TECHNICAL EVALUATION REPORT

DESIGN CODES, DESIGN CRITERIA, AND LOADING COMBINATIONS (SEP, 111-7B)

DAIRYLAND POWER COOPERATIVE LACROSSE (GENOA) NUCLEAR GENERATING STATION

NRC DOCKET NO. 50-409

NRC TAC NO. 41503

NRC CONTRACT NO. NRC-03-79-118

FRC PROJECT C5257 FRC ASSIGNMENT 11 FRC TASK 325

Prepared by

Franklin Research Center 20th and Race Street Philadelphia, PA 19103

FRC Group Leader: T. C. Scilwell

Prepared for

82492

Nuclear Regulatory Commission Washington, D.C. 20555

Lead NRC Engineer: D. Persinko

September 20, 1982

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

TECHNICAL EVALUATION REPORT

DESIGN CODES, DESIGN CRITERIA, AND LOADING COMBINATIONS (SEP, 111-7B)

DAIRYLAND POWER COOPERATIVE LACROSSE (GENOA) NUCLEAR GENERATING STATION

NRC DOCKET NO. 50-409

NRC TAC NO. 41503

NRC CONTRACT NO. NRC-03-79-118

FRC PROJECT C5257 FRC ASSIGNMENT 11 FRC TASK 325

Prepared by

Franklin Research Center 20th and Race Street Philadelphia, PA 19103

FRC Group Leader: T. C. Stilwell

Prepared for

Nuclear Regulatory Commission Washington, D.C. 20555

Lead NRC Engineer: D. Persinko

September 20, 1982

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

Prepared by:

Principal Author: Date: 9-20-82

Reviewed by:

Project Manager

Date: 9-20-87

Approved by:

Department Director Date: 9 - 20 - 82

A Division of The Franklin Institute The Benjamin Franklin Parkway, Phila, Pa. 19103 (215) 448-1000

CONTENTS

Section	Title			Page
1	INTRODUCTION			. 1
2	BACKGROUND			. 2
3	REVIEW OBJECTIVES			. 3
4	SCOPE			. 4
5	MARGINS OF SAFETY			. 7
6	CHOICE OF REVIEW APPROACH			. 9
7	METHOD			. 11
	7.1 Information Retrieval			. 11
	7.2 Appraisal of Information Content			. 11
1.5	7.3 Code Comparison Reviews			. 12
	7.4 Assessment of the Potential Impact of Code Changes			. 15
	7.4.1 Classification of Code Changes			. 16
	7.4.1.1 General and Conditional Classifi	cati	one	
	of Code Change Impacts			. 17
	7.4.1.2 Code Impacts on Structural Margi	ins		. 18
	7.5 Plant-Specific Code Changes			. 19
8	LACROSSE SEISMIC CATEGORY I STRUCTURES			21
9	STRUCTURAL DESIGN CRITERIA			. 23
10	LOADS AND LOAD COMBINATION CRITERIA			. 24
	10.1 Description of Tables of Loads and			
	Load Combinations			. 24
	10.2 Load Definitions		•	. 28
10.000	10.3 Design Load Tables, "Comparison of Design			
	Basis Loads"			. 30

Franklin Research Center

ŝ

CONTENTS (Cont.)

Title

Page

÷

.

	10.4	Load C	ombina	ation	Table	es, '	Comp	aris	ion d	E Lo	ad				
		Combin	ation	Crite	ria"	·	•	•	•	•	•	•	•	•	39
11	REVIE	FINDI	NGS			•							•		55
	11.1	Major	Findi	ngs of	AISC	-195	3 vs	. AI	SC-1	980					
		Code C	cmpar	ison.	•	•	·	•	•	·	•	•	•	•	57
	11.2	Major ACI 34	Findin 9-76 (ngs of Code C	ACI	318- ison	63 v	's.							62
	11.3	Major	Findir	ngs of	ASME	B&P	V Co	de,	Sect	ion	VIII	,			
		1962 v	s. Sec	tion	III,	Subs	ecti	on N	E, 0	lass	MC,				
		1980 C	ode Co	ompari	sion	60	•	•		•	•	•	•	٦	39
	11.4	Major	Findir	ngs of	ACI	318-	71 v	s. A	CI 3	49-7	6				
		Code C	ompari	son.	• •	•	•	•	•	•	•	•	•	•	57
	11.5	Major	Findir	ngs of	AISC	-197	1 vs	. AI	SC-1	.980					
		Code C	ompari	.son.		•	•		•	•					57
12	SUMMAR	RY .	•	•	•		•	•		•					54
13	RECOMM	ENDATI	ONS .	6.4		•									54
14	REFERE	INCES	30 e	÷.	•		•	•	•	•	•				58
AP PENDIX	A -	SCALE	A AND	SCAL	E A _X	CHAN	GES	DEEM	ED I	NAPP	ROPR	IATE	TO		
APPENDIX	в -	SUMMA	RIES C	F COD	E COM	PARI	SON	FIND	INGS						
APPENDIX	c -	COMPA	RATIVE	EVAL	JATIO	NS A	ND M	ODEL	STU	DIES					
AP PENDIX	D -	ACI C	ODE PH	ILOSO	PHIES										
APPENDIX	I -	CODE BASIS CRITE (SEPA	COMPAR DOCUM RIA FO RATELY	ENTS I R SEP BOUND	REVIE DEFIN TOPI	W OF ING C II	TECI CURR I-7.1	HNIC. ENT B	AL D LICE	ESIG	N G				

Section

CONTENTS (Cont.)

Section

Title

- APPENDIX II CODE COMPARISON REVIEW OF AISC SPECIFICATION FOR THE DESIGN, FABRICATION, AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS FOR THE YEARS 1980 VS. 1963 (SEPARATELY BOUND)
- APPENDIX III- CODE COMPARISON REVIEW OF CODE REQUIREMENTS FOR NUCLEAR SAFETY-RELATED CONCRETE STRUCTURES ACI 349-76 VS. BUILDING CODE REQUIREMENTS FOR REINFORCED CONCRETE ACI 318-71 (SEPARATELY BOUND)
- APPENDIX IV CODE COMPARISON REVIEW OF CODE REQUIREMENTS FOR NUCLEAR SAFETY-RELATED CONCRETE STRUCTURES ACI 349-76 VS. BUILDING CODE REQUIREMENTS FOR REINFORCED CONCRETE ACI 318-63 (SEPARATELY BOUND)
- APPENDIX V NOT APPLICABLE TO LACROSSE PLANT
- APPENDIX VI NOT APPLICABLE TO LACROSSE PLANT
- APPENDIX VII- CODE COMPARISON REVIEW OF AISC SPECIFICATION FOR THE DESIGN, FABRICATION, AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS FOR THE YEARS 1963 VS. 1953 (SEPARATELY BOUND)
- APPENDIX VIII NOT APPLICABLE TO LACROSSE PLANT
- APPENDIX IX CODE COMPARISON REVIEW OF CODE REQUIREMENTS FOR ASME B&PV CODE SECTION III, SUBSECTION NE, 1980 VS. ASME B&PV CODE SECTION VIII, 1962 (SEPARATELY BOUND)
- APPENDIX X NOT APPLICABLE TO LACROSSE PLANT
- APPENDIX XI CODE COMPARISON REVIEW OF CODE REQUIREMENTS FOR NUCLEAR SAFETY-RELATED CONCRETE STRUCTURES ACI 318-63 VS. BUILDING CODE REQUIREMENTS FOR REINFORCED CONCRETE ACI 318-56 (SEPARATELY BOUND)

v

APPENDIX XII - NOT APPLICABLE TO LACROSSE PLANT

CONTENTS (Cont.)

Section

Title

APPENDIX XIII - CODE COMPARISON REVIEW OF AISC SPECIFICATION FOR THE DESIGN, FABRICATION, AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS FOR THE YEARS 1980 VS. 1971 INCLUDING SUPPLEMENTS 1 AND 2 (SEPARATELY BOUND)

FOREWORD

This Technical Evaluation Report was prepared by Franklin Research Center under a contract with the U.S. Nuclear Regulatory Commission (Office of Nuclear Reactor Regulation, Division of Operating Reactors) for technical assistance in support of NRC operating reactor licensing actions. The technical evaluation was conducted in accordance with criteria established by the NRC.

Principal contributors to the technical preparation of this report were T. Stilwell and M. Darwish of the Franklin Research Center.

Dr. E. W. Wallo, Chairman of the Civil Engineering Department, Villanova University, and Dr. R. Koliner, Professor of Civil Engineering, Villanova University, provided assistance both as contributing authors and in an advisory capacity as consultants under subcontract with the Franklin Research Center.

The report also incorporates the suggestions, guidance, and supportive efforts provided by Mr. D. Persinko, the NRC Lead Engineer for this task.

1. INTRODUCTION

For the Seismic Category I buildings and structures at the LaCrosse (Genoa) Nuclear Generating Station, this report provides a means for comparison of the structural design codes and loading criteria used in the actual plant design against the corresponding codes and criteria currently used for licensing of new plants.

The objective of the code comparison review is to identify deviations in design criteria from current criteria, and to assess the effect of these deviations on margins of safety, as they were originally perceived and as they would be perceived today.

The work was conducted as part of the Nuclear Regulatory Commission's (NRC) Systematic Evaluation Program (SEP) and provides technical assistance for Topic III-7.B, "Design Codes, Design Criteria, and Load Combinations." The report was prepared at the Franklin Research Center under NRC Contract No. NRC-03-79-118.

2. BACKGROUND

With the development of nuclear power, provisions addressing facilities for nuclear applications were progressively introduced into the codes and standards to which plant building and structures are designed. Because of this evolutionary development, older nuclear power plants conform to a number of different versions of these codes, some of which have since undergone considerable revision.

There has likewise been a corresponding development of other licensing criteria, resulting in similar non-uniformity in many of the requirements to which plants have been licensed. With this in mind, the NRC undertook an extensive program to evaluate the safety of 11 older plants (and eventually all plants) to a common set of criteria. The program, entitled the Systematic Evaluation Program (SEP), employs current licensing criteria (as defined by NRC's Standard Review Plan) as the common basis for these evaluations.

To make the necessary determinations, the NRC is investigating, under the SEP, 137 topics spanning a broad spectrum of safety-related issues. The work reported herein constitutes the results of part* of the investigation of one of these topics, Topic III-7.B, "Design Codes, Design Criteria, and Load Combinations."

This topic is charged with the comparison of structural design criteria in effect in the late 1950's to the late 1960's (when the SEP plants were constructed) with those in effect today. Other SEP topics also address other aspects of the integrity of plant structures. All these structurally oriented tasks, taken together, will be used to assess the structural adequacy of the SEP plants with regard to current requirements. The determinations with respect to structural safety will then be integrated into an overall SEP evaluation encompassing the entire spectrum of safety-related topics.

-2-

*The report addresses only the LaCrosse plant.

3. REVIEW OBJECTIVES

The broad objective of the NRC's Systematic Evaluation Program (SEP) is to reassess the safety of 11 older nuclear power plants in accordance with the intent of the requirements governing the licensing of current plants, and to provide assurance, possibly involving backfitting, that operation of these plants conforms to the general level of safety required of modern plants.

Task III-7.B of the SEP effort seeks to compare actual and current structural design criteria for the major civil engineering structures at each SEP plant site, i.e., those important to shutdown, containment, or both, and therefore designated Seismic Category I structures. The broad safety objective of SEP Task III-7.B is (when integrated with several other interfacing SEP topics) to assess the capability of all Seismic Category I structures to withstand all design conditions stipulated by the NRC, at least to a degree sufficient to assure that the nuclear power plant can be safely shut down under all circumstances.

The objective of the present effort under Task III-7.B is to provide, through code comparisons, a rational basis for making the required technical assessments, and a tool which will assist in the structural review.

Finally, the objective of this report is to present the results of Task III-7.B as they relate to the LaCrosse Nuclear Generating Station.

-3-

4. SCOPE

In general, the scope of work requires comparison of the provisions of the structural codes and standards used for the design of SEP plant Seismic Category I civil engineering structures* against the corresponding provisions governing current licensing practice. The review includes the containment and all Category I structures within and exterior to it. Explicit among the criteria to be reviewed are loads and loading combinations postulated for these structures.

The review scope consists of the following specific tasks:

- Identify current design requirements, based on a review of NRC Regulations; 10CFR50.55a, "Codes and Standards"; and the NRC Standard Review Plan (SRP).
- Review the structural design codes, design criteria, design and analysis procedures, and load combinations (including combinations involving seismic loads) used in the design of all Seismic Category I structures as defined in the Final Safety Analysis Report (FSAR) for each SEP plant.
- Based upon the plant-specific design codes and standards identified in Task 2 and current licensing codes and standards from Task 1, identify plant-specific deviations from current licensing criteria for design codes and criteria.
- 4. Assess the significance of the identified deviations, performing (where necessary) comparative analyses to quantify significant deviations. Such analyses may be made on typical elements (beams, columns, frames, and the like) and should be explored over a range of parameters representative of plant structures.
- 5. Prepare a Technical Evaluation Report for each SEP plant including:
 - a. comparisons of plant design codes and criteria to those currently accepted for licensing
 - b. assessment of the significance of the deviations

^{*}In general, these are the structures normally examined in licensing reviews under Section 3.8 of the SRP (but note the list at the end of this section of structures specifically excluded from the scope of this review).

- c. results of any comparative stress analyses performed in order to assess the significance of the code changes on safety margins
- d. overall evaluation of the acceptability of structural codes used at each SEP plant.

A number of SEP topics examine aspects of the integrity of the structures composing SEP facilities. Several of these interface with the Task III-7.B effort as shown below:

Topic	Designation
III-l	Classification of Structures, Components, Equipment, and Systems (Seismic and Quality)
III-2	Wind and Tornado Loading
III-3.A	Effects of High Water Level on Structures
III-4	Missile Generation and Protection
III-5	Evaluation of Pipe Breaks
III-6	Seismic Design Considerations
III-7.D	Structural Integrity Tests
VI-2	Mass and Energy Release for Postulated Pipe Break.

Because they are covered either elsewhere within the SEP review or within other NRC programs, the following matters are explicitly excluded from the scope of this review:

Mark I torus shell, supports, vents, Reviewed in Generic Task A-7. local region of drywell at vent penetrations

Reactor pressure vessel supports, steam generator supports, pump A-12. supports

Equipment supports in SRP 3.8.3

Reviewed generically in Topic III-6, Generic Task A-12.

Franklin Research Center

-5-

Other component supports (steel and concrete)

Specific supports have been analyzed in detail in Topic III-6. (Component supports may be included later if items of concern applicable to component supports are found as a result of reviewing the structural codes.)

Testing of containment

Inservice inspection; quality control/assurance

Reviewed in Topic III-7.D.

Should be considered in the review only to the extent that it affects design criteria and design allowables. Aspects of inservice inspection are being reviewed in Topics III-7.A and III-3.C

Determination of structures that should be classified Seismic Category I

Shield walls and subcompartments inside containment

Masonry walls

Seismic analysis

Not within scope.

Reviewed in Generic Task A-2.

Reviewed generically in IE Bulletin 80-11.

Being reviewed as an independent SEP Topic.

5. MARGINS OF SAFETY

There are several bases upon which margins of safety* may be defined and discussed.

The most often used is the margin of safety based on yield strength. This is a particularly useful concept when discussing the behavior of steels, and became ingrained into the engineering vocabulary at the time when steel was the principal metal of engineering structures. In this usage, the margin of safety reflects the reserve capacity of a structure to withstand extra loading without experiencing an incipient permanent change of shape anywhere throughout the structure. Simultaneously, it reflects the reserve load carrying capacity existing before the structure is brought to the limit for which an engineer could be certain the computations (based on elastic behavior of the metal) applied.

This is the conventional use of the term and the meaning which engineers take as intended, unless the term is further qualified to show something else is meant. Thus, if a structure is stated to have a margin of safety of 1.0 under a given set of loads, then it will be generally understood that every load on the structure may be simultaneously doubled without encountering (anywhere) inelastic stresses or deflections. On the other hand, if (under load) a structure has no margin of safety, any increment to any load will cause the structure to experience, in a least one (and possibly more than one) location, some permanent distortion (however small) of its original shape.

Because the yield strengths of common structural steels are generally well below their ultimate strengths, the engineer knows that in most (but not all) cases, the structure possesses substantial reserve capacity-beyond his computed margin--to carry additional load.

There are other useful ways, however, to speak of safety margins and these (not the conventional one) are particularly relevant to the aims of the systematic evaluation program.

*Factors of safety (FS) are related to margins of safety (MS) through the relation, MS = FS - 1.

Franklin Research Center

One may speak of margins of safety with <u>respect to code allowable limits</u>. This margin reflects the reserve capacity of a structure to withstand extra loading while still conforming to all criteria governing its design.

One may also speak (if it is made clear in advance that this is the intended meaning) of margins of safety <u>against actual failure</u>. Both steel and concrete structures exhibit much higher "margins of safety" on this second basis than is shown by computation of margins of safety based on code allowables.

These latter concepts of "margin of safety" are very significant to the SEP review. Indeed the basic review concept, at least as it relates to structural integrity, cannot be easily defined in any quantitative manner without considering both. The SEP review concept is redicated on the assumption that it is unrealistic to expect that plants which were built to, and were in compliance with, older codes will still conform to current criteria in all respects. The SEP review seeks to assess whether or not plants meet the "intent" of current licensing criteria as defined by the Standard Review Plan (SRP). The objective is <u>not</u> to require that older plants be brought into conformance with all SRP requirements to the letter, but rather to assess whether or not their design is sufficient to provide the general level of safety that current licensing requirements assure.

With respect to aspects of the SEP program that involve the integrity of structures, the SEP review concept can be rephrased in a somewhat more quantitative fashion in terms of these two "margins of safety." Thus, it is not expected or demanded that all structures show positive margins of safety <u>based upon code allowables</u> in meeting all current SRP requirements; but it is demanded that margins of safety <u>based upon ultimate strength</u> are not only positive, but ample. In fact, the critical judgments to be made (for SEP plants) are:

1. to what extent may current code margins be infringed upon.

 what minimum margin of safety based on ultimate strength must be assured.

The choice of method for Topic III-7.B review can be discussed in terms of these two key considerations.

-8-

5 Franklin Research Center The Franklin institute

6. CHOICE OF REVIEW APPROACH

The approach taken in the review process depends on which key questions (of Section 5) one chooses to emphasize and address first.

One could give primary consideration to the second. If this approach is chosen, one first sets up a minimum margin of safety (based on failure) that will be acceptable for SEP plants. This margin is to be computed in accordance with current criteria. Then one investigates structures designed in accordance with earlier code provisions, and to different loading combinations, to see if they meet the chosen SEP margin when challenged by current loading combinations and evaluated to current criteria. This approach gives the appearance of being efficient. The review proceeds from the general (the chosen minimum margin of safety) to the particular (the ability of a previously designed structure to meet the chosen margin). Moreover, issues are immediately resolved on a "go; no-go" basis. The initial step in this approach is not easy, nor are the necessary evaluations. One is dealing with highly loaded structures in regions where materials behave inelastically. Rulemaking in such areas is sure to be difficult, and likely to be highly controversial.

The alternative approach is taken in this review. It proceeds from the particular to the general, and places initial emphasis upon seeking to answer (for SEP plants) questions as to what, how many, and of what magnitude are the infringements on current criteria. No new rulemaking is involved (at least at the outset). All initial assessments are based on existing criteria.

Current and older codes are compared paragraph-by-paragraph to see the effects that code changes may have on the load carrying ability of individual elements (beams, columns, frames, and the like). It should be noted that this process, although involving judgments, is basically fact-finding -- not decisionmaking.

This kind of review is painstaking, and there is no assurance in advance that it in itself will be decisive. It may turn out, after examination of the

Franklin Research Center

-9-

facts, that designs predicated upon the older criteria infringe upon current design allowables in many cases and to extensive depths. If so, such information will certainly be of value to the final safety assessment, but many unresolved questions will remain.

On the other hand, it may turn out that infringements upon current criteria are infrequent and not of great magnitude. If this is the case, many issues will have been resolved, and questions of structural integrity will be sharply focused upon a few remaining key issues.

7. METHOD

A brief description of the approach used to carry out SEP Topic III-7.B follows. For discussion of the work, it is convenient to divide the approach into six areas:

- 1. information retrieval and assembly
- 2. appraisal of information content
- 3. code comparison reviews
- 4. code change impact assessment
- 5. plant-specific review of the relevancy of code change impacts
- 6. summarizing plant status vis-a-vis design criteria changes.

7.1 INFORMATION RETRIEVAL

The initial step (and to a lesser extent an ongoing task of the review) was to collect and organize necessary information. At the outset, NRC forwarded files relevant to the work. These submittals included pertinent sections of plant FSARs, Standard Review Plan (SRP) 3.8, responses to questions on Topic III-7.B previously requested of licensees by the NRC, and other relevant data and reports.

These submittals were organized into Topic III-7.B files on a plant-byplant basis. The files also contain subsequently received information, as well as other documents developed for the plant review.

A number of channels were used to gather additional information. These included information requests to NRC; letter requests for additional information sent to licensees; plant site visits; and retrieval of representative structural drawings, design calculations, and design specifications.

In addition, a separate file was set up to maintain past and present structural codes, NRC Regulatory Guides, Staff Position Papers, and other relevant documents (including, where available, reports from SEP tasks interfacing with the III-7.B effort).

7.2 APPRAISAL OF INFORMATION CONTENT

Most of the information sources were originally written for purposes other than those of the Task III-7.B review. Consequently, much of the

Franklin Research Center

information sought was embedded piecemeal in the documents furnished. These sources were searched for the relevant information that they did contain. Generally, it was found that information gaps remained (i.e., some items were not referenced at all or were not specific enough for Task III-7.B purposes). The information found was assembled and the gaps were filled through the information retrieval efforts mentioned earlier.

7.3 CODE COMPARISON REVIEWS

The codes and standards used to represent current licensing practice were selected as described in Appendix I of this report. Briefly summarized, the criteria selection corresponds to NUREG-800 (NRC's Standard Review Plan), the operative document providing guidance to NRC reviewers on licensing matters (see Reference 1).

Next, the Seismic Category I structures at the LaCrosse Nuclear Generating Station were identified (see Section 8). For these, the codes and standards which were used for actual design were likewise identified on a structure-bystructure basis (see Section 9). Each code was then paired with its counterpart which would govern design were the structure to be licensed today.

Workbooks were prepared for each code pair. The workbook format consisted of paragraph-by-corresponding-paragraph photocopies of the older and the current versions laid out side-by-side on ll-by-17-inch pages. A central column between the codes was left open to provide space for reviewer comments.

The code versions were initially screened to discover areas where the text either remained identical in both versions or had been reedited without changing technical content. Code paragraphs which were found to be essentially the same in both versions were so marked in the comments column.

The review then focused on the remaining portions of the codes where textual disparities existed. Pertinent comments were entered. Typical comments address either the reason the change had been introduced, the intent of the change, its impact upon safety margins, or a combination of such considerations.

Franklin Research Center

-12-

As can be readily appreciated, many different circumstances arise in such evaluations--some simple, some complex. A few examples are cited and briefly discussed below.

Provisions were found where code changes liberalized requirements, i.e., less stringent criteria are in force today than were formerly required. Such changes are introduced from time to time as new information becomes available regarding the provision in question. Not infrequently, code committees are called upon to protect against failure modes where the effects are well known. but too little is yet clear concerning the actual failure mechanism and the relative importance of the contributing factors. The committee often cannot defer action until a full investigation has been completed, but must act on behalf of safety. Issues such as these are usually resolved with prudence and caution--sometimes by the adoption of a rule (based upon experience and judgment) known to be conservative enough to assure safety. Subsequent investigation may produce evidence showing the adopted rule to be overly cautious, and provide grounds for its relaxation.

On the other hand, some changes which on first view may appear to reflect a relaxation of code requirements do not in fact actually do so. Structural codes tend to be documents with interactive provisions. Sometimes apparent liberalization of a code paragraph may really reflect a general tightening of criteria, because the change is associated with stiffening of requirements elsewhere.

To cite a simple example, a newly introduced code provision may be found making it unnecessary to check thin flanged, box section beams of relatively small depth-to-width ratio for buckling. This might appear to be a relaxation of requirements; however, elsewhere the code has also introduced a requirement that the designer must space end supports closely enough to preclude buckling. Thus, code requirements have been tightened, not relaxed.

Whenever it was found that code requirements had truly been related, this was noted in the reviewer's comments in the code comparison review. Because liberalization of code criteria clearly cannot give rise to safety issues

Franklin Research Center

-13-

concerning structures built to more stringent requirements, such matters were not considered further.

On the other hand, whenever it was clear that a code change introduced more stringent criteria, the potential impact of the change on margins of safety shown for the structure was assessed. When it was felt that the change (although more restrictive) would not significantly affect safety margins, this judgment was entered as a reviewer comment. When it was clear that the code change had the potential to significantly affect the perceived margin of safety, this was noted in the comments and the paragraph flagged for further consideration.

Sometimes the effects of a code change are not apparent. Indeed, depending upon a number of factors,* the change may reflect a tightening of requirements for some structures and a liberalization for others. When doubtful or ambiguous situations were encountered in the review, the effect of the code change was explored analytically using simple models.

A variety of analytical techniques were used, depending on the situation at hand. One general approach was to select a basic structural element (a beam, a column, a frame, a slab, or the like) and analyt.cally test it, under both the older and the current criteria. For example, a typical structural element and a simple loading were selected; the element was then designed to the older code requirements. Next, the load carrying capacity of this structure was reexamined using current code criteria. Finally, the load carrying capacities of the element, as shown by the older criteria and as determined by the current criteria, were compared. Examples of investigations performed to assess code change impacts are found in Appendix C.

In making these studies, an attempt was made to use structural elements, model dimensions, and load magnitudes that were representative of actual structures. For studies that were parametized, an attempt was made to span the parametric range encountered in nuclear structures.

*Geometry, material properties, magnitude or type of loading, type of supports-to name a few. Although one must be cautious about claiming that results from simplified models may be totally applicable to the more complex situations occurring in real structures, it was felt that such examples provided reasonable guidance for making rational judgments concerning the impact of changed code provisions on perceived margins of safety.

7.4 ASSESSMENT OF THE POTENTIAL IMPACT OF CODE CHANGES

As the scope of the Task III-7.B assignment indicates, a limited objective is sought in assessing the effects of code changes on Seismic Category I structures.

The scope of this review is not set at the level of appraisal of individual, as-built structures on plant sites. Consequently, the review does not attempt to make quantitative assessments as to the structural adequacy under current NRC criteria of specific structures at particular SEP plants.

To the contrary, the scope is confined to the comparison of former structural codes and criteria with counterpart current requirements. Correspondingly, the assessment of the impact of changes in codes and criteria is confined to what can be deduced solely from the provisions of the codes and criteria.

Although the review is therefore carried out with minimal reference to actual structures in the field, the assessments of code change impacts that can be made at the code comparison level hold considerable significance for actual structures.

