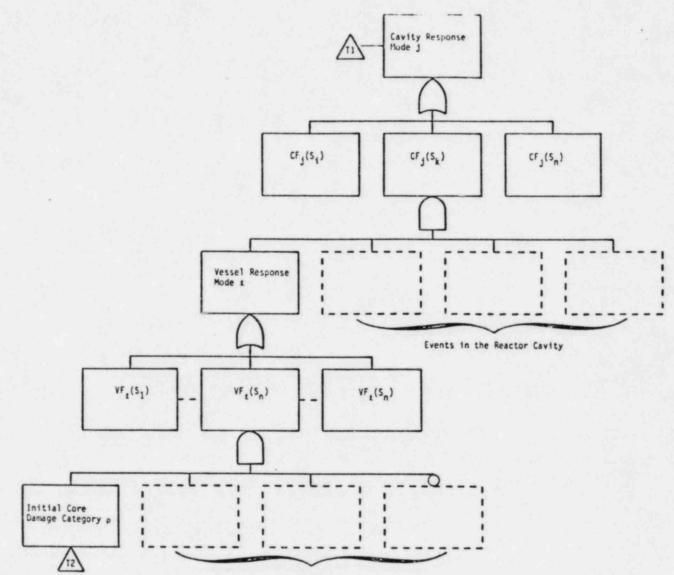

This logic model also provides a workable tool for the analysis of sensitivities of the CDA or release frequencies to may variables, such as reliability of the emergency shutdown system. Section 8.0 discusses the sensitivity of the results to some of the input variables. A listing of this logic model is presented in Appendix A.

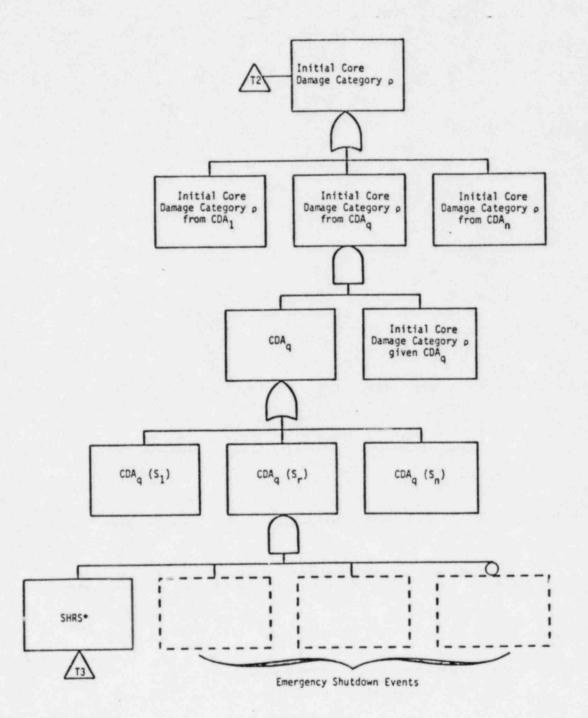
Figure 5.1 shows a simplified structure of the plant safety logic model.

5-1



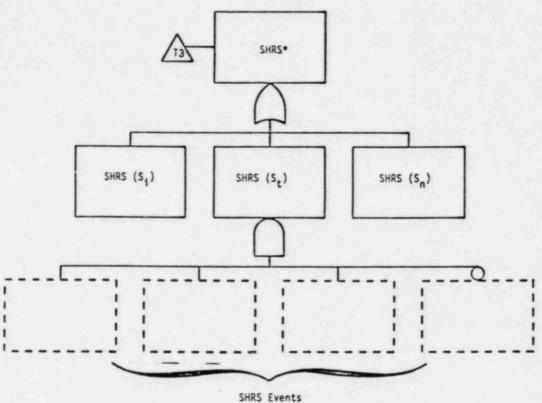
EXAMPLE OF PLANT SAFETY LOGIC MODEL STRUCTURE

Figure 5.1


EXAMPLE OF PLANT SAFETY LOGIC MODEL STRUCTURE (Continued)

Events in the Reactor Vessel

Figure 5.1



* Only for Protected Core Disruptive Accidents

EXAMPLE OF PLANT SAFETY LOGIC MODEL STRUCTURE (Continued)

* Only for Protected Core Disruptive Accidents

5.2 DATA BASE

Two types of input parameter are necessary for the quantification of the accident sequences, 1) the equipment or human failure frequency and 2) the phenomenological uncertainties. Appendix B contains the data used for quantification of these sequences.

5.3 DOMINANT ACCIDENT SEQUENCES

This section describes the frequency of the core disruptive accidents and containment release caused by internal (random) accident initiators and the dominant accident sequences. Thirteen dominant CDA sequences were identified with mean frequencies of greater than 10^{-6} per year.

The two most dominant sequences are:

- A LOHS caused by failure of all three intermediate loop rupture disks, LOHS (RD), and
- A ULOF caused by a spurious pps signal, ULOF (PPS)

These two sequences cause more than 78% of the frequency of CDA by random initiators. The total mean frequency of internally initiated CDA's are 2.0×10^{-4} per year. The frequency of the containment release modes are presented in Table 5.2, the total mean frequency of unfiltered release from internally initiated accident is 2.5×10^{-6} per year.

Ta	61	0	5	1	
Ta	DI	e	3	• 4	

LIST OF DOMINANT CDA SEQUENCES FOR INTERNALLY INITIATED ACCIDENTS

Rank	CDA Sequence	Mean Frequency of CDA Per Year	Percent
1	LOHS (RD) ¹⁾	1.2×10^{-4}	60%
2	ULOF (PPS)	3.6×10^{-5}	18%
3	ULOF (FW)	7.7×10^{-6}	4%
4	ULOF (1_HTS)	7.2×10^{-6}	4%
5	ULOHS (FW)	4.7×10^{-6}	2%
6	LOHS (FW)	4.6×10^{-6}	2%
7	ULOHS (1_HTS)	4.3×10^{-6}	2%
8	ULOF (T/G)	2.8×10^{-6}	1%
9	ULOHS (T/G)	1.7×10^{-6}	<1%
10	LOHS (LOSP)	1.3×10^{-6}	<1%
11	LOHS (3_HTS)	1.3×10^{-6}	<1%
12	LOHS (NSD/DHRS)	1.1×10^{-6}	<1%
13	LOCA (RPB)	1.0×10^{-6}	<1%

1) The characters in the parenthesis are the accident initiators causing the CDA:
RD - Simultaneous rupture of all three intermediate loop tupture disks
PPS - Inadvertent plant protection signal
FW - Malfunctions in the feedwater system
1_HTS - Loss of one heat transport loop
T/G - Turbine/generator trip
LOSP - Loss of off site power
3_HTS - Loss of all three heat transport loops

NSD/DHRS - Normal shutdown due to failures in DHRS, DHRS unavailable

RPB - Rupture of the primary boundary

-	4. 5		-	0
1 3	h	0	5.	1
10	0	E		6
	-			-

CONTAINMENT RELEASE FREQUENCIES FOR INTERNALLY INITIATED ACCIDENTS

Containment Response Mode	Description of Containment Response Mode	Mean Frequency Per Year
LKG	Leakage Accross the Steel Shell	3.4 x 10 ⁻⁷
LCV	Late Clean Vent through the Scrubbers and Filters	1.0 x 10 ⁻⁴
ECV	Early Clean Vent Through the Scrubbers and Filters	1.0 x 10 ⁻⁴
LDV	Late Dirty Vent, Unfiltered Release	1.7 x 10 ⁻⁷
EDV	EDV Early Dirty Vent, Unfiltered Release	
Ci	CI Containment Isolation Failure	
OP	OP Containment Overpressure Failure	
MS Early Containment Failure due to CDA Initiated Missile		1.2 x 10 ⁻⁸
OP Early Containment Overpressure Failure due to CDA Initiated Sodium Fire		2.4 x 10 ⁻⁸
Total	Filtered	2.0 x 10 ⁻⁴
Frequency of Release	Unfiltered	2.5 x 10 ⁻⁶

Section 6.0 EXTERNAL EVENTS

In this section external events which impact the frequency of the core disruptive accident and containment release modes are briefly discussed and their contribution in the frequency of the containment release is estimated.

These events are basically additional accident initiating events, and are treated with the same approach as for internal (random) initiators. However, the effect of these accidents on the plant safety functions are more severe in terms of both additional stress and common cause. Therefore these accidents are analyzed separately and will be integrated in Section 7.0.

6.1 SIESMIC ACCIDENTS

The analysis of siesmic accidents was divided into three sizes of earthquake, Operating Basis Earthquakes (OBE), Safe Shutdown Eathquakes (SSE), and earthquakes greater than SSE (>SSE). Table 6-1 shows the range of magnitutde and frequency of these earthquakes.

First events trees were used to define the sequences leading to CDA and containment release under siesmic load and if the plant response is affected by adding new sequences due to earthquakes. Second the conditional frequency of plant safety function failures and events were estimated. Third using the events trees and conditional frequencies the frequencies of CDA's and containment releases were estimated for OBE, SSE, and greater than SSE accidents.

Table 6.1

.

Categories of Earthquakes and Their Frequencies

Earthquake	Ground Acceleration g	Richter Magnitude	Point Estimate Frequency per Year
Operating Basis Earthquake (OBE)	0.05 g < a < 0.15 g	5 < a < 5.7	1.4×10^{-3}
Safe Shutdown Earthquake (SSE)	0.15 < a < 0.35 g	5.7 < a < 7	1.5×10^{-4}
Greater than Safe Shutdown Earthquake (>SSE)	a > 0.35 g	a > 7	3.4×10^{-5}

The event trees used in this analysis are consistent with the ones previously used except in the beginning of each event tree, the question was asked with regards to the status of the system under consideration after earthquake, e.g. in the cavity event tree the first question is whether the liner has survived the earthquake or is failed under siesmic stress. However, in order to to identify the type of accident initiator which is caused by the earthquake the pre-initiator event tree of Figure 6.1 is defined. The type of accidents are either a reactivity insertion, or a rupture of the Primary Boundary (PB) or combination of both in a core which may or may not already be damaged by the earthquake.

The conditional frequency estimates of Table 6.2 were employed as best estimates to qualify the siesmic sequences defined. These frequencies are used from NUREG/CR-2681 (Ref. 4) and are purely based on engineering judgement. Some of these numbers, however, were changed which reflects our jedgement of these events under siesmic conditions.

Ten CDA sequences with frequencies greater than 10^{-7} were identified for siesmic initiator as shown in Table 6.3. The most dominant sequence is a Transient Overpower (TOP) CDA caused by an earthquake greater than SSE which comprise 52% of the frequency of CDA's caused by earthquakes. Total frequency of siesmically initiated core disruptive accident is 2.5 x 10^{-5} mean frequency per year.

Table 6.4 shows the containment release frequencies due to earthquakes. Total frequency of unfiltered releases from the containment due to earthquake is 1.1×10^{-5} mean per year.

6-3

Figure 6.1

PRE-INITIATOR EVENT TREE (SIESMIC) FOR CRBRP

Earthquake	Reactivity Insertion Due to Fuel Movements Caused by Earthquake	Rupture of the Primary Boundary Caused by Earth- quake (Siesmic Loading)	Core Damage Caused by Earth- quake Under Siesmic Loading		Description	Frequency Mean Per Yea OBE SSE >SSE
EQ	RI	PB	DC	-		
				EQ	No Reactivity Insertion, No Rupture of the Primary Boundary, and No Core Damage	2.8 x 10 ⁻⁴ 1.4 x 10 ⁻⁵
				EQ2	Nc Reactivity Insertion, The Primary Boundary Ruptures, but No Significant Damage	2.8 x 10 ⁻⁷ 6.0 x 10 ⁻⁷
	-			EQ3	Reactivity Insertion, the Primary System Boundary Intact and No Significant Core Damage	1.1 x 10 ⁻³ 1.3 x 10 ⁻⁴ 1.8 x 10 ⁻⁵
			L	EQ4	Reactivity Insertion, the Primary System Boundary Stays Intact, but Significant Damage to the Core Occurs	1.1 x 10 ⁻⁶ 5.3 x 10 ⁻⁶ 2.0 x 10 ⁻⁶
				EQ5	Reactivity Insertion, the Primary Boundary Ruptures, but No Signi- ficant Core Damage Occurs as a Result of EQ	1.1 x 10 ⁻⁶ 5.3 x 10 ⁻⁶ 2.0 x 10 ⁻⁶
				EQ6		1.1 x 10 ⁻⁷ 1.1 x 10 ⁻⁷ 1.4 x 10 ⁻⁶

Į.

Table 6.2

CONDITIONAL FREQUENCIES EVENTS UNDER THREE SIZES OF EARTHQUAKES

			BFE
Function	OBE	SSE	DrE
Containment Rupture	¢		10-4
CIS	2 x 10 ⁻³	2 x 10 ⁻³	2×10^{-3}
ACS	3 × 10 ⁻⁴	10-2	10-1
VPS	3 × 10 ⁻⁴	10-2	10-1
cus	8 x 10 ⁻³	10-2	10 ⁻¹
	10-2	1	1
Loss of Offsite Power	10-4	10-2	10 ⁻¹
Failure of all 3 Diesels	10-6	10-2	10-1
Total Loss of AC			
INO PB	3.2 × 10 ⁻⁶	4.0 x 10 ⁻⁵	9.7 x 10 ⁻⁴
PPS INO PB	2.4 x 10 ⁻⁷	1.3 × 10 ⁻⁵	9.7 x 10 ⁻⁴
CONN (No PB	2.3 x 10 ⁻⁴	2.6 x 10 ⁻³	1.7 x 10 ⁻²
SCRAM PB	3.3 x 10 ⁻⁴	3.3 × 10 ⁻³	1.9 x 10 ⁻²
No PB	8.7 × 10 ⁻⁴	7.5 × 10 ⁻⁴	3.2 × 10-4
PT No PB	5.8 x 10 ⁻⁴	6.5 x 10 ⁻⁴	2.1 × 10-4
NO PB	1.2 × 10 ⁻³	2.6 × 10 ⁻²	4.3 x 10
SHRS PB	6.0 x 10 ⁻²	2.8 × 10 ⁻¹	9.0 x 10
Reactivity Insertion Caused by CQ	8.0 × 10 ⁻¹	9.0 × 10 ⁻¹	1.0
Rupture of the PB Caused by CQ	1.0 × 10 ⁻¹	4.0 × 10 ⁻¹	8.0 × 10"
Damage to the Core Caused by CQ	1.0 x 10 ⁻¹	2.0 × 10 ⁻¹	4.0 × 10
Damage to the cone caused by of			

Table 6.3

LIST OF DOMINANT CDA SEQUENCES FOR SIESMICALLY INITIATED ACCIDENTS

Rank	Sequence	Mean Frequency Per Year	Percent Contribution
1	TOP (>SSE) 1)	1.2 × 10 ⁻⁵	52
2	TOP (SSE)	3.5×10^{-6}	14
3	LOCA (>SSE)	3.1×10^{-6}	12
4	LOCA (SSE)	1.7 x 10 ⁻⁶	7
5	TOP (OBE)	1.3 × 10 ⁻⁶	5
6	UTOP & ULOF (SSE)	5.1 × 10 ⁻⁷	2
7	LOHS (SSE)	3.6 x 10-7	1
8	UTOP & ULOF (SSE)	3.5 x 10 ⁻⁷	1
9	LOHS (OBE)	3.1 x 10 ⁻⁷	1
10	UTOP & ULOF (OBE)	2.5×10^{-7}	1

1) The characters represent the size of earthquake which causes the CDA:

- OBE Operating Basis Earthquake
- SSE Safe Shutdown Earthquake
- >SSE Greater than Safe Shutdown Earthquake

-			~	
1 3 1	n ()	0	6	14
Tal		E 1	Ο.	-
		-	~ ~	

CONTAINMENT RELEASE FREQUENCIES INITIATED BY THREE MAGNITUDES OF EARTHQUAKES

		Mean Frequency Per Year (Percent of Total Release)					
Cont. Res. Mode	Description	OBE	SSE	>SSE	All EQ's		
LCV	Late Clean Vent (>24h)	1.5 x 10 ⁻⁶	7.8 x 10 ⁻⁶	1.5 x 10 ⁻⁵	2.4×10^{-5}		
ECV	Early Clean Vent (<24h)	1.5 x 10 ⁻⁶	7.8 x 10 ⁻⁶	1.5 x 10 ⁻⁵	2.4×10^{-5}		
LDV	Late Dirty Vent	1.2×10^{-8}	6.2 x 10 ⁻⁸	1.2×10^{-6}	1.3×10^{-6}		
EDV	Early Dirty Vent	1.2×10^{-8}	6.2×10^{-8}	1.2 x 10 ⁻⁶	1.3×10^{-6}		
LKG	Leakge Across the Shell	2.9×10^{-7}	1.5×10^{-6}	3.1 x 10 ⁻⁶	4.9×10^{-6}		
C1	Containment Isolation	6.0×10^{-9}	3.2 x 10 ⁻⁸	6.6×10^{-8}	1.0×10^{-7}		
OP	Containment OP Failure	1.5×10^{-9}	2.3 x 10 ⁻⁷	3.1×10^{-6}	3.3 x 10 ⁻⁶		
EOP	Early Cont. OP (Na Fire)	9.6 x 10^{-11}	3.3 x 10 ⁻¹⁰	3.5×10^{-9}	3.9×10^{-9}		
MIS	Early Cont. Fail (Missile)	4.8 x 10 ⁻¹¹	1.7×10^{-10}	1.8×10^{-9}	2.0×10^{-9}		
	Filtered	3.0×10^{-6}	1.6 x 10 ⁻⁵	3.0×10^{-5}	4.9 x 10 ⁻⁵		
	Unfiltered	3.2 x 10 ⁻⁷	1.9 x 10 ⁻⁶	8.7 x 10 ⁻⁶	1.1 x 10 ⁻⁵		

6-7

6.2 FIRE ACCIDENTS

The evaluation of containment releases due to fires is estimated in the following steps:

- Identification of critical areas where fire can be initiated leading to simulaneous failure of one or more safety functions
- Estimate of the frequency of such fires and likelihood of growth such that it fails one or more safety functions
- Estimate of the frequency of core disruption given fire initiated in a critical area
- Estimate of the frequency of containment release given fire in a critical are which leads to CDA

Three types of fire may result in damage in CRBRP, cable or oil fire, sodium fire, or fires due to sodium-water interaction.

The cable or oil fires may happen in five critical ares which will affect one or more safety functions. These areas are:

- Fire in the cable spreading rooms
- Cable or oil fire in the intermediate bay adjacent to cable spreading room
- Diesel generator cells
- AC power switchgear cells located in the diesel generator building
- Fire in the DC switchgear cells

6-8

Sodium fires can be started in three areas:

- Sodium fire in the head access area
- Sodium fire in the primary heat transport cells
- Sodium fire in the intermediate bay

The fire due to sodium-water interaction may take place in the steam generator cells. Estimates of the frequency of the fire initiation in these nine areas are shown in Table 6.5.

The fire in the CSR propagates to the other CSR and fails both cable spreading rooms with probability of 1.5 x 10^{-4} [Ref. 8]. Failure of both CSR's causes loss of instrumentation and control and all means of decay heat removal except by natural circulation in the primary and intermediate loops and forced circulation in the steam/water loop with turbine driven auxiliary feedwater pump. The mean frequency of turbine driven AFW pump is estimated to be 5 x 10^{-2} per demand. Therefore the frequency of total loss of shutdown heat removal system and therefore a LOHS core disruptive accident due to fire in CSR will be 3 x 10^{-8} . Given such a CDA it is conservatively assumed that since the instrumentation and control is lost and all the containment systems (except for containment isolation) rely on operation intervention therefore the containment will fail due to overpressure under this scenario.

Fire in the intermediate bay adjacent to cable spreading room will have similiar frequency and consequences as a fire in the one of the cable spreading rooms.

A fire in one of the diesel generator cells has to propagate to other two cells to fail all three emergency diesel generators. It can be shown that failure of all three diesel generators in such a mode is negligible to the other modes of failure of three diesels already considered in Section 6.0. A fire in one of the AC switchgear cells needs to propagate to the other two switchgear ceels to cause significant consequences. This will happen with the frequency of 5 x 10^{-6} [Ref. 8]. This causes total loss of AC and if the frequency of turbine driven AFW pump is assumed to be 5 x 10^{-2} then the frequency of failure of SHRS and therefore LOHS core disruptive accident will be 10^{-9} per year. Due to loss of AC the containment will fail due to overpressure.

-			-	100
Ta	b	e	6.	5

FREQUENCY ESTIMATE OF FIRE INITIATION IN CRITICAL AREAS OF CRBRP

Fire Location	Mean Frequency Per Year
Fire in Cable Spreading Room	4×10^{-3}
Fire in Intermediate Bay Adjacent to Cable Spreading Room	4×10^{-3}
Fire in Diesel Generator Cell	7×10^{-3}
Fire in AC Switchgear Cell	4×10^{-3}
Fire in DC Switchgear Cell	4×10^{-3}
Sodium Fire in the Head Access Area	10-4
Sodium Fire in the PHTS	10 ⁻⁵
Sodium Fire in the IMB	10 ⁻⁷
Large Na-Water Reaction in the Steam Generator Cell	8 x 10 ⁻⁷

Loss of all DC requires initiation of the fire in one DC switchgear cell and propagation to the other two cells. It is estimated that this will occur with frequency of 5 x 10^{-6} [Ref. 8] per deand. Once all DC is lost then turbine driven AFW pump will be the only mean of decay heat removal. Therefore the estimated mean frequency of CDA for this scenario is estimated to be 10^{-9} per year. it is assumed at this point that loss of DC disables the control and instrumentation and therefore activation of containment systems is not possible and therefore the containment fails due to overpressure.

Sodium fire may be initiated in one primary heat transport cell and propagated into other two cells. This event which incapacitates the PHTS totally happens with the mean conditional frequency of 10^{-4} [Ref. 8]. This scenario will fail the flow of natural circulation and DHRS because of failure of all ponys. Therefore a LOHS will occur with frequency of 10^{-9} per year.

This scenario will affect the containment performance due to generation of a great deal of sodium aerosols which increases the common mode failure of the containment systems. Considering this common mode failure the containment will fail with mean frequency of 5×10^{-2} per demand or 5×10^{-11} per year.

A sodium fire in an IMB cell requires rupture of a intermediate sodium pipe and propagation of the fire to the upper levels of the IMB which may cause loss of all safety related control and power cable resulting in the ability to remove decay heat. This scenario occurrs with a mean frequency of 10^{-10} per year causing a LOHS accident. For the same reason as previous scenario the containment will fail with condition frequency of 5 x 10^{-2} /d or absolute mean frequencyof 5 x 10^{-12} per year due to overpressure failure.

A sodium fire in the Head Access Area (HAA) may spread into the CDM area and result in a common cause failure of all CDM's which precludes control rod insertion before operators action can be taken to scram the reactor. The conditional frequency of such scenario is estimated to be 10^{-3} per demand and therefore a fir in the HAA can result in a ULOF accident with the mean

frequency of 10^{-7} per year. Considering the common cause due to higher concentration of aerosols the containment will fail with a mean frequency of 5 x 10^{-8} per year.

There are two dominant initiators for a large sodium-water reaction. First failure of the steam generator water header. The frequency of such initiator is similar to that of a pressure vessel and is therefore estimated to be 10^{-7} per year. This initiator even though may cause severe consequences, however, because of very low likelihood of initiation does not contribute to the frequency of release. The second initiator is a failure of steam generator tubes (beyond design basis accident of 7 tubes). Failure of the Sodium Water Reactor Pressure Relief System (SWRPRS), with conditional frequency of 8×10^{-6} per demand [Ref. 8] and common cause failure of all three HTS loop (5 x 10^{-1} per demand) and failure of DHRS due to contamination of air blast heat exchangers will result in a LOHS accident with mean frequency of 4×10^{-7} per year. Similar to other sodium fire accidents the containment failure will occur with conditional frequency of 5 x 10^{-2} /d or absolute mean frequency of 2 x 10^{-8} per year.

This concludes that the most dominant fire related scenario in terms of core disruption is a sodium water reaction due to steam generator tube rupture $(4 \times 10^{-7} \text{ per year})$. but the most dominant fire related sequence to cause unfiltered release is the fire in the CSR or in the IMB adjacent to CSR failing instrumentation and control for all the vital safety systems $(6.0 \times 10^{-8} \text{ per year})$. Nevertheless, no fire related accident is identified which significantly affects the frequency of CDA's or unfiltered release from the containment as shown in Table 6.6.

Table 6.6

FREQUENCIES OF CDA AND CONTAINMENT UNFILTERED RELEASE FOR INTERNALLY AND EXTERNALLY INITIATED ACCIDENT

		Mean C	onditional Frequ	ency		Mean Freq. o
Accident Initiator (I)	Mean Freq. of Initiator Per Year (I)	CDA Given I (CDA/I)	Unfiltered Release Given CDA	Unfiltered Release Given Initiator	Mean Freq. of CDA Per Year (I.CDA)	Unfiltered Release Per Year (I.CDA.UFR)
Random Initiators	23.1	8.7 x 10 ⁻⁶	1.2×10^{-2}	1.1×10^{-7}	2.0×10^{-4} (89%)	2.5×10^{-6}
Siesmic, Operating Basis Earthquake	1.4 x 10 ⁻³	1.4×10^{-3}	1.6 × 10 ⁻¹	2.3×10^{-4}	2.0 x 10 ⁻⁶ (1%)	3.2 × 10 ⁻⁷
Siesmic, Safe Shutdown Earthquake	1.5×10^{-4}	4.0×10^{-2}	3.2×10^{-1}	1.3×10^{-2}	6.0×10^{-6} (1%)	1.9 x 10 ⁻⁶
Siesmic, Greater than SSE	3.4 x 10 ⁻⁵	5.0 x 10 ⁻¹	5.1 x 10 ⁻¹	2.6×10^{-1}	1.7 x 10 ⁻⁵	8.7 x 10 ⁻⁶
Fire Initiators	2.2×10^{-2}	2.6×10^{-5}	1.6 × 10 ⁻¹	4.0×10^{-6}	5.6 x 10^{-7}	8.7 x 10 ⁻⁸
Sum	23.1	1.0 × 10 ⁻⁵	6.1 x 10 ⁻²	6.1 × 10 ⁻⁷	2.3×10^{-4}	1.4×10^{-5}

6.3 OTHER EXTERNAL INITIATORS

A discussion of the several other external events is presented in this section.