In this respect, two important points should be noted:

 The review brings sharply into focus the changes in code provisions that may give rise to concern with respect to structural margins of safety as perceived from the standpoint of the requirements that NRC now imposes upon plants currently being licensed.

The review figuraneously culls away a number of code changes that do not give lise to such concerns, but which (because they are there) would otherwise have to be addressed, on a structure-by-structure basis.

-15-

 The effects of code changes that can be determined from the level of code review are confined to potential or possible impacts on actual structures.

A review conducted at the code comparison level cannot determine whether or not potentially adverse impacts are actually realized in a given structure. The review may only warn that this may be the case.

For example, current criteria may require demonstration of structural integrity under a loading combination that includes an additional load not specified in the corresponding loading combination to which the structure was designed. If the non-considered load is large (i.e., in the order of or larger than other major loads that were included), then it is quite possible that some members in the structure would appear overloaded as viewed by current criteria. Thus a potential concern exists.

However, no determination as to actual overstress in any member can be made by code review alone. Actual margins of safety in the controlling member (and several others*) must certainly be examined before even a tentative judgment of this kind may be attempted.

In order to carry out the code review objective of identifying criteria changes that could potentially impair perceived margins of safety, the following scheme classifying code change impacts was adopted.

7.4.1 Classification of Code Changes

Where code changes involve technical content (as opposed to those which are editorial, organizational, administrative, and the like), the changes are classified according to the following scheme.

Each such code change is classified according to its potential to alter perceived margins of safety** in structural elements to which it applies. Four categories are established:

Scale A Change - The new criteria have the potential to substantially impair margins of safety as perceived under the former criteria.

Franklin Research Center

^{*}The addition of a new load can change the location of the point of highest stress.

^{**}That is, if (all other considerations remaining the same) safety margins as computed by the older code rules were to be recomputed for an as-built structure in accordance with current code provisions, would there be a difference due only to the code change under consideration?

- Scale A_X Change The impact of the code change on margins of safety is not immediately apparent. Scale A_X code changes require analytical studies of model structures to assess the potential magnitude of their effect upon margins of safety.
- Scale B Change The new criteria operate to impair margins of safety but not enough to cause engineering concern about the adequacy of any structural element.
- Scale C Change The new criteria will give rise to larger margins of safety than were exhibited under the former criteria.

7.4.1.1 General and Conditional Classifications of Code Change Impacts

Scale ratings of code changes are found in two different forms in this report. For example, some are designated as "Scale A," and others as "Scale C." Others have dual designation, such as "Scale A if --- [a condition state-ment] or Scale C if --- [a second condition statement]."

In assigning scale classifications, an <u>efficient</u> design to original criteria is assumed. That is, it is postulated that (a) the provision in question controls design, and (b) the structural member to which the code provision applies was proportioned to be at (or close to) the allowable limit. The impact scale rating is assigned accordingly.

If the code change is Scale A, and it applies (in a particular structure) to a member which is not highly stressed, then this may afford excellent grounds for asserting that this particular member is adequate; but it does not thereby downgrade the ranking to, say, a Scale B change for that member. The scale ranking is neither a function of member stress* nor a ranking of member adequacy. The scale system ranks code change impact, not individual members.

However, a number of code provisions are framed so that the allowable limit is made a function of member proportion. When this kind of a code provision is changed, the change may affect members of certain proportions one way and members of other proportions differently.

*There are exceptions, but these are code-related, not adequacy-related.

Division of The Franklin

For example, assume a change in column design requirements is introduced into the code and is framed in terms of the ratio of the effective column length to its radius of gyration. The new rule acts to tighten design requirements for slender columns, but liberalizes former requirements for columns that are not slender. This change may be rated Scale A for slender columns, and simultaneously, Scale C for non-slender ones. Although some columns now appear to be Scale A columns while others appear to be Scale C columns, the distinction between them <u>resides in the code</u>, and is not a reflection of member adequacy. Clearly, it is still the code changes that are ranked; but, in this case, the code change does not happen to affect all columns in a unilateral way.

7.4.1.2 Code Impact on Structural Margins

This classification of code changes identifies both (a) changes that have the potential to significantly impair perceived margins of safety (Scale A) and (b) changes that have the potential to enhance perceived margins of safety (Scale C).

Emphasis is subsequently placed on Scale A changes, not on Scale C changes. The purpose of the code comparison review is to narrow down and bring into sharper focus the areas where structures shown adequate under former criteria may not fully comply with current criteria. Once such criteria changes have been identified, actual structures may be checked to see if the potential concern is applicable to the structure. Depending upon a number of structure-specific circumstances, it may or may not pertain.

The same thing is true of Scale C changes, i.e., those that may enhance perceived structural margins. Specific structures must be examined to see if the potential benefit is actually applicable to the structure. If it is applicable, credit may be taken for it. However, this step can only be taken at the structural level, not at the code level.

A simple example may help clarify this point. Assume a steel beam exists in a structure designed by AISC 1963 rules for the then-specified loading combination. Current criteria require inclusion of an additional load in the

-18-

Frankiin Research Center

loading combination (Scale A change), but the current structural code permits a higher allowable load if the beam design conforms to certain stipulated proportions (Scale C change). Several circumstances are possible for beams in actual structures, as shown below.

Higher Stress Limit	Results
Applicability immaterial	Beam adequate under current criteria
Beam qualifies for higher stress limit	Beam may be adequate under current criteria
Beam does not qualify for increased stress limit	Beam unlikely to be adequate under current criteria
	<u>Higher Stress Limit</u> Applicability immaterial Beam qualifies for higher stress limit Beam does not qualify for increased stress limit

It is clear from this example that the function of the code review is to point out code changes which might impair perceived margins of safety, and that assessment of their pertinence is best accomplished at the structurespecific level.

7.5 PLANT-SPECIFIC CODE CHANGES

There is substantial overlap among the SEP plants in the codes and standards used for structural design. Several plants, for example, followed the provisions of ACI-318, 1963 edition, in designing major concrete structures.

Thus, the initial work of comparing older and current criteria is not plant-specific. However, when the reviewed codes are packaged in sets containing only those code comparisons relevant to design of Seismic Category I structures in a particular SEP plant, the results begin to take on plantspecific character.

The code changes potentially applicable to particular structures at a particular SEP plant have then been identified. However, this list is almost

surely overly long because the list has been prepared without reference to actual plant structures. For example, the code change list might include an item relating to recently introduced provisions for the design of slender columns, while none actually exist in any structures in that particular plant.

In-depth examination of design drawings, audit of structural analyses, and review of plant specifications were beyond the scope of the III-7.B task; accordingly, such activities were not attempted. However, occasional reference to such documents was necessary to the review work. Consequently, it was possible to cull from the list some items that were obviously inappropriate to the LaCrosse plant structures. Wherever this was done, the reason for removal was documented, but no attempt was made to remove every such item.

Code changes that may be significant for structures in general but did not appear applicable to any of the Seismic Category I structures at the LaCrosse were relegated to Appendix A. The Scale A or Scale A_x changes that remained are listed on a code-by-code basis in Section 11.

8. LACROSSE SEISMIC CATEGORY I STRUCTURES

SEP Topic III-1 has for its objectives the classification of components, structures, and systems with respect to both quality group and seismic designation. Seismic Cateogry I structures in the LaCrosse plant have been identified by Reference 7 as follows:

Containment shell and penetrations Reactor containment building and pipe penetration Control room and electrical equipment room Crib house (water intake structure) Water discharge structure Turbine building (portions housing Class I equipment) Fuel storage building.

At the LaCrosse plant, the stacks are located in close proximity to other Category I systems and structures. Consequently, if stack failure is postulated, it has the potential to impair some vital function of these systems or structures. Therefore, the stacks are treated as Seismic Category I structures in this report.

A major structures not referenced above as Seismic Category I are the new diesel generator building and the spent fuel pool, although classified as Seismic Category I under current criteria.

Design load tables and loading combination tables are also supplied in Section 10 for these structures.

-21-

9. STRUCTURAL DESIGN CRITERIA

The structural codes governing design of the major Seismic Category I structures for the LaCrosse plant are detailed in the following table.

	Desig	n	Current	
Structure	Criteria**		Criteria	
Containment shell	ASME BEPV Code		ASME B&PV Code,	
and penetration	Section VIII,	1962	Section III	
			Subsection NE,	1980
Reactor containment	ACI 318-56		ACI 349-76	
building and its internal structures	AISC 1961		AISC 1980	
Spent fuel pool	ACI 318-56		ACI 349-76	
Control room	Not stated in	the material	ACI 349-76	
	furnished for	review	AISC 1980	
New diesel generator	Not stated in	the material	ACI 349-76	
building	furnished for	review	AISC 1980	
Crib house (water	Not stated in	the material	ACI 349-76	
intake structure)	furnished for	review	AISC 1980	
Water discharge	Not stated in	the material	ACI 349-76	
structure	furnished for	review	AISC 1980	
Turbine building	Not stated in	the material	ACI 349-76	
(portions housing Class 1 equipment)	furnished for	review	AISC 1980	
Fuel storage area	Not stated in	the material	ACI 349-76	
	furnished for	review	AISC 1980	
Stacks	Not stated in	the material	· · · · · · · · · · · · · · · · · · ·	
	furnished for	review		
	<pre>Structure Containment shell and penetration Reactor containment building and its internal structures Spent fuel pool Control r∞m New diesel generator building Crib house (water intake structure) Water discharge structure Turbine building (portions housing Class l equipment) Fuel storage area Stacks</pre>	StructureDesign Criter:Containment shell and penetrationASME B&PV Code Section VIII,Reactor containment building and its 	StructureDesign Criteria**Containment shell and penetrationASME B&PV Code Section VIII, 1962Reactor containment building and its internal structuresACI 318-56 AISC 1961Spent fuel poolACI 318-56Control roomNot stated in the material furnished for reviewNew diesel generator buildingNot stated in the material furnished for reviewCrib house (water intake structure)Not stated in the material furnished for reviewWater discharge structureNot stated in the material furnished for reviewTurbine building (portions housing Class 1 equipment)Not stated in the material furnished for reviewFuel storage areaNot stated in the material furnished for reviewStacksNyt stated in the material furnished for review	StructureDesign Criteria**Current CriteriaContainment shell and penetrationASME B&PV Code Section VIII, 1962ASME B&PV Code, Section III Subsection NE,Reactor containment building and its internal structuresACI 318-56 AISC 1961ACI 349-76 AISC 1980Spent fuel poolACI 318-56 AISC 1961ACI 349-76 AISC 1980New diesel generator buildingNot stated in the material furnished for reviewACI 349-76 AISC 1980New diesel generator buildingNot stated in the material furnished for reviewACI 349-76 AISC 1980Crib house (water intake structure)Not stated in the material furnished for reviewACI 349-76 AISC 1980Water discharge structureNot stated in the material furnished for reviewACI 349-76 AISC 1980Turbine building (portions housing Class 1 equipment)Not stated in the material furnished for reviewACI 349-76 AISC 1980Fuel storage area StacksNot stated in the material furnished for reviewACI 349-76 AISC 1980

^{*}Comparisons of the previous design code with current versions for the primary vent stack are not carried out in this report since a complete reanalysis of the stack to current criteria will be carried out within the SEP program. **Page 4 of Reference 8 indicates that the AISC 1961 code was used. The fifth edition (in effect from 1946 to 1963) was then current, and the 1953 printing has been used as the reference in this report.

10. LOADS AND LOAD COMBINATION CRITERIA

10.1 DESCRIPTION OF TABLES OF LOADS AND LOAD COMBINATIONS

The requirements governing loads and load combinations to be considered in the design of civil engineering structures for nuclear service have been revised since the older nuclear power plants were constructed and licensed. Such changes constitute a major aspect of the general pattern of evolving design requirements; consequently, they are singled out for special consideration in this section of this report.

The NRC Regulatory Guides and Standard Review Plans provide guidance as to what loads and load combinations must be considered. In some cases, the required loads and load combinations are also specified within the governing structural design code; other structural codes have no such provisions and take loads and load combinations as given a priori. In this report, loads and load combinations are treated within the present section whether or not the structural design codes also include them.

Later sections of this report address, paragraph by paragraph, changes in text between design codes current at the time the plant was constructed and those governing design today; however, to avoid repetition, code changes related to loads and load combinations will not be evaluated again although they may appear as provisions of the structural design codes.

To provide a compact and systematic comparison of previous and present requirements, two sets of tables are used:

- 1. load tables
- 2. load combination tables.

Both sets of tables are constructed in accordance with current requirements for Seismic Category I structures, i.e., the load tables list all loads that must be considered in today's design of these structures (as enumerated in NRC's Standard Review Plan), and the load combination tables list all combinations of these loadings for which current licensing procedures require demonstration of structural integrity.

Franklin Research Center

-23-

In general, the loads and load combinations to be considered are determined by the structure under discussion. The design loads for the structure housing the emergency power diesel generator, for example, are quite different than those for the design of the containment vessel. Consequently, structures must be considered individually. Each structure usually requires a load table and load combination table appropriate to its specific design requirements.

The design requirements for the various civil engineering structures within a nuclear power plant are echoed in applicable sections of NRC's Standard Review Plan (SRP) 3.8. The tables in the present report correspond to, and summarize, these requirements for each structure. A note at the bottom of each table provides the reference to the applicable section of the Standard Review Plan. Section 10.2 of this report lists, for reference, the load symbols used in the charts together with their definitions.

The loads actually used for design are considered, structure by structure, and the load tables are filled in according to the following scheme:

- The list of potentially applicable loads (according to current requirements) is examined to eliminate loads which either do not occur on, or are not significant for, the structure under consideration.
- The loads included in the actual design basis are then checked against the reduced list to see if all applicable loads (according to current requirements) were actually considered during design.
- 3. Each load that was considered during design is next screened to see if it appears to correspond to current requirements. Questions such as the following are addressed: Were all the individual loads encompassed by the load category definition represented in the applied loading? Do all loads appear to match present requirements (1) in magnitude? (2) in method of application?
- 4. An annotation is made as to whether deviations from present requirements exist, either because of load omissions or because the loads do not correspond in magnitude or in other particulars.
- If a deviation is found, a judgment (in the form of a scale ranking) is made as to the potential impact of the deviation on perceived margins of safety.

6. Relevant notes or comments are recorded.

Of particular importance to the Topic III-7.B review are comments indicating that the effects of certain loadings (tornado and seismic loads, in particular) are being examined under other SEP topics. In all such cases, the findings of these special SEP topics (where review in depth of the indicated loading conditions will be undertaken) will be definitive for the overall SEP effort. Consequently, no licensee investigation of such issues is required under Topic III-7.B nor is such effort within the scope of Topic III-7.B (see Section 4). Licensee participation in the resolution of such issues may, however, be requested under the scope of other SEP topics devoted to such issues.

After the load tables have been filled out, the load combination tables are compiled. Like the load tables, the load combination tables are drawn up to current requirements and the load combinations actually used in the design basis are matched against these requirements.

Current criteria require consideration during plant design of 13 load combinations for most structures, as shown in the load combination tables. These specific requirements were not in effect at the time when SEP plants were designed. Consequently, other sets of load combinations were used. In comparing actual and current criteria, an attempt was made to match each of the load combinations actually considered to its nearest counterpart under present requirements. For example, consider a plant where the safe shutdown earthquake was addressed in combination with other loads, but not in combination with the effects of a LOCA (load combination 13). The load combination tables would reflect this by showing that load case 9 was addressed, but that load case 13 was not. If six load cases were considered, only six (nearest counterpart) load cases are indicated in the table--not partial fulfillment of all 13.

For ease of comparison, the load combinations actually used are superimposed on the load combinations currently required. This is accomplished in two steps:

 Currently specified load combinations include loads sufficient for the most general cases. In particular applications, some of these are either inappropriate or insignificant. Therefore, the first step

Franklin Research Center

is to strike all loads that are not applicable to the structure under consideration from all load combinations in which they appear.

 Next, loads actually combined are indicated by encircling (in the appropriate load combinations) each load contributing to the summation considered for design.

Thus, the comparison between what was actually done and what is required today is readily apparent. If the load combinations used are in complete accord with current requirements, each load symbol on the sheet appears as either struck or encircled. Load combinations not considered, and loads omitted from the load combinations stand out as unencircled items.

A scale ranking is next assigned to the load combinations; however (unlike the corresponding ranking of loads), a scale ranking is not necessarily assigned to each one. When the load combinations used for design correspond closely to current requirements, scale ratings may be assigned to all combinations. However, when the number of load combinations considered in design was substantially fewer than current criteria prescribe, it did not appear to serve any engineering purpose to rank the structure for each currently required load combination. Instead, a limited number of loading cases (usually two) were ranked.

The following considerations guided the selection of these cases:

- For purposes of the SEP review, it was not believed necessary to require an extensive reanalysis of structures under all load combinations currently specified.
- SEP plants have been in full power operation for a number of years. During this time, they have experienced a wide spectrum of operating and upset conditions. There is no evidence that major Seismic Category I structures lack integrity under these operating conditions.
- The most severe load combinations occur under emergency and accident conditions. These are also the conditions associated with the greatest consequences to public health and safety.
- 4. If demonstration of structural adequacy under the most severe load combinations currently specified for emergency and accident conditions is provided, a reasonable inference can be drawn that the structure is also adequate to sustain the less severe loadings associated with less severe consequences.

Franklin Research Center

The scale rankings assigned to loads and load combinations in tables are intended as an appraisal of plant status, with respect to demonstration of compliance with current design criteria, based on information available to the NRC prior to the inception of the SEP review. A number of structurally related SEP topics review some loads and load combinations in detail based upon current calculational methods. In order that a consistent basis for the tables be maintained, they are based upon load combinations considered in the original design of the facility or, in the case of facility modifications, they are based upon the combinations used in the design of the modification. Loads that were not included in the original design or that have increased in magnitude and have not been specifically addressed in another SEP topic should be addressed by the Licensee.

10.2 LOAD DEFINITIONS

D Dead loads or their related internal moments and forces (such as permanent equipment loads).

E or E₀ Loads generated by the operating basis earthquake.

E' or Ess Loads generated by the safe shutdown earthquake.

- F Loads resulting from the application of pre-stress.
- H Hydrostatic loads under operating conditions.
- H_a Hydrostatic loads generated under accident conditions, such as post-accident internal flooding. (F_L is sometimes used by others* to designate post-LOCA internal flooding.)
- L Live loads or their related internal moments and forces (such as movable equipment loads).
- P_a Pressure load generated by accident conditions (such as those generated by the postulated pipe break accident).
- Po or Py Loads resulting from pressure due to normal operating conditions.

*See, for example, SRP 3.8.2.

- Ps All pressure loads which are caused by the actuation of safety relief valve discharge including pool swell and subsequent hydrodynamic loads.
- R_a or R_r Pipe reactions under accident conditions (such as those generated by thermal transients associated with an accident).
 - R₀ Pipe reactions during startup, normal operating, or shutdown conditions, based on the critical transient or steady-state condition.
 - R_s All pipe reaction loads which are generated by the discharge of safety relief valves.
 - T_a Thermal loads under accident conditions (such as those generated by a postulated pipe break accident).
 - To Thermal effects and loads during startup, normal operating, or shutdown conditions, based on the most critical transient or steady-state condition.
 - T_S All thermal loads which are generated by the discharge of safety relief values.
 - N Loads generated by the design wind specified for the plant.
- W' or Wt Loads generated by the design tornado specified for the plant. Tornado loads include loads due to tornado wind pressure, tornadocreated differential pressure, and tornado-generated missiles.
 - Y_j Equivalent static load on the structure generated by the impingement of the fluid jet from the broken pipe during the design basis accident.
 - Ym Missile impact equivalent static load on the structure generated by or during the design basis accident, such as pipe whipping.
 - Yr Equivalent static load on the structure generated by the reaction on the broken pipe during the design basis accident.

The load combination charts correspond to loading cases and load definitions as specified in the appropriate SRP. Each chart is associated with a specific SRP as identified in the notes accompanying the chart. Guidance with respect to the specific loads which must be considered in forming each load combination is provided by the referenced SRP. All SRPs are prepared to a standard format; consequently, subsection 3 of each plan always contains the appropriate load definitions and load combination guidance.

Franklin Research Center

-28-

10.3 DESIGN LOAD TABLES

"COMPARISON OF DESIGN BASIS LOADS"

NOTE: To assist in Dairyland Power Cooperative's review of the LaCrosse plant, the load and load combination tables for the following structures have been completed:

> Containment Shell Containment Building (concrete structure interior to shell) Turbine Building Diesel Generator Building Stacks.

These are the only structures for which load combinations were found in the information made available for review.

Blank tables for the loads and the load combinations appropriate to other Seismic Category I structures are provided and should be completed by the Licensee.
STRUCTURE:

CONTAINMENT SHELL (STEEL)

COMPARISON OF DESIGN BASIS LOADS 3.

PLANT: LA CROSSE

	Current Design Basis Loads	Is Load Applicable To This Structure	Is Load Included In Plant Design Basis?	SEP Topic Reviewing This Load	Does Load Magnitude Correspond To Present Criteria?	Does Deviation Exist In Load Basis?	Code Impact Scale Ranking	Comments
Gravity	D L	Yes Yes	Yes Yes	=	Yes Yes	No No	 A _x	1.
Pressure	F H Po Pa ?	Yes Yes Yes Yes	Yes Yes Yes	VI-2.D, III-7.B	- -	* No *	* * 3,	4. 6.
The run I	T _o T _a T _S	Yes Yes Yes	Yes Yes	VI-2.D, III-7.B	•	*	*	5. 5.
Plac 8 Mech.	R _o R _a Rg	7es Yes Yes	Yes				в,	6.
Environmental	E' E W' W	Yes Yes Yes Yes	Yes Yes Tes Yes	III-6 III-6 III-2, III-4.A III-2, III-4.A	•	:	* • •	2. 2. 3.
Impulse	۲ _r ۲ _j ۲ _m	Yes Yes Yes		III-5.A III-5.A III-5.A	•	: : :	•	

Ref.; SRP(1981) Section 3.8.1 or 3.8.2

Comments

- 1. Roof loads have increased per SEP Topic II-2.A.
- Page 12 of reference 3, indicates that (static) earthquake load of 0.1g was assumed. FSAR reports
 that a subsequent dynamic analysis for a 0.12g horizontal SSE. A simultaneous vertical response
 of 2/3 of the horizontal was considered.
- 3. Design wind load considered was 78 mph. An analysis performed in 1974 which concluded that the containment shell could not be overturned by 300 mph winds. However, the upper hemispherical head could be penetrated by a postulated missile.
- 4. 52 psig maximum internal pressure was considered, per ref. 8.
- 5. 280°F design temperature was considered, per ref. 8.
- Direct discharge to vapor containment not anticipated to cause major structural problems because of the large containment volume vs. relatively small reactor power.

Franklin Research Center A Division of The Franklin Institute

STRUCTURE:

REACTOR CONTAINMENT STRUCTURE (Concrete)

PLANT: LA CROSSE

COMPARISON OF DESIGN BASIS LOADS

	Current Design Basis Loads	Is Load Applicable To This Structure	Is Load Included In Plant Design Basis?	SEP Topic Reviewing This Load	Does Load Magnitude Correspond To Present Criteria?	Does Deviation Exist In Load Basis?	Code Impact Scale Ranking	Comments
Gravity	D L	Yes Yes	Yes Yes	=	Yes Yes	No No	_	
Pressure	F H P O P a P	Yes Yes Yes Yes	Yes Yes Yes No	VI-2.D. III-7.B	* * No	* Xo	* * B _x	2.
The run I	To Ta Ts	Yes Yes Yes	Yes Yes No	 VI-2.D, III-7.8	* No	No *	* [*] ^B x	2.
Pipe 6 Mech.	R _o R _a R _s	Yes Yes Yes	Yes — No	=	No	No		2.
Environmental	ב' ב אי	Yes Yes Yes 1. Yes 1.	Yes Yes Yes	III-6 III-6 III-2, III-4.A III-2, III-4.A	* • •	* * *	* * *	3. 3.
lapulse	Yr Yj Ym	Yes Yes Yes	-	III-5.A III-5.A III-5.A	*	*	*	

Ref.; SRP(1981) Section 3.8.1 or 3.8.2

Comments

- 1. Concrete shell is counted on to resist tornado missiles and to prevent overturning under wind and tornado loads.
- Direct discharge to vapor containment not anticipated to cause major structural problems because of the large containment volume vs. relatively small reactor power.
- 3. Page 12 of reference 8, indicates that (static) earthquake load of 0.1g was assumed. FSAR reports that a subsequent dynamic analysis for a 0.12g horizontal SSE. A simultaneous vertical response of 2/3 of the horizontal was considered.

 \star

COMPARISON OF DESIGN BASIS LOADS

STRUCTURE :

SPENT FUEL POOL (IN CONTAINMENT BUILDING)

PLANT: LA CROSSE

	Current Design Basis Loads	Is Load Applicable To This Structure	Is Load Included In Plant Design Basis?	SEP Topic Reviewing This Load	Coes Load Magnitude Correspond To Present Criteria?	Does Deviation Exist In Load Basis?	God e Impact Scale Ranking	Comments
Gravity	D L							
Pressure	F H Pa			III-3.A III-5.B	•			
Thermal	T _o T _a			III-5.B				
Pipe 6 Mech.	R _o R _a							
Environmental	е к ж			III-6 III-6 III-2, III-4.A III-2, III-4.A	•	*		
Impulse	Yr Yj Ym			III-5.8 III-5.8 III-5.8	:	:		

Ref.; SRP(1981) Section 3.8.4

Comments

STRUCTURE :

CONTROL ROOM AND ELECTRICAL EQUIPMENT ROOM

PLANT: LA CROSSE

×

	Current Design Basis Loads	Is Load Applicable To This Structure	Is Load Included In Plant Design Basis?	SEP Topic Reviewing This Load	Does Load Magnitude Correspond To Present Criteria?	Does Deviation Exist In Load Basis?	Code Impact Scale Ranking	Comments
Gravity	D L							
9 tessur e	Р Н Ра			III-3.A III-5.B	•	•		
Thermal	т _о т _а			III-5.B		*		
Pipe 6 Mech.	R R a							
Environmental	2 2 10 10			III-6 III-6 III-2, III-4.A III-2, III-4.A	• • • •	• • • •		
Impulse	Yr Yj Ym			III-5.B III-5.B III-5.B	•	*		

Ref.; SRP(1981) Section 3.8.4

Comments

Franklin Research Center

STRUCTURE :

NEW DIESEL GENERATOR BUILDING

PLANT: LA CROSSE

	Current Design Basis Loads	Is Load Applicable To This Structure	Is Load Included In Plant Design Basis?	SEP Topic Reviewing This Load	Does Load Magnitude Correspond To Present Criteria?	Does Deviation Exist In Load Basis?	Code Impact Scale Ranking	Comments
Gravity	D L	Yes Tes	Yes Yes		-	No No	 ^A _X	1.
Pressure	F H Pa	No 7es No	-	LII-3.A LII-5.B	 •			
Thermal	T _o T _a	Negl. No		 III-5.8	-	-		
Pipe 6 Mech.	R _o R _a	No No	-			No		
Environmental	ย ย พั พั	Yes Yes Yes Yes	Yes Yes No Yes	III-6 III-6 III-2, III-4.A III-2, III-4.A		* * *	* * ^Å x	2.
Impulse	Yr Yj Ym	No No No	-	III-5.8 III-5.8 III-5.8	: :		•	

Ref.; SRP(1981) Section 3.8.4

Comments

- 1. Roof loads have been increased per SEP Topic II-2.A and may increase per SEP Topic II-3.B for parapet roofs.
- Licensee reports that this structure was designed for a maximum wind speed of 111 mph and a pressure drop of 0.25 psi.