Floods (internal or external)

The siesmic Category 1 systems and equipment which are located in the intermediate bay of the steam generator building, reactor service building, diesel generator building and control building require flood protection. These systems and components provide most the unfractions necessary for the prevention of core damage.

The PSAR examines the probable maximum external flood potential from an Operating basis Earthquake (OBE) causing postulated failure of Norris Dam. This condition will produce the maximum plant flood level as stipulated by the regulatory guide 1.59. It was calculated that maximum wave forces exerted on the plant structures are relatively insignificant and will not cause damage to the plant structures.

In order for internal floods to fail one or several safety functions they dould have to be caused by rupture of a large tank or a large pipe. The mean frequency of a massive rupture of a large tank or large pipe is about 10^{-7} per year. If the probability of failure of one or more safety functions given the flood and the probability of CDA given failure of those functions are combined then the frequency of these scenarios will be insignificant to the sequences considered.

Tornados

Several studies were performed in recent years which estimate the frequency of such events. Reference 9 estimated that the annual mean probability of a tornado with velocity of 360 mph or greater to be 2.8 x 10^{-5} . If this frequency is combined by failure of the structure and damage to the safety related equipment and CDA given that failures, the frequency of CDA's caused by this initiators will become less significant than the sequences already considered.

Reference 10 estimates that the annual probability that any tornado generated missile events hits a safety related structure at NEC region 1 is 7×10^{-5} , the probability that there is a hit sufficient to cause backface scabbing if all safety related stuructres has 6 inch walls is 3×10^{-5} and if they have 18 inch walls is 2×10^{-6} . Even though the results are for a particular sample plant configuration, however, these estimates show a tornado missile to fail a safety structure with a frequency of 2×10^{-9} per year or less. This scenario therefore will not significantly impact the frequency of CDA or containment release.

6.4 CONCLUSION

The analysis of the external events show that siesmic events are the major contributor to the frequency of containment release. The fires contribute less than 1% to the frequency of containment failure and other external events have no signifiant impact of the frequency of core disruptive accidents or containment release, as shown in Table 7-6.

Section 7 RESULTS AND CONCLUSIONS

This section presents the results of this study and discusses these findings. The results of this analysis are being presented in the following ways:

- Dominant Core Disruptive Accident Sequences
- Frequency of Different Core Disruptive Accidents
- Dominant Containment Accident Sequences for each Release Mode

The first results of the study on the dominant CDA sequences is shown in Table 7.1. The expression in the parenthesis represents the initiating accident of each particular CDA.

Eighteen dominant CDA sequences with frequencies higher than 10⁻⁶ per year are The most dominant sequences is a Loss of Heat Sink (LOHS) identified. accident caused by common cause failure of all three rupture disks in the intermediate loops and dumping of the intermediate sodium. This will leave the DHRS as the only mean of decay heat removal and a LOHS occurs upon failure of DHRS or primary ponys. This sequence constitutes 52% of the frequency of core disruptive accidents. The second most dominant sequence is an Unprotected Loss of Flow (ULOF) accident caused by a spurious Plant Protection Signal (PPS). A spurious PPS signal is generated (with a mean frequency of 8.8 per year), the primary sodium pumps trip to ponys but both primary and secondary shutdown systems fail to stop the reaction. This sequence is 16% of frequency of all CDA's. A Transient Overpower (TOP) core disruptive accident caused by an earthquake greater than Safe Shutdown Earthquake (>SSE) is the third most dominant sequence. This sequence is 6% of the frequency of all CDA's.

Table 7.1

Rank	CDA Sequence	Mean Frequency of CDA Per Year	Percent
1	LOHS (RD) ¹⁾	1.2 x 10 ⁻⁴	52%
2	ULOF (PPS)	3.6 x 10 ⁻⁵	16%
3	TOP (>SSE)	1.3 x 10 ⁻⁵	6%
4	ULOF (FW)	7.7 x 10 ⁻⁶	3%
5	ULOF (1-HTS)	7.2 x 10 ⁻⁶	3%
6	ULOHS (FW)	4.7 x 10 ⁻⁶	2%
7	LOHS (FW)	4.6 x 10 ⁻⁶	2%
8	ULOHS (1-HTS)	4.3 x 10 ⁻⁶	2%
9	TOP (SSE)	3.5 x 10 ⁻⁶	2%
10	LOCA (>SSE)	3.1 x 10 ⁻⁶	1%
11	ULOF (T/G)	2.8 x 10 ⁻⁶	12
12	ULOHS (T/G)	1.7 x 10 ⁻⁶	<1%
13	LOCA (SSE)	1.7 x 10 ⁻⁶	<1%
14	LOHS (LOSP)	1.3 × 10 ⁻⁶	<1%
15	LOHS (3_HTS)	1.3 x 10-6	<1%
16	TOP (OBE)	1.3 x 10 ⁻⁶	<1%
17	LOHS (NSD/DHRS)	1.1 x 10 ⁻⁶	<1%
18	LOCA (RPB)	1.0 x 10 ⁻⁶	<1%

LIST OF DOMINANT CDA SEQUEN	LIST	DA SEQUENCES
-----------------------------	------	--------------

1) Refer to Tables 5.3 and 6.3

The frequencies of different types of core disruptive accidents are shown in Table 7.2. For comparison the results of three other previous studies are included. Even though a great deal of differences exists between the assumptions, limitations and objectives of each one of these studies, nevertheless the CDA frequencies seem to be compatible within the uncertainties of each study. However, if the frequency of containment failure is compared (except for Sandia Study which does nore acover the analysis of the containment) the result varies within one order of magnitude from CRBRP-1 study which estimates 2.6 x 10^{-6} mean frequency per year to the GE study estimate of 2.6 x 10^{-5} mean frequency per year.

Table 7.3 shows the dominant containment release sequence for the nine release modes defined in Section 4.3.6. The release modes decline in their radiological consequences from left to right with R1 (missile failure) or R2 (early overpressure failure due to sodium spray fire) being the highest consequence release modes and two filtered release modes R8 (early filtered release before 24 hours) and R9 (late filtered release after 24 hours) being the least, especially benign release mode of R9.

Each containment sequence in Table 7.3 shows the type of core disruptive accident and the mode of containment response.

Table 7.2

	Estimate	d CDA Recurrents	requency Per Yea	r**
Accident Category	GEFR [Ref. 5] (Mean)	CRBRP [Ref. 2] (Mean)	Sandia [Ref. 4] (Mean)	SAI [This Study] (Mean)
ULOF	1.2 x 10 ⁻⁶	3.7 x 10 ⁻⁵	4.3 x 10 ⁻⁶	5.5 x 10 ⁻⁵
UTOP	1.9 x 10 ⁻⁵	8.5 x 10 ⁻⁸	3.3 x 10 ⁻⁶	2.1 x 10 ⁻⁶
ULOF & UTOP	6.0 x 10 ⁻⁶	1.4 x 10 ⁻⁶	6.3 x 10 ⁻⁶	3.3 x 10 ⁻⁶
ULOHS	2.5 x 10 ⁻⁵	1.1 x 10 ⁻⁵	7.4 x 10 ⁻⁷	1.1 x 10 ⁻⁵
Total Unprotected	5.1 x 10 ⁻⁵	4.9 x 10 ⁻⁵	1.5 x 10 ⁻⁵	7.1 x 10 ⁻⁵
LOHS		9.2 x 10 ^{-5*}	2.1 x 10 ^{-4*}	1.3 x 10 ⁻⁴
LOCA		6.9 x 10 ⁻⁷	2.3 x 10 ⁻⁵	5.9 x 10 ⁻⁶
TOP				1.8 x 10 ⁻⁵
Total Protected	5.1 x 10 ⁻⁶	9.3 x 10 ⁻⁵	2.5 x 10 ⁻⁴	1.6 x 10 ⁻⁴
TOTAL	5.6 x 10 ^{-5†}	1.4 × 10 ⁻⁴	2.7 x 10 ⁻⁴	2.3 x 10 ⁻⁴

COMPARISON OF ACCIDENT CATEGORY FREQUENCY ESTIMATES FROM FOUR DIFFERENT ACCIDENT ANALYSIS STUDIES FOR CRBRP

* This also includes TOP Frequency

- + The main difference of GEFR Study is due to lower SHRS Failure probability used in GEFT Study
- ** The initiators used in these studies resulted in the following number of transients per year: GEFR = 16 mean frequency per year, Sandia = 17 mean frequency per year, CRBRP = 22 mean frequency per year, and SAI = 23 mean frequency per year

Table 7.3

DOMINANT ACCIDENT SEQUENCES FOR EACH RELEASE MODE

R1	R2	R3	R4	R5	R6	R7	R8	R9
CMIS	(EUP)	(C1)	(EDV)	(OP)	(LDY)	(LKG)	(ECY)	(LCV)
LOHS-MIS	LOHS-EOP	LOH S-C1	TOP-EDV	TOP-OP	TOP-LDV	TOP-LKG	LOHS-ECV	LOHS-LCV
7.3 x 11 -9	1.5 x 10 ⁻⁸	3.1 x 10 ⁻⁷	9.4 x 10-7	2.5 x 10 ⁻⁶	9.4 x 10-7	3.0 x 10 ⁻⁶	6.4 x 10 ⁻⁵	6.4 x 10 ⁻⁵
ULOF-MIS	ULOF-EOP	ULOF-C1	LOCA-EDV	LOH S-OP	LOCA-LDV	LOCA-LKG	ULOF-ECV	ULOF-LCY
2.9 x 10 ⁻⁹	5.9 x 10 ⁻⁹	1.2 x 10 ⁻⁷	2.4 x 10-7	8.4 x 10-7	2.4 x 10-7	9.1 x 10 ⁻⁷	2.7 x 10 ⁻⁵	2.7 x 10-5
TUP-415 1.5 x 10 ⁻⁹	TOP-EOP 2.9 x 10 ⁻⁹	TOP-C1 7.7 x 10 ⁻⁸	LOH S-EDV 1.1 x 10-7	LOCA-OP 6.5 x 10 ⁻⁷	LOHS-LOV 1.1 x 10-7	LOHS-LKG 2.1 x 10-7		
	ULOHS-EOP 1.3 x 10 ⁻⁹			ULOF-OP 3.0 x 10-7				
1.4 x 10 ⁻⁸	2.8 x 10 ⁻⁸	6.1 x 10 ⁻⁷	1.5 x 10 ⁻⁶	4.6 x 10 ⁻⁶	5.2 x 10 ⁻⁶	5.2 x 10 ⁻⁶	1.2 x 10 ⁻⁴	1.2 x 10-4

Section 8 SENSITIVITY ANALYSIS AND UNCERTAINTY

This section discusses the sensitivity analysis made and assesses the uncertainty of the results due to uncertainty in the variable of the sensitivity analysis cases. However, this section will not attempt to address all the sensitivities which may impact the frequency of the core disruption and containment release and it is believed that more cases should be investigated.

This study investigates the sensitivity of the results to three parameters or assumptions in the study.

<u>Case 1</u>: Sensitivity of the CDA and Release Mode Frequencies to Frequency of Failure of SCRAM System.

The sensitivity of the results to the frequency of SCRAM failure was assessed by reducing its failure probability from 2.6 x 10^{-6} mean per demand to 10^{-7} mean per demand, this is the failure frequency used for SNR-300, LMFBR plant in West Germany [Refs. 10, 12] which has relatively similar design [Ref. 1].

The result in Table 8.1 shows that the frequency of unprotected CDA's is reduced by more than a factor of 2 and the total frequency of core disruption is reduced by less than 20%. The reduction in frequency of unfiltered releases is about 7%. The reason for small sensitivity of the containment release frequencies to the SCRAM system failure probability is that they are dominated by siesmic accidents which is insensitive to this kind of variations in SCRAM system failure probability. Table 8.2 shows the sensitivity of the CDA's and release frequencies caused only by internal events to the SCRAM failure probability.

Another observation is that by reducing the SCRAM failure probability most of the reduction will be in the high consequence release modes R1 and R2 with each reduced by a factor of 2. Release modes R3 and R5 are reduced by 16% and 15% respectively.

8-1

Case 2: Sensitivity of the CDA and Release Mode Frequencies to the Frequency Failure of DHRS

In this case the sensitivity of the results is investigated with respect to a more redundant DHRS. It was assumed that the DHRS achieves redundancy with existing configuration, i.e., no equipment is added and the configuration is retained but the capacity of the components are increased as necessary to improve the redundancy.

The results in Table 8.1 show that the frequency of protected CDA's are reduced by about a factor of 2. The total frequency of core disruption is reduced by 35% by improving the DHRS redundancy. The frequency of unfiltered release from the containment is reduced by 10%. The containment release modes which are affected the most are release modes R3 and R5 which are reduced 30% and 17% respectively.

Case 3: Sensitivity of the CDA and Release Mode Frequencies to CDA-Initial Core Damage Matrix

This case investigates that how much the results are sensitive to the CDA-ICD matrix. This matrix defines the likelihood that each core disruptive accident results in a certain initial energetics. To obtain the sensitivity of the results to this matrix a new matrix was defined which shifts the core disruptive accident towards higher energetics. For example, if the case case assumes that the likelihood of a very large energy core disruption (which may cause generation of a missile or sodium spray fire early in the accident) given a ULOF accident is about 1% and 99% of the energy is either benign or moderate. The new matrix was defined with great conservatism to provide an upper bound for the frequency of CDA and containment release.

The results in Table 8.1 show that the frequency of unfiltered release from the containment increases by 12%. However, the largest increase is in high consequence modes R1 and R2 which increase by a factor of 2. Release mode R5 is also increased by close to 25%. It should be recognized that even through the frequency of containment failure is not significantly affected, the risk may be affected since the frequency increase mostly happens in high consequence modes.

At the end it is possible to conclude that the results of this analysis as shown here are within a factor of 2 or less sensitive to the uncertainties in failure probability of the SCRAM or DHRS systems and the uncertainty in the CDA-ICD matrix.

Ta	Ы	e	8	. 1	L

RESULTS OF SENSITIVITY ANALYSIS OF THE CDA AND CONTAINMENT RELEASE FREQUENCIES

	CDA Mean	Frequency	Per Year	Containment Release, Mean Frequency Per Year											
Case Study	Pro- tected	Unpro- tected	Total	R1 (MIS)	R2 (E_OP)	R3 (CI)	R4 (EDV)	RS (OP)	R6 (LDV)	R7 (LKG)	R8 (ECV)	R9 (LCV)	Unfiltered Release Mean Freq Per Year		
Baseline	1.6x10-4	7.1×10 ⁻⁵	2.3x10 ⁻⁴	1.4x10 ⁻⁸	2.8x10 ⁻⁸	6.1x10 ⁻⁷	1.5x10-6	4.6x10 ⁻⁶	1.5×10 ⁻⁶	5.2×10-6	1.2×10 ⁻⁴	1.2x10 ⁻⁴	1.3×10 ⁻⁵		
Sensitivity Case I	1.6×10 ⁻⁴		1.9x10 ⁻⁴	6.5x10-9	1.3×10 ⁻⁸	5.1x10 ⁻⁷	1.4x10 ⁻⁶	3.9x10 ⁻⁶	1.4x10 ⁻⁶	5.0×10 ⁻⁶	1.1×10 ⁻⁴	1.1x10 ⁻⁴	1.2×10 ⁻⁵		
(SCRAM) Sensitivity Case II	8.3×10-5	7.1x10-5	1.5x10 ⁻⁴	1.4x10-8	2.7x10-8	4.3x10-7	1.4x10 ⁻⁶	3.8×10 ⁻⁶	1.4×10-6	5.0x10-6	8.8×10 ⁻⁵	8.8x10 ⁻⁵	1.2×10 ⁻⁵		
(MIDC)	1.6×10 ⁻⁴	7.1x10 ⁻⁵	2.3x10 ⁻⁴	2.8×10 ⁻⁸	5.6×10 ⁻⁸	6.1x10 ⁻⁷	1.6x10 ⁻⁶	5.7x10 ⁻⁶	1.6x10 ⁻⁶	5.5x10 ⁻⁶	1.2x10-4	1.2×10 ⁻⁴	1.5×10 ⁻⁵		

Table 8.2

1.16

4

RESULTS OF SENSITIVITY ANALYSIS OF THE CDA AND CONTAINMENT RELEASE FREQUENCIES FOR INTERNALLY INITIATED ACCIDENTS

	CDA Mean	Frequency	Per Year	Containment Release, Mean Frequency Per Year									
Case Study	Pro- tected	Unpro- tected	Total	R1 (MIS)	R2 (E_OP)	R3 (C1)	R4 (EDV)	R5 (OP)	R6 (LDV)	R7 (LKG)	R8 (ECV)	R9 (LCV)	Unfiltered Release Mean Freq. Per Year
Baseline	1.3×10 ⁻⁴	7.0x10 ⁻⁵	2.0x10 ⁻⁴	1.2x10-8	2.4x10 ⁻⁸	5.1x10-7	1.7x10 ⁻⁷	1.2×10 ⁻⁶	1.7x10-7	3.4x10 ⁻⁷	1.0x10 ⁻⁴	1.0x10 ⁻⁴	2.5x10-6
Sensitivity Case I (SCRAM)	1.3x10_4	3.0x10 ⁻⁵	1.6x10 ⁻⁴	4.5x10 ⁻⁹	9.0x10 ⁻⁹	4.1x10 ⁻⁷	7.4x10 ⁻⁸	5.2x10-7	7.4x10 ⁻⁸	1-4x10 ⁻⁷	8.1x10 ⁻⁵	8.1x10 ⁻⁵	1.2×10 ⁻⁶
Sensitivity Case II (DHRS)	8.3×10 ⁻⁵	7.0x10 ⁻⁵	1.5x10 ⁻⁴	1.2x10 ⁻⁸	2.3x10 ⁻⁸	3.3x10 ⁻⁷	5.5x10 ⁻⁸	3.9x10 ⁻⁷	5.5x10 ⁻⁸	1.1x10 ⁻⁷	6.4x10 ⁻⁵	6.4×10 ⁻⁵	9.7x10-7
Sensitivity Case III (CDA_CD_Matrix)	1.3×10 ⁻⁴	7.0x10 ⁻⁵	2.0x10 ⁻⁴	2.6x10 ⁻⁸	5.2x10 ⁻⁸	5.1x10 ⁻⁷	3.2x10 ⁻⁷	3.2x10 ⁻⁷	3.2×10 ⁻⁷	6.3x10 ⁻⁷	9.9x10 ⁻⁵	9.9x10 ⁻⁵	4.2x10-5

REFERENCES

- 1. CRBRP PSAR, "CRBRP Preliminary Safety Analysis Report", April 1975
- CRBRP-1,, "CRBRP Safety Study An Assessment of Accident Risk from CRBRP, March 1977.
- NUREG/CR-1507, SAND80-1267, "LMBFR Accident Delineation Study Phase I", November 1980.
- NUREG/CR-2681, SAND82-0720, "Estimated Recurrence Frequencies for Initiating Accident Categories Associated with the Clinch River Breeder Reactor Plant", April 1982.
- 5. CEFR-13023, "Risk Analysis Methods Development", April 1980.
- 6. SAND81-0260.
- NUREG/CR-0427, "Accident Progression for a Loss of Heat Sink with SCRAM in a LMFBR", R.A. Bari, H. Ludewig, W.T. Pratt and Y.H. Sun, October 1978.
- SAI-035-76-PA, "Evaluation of the Risk Due to Fires at CRBRP", January 1977.
- 9 "Tornado Risk Evaluation Using wind Speed Profiles", R.G. Garson, J. Morla-Catalan, and C. Allin Cornel, Journal of the Structural Division, ASCE, Vol. 101, September 1975 SAI-320-82-PA.
- "Tornado Missile Simulation and Risk Analysis", L.A. Twisdale, W.L. Dunn, and J. Cho, Meeting on Probabilistic Analysis of Nuclear Safety, ANS, Newport Beach, May 1978.
- "Conditional Risk Assessment of SNR-300 LMFBR Plant", E.T. Rumble, M. Schikkor, B. Najafi, August 1982.
- GRA-A-700 "Risikoorientierte Analyse ZOM SNR-300, Berlicht Der GRS" April 1982
- EPRI NP-217, "User's Guide for WAM-BAM Computer Code, "F.L. Leverenz, H. Kirch, January 1975.
- NUREG/CR-0224 Multiphase Transients with Cooland and Core Materials in LMFBR Core Disruptive Accidents Energetics Evaluations," T.G. Theofanous, et. al., July 1978.
- 15. "CRBR CDA Energetics," T.G. Theofanous and C.R. Bell, to be publichsed February 1983.

Appendix A LISTING OF THE SAFETY LOGIC MODEL

A listing of the plant Safety Logic model is presented in this Appendix. The listing follows the format of the WAM_Series fault tree codes [Ref. 13] which were used to quuantify the model.

CHRRP ACCINENT ANALYS IS

ų

2

.

PANE

68 100 0C

INPUT FAULT TRFE DESCRIPTION

(1) CATE NUWRER (2) CATE NAME (3) CATE TYPE (3) YUWRER OF GATES TYPUT (5) NUWRER OF GATES TYPUT

			Carlos and and a	ALL STATISTICS	A season in season in								UEI		in Lund	C-UNITAULUS	WILLNOU	CONTINUES	- ETU			· · · · · · · · · · · · · · · · · · ·		·					-										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
(1.1)		E-DB		111.									CONTINUE		241			157	111			The second se		181 1																
((1))		5		**					and and a	NUPLET N	1144	IIAA	036	174	150			5511	090	OP/CF1	UP/CF1:CU		OP/CF1.AC	NNP/CF17AC	UP/1 TAC:CU	NOP/1 .AC.C							on rea	NUP/CES	OP/CF2.CU	NDP/CF2.CU		UD VEST	NUDICES AC	THE PARTY OF THE P
													134	12		0		151	167	ICH +	U	DP/CF1. VPS	ACI	- nun	F	CU ACTUR		OP/CFI:CI	15	47. 10. 1/40	C IS			NCI	E	B	Sav: CFJ/an	NUP ACT 2. TP		
(10)		CANALAININ .										1148			0130	5	120				s		N SdA		Seven Seven	Solve			CFI.CJ		V. 63.	OP/1 .CI .AC	CIS				SdA	A SdA		
(6)		ECV			UPN/VF4		VFA			NAC	Day C	acti	010	USA	210	SU	010	1140	163	NAC	NAC	AAC	2	VC	9	Q.	2	NVPS	Sdan	VPS	NPS	CIS	NOP/1 .CI.A	- NAC	MAC	VAC	AAC	NAC		
(8)	as.	P.C.	UP AUF	-AAA	NASAFA	JALIN	KF3	040	042	NCI	NCI		016	U54	024	60	110	150	191	NCI	NCI	NCI	NCI NCI	NCI	NCT	NCI	154	AACT NACT	NAC	NAC	NAC	VC	PC.	LON NO.	NCI	ION	NCT	NCI	1.0	
(1)	NSA	LKG	SIM	VF4	VF4	YF .	VF2	12	14	CFI	E		*10	U52	14	11	SIN	020	050	CFI	CFI	CFI	5	CF1	CFI	CFI	E	CF1	CFI	CFI	CFI	CFI	CFI	242	CES	CF2	CF2	CF3	2 La	
(¥)	ç	۴	ç	ç	5	ç	ç	۴	ç	ç	59	-	ŗ	ç	ç	ç	ç	ç	1	ę	ç	ç	99	-	ç	ç	7	çç	Ŷ	9	ç	۴	ç	Ŷ	1	Ŷ	ç	ç	5	4
(2)	c	c	c .	-		-	c	c	c	c	c (: c	c	c	c	c	c (-	-	-	c -		-	c	- '	c -		-	c	-	c	- 0	-	0	-	c	- 1	-
3	~	-	-	-	~	-	-	~	~	*	•••	• •	0	*	æ	8	8	80 0	0 0		5	-	ŝ		5	0	4 1	~ *	1.0	-	5	9	-		0 0	×	-	5	•	•
(3)	ACI N	an	B	AND	AND	AND	an	OR	OR	AND	DNA	HO	ac	an	0R	CIR	BC	80	-	UNA	AND	AND	ONN		ONY	AND	GNV	GNA	AND	AND	AND	AND	UNV	ONA	AND	AND	AND	QNA	GNY	-
(2)	CRRR-CONT	NSR	SR	175	40-3	L	YF	LCV	LDV	02	*0	ECA	EUV	CONTINUEL	LKG	OP	CONTINUES	CONTINUE3	CONTINUES	III	03	05	50		00	010	110	210		013	016	111	810	010	1070	022	U23	124	075	
	-	_		_	-	-	-	-													-		52		. 00	•	30		~	1	5	36	-	80	> 0	-	~	-	=	

 $[\frac{1}{2}, \frac{1}{2}]$

: ..

24.