Franklin Research Center A Division of The Franklin Institute

STRUCTURE : CRIB HOUSE (WATER INTAKE STRUCTURE) AND WATER DISCHARGE STRUCTURE

PLANT: LA CROSSE

.

.

	Current Design Basis Loads	Is Load Applicable To This Structure	Is Load Included In Plant Design Basis?	SEP Topic Reviewing This Load	Does Load Magnitude Correspond To Present Criteria?	Does Deviation Exist In Load Basis?	Code Impact Scale Ranking	Comments
Gravity	D L							
Pressure	P H Pa			111-3.A 111-5.8	:	•		
Thermal	T _o T _a			III-5.8		•		
Pipe 6 Mech.	R _o R _a							
Environmental	E' E W' W			III-6 III-6 III-2, III-4.A III-2, III-4.A	•	* * *		
Impulse	Yr Yj Ym			III-5.8 III-5.8 III-5.8	•	*		

Ref.; SRP(1981) Section 3.8.4

Comments

COMPARISON OF DESIGN BASIS LOADS

STRUCTURE: TURBINE BUILDING (PORTIONS HOUSING CLASS 1 EQUIPMENT)

PLANT: LA CROSSE

	Current Design Basis Loads	Is Load Applicable To This Structure	Is Load Included In Plant Design Basis?	SEP Topic Reviewing This Load	Does Load Magnitude Correspond To Present Criteria?	Does Deviation Exist In Load Basis?	Code Impact Scale Ranking	Comments
Gravity	D L	Yes Yes	Yes Yes	=		No No	 A _x	1.
Pressure	F H Pa	No Yes Yes	No	III-3.A III-5.B	- :	No * *	• •	2., 3.
Thermal	T _o T _a	Negl. Yes	No	III-5.B	-	-		
Pfpe 6 Mech.	R _o R _a	Yes Yes	Yes No		-	 Yes		
Éavi ronment a l	5 5 7 7	Yes Yes Yes Yes	Yes Yes Yes	III-6 III-6 III-2, III-4.A III-2, III-4.A	:	*	A _x * A _x	4.
Iapulse	Yr Yj Ym	Yes Yes Yes	-	III-5.B III-5.B III-5.B	:		: :	

Ref.; SRP(1981) Section 3.8.4

Comments

- * To be determined per results of SEP topics. Scale ranking shown for SEP topic items are independent judgments, based on information in the FSAR or other original design documents.
 - Roof loads have increased per SEP Topic II-2.A and may increase per SEP Topic II-3.3 for parapet roofs.
 - 2. Section 1.1 of Reference 5 states that "An evaluation of the turbine building arrangements concludes that_the maximum peak pressure will be produced by the main steam line break and will greatly exceed the turbine building design pressure (3.39 psig as compared with 0.17 psi). Due to the type of building construction, it has been concluded that no significant structural damage will occur since wall (or roof) panels will be blown out before structural elements can be affected".
 - 3. Note that pressure effects are not included in any load combinations computed for this structure.
 - 4. Portions of the structure above EL. 668 ft. appear vulnerable to damage from tornado loads.

Franklin Research Center A Division of The Franklin institute

STRUCTURE :

FUEL STORAGE BUILDING

PLANT: LA CROSSE

	Current Design Basis Loads	Is Load Applicable To This Structure	Is Load Included In Plant Design Basis?	SEP Topic Reviewing This Load	Does Load Magnitude Correspond To Present Criteria?	Does Deviation Exist In Load Basis?	Code Impact Scale Ranking	Comments
Gravity	D L						1 5	
Pressure	Г Н Ра			III-3.A III-5.B	:	:		
Thermal	T _o T _a			III-5.B	•			
Pipe å Mech.	R _o R _a							
Eav1 ronmental	8' 8 8' 8 8			III-6 III-6 III-2, III-4.A III-2, III-4.A	•••••	* * *		
Impulse	Yr Yj Ym			III-5.8 III-5.8 III-5.8	•	•		

Ref.; SRP(1981) Section 3.8.4

Comments

Franklin Research Center

COMPARISON OF DESIGN BASIS LOADS

STRUCTURE :

STACKS

PLANT: LA CROSSE

	Current Design Basis Loads	Is Load Applicable To This Structure	Is Load Included In Plant Design Basis?	SEP Topic Reviewing This Load	Does Load Magnitude Correspond To Present Criteria?	Does Deviation Exist In Load Basis?	Code Impact Scale Ranking	Commencs
Gravity	D L	Yas Yas	Yes Yes	_	-	No No	-	
Pressore	F H P a	No Yes No	-	III-3.A III-5.B	 • •	-		
Biermal	T _o T _a	Yes No	Yes	111-5.5				
Pipe 6 Mach.	R _o Ra	No No	_					
favironmental	е, в 3. М. М. М.	- Tes Tes Yes Yes	Yes Yes Yes	III-6 III-6 III-2, III-4.A III-2, III-4.A	:	•	* * * *	
Impulse	Yr Yj Ym	No No No	-	III-5.8 III-5.8 III-5.8	•	*	:	

Ref.; SRP(1981) Section 3.8.4

Comments

* To be determined per results of SEP topics. Scale ranking shown for SEP topic items are independent judgments, based on information in the FSAR or other original design documents.

1. Paragraph 1.3.4.1 of the La Crosse FSAR concludes that the stacks will neither overturn, nor break at higher levels, for windspreads of:

LACBWR Chimney: 203.7 MPH

(Rebar strained to 50% of its ultimate strain)

GENOA #3 stack: 217.9 MPH

(Rebar at yield stress) or 235.6 MPH (Rebar strained to 50% of ultimate strain).

Franklin Research Center A Division of The Franklin Institute

10.4 LOAD COMBINATION TABLES

"COMPARISON OF LOADING COMBINATION CRITERIA"

NOTE: To assist in Dairyland Power Coor rative's review of the LaCrosse plant, the load and load combina ion tables for the following structures have been completed:

> Containment Shell Containment Building (concrete structure interior to shell) Turbine Dailding Diese' Geogrator Building

These the while structures for which load combinations were found in the information made available for review.

Blank tables for the loads and the load combinations appropriate to other Seismic Category I structures are provided and should be completed by the Licensee.

Franklin Research Center

PLAN	COMPARI T: LA CROSS	SON OF LOAD SE	ING COMBIN	ATION CRITE	RIA	STRUCTURE CONT	INMENT VES	SEL	
	Combined Loading Cases	Gravity Dead, Live	Thermal	Pressure	Mechanical	Natural Phenomena	Impulsive Loading	Scale Ranking]
Service Lev 1 A	1 2 3 4	(D)+L D+L D+L D+L D+L	(T) T, T, T, T, T,	$ \begin{array}{c} P_{o} \\ P_{s} \\ P_{a} \\ P_{a} + P_{s} \end{array} $	R _s R _a R _a + R _s				
Service Level B	1 2 3 4	D + L (D)+(L) D + L D + L	r.a. (+) r.a. r.a.	Po Ps Ps+Ps	Ra Ra Ra	E (E) 2.			
Service Level C	1 2 3	D + L (L) L (D) + L D + C	T_a (T_0) $T_a + T_s$	Pa Po Pa + Ps	Ra Ro Ra + Rs	E' (E') 2. E'			3.
Service Level D	1. 2	D + L D + L	T _a T _a + T _s	Pa Pa + Ps	R _a R _a + R _s	£' g* 2.	Y =+Y j +Y a	A _x	•.,
Post - LOCA Flooding	1	D + L		۶Ľ		Ε			

Ref.: SRP Section 3.8.2 Steel Containment

Notes

- 1. Encircled loads are those actually considered in the design per FSAR. When load factors different from those currently required were used. the factor used is also encircled.
- 2. For enclosed containments, these loads should also be investigated with a tornado loading replacing the seismic loading.
- 3. Design wind load considered was 78 mph per reference 8. Subsequently, a wind and tornado analysis was performed in 1974 which concluded that the containment shell could not be overturned by 300 mph winds. However, the upper hemispherical head could be penetrated by postulated missiles.
- 4. Load combinations indicated by dashed lines are taken from: Seismic Review Table, Department of Nuclear Energy, Brookhaven National Lab., NUREG/CR-1429 dated May 1980. Note particularly the absence of pressure effects in any of the load combinations considered.
- 5. 52 psig maximum internal pressure was considered, per reference 8.
- 6. For purposes of the SEP Review, demonstration that structural integrity is maintained for the above load cases (per current criteria) may be considered as providing reasonable assurance that this structure meets the intent of current design criteria.

FOR STEEL CONTAINMENT STRUCTURES

A Dension of The Franklin Institute

41-

PLANT	LA CROSSE			
SERVICE	CURRENT CRITERIA (REF.: TABLE NE - 3221-1, ASME SECTION 111	, 1980)	DESIGN CRITERIA (REF.:	
	CRITERIA	VALUE, psi	CRITERIA	VALUE, ps1
A	P 1.0 S AC P 1.5 S AC P 1.5 S AC P 1.5 S AC P 1.5 S AC	16,500 24,750 24,750		
	$\begin{array}{c} P_{L} + P_{D} + Q \\ \text{(See note 6)} \end{array}$	57.870		
в	P 1.0 Smc P 1.5 Smc P 1.5 Smc	16,500 24,750 24,750		
	$P_L + P_b + Q$ 3.0 S _{M1} (See note 6)	57,870		
c	P _m 1.2 S _{mc} or 1.0 S _y P _L 1.8 S _{mc} or 1.5 S _y	32,000 48,000	Criteria used to be supplied by the licensee	
	$P_{L} + P_{b}$ 1.8 S _{mc} or 1.5 S _y (See notes 3, 4 \$ 6)	48,000		
	P _m 1.0 S _f	33,660		
	PL 1.5 Sf	50,490		
U	P _L + P _b 1.5 S _f (See notes 2, 5 & 6)	50,490		
POST- FLOODING	P _m 1.2 S _{mc} or 1.0 S _y P _L 1.8 S _{mc} or 1.5 S _y	32,000 48,000		
CONDITION	$P_L + P_b$ $P_L + P_b + Q$ (See notes 4 5 6) $1.8 S_{mc} \text{ or } 1.5 S_{m1}$ $3.0 S_{m1}$	48,000 57,870		

SHEL SPEC. NO. SA201	See note 8 L MATERIAL GRADE: 8, FBX to A300
YIELD STRESS (S.) ULT. STRENGTH (S. CURRENT PRIMARY	= 32,000 pst) = 60,000 pst S _{mc} = 16,500 pst S _{m1} = 19,206 pst
STRESS INTENSITY LIMIT DESIGN PRIMARY	(See note 1) S * 15,000 ps1

NOTES: 1. NOTE THAT CURRENT PRIMARY STRESS INTENSITY LIMITS PRESUME (AMONG OTHER CODE QUALITY CONTROLS) MODERN COMPUTERIZED METHODS OF ANALYSIS. CONSEQUENTLY, CAUTION SHOULD BE OBSERVED IN MAKING DIRECT COMPARISONS WITH DESIGN STRESS LIMITS APPROPRIATE FOR LESS MODERN ANALYTICAL PROCEDURES.

2. THE COMPARABLE CURRENT CRITERIA ASSUMING ELASTIC METHODS WERE USED FOR THE ORIGINAL DESIGN ANALYSIS.

3. VALUES SHOWN PERTAIN TO INTEGRAL AND CONTINUOUS STRUCTURES ONLY.

THE LARGER OF THE TWO LIMITS IS APPLICABLE. 4.

5. SF IS 85% OF THE GENERAL PRIMARY MEMBRANE ALLOWABLE PERMITTED IN APPENDIX F OF SECTION III, ASME CODE.

6. IN ALL INSTANCES FATIGUE AND BUCKLING CRITERIA MUST ALSO BE SATISFIED.

7. IN ACCORDANCE WITH ASME DIV. 1, SUBSECT NE, SUBPARA. NE 2121, THIS MATERIAL IS NOT LISTED ANONG THOSE CURRENTLY PERMITTED. REF: APPENDICES TABLE 1-10.1. "CURRENT" STRESS VALUES LISTED ARE DEMIVED USING S_{mc} = 1.1 x 1/4 x S_u, and S_{ml} @ 235°F FROM TABLE N-421 ASME BAPY CODE SECT. 111, CLASS A, 1965 8. Per CB&I MANUFACTURER'S DATA REPORT FOR UNIFIED PRESSURE (SEE REFERENCE 9).

STRUCTURE :

LA CROSSE				CONTAINMENT BUILDING			
Gravity Dead, Live	Thermal	Pressure	Mechanical	Natural Phenomena	Impulsive Loading	Scale Rankin	
1.4D + 1.7L					4.21		
1.4D + 1.7L				1.9E			
.75 (1.4D + 1.7L)	.75 x 1.7 T _o		.75 x 1.7 R ₀				
.78 (1.4D + 1.7L)	.75 ± 1.7 T _o		.75 x 1.7 R _o	.75 x 1.9E			
D + L	To		Ro	Ε'			
D + L	τ _o		R _o	۳ _c			
D + L	τ _a	L.S Pa	Ra				
D + L	T _a	1.25 P _a	R _a	1.25E	$Y_r + Y_j + Y_m$		
D + L	T _a	P _a	Ra	ε'	$Y_r + Y_j + Y_m$	A _x	
	STRUCTURES LA CROSSE Gravity Dead, Live 1.4D + 1.7L 1.4D + 1.7L 1.4D + 1.7L .75 (1.4D + 1.7L) .75 (1.4D + 1.7L) D + L D + L D + L D + L D + L	STRUCTURES LA CROSSE Thermal $1.4D + 1.7L$ Thermal $1.4D + 1.7L$ $1.4D + 1.7L$ $1.4D + 1.7L$ $1.4D + 1.7L$ $.75 (1.4D + 1.7L)$ $.75 (1.4D + 1.7L)$ $ D + L T_o D + L T_a D + L T_a D + L T_a D + L T_a $	STRUCTURES LA CROSSE Gravity Dead, Live Thermal Pressure 1.4D + 1.7L I I 1.4D + 1.7L I I 1.4D + 1.7L .75 x 1.7 T _o I .75 (1.4D + 1.7L) .75 x 1.7 T _o I .75 (1.4D + 1.7L) .75 x 1.7 T _o I D + L T _o I D + L T _o I D + L T _a 1.5 P _a D + L T _a P _a	STRUCTURES LA CROSSE Gravity Dead, Live Thermal Pressure Mechanical $1.4D + 1.7L$ I I $.75 (1.4D + 1.7L)$ $.75 \times 1.7 T_0$ I $.75 (1.4D + 1.7L)$ $.75 \times 1.7 T_0$ I $.75 (1.4D + 1.7L)$ $.75 \times 1.7 T_0$ I $D + L$ T_0 I $D + L$ T_0 R_0 $D + L$ T_a $1.5 P_a$ R_a $D + L$ T_a $1.25 P_a$ R_a $D + L$ T_a P_a R_a	STRUCTURES LA CROSSE CONTAIN Gravity Dead, Live Thermal Pressure Mechanical Natural Phenomena 1.4D + 1.7L I I Mechanical Natural Phenomena 1.4D + 1.7L I I I I .75 (1.4D + 1.7L) .75 x 1.7 T _o I .75 x 1.7 R _o .75 x 1.9E D + L T _o I .75 x 1.7 R _o .75 x 1.9E .75 x 1.9E D + L T _o I .75 R _o .75 x 1.9E .75 R _o .75 x 1.9E D + L T _o I .5 P _a R _a I .25E D + L T _a 1.25 P _a R _a I .25E D + L T _a P _a R _a E' .25E	STRUCTURES LA CROSSE CONTAINMENT BUILDING Gravity Dead, Live Thermal Pressure Mechanical Natural Phenomena Impulsive Loading 1.4D + 1.7L I I I I I Impulsive 1.4D + 1.7L I I I I Impulsive Impulsive 1.4D + 1.7L I I I Impulsive Impulsive Impulsive 1.4D + 1.7L I I I I Impulsive Impulsive 1.4D + 1.7L .75 x 1.7 To Impulsive Impulsive Impulsive Impulsive .75 (1.4D + 1.7L) .75 x 1.7 To Impulsive Impulsive Impulsive D + L To Ro Z' Impulsive D + L Ta I.5 Pa Ra Impulsive D + L Ta I.25 Pa Ra Impulsive D + L Ta Pa Ra Impulsive Impulsive	

COMPARISON OF LOADING COMBINATION CRITERIA

Ref.: SRP (1981) SEC 3.8.3 Concrete and Steel Internal Structures of Containment

Notes

- 1. Ultimate strength method required by ACI-349 (1977).
- Method used in design { working stress ultimate strength
- 3. Loads deemed inapplicable or negligible struck from loading combinations.
- 4. Encircled loads are those actually considered in the design. When load factors different from those currently required were used, the factor used is also encircled.
- 5. For purposes of the SEP Review, demonstration that structural integrity is maintained for load case 9 (per current criteria) may be considered as providing reasonable assurance that this structure meets the intent of current design criteria.

CONCRETE	COMPARISON O STRUCTURES N CROSSE	STRUCTURE : SPENT	EVCTURE: SPENT FUEL POOL Tural Impulsive Sci Loading Rai 1.9E x 1.9E E'				
Combined Loading Cases	Gravity Dead, Live	Thermal	Pressure	Mechanical	Natural Phenomena	Impulsive Loading	Scale Rankin
1	1.4D + 1.7L			14. St. 14			-
2	1.4D + 1.7L				1.9E		
3	.75 (1.4D + 1.7L)	.75 x 1.7 T _o		.75 x 1.7 R			
4	.75 (1.4D + 1.7L)	.75 x 1.7 T _o		.75 x 1.7 R _o	.75 x 1.9E		
5	D + L	T _o		Ro	٤'		
6	D + L	τ		Ro	¥ _c		
7	D + L	Ta	1.5 P _a	Ra		1.1.101	
8	D + L	T _a	1.25 P _a	^R a	1.25E	$r_{r} + r_{j} + r_{a}$	
9	D + L	T _a	P _a	Ra	٤'	$Y_r + Y_j + Y_n$	A _x

Ref.: SRP (1981) SEC 3.8.3 Concrete and Steel Internal Structures of Containment

Notes

- 1. Ultimate strength method required by ACI-349 (1977).
- Method used in design working stress ultimate strength
- 3. Loads deemed inapplicable or negligible struck from loading combinations.
- 4. Encircled loads are those actually considered in the design. When load factors different from those currently required were used, the factor used is also encircled.
- 5. For purposes of the SEP Review, demonstration that structural integrity is maintained for load cases 10, 13 (per current criteria) may be considered as providing reasonable assurance that this structure meets the intent of current design criteria.

CONCRET	COMPARISON OF LOADING COMBINATION CRITERIA CONCRETE STRUCTURES PLANT: LA CROSSE Combined Gravity Dead, Live Thermal Pressure Mechan 1 1.4D + 1.7L 1 1 4 4 1 1.4D + 1.7L 1 1 1 1 1 1.4D + 1.7L 1				STRUCTURE: CONTROL ROOM AND ELECTRICAL EQUIPMENT ROOM			
Combined Loading Cases	Gravity Dead, Live	Thermal	Pressure	Mechanical	Natural Phenomena	Impulsive Loading	Scale Rankin	
1	1.4D + 1.7L							
2	1.4D + 1.7L				1.9E			
3	1.4D + 1.7L				1.7₩			
1.	.73 (1/45 + 1.75)	.75 x 1.7 T _a		.75 x 1.7 R				
5	.75 (1.4D + 1.7L)	.75 x 1.7 T _o		.75 x 1.7 R	.75 x 1.9E			
6	.75 (1.4D + 1.7L)	.75 x 1.7 T _o		.75 x 1.7 B	.75 x 1.7W			
7	1.2D				1.9E		1	
8	1.2D				1.74			
9	D + L	τ _o		Ro	ε,		A _x	
10	D + L	τ.,		R _o	w _c		Ax	
11	D + L	т	1.5 P _a	R		er ber		
12	D + L	Ta	1.25 P _a	Ra	1.25E	Y _r + Y _j + Y _a		
13	D + L	T _a	Pa	Ra	z'	$\mathbf{x}_{r} + \mathbf{x}_{j} + \mathbf{x}_{n}$		

Ref.: SRP (1981) Sect. 3.8.4 Other Category I structures (concrete)

Notes

1. Ultimate strength method required by ACI-349 (1977).

- 2. Methods used in design { working stress ultimate strength
- 3. Loads deemed inapplicable or negligible struck from loading combinations.

4. Encircled loads are those actually considered in the design. When load factors different from those currently required were used, the factor used is also encircled.

5. For purposes of the SEP Review, demonstration that structural integrity is maintained for load cases 9 5 10 (per current criteria) may be considered as providing reasonable assurance that this structure meets the intent of current design criteria.

Franklin Research Center

COM STEEL STRU PLANT: LA	PARISON OF L CTURES (Elas CROSSE	OADING COMBI	STRUCTURE: CONTROL ROOM AND ELECTRICAL EQUIPMENT ROOM				
Combined Loading Cases	Gravity Dead, Live	Thermal	Pressure	Mechanical	Natural Phenomena	Impulsive Loading	Scale
1	D + L						1
2	D + L				E		
3	D + L				w.		
4	D + L	T _o		Ro			1
5	D + L	T _o		Ro	E		1
6	D + L	τ _ο		Ro			
7	D + L	T _o		Ro	E'		Åx
8	D + L	T _o ·		Ro	W _c		Ax
9	D + L	Та	Pa	Ra			
10	D + L	T _a	Pa	Ra	ε	$x^{1} + x^{2} + x^{2}$	
11	D + L	T _a '	Pa	Ra	ε,	¥j + ¥r + ¥a	

Ref; SRP (1981) SECT. 3.8.4 Other Category I structures (steel)

Notes

 Encircled loads are those actually considered in the design. When load factors are different from those currently required were used, the factor used is also encircled.

- 2. Loads deemed inapplicable or negligible struck from loading combinations.
- 3. For purposes of the SEP Review, demonstration that structural integrity is maintained for load cases 7 & 8 (per current criteria) may be considered as providing reasonable assurance that this structure meets the intent of current design criteria.

CONCRETI	COMPARISON OF E STRUCTURES LA CROSSE	STRUCTURE: NEW DIESEL GENERATOR BUILDING					
Combined Loading Cases	Gravity Dead, Live	Thermal	Pressure	Mechanical	Natural Phenomena	Impulsive Loading	Scale Ranking
1	1.40 + 1.7L						
2	1.4D + 1.7L				1.98		
3	1.4D + 1.7L			a	1.7₩		
4	.75 (2.40 + (1.72)	.75 x 1.7 t		-75 x 1.7 a			
5 3	.75 (1.40 + 1.72)	-75 + 1+7 P		-75 x 1.7 B	(.75 x 1.98		
6	.75 (1.40 + 2.75)	.75 x 1.7 To		.75 x 1.7 B	(.75 x 1.7)		
7	1.2D				1.98		
9	1.20				1.7W		
9	()+()	×.		8	(E')		A _x
10	D + L	×.		×.	W _c		A _x
11	D + L	X	1.5 P	X			
12	D + L	x	1.25 Pa	"Ra	1.25E	¥+X+X	
13	D + L	X	8	×	E'	×+×+×	

Ref.: SRP (1981) Sect. 3.8.4 Other Category I structures (concrete)

Notes

1. Ultimate strength method required by ACI-349 (1977).

- 2. Methods used in design { working strees ultimate strength ~
- 3. Loads deemed inapplicable or negligible struck from loading combinations.
- 4. Encircled loads are those actually considered in the design. When load factors different from those currently required were used, the factor used is also encircled.
- 5. These load cases were also investigated with a live load absent and a dead load reduced by 10%.
- 6. Note that the 0.75 coefficient was not applied to the dead and live load but was applied to all other terms.
- 7. Load combinations indicated by dashed lines are taken from: Seismic Review Table, Department of Nuclear Energy Brookhaven National Lab., NUREG/CR-1429 dated May 1980.
- For purposes of the SEP Review, demonstration that structural integrity is maintained for load cases 9 & 10 (per current criteria) may be considered as providing reasonable assurance that this structure meets the intent of current design criteria.

Franklin Research Center A Division of The Franklin Institute

COM STEEL STRU PLANT: L	PARISON OF L ICTURES (Elas A CROSSE	OADING COMBI tic Analysis	NATION CRITE	ERIA	STRUCTURE: NEW DIESEL GENERATOR BUILDING			
Combined Loading Cases	Gravity Dead, Live	Thermal	Pressure	Mechanical	Natural Phenomena	Impulsive Loading	Scale	
1	D + L							
2	D + L				E			
3	D + L				w			
4	(D+1)	X,		3				
5	(j)+(j)	J'		R	(3)			
6	D + L	T.		e o	ч			
7	(g)+(L)	·7.		'R _o	(8)		Åx	
8	D + L	To .		Rq	W _c		^A x	
9	D + L	×.	2	×.				
10	D + L		*	×	Ξ	1+3+9		
11	D + L	X	X	X	Ξ'	¥+X+X		

Ref; SRP (1981) SECT. 3.8.4 Other Category I structures (steel)

Notes

- Encircled loads are those actually considered in the design. When load factors are different from those currently required were used, the factor used is also encircled.
- 2. Loads deemed inapplicable or negligible struck from loading combinations.
- Load combinations indicated by dashed lines are taken from: Seismic Review Table, Department of Nuclear Energy Brookhaven National Lab., NUREG/CR-1429 dated May 1980.
- 4. For purposes of the SEP Review, demonstration that structural integrity is maintained for load cases 7 & 8 (per current criteria) may be considered as providing reasonable assurance that this structure meets the intent of current design criteria.