1

2.1

CF? U28 AND . 0 -0 CF2 AIM 4 0 -0 129 CF? AND 5 2 -0 U30 AND 4 1 -0 CF1 U31 CF1 AND 0 -0 U32 5 CF2 AND 1 -0 U33 CF2 U34 AND 5 n -0 U 35 AND -0 CF2 3 1 CF2 AND 0 -0 U36 4 CF3 -0 U 10 AND 7 . -0 CF3 AND 0 U40 8 CF3 AND 1 -0 U41 7 U42 AND 0 -0 CF3 8 CF 3 U43 AND 1 -0 6 CF3 U44 AND 7 0 -0 AND -1 CF3 U45 7 1 AND 8 0 -0 CF3 U46 CF3 -0 U47 AND 7 1 CF1 0 -0 U48 AND 8 CF3 U49 AND . -0 CF3 AND 7 0 -0 U50 CF1 U51 AND 1 -0 6 CF3 69 U52 AND 7 n -0 CF3 U53 AND 1 -0 70 6 U54 AND 0 -0 CF3 CF3 -0 72 U55 AND 5 1 -0 CF1 AND U56 4 0 CF4 74 U57 AND 7 1 -0 CF4 75 U58 AND 9 n -0 CF4 -0 76 U59 AND 7 1 0 -0 CF4 77 AND 050 8 CF4 -0 78 U61 AND 6 1 CF4 79 0 -0 U42 AND 7 CF4 80 UA3 AND 7 1 -0 CF4 81 U64 AND 8 0 -0 CF4 -0 U05 AND 7 82 . -0 CF4 AND 0 83 066 8 CF4 84 U67 AND 6 1 -0 85 U68 AND 7 0 -0 CF4 CF4 86 U69 AND 6 1 -0 CF4 87 U70 AND 7 0 -0 AND 6 -0 CF4 88 U71 1 CF4 89 0 -0 U72 AND 7 CE4 -0 90 U73 AND 5 1 -0 CF4 91 1174 AND 6 0 CISS 92 CIS OR 0 2 -0 CIS 93 NOT 0 -0 NC1 0 -0 AC 94 NAC NOT 95 NVPS 0 -0 VPS NOT 96 NCU NOT 0 -0 CU 1 NNS/VF4 -0 MS/VF4 97 NOT 0 OPO/VF4 98 NOPO/VF4 NOT 9 -0 OP/CFI 09 NOP/CF1 NOT 0 -0 100 NOP/CFI.CU NOT 0 -0 OP/CFI.CU 101 NOP/CFI.VP NOT 0 -0 OP/CFI.VP OP/CFI.AC 102 NOP/CFI.AC NOT 0 -0 -0 OP/1 AC.CU 103 NOP/1.AC.C NUT 0 . 104 NOP/1.AC.V NOT 0 -0 nP/1.AC.VP 1

NOP/7.AC.C NV PS CU AC 1.1 AC VDS * ** NOP/2:AC:V AC VPS C15 0P/CF2.C1 NVPS NVDS INP/CF2.C1 C.15 1. 4 6. 0P/2.01.VP VPS CIS VPS N0.07.CI.V CIS OP /2:CI:AC CIS CIS NOP/2.CI.A NUS/VE4 NOON/VF4 nP/CF1 NCU NVPS NAC NNS/VFA NOPO/VFA NOP/CFT NVDS NCIL NAC NMC/VF4 NOPO/VF4 nP/CF3;CT CIL NAC NVDS NUS/VFA NOPOVEA MOP/CF1, TU NAC NVPS CU OP/CF3.VPS VPS HNS/VF4 NOPO/VF4 NAC NOD/CFITVE WWS/VFA NOPO/VFA VPS NAC OP/CF3TAC NOPO/VF4 NVPS NCU AC NKS/VF4 NOPO/VF4 NOP/CF1.4C AC NHS/VF4 NVPS NCU NOPO/VF4 0P/3:4C.CU CU NWS/VF4 NVPS AC NOP/3:AC.C : NVPS AC CII NNS/VF4 NOPO/VF4 NYS/VF4 NOPO/VE4 00/3.4C.VP VPS AC NWS/VF4 NOPO/VF4 V.DA. FV GON VPS 40 OP/CF1.CI VOPO/VF4 NVPS NWS/VF4 CIS NOP/CF1:CJ C15 NVDS NUS/VFA NODA/VF4 NOPO/VF4 00/3.CT.VP VPS NV S/VF4 CIS NOP/3.CI.V VPS NNS/VF4 NOPO/VF4 CIS OP/37CTAC NHS/VF4 NODO/VE4 CIS - N. P NOP/37CITA NNS/VF4 NODA /VF4 CIS NOPO/VEA NVS/VFA 1.0/CEA NAC MIDS NCU NHS/VF4 NOPO/VF4 NOP/CF4 NVPS NCU NAC NOPO/VF4 OP/CF4:CII CI NWS/VF4 NAC. NVDS NOP/CF4:CU NVDS CU NNS/VF4 NOPO/VF4 NAC OP/CEATVPS VPS NNS/VF4 NOPO/VF4 NAC NOP/CEA.YP VPS NHS VF4 NOPO/VF4 NAC NOPO/VF4 OP/CF4.AC N/PS AC NCU NNS/VF4 NOP/CFATAC . NCU 10 ----WHS/VF4 NOPO/VF4 NVPS 0P/4:ACTCI AC CU NNS/VF4 NOPO/VF4 NVPS AC CU NWS/VF4 NOPO/VF4 NOP/ATAC.C NVPS NWS/VF4 NOPO/VF4 OP/4 ACTVP AC . VPS 1.2 NHS/VF4 NOPO/VF4 NOP/4.AC.Y VPS AC OP/CF4.CI NVPS NHS/VF4 NOPO/VFA CIS NOP/CF4:CJ C 15 NVDS NUS/VFA NODO/VF4 OP/4:CITVP NH S/VF4 NOPO/VF4 CIS VPS NOP/4.CI.V CIS NHS/VF4 VPS NOPO/VF4 OP/4:CITAC NMS/VF4 NODA/VF4 CIS NMS/VF4 NOPO/VF4 NOP/4:CI:4 CIS

·**...

A CONTRACT CONTRACTOR

PAGE 0

NCI

NCI

NCI

NAC

NAC

NAC

NAC

AC

AC

NCI

NCI

NC 1

NCI

NCI

NCI

NCI

NC1

NCI

NCI

NCI

NCI

NAC

NAC

NAC

NAC

AC

AC

NCI

NCI

NC]

NC J

NCI

NCI.

NCI

NCI

NCI

NC I

NCI

NCI

NAC

NAC

NAC

NAC

AC

AC

CISS

A-3

47

48

49

50

51

52

53

54

55

55

57

58

59

60

61

62

63

64

85

66

67

68

71

73

105

106

NOP/CFI.CI

NOP/1.CI.V

NOT

NOT

0

0

1

1

-0

-0

OP/CFI.CI

0P/1.CI.VP

107	NOP/I.CI.A	NOT	0	1	-0	0P/1.CI.AC							
108	NOP/CF2	NOT	0	1	-0	OP/CF?							12 M 4
100	NOP/CF2.CU	NOT	0		-0	OP/CF2.CII							
110	NOP/CF2.VP	NOT	0	i	-0	OP/CF2.VPS							
111	NOP/CF2.AC	NUT	0	1	-0	UP/CF2.AC				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			anger 1 h
112	NUP/2.AC.C	NUT	0	i	-0	0P/2.AC.CU							10 A
113	NOP/2.AC.V	NOT	0	÷ .	-0	0P/2.4C.VP							
0.0.0	NOP/CF2.CI	NOT	0	- 1	-0	OP/CF2.CI							and the second second
114		NOT	0	- 1	-0	OP/2.CI.VP							
115	NOP/2.CI.V	NOT	0	- 61	-0	0P/2.CI.AC							
116	NOP/2.CI.A	NOT	0		-0	OP/OF1				a second of the			
117	NOP/CF3	NOT	0	- 11	-0	OP/CF3.CU							· · · · · · · · · · · · · · · · · · ·
118	NOP/CF1.CU		0		-0	OP/CF3.VPS							
119	NOP/CF3.VP	NOT	0	- 1	-0	OP/CF3.AC	1.						
120	NUP/CF3.AC	NOT		1.									
121	NOP/3.AC.C	NOT	0	- 1-	-0	OP/3.AC.CU							
122	NOP/3.AC.V	NOT	0	- 1	-0	OP/3.AC.VP	· •		1.1	2.14		1991 1	5 P
123	NOP/CF3.CI	NOT	0	- 11	-0	OP/CF1.CI					1		and the second second
124	NOP/3.CI.V	NOT	0		-0	OP/3.CI.VP							
125	NOP/3.CJ.A	NOT	0		-0	OP/3.C1.AC	64		A				
126	NOP/CF4	NOT	. 0	1	-0	OP/CF4	44	10 A 1 A 14		Carlo Martin		1.00	A CARLES AND A REAL
127	NUP/CF4.CU	NOT	0	1	-0	OP/CF4.CU	er.	- A.A.			1.		
128	NOP/CF4.VP	NOT	0		-0	NP/CF4.VP	6 24					10000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
129	NOP/CF4.AC	NOT	0	- 1	-0	OP/CF4.AC	*. · · ·						a state and the second
130	NOP/4.AC.C	NOT	0	1	-0	nP/4.AC.CU							
131	NOP/4.AC.V	NOT	0	1	-0	OP/4.AC.VP							
132	NOP/CF4.CI	NOT	0		-0	nP/CF4.CI							1977 - The State of S
133	NOP/4.CI.V	NOT	0	1	-0	OP/4.CI.VP							
134	NOP/4.CJ.A	NOT	0	1	-0	OP/4.CI.AC							
135	CFI	AND	2	0	-0	NCD23	VF2+VF3						
136	CF2	AND		1	-0	VF2+VF3	CD/VF23				1.		
137	CF3	AND	2	0	-0	NC94	VF4						
138	CF4	AND	1	1	-0	VF4	CD/VF4						
139	VF2+VF3	OR	2	0	-0	VF2	VF3				1.1		
140	NCD23	NOT	0	1	-0	CD/VF23					11 A.	1.4.2	1
141	NCD4	NOT	0	1	-0	CD/VF4		the second second		*	The second se	1.7	a see the second
142	CONTA IN (V.)	OR	4	0	-0	V1	V5 '	VO	VI 3	1.4.4	1.28	2.5	
143	VF2	OR	8	0	-0	¥2	VA	VIO	V14	¥15	¥24	¥21	VIR
144	VF3	OR		0	-0	V3	¥7 '	¥11	V16	VIO	¥22	¥26	CONTINUES
145	CONTINUES	OR	3	0	-0	¥29	¥32	¥34		12.0 1		1000	
146	VF4	OR	8	0	-0	V4	V8 .	¥12	V17	¥20	V23 F1	¥27	CONTINUE?
	CONTINUET	OR		0		¥ 30	¥31	¥35	¥34	¥17	VIR	VIO	
147	VI	AND		4	-0	CN	ER/CN	FCI/CNI	VHRII	VBRI			
		AND		3	-0	CN	NVPRI	FR/CH	FCI/CHI	VHRII			
149	V2 ¥3	AND	-	3		CM	VHR12	ER/CW	FC I/CWI				
151	¥4	AND		3		CM	FRICH	FC1/ON1	VHR13		1.86 A.11		
152	¥5	AND	;	3		CN	NFCI/CHI	ER/CH	VHR21	VRR2			
1.		AND	â	2		CH	NEC I/CWI	NVBP2	EP/CW	VHR21	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
153	¥7	AND	2	ź		CM .	NECT/CMI	VHR 22	ER/CH		1.0		
	VA				-0	CN	NFC1/CM1	FR/CW	VHR23	8 6 1			
155		AND	2	2		CN	NER/CM	FC I/CW2	VHR31	VRRT			
156		AND	2	3		CN		NVRR3	FC1/CM2	VHRI			
157		AND	3	2		CN	NERICH	VHR 32	FCI/CW2	11.11			
158		AND	2	2			NER/CM		VHD33	· · ·			
159		AND	2	2		CM	NER/CM	FC1/CH2					
160		AND	3	1		CN	NER/CM	NFCI/CN2	VBR4				
161	¥14	AND	4	0		CW	NED/CW	NEC I/CH2 .	WYRD4	1. State 1.			
162		AND		3		DCI	ER/DCI	FCI/DCII	VHR4.1				1
163		AND	1	3		DC1	VHR42	ERADCI	FC1/DC11				
164		AND	1	3		DCI	ERACI	FCI/DCII	VHDA 3			-	
145		AND	- 2	5		DCI	NECITOCI	FR/DCI	VHP51		at		
1 66	¥19	AND	2	2	-0	DCI	NFC1/DCI1	VHP52	ERADCI	1.2.	and a second		
		1.1	1.13							Section 10			