CONCRET	COMPARISON OF E STRUCTURES LA CROSSE	SADING COMBI	NATION CR.	ITERIA	STRUCTURE CRIB HO STRUC	: USE AND DISCH TURE	ARGE
Combined Loading Cases	Gravicy Dead, Live	Thermal	Pressure	Mechanical	Natural Phenomena	Impulsive Loading	Scale Rankin
1	1.4D + 1.7L						
2	1.4D + 1.7L				1.9E		
3	1.4D + 1.7L				1.7₩		
4	.75 (1.4D + 1.7L)	.75 x 1.7 T _o		.75 x 1.7 R			
5	.75 (1.40 + 1.7%)	.75 x 1.7 T _o		.75 x 1.7 R	.75 x 1.9E		
6	.75 (1.4D + 1.7L)	.75 x 1.7 T _o		.75 x 1.7 R	.75 x 1.7W		
7	1.2D				1.98		
8	1.2D				1.7₩		
9	D + L	τ,		Ro	E,		A _x
10	D + L	T _o		R _o	ч _с		A _x
11	D + L	T _a	1.5 P	Ra			
12	D + L	Ta	1.25 P.	Ra	1.25E	$\mathbf{x}_{r} + \mathbf{x}_{j} + \mathbf{x}_{m}$	
13	D + L	та	Pa	Ra	Ε'	Y . + Y . + Y	

Ref.: SRP (1981) Sect. 3.8.4 Other Category I structures (concrete)

Notes

1. Ultimate scrength method required by ACI-349 (1977).

- Methods used in design { working stress ultimate strength
- 3. Loads deemed inapplicable or negligible struck from loading combinations.
- Encircled loads are those actually considered in the design. When load factors different from those currently required were used, the factor used is also encircled.
- 5. For purposes of the SEP Review, demonstration that structural integrity is maintained for load cases 9 & 10 (per current criteria) may be considered as providing reasonable assurance that this structure meets the intent of current design criteria.

COM STEEL STRU PLANT: L	PARISON OF L CTURES (Elas A CROSSE	OADING COMBI tic Analysis	NATION CRITE	ERIA	STRUCTURE: CRIB HOUSE AND DISCHARGE HOUSE			
Combined Loading Cases	Gravity Dead, Live	Thermal	Pressure	Mechanical	Natural Phenomena	Impulsive Loading	Scale	
1	D + L .							
2	D + L				E			
3	D + L				¥			
	D + L	τ,		Ro				
5	0 + L	T _o		Ro	E			
6	D + L	T _o		Ro	W			
7	D + L	T _o		Ro	Ε'		Ax	
8	0 + L	r _o ·		Ro	W _c		A _x	
9	D + L	та	Pa	Ra				
10	D + L	T _a	Pa	Ra	Е	Y _j + Y _e + Y _a		
11	D + L	T _a	P.a	Ra	ε'	Y _j + Y _r + Y _r		

Ref: SRP (1981) SECT. 3.8.4 Other Category I structures (steel)

Notes

 Encircled loads are those actually considered in the design. When load factors are different from those currently required were used, the factor used is also encircled.

- 2. Loads deemed inapplicable or negligible struck from loading combinations.
- 3. For purposes of the SEP Review, demonstration that structural integrity is maintained for load cases 7 & 8 (per current criteria) may be considered as providing reasonable assurance that this structure meets the intent of current design criteria.

CONCRETE PLANT : L	COMPARISON OF E STRUCTURES A CROSSE	STRUCTURE: TURBINE BUILDING (PORTION HOUSING CLASS I EQUIP.]					
Combined Loading Cases	Gravity Dead, Live	Thermal	Pressure	Mechanical	Natural Phenomena	Impulsive Loading	Scale Ranking
1	1.4D + 1.7L						
2	1.4D + 1.7L				1.9E		
3	1.40 + 1.7L				1.7W		
4	.75 (2.40) + 4.70)	.75 x 1.7 T		(.75 x 1.7 R)			
5	.75 (1.40 + 1.71)	-75 x 1.7 P		(.75 x 1.7 R)	1.75 x 1.9E		
6	.75 (2.40 + (2.72)	.75 x 1.7 To		(.75 x 1.7 R	(.75 x 1.7W		
7	1.2D				1.9E		
8	1.20				1.7₩		
9	(D+C)	No.		(R ₀)	(E))		
10	D + L	Z		R _o	Wc		Ax
11	D + L	T_a	1.5 P_a	^R a			
12	D + L	Ta	1.25 P _a	Ra	1.25E	$x^{L} + x^{T} + x^{W}$	
13	D + L	Ta	?	Ra	E'	¥, + ¥, + ¥,	A _x

Ref.: SRP (1981) Sect. 3.8.4 Other Category I structures (concrete)

Notes

1. Ultimate strength method required by ACI-349 (1977).

- 2. Methods used in design { ultimate strength /
- 3. Loads deemed inapplicable or negligible struck from loading combinations.
- 4. Encircled loads are those actually considered in the design. When load factors different from those currently required were used, the factor used is also encircled.
- 5. These load cases were also investigated with a live load absent and a dead load reduced by 10%.
- 6. Note that the 0.75 coefficient was not applied to the dead and live load, but was applied to all other terms.
- 7. Load combinations indicated by dashed lines are taken from: Seismic Review Table, Department of Nuclear Energy Brookhaven National Lab., NUREG/CR-1429 dated May 1980.
- 8. For purposes of the SEP Review, demonstration that structural integrity is maintained for load cases 10, 13 (per current criteria) may be considered as providing reasonable assurance that this structure meets the intent of current design criteria.

Franklin Research Center A Division of The Franklin Institute

COM STEEL STRU PLANT: U	PARISON OF L CTURES (Elas A CROSSE	OADING COMBI tic Analysis	NATION CRIT	ERIA	STRUCTURE: TURBINE BUILDING (PORTION HOUSING CLASS 1 EQUIPMENT)			
Combined Loading Cases	Gravity Dead, Live	Thermal	Pressure	Mechanical	Natural Phenomena	Impulsive Loading	Scale	
1	D + L							
. 2	D + L				E			
3	D + L				W			
4	(D)+(L)	7 7		(R)				
5	(D)+(L)	X.e		R	(9)			
6	D + L	τ,		Ro	¥			
7	(<u>p</u>)+(<u>L</u>)	To		Ro	(E)			
8	D + L	re .		Ro	w _e		A _x	
9	D + L	T _a	Pa	Ra				
10	D + L	T _a	Pa	Ra	Ε	x ¹ + x ² + x	7	
11	D + L	Ta	Pa	Ra	Ε,	Y + Y + Y	Å _x	

Ref; SRP (1981) SECT. 3.8.4 Other Category I structures (steel)

Notes

 Encircled loads are those actually considered in the design. When load factors are different from those currently required were used, the factor used is also encircled.

- 2. Loads deemed inapplicable or negligible struck from loading combinations.
- Load combinations indicated by dashed lines are taken from: Seismic Review Table, Department of Nuclear Energy Brookhaven National Lab., NUREG/CR-1429 dated May 1980.
- 4. For purposes of the SEP Review, desconstruction that structural integrity is maintained for load cases 8, 11 (per current criteria) may be considered as providing reasonable assurance that this structure meets the intent of current design criteria.

	COMPARISON OF LOADING COMBINATION CLONCRETE STRUCTURES CONCRETE STRUCTURES PLANT: LA CROSSE Dmbined Gravity Dead, Live Thermal Pressure 1 1.4D + 1.7L Pressure 2 1.4D + 1.7L 1 3 1.4D + 1.7L 1 4 .75 (1.4D + 1.7L) .75 x 1.7 T _o 5 .75 (1.4D + 1.7L) .75 x 1.7 T _o 6 .75 (1.4D + 1.7L) .75 x 1.7 T _o				FUEL STORAGE BUILDING		
Combined Loading Cases	Gravity Dead, Live	Thermal	Pressure	Mechanical	Natural Phenomena	Impulsive Loading	Scale Rankin
1	1.4D + 1.7L						
2	1.4D + 1.7L				1.9E		
3	1.4D + 1.7L				1.7W		
4	.75 (1.4D + 1.7L)	.75 x 1.7 T _o		.75 x 1.7 R			
5	.75 (1.4D + 1.7L)	.75 x 1.7 To		.75 x 1.7 R	.75 x 1.9E		
6	.75 (1.4D + 1.7L)	.75 x 1.7 T		.75 x 1.7 R	.75 x 1.7W		
7	1.2D				1.9E		
8	1.2D				1.7₩		
9	D + L	To		Ro	Ε'		Å
10	D + L	To		R _o	We		A _x
11	D + L	т	1.5 P	Ra			
12	D + L	T _a	1.25 Pa	Ra	1.25E	$Y_r + Y_j + Y_m$	
13	D + L	Ta	Pa	Ra	z'	Y, + Y, + Y,	

Ref.: SRP (1981) Sect. 3.8.4 Other Category I structures (concrete)

Notes

1. Ultimate strength method required by ACI-349 (1977).

- 2. Methods used in design { working stress ultimate strength
- 3. Loads deemed inapplicable or negligible struck from loading combinations.
- Encircled loads are those actually considered in the design. When load factors different from those currently required were used, the factor used is also encircled.
- 5. For purposes of the SEP Review, demonstration that structural integrity is maintained for load cases 9, 10 (per current criteria) may be considered as providing reasonable assurance that this structure meets the intent of current design criteria.

CONCRETE PLANT: L	COMPARISON OF E STRUCTURES A CROSSE	LOADING COMBI	NATION CR	ITERIA	STRUCTURE : STA	CKS	
Combined Loading Cases	Gravity Dead, Live	Thermal	Pressure	Mechanical	Natural Phenomena	Impulsive Loading	Scale Ranking
1	1.4D + 1.7L						
2	1.4D + 1.7L				1.9E		
3	1.4D + 1.7L				1.7W		
4	.75 (1.40 + 1.7L)	(75 x 1.7 t)		-75 = 1-7 2			
5	.75 (2.40 + 1.72)	(.75 x 1.7 T)		.75 # 1.7 R	(.75 x 1.9È		
6	.75 (1.49 + 1.72)	(.75 x 1.7 T)		-75 x 1.7 R	(.75 x 1.7W		
7	1.2D				1.9E		
8	1.2D				1.7₩		
9	(D+ L	(T_)		Ra	(E')		A _x
10	D + L	To		'Bg	w _e		A _x
11	D + L	X	-1.5 P	18.			
12	D + L	X	-1-25-Pa	×	1.25E	X+X+8	
13	D + L	3	R	×	ε'	¥+¥+4	

Ref.: SRP (1981) Sect. 3.8.4 Other Category I structures (concrete)

Notes

- 1. Ultimate strength method required by ACI-349 (1977).
- 2. Methods used in design { ultimate strength /
- 3. Loads deemed inapplicable or negligible struck from loading combinations.
- 4. Encircled loads are those actually considered in the design. When load factors different from those currently required were used, the factor used is also encircled.
- 5. These load cases were also investigated with a live load absent and a dead load reduced by 10%.
- 6. Note that the 0.75 coefficient was not applied to the dead and live load, but was applied to all other terms.
- 7. Load combinations indicated by dashed lines are taken from:

Seismic Review Table, Dept. of Nuclear Energy Brookhaven National Lab., NUREG/CR-1429 dated May 1980

8. The principal loads on the stack are D, E, E', W and W_m. Reanalysis of the stack for these loadings is being carried out within the SEP Program. Therefore. no action need be taken by licensee in response to this item.

11. REVIEW FINDINGS

The most important findings of the review are summarized in this section in tabular form.

The major structural codes known to have been used in the design of the containment shell and its internal structures for the LaCrosse Nuclear Generating Station were:

- AISC, "Specification for Design, Fabrication, and Erection of Structural Steel for Buildings," 1961
- 2. ACI 318-56, "Building Code Requirements for Reinforced Concrete," 1956
- 3. ASME Boiler and Pressure Vessel Code, Section VIII, 1962.

Each of these design codes has been compared with the corresponding structural code governing current licensing criteria. The first two may also apply to the external Seismic Category I structures except for the diesel generator building, constructed later. Two additional tables comparing code editions that may be appropriate for diesel generator construction have been included. However, since the design codes for the diesel generator building were not identified, the Licensee must establish the appropriation of these additional codes:

1. ACI 313-71, "Building Code Requirements for Reinforced Concrete," 1971

 AISC, "Specification for Design, Fabrication, and Erection of Structural Steel for Buildings," 1971.

Tables follow, in the order listed above, summarizing important results of these comparisons for each code. These tables provide:

- 1. identification by paragraph number (both of the original code and of its current counterpart) of code provisions where Scale A or Scale A_x deviations exist.
- identification of structural elements to which each such provision may apply.

Some listed provisions may apply only to elements that do not exist in the LaCrosse structures. When it could be determined that this was the case, such provisions were struck from the list. Any provisions that appeared to be

Franklin Research Center Mision of The Franklin

-54-

inapplicable for other reasons also were eliminated. Items so removed are listed in Appendix A to this report.

Access to further information concerning code provision changes is provided by additional appendixes. Each pair of codes (the design and the current ones) has a tabular summary within the report (Appendix B) which lists all code changes by scale ranking.

In addition, a separately bound appendix exists for each code pair. The appendix provides:

- full texts of each revised provision in both the former and current versions
- 2. comments or conclusions, or both, relevant to the code change
- 3. the scale ranking of the change.

*

÷.

11.1 MAJOR FINDINGS OF AISC-1953 VS. ALSC-1980 CODE COMPARISON REVIEW

(Summary of Code Changes with the Potential to Significantly Degrade Perceived Margin of Safety)

Scale A

Referen	ced Subsect	ion		
AISC 1980	AISC 1963	A ISC 1953	Structural Elements Potentially Affected	Comments
1.5.1.2.2			Beam end connection where the top flange is coped and subject to shear, or failure by shear along a plane through fasteners or by a combination of shear along a plane through fasteners plus tension along a perpendicular plane	See case study 1 for details.
1.5.1.4.1	1.5.1.4.1	15(a)(3)	Rolled sections, plate girders and built up members.	New requirements added in the 1963 Code limiting the allowable stresses for tension due to bending.
1.6	1.6	12(a)	Members subject to axial and bending stresses	New requirement for combined stresses added in the 1963 Code
1.8.3	1.8.3	16	Axially loaded compression members where sideway is not prevented	New requirements for slenderness ratio added in the 1963 Code

(Summary of Code Changes with the Potential to Significantly Degrade Perceived Margin of Safety)

Scale A (Cont.)

Referenced Subsection

AISC	AISC	AISC	Structural Elements	
1980	1963	1953	Potentially Affected	Comments
1.9.1.2 and Appendix	1.9.1	18 (b)	Slender compression unstiff- ened elements subject to axial compression or	New provisions added in the 1963 and the 1980 Code, Appendix C.
c			compression due to bending when actual width-to- thickness ratio exceeds the values specified in subsec- tion 1.9.1.2	
1.10.4	1.10.4	26 (d)	Partial length cover plates in plate girders and rolled beams	New requirements added in the 1963 Code
1.10.7	1.10.7		Plate girder web	New requirements for combined shear and tension stress added to the 1963 Code
1.10.10.2	1.10.10.2	26	Stiffeners for web plate girders	Change in the requirements of the 1953 Code
1.11.1	1.11.1	13(a)	Composite construction	Limitation on effective width of concrete flange is introduced in the 1953 Code

(Summary of Code Changes with the Potential to Significantly Degrade Perceived Margin of Safety)

Scale A (Cont.)

Referen	nced Subse	ction		
AISC 1980	AISC 1963	AISC 1953	Structural Elements Potentially Affected	Comments
1.11.4	1.11.4	13	Shear connectors in composite beams	New requirements added in the 1963 Code and the 1980 Code
1.11.5			Composite beams or girders with formed steel deck	New requirements added in the 1980 Code
1.14.2.2	-	-	Axially loaded tension members where the load is transmitted by bolts or rivets through some but not all of the cross-sectional elements of the members	New requirement added in the 1980 Code
1.14.6.1	1.14.7	15(f)	Effective throat thickness for partial penetration weld	
1.15.5.2 1.15.5 J 1.15.5.4			Restrained members when flange or moment connection plates for end connections of beams and girders are welded to the flange of I or H shaped columns	New requirement added in the 1980 Code

1.1

TER-C5257-325

-59-

(Summary of Code Changes with the Potential to Significantly Degrade Perceived Margin of Safety)

Scale A (Cont.)

Refer	enced Subse	ction			
AISC 1980	AISC 1963	AISC 1953	Structural Elements Potentially Affected	Comments	
1.18.3	1.18.3	28(b)	Built up members under tension	New requirement added in the 1963 Code	
					Scale
2.9	2.8		Lateral bracing of members to resist lateral and torsional displacement	0.0 < M/Mp < 1.0 0.0 > M/Mp > -1.0	A C
				See case study 7 for details.	

A Division of The Franklin Institute

11.2 MAJOR FINDING: OF ACI 318-56 VS. ACI 349-76 CODE COMPARISON REVIEW

.

.

14

(Summary of Code Changes with the Potential to Significantly Degrade Perceived Margin of Safety)

Scale A

Referenced Subsection		ction		
ACI 349-76	ACI 318-63	ACI 318-56	Structural Elements Potentially Affected	Comments
7.10.3	805		Columns designed for stress reversals with variation of stress from f_y in compression to 1/2 fy in tension	Splices of the main rein- forcement in such columns must be reasonably limited to provide for adequate ductility under all loading conditions.
11.13			Short brackets and corbels which are primary load- carrying members	As this provision is new, any existing corbels or brackets may not meet these criteria and failure of such elements could be non- ductile type failure. Structural integrity may be seriously endangered if the design fails to fulfill these requirements.
11.15			Applies to any elements loaded in shear where it is inappropriate to consider shear as a measure of diagonal tension and the loading could induce direct shear-type cracks	Structural integrity may be seriously endangered if the design fails to fulfill these requirements.

1. 3

TER-C5257-325

(Summary of Code Changes with the Potential to Significantly Degrade Perceived Margin of Safety)

Scale A (Cont.)

Referenced Subsection				
ACI	ACI	ACI	Structural Elements	
349-76	318-63	318-56	Potentially Affected	Comments
11.16			All structural walls - those which are primary load carrying, e.g., shear walls and those which serve to provide protec- tion from impacts of missile-type objects	Guidelines for these kinds of wall loads were not provided by older codes; therefore, struc- tural integrity may be seriously endangered if the design fails to fulfill these require- ments.
Chap. 12	Chap. 18		A11	New chapter; old code did not have ultimate strength criteria for bond. This chapter presents some changes in bond stresses allowed and a change in philosophy. Allowable bond values are higher on small bars, but lower on large bars because of this shift in philosophy introduced by ultimate strength logic

έ.

A Dreaklin Research Center

-63-

(Summary of Code Changes with the Potential to Significantly Degrade Perceived Margin of Safety)

Scale A (Cont.)

Referenced Subsection				
ACI 349-76	ACI 318-63	ACI 318-56	Structural Elements Potentially Affected	Comments
Chapter 1 (cont.)	2			Splice lengths in column steel are the same as the 56 code and permissible bond stress for compression bars was set to match when reduced to working stress.
	1301 (c)	Table 305(a)	A11	Allowable bond stresses are presented in the new code as a function of concrete strength and bar diameter. Values in the new code are higher for small diameter bars and lower for large diameter bars as compared to the old code. See case study (14).
Chap. 17	Chapter 25		Composite construction	New chapter; ACI 318-56 did not contain specific sections on composite concrete flexural members and composite construction.

-64-

(Summary of Code Changes with the Potential to Significantly Degrade Perceived Margin of Safety)

Scale A (Cont.)

Referenced Subsection					
ACI	ACI	ACI	Structural Elements		
349-76	318-63	318-56	Potentially Affected	Comments	
Appendix /	Α		All elements subject to time-dependent and position- dependent temperature varia- tions and which are restrained such that thermal strains will result in thermal stresses	For structures subject to effects of pipe break, especially jet impinge- ment, thermal stresses may be significant. Scale A for areas of jet impingement or where the conditions could develop causing concrete temper- ature to exceed limitations of A.4.2.	
				For structures not subject to effects of pipe break accident, thermal stresses are unlikely to be significant (Scale B).	
Appendix	в		All steel embedments used to transmit loads from attachments into the rein- forced concrete structures	New appendix; therefore, considerable review of older designs is warranted.**	

^{**}Since stress analysis associated with these conditions is highly dependent on definition of failure planes and allowable stress for these special conditions, past practice varied with designers' opinions. Stresses may vary significantly from those thought to exist under previous design procedures.

2. 3.
MAJOR FINDINGS OF ACI 318-56 VS. ACI 349-76 CODE COMPARISON

(Summary of Code Changes with the Potential to Significantly Degrade Perceived Margin of Safety)

Scale A (Cont.)

Referenced Subsection				
ACI 349-76	ACI 318-63	ACI 318-56	Structural Elements Potentially Affected	Comments
Appendix	c	-	All elements whose failure under impulsive and impactive loads must be precluded	New appendix; therefore, considerations and review of older designs is considered important.**

^{**}Since stress analysis associated with these conditions is highly dependent on definition of failure planes and allowable stress for these special conditions, past practice varied with designers' opinions. Stresses may vary significantly from those thought to exist under previous design procedures.

11.3 MAJOR FINDINGS OF ASME B&PV CODE COMPARISON, SECTION VIII, 1962 VS. SECTION III, SUBSECTION NE, 1980

.

MAJOR FINDINGS OF ASME B&PV CODE COMPARISON, SECTION VIII, 1962 VS. SECTION III, SUBSECTION NE, 1980

(Summary of Code Changes with the Potential to Significantly Degrade Perceived Margin of Safety)

Scale A

Referenced Subsection		
Sec. III Sec. V 1980 1962	III Structural Elements Potentially Affected	Comments
NE-3112.4 UG-23	Vessels of materials no longer listed as Code acceptable	Section III, 1980 Code references materials identical to those referenced in Section VIII, 1962 Code. However, several materials which were referenced in Section

NE-3131

Containment shells designed by formula

Section VIII, 1962 Code calls for the design of the vessel by formula, while Section III, 1980 Code requires that the rules of Subsection NE-3200 (Design by Analysis) be satisfied. In the absence of substantial thermal or mechanical loads other than pressure, the rules of "Design by Formula" may be used (substantial loads are those loads which cumulatively result in stresses which exceed 10% of the primary stresses induced by the design pressure, such stresses being defined as maximum principal stresses). The Scale rating for a Containment

given in Section III, 1980. Verification of the allowable stress values and validation of the materials

used are required.

-68-

MAJOR FINDINGS OF ASME B&PV CODE COMPARISON, SECTION VIII, 1962 VS. SECTION III, SUBSECTION NE, 1980

(Summary of Code Changes with the Potential to Significantly Degrade Perceived Margin of Safety)

Scale A (Cont.)

Referenced Subsection				
Sec. III 1980	Sec. VIII 1962	Structural Elements Potentially Affected	Comments	
NE-3131 Cont.			shell where substantial thermal or mechanical loads other than pressure are absent, is Scale B. Otherwise it is Scale A.	
NE-3133.5	(a) UG-29	Stiffening rings for cylindrical shells subject to buckling loads	The requirements of the 1980 Code for defining the minimum moment of inertia of the stiffening ring as compared to the requirements of the 1962 Code may result in a lower margin of safety.	

Scale

where I_S is the minimum required moment of inertia of the stiffening ring about its neutral axis parallel to the axis of the shell. I_S' is the moment of inertia of the combined ring-shell section about its neutral axis parallel to the axis of the shell. The width of shell which is taken as contributing to I_S' shall not be greater than 1.1 D_O/T .

-69-

MAJOR FINDINGS OF ASME B&PV CODE COMPARISON, SECTION VIII, 1962 VS. SECTION III, SUBSECTION NE, 1980

(Summary of Code Changes with the Potential to Significantly Degrade Perceived Margin of Safety)

Scale A (Cont.)

Referenced Subsection			
Sec. III [.] 1980	Sec. VIII 1962	Structural Elements Potentially Affected	Comments
NE-3133.5	(b)	Stiffening rings of materials different than shell material	This new insert in Section III of the 1980 Code requires using the material chart which gives the larger value of the factor A. This may result in a larger stiffening ring section needed to meet
			the requirements of the Code.
			Scale A for ring-stiffened shells where (1) the ring and the shell are of different materials and, in addition, (2) the "factor A" (as computed by the procedures of NE-3133.5) for the two materials differs by more than 6%; otherwise Scale B.
NE-3327		Quick actuating closures	New requirements in the 1980 Code
NE-3331(b) UG-36	Openings and reinforcements; subject to cyclic loads	Requirements for fatigue analysis of vessels or parts which are in cyclic service are provided in Section III, 1980 Code. No specific guidance was given in Section VIII, 1962 Code.
NE-3334.1 NE-3334.2	UG-40(b) UG-40(c)	Reinforcement for vessel openings	New requirements in the 1980 Code limit the rein- forcement measured along the midsurface of the nominal wall thickness and normal to

the vessel wall

in the 1980 Code.

MAJOR FINDINGS OF ASME B&PV CODE COMPARISON, SECTION VIII, 1962 VS. SECTION III, SUBSECTION NE, 1980

(Summary of Code Changes with the Potential to Significantly Degrade Perceived Margin of Safety)

Scale A (Cont.)

Refer Subse	enced ction		
Sec. III 1980	Sec. VIII 1962	Structural Elements Potentially Affected	Comments
NE-3365		Bellows and bellows expansion joints over 6 inches in diameter	Provisions regarding the internal sleeve design (for sizes over 6-inch diameter) and flow velocity limitations (for all sizes) are introduced

11.4 MAJOR FINDINGS OF ACI 318-71 VS. ACI 349-76 CODE COMPARISON REVIEW

MAJOR FINDINGS OF ACI 318-71 VS. ACI 349-76 CODE COMPARISON

(Summary of Code Changes with the Potential to Significantly Degrade Perceived Margin of Safety)

Scale A

Referenced Subsection			
ACI	ACI	Structural Elements	
349-76	318-71	Potentially Affected	Comments
Appendix A		All elements subject to time-dependent and position- dependent temperature variations and which are restrained so that thermal strains will result in thermal stresses.	New appendix; older code did not give specific guidelines on temperature limits for concrete. The possible effects of strength loss of concrete at high temperatures should be assessed.
Appendix B		All steel embedments used to transit loads from attachments into the reinforced concrete structures.	New appendix; therefore, considerable review of older design is warranted.*
Appendix C		All elements whose failure under impulsive and impactive loads must be precluded.	New appendix; therefore, consideration and review of older designs is considered important.*

*Since stress analysis associated with these conditions is highly dependent on definition of failure planes and allowable stress for these special conditions, past practice varied with designers' opinions. Stresses may vary significantly from those thought to exist under previous design procedures.

Franklin Research Center

-73-

*Including supplements 1 and 2

11.5 MAJOR FINDINGS OF AISC-1971* VS. AISC-1980 CODE COMPARISON REVIEW

MAJOR FINDINGS OF AISC 1971 VS. AISC 1980 CODE COMPARISON

(Summary of Code Changes with the Potential to Significantly Degrade Perceived Margin of Safety)

Scale A

Referenc Subsecti	ed .on		
AISC	AISC	Structural Elements	
1980	1971	Potentially Affected	Comments
1,5.1.2.2	-	Beam end connection where the top flange	See case study 1 for details.
		is coped and subject to shear, or failure by shear along a plane through fasteners or by	
		a combination of shear	
		along a plane through fasteners plus tension along a perpendicular plane	
1. I.L. 1			
1.11.5		Composite beams or girders with formed steel deck	New requirements added in the 1980 Code
1.14.2.2		Axially loaded tension members where the load is	New requirement added in the 1980
		transmitted by bolts or rivets through some but not	Code
		all of the cross-sectional elements of the members	
1.15.5.2		Restrained members when	New requirement
1.15.5.3		flange or moment connection	added in the 1980
1.15.5.4		plates for end connections of beams and girders are	Code
		welded to the flange of I or H shaped columns	

-75-

12. SUMMARY

The table that follows provides a summary of the status of the findings from the Task III-7.B criteria comparision review of structural codes and loading requirements for Seismic Category I structures at the LaCrosse Nuclear Generating Station.

The first column of this table shows the number of changes in requirements found for the concrete construction within the containment shell, classified by scale ranking. The second column applies to steel internal structures. The third column applies only to the containment shell.

Moreover, although the design codes for structures external to containment were not identified in the FSAR or in other information made available for review; it appears likely (because design of these structures occurred at about the same time as did containment design) that the first two columns may apply also to most of the structures external to containment.

An exception is the diesel generator building, constructed later. Design drawings for the diesel generator building are dated 1975. Comparisons for tructural code editions current then and now are shown in the last two columns. Since the codes, to which the diesel generator building was constructed, are not identified in information made available for review, the Licensee should determine whether or not the code editions selected as representative are appropriate.

The salient feature of this table is the limited number of code change impacts requiring a Scale A ranking. Consequently, resolution, at the structural level, of potential concerns with respect to changes in structural code requirements appears, at least for the LaCrosse plant, to be an effort of tractable size.

-76-

SUMMARY

SCALE	PPLICABLE CODE COMPARISON	ACI 318-56 VS. ACI 349-76	AISC 1953 VS. AISC 1980	ASME B & PV SECT. VIII 1962 VS. SECT. III SUBSECT NE, CLASS MC,1980	ACI 318-71 VS. ACI 349-76	AISC 1971 VS. AISC 1980
Total	Changes Found	113	50	22	70	18
equire	A or A Not Applicable to La Crosse	3 + 4 * .	13	1 + 3*	1 + 4*	8
ot Ruher stig	в	84	13	7	59	5
Purti Furti Inve	с	12	8	3	3	1
To Be Further Investigated	A	10	16	3	3	4
	A _x	0	0	0	0	0

NUMBER OF CODE CHANGE IMPACTS FOR LACROSSE CATEGORY I STRUCTURES

SCALE RATINGS:

Scale A Change - The new criteria have the potential to substantially impair margins of safety as perceived under the former criteria.

- Scale A_X Change The impact of the code change on margins of safety is not immediately apparent. Scale A_X code changes require analytical studies of model structures to assess the potential magnitude of their effect upon margins of safety.
- Scale B Change The new criteria operate to impair margins of safety but not enough to cause engineering concern about the adequacy of any structural element.
- Scale C Change The new criteria will give rise to larger margins of safety than were exhibited under the former criteria.

*These changes are related to loads and load combinations. Loading criteri. are addressed in Section 10. Consequently, to avoid duplication, such items are not counted in the above tabulation of code changes to be addressed under Section 11.

Franklin Research Center

13. RECOMMENDATIONS

Potential concerns with respect to the ability of Seismic Category I buildings and structures in SEP plants to conform to current structural criteria are raised by the review at the code comparison level. These must ultimately be resolved by examination of individual as-built structures.

It is recommended that Dairyland Power Cooperative be requested to take five actions:

- Verify that the code editions selected as appropriate for the external structures are sufficiently representative of the codes actually used.
- Review and complete the load and the load combination tables of Section 10.
- 3. Review individually all Seismic Category I structures at the LaCrosse plant to see if any of the structural elements listed in the following table occur in their designs. These are the structural elements for which a potential exists for margins of safety to be less than originally computed, due to criteria changes since plant design and construction. For structures which do incorporate these features, assess the actual impact of the associated code changes on margins of safety.
- 4. Reexamine the margins of safety of Seismic Category I structures under loads and load combinations which correspond to current criteria. Only those load combinations assigned a Scale A or Scale A_x rating in Section 10 of this report need be considered in this review. If the load combination includes individual loads which have themselves been ranked A or A_x, indicating that they do not conform to current criteria, update such loads.

Full reanalysis of these structures is not necessarily required. Simple hand computations or appropriate modifications of existing results can qualify as acceptable means of demonstrating structural adequacy.

5. Review Appendix A of this report to confirm that all items listed there have no impact on safety margins at the LaCrosse plant.

	Examined	New Code	Old Co	des	Scale
	and a set for a second to				
Com	posite Construction	AISC 1980	AISC 1953	AISC 1971	
1.	Shear connectors in composite beams	1.11.4	13	NA	A
2.	Composite beams or girders with formed steel deck	1.11.5		NA	A
3.	Width of concrete flange - limitations	1.11.1	13 (a)	NA	A
Con	pression Elements	AISC 1980	AISC 1953	AISC 1971	
1.	With width-to-thickness ratio higher than speci- fied in 1.9.1.2	1.9.1.2 and Appendix C	18(b)	NA	Α
2.	Members where sideway is not prevented	1.8.3	16	NA	А
Ten	sion Members	AISC 1980	AISC 1953	AISC 1971	
1.	When load is transmitted by bolts or rivets	1.14.2.2			A
2.	Built up members	1.18.3	28(b)	NA	А
Con	nections	AISC 1980	AISC 1953	AISC 1971	
1.	Beam ends with top flange coped, if subject to shear	1.5.1.2.2			A
2.	Connections carrying moment or restrained member connection	1.15.5.2 1.15.5.3 1.15.5.4	-	-	A

LIST OF STRUCTURAL ELEMENTS TO BE EXAMINED

*Double dash (--) indicates that older code had no provisions. NA -- Not applicable.

Franklin Research Center

1

LIST OF STRUCTURAL ELEMENTS TO BE EXAMINED (Cont.)

Structural Elements to be	Code Change Af:	fecting These	Elements	
Examined	New Code	Old Co	odes	Sc
Members Designed to Operate in an Inelastic Regime	AISC 1980	AISC 1953	AISC 1971	
Spacing of lateral bracing	2.9		NA	A
Rolled Sections and	AISC 1980	AISC 1953	AISC 1971	
Built up Members	1.5.1.4.1	15(a)(3)	NA	A
Partial length cover plates	1.10.4	26 (d)	NA	А
Members Subject to Axial	AISC 1980	AISC 1953	AISC 1971	
and Bending Stresses	1.6	12(a)	NA	A
Web Plate Girders	AISC 1980	AISC 1953	AISC 1971	
 Subject to shear and tension stresses 	1.10.7		NA	A
2. Stiffeners	1.10.10.2	26	NA	А
Partial Penetration Weld				
Effective throat thickness	1.14.6.1	15(f)	NA	А
Short Brackets and Corbels	ACI 349-76	ACI 318-56	ACI 318-71	
having a shear span-to- depth ratio of unity or less	11.13		NA	A
Shear Walls used as a	ACI 349-76	ACI 318-56	ACI 318-71	
primary load-carrying nember	11.16		NA	A
Precast Concrete Structural	AC1 349-76	ACI 318-56	ACI 318-71	
Elements, where shear is not a measure of diagonal tension	11.15		NA	A
Concrete Regions Subject to High Temperatures	ACI 349-76	ACI 318-56	ACI 318-71	
fime-dependent and position-dependent temperature variations	Appendix A	-	-	A

LIST OF STRUCTURAL ELEMENTS TO BE EXAMINED (Cont.)

Structural Elements to be	Code Change	Affecting Thes	e Elements
Examined	New Code	Old C	odes
All Structural Elements	ACI 349-76	ACI 318-56	ACI 318-71
. Ultimate bond strength	Chapter 12		NA
. Allowable bond stress		Table 305(a)	NA
columns with Spliced	ACI 349-76	ACI 318-56	ACI 318-71
subject to stress reversals; y in compression to /2 fy in tension	7.10.3	- E	NA
Steel Embedments used to	ACI 349-76	ACI 318-56	ACI 318-71
ransmit load to concrete	Appendix B		
Clement Subject to Impulsive and Impactive Loads whose failure must be precluded	ACI 349-76 Appendix C	ACI 318-56	ACI 318-71
Composite Construction	ACI 349-76 Chapter 17	ACI 318-56	ACI 318-71 NA
Containment Vessels			
. Containment vessels of materials no longer	ASME Sec. III,	ASME Sec. VIII,	
acceptable	NE-3112.4	UG-23	
 Containment vessels designed by formula and 	ASME Sec. III,	ASME Sec. VIII,	
subject to substantial thermal or mechanical loads	1980 NE-3131	1962 Various paragraphs	
3. Stiffening rings for	ASME	ASME	
cylindrical shells subject to buckling loads	Sec. III, 1980 NE-3133.5(a)	Sec. VII1, 1962 UG-29	
 Stiffening rings of material different than shell material 	ASME Sec. III,	ASME Sec. VIII,	
sidir Sherr materiar	NE-3133.5(b)		

ŵ

LIST OF STRUCTURAL ELEMENTS TO BE EXAMINED (Cont.)

Str	uctural Elements to be <u>Co</u>	de Change Affect.	ing These Elements	Scala
-	Examined	Mew Code	OId Codes	Scale
Str	uctural Elements to be Con	de Change Affect:	ing These Elements	
	Examined	New Code	Old Code	Scale
4.	Stiffening rings of material different than shell material	ASME Sec. III, 1980 NE-3133.5(b)	ASME Sec. VIII, 1962	A
5.	Quick-Actuating Closures	ASME Sec. III, 1980 NE-3327.1	ASME Sec. VIII, 1962 Footnote to UG-15	A
She	11 Openings and Attachments			
1.	Openings and reinforcements; subject to cyclic loads	ASME Sec. III, 1980 NE-3331(b)	ASME Sec. VIII, 1962 UG-36	А
2.	Reinforcement for vessel openings	ASME Sec. III, 1980 NE-3334.1, NE-3334.2	ASME Sec. VIII, 1962 UG-40	A
3.	Bellows and bellows expansion joints	ASME Sec. III, 1980 NE-3365	ASME Sec. VIII, 1962	A
	Roofs		- 0 Sili	A(1)

Extreme environmental snow loads are provided by SEP Topic II-2.A. NRC Regulatory Guide 1.102 (Position 3) provides guidance to preclude adverse consequences from ponding or parapet roofs. Failure of roofs not designed for such circumstances could generate impulsive loadings and water damage, possibly extending to Seismic Category I components of all floor levels.

1. Not shown in tabular summary of code change impacts.

Franklin Research Center

14. REFERENCES

- Standard Review Plan NRC, July 1981 NUREG-0800 (Formerly NUREG-75/087), Rev. 1
- AISC Specification for Design, Fabrication, and Erection of Structural Steel for Buildings American Institute of Steel Construction, Inc., New York, NY
- "Building Code Requirements for Reinforced Concrete" American Concrete Institute, Detroit, MI, ACI 318
- ASME Boiler and Pressure Vessel Code, Section VIII
 "Unfired Pressure Vessels"
 The American Society of Mechanical Engineers, New York, NY, 1962
- Letter from Automation Industries Inc., Nuclear Energy Services Division to Mr. R. E. Shimshak, LaCrosse Boiling Water Reactor Subject: Additional Information Requested by USAEC on Pipe Breaks Outside Containment, NES 81A0013, Rev. 1 December 4, 1974, Reference P-5101-77
- 6. Appendix I to Technical Evaluation Report, "Design Codes, Design Criteria, and Loading Combinations" Contains List of Basic Documents Defining Current Licensing Criteria for SEP Topic III-7.B Franklin Research Center, 1981 TER-C5257-327
- NRC letter to Dairyland Power Cooperative Subject: Classification of Structures, Systems and Components, SEP Topic II-1 (LaCrosse) July 7, 1981
- Dairyland Power Corporative Letter to D. M. Crutchfield (NRC) Subject: Dairyland Power Cooperative, LaCrosse Boiling Water Reactor, Provisional Operating Licensee No. DPR-45, SEP Topic III-7.B July 20, 1982

Franklin Research Center

APPENDIX A

SCALE A AND SCALES A_X CHANGES DEEMED INAPPROPRIATE TO LACROSSE

APPENDIX A-1

AISC 1953 VS. AISC 1980 CODE COMPARISON

(SCALE A AMD SCALE A CHANGES DEEMED INAPPROPRIATE TO LACROSSE OR CODE CHANGES RELATED TO LOADS OR LOAD COMBINATIONS AND THEREFORE TREATED ELSEWHERE)

Comments

Scale A

AISC

1980

Referenced Subsection

AISC

1963

AISC

1953

1.5.1.1 1.5.1.1	Structural members under tension, except for pin connected members	Structural steel used in LaCrosse Cat. I struc- tures is A-36. Thus, $F_y < 0.83 F_u$ Therefore, Scale C for LaCrosse.
	Limitations	Scale
	$F_{y} \leq 0.833 F_{u}$ 0.833 F _u < F _y < 0.875 F _u F _y $\geq 0.875 F_{u}$	C B A
1.5.1.4.1 1.5.1.4 Subpara. 6	.1 Box-shaped members (subj to bending) of rectangul cross section whose dept not more than 6 times it width and whose flange thickness is not more th 2 times the web thicknes	ect Box-shaped mem- ar bers not found h is to be used in s LaCrosse Cat. I structures; an therefore, not s applicable
	1980 Code	
1.5.1.4.1 1.5.1.4. Subpara. 7	Hollow circular sections subject to bending	New requirement in the 1980 Code

Structural Elements

Potentially Affected

Scale A (Cont.)

Referen	nced Subs	ection		
AISC 1980	AISC 1963	AISC 1953	Structural Elements Potentially Affected	Comments
1.5.1.4.4	-		Lateral support requirements for box sections whose depth is larger than 6 times their width	Box section members not found to be used in LaCrosse Cat. I structures:
			New requirement in the 1980 Code	therefore; not applicable
1.5.2.2	1.7	11(b)	Rivets, bolts, and threaded parts subject to 20,000 cycles or more	Cat. I structures are not subject to such cyclic loading; therefore, not applicable
l.7 and Appendix	1.7	11	Members and connections subject to 20,000 cycles or more	Cat. I structures are not subject to such cyclic loading; therefore, not applicable
1.9.2.1 and Appendix C	1.9.2	18(c)	Stiffened Compression members	All structural steel is A-36, Fy < 40 ksi; there- fore, Scale C
1.9.2.3 and Appendix C			Circular tubular elements subject to axial compression	New requirements added in the 1980 Code

1.3

Scale A (Cont.)

and Cubanatio

Refere	need bubbe	ceron		
A1SC 1980	AISC 1963	AISC 1953	Structural Elements Potentially Affected	Comments
1.10.6	1.10.6	26	Hybrid girder - reduction in flange stress	All structural steel is A-36. No hybrid girders found in LaCrosse, there- fore, not applicable.
1.13.3			Roof surface not provided with sufficient slope towards points of free drain- age or adequate individual drains to prevent the accumulation of rain water (ponding)	
2.4 1st Para.	2.3 lst Para.	-	Slenderness ratio for columns. Must satisfy: $\frac{1}{r} = \frac{2 \pi^2 E}{F_y}$	

11

 $\begin{array}{lll} F_y &\leq 40 \ \text{ksi} & \frac{\text{Scale}}{C} & \text{Scale C for LaCrosse.} \\ 40 &\leq F_y &\leq 44 \ \text{ksi} & B & \text{for details.} \\ F_y &\geq 44 \ \text{ksi} & A \end{array}$

TER-C5257-325

A Dension of The Franklin Instatute

Scale A (Cont.)

Refer	enced Subs	section		
AISC 1980	AISC 1963	AISC 1953	Structural Elements Potentially Affected	Comments
2.7	2.6		Flanges of rolled W, M, or S shapes and similar built-up single-web shapes subject to compression	Scale C for LaCrosse. See case study 6 for details.
			$\begin{array}{rrrr} F_y & \leq 36 \ \text{ksi} & \frac{\text{Scale}}{\text{C}} \\ 36 & < F_y & < 38 \ \text{ksi} & \text{B} \\ F_y & \geq 38 \ \text{ksi} & \text{A} \end{array}$	
Appendix D			Web tapered members	New requirements added in the 1980 Code

1. 1

Web tapered member are not found to be used in LaCrosse Cat. I structures, therefore, not applicable

-

APPENDIX A-2

ACI 318-56 VS. ACI 349-76 CODE COMPARISON

(SCALE A AND SCALE A CHANGES DEEMED INAPPROPRIATE TO LACROSSE OR CODE CHANGES RELATED TO LOADS OR LOAD COMBINATIONS AND THEREFORE TREATED ELESEWHERE) ACI 318-56 VS. ACI 349-76 SUMMARY OF CODE COMPARISON

Scale A

Refe	renced Subsect	ion		
ACI	ACI	ACI	Structural Elements	
349-76	318-63	318-56	Potentially Affected	Comments
3.5	405 (e),(f)		Prestressed elements.	New insert lists ASTM speci- fications for prestressing wire and strands. 318-56 did not have sections dealing with prestressed concrete. Controls other than ACI Codes or recommended practice would apply to this type of construction prior to 1963.
				No prestressed elements outside containment; therefore, not applicable.
Chap. 9 9.1, 9.2 & 9.3 mos specifi- cally	Chap. 15 ,	A604	All primary load-carrying members or elements of the structural system are potentially affected.	Definition of new loads not normally used in design of traditional buildings and redefini- tion of load factors and capacity reduction factors has altered the traditional analysis requirements *

^{*}Special treatment of load and loading combinations is addressed in other sections of the report.

ACI 318-56 VS. ACI 349-76 SUMMARY OF CODE COMPARISON

Scale A (Cont.)

.....

nerer	enceu subsec	LION		
ACI 349-76	ACI 318-63	ACI 318-56	Structural Elements Potentially Affected	Comments
10.1 and 10.10			All primary load-carrying members.	Design loads here refer to Chapter 9 load combinations.*
11.1			All primary load-carrying members.	Design loads here refor to Chapter 9 load combinations.*
Chap. 18	Chap. 26		Prestressed concrete.	New chapter; ACI 318-56 did not contain specific sections or criteria for prestressed concrete.
				No prestressed elements outside primary containment; therefore, not applicable.
18.1.4 and 18.4.2			Prestressed concrete elements.	New load combinations here refer to Chapter 9 load combinations.*
				No prestressed elements outside containment; therefore, not applicable.

^{*}Special treatment of loads and loading combinations is addressed in other sections of the report.

11.

TER-C5257-325

ACI 318-56 VS. ACI 349-76 SUMMARY OF CODE COMPARISON

Scale A (Cont.)

Refere	enced Subsec	tion		
ACI 349-76	ACI 318-63	ACI 318-56	Structural El ments Potentially Affected	Comments
Chap. 19	Chap. 19		Shell structures with thickness equal to or greater than 12 inches.	No concrete shell struc- ture with thickness of 12 inch or greater;

8 1

No concrete shell structure with thickness of 12 inch or greater; therefore, not applicable. This chapter is completely new; therefore, shell structures designed by the general criteria of older codes may not satisfy all aspects of this chapter. In addition, this chapter refers to Chapter 9 provisions.

A Division of The Franklin Instalue

AFPENDIX A-3 ASME B&PV CODE COMPARISON SECTION VIII, 1962 VS. SECTION III, SUBSECTION NE, 1980

(SCALE A AND SCALE A CHANGES DEEMED NOT APPLICABLE TO LACROSSE OR CODE CHANGES RELATED TO LOAD COMBINATIONS AND THEREFORE TREATED ELSEWHERE)

ASME B&PV CODE COMPARISON SECTION VIII, 1962, VS. SECTION III, SUBSECTION NE, 1980

Reference	ced Section		
Section III 1980	Section VIII 1962	Structural Elements Potentially Affected	Comments
NE-3111	UG-22	Loading as applied to load-carrying compo- nents*	Section III, 1980 Code, specifies new loads to be considered in designing the vessel. These are: o dynamic head of liquids o snow loads and vibration loads o reaction to steam and water jet impingement
NE-3112.2		Vessel and components*	The effects of internal heat generation due to radiation (in addition to all external sources) must be included in establishing design temperature.
NE-3112.3		Vessel and components*	In computations involving design pressure and design temperature, the values of dead loads and any hydro- static loads coincident with design pressure (designated as design mechanical loads) should be used
	UG-25(d)	Vessels containing telltale holes	Section III, 1980 Code, bans the use of telltale holes. Moreover, the more recent version of Section VIII specifically excludes using telltale holes for lethal substances.

*Special treatment of load and load combinations is addressed in other sections of the report.

APPENDIX A-4

.

ACI 318-71 VS. ACI 349-76 CODE COMPARISON

(SCALE A AND SCALE A CHANGES DEEMED INAPPROPRIATE TO LACROSSE PLANT OR CODE CHANGES RELATED TO LOADS OR LOAD COMBINATIONS AND THEREFORE TREATED ELSEWHERE)

therefore; not applicable.

ACI 318-71 VS. ACI 349-76 CODE COMPARISON

Refere	ion		
ACI 349-76	ACI 318-71	Structural Elements Potentially Affected	Comments
Chapter 9 9.1, 9.2, & 9.3 most	Chapter 9	All primary load-carrying members or elements of the structural system are potentially affected.	
specifi- cally		Definition of new loads not normally used in design of traditional build- ings and redefinition of load factors and capacity reduction factors have altered the traditional analysis requirements.*	
10.1 and 10.10	-	All primary load-carrying members Design loads here refer to Chapter 9 load combinations.*	
11.1	-	All primary load-carrying members Design loads here refer to Chapter 9 load combinations.*	
18.1.4 and 18.4.2		Prestressed concrete elements New loadings here refer to Chapter 9 load combinations.*	No prestressed elements outside primary contain- ment; therefore, not applicable.
Chapter 19	Chapter 19	Shell structures with thickness equal to or greater than 12 inches	No concrete shell structure; with thickness of 12 inch or greater,

*Special treatment of loads and load combinations is addressed in other sections of the report.

APPENDIX A-5

AISC 1971* VS. AISC 1980 CODE COMPARISON

(SCALE A AND SCALE A CHANGES DEEMED INAPPROPRIATE TO LACROSSE PLANT OR CODE CHANGES RELATED TO LOADS OR LOAD COMBINATIONS AND THEREFORE TREATED ELSEWHERE)

*Includes supplements 1 and 2

not applicable

14

AISC 1971 VS. AISC 1980 CODE COMPARISON

Subsect	tion				
AISC	AISC	Structural Elements			
1980	1971	Pocentially Affected		Comments	
1.5.1.1	1.5.1.1	Structural members under tension, except for pin connected members		Structural steel used in LaCrosse Cat. I structures is A-36. Thus, Fy < 0.83 Fu Therefore, Scale C for LaCrosse	
		Limitations	Scale		

Scale

Fy	< 0.833	Fu		C
0.8	333 Su <	Fy	< 0.875 Fu	В
Fy	20.875	Fu		A

1.5.1.4.1 1.5.1.4.1 Subpara. 6	Box-shaped members (subject to bending) of rectangular cross section whose depth is not more than 6 times its width and whose flange thickness	Box-shaped mem- bers not found to be used in LaCrosse
	is not more than 2 times the web thickness	Cat. I structures; therefore, not applicable
	New requirement in the 1980 Code	
1.5.1.4.1 1.5.1.4.1 Subpara. 7	Hollow circular sections subject to bending	Hollow circular sections not found in LaCrosse plant; therefore,

Franklin Research Center

Web tapered members are not found to be used

in LaCrosse

Cat. I structures; therefore, not applicable

AISC 1971 VS. AISC 1980 CODE COMPARISON

Reference Subsect:	ced ion		
AISC	AISC	Structural Elements	
1980	1971	Potentially Affected	Comments
1.5.1.4.4		Lateral support requirements for box sections whose depth is larger than 6 times their width	Box section members not found to be used in LaCrosse Cat. I structures;
		New requirement in the 1980 Code	therefore; not applicable
1.9.2.2 and Appendix C	-	Circular tubular elements subject to axial compression	Circular tubular elements not found in LaCrosse plant; therefore, not applicable
1.5.2.2 and Appendix B	1.7	Rivets, bolts, and threaded parts subject to 20,000 cycles or more	Cat. I structures are not subject to such cyclic loading; therefore, not applicable
l.7 and Appendix B	1.7	Members and connections subject to 20,000 cycles or more	Cat. I structures are not subject to such cyclic loading; therefore, not applicable
Appendix D		Web tapered members	New requirement added in the 1980 Code

×.

APPENDIX B

SUMMARIES OF CODE COMPARISON FINDINGS

APPENDIX B-1

AISC 1953 VS. AISC 1980

SUMMARY OF CODE COMPARISON

(SYNTHESIS OF AISC 1953 VS. AISC 1963 VS. AISC 1980 CODE COMPARISONS)

.

Scale A

Referen	nced Subsec	tion			
AISC 1980	AISC 1963	AISC . 1953	Structural Elements Potentially Affected	Comments	
1.5.1.1	1.5.1.1		Structural members under tension, except for pin connected members	<u>Limitations</u>	Scal
				$F_y \le 0.833 F_u$ $0.833 F_u \le F_y \le 0.875 F_u$ $F_y \ge 0.875 F_u$	C B A
1.5.1.2.2			Beam end connection where the top flange is coped and subject to shear, failure by shear along a plane through fasteners, or shear and tension along and perpendicular to a plane through fasteners	See case study 1 for details.	
1.5.1.4.1	1.5.1.4.1	15(a)(3)	Rolled sections, plate girders and built up members.	New requirements added in the 1963 Code limiting the allowable stresses for tension due to bending.	
1.5.1.4.1 Subpara. 6	1.5.1.4.1		Box-shaped members (subject to bending) of rectangular cross section whose depth is not more than 6 times their width and whose flange thickness is not more than 2 times the web thickness	New requirement in the 1980 Code	

\$ 2

8

Scale A (Cont.)