PARE 10

A-4

147	¥20	AND	,	2	-0	DCI.	NFC 1/0011	FRACI	VH051			
1 69	¥21	AND	2	2	-0	DCI	NERIDCI	FC1/DC12	ANDUI			Construction of the second
169	¥ 22	AND	2	2	-0	DCI	NER/DCI	VHD47	FC1/DC12			1.1
170	¥23	AND	2	2	-0	DCI	NF 1/DC1	FC1/DC12	AHOVA			114
171	V24	AND	3	0	-0	DCI	NER/DCI VHR72	NECT/DC12	FC1/0C21			
172	¥26	AND	1	3	-0	DC2	FR/DC2	FC 1/DC21	VHP71			1.1647
173	¥27	AND		3	-0	DC2	NECT/DC21	VIDA2	ER /DC2			
174	¥29	AND	2	22	-0	DC2	NFC1/DC21	FR/DC2	VHR93			1.00
175	V30	AND	ź	2	-0	DC2	NER/DC2	VH003	FC 1/DC22			
176	V 12 V 33	AND	ź	2	-0	DC2	NFR/DC2	FC1/DC22	VHPOI			211
178	¥34	AND	3	ő	-0	DC2	NER/DC2	NECI/DC22				
179	¥ 34	AND	i	1	-0	DC3	FD					
180	736	AND	2	2	-0	DCI	NED	FR/DC3	FCI/DC31			
181	V37	AND	3	î	-0	DC3	NED	NECI/DC31	FP /DC1			
182	V 38	AND	3	i	-0	DC3	NED	NER/DC3	FC1/DC32			1000 1000
183	¥ 10	AND	4	'n	-0	DC1	NFD	NER/DC3	NEC1/DC32			in the second second
184	NVARI	NOT	0	1	-0	VBQI						1.
185	NVBR2	NOT	0	- 1	-0	VAR2						1 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
185	NVBR3	NOT	0	i	-0	VBR3	and the second	distant and and				
187	NVBR4	NOT	0	i	-0	VRQ4		and with stars \$6.50				20 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 88	NECTICNI	NOT	0	i	-0	FC1/CM1						1.565
189	NFCI/CM2	NOT	0	i	-0	FCI/CM2					1.4.1.1.1.1.1.5	
190	NER/CM	NOT	0	1	-0	ER/CM						
191	NER/DCI	NOT	0	1	-0	ER/DC1						
192	NER/DC2	NOT	0	i	-0	ER/DC2						1 1 1 A
193	NER/DC3	NOT	0		-0	ER/DC3						
194	NFCI/DCII	NOT	0	1	-0	FCI/DCII						
195	NEC MOCI 2	NOT	0	1	-0	FC1/DC12						and the part of the state
196	NFC1/DC21	NOT	0		-0	FC1/DC21						
197	NFC1/DC22	NOT	0	1	-0	FC1/DC22						
198	NFC3/DC31	NOT	0	1	-0	FCI/DC31					president for the state	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
199	NFC1/DC32	NOT	0	1	-0	FC1/DC32			1 1 1 N		 1.1 	
200	NFD	NOT	0	1	-0	FD						
201	CM	OR	2	0	-0	CN. PCDA	CM.UCDA		 R	an in the second second	a sea a la sea com	1 A 1 A 1
202	CM. PCDA	OR	4	0	-0	CW.CF	CM.TOP	CW.LOCA	C. LOHS	A 14 11 11	1	
203	CM.UCDA	OR	7	0	-0	CH.UCF	CM.UTOP	CN.UTO&LOF	CN .ULOCA	CM.ULOF	CW.ULOHS	CW.UCFALOF
204	CM.CF	AND	- I	1	-0	CF	CM/CF		1 1 1 1 1 1 1 1 1 1 1 1	a primiting and the		34
205	CM. TOP	AND	1	1	-0	TOP	CM/TOP	1	mark of a server	 * 1993**** 	the second second second	
200	CM.LOCA	AND		1	-0	LOCA	CH/LOCA	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1 1 1 1 1 1 1 1 1 1 1 1			1
207	CN.LOHS	AND	1	1	-0	LOHS		NUMBER OF STREET		appendie and a second second		**************************************
208	CM .UCF	AND	1	1	-0	UCF	CN/UCF	State of the state of	in a case i care i	Ant	*** ·* ·* ·* · · ·	
209	CM.UTOP	AND		!	-0	UTOP	CM/UTOP					
210	CM.UTO&LOF	AND		1	-0	UTOPAULOF	CW/UT&LOF	A Distance of the second second	comments and second	a contraction of the second	and a second of the	
211	CM.ULOCA	AND		1	-0	ULOCA	CH/ULOCA					
212	CM. ULOF	AND	1	1	-0	ULOF	CW/ULOF					
213	CM.ULOHS	AND		- !	-0	ULOHS	CN/UCALOF					
214	CM.UCF&LOF	AND	1	1		DCI.PCDA	DC1 UCDA					
215	DCI.PCDA	OR	24	0		DCI .CF	DCI .TOP	DCI .LOCA	DCI.LOHS			
217	DCI.UCDA	OR	7	0		DCI .UCF	DCI .UTOP	DCI .UT&LOF		DCI.ULOF	DCI.ULOHS	DCI .UCALOF
218	DC1.CF	AND	í	1		CF.	DCI/CF					
219	DC1.TOP	AND	· ;	- i	-0	TOP	DCI/TOP					1
220	DC1.LOCA	AND	i	i	-0	LOCA	DC1/LOCA					
221	DCI.LOHS	AND		- i		LOUS	DCI/LOHS					
222	DCI.UCF	AND	i	- i		UCF	DC1/UCF		a Labora		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	DCI.UTOP	AND	i	1		UTOP	DCI/UTOP					
222	Set a star					UTOPAULOF	DCI/UT&LOF					
223	DC1 ITTLOF											
224	DC1.UT&LOF	AND	- :				DOL/ULOCA				ALC: NO THE R.	
	DCI.UT&LOF	AND			-0	ULOCA	DCI/ULOCA					이 나는 것

A-5

.

.

							1	Anna Carlos -					· · · · · · · ·
											PAITE 12		1.1.1.2
					1								1. 20 St.
					1.								
22.8	DC1.ULOHS	AND			-0	11.048	DCI /ULOHS						
227	DCI.UCALOF	AND		i	-0	INFRIDOF	DC1/IICALOF						
229	DC2	OR	2	'n	-0	DC2.PCDA	DC2.UCDA						1
230	DC2.PCDA	OR	4	0	-0	DC2.OF	DC2.TOP	DC2.LOCA	DC2.LOHS				1.
231	DC2.UCDA	OR	7	0	-0	DC2.UCF	DC2,UTOP	DC2.UTALOF	DC2, ULOCA	DC2TULOF	UCS ILUHS	Dro; UCALOF	
232	DC2.CF	AND	1	1	-0	CF	DC2/CF DC2/TOP						
233	DC2.TUP DC2.LOCA	AND			-0	LOCA	DC2/LOCA						
235	DC2.LOHS	AND	- i	÷	-0	LOUS	DC2/LOHS						
236	DC2.UCF	AND	i	1	-0	UCF	DC2/IICF						1.1.1
237	DC2.UTOP	AND.	1	1	-0	UTOP	DC2/UTOP					AP 14 19	an an Alberta
238	DC2.UTALOF	AND	1	1	-0	UTOPAULOF	DC2/UTALOF						and all all a
239	DC2.ULOCA	AND	- 1	1	-0 .	ULOCA	DC2/ULOCA						
240	DC2.ULOF DC2.ULOHS	AND		1	-0	ULOF	DC2/ULOHS						
242	DC2.UCALOF	AND	- i	÷.	-0	UCFAULOF	DC2/UCALOF						State .
243	UC3	OR	2	0	-0	DC3.PCDA	DC3.UCDA						A
244	DC3.PCDA	08	4	0	-0	DC3.CF	DC 3. TOP	DC3.LOCA	DC 1. LOHS				in a strong
245	DC3.UCDA	OR	7	0	-0	DC1.UCF	DC3.UTOP	DC3.UTALOF	DC3, IILOCA	OC3. ULOF	DC3, ILOHS	DC 3, IICALOF	in inte
246	DC3.CF	AND	1	1	-0	CF	DC 1/CF			a singli i si		A PERSONAL PROPERTY AND	· · · · · · · · · · · · · · · · · · ·
247	DC3.TOP	AND			-0	TOP	DC3/TOP						ALC: BUT A
248	DC3.LOCA	AND		1	-0	LOCA	DC 3/LOCA						
249	DC3.LOHS DC3.UCF	AND		1	-0	LOHS	DC3/LOHS						
251	DC3.UTOP	AND		i	-0	UTOP	DC3/UTOP						
252	DC3.UTALOF	AND		÷.	-0	UTOPAULOF	DC3/UT&LOF						4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
253		AND	· i	i.	-0	ULOCA	DC3/ULOCA						4. 2.
254	DC3.ULOF	AND	- i -	i	-0	ULOF	DC 3/ULOF						1
255	DC3.ULOHS	AND	1	1	-0	ULOHS	DC 3/ULOHS	1					11. 1. 1. 1.
256		AND		1	-0	UCF&ULOF	DC3/UC&LOF		-				
257	AC	OR	1	50	-0	ACI	ACT	ACS-IN	EXHAUST ACS	P-SBTCB	CC-CFANS		
200	ACT	CUM	6	0		ACZ	ACT	AL.	ALD	ALG	AUT	in an	
COMB	INATION GATE	6 E	VENTS	4	AT I	TIME							
258	ACI	OR	1	0		ADDCOM2				a second of			and a birth int .
259		AND	. 4	n		AC2	AC3	AC4	ACS			1	and the set of
260		AND	4	0		AC2	AC3	AC4	ACO				
261	COMBO3	AND		0		AC2	AC3	ACA	AC7	· · · · · · · · · · · · · · · · · · ·			
262		AND		00		AC2	AC3	AC5	ACA AC7				
264		AND	-	0		AC2	AC3	ACA	AC7	Second Land		The second in	2.3
265		AND	4	0		AC2	AC4	AC5	ACA				1.000
266	COMBOB	AND	4	0		AC2	AC4	AC5	AC7				A
267	COMBO9	AND	4	n		ACZ	AC4	AC6	AC7				
268		AND	6	0		AC2	AC5	ACA	407				
269		AND	:	00		AC3	AC4	AC5	ACA ACT				
271	COMBOI 3	AND		0		ACT	AC4	ACA	AC7				
272		AND	4	0		AC3	ACS	ACO	AC7				
273		AND	4	n		AC4	AC5	AC6	AC7				
274		OR	8	0		CONBOS	COMBOS	COMBOLO	0149011	CUNHUIS	COMPOI 3	COVANIA	COM8015
275	A DDCOM 2	OR	8	0		ADDCONI	COMBOI	CUN905	COMB03	CONBO4	COMPOS	COMPO.	COMMON
276	AC2	OR			- 0	SG11	D-1A-PL	CF-14					
277		OR	1	2	-0	SGI 4	D-2A-PL	CF-2A	*				
278		OR	i	2	-0	SGI 4C	D-JA-PL	CF-3A				10 N. 18 1.	
279		OR	i	ž	-0	SGI1	D-IR-PL	CF-19					
280		OR	- 1	2	0	SGI 4	D-29-PL	CF-28	1.1		10 m 10		
281	AC7	OR	- 1	5	-0	SGI 4C	D-38-PL	CF-39			the second	and the second	

A-6

Sector	nin Santara (se	inite to	PAGE	13	+ 19	91

282	VPS	OR		5	-0	VPSI	OPP-VPS	VPS-IN	FXHAUST	V-PA-F	CC-VALVS		
283	VPSI	OP	2	0	-0	VPS2	VPSA						
284	YPS2	OR	1	1	-0	VPS 3	M-VEANS						
285	VPS3	AND	2	0	-0	VPS4	VPS5						3.4
286	¥254	OP	1	1	-0	5311	VF-1A						10.14
287	VPS5	OR	1	1	-0	5014	VF-19						1.5 2
288	VPSO	AND	2	0	-0	VPS7	VPSA						
289	VPS7	OR	×	2	-0	5011	V-74-F	V-44-F					
290	VPSB	OR	1	2	-0	5014	V- IN-F	V-49-F					
291	CU	OR		2	-0	CUI	OPR-CUS	RUP-CUS					
292	CUI	OR	1	3	-0	CUS	W-SC	J-SC	A-WS				
293	CU2	UR	1	1	-0	CU3	CC-CUPPS						
294	CU3	AND	2	0	-0	CU4	CU5						A 14
295	CU4	OR		1	-0	SGII	CP-1A						
296	CUS	OR	1	1	-0	SGI 4	CP-14	101004	10107	Louce	LOUSCONT		
297	LOHS	OR	•	0	-0	LOHSI	LOHS2	LOHSO	10457	LOHSA	LUMSCOMI		
298	LOHSCONT	OR	5	0	-0	LOHSO	LOHSIO	LONSII	LO4512	LOHSI 3			-
200	LOHSI	AND		1	-0	SHRS/	1(1)						
300	SHRS/	AND	3	0	-0	SHAS	NPPS	NSCRAM			1		
301	LOHS2	AND		1	-0	SHRS/	1(2)			A P TA L MART	The President	5. 1. 1	5.3
302	LOHS	AND		1	-0	SHRS/	1(6)						
303	LOHS7	AND			-0	SHRS/	1(8)					al desire a sur	100
304	LOHS8	AND		- 1	-0	SHRS/	1(9)						
305	LOHSIO	AND	- 1		-0	SHRS/	1(10)						1. 1. 1. 1. 1.
307	LOYSII	AND	1	- 1	-0	SHRS/	1(11)						
308	LOHS12	AND	ò	;	-0	SHRS-	1(12)						
309	LOHSI3	AND	i	î	-0	SHRS/	1(13)						
310	CF	AND	1	- i	-0	SHRS/	1(3)						1. 1. 1. 1. 1.
311	TOP	AND	1	1	-0	SHRS/	1(4)						
312	UCFAULOF	AND	i	1	-0	ULOF/	1(3)						
313	ULOF/	AND	2	1	-0	NPFS	NPT	SCRAM			the sector of the s	1	1. 10.
314	UTOPAULOF	AND	1	1	-0	ULOF/	3(4)				Server Street of		
315	LOCA	AND	2	2	-0	NPPS	NSCRAM	SHRS-	1(5)	1.1.1	THE REAL PROPERTY OF	1. A.	1.
316	ULOCA	AND	1	1	-0	ULOCA	1(5)						- 1 - 2 -
317	ULOCA	OR	0	2	-0	PPS	SCRAM				2 A		7
318	UCF	AND	1	1	-0	UCF/	1(3)		and the first of the	그 김 대의 부가 나라	김 씨는 아이에 가지 않는 것이 없다. 말	and the second second	
319	UCF/	OR	. 1	1	-0	UCF//	PPS	and the second sec	- I want was street week.	the statement parts	part of the second		1000
320	UCF//	AND	0	2	-0	SCRAM	PT				3 1		
321	UTOP	AND	1	1	-0	UCF/	.](4)		1		Contraction of the second s		
322	ULOF	OR	. 8	. 0		ULOF6	ULOF7	ULOF8	ULOF9			ULOF12	ULOF13
323		AND		1	-0	ULOF/	1(6)	X			140 M 1		
324	ULCFY	AND	1	4	-0	ULOF/	1(7)	a with the	ومراجا والتراج	engine a la sere d	Chookense in Keiner		
325		AND			-0	ULOF/	3(8)	1.10.11.61.913	والمرتقب والمرتجع	a farmer di morre			· · ·
326		AND		1	-0	ULOF/	1(9)						
327		AND		. !	-0	ULOCA/	1(10)						
328		AND	1	1	-0-	ULOF/	7(11)						
				- C									
330		AND		1	-0	ULOF/	I(13) ULOHS7	ULOHSA	ULOHSO	ULOHSII	ULOHS12	ULOHS13	
331	ULOHS	AND	. !	0		ULOHSA UCF/	1(6)	OF CHINA	OLUN 34	ULUNSII	OF DATE		
332		AND		1	-0-0	UCF/	1(7)						
333		AND		- 1	-0	UCF/	1(8)						
335		AND	i	- 1	-0	UCF/	1(9)						
336		AND		- 1	-0	UCF/	ICID						10 C 1
. 337		AND	· . i	- i	-0	UCF/	1(12)					and and	and a set
338		AND	1	1	-0	UCF/	9(13)					1.1.1.1.1.1.1	
339		NOT	ò	i (-0	PPS						te e	
340		NOT	0		-0	SCRAN	a star i star						16 C 15 M 1
341	NPT	NOT	0	1	-0	PT						1	
339 340	NPPS	NOT	0	i	-0	PPS SCRAM	9(13)					· ·	