Referen	nced Subsec	tion		
AISC 1980	A ISC 1963	AISC 1953	Structural Elements Potentially Affected	Comments
1.5.1.4.1 Subpara. 7	1.5.1.4.1		Hollow circular sections subject to bending	New requirement in the 1980 Code
1.5.1.4.4			Lateral support requirements for box sections whose depth is larger than 6 times their width	New requirement in the 1980 Code
1.5.2.2	1.7	11(b)	Rivets, bolts, and threaded parts subject to 20,000 cycles or more	Change in the require- ments
1.6	1.6	12(a)	Members subject to axial and bending stresses	New requirement for combined stresses added in the 1963 Code
l.7 and Appendix B	1.7	11	Members and connections subject to 20,000 cycles or more	Change in the require- ments
1.8.3	1.8.3	16	Axially loaded compression members where sideway is not prevented	New requirements for slenderness ratio added in the 1963 Code

Coal	0 1	5 4	Can	h. 1
oca.	LC /	1	COIL	L

Referenced Subsection

AISC 1980	AISC 1963	AISC 1953	Structural Elements Potentially Affected	Comments
1.9.1.2 and Appendix C	1.9.1	18(b)	Slender compression unstiff- ened elements subject to axial compression or compression due to bending when actual width-to- thickness ratio exceeds the values specified in subsec- tion 1.9.1.2	New provisions added in the 1963 and the 1980 Code, Appendix C.
1.9.2.1 and Appendix C	1.9.2	18(c)	Stiffened compression members	New requirements added in the 1963 Code and the 1980 Code
1.9.2.3 and Appendix C	-		Circular tubular elements subject to axial compression	New requirements added in the 1980 Code
1.10.4	1.10.4	26(d)	Partial length cover plates in plate girders and rolled beams	New requirements added in the 1963 Code
1.10.6	1.10.6	26	Hybrid girder - reduction in flange stress	New requirement added in the 1980 Code. Hybrid girders were not covered in the 1963 Code. See case study 9 for details

i.A.

Scale A (Cont.)

Referenced Subsection

AISC 1980	AISC 1963	AISC 1953	Structural Elements Potentially Affected	Comments
1.10.7	1.10.7		Plate girder web	New requirements for combined shear and tension stress added to the 1963 Code
1.10.10.2	1.10.10.2	26	Stiffeners for web plate girders	Change in the requirements of the 1953 Code
1.11.1	1.11.1	13(a)	Composite construction	Limitation on effective width of concrete flange is intro- duced in the 1953 Code
1.11.4	1.11.4	13	Shear connectors in composite beams	New requirements added in the 1963 Code and the 1980 Code
1.11.5			Composite beams or girden with formed steel deck	New requirements added in the 1980 Code
1.13.3			Roof surface not provided with sufficient slope towards points of free drain- age or adequate individual drains to prevent the accumulation of rain water (ponding)	

Scale A (Cont.)

Referenced Subsection

AISC	AISC	AISC	Structural Blements	
1980	1963	1953	Potentially Affected	Comments
1.14.2.2			Axially loaded tension members where the load is transmitted by bolts or rivets through some but not all of the cross-sectional elements of the members	New requirement added in the 1980 Code
1.14.6.1	1.14.7	15(f)	Effective throat thickness for partial penetration weld	
1.15.5.2			Restrained members when	New requirement added
1.15.5.3			flange or moment connection	in the 1980 Code
1.15.5.4			plates for end connections of beams and girders are welded to the flange of I or H shaped columns	
1.15.7	1.15.7	21 (g)	Connections of tension and compression members in trusses	
1.18.3	1.18.3	28(b)	Built-up members under tension	New requirement added in the 1963 Code

1.1

Scale A (Cont.)

Referenced Subsection

AISC	AISC 1963	AISC 1953	Structural Elements	Commente	
1700	1703	1333	rotentially affected	comments	
2.4 lst	2.3 1st		Columns, Slenderness ratio for columns. Must satisfy:	See case study 4 for details.	Scale
Para.	Para.		$\frac{1}{r} \stackrel{<}{-} \frac{2 \pi^2 E}{F_y}$	$F_{y} \leq 40 \text{ ksi}$ $40 \leq F_{y} \leq 44 \text{ ksi}$ $F_{y} \geq 44 \text{ ksi}$	C B A
2.7	2.6		Flanges of rolled W, M, or S shapes and similar built-up single-web shapes	See case study 6 for details.	Scale
			subject to compression	$F_{\rm V} < 36$ ksi	С
				$36 < F_y < 38$ ksi	в
				$F_y \ge 38$ ksi	А
2.9	2.8		Lateral bracing of members	See case study 7	
			to resist lateral and torsional displacement	for details.	
Appendix D			Web tapered members	New requirements added in the 1980 Code	

1.1

Scale B

Referenced Subsection AISC Structural Elements AISC AISC Comments Potentially Affected 1980 1963 1953 The 1980 Code limit on 1.9.2.2 Flanges of square and 1.9.2 ----width-to-thickness ratio rectangular box sections of flanges is slightly of uniform thickness, of more stringent than that stiffened elements, when of the 1963 Code. subject to axial compression or to uniform compression due to bending Hybrid girders were not Hybrid girders 1.10.1 covered in the 1963 Code. Application of the new requirement could not be much different from other rational method. Change of in the requirements Intermediate stiffeners for 1.10.5 1.10.5 26(e) of the 1953 Code plate girders and rolled beams Lightweight concrete is Flat soffit concrete slabs, 1.11.4 1.11.4 not permitted in nuclear using rotary kiln produced plants as structural aggregates conforming to members (Ref. ACI-349). ASTM C330 Lightweight construction Beams and girders supporting 1.13.2 not applicable to nuclear large floor areas free of structures which are partitions or other source designed for greater loads of damping, where transient vibration due to pedestrian traffic might not be acceptable

Franklin Research Center

Scale B (Cont.)

Referen	nced Subse	ction		
AISC 1980	A ISC 1963	AISC 1953	Structural Elements Potentially Affected	Comments
1.14.2	1.14.3	19(g)	Member with through hole	The 1963 Code specifies slightly more stringent requirements
1.14.6.1.3	3	-	Flare type groove welds when flush to the surface of the solid section of the bar	
1.15.5.5	-	-	Connections having high shear in the column web	New insert in the 1980 Code
1.15.11	1.15.11		Friction type joints	
1.16.4.2	1.16.4		Fasteners, minimum spacing, requirements between fastene	rs
1.16.5	1.16.5		Structural joints, edge distances of holes for bolts and rivets	
2.3.1 2.3.2			Braced and unbraced multi- story frame - instability effect	Instability effect on short buildings will have negligible effect.
2.4	2.3		Members subject to combined axial and bending moments	Procedure used in the 1963 Code for the interaction analysis is replaced by a different procedure. See case study 8 for details.

11

. 1

A Devision of The Franklin Institute

Referenced Subsection

Scale C

AISC	AISC	AISC	Structural Elements	
1980	1963	1953	Potentially Affected	Comments
1.3.3	1.3.3		Support girders and their connections - pendant operated traveling cranes	
			The 1963 Code requires 25% increase in live loads to allow for impact as applied to traveling cranes, while the 1980 Code requires 10% increase.	The 1963 Code require- ment is more stringent, and, therefore, conservative.
1.5.1.3.1	1.5.1.3.1	15(a)(2)	Axially loaded members under compression	New requirements added the 1963 Code - See Case Study 15 for details
1.5.1.5.3	1.5.2.2		Bolts and rivets - bearing stress on projected area - in bearing type connections $F_p = 1.5 F_u$ (1980 Code) $F_p = 1.35 F_y$ (1963 Code)	New provisions added in the 1963 Code.
1.10.2	1.10.2	26(b)	Web girders and rolled beams	The requirements of the 1963 Code are more liberal

1.1

Scale C (Cont.)

Referenced Subsection

AISC	AISC	AISC	Structural Elements	
1980	1963	1953	Potentially Affected	Comments
1.10.5.3	1.10.5.3		Stiffeners in girders - added spacing between stiffeners at end panels, at panels containing large holes, and at panels adjacent to panels containing large holes	New design concept in 1980 Code giving Less stringent require- ments. See case study 5 for details.
1.11.4	1.11.4		Continuous composite beams, where longitudinal reinforc- ing steel is considered to act compositely with the steel beam in the negative moment regions	New requirement added in the 1980 Code
1.14.5	1.14.6	19(g)	Pin Connected Members	
1.15.1	1.15.1	21(a)	Connections	More stringent requirements were specified in the 1953 Code.

1.1

A Drivin Research Center

APPENDIX B-2

ACI 318-56 VS. ACI 349-76

SUMMARY OF CODE COMPARISON

(SYNTHESIS OF ACI 318-56 VS. ACI 318-63 VS. ACI 349-76 CODE COMPARISONS)

Scale A

Refere	enced Subsect	lon		
ACI	ACI	ACI	Structural Elements	
349-76	318-63	318-56	Potentially Affected	Comments
3.5	405 (e),(f)		Prestressed elements	New insert lists ASTM specifications for prestressing wire and strands. 318-56 did not have sections dealing with prestressed concrete. Controls other than ACI Codes or recommended practice would apply to this type of construction prior to 1963.
7.10.3	805		Columns designed for stress reversals with variation of stress from f_y in compression to $1/2$ f_y in tension	Splices of the main rein- forcement in such columns must be reasonably limited to provide for adequate ductility under all loading conditions.
Chap. 9 9.1, 9.2, & 9.3 most specifi- cally	Chap. 15	A604	All primary load-carrying members or elements of the structural system are potentially affected	Definition of new loads not normally used in design of traditional buildings and redefini- tion of load factors and capacity reduction factors has altered the traditional analysis requirements.*

^{*}Special treatment of load and loading combinations is addressed in other sections of the report.

Scale A (Cont.)

ACI	ACI	ACI	Structural Elements	
349-76	318-63	318-56	Potentially Affected	Comments
10.1 and 10.10			All primary load-carrying members	Design loads here refer to Chapter 9 load combinations.*
11.1			All primary load-carrying members	Design loads here refer to Chapter 9 load combinations.*
11.13			Short brackets and corbels which are primary load- carrying members	As this provision is new, any existing corbels or brackets may not meet these criteria and failure of such elements could be non- ductile type failure. Structural integrity may be seriously endangered if the design fails to fulfill these requirements.
11.15			Applies to any elements loaded in shear where it is inappropriate to consider shear as a measure of diagonal tension and the loading could induce direct shear-type cracks	Structural integrity may be seriously endangered if the design fails to fulfill these requirements.

^{*}Special treatment of load and loading combinations is addressed in other sections of the report.

in philosophy introduced by ultimate strength logic

Splice lengths in column steel are the same as the 56 code and permissible bond stress for compression bars was set to match when reduced to working stress.

here.

Scale A (Cont.)

Referenced Subsection				
ACI 349-76	ACI 318-63	ACI 318-56	Structural Elements Potentially Affected	Comments
11.16			All structural walls - those which are primary load carrying, e.g., shear walls and those which serve to provide protec- tion from impacts of missile-type objects	Guidelines for these kinds of wall loads were not provided by older codes; therefore, struc- tural integrity may be seriously endangered if the design fails to fulfill these require- ments.
Chapter 3	12 Chapter 18	3	A11	New chapter; old code did not have ultimate strength criteria for bond. This chapter presents some changes in bond stresses allowed and a change in philosophy. Allowable bond values are higher on small bars, but lower on large bars because of this shift

1.1

A Division of the Franklin Institute

Scale A (Cont.)

Referenced Subsection				
ACI	ACI	ACI	Structural Elements	
349-76	318-63	318-56	Potentially Affected	Comments
	1301(c)	Table 305(a)	A11	Allowable bond stresses are presented in the new code as a function of concrete
				strength and bar diameter. Values in the new code are higher for small diameter bars and lower for large
				diameter bars as compared to the old code. See case study (14).
Chap. 17	Chapter 25	-	Composite construction	New chapter; ACI 318-56 did not contain specific sections on composite concrete flexural members and composite consruction.
Chap. 18	Chapter 26		Prestressed concrete	New chapter; ACI 318-56 did not contain specific sections or criteria for prestressed concrete.
18.1.4 and 18.4.2			Prestressed concrete elements	New load combinations here refer to Chapter 9 load combinations.*
Chap. 19	Chap. 19		Shell structures with thickness equal to or greater than 12 inches	This chapter is com- pletely new; therefore, shell structures designed by the general

*Special treatment of loads and loading combinations is addressed in other sections of the report.

B-2.5

A Domison of The Franklin Institute

Scale A (Cont.)

and Cabanabi

Refet	enced Subse	ction		
ACI 349-76	ACI 318-63	ACI 318-56	Structural Elements Potentially Affected	Comments
Chap. 19 (Cont.)				criteria of older codes may not satisfy all aspects of this chapter. Additionally, this chapter refers to Chapter 9 provi- sions.
Appendix	A		All elements subject to time-dependent and position- dependent temperature varia- tions and which are restrained such that thermal strains will result in thermal stresses	New appendix; older did not give specific guidelines on short-term temperature limits for concrete. The possible effects of strength loss in concrete at high tempera- tures should be assessed.
				Scale A for any accident temperature or other thermal condition exceeding limits of paragraph A.4.2.
Appendix	в		All steel embedments used to transmit loads from attachments into the rein- forced concrete structures	New appendix; therefore, considerable review of older designs is warranted.**

^{**}Since stress analysis associated with these conditions is highly dependent on definition of failure planes and allowable stress for these special conditions, past practice varied with designers' opinions. Stresses may vary significantly from those thought to exist under previous design procedures.

B-2.6

A Division of The Franklin Institute

Scale A (Cont.)

3 0 1

Referenced Subsection		ection		
ACI	ACI	ACI	Structural Elements	
349-76	318-63	318-56	Potentially Affected	Comments
Appendix	c		All elements whose failure under impulsive and impactive loads must be precluded	New appendix; therefore, considerations and review of older designs is considered important.**

11

^{**}Since stress analysis associated with these conditions is highly dependent on definition of failure planes and allowable stress for these special conditions, past practice varied with designers' opinions. Stresses may vary significantly from those thought to exist under previous design procedures.

Scale B

Rerer	enced Subse	ction		
ACI	ACI	ACI	Structural Elements	
349-76	318-63	318-56	Potentially Affected	Comments
1.3.2	103(b)		Ambient temperature control for concrete inspection - upper limit reduced 5° (from 100°F to 95°F) applies to all structural concrete	Tighter control to ensure adequate control of curing environment for cast-in-place concrete.
1.5			Requirement of a "Quality Assurance Program" is new. Applies to all structural concrete	Previous codes required inspection but not the establishment of a quality assurance program.
Chap. 3	Chap. 4	Chap. 2	Any elements containing steel with fy > 60,000 psi or lightweight concrete	Use of lightweight con- crete in a nuclear plant not likely. Elements containing steel with $f_y > 60,000$ psi may have inadeguate ductility or excessive deflections at service loads.
	1208		Elements where light- weight concrete was used.	Probably does not apply to nuclear structures.

1.1

Scale B (Cont.)

Rele	renced Subse	ection		
ACI	ACI	ACI	Structural Elements	
349-76	318-63	318-56	Potentially Affected	Comments
3.2	402	205	Cement	This serves to clarify intent of previous code.
3.3	403	206	Aggregate	Eliminated reference to lightweight aggregate.
3.3.1	403	206	Any structural concrete covered by ACI 349-76 and expected to provide for radiation shielding in addition to structural capacity	Controls of ASTM C567, "Standard Specifications for Aggregates for Radiation Shielding Concrete," closely parallel those for ASTM C33, "Standard Specifi- cation for Concrete Aggregates."
3.3.3	403	206	Aggregate	To ensure adequate control.
3.4.2	404	207	Water for concrete	Improve quality control measures.
3.5	405	208	Metal reinforcement	Removed all reference to steel with $f_y > 60,000$ psi.
3.5.1	405(a)		Reinforcing bar welds	Older code did not reference A.W.S. literature but specific jobs that allowed welding of reinforcing bars normally listed requirements in the job specifications.

Scale B (Cont.)

Referenced Subsection				
ACI	ACI	ACI	Structural Elements	
349-76	318-63	318-56	Potentially Affected	Comments
3.6	406, 407, & 408		Concrete admixtures	Added requirements to improve quality control.
3.6.3 & 3.6.4	407 & 408		Concrete where admixtures were used	Extensive use of these admixtures before 1963 was not common.
4.1 & 4.2	501 & 502	302 & 303	Concrete proportioning	Proportioning logic improved to account for statistical variation and statistical quality control.
4.2.5 & 4.2.7	501(c) & 501(d)		Concrete exposed to freezing or chemically aggressive environments	Past practice used other sources to guide designs in chemically aggressive environments.
4.3	504	304	Evaluation and acceptance of concrete	Added provision to allow for design specified strength at age > 28 days to be used. Not considered to be a problem, since large cross sections will allow concrete in place to continue to hydrate.

A Dresson of The Franklin Instalute

Scale B (Cont.)

Refe	renced Subse	ection		
ACI 349-76	ACI 318-63	ACI 318-56	Structural Elements Potentially Affected	Comments
4.3.3	504(c)	304(c)	Concrete quality control	Changed to separate quality control on strength for working stress and ultimate strength. Control for working stress in new code made somewhat more conservative.
	505		Lightweight concrete	New section added for lightweight aggregate concrete diagonal tension control. Old code did not specify this parameter.
5.7	507		Curing of very large concrete elements and control of hydration temperature	Attention to this is required because of the thicker elements encountered in nuclear- related structures.
6.3.3			All structural elements with embedded piping containing high tempera- ture materials in excess of 150°F, or 200°F in localized areas not insulated from the concrete	Previous codes did not address the problem of long periods of exposure to high temperature and did not provide for reduction in design allowables to account for strength reduction at high (>150°F, temperatures.

1.2

Scale B (Cont.)

Referenced Subsection				
ACI	ACI	ACI	Structural Elements	
349-76	318-63	318-56	Potentially Affected	Comments
7.5.5.1	805(d)	1103 (c) (3)	Welded splices	Welded splice requirement is more conservative as the 56 Code only required splices in compression to develop 100% of yield. Design allowables were reasonably below yield. This is not considered critical.
7.5, 7.6, & 7.8	805	506, 1002(d), 1103(c)	Members with spliced reinforcing steel	Sections on splicing and tie requirements amplified to better control strength at splice locations and provide ductility.
7.8.1 & 7.8.2	805(f)		Elements which used welded wire fabric as main rein- forcement	This type of reinforcement not generally used in large structures and main structural elements; therefore, not considered a problem.
7.9	805		Members containing deformed wire fabric	New sections to define requirements for this new material.
7.10 & 7.11			Connection of primary load-carrying members and at splices in column steel	To ensure adequate ductility.

Content of the Franklin Institute

Scale B (Cont.)

Referenced Subsection		ction		
ACI 349-76	ACI 318-63	ACI 318-56	Structural Elements Potentially Affected	Comments
7.12.3 & 7.12.4			Lateral ties in columns	To provide for adequate duc- tility.
7.13.1 through 7.13.3	-		Reinforcement in exposed concrete	New requirements to conform with the expected large thicknesses in nuclear- related structures.
8.6	-		Continuous nonprestressed flexural members.	Allowance for redistribution of negative moments has been redefined as a function of the steel percentage.
9.2	1504(b)		A11	Concept of a capacity reduction factor ϕ applied to the ultimate strength equations is new. This in a way replaces the old code use of different load factors for different structural elements.
9.3.1 6	1506	A604	A11	Load factors have changed - also the use of different load factors for different structural elements was dropped. These changes have been offset by the introduction of the capacity reduction factor; therefore, overall effect not critical.

1.2

Scale B (Cont.)

Referenced Subsection		ection		
ACI	ACI	ACI	Structural Elements	
349-76	318-63	318-56	Potentially Affected	Comments
9.4	1505	A603(c)	Reinforcing steel - design strength limitation	See comments in Chapter 3 summary.
9.5.1.1			Reinforced concrete members subject to bending - deflection limits	Allows for more stringent controls on deflection in special cases.
9.5.1.2 through 9.5.1.4		-	Slab and beams - minimum thickness requirements	Minimum thickness generally would not control this type of structure.
9.5.2.4	909		Beams and one-way slabs	New section on control of deflections needed because of use of new high strength steels and concrete. Will, generally, not be a problem in structures carrying heavy loads as minimum. thickness would not control.
9.5.3			Nonprestressed two-way construction	Immediate and long time deflections generally not critical in structures designed for very large live loadings; however, design by ultimate strength requires more attention to deflection controls.

1.1

B-2.14

A Division of The Franklin Institute

Scale B (Cont.)

and Cubaabi

at

Relea	tenceu subsect	LION	The second s	
ACI	ACI	ACI	Structural Elements	
349-76	318-63	318-56	Potentially Affected	Comments
9.5.4 & 9.5.5			Prestressed concrete members	Control of camber, both initial and long time in addition to service load deflection, requires more attention for designs by ultimate strength.
10.2.7			Flexural members - new limit on B factor	Lower limit on B of 0.65 would correspond to an f' _C of 8,000 psi. No concrete of this strength likely to be found in a puclear structure.
10.3.6		-	Compression members, with spiral reinforcement or tied reinforcement, non- prestressed and prestressed	Limits on axial design load for these members given in terms of design equations. See case study 2
10.3.6	Chapter 19	A600	Columns	The introduction of the capacity reduction factor viewed alone would significantly effect the ultimate design code results; however, the introduction of lower load factors at the same time minimizes the effect. Sample calculations show reasonable parity between safety margins with the older code being generally

more conservative.

Scale B (Cont.)

Refer	enced Subse	iction hor	Characterization (1) Planarater	
ACI	ACI	ACI	Structural Elements	Commenter
349-70	318-03	318-30	Potentially Affected	Comments
10.6.1	1508	A604(a)	Beams and one-way slabs	Changes in distribution of
through				reinforcement for crack
10.6.4				control.
10.6.5			Beams	New insert
10.7	910		Deep beams	Older code did not address
				"deep beams" as a specific case.
10.11	916	1107	Long columns	For long columns, h/t limit removed and a new strength reduction logic, which
				includes factors such as resistance to lateral displacement of the ends
				and mode of curvature in
				load reduction based on
				h/t. The old code designs were generally conservative
				and long slender columns were not allowed.
10.11.1	915 & 916	1107	Compression members,	For slender columns, moment
10.11.7	310		Stenderness errects	replaces the so-called
\$ 10.12				strength reduction concept, but for the limits stated in
				ACI 318-63 both methods
				yield equal accuracy and both are acceptable methods.

×

> diagram is derived from the ultimate strength diagram. The definition of the tension controlled region changes since balanced eccentricity is the new limit as opposed to the old

"Kern" definition.

Referenced Subsection ACI ACI ACI Structural Elements Potentially Affected Comments 349-76 318-63 318-56 New requirements defined for Flexural elements which 1102(c) ----------computing the compression contain compression steel steel contribution to the transformed area. This was to account for stress increase which results from creep. Will not be significant where design dead load is not a large part of the design load. 10.15.1 1404 Composite compression New items - no way to compare; ACI 318-63 contained through through members only working stress method 10.15.6 1406 of design for these members. 10.17 Massive concrete members, New item - no comparison. more than 48 in thick Both codes use interaction 1109 Columns 1407 logic; however, new code working stress interaction

2.2

A Dristion of The Franklin Institute

Scale B (Cont.)

Scale B (Cont.)

Referenced Subsection				
ACI 349-76	ACI 318-63	ACI 318-56	Structural Elements Potentially Affected	Comments
 (Cont.)				Comparison is complex but in general it is probable that the old code is more conservative.
11.2.1 & 11.2.2			Concrete flexural members	For nonprestressed members, concept of minimum area of shear reinforcement is new. For prestressed members, Eqn. 11-2 is the same as in ACI 318-63. Requirement of minimum shear reinforce- ment provides for ductility and restrains inclined crack growth in the event of unexpected loading.
11.3	Chapter 17		A11	This chapter is completely new; previous codes did not contain ultimate strength design criteria for shear and diagonal tension.
11.7 through 11.8.6			Nonprestressed members	Detailed provisions for this load combination were not part of ACI 318-63. These new sections provide a con- servative logic which

82.

Scale B (Cont.)

Referenced Subsection		ection		
ACI 349-76	ACI 318-63	ACI 318-56	Structural Elements Potentially Affected	Comments
11.7 through 11.8.6 (Cont.)				requires that the steel needed for torsion be added to that required for transverse shear, which is consistent with the logic of ACI 318-63. This is not considered to be critical, as ACI 318-63 required the designer to consider torsional stresses; assuming that some rational method was used to account for torsion, no problem is expected to arise.
11.9 through 11.9.6			Deep beams	Special provisions for shear stresses in deep beams are new. The minimum steel requirements are similar to the ACI 318-63 requirements of using the wall steel limits. Deep beams designed under previous ACI 318-63 criterion were reinforced as walls at the minimum and therefore no unreinforced section would have resulted.

1.1

Scale B (Cont.)

Referenced Subsection				
ACI	ACI	ACI	Structural Elements	
349-76	318-63	318-56	Potentially Affected	Comments
11.10 through 11.10.7			Slabs and footings	New provision for shear reinforcement in slabs or footings for the two-way action condition and new controls where shearhead reinforcement is used. Logic consistent with ACI 318-63 for these conditions and change is not considered major.
	1207	808-809	Slabs and footings	Shear stress logic for working stress design in ACI 318-63 was developed by applying a factor of 2 to the ultimate strength logic. In slabs and footings, the critical section for shear was defined at a distance d/2 (not d) from the face of the support or column. Allowable stresse, in the new code are larger; however, overall differences are not great in the final design.
-	2101(e)(2)		Slabs	New section added to give a specific method of defining the effect of a slab opening on the critical section around a column.

Scale B (Cont.)

Referenced Subsection

ACI 349-76	ACI 318-63	ACI 318-56	Structural Elements Potentially Affected	Comments
	1604	-	Members with nonsymmetrical cross sections	Old code did not address this problem. Old designs generally done by very conservative assumptions.
11.11.1	1707		Slabs and footings	The change which deletes the old requirement that steel be considered as only 50% effective and allows concrete to carry 1/2 the allowable for two-way action is new. Also deleted was the requirement that shear reinforcement not be considered effective in slabs less than 10 in thick. Change is based on recent research which indicates that such reinforcement works even in thin slabs.
11.11.2 through 11.11.2.5			Slabs	Details for the design of shearhead is new. ACI 318-63 had no provisions for shearhead design. The requirements in this sec- tion for slabs and footings are not likely to have been used in older plant designs. If such devices were used, it is assumed a rational design method was used.

11

A Division of The Franklin Insuture

Scale B (Cont.)

Ref	erenced Subse	ection		
ACI	ACI	ACI	Structural Elements	
349-76	318-63	318-56	Potentially Affected	Comments
11.12		-	Openings in slabs and footings	Modification for inclusion of shearhead design. See above conclusion.
11.13.1 11.13.2	٤		Columns	No problem anticipated since previous code required design consideration by some analysis.
Chap. 1	2		Reinforcement	Development length concept replaces bond stress concept in ACI 318-63. The various l_d lengths in this chapter are based entirely on ACI 318-63 permissible bond stresses. There is essentially no difference in the final design results in a design under the new code compared to ACI 318-63.
12.1.6 through 12.1.6.	918 (C) 3		Reinforcement	Modified with minimum added to ACI 318-63, 918(C).
12.2.2	s		Reinforcement	New insert in ACI 349-76.

A Division of The Franklin Institute

Scale B (Cont.)

Referenced Subsection				
ACI	ACI	ACI	Structural Elements	
349-76	318-63	318-56	Potentially Affected	Comments
12.4	-		Reinforcement of special members	New insert. Gives emphasis to special member consideration.
12.8.1 & 12.8.2	-		Standard hooks	Based on ACI 318-63 bond stress allowables in general; therefore, no major change.
12.10.1 & 12.10.2(b)			Wire fabric	New insert. Use of such reinforcement not likely in Category I structures for nuclear plants.
12.11.2		-	Wire fabric	New insert. Mainly applies to precast prestressed members.
12.11	918		Beams	Tensile steel cut off conditions are new. Older design practice did not terminate bars in high tension zones and generally bent up bars where not needed.
12.13.1.4			Wire fabric	New insert. Use of this material

1.1

Scale B (Cont.)

Referenced Subsection				
ACI 349-76	ACI 318-63	ACI 318-56	Structural Elements Potentially Affected	Comments
12.13.1.4 (Cont.)				for stirrups not likely in heavy members of a nuclear plant.
13.2.4	2102 (9)		Slabs	New section added to ensure moment transfer between supports and the slab.
13.5			Slab reinforcement	New details on slab reinforcement intended to produce better crack control and maintain ductility. Past practice was not inconsistent with this in general.
14.2			Walls with loads in the Kern area of the thickness	Change of the order of the empirical equation (14-1) makes the solution com- patible with Chapter 10 for walls with loads in the Fern area of the thickness.
15.5			Footings - shear and devel- opment of reinforcement	Changes here are intended to be compatible with change in concept of checking bar development instead of nominal bond stress con- sistent with Chapter 12.

1.8

A Dream of The Franklin Installer

Scale B (Cont.)

Referenced Subsection			 A second sec second second sec	
ACI	ACI	ACI	Structural Elements	
349-70	318-63	318-56	Potentially Affected	Comments
15.5	2305(d)	1205(e)	Footings	Removal of the 85% shear used to compute tensile reinforcement bond in two-way reinforced footings; now 100% shear is required.
15.9		-	Minimum thickness of plain footing on piles	Reference to minimum thickness of plain foot- ing on piles which was in ACI 318-63 was removed entirely.
16.2			Design considerations for a structure behaving monolithically or not, as well as for joints and bearings.	New but consistent with the intent of previous code.
17.5.3	2505		Horizontal shear stress in any segment	Use of Nominal Average Shear Stress equation (17-1) replaces the theoretical elastic equation (25-1) of ACI 318-63. It makes design computations easier.
18.4.1	-		Concrete immediately after prestress transfer	Change allows more tension, thus is less con- servative but not considered a problem.

х.

A Dreson of The Franklin Institute
.

Scale B (Cont.)

Refer	renced Subse	ection		
ACI	ACI	ACI	Structural Elements	
349-76	318-63	318-56	Potentially Affected	Comments
18.5	2606		Tendons (steel)	Augmented to include yield and ultimate in the jacking force requirement.
18.7.1			Bonded and unbonded members	Egn. 18-4 is based on more recent test data.
18.9.1 18.9.2 18.9.3	-		Two-way flat plates (solid slabs) having minimum bonded reinforcement	Intended primarily for control of cracking.
18.11.3 18.11.4		-	Bonded reinforcement at supports	New to allow for consideration of the redistribution of negative moments in the design.
18.13 18.14 18.15 18.16.1			Prestressed compression members under combined axial load and bending. Unbonded tendons. Post tensioning ducts. Grout for bonded tendons.	New to emphasize details particular to prestressed members not previously addressed in the codes in detail.
18.16.2			Proportions of grouting materials	Expanded definition of how grout properties may be determined.
18.16.4			Grouting temperature	Expanded definition of temperature controls when grouting.

A Division of The Franklin Institute

Scale C

12.0

A C. A

Refer	enced subsect	100		
ACI	ACI	ACI	Structural Elements	
349-76	318-63	318-56	Potentially Affected	Comments
7.13.4			Reinforcement in flexural slabs	
Chapter 7	2408, 2409 and 2410		Precast elements	New sections identify special conditions allowed by new code as exceptions to the general code provisions. Old code required precase elements to meet all Code provisions.
10.3.6	1403(a)	1104(a)	Tied columns	New code allows more load to be carried on tied columns, i.e., 85% as compared to 80% factor in old code. Also new code allows a higher % of steel to be used in tied columns. This is less conservative than the old code.
10.8.1 10.8.2 10.8.3	912	1101	Compression members, limiting dimensions	Minimum size limitations are deleted in newer code giving the designer more freedom in cross-sectional dimensioning

11

A Drison of The Franklin Institute

B-2.27

Scale C

Refer	enced Subse	ction		
ACI	ACI	ACI	Structural Elements	
349-76	318-63	318-56	Potentially Affected	Comments
	1502(d)		Continuous beams	New Code allows for moment redistribution where sufficient ductility exists. Old designs produce steel % on the order of 0.4 p _b ; therefore, ductility was there.
10.14	2306	1206	Bearing - sections controlled by design bearing stresses	ACI 318-63 is more conservative, allowing a stress of $1.9(0.25 \text{ f'}_{c}) =$ $0.475 \text{ f'}_{c} < 0.6 \text{ f'}_{c}$
11.2.5	1706	805 & 806	Reinforcement concrete mem- bers without prestressing	Allowance of spirals as shear reinforcement is new. Requirement of 2 lines of web reinforcment, where shear stress exceeds $6 \sqrt[4]{f'}_{C}$, was removed.
13.0 to end			Two-way slabs with multiple square or rec- tangular panels	Slabs designed by the previous criteria of ACI 318-63 are generally the same or more conservative.
13.4.1.5			Equivalent column flexi- bility stiffness and attached torsional members	Previous code did not consider the effect of stiffness of members normal to the plane of the equivalent frame.

A Drision of The Franklin Institute

Scale C (Cont.)

Referenced Subsection		ction		
ACI 349-76	ACI 318-63	ACI 318-56	Structural Elements Potentially Affected	Comments
15.6	2306(b)	1206(b)	Columns	New code requires only transfer of actual stress carried by the column longitudinal bars. Old code required transfer of full working value. Older code more conservative.
17.5.4 17.5.5			Permissible horizontal shear stress for any surface, ties provided or not provided	Nominal increase in allowable shear stress under new code.

APPENDIX B-3

ASME B&PV CODE, SECTION VIII, 1962 VS. ASME B&PV CODE, SECTION III, SUBSECTION NE, 1980 SUMMARY OF CODE COMPARISON

.

Scale A

Referenc	ed Section		
Section III 1980	Section VIII 1962	Structural Elements Potentially Affected	Comments
NE-3111	UG-22	Loading as applied to load carrying compo- nents*	Section III, 1980 Code specifies new loads to be considered in designing the vessel. These are: o Dynamic head of liquids o Snow loads and vibration loads o Reaction to steam and water jet impingement
NE-3112.2		Vessel and components*	The effects of internal heat generation due to radiation (in addition to all external sources) must be included in establishing design temperature.
NE-3112.3		Vessel and components*	In computations involving design pressure and design temperature, the values of dead loads and any hydro- static loads coincident with design pressure (designated as design mechanical loads) should be used.
NE-3112.4	UG-23	Vessels of materials no longer listed as Code acceptable	Section III, 1980 Code references materials which are identical to those referenced in Section VIII, 1962 Code. However, several materials which were referenced in Section VIII, 1962 are no longer given in Section III, 1980.

*Special treatment of load and load combinations is addressed in other sections of the report.

Scale A (Cont.)

 \boldsymbol{e}

Section III 1980	Section VIII 1962	Structural Elements Potentially Affected	Comments
NE-3112.4 (Cont.)			Verification of the allow- able stress values and validation of the materials used are required.
	UG-25(d)	Vessels containing telltale holes	The removal of this provi- sion from Section III, 1962 Code, bans the use of telltale holes, particularly since the only non- destructive test methods are recommended in Section XI of the Code, Rules for Inservice Inspection. Moreover, the more recent version of Section VIII specifically excludes using telltale holes when using lethal substances.
NZ-3131		Containment shells designed by formula	Section VIII, 1962 Code calls for the design of vessels by formula, while Section III, 1980 Code requires that the rules of Subsection NE-3200 (Design by Analysis) be satisfied. In the absence of substan- tial thermal or mechanical loads other than pressure, the rules of "Design by Formula" may be used (substantial loads are those loads which cumulatively result in stresses which exceed 10% of the primary stresses induced by the design pressure, such stresses being defined as maximum principal stresses).

B-3.3

Scale A (Cont.)

Reference	ed Section			
Section III 1980	Section VIII 1962	Structural Potentially	Elements Affected	
NE-3131 (Con't.)				The scal contains

NE-3133.5(a) UG-29

Stiffening rings for cylindrical shells subject to buckling loads The scale rating for containment shells where substantial thermal or mechanical loads other than pressure are absent is Scale B; otherwise it is

Comments

The requirements of the 1980 Code for defining the minimum moment of inertia of the stiffening ring as compared to the requirements of the 1962 Code may result in a lower margin of safety.

Scale

Is'	>	1.28	Is	С
Is'	>	1.22	Is	В
Is'	<	1.22	Is	A

where

Scale A.

 I_s is the minimum required moment of inertia of the stiffening ring about its neutral axis parallel to the axis of the shell. I_s' is the moment of inertia of the combined ring-shell section about its neutral axis parallel to the axis of the shell. The width of shell which is taken as contributing to I_s' shall not be greater than 1.1 $\sqrt{D_o/T}$.

Scale A (Cont.)

Reference	ed Section		
Section III 1980	Section VIII 1962	Structural Elements Potentially Affected	Comments
NE-3133.5(b)		Stiffening rings of materials different than shell materials	This new insert in Section III of the 1980 Code requires using the material chart which gives the larger value of the factor A. This may result in a larger stiffening ring section needed to meet the
			requirements of the code.
			Scale A for ring-stiffened shells where (1) the ring and the shell are of different materials and, in addition, (2) the "factor A" (as computed by the procedure of NE-3133.5) for the two materials differs by more than 6%; otherwise Scale B.
NE-3327	UG-35	Quick-actuating closures	New requirements in the 1980 Code
NE-3331(b)	UG-36	Openings and reinforce- ments; subject to cyclic loads	Requirements for fatigue analysis of vessels or parts which are in cyclic service are provided in Section III, 1980 Code. No specific guidance was given in Section VIII, 1962 Code.
NE-3334.1 NE-3334.2	UG-40(b) UG-40(c)	Rainforcement for vessel openings	New requirements in the 1980 Code limit the rein- forcement measured along the midsurface of the nominal wall thickness and normal to the vessel wall.

Scale A (Cont.)

Reference	ed Section		
Section III 1980	Section VIII 1962	Structural Elem Potentially Affe	cted Comments
NE-3365(f)		Bellows and bell expansion joints	ows Provisions regard internal sleeve d

Provisions regarding the internal sleeve design (for sizes over 6-inch diameter) and flow velocity limitations (for all sizes) are introduced in the 1980 Code.

Scale B

Reference	ed Section		
Section III 1980	Section VIII 1962	Structural Elements Potentially Affected	Comments
NE-3133.1	UG-28	Components under external pressure and axial compression	The design rules as given in Section VIII, 1962 are nearby identical to those specified in Section III, 1980. The differences will have little effect on the margin of safety.
NE-3324.8(c)		Torispherical neads made of materials having minimum tensile strength exceeding 80 ksi	The allowable stress for such a material should not exceed 22 ksi at room temperature as specified in the 1980 Code. Allowable stresses for those materials specified in the 1962 Code could be slightly higher, giving somewhat less conservative results.
NE-3324.12		Nozzles	The specified requirements imposed on the wall thickness of the nozzles or other connections are considered to be within the limitations of standard practice.
NE-3328		Combination units	This new insert gives the design requirements for pressure vessels consisting of more than one independent pressure chamber. These requirements are standard practice for designing such vessels.

.

Scale B (Cont.)

Referenced Section		ed Section		
Section 1980	III	Section VIII 1962	Structural Elements Potentially Affected	Comments
NE-3335		UG-40	Reinforcement in nozzles and vessel walls	These new provisions in Section III, 1980 Code detail specific requirements which are usually considered in good design practice.
NE-3336		UG-41(a)	Reinforcement for openings where welding is counted as rein- forcement	The 1962 Code has provision that weld strength be taken as that of the weaker of the metal joined.
NE-3700			Electrical and mechanical penetration assemblies	Provisions usually adopted in standard engineering design of such assemblies.

Scale C

Reference	ed Section		
Section III 1980	Section VIII 1962	Structural Elements Potentially Affected	Comments
NE-3332.2	IJG-37(b)	Area of reinforcement - vessels under internal pressure	The introduction of the correction factor P in Section III, 1980 Code will render the applicable equation to be the same or less conservative.
NE-3325.2(b)	UG-34(c)	Flat unstayed heads, covers, and blind flanges	The applicable revised equation (2) will have a minor effect in the calculation of the thickness.
NE-3362(b)	UG-42	Bolted flanges and studded connections	The requirements for length of stud engagement are relaxed in Section III, 1980 Code.

APPENDIX B-4

ACI 318-71 VS. ACI 349-76 SUMMARY OF CODE COMPARISON

.

14

٠

Scale A

Refere	enced		
Secti	on		
ACI	ACI	Structural Elements	
349-76	318-71	Potentially Affected	Comments
9.1.1.1		Normal loads	Impact of these conditions
9.1.1.2		Severe environmental loads	must be assessed.*
9.1.1.3		Extreme environmental loads	
9.1.1.4		Abnormal loads	
9.1.2		Normal loads	Impact of these conditions
9.1.3		Earthquake loads	must be assessed.*
9.1.4		Design loads and forces	
9.3	9.3	All loads	Impact of these conditions
9.3.1	9.3.1		must be assessed.*
9.3.2	9.3.2		
9.3.3	9.3.3		
9.3.4	9.3.4		
9.3.5	9.3.5		
9.3.6	9.3.6		
9.3.7	9.3.7		
10.1		All primary load-carrying members	Design loads here refer to Chapter 9 load combinations.*
11.1		All primary load-carrying members	Design loads here refer to Chapter 9 load combinations.*
18.1.4		Prestressed concrete elements	New load combinations here refer to Chapter 9 load combinations.*
Chapter 19	Chapter 19	Shell structures with thickness equal to or greater than 12 inches	New provisions for thick walls added.

*Special treatment of loads and loading combinations is addressed in other sections of the report.

Scale A (Cont.)

Rererei	ncea		
Sectio	on		
ACI	ACI	Structural Elements	
349-76	318-71	Potentially Affected	Comments
Appendix A	-	All elements subject to time-dependent and position-dependent temperature variations and which are restrained so that thermal strains will result in thermal stresses.	New appendix; older code did not give specific guidelines on temperature limits for concrete. The possible effects of strength loss of concrete at high temperatures should be assessed.
Appendix B	-	All steel embedments used to transmit loads from attachments into the reinforced concrete structures.	New appendix; therefore, considerable review of older designs is warranted.**
Appendix C	-	All elements whose failure under impulsive and impactive loads must be precluded.	New appendix; therefore, consideration and review of older designs is considered important.**

*Special treatment of loads and loading combinations is addressed in other sections of the report.

^{**}Since stress analysis associated with these conditions is highly dependent on definition of failure planes and allowable stress for these special conditions, past practice varied with designers' opinions. Stresses may vary significantly from those thought to exist under previous design procedures.

٠

Scale B

Referenced Section				
ACI 349-76	ACI 318-71	Structural Elements Potentially Affected	Comments	
	1.5	All structural concrete elements	Cites requirements of 10CFR50 for quality assurance requirements and guidelines.	
3.2.3	-	Structural concrete	New requirement on cement mill certification for better quality control.	
	3.3.1	Lightweight concrete aggregates	Lightweight aggregate most likely will not be found in nuclear related structure.	
3.3.1		Shielding concrete element	Previous codes made no reference to this special purpose concrete.	
3.3.3	-	All structural concrete	For better control of concrete quality through control of possible aggregate variations.	
3.5.1		Reinforcing bar	New requirement which pro- hibits use of $f_y > 60,000$ psi to provide for better ductility and crack control. Also improves serviceability.	
3.5.1(a) 3.5.1(b) Table 3.5.1	3.5.1(a) 	Deformed and plain billet-steel bar	Bend test pin diameter for #14 and #18 bars was decreased from 10D to 9D. However, steel with fy greater than 60,000 psi was eliminated from this code. Thereford, this change is not seen to be a problem. In general, the higher strength steels have lower ductility.	
3.5.3	3.5.3	Reinforcing steel	For quality control improvement	

Scale B (Cont.)

.

Refer Sect:	enced		
ACI 349-76	ACI 318-71	Structural Elements Potentially Affected	Comments
3.5.5		Cold drawn steel wire for concrete reinforcement	High fy steels eliminated for control of cracking and improved ductility
3.5.6		Welded steel wire fabric for concrete reinforcement	For improved ductility and crack control.
3.5.7		Deformed steel wire for concrete reinforcement	For improved ductility and crack control.
3.5.8		Welded deformed steel wire fabric for concrete reinforcement	For improved ductility and crack control.
3.6.5		Concrete mixtures	Improve quality assurance by preventing variation in admixtures.
4.3		Concrete	Decreases the number of tests required when quality of concrete production is high.
5.3.3		Aluminum pipe	Prevents problems which result from aluminum-cement reaction.
5.4.1	5.4.1	Concrete	Explicit statement of what has in the past been considered good construction practice. Editorial change.
5.5.1	-	Concrete	Method of curing now required to be part of specifications. Curing compound compatibility does not affect structural integrity.

٠

Scale B (Cont.)

Referenced Section			
ACI	ACI	Structural Elements	
349-76	318-71	Potentially Affected	Comments
6.3.3		All structural elements with embedded piping containing high tempera- ture materials in excess of 150°F, or 200°F in localized areas not insulated from the concrete	Previous code did not address the problem of long periods of exposure to high tempera- ture and did not provide for reduction in design allowables to account for strength reduction at high (> 150°F) temperatures.
/.5.5		Welded splices or other positive connections	Limits intended to provide for ductility and crack control.
7.6.2	7.6.2	Splices	New requirement eliminates dependence of tension stress transfer on concrete, thereby insuring tension tie integrity.
7.6.4		Splices in area of membrane tension	Past design practice has been consistent with the intent of this new provision.
7.8.1	7.8.1	Splices of welded smooth wire fabric	Past practice preference was to avoid such splices. Therefore, this is not considered to be critical.
7.8.2	7.8.2	Lapped splices	Smooth wire probably not used in large structures, as found in nuclear facilities, for primary reinforcement.
7.9	7.9	Lapped splices	Splice length definition augmented but not considered to be critically changed.
7.13 7.13.1 7.13.2		Concrete surface	Minimum steel for each face is intended to provide crack control and to develop the cracking moment of the section in anticipation of two-way bending and possible

B-4.6

Scale B (Cont.)

.

.

Referenced Section			
ACI	ACI	Structural Elements	
349-76	318-71	Potentially Affected	Comments
		Concrete surface (Cont.)	load reversals. Also, the thicker sections required in nuclear structures require controls similar to those ordinarily used in massive concrete structures.
9.5.4.1		Prestressed concrete	No major effect on older designs.
9.5.4.3		Prestressed concrete	Will not affect the overall structural strength.
9.5.6		Walls	Requirement added to control
			service of walls. Not
			considered critical.
9.5.1.1		All members	Allows for greater control of deflection in special cases.
9.5.1.3 9.5.1.4 Table 9.5(a)		All members	New control on serviceability under factored loads to provide for service under abnormal conditions.
Table	Table	Beam or one-way	Minimum thickness generally
9.5.(b)	9.5(a)	slabs	would not control the design
			in this type of structure.
Table	Table	Two-way clabe	Minimum thickness conceally
9.5(c)	9.5(b)	the hay stads	would not control the design
			in this type of structure.
9.5.3	953	Non-prostragged two-way	Tempdiate and lang bigs
9.5.3.6		construction	deflections generally not a
		CONSCI DECION	problem where live loads are very large. However, design by strength logic requires more attention to control of deflections.

.

.

Scale B (Cont.)

Section			
ACI	ACI	Structural Elements	
349-76	318-71	Potentially Affected	Comments
10.2.7	10.2.7	Concrete	New limit corresponds to a concrete strength of 8000 psi. Older design not likely to have considered such a concrete design strength.
10.3.6		Compression members	Consistent with previous logic.
10.6.3	10.6.3	Reinforcement	May not be effective. Applies only to f_y in excess of 40,000 psi.
10.11.6	10.11.6	Compression members	No major change.
10.17		Thick massive concrete structures	Past practice should have used similar reference material.
11.7.8		All members	Not considered critical since design would have required consideration if Code did not.
11.7.9		Statically indeterminate structure	Past practice covered this in an empirical manner.
11.10.4	11.10.3	Concrete	Upper limit of shear stress maintained.
11.10.5 11.10.6 11.10.7	Ξ	Nuclear-related structure slab	New provision for shear for the two-way action condition and where shear head reinforcement is used. Intent is consistent with previous Code logic.
11.16.7		Nuclear structures	New provision for peripheral shear in walls.
12.10.1	12.10.1	Welded wire fabric	Use of such reinforcement not likely in older nuclear plant designs.

Scale B (Cont.)

Referen	nced		
ACI 349-76	ACI 318-71	Structural Elements Potentially Affected	Comments
12.10.2 (a) (b)	12.10.2	Welded deformed wire fabric	Logic consistent with previous Code.
12.13.1.2		Deformed wire	Deformed wire not likely to be found in older structures.
13.3.1.7		Slab	Logic consistent with previous Codes.
13.5.6		Bent bar for slabs	Past practice is consistent with this logic.
15.10(b)		Combine footing and mats	Not considered to be a problem as general practice probably used continuous frame logic.
16.2.2		Precast concrete members	Consistent with the logic of previous Codes and past practice.
16.4.2		Concrete dowels or inserts	Consistent with past practice.
18.9.2 18.9.2.1 18.9.2.2 18.9.2.3	18.9.2	Slab joints and column	Increases in some of the allowable tensile stresses require greater control of cracking.
18.9.3	18.9.3	Bonded reinforcement	Minimum length definition needed to complete definition of bonded reinforcement requirements.
18.15.2	18.16.2	Tendon	Consistent with good practice.
18.15.3		Grout	Consistent with past good construction practice.

Scale B (Cont.)

.

Referenced Section			
ACI 349-76	ACI 318-71	Structural Elements Potentially Affected	Comments
18.16.2	18.17.3	Grout	Provides for higher quality grout and grout quality control.
18.19.2	18.20.3	Unbonded structure	
19.2.1	-	Concrete structure	These new inserts are consistent with past good design practice.
19.2.6		Opening or penetration	These new inserts are
19.2.7		of the overall structure	consistent with good design
19.3.2			practice.
19.3.3			
19.3.7			

Scale C

6

Referenced Section				
ACI	ACI	Structu	ural Elements	
349-76	318-71	Potenti	ally Affected	Comments
7.13.4		Concrete	surface	Less conservative than older Codes.
18.4.1 (a),(b), (c)	18.4.1 (a),(b)	Concrete	structure	Older designs will, as a result, appear more conservative.
18.4.2				Older designs more conservative for the same gross loads.

APPENDIX B-5

AISC 1971* VS. AISC 1980

SUMMARY OF CODE COMPARISON

*Includes supplements 1 and 2

×

Scale A

Referen Subsect	ced ion			
AISC 1980	AISC 1971	Structural Elements Potentially Affected	Comments	
1.5.1.1	1.5.1.1	Structural members under tension, except for pin connected members	<u>Limitations</u>	Scale
			F. < 0.833 F.	с
			$0.833 F_u < F_y < 0.875 F_u$ $F_y \ge 0.875 F_u$	B A
1.5.1.2.2		Beam end connection where the top flange is coped and subject to shear, failure by shear along a plane through fasteners, or shear and tension along and perpendicular to a plane through fasteners	See case study 1 for details.	
1.5.1.4.1 Subpara. 6	1.5.1.4.1	Box-shaped members (subjecto bending) of rectangular cross section whose depth is not more than 6 times their width and whose flat thickness is not more that 2 times the web thickness	ect New requirement in the ar 1980 Code ange an s	
1.5.1.4.1 Subpara. 7	1.5.1.4.1	Hollow circular sections subject to bending	New requirement in the 1980 Code	
1.5.1.4.4	-	Lateral support requirement for box sections whose de is larger than 6 times the width	ents New requirement in the pth 1980 Code meir	
1.5.2.2 and Appendix B	1.7	Rivets, bolts, and threaded parts subject to 20,000 cycles or more	Change in the require- ments	

Scale A (Cont.)

Referenced Subsection			
AISC 1980	AISC 1971	Structural Elements Potentially Affected	Comments
l.7 and Appendix B	1.7	Members and connections subject to 20,000 cycles or more	Change in the require- ments
1.9.2.3 and Appendix C	-	Circular tubular elements subject to axial compression	New requirements added in the 1980 Code
1.11.5		Composite beams or girders with formed steel deck	New requirements added in the 1980 Code
1.15.5.2 1.15.5.3 1.15.5.4	1.15.5	Restrained members when flange or moment connection plates for end connections of beams and girders are welded to the flange of I or H shaped columns	New requirement added in the 1980 Code
1.14.2.2		Axially loaded tension members where the load is transmitted by bolts or rivets through some but not all of the cross-sectional elements of the members	New requirement added in the 1980 Code
Appendix		Web tapered members	New requirements added in the 1980 Code

Scale B

Referen Subsect	ced ion		
AISC	AISC	Structural Elements	
1980	1971	Potentially Affected	Comments
1.14.6.1.3		Flare type groove welds when flush to the surface of the	
		solid section of the bar	
1.16.4.2	1.16.4	Fasteners, minimum spacing, requirements between fasteners	
1.16.5.2	1.16.6	Structural joints, edge	
1.16.5.3		distances of holes for	
1.16.5.4		bolts and rivets	
1.15.5.5		Connections having high shear in the column web	New insert in the 1980 Code
2.3.2		Unbraced multi-story frame - instability effect	Instability effect on short buildings will have negligible effect.

Scale C

Refer Subse	enced ction		
AISC 1980	AISC 1971	Structural Elements Potentially Affected	Comments
1.3.3	1.3.3	Support girders and their connections - pendant operated traveling cranes	
		The 1971 Code requires 25% increase in live loads to allow for impact as applied to traveling cranes, while the 1980 Code requires 10% increase.	The 1971 Code require- ment is more stringent, and, therefore, conservative.

APPENDIX C

.