PARE 14

	SHRS CONT.11	OR		20	-0-	S4 515	55 514	56	57	510	577	574	CONT.I
	CONT.12	OR	8	0	-0	525	526	\$27	\$30	511	511	874	CONT :I
	CONT.13	OR	7	0	-0	537	539	\$10	541	542	\$43	SAR	
	54	AND	8	0	-0	NAI	NA2	VRI	NE	NON	NF	87	CONT.I
	CONT.14	AND	2	0	-0	D	0				1.00		
	55	AND	7	1	-0	NAI	NA2	491	NE	NF	92	n	n
	54	AND		0	-0	NAI	NA2	NRI	NE	92	n	F	
	57	AND	6	0	-0	NAI	NA2	NRI	82	n	F		
	510	AND	7	0	-0	NAI	NA7	NR2	NF	31	n	G	
	511	AND	6	0	-0	NAL	NA2	NR2	RI	n	E		1
	514	AND	5	0	-0	NAL	NA2	NF	NGO	CONT.15			
	CONT.15	AND	5	0	-0	NF	R1	82	D	0			
	\$15	AND	ź		-0	NAI	NA2	NE	NF	81	92	n	nn ·
	516	AND	7	ò	-0	NAL	NA2	NE	81	82	n	F	
	517	AND	6	n	-0	NAT	NA2	91	82	D	E		
	520	AND	7	0	-0	NAT	NC	NE	NON	A2	9	0	
	521	AND	5	ï	-0	NAL	NC	NE	A2 /	D	01		
	522	AND	5	'n	-0	NAI	NC	42	0	E	986 (1962 - 1974 - 1976) 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 19		2012
	524	AND	ĩ	0	-0	NAL	NE	NF	NG0	A2	C	0	
	525	AND	5	1	-0	NAI	NE	NF	42	C	(n)		
363	526	AND	5	n	-0	NAT	NE	42	C	F			
	527	AND	4	0	-0	NAI	A2	C	E	1 No. 1			
	\$30	AND	5	0	-0	NA2	NC	NE	A1	n	a		
366	531	AND	5	0	-0	NA2	NC	41	n	E			
	5 33	AND	5	0	-0	NA2	NE	AC	C	G			
	\$34	AND	4	0	-0	NA2	A1	C	E				
369	\$37	AND	7	0	-0	NC	NE	NGO	A1	42	D	G	
	\$38	AND	5	1	-0	NC	NE	41	A2	n .	a		
	539	AND	5	0	-0	NC	AI	42	D	E		100 1	
372	S41	AND	7	0	-0	NE	NF	NGO	41	42	C	G	
373	542	AND	5	1	-0	NE	NF	AJ	A2	C	on and		
374	543	AND	5	0		NE	- A1	42	C	F	2		
375	S44	AND	4	0	-0	A1	A2	C	E				
376	NAI	NOT	1	0		AI	and a construction when		ing a straight of the	and the second	AND A DOLLAR TO		
377	NA2	NOT	1	n		A2					1. C. Starter, S.		
378	164	NOT	1	0		81		1. The second second		1	- 31 March		
379	NB2	NOT	1	0		B2	1	and a constant	(a.c a 6a - 1 - 185 -	an and a sub-	and the state of the state		1. M.M. 1
389	NC	NOT	1	0		C				118 223			
381	NE	NOT	1	0	-0	E			1	1. 1.			
382	NF	NOT		0		F		N 20 20 1			e.a		
383	NGO	NOT	0	1		n							
384	E	OR	0	2		OP-RSHRS	OP-RSHRS						
385	AI	OR	2	0		500	SG7						
386	SGÓ	OR	0	2		RVESSELR	PLOOPSOR	-					
387	SG7	AND	3	0		SGR	569	SGIO			an an Barra		
388	SG8	OR	3	3		SGII	SCAP	SGB1	#HY JOULE	NSGDROLF	WI WDOIR		
389	SG.11	AND	2	n		SGI2X	SGI 3						
390	SGI2X	OR	1	1		SGI2	MNET						
391	SG12	AND	0	2		LOSP	NRLOSP						
392	5013	OR	1	2		SGI 3A	DCA	DGARC					
393	SGI 3A	OR	0	2		DGAB	DGCA	6001	WHY TOO DO	HECODOSE	M. mpoze		
394	509	OR	3	3		SG14	SCOP	SCOL	MHX1002F	MSGDRn2F	el"(r)build		
395	SGI4	AND	5	0		SGI2X	5G15	-					
396	SG15	OR	1	2		SGI 5A	DOM .	DGARC					
397	SG15A	OR	0	2	5	DGAR	DGARC	COLOT	NUNICODE	NSGDR03F	ML ODPO3R		
398	5610	OR	3	3		SG14C	SGIOP	SGIOI	WHXI M3F	43008138	"L'unitarian		
309	SGI4C	AND	2	-		SGI2X	SGISC	DCARC -		a title i har			
400	SGI5C	OR	1	2		SGI SCA	- DGC	DGARC		in the second second			
	SG15CA	OR	0	2	-0	DG9C	DGCA						

A-8

PATE IS

. .

402	SGUP	OR	1	2	-0	SORPA	PPMAS	PPMO123			
403	SCOPA	OR	0	2	-0	PPMO12	PPM0.31				- M. (1997) A.
404	5081	OR		2	-0	STATA	19401	1PM0123			and the second second
405	5 G8 14	OR	0	2	-0	1PWn12	1P#031				
406	SCOP	OR	1	2	-0	SMOPA	PPM02	PPMA123			* 1. Sac * 2.
407	SCOPA	OR	n	2	-0	PPM012	PPM023				g-ments
408	5091	OR	1	2	-0	SOOTA	10402	1PM0123			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
409	509 TA	OR	0	2	-0	1PM012	194023				and the
	SGIOP	OR		2	-0	SOLOPA	PPN03	PPNO123			1
410	SGIOPA	OR	ò	ź	-0	PPM023	PPM031	FF 40123			
			0	-	-0	SOLOIA	IPM03	[PH0123			2
412	SGIOJ	OR		2		1PM(123	1PW0 31	IF MULZS			
413	SOINIA	OR	0	2	-0	WF	AF				
014	42	AND	2	0	-0	- Internet and a second s		MAINCOND			
415	MF	OR		2	-0	SOLOX	WAINFEED		NOWATERO		,
416	AF	OR		3	-0	5344	NSIGAFWS	AVALVESO			
417	SG44	AND	2	2	-0	5645	SGAAA				
418	SG44A	OR	0	5	-0	APATURAN	NOSTEANO				
419	SG45	OR	5	0	-0	SGAA	5647				
420	SG46	OR	1	1	-0	SGII	APHANNA				
421	SG47	OR		1	-0	SG14	APMROODA				
4 22	c	OR	3	2	-0	504	SGAA	5030	DUDEAN	INADHRS	· · · · · · · · · · · · · · · · · · ·
423	SG6A	OR	3	0	-0	SG6AI	SG6A2	SG6A3			3 S. J. 194
424	SGAAI	OR	2	0	-0	S011	SGAP				
425	SG6A2	OR	2	0	-0	SGI 4	SCOP				
426	SG6A3	OR	2	0	-0	SGI 4C	SGIOP			And the second second	
427	SG39	OR	2	3	-0	5G40	SG41X	MALVESO .	DOVFSSLR	DHXOVFLF	and the second
428	5640	OR	2	0	-0	SG42X	SGATX				18 St. 19
429	5G42X	OR	2	0	-0	SGII	SG42				1. S.
430	SG42	OR	0	3	-0	DPHNAKIF	DALOODIE	DHX0001F			이 집에 가지 않는 것을 만들어.
431	5G43X	OR	2	ñ	-0	5014	5643				
432	SG43	OR	ñ	3	-0	DPWNAK2F	JS000180	DHYOMO2F		1 × 2	
433	SCAIX	OR	2	ñ	-0	SG4 IXI	SG41X2				and the second s
434	SG41XI	OR			-0	SGII	DPMNADIF				· · · · · · · · · · · · · ·
435	5041X2	OR		1	-0	SG14	DPWNA02F				
				- 5.							and the second second
4.36	F	OR	2	0	-0-	505 5051	5050	5053			
437	5050	AND	3	0					HECTORALE	VCV0001P	
438	5051	OR		4	-0	SOSIA	NTUNDU B	M. MIF	MSODRALF		
439	SG52	OR		4	-0	SG52A	ML005058	MHX1002F	MS0DR02F	MCNUW5b	
440	\$053	OR	1	4	-0	50534	WLOOP03R	MHX1003F	MSGDR03F	NCV0003P	
441	SG51A	OR	0	3	-0	PHXPACIP	PWVnn1C	Paromid			
442	SG52A	OR	0	3	-0	PHX PAC2P	PHYMOUSC	PRV non2D		A	and the second second second
443	SG53A	OR	2	3	-0	PHYPAC3P	PHVMM 3C	PRVMM3D		1	
444	81	OR	2	0	-0	SGAL	SG7L				
445	SGOL	OR	0	2	-0	AVESSELRL	PLOOPSORL			an harry the	the set of
445	SG7L	AND	3	0	-0	SCAL	SGOL	SGIOL			
447	SG8L	OR	3	3	-0	SGUIL	SGAPL	SGAIL	WHX] MIFL	WSGDR01FL	WLOOPOIRL
448	SGIIL	AND	5	0	-0	SGI2KL	SGI 3L				
449	SGI2XL	OR	1	1	-0	SGI2L	MNETL				
450	SGI2L	AND	0	2	-0	LOSP	NRLOSPL				
451	SGI 3L	OR		2	-0	SGI 3AL	DGAL	SGARCL			
452	SGI 3AL	OR	0	2	-0	DGABL	DGCAL		Sector Sector		
453	SG9L	OR	3	3	-0	SGI4L	SCOPL	SCOLL	WHXI M2FL	MSGDRn2FL	ML00P02RL
454	SGI4L	AND	5	0	-0	SG12XL	SGI5L				
455	SGI5L	OR	1	2	-0	SGI 5AL	NGAL	DGARCL			
456	SGI5AL	OR	0	2	-0	DGABL	DGARCL	A State State State			and the second second
457	SGIOL	OR	3	3	-0	SGI4CL	SGIOPL	SGIOIL	WHXI ON 3FL	MSGDR03FL	WLOOPO3RL
458	SGI4CL	AND	2	0	-0	SGIZKL	SG15CL				
459	SGISCL	OR	ĩ	2	-0	SOI SCAL	DACL	DGARCL			
460	SGI SCAL	OR	Ó	2	-0	DCBCL	DGCAL				
461	SC8PL	OR	1	2	-0	SCA PAL	PPHOIL	PPM0123L			

•

r

A-9

											1 A A A A A A A A A A A A A A A A A A A
462	SCHPAL	OR	0	2	-0	PPM012L	PPW031L				
463	SCAIL	OR	1	2	-0	SORIAL	IPHOIL	IPMOI2 TL			
464	SGUTAL	OR	ò	2	-0	IPHOI2L	IPHO31L				
445	SG2PL	OR	ï	2	-0	SCOPAL	PPMAZL	PPHOID 3L			
466	SCOPAL	OR	'n	2	-0	PPMO12L	PPHO23L				P2
467	SOUL	OR	1	2	-0	STOTAL	IPW02L	IPMO123L			4. y 6.
4 68	SOPIAL	OR	ò	2	-0	IPM012L	IPW023L				
469	SGLOPL	OR	1	ž	-0	SGLOPAL	PPWORL	PPMO123L			1
470	SGLOPAL	OR	ò	2	-0	PPN02 3L	PPW031L				
471	SGIDIL	OR	i	ź	-0	SGLOTAL	IPWO 3L	JPMOI2 TL			
472	SGIOLAL	OR	ò	2	-0	IPN023L	IPK031L				
473	82	AND	2	ñ	-0	NFL	AFL				A STATE AND A STATE OF
474	FFL.	OR		2	-0	SGIZYL	VA INFEEDL	MAINCONDL			
475	AFL	OR		2	-0	SG44L	AVALVESOL	NOWATEROL			
476	SG44L	AND	2	ñ	-0	50451	SG44AL				
477	SG44AL	OR	ő	2	-0	APATURAOL	NOSTEAMOL				
478	SC451	AND	2	ô	-0	SG4AL	SG47L				and the second
479	SGAAL	OR	-		-0	SGIIL	APNADODAL				
480	SG47L	OR			-0	SGI 4L	APUROCOAL				
481	D	OR	3		-0	SGOL	SGOAL	SG39L	UNADHRS		
482	SGOAL	AND	3		-0	SOMAIL	SG6A2L	SO6A 3L	0110-11-0		· · · · · ·
		OR		00	-0	SOUL	SGAPL	SUGABL			1 1 1 1 m
483	SG6A1L SG6A2L	OR	22	0	-0	SGI4L	SCOPL				
			-		-0	SGIACL	SGLOPL				
485	SG6A 3L	OR	2	0		SGAOL	SGAIXL	DVALVESOL	DOVESSLAL	DHXOVELEL	
486	S030L	OR	2	3	-0			DAVEAFEUF	INIAL SOLAF	MADIFUEL	
487	SG4AL	OR	2	0	-0	SG42XL	SGATEL				
488	SG42XL	OR	2	0	-0	SCIIL	SG42L				1.
489	SG42L	OR	0	3	-0	DPMNAKI FL	DBLOONIFL	DHXMMIFL			
490	SG43XL	OR	2	0	-0	SG14L	SG4 3L				* ~ **
491	SG43L	OR	n	3	-0	DPUNAK2FL	DALOWSEL	DHY MO2FL			
492	SGAIXL	OR	2	0	-0	SG4IXIL	SG41Y2L				
493	SG41X1L	OR	1	1	-0	SGIIL	DPWNAOI FL			nami sitan	the second second second second
494	SG41X2L	OR		1	-0	SGI4L	DPWNA02FL				
495	G	AND	2	'n	-0	MEN	AFN				1
496	MEN	OR	ī	2	-0	SGI2XL	WAINFEEDN	MAINCONDN			
497	AFN	OR	1	ž	-0	SG44N	AVALVESON	NOWATERON			a a manual
498	SGAAN	AND	2	ô	-0	SGASN	SG44AN	and a second			- 19. J. L. L. M. S. L. L.
400	SG44AN	OR	ō	2	-0	APATURAON	NOSTEAMON		a series from the	and the first states of the second	
500	SG45N	AND	2	õ	-0	SG4 6N	SG47N			and a sole owned	
501	SG46N	OR	î	i i	-0	SGIJL	APNADODAN				
502	SG47N	OR			-0	SGI 4L	APHRODOAN			the second and a	a an also be a no
302	30474	C/H			-0	00146	AT 41.14 4)A 4				

PAGE 14 T

* v

. .

5.5

Sec. 14

.

A-10

Appendix B DATA BASE

Failure data and data source employed in this study are presented here. Table B-1 shows the input data for the component or human failures, and Table B-2 lists the frequences estimates for the phenomenological uncertainties.

LOUITIENT PHILD PHOTON PARE CONTRACTOR	EQUIPMENT	AND	HUMAN	FAILURE	DATA
--	-----------	-----	-------	---------	------

amponent	Failure Mode	Event Code	Failure Frequency (Mean)	Reference
Reactor Vessel	Rupture	RVESSELR	2.7 x 10 ⁻⁷ /hr	SAND81-0260
rimary Loop	Rupture	PLOOPSOR	2.7 x 10 ⁻⁸ /hr	SAND81-0260
Intermediate	Rupture	MLOOPGIR 2 3	2.1 x 10 ⁻⁷ /hr	SAND81-0260
Intermediate Heat Exchanger (IHX)	Rupture & Plugging	MHX1001F 2 3	9.1 x 10 ⁻⁷ /hr	SNR 300
Steam Generator System	Rupture & Plugging	MSGDRØ1F 2 3	5.7 x 10 ⁻⁵ /hr	SAND81-0260
Electric	Distribution Faults	MNET	4.2 x 10 ⁻⁶ /hr	SNR-300
Loss of Offsite Power	HCDA	L059	1 x 10 ⁻³ /d	SHR-300
Non-recovery of LOSP		NRLOSP	0.1/d in 2 hours 0.01/d in 10 hours	SNR-300 SNR-300
1 Diesel	Fail to Start or Run	DGA DGB DGC	$1 \times 10^{-2}/d +$ 3 x 10 ⁻³ /hr	SNR-300
2 Diesels	Fail to Start or Run	DGAB DGBC DGCA	1 x 10 ⁻³ /d	SHR-300
3 Diesels	Fail to Start or Run	DGA8C	1 x 10 ⁻⁴ /d	SNR-300
1 Pony Mator	Fails to Start or Run	PPM01 PPM02 PPM03	3.8 x 10 ⁻⁴ /d + 1.3 x 10 ⁻⁵ /hr	WA SH-1400
	1.2.1	1PM01 1PM02 1PM03		
2 Pony Mutors	Fail to Start or Run	PPM012 PPM023 PPM031	7.4 x 10 ⁻⁶ /d	WA SH-1400
3 Pony Motors	Fail to Start	PPM0123 1PM0123	1.5 x 10 ⁻⁷ /d	WASH-1400

Component	Failure Mode	Event Code	Failure Frequency (Mean)	Reference
Main Feedwater System	Fails to Operate	MAINFEED	7.7 x 10 ⁻⁴	
Main Condenser	Fails to Operate	MAINCOND	1.6 x 10 ⁻⁵ /hr	SAND81-0260
PPS	No Signal to Start AFWS	N SIGAFWS	1 x 10 ⁺⁶ /d	SHR-300
Failure of AFWS	Control Valves	AVALVE SO	2.3 x 10 ⁻³ /d	SAND81-0260
Protected Water Storage Tank	water Unavailable	NOWATER	2.7 x 10 ⁻⁸ /hr	SAND81-0260
Turbine driven pump	Fails to Operate	APHTURBO	5.4 x 10 ⁻⁵ /hr	SAND81-0260
No steam to turbine driven pump		NOSTEAM	1.2 x 10 ⁻⁴	
Motor driven pump	Fails to Start, Fails to Run	APMAJJJA APMEJJJA	1 x 10 ⁻³ /g + 5.8 x 10 ⁻⁹ /hr	SNR-300
Operator	Fails to Initiate DHRS	DOPERR	1.1 x 10 ⁻³ /d	SAND81-0260
Failure of DHRS Valves		DVALVE SØ	2.4 x 10 ⁻⁴ /d	SAN081-0260
No Overflow Vessel	Rupture	DOVF SSLR	1.6 x 10 ⁻⁶ /hr	SAN081-0260
No Overflow Heat Exchangers	Rupture or Plugging	DHXOVFLF	9.1 x 10 ⁻⁷ /hr	SNR-300
No Pump	Fails to Run	DPHNA31F SPHNA92F	1 x 10 ⁻⁶ /hr	SNR-300

EQUIPMENT AND HUMAN FAILURE DATA (Continued)

Component	Failure Mode	Event Code	Failure Frequency (Mean)	Reference
ak Pump	Fails to Run	OPHNAK1F OPHNAK2F	1 x 10 ⁻⁶ /hr	54R-300
Fan	Fails to Start or Run	0819391F 0189932F	2.3 x $10^{-3}/d + 6.3 x 10^{-6}/hr$	SNR-300
Airblast Heat Exchanger	Rupture or Plugging	DH XQQQ1F DH XQQQ2F	9.1 x 10 ⁻⁷ /hr	SHR-300
Check Valve	Fails Plugged	MCV0301P MCV0302P MCV0303P	8 x 10 ⁻⁷ /hr	SNR-300
PACC Heat Exchanger	Plugged or Rupture	PHIPAC1P PHIPAC2P PHIPAC3P	2.3 x 10 ⁻⁴ /d	SAND81-0260
Motor Operated Isolation	Fails Closed	PMVJJJJC PMVJJJZC PMVJJJJC	1.2 x 10 ⁻⁷ /hr	SNR-300
Venting Valve (Relief	Fails to Open	PRV00010 PRV00020 PRV00030	6 x 10 ⁻³ /d	LER
Pump Trip	Fails to Operate	PT	8 x 10 ⁻⁴ /d	CRBRP-1
Plant Protection System	Fails to Provide Proper SCRAM and Trip Signal	PPS	1.6 x 10 ⁻⁶ /d	CRBRP-1
Emergency Shutdown System	Fails to Operate	SCRAM	2.6 x 10 ⁻⁶ /d	CRBRP-1
Operator	Fails to Start Natural Circulation	OP-R SHRS	10 ⁻² /d	SAND81-0260
Recovery	Failure to Recover NAFW or AFW Within 2 Hours	69	10 ⁻¹ /d	

EQUIPMENT AND HUMAN FAILURE DATA (Continued)

PHENOMENOLOGICAL UNCERTAINTIES MEAN ESTIMATES

Description	Event Case	Phenomenological Uncertainty (Mean)	Reference
Fuel is mostly dispersed out of vessel given high energy core disruption	FD	1.0 × 10 ⁻⁴	Emergency Judgement
Energetic recriticality given a core melt	ER/CM	9.9 × 10 ⁻¹	NUREG/CR-0427
Energetic recriticality given an energetic disruption	ER/DC	1.0×10^{-2}	Engineering Judgement
Energetic FCI given non-energetic initial disruption and energetic recriticality	FCI/CM1	1.0×10^{-3}	Engineering Judgement
Energetic FCI given non- energetic initial disruption and no energetic recriticality	FCI/CM2	1.0×10^{-4}	Engineering Judgement
Energetic FCI given energetic initial disruption	FCI/DC	1.0×10^{-2}	Engineering Judgement
No vessel head seal damage given non- energetic or benign initial disruption and energetic recriticality and FCI	VHR11 VHR41	8.0 x 10 ⁻¹	Engineering Judgement
No vessel head seal damage given non- energetic or benign initial disruption and energetic recriticality	VHR21 VHR51	9.0 × 10 ⁻¹	Engineering Judgement
No vessel head seal damage given non- energetic or benign initial disruption and energetic FCI.	VHR31 VHR61	9.0 x 10 ⁻¹	Engineering Judgement

B-5

PHENOMENOLOGICAL UNCERTAINTIES MEAN ESTIMATES (Continued)

Event Description	Event Case	Phenomenological Uncertainty (Mean)	Reference
Moderate head seal damage given nonenergetic or benign initial disrup- tion andd energetic recriticality and FCI	VHR12 VHR42	2.0 x 10 ⁻¹	Engineering Judgement
Moderate head seal damage given nonenergetic or benign initial disrup- tion and energetic recriticality	VHR22 VHR52	1.0 × 10 ⁻¹	Engineering Judgement
Moderate head seal damage given nonenergetic or benign and energetic FCI	VHR32 VHR62	1.0×10^{-1}	Engineering Judgement
Large head seal damage given nonenergetic or benign initial dis- ruption and energetic recriticality and FCI	VHR13 VHR43	1.0 x 10 ⁻²	Engineering Judgement
Large head seal damage given nonenergetic or benign initial disrup- tion and energetic recriticality	VHR23 VHR53	1.0 x 10 ⁻³	Engineering Judgement
Large head seal damage given nonenergetic or benign initial disrup- tion and energetic FCI	VHR33 VHR63	1.0 x 10 ⁻³	Engineering Judgement
Moderate head seal damage given moderate initial disruption and energetic recri- ticality or FCI or both	VH R72 VHR82 VH R92	9.9 x 10 ⁻¹	Engineering Judgement
Large head seal damage given moderate initial disruption and energetic recriticality or FCI or both	VH R73 VHR83 VH R93	1.0 × 10 ⁻²	Engineering Judgement

B-6

Event Description	Event Case	Phenomenolgical Uncertainty (Mean)	Reference
Retention of the debris in the bottom of the vessel given dispersed fuel (energetic dis- ruption)	VBR	1.0 x 10 ⁻⁴	Engineering Judgement
Retention of the debris in the bottom of the vessel given fuel is not dispersed in non-coolable geometry	VBR4	1.0 × 10 ⁻²	Engineering Judgement
Coolable debris in the reactor cavity given vessel failure	CD/VF	5.0×10^{-1}	Engineering Judgement

PHENOMENOLGICAL UNCERTAINTIES MEAN ESTIMATES (Continued)