COMPARATIVE EVALUATIONS AND MODEL STUDIES

	Project	C5257		Page C.1-1
A Division of The Franklin Institute The Benjamin Franklin Parkway, Phila, Pa. 19103	ay ⊻D	Date 047. 81	Ch'k'd Date	Rev. Date
CASE ST	UDY _1 -	-		
			· · · ·	
the accompance suress for	1512 a	Steel Subjec	t to shear	
both in the 1963 and	1980 ed.	time as	coae	
$F_{y} = 0.40 F_{y}$	(1)	based on the	e sectional an	ea
However, in the 1980 G	de a new	section 1.5.1	.2.2 is	
introduced stating the	t;			
"At beam end conner	ctions where	the top fla	nge is tope	L,
and in similar situa	tions where	failure mi	ght. occur	
by shear along a pla	ine through	h the faste	iners, or by a	
Combination of shear	along a pl	lane throng	h the fastene	ns
plus tension along a	perpendicul	lar plane, o	m the area	
effective in resisting	tearing fai	luce : For	= 0.30 F	
where the effective	area is th	e minimum	, net failure	-
Surface, bounded by	the bolt	holes.		
Keferring to the 1980 G	mmentary	and Fig. C.	1.5.1.2	
The connection allowa	ble capac	ity in the t	tearing faile	ne
mode can be taken	as	F	(2)	•
c. so the ru.	the set of	i u	et tension	
where my and my are	one ter st	icar unit		
and all of				
In order to evaluate -	the effect	of the code	change,	
3 sets of each; Mater	ial, beam	size & coeffic	ients for	
web tear out (Tal	le 1-6 pag	e 4-11 of th	e Alsc Steel	
Manual) were use	ed.	- · (1) /		
The results obtained	by using e	quations (1) \$	2) above	
indicate that the	1980 600	te gwes le	+' conservat	ive
results as shown o	n the follo	wing tabula	lion.	
Therefore, Scal	e - A -			

The Franklin Bassarah Contra	Project , C5257					Page C.1-2		
A Division of The Franklin Institute The Benjaman Franklin Parkway, Phila, Pa. 19103	BY M.D	Date OCT. '31	Ch'k'd	Date 10/81	Rev.	Date		

BEAM END CONNECTION WHERE TOP FLANGE IS COPED, CASE STUDY -1-

FY,PSI	FU, PSI	H.IN	C1	C2	ALLONABLE	LOAD, LB	PCT.
36000.	60000.	12.00	1.00	0.74	172800-	104400	40.
36000.	60000	12.00	1.50	0.74	172800.	134400.	22.
36000.	60000.	24.00	1.00	0.74	345600.	104400.	70.
36000.	60000.	24.00	1.00	2.48	345600.	205800.	40.
36000	60000	24.00	1.50	0.74	345600	134400.	61.
36000	60000	24.00	1.50	2.48	345600	230800.	31.
36000	60000	24 00	2 25	0.71	345600	179400	48
36000	600.00	24.00	2 25	2 18	345600	293960	18
36000	60000	36 00	1 00	2 40	51-600	208200	50
36000.	60000	36.00	1.00	4 91	515400	249600	33
36000.	60000.	30.00	1.00	4.01	516400	340000.	53.
30000.	60000.	30.00	1.50	2.40	510400.	238590.	24.
36000.	60000.	30.00	1.50	4.81	518400.	3788009.	41.
36000.	60000.	36.00	2.25	2.48	516400.	283800.	47.
36000.	60000.	36.00	2.25	4,81	518400.	423600.	18.
50000.	70000.	12.00	1.00	0.74	240000.	121800.	49.
50000.	70000.	12.00	1.50	0.74	240000.	156800.	32.
50000.	70000.	17.00	2.25	0.74	240000.	566300.	13.
50000.	70000.	24.00	1.00	0.74	480006.	121800.	75.
50000.	70000.	24.00	1.00	2.48	4,80000.	243600.	49.
50000.	70000.	24.00	1.50	0.74	480000.	156800.	67.
50000.	70000.	24.00	1.50	2.48	480000.	278600.	42.
50000.	70000.	24.00	2.25	0.74	480000.	209300.	56.
50000.	70000.	24.00	2.25	2.48	480000.	331100.	31.
50000.	70000.	36.00	1.00	2.48	720000.	213500.	br.
50000.	70000.	36.00	1.00	4.91	720000.	405700.	44.
50000.	70000.	36.00	1.50	2.48	720000.	278600.	61.
50000.	70000.	36.00	1.50	4.81	720000.	441700.	39.
50000.	70000.	36.00	2.25	2.48	720000.	331100.	54.
50000.	70000.	36.00	2.2%	4.81	720000.	494200.	31.
65000.	80000	12.00	1,00	0,74	312000.	139200.	55.
65000.	80000.	12.00	1.50	0.74	312000.	179200.	43.
65000.	80000.	12.00	2.25	0.74	312000.	239200.	23.
65000.	80000.	24.00	1.00	0.74	624000.	139200.	72.
65000.	80000.	24.00	1.00	2.48	624000.	278400.	55.
65000.	80000.	24.00	1.50	0.74	624000.	179200.	71.
65000.	80000.	24.00	1.50	2.48	624000.	318400.	49.
65000.	80000.	24.00	2.25	0.74	624000.	234200.	62.
65000	80000	24.00	2.25	2.48	624000.	378400.	39.
65000	80000	36.00	1.00	2.46	036000	278400.	70.
65000	80000	1.00	1.00	4.81	936000	464800.	50.
65000	80000	36 00	1.50	2.48	936000	318400.	66.
65000	80000	16 00	1.50	4.81	936000	504800	46.
65000	80000	16.00	2.25	2.48	936000	378400.	ė0.
65000.	60000.	36.00	2.25	4.81	936000.	564800.	40.

NOTES:

18

1- ALLOWABLE LOADS ARE GIVEN PER INCH OF WEB THICKNESS 2- PCT= PERCENT OF THE REDUCTION OF PERCEIVED MARGIN OF SAFETY

Pranklin Research Center
A Dension of the Franklin motionProject
$$\mathbb{P}_{a}$$

 \mathbb{P}_{a}
 \mathbb{P}_{a}
 \mathbb{P}_{a} Project
 \mathbb{P}_{a}
 \mathbb{P}_{a}
 \mathbb{P}_{a}
 \mathbb{P}_{a} Project
 \mathbb{P}_{a}
 \mathbb{P}_{a}
 \mathbb{P}_{a}
 \mathbb{P}_{a} Page C.2-1
 \mathbb{P}_{a}
 \mathbb{P}_{a}
 \mathbb{P}_{a}
 \mathbb{P}_{a}
 \mathbb{P}_{a} Page C.2-1
 \mathbb{P}_{a}
 \mathbb

FORM CS-FIRL-81

٠

	Project C52	257		Page C.2-2
A Division of The Franklin Institute The Benjamin Franklin Parkway, Phila., Pa. 19103	By A. M. U.	Date 4/82	Ch'k'd Date 7CS 4-82	Rev. Date
(a) for L E = 1.7				
$P_{allow} = 0.28 f_c A_g + 0.33 f_y A_g$	st or			
$P_{allow} = 0.26 f_{c} A_{g} + 0.33 f_{y} A$	st			
(b) for L.F. = 1.55				
$P_{allow} = 0.30 f_{c} A_{g} + 0.36 f_{y} A_{c}$	st ^{or}			
$P_{allow} = 0.28 f_{c} A_{g} + 0.36 f_{y} A_{g}$	st			
(c) for L.F. = 1.4				
$P_{allow} = 0.34 f_{c} A_{g} + 0.40 f_{y} A_{c}$	st ^{or}			
$P_{allow} = 0.31 f_c A_g + 0.40 f_y A_g$	st			

Comparison of these resulting equations to the P_{allow} by working stress design criteria shows that the new code allows from 1.24 to 1.62 times more load on the concrete in a tied column and from 0.97 to 1.18 times more load on the longitudinal steel in a tied column.

Therefore, Scale C

English Brough Control	Project C5257					Page C.3-1	
A Division of The Franklin Institute The Benjamun Franklin Parkway, Phila, Pa 19103	Emili.	Date 6/32-	Ch'k'd T.C.S	Date 6-13-32	Rev.	Date	

CASE STUDY 3 .

FLEXURAL MEMBERS

Sections with Tension Reinforcing Only:

For purposes of code comparison, with emphasis on comparing safety margins of designs conforming to older codes and practices with corresponding margins provided by current criteria, the following case studies were prepared.

For designs prepared by working stress criteria, a comparison with strength design was made by reducing the strength equation to an allowable moment by the following definition.

$$M_{allow} = \frac{\phi}{L.F.}^{M_{u}}$$

To bracket extremes of load ratios, the following three cases were considered in each working stress comparison.

(a)	when	L	= 0	L.F. =	1.4
(b)	when	L	= D	L.F. =	1.55
(c)	when	D	= 0	L.F. =	1.7

For designs prepared by yield-strength criteria, a comparison with strength design was made directly with a load factor equal to 1.0. The yield-strength definition used here was not a code endorsed practice; but was the method widely adopted by architect engineers, at the time, to design for the extreme loadings postulated for accident and faulted conditions. It possesses the practical advantage of permitting an extended use of linearly elastic computer codes to provide design guidance for extreme loading cases and is documented in Ref. 1*

Since older codes did not contain any strict limitation on the percent of reinforcement, the comparisons presented here used the defined balanced steel percentage and additionally steel percentages 60 percent lower and 50 percent higher than balanced in order to show the effect of this parameter on the comparisons.

*Ref. 1

A Study of the Design and Construction Practices of Prestressed Concrete and Reinforced Concrete Containment Vessels by C. P. Tan prepared by FIRL for the U. S. Atomic Energy Commission, Aug. 1969 under contract to the ORNL (TID 25176).

FORM CS-FRC-81

	Project	Page C.3-2			
A Division of The Franklin Institute The Benjamon Franklin Parkwey, Phila, Pa. 19103	By ma	Date 6/82	Ch'k'd Date 705 6-18-82	Rev.	Date

For Working Stress Design

The definition of balanced design is that both concrete and steel reach their theoretical working stress allowable limit simultaneously.

The strain diagram and neutral axis location for this condition are:

$$r = \frac{1}{1+1.11} \left(\frac{r}{n}\right)$$

and from equilibrium:

$$\frac{F_s}{F_c} = \frac{A_s f_y}{(0.45 f_c') b k d} = \left(\frac{A_s}{bd}\right) \left(\frac{f_y}{f_c'}\right) \frac{1}{0.45k} = 1$$

FORM CS-FRC-81
	Project		C5257	Page C.3-3
A Division of The Franklin Institute The Benjamin Franklin Parkway, Phile, Pa 19103	EM W	6/52	Ch'k'd Date 765 6-18-32	Rev. Date

$$p_1 = \frac{A_s}{bd} = 0.45 \frac{k_1}{r}$$

 $f_* = f_* A_* jd$ or $M_* = 1/2 f_* bd^2 j k$

For Yield-Limit Design

The Yield-Limit concept assumes that the system behaves in a linear fashion up to the yield of the steel or to the ultimate strength of the concrete. For the balanced condition again $f_s = f_y$ and $f_c = f'_c$ simultaneously.

The strain diagram and neutral axis location for this condition are:

$$\begin{array}{c} \hline \begin{array}{|c|c|c|c|c|} \hline \hline Print & \hline C5257 & \hline Print & \hline C3257 & \hline Print & \hline Prin & \hline Print & \hline Print & \hline Print & \hline Print & \hline$$

.

FORM 207-5M-4-80-CP

.

Market Research Center
 Project
 C5257
 Project
 C.3-6

 Notice of the Francisci institute
Also:
 If
$$p < p_1$$
 (say 60% p_2)
 Date
 Rev.
 Date

 Also:
 If $p < p_1$
 (say 60% p_2)
 $a = 2 \text{ pn} = 0.180$
 Rev.
 Date

 $p = 0.6$
 (0.0188) = 0.0.0113
 $a = 2 \text{ pn} = 0.180$
 $k = (0.18 + (0.18)^2)^{1/2} - 0.18 - 2 = 0.344$
 $d = 0.885$
 $k = (0.18 + (0.18)^2)^{1/2} - 0.18 - 2 = 0.344$
 $d = 0.885$
 $m_k = 0.885 \text{ s} \frac{f_y}{2} d = 0.443 \text{ A}_s f_y d$
 $M_u = A_s f_y d$
 $(1-0.59(0.0113)10] = 0.933 \text{ A}_s f_y d$
 $m_u = A_s f_y d$
 $m_u = \begin{cases} 1.36 \text{ if } L = 0 \\ 1.12 \text{ if } D = 0 \end{cases}$

 and:
 if $p > p_1$
 (say 1.5 p_1)
 $(1.22 \text{ if } D = 0)$
 $(1.41 \text{ if } L = 0) \\ 1.12 \text{ if } D = 0 \end{cases}$

 and:
 $m_u = \frac{M_u}{M_c} = 2.43$
 $\sum \frac{M_u}{M_c} = 2.43$
 $\sum \frac{M_u}{M_c} = 2.43$
 $\sum \frac{M_u}{M_c} = 0$

٠

.

.

×

	Project	C525	57	Pag	C.3-8
A Division of The Franklin Institute The Benjaman Franklin, Parkway, Phila, Pa. 19103	Ema	6/82	Ch'k'd TCS 6-16	Date Rev 3-82	Date
And:					
if $\rho > \rho_2$ (say $\rho = 1.5 \rho_2 = 0.026$;8)				
$\frac{M_u}{M_c} = 1.26$					
For Working Stress Design at balance	ed design				
$f'_c = 3 \text{ ksi}$ $f_y =$: 36 ksi	n =	= 9	$\frac{f_y}{f_c} = 12$	2
k ₁ = 0.403 0 ₁	= 0.0151				
$\frac{M_u}{M_t} = 2.06$					
$ \frac{M_{allow}}{M_t} = \begin{cases} 1.3 \\ 1.2 \\ 1.0 \end{cases}$	82 if L = 0 80 if L = D 99 if D = 0				
Also:					
• if p < p1 (say 60%)					
$\frac{M_u}{M_t} = 2.1$					
$\frac{M_{allow}}{M_t} = \begin{cases} 1\\ 1\\ 1 \end{cases}$.35 if L = 0 .22 if L = D .11 if D = 0				

	Project	C5257		Page C.	. 3-9
A Division of The Franklin Institute The Benjamin Franklin Parkwey, Phila, Pa. 19103	En Como	6/82	Ch'k'd Date TCS 6-12-22	Rev.	Date
And:					
$if \rho > \rho_1$ (say 1.5 ρ_1)					
$\frac{M_u}{M_c} = 2.58$					
$M_{} = \int_{}^{} 1.66 \text{ if } L = 0$					
$\frac{\text{allow}}{M_{c}} = \begin{cases} 1.50 & \text{if } L = D \\ 1.36 & \text{if } D = 0 \end{cases}$					
In summary,					
for yield limit design compar	isons:				
$\frac{M_u}{M_t}$ = 1.02 to 1.26					
for and the states destand in					

for working stress design comparisons:

$$\frac{M_{allow}}{M_{+}}$$
 = 1.09 to 1.66

Strength design allows beams to operate at a higher stress level. For these beams the older code is more conservative.

Scale C

In general, for designs controlled by flexure, beams designed by strength design methods will have higher stresses at service load levels than beams designed for the same service loads by working stress design methods.

A Division of The Franklin Institute The Benjamer Franklin Person Parker 24 19103	Project	C5257	1.00		Page	C.4-1
	av M.D	Date SEPT. 61	Ch'k'd	Date 10/21	Rev.	Date

CASE STUDY -4 -

Ref AISC 1980 CODE

Subsection 2.4 Columns

In the plane of bending of columns which would develop a plastic himge at ultimate loading, the slenderness ratio & shall not exceed Ca, ... "

where $C_{e} = \sqrt{\frac{2\pi^{2}E}{E_{u}}}$ E = 29 × 103 KSI Fy = yield stress Therefore $l \leq \frac{756.6}{\Gamma}$

Ref AISC 1963 Code

Subsection 2.3 Columns

In the plane of bending of columns which 18 would develop a plastic hinge at ultimate loading, the stenderness ratio shall not exeed 120, ... "

 $\frac{l}{r} \leq 120$

	Project	C5257	and the)	Page	.4-2
A Division of The Franklin Institute The Benjamun Franklin Parkway, Phila, Pa. 19103	BY D	Date SEPT. 31	Ch'k'd	Date 10/21	Rev.	Date

which of the two codes is the more restrictive on ly ratio depends on the yield strength of the steel used for the columns.

1) Both codes give $\frac{2}{T} = 120$ when $C_c = \frac{756.6}{\sqrt{F_x}} = 120$

then ,

Fy = 40 KSI

2) The 1980 Code is 5% more conservative when

$$\frac{l}{r} = 114 = \frac{756.6}{JF_{y}}$$

then, Fy = 44 KSI

7

Conclusion:

Scale

Fy = 40 KSI _____C

	Project	C5257			Page C	.5-1
A Division of The Franklin Institute The Benjamon Franklin Parkway, Phila, Pa. 19103	BY MD	Data SEPT BI	Ch'k'd	Date 10/21	Rev.	Date

CASE STUDY -5 -

Ref Alsc 1980 Code

Subsection 1.10.5.3

In girders designed on the basis of tension field action, the spacing between stiffeners at end panels, at panels containing large holes, and at panels adjacent to panels containing large holes shall be such that fur does not exceed the value given "below

$$Fv = \frac{F_{4}}{2.89} Cv \leq 0.4 F_{4}$$

Where

$$C_{V} = \frac{45000 \, k}{F_{y} (h/t)^{2}} \quad \text{when } C_{V} < 0.8$$

$$R = 4 + \frac{5.34}{(a/h)^{2}} \quad \text{when } a/h < 1.0$$

$$= 5.34 + \frac{4}{(a/h)^{2}} \quad \text{when } a/h > 1.0$$

A Division of The Franklin Institute The Benjaman Franklin Parkvery Phila Pa. 19103	Project	C5257			Page C.	5-2
	BY MD	SEPT. 81	Ch'k'd	Date 12/81	Rev.	Date

Ref AISC 1963 code

Subsection 1.10.5.3

" The spacing between stiffeners at end panels and panels containing large holes shall be such that the smaller panel dimension a or h shall not exceed

1100.0t Jfv

Franklin Provent Court	Project	C5257		Page C.5-3
A Division of The Franklin Institute The Benjamin Franklin Perkway, Phila, Pa. 19103	BY	Date SEP T. 81	Ch'k'd Date	Rev. Date
Ref All EXAMPLE h = 68" t = .375" Aw = 68 $\times \frac{3}{3}$ = 25.5 Tm^2 V = 240 Kips fu = $\frac{240}{25.5}$ = 9.06 KSI	SC SUD	section 1.10.5	.3 V=24€	0 Kips
from 1.10.5.3 1963 a or h $\Rightarrow \frac{11000}{\sqrt{fr}}$ Which is the di to the first tra-	Code t = . Stance fr nsuerse s	$\frac{11000 \times \frac{3}{8}}{\sqrt{9.06 \times 1000}} =$ from the end of the fermer.	= 43 in of the gird	er
By considering the ten as specified in fv = 9.06 KS $k = 4 + \frac{5.34}{(a/n)^2} = 4$	$\frac{h}{t} = \frac{5.34}{(618)}$	$\frac{68}{375} = 181$	$a_{1.10.5.3}$ $a_{1}^{a} = \frac{41}{53}$	3 = . 618
$C_{tr} = \frac{45000 \text{ fr}}{\text{Fy} (-\frac{1}{h/t})^2} =$ $F_{tr} = \frac{\text{Fr}}{2.89} C_{tr} \leq$ $= \frac{36}{2.89} \times .686$	$\frac{45000 \times 11}{36 (181)}$ $.4 Fy$ = 8.54 K	51 \$ from	-table 10.3	6 the
Allasable shear however, lower the : Scale B for the	stress ~ an f _y	8.6 Ksi (of 9.06 Ksi	(checks Comp	uted Value)

Franklin Dansach Canton	Project	C5257			Page C.	5-4
A Division of The Franklin Institute The Benjoran Franklin Parkway, Phila, Pa. 19103	av D	Dame SEPT. '81	Ch'k'd	Date 19 21	Rev.	Date

Remarks

The following two frequees show FV VS. A/Tfor various values of A/H and Fy. By knowing the shear stress FV or FV' the A/T value can be abtained and compared with the design A/T. Thus comparison should be examined on a case by case basis.

CASE STUDY -6- Ref AISC 1980 Code Section 2.7 "The width - thickness ratio for flange of rolled W, M, or S shapes and similar built-up single-Web shapes that would be subjected to compression involving hinge rotation under ultimate loading shall not ovceed the following values: "			Project	C5257		Page C.6-1
CASE STUDY -6- Ref AISC 1980 Code Section 2.7 "The width - thickness ratio for flange of rolled W, M, or S shapes and similar built-up single-web shapes that would be subjected to compression involving hinge rotation under ultimate loading shall not exceed the following values:"	A Division	of The Franklin Institute Franklin Parkway, Phila, Pa. 19103	By SO	Date SEPT. '81	Ch'k'd Date	Rev. Da
CASE STUDY -6- Ref AISC 1980 Code Section 2.7 "The width - thickness ratio for flange of rolled W. M. or S shapes and similar built-up single- Web Shapes that would be subjected to compression involving hinge rotation under ultimate loading shall not oucced the following values:"						
CASE STUDY -6- Ref AISC 1980 Code Section 2.7 "The width - thickness ratio for flange of rolled W. M. or S shapes and similar built-up single-web shapes that would be subjected to compression involving hinge rotation under ultimate loading shall not avceed the following values: "						
Ref AISC 1980 Code Section 2.7 "The width - thickness ratio for flange of rolled W. M. or S shapes and similar built-up single-web shapes that would be subjected to compression involving hinge rotation under ultimate loading shall not		CASE STUD	PY -6-			
Section 2.7 "The width - thickness ratio for flange of rolled W. M. or S shapes and similar built-up single-web shapes that would be subjected to compression involving hinge rotation under ultimate loading shall not	Ref	AISC 1980	Code	-		
"The width - thickness ratio for flange of rolled W, M, or S shapes and similar built-up single-web shapes that would be subjected to compression involving hinge rotation under ultimate loading shall not		Section 2.7				
rolled W, M, or S shapes and similar built-up single-web shapes that would be subjected to compression involving hinge rotation under ultimate loading shall not		" The width - H	nickness ratio	for fla	nge of	
built-up single-web shapes that would be subjected to compression involving hinge rotation under ultimate loading shall not		rolled W, M,	or S shapes	and si	milar	
subjected to compression involving hinge rotation under ultimate loading shall not		built-up sing	jle-web shap	bes that	- would be	
rotation under ultimate loading shall not		subjected to	compression	mvolvir	ig himge	
		rotation that	- Ultimate	loading	shall not	
	- 45 KOI	-1/2ts				
<u> </u>	50	2.2				

36	8.5
42	8.0
45	7.4
50	7.0
55	6.6
60	6.3
65	6.0

"The width-thickness ratio of similarly compressed flange plates in box sections and cover plates shall not exceed 190/JFz "

xample	151	
, and the	Fut	5/t
-= 190	36	31.7
YFS	50	26.9
	75	22
	(00	10

A Division of The Franklin Institute	Project	C5257			Page (.6-2
	By MD	Date SEPT. '81	Ch'k'd	Date 10/27	Rev.	Date

"The depth-thickness ratio of webs of members subjected to plastic bendmg shall not exceed "

$d/t = \frac{412}{\sqrt{Fy}} (1 - 1.4 \frac{P}{Py}) U$	when P	- ≤0.27 3
남은 비가 사람 같은	Fa	d/t
- P	36	68.7
	50	58.3
	75	47.6
	100	41.2

$$d/t = \frac{257}{\sqrt{Fy}}$$
 when $\frac{P}{Fy} > 0.27$

Fy	d/t
36	42.8
50	36.3
75	30
(00)	25.7

Project Page C.6-3 C5257 Franklin Research Center By Date Ch'k'd Date Rev. Date A Division of The Franklin Institute SEPT. '81 671. 2 13/21 MD The Benjaman Franklin Parkway, Fhila, Pa. 19103 Ref AISC 1963 Code Section 2.6 Projecting element, that would be subjected to compression involving plastic hinge rotation under ultimate loading shall have width thickness ratio no greater than the following : of/2tr 4 8.5 Rolled Shapes bf/tg ≤ 32 Box Sections The depth - thickness ratio of beam and girder webs subjected to plastic bending " is given by the following formula 43 ≤ d/w ≤ 70 - 100 P Remarks The 1963 Code take into account material for A36 of Fy = 36 KSI or less (note that the two codes are the same for Fy=36). If the structure was designed using material having higher yield, the design might not be acceptable under present requirements. Fy = 36 KSI 36 × Fy < 38 KSI

Fy 2 38 KSI

A Division of The Franklin Insutute	Project C5257				Page C.7-1		
	ev D	SEPT. 81	Ch'k'd	Date 10/81	Rev.	Date	

CASE STUDY -7-

Ref Alsc 1980 Code Section 2.9 Lateral Bracing

Members shall be adequately braced to resist lateral and torsional displacements The laterally unsupported distance, lcr, ... shall not exceed the value determined from "

$$\frac{l_{cr}}{r_{y}} = \frac{1375}{F_{y}} + 25 \quad \text{when} \quad 1.0 > \frac{M}{M_{p}} > -0.5$$

or $\frac{l_{cr}}{r_{y}} = \frac{1375}{F_{y}} \quad \text{when} \quad -0.5 \ge \frac{M}{M_{p}} > -1.0$

lcr/ry	Fy= 36 KSI	50	75	100
1>M, 75	63.2	52.5	43.3	38.75
5 > M, 7-1.0	38.2	27.5	18.3	13.75

example

	Project	Project C5257			. 7-2
A Division of The Franklin Institute The Benerium Franklin Parkway, Phila, Pa. 19103	ву Д	Date SEPT. 181	Ch'k'd Date	Rev.	Dat
		$f \in V_{i} \subseteq \mathcal{L}_{i}$			
		1.4.4			
Ref AISC 1963	Code				
Section 2.8 L	-ateral B	iracing			
when the mor	ment de	finition is			
compatible w	ith the	1980 Code,			
the formula	for lor	/ry become	s:		
0		1			
$35 < \frac{4cr}{r_y} = 6c$	0 + 40 7	10			
example					
Mp Try					
1 100					
0 60					
5 40					
CONCLUSIONS		~ P /	~		
The figure w	hich foll	OWS (Ler/	ry vs. /	Mp)	
indicalis chief for	1-30 300	Scale			
O < Mp		0			
o> M	> -1	©			

Note: The summary is based on material with Fy=36, other material should be examined on a case by case basis.

	Project	C5257		Page C.8-1
A Division of The Franklin Institute The Benjamen Franklin Parkwey, Phyla, Pa. 19103	BYRA	Date SEPT 81	Ch'k'd Date E.M. W. 10/81	Rev. Dat
CASE ST	UDY - 3	3 -		
Comparison of S with Section 2.4	ection 2.3 , Colum	, Column ins (Alsc	ns (AISC)	, 1963)
AISC 1963		Alsc	1930	
1. Stenderness ratio for in continuous frames will sideway is not prevented limited by Formula (20 $\frac{2P}{Py} + \frac{2}{70r} \leq 1.0$ This limits stendernes Ratio $\frac{1}{r} \leq 70$ and load not to exceed 0 for $\frac{1}{r} = 0$. Also limits by Formula (26) given	columns 1 here , Ts fi) - - - - - - - - - - - - - - - - - -	. Slender Columns i hames when hot prevente to only 70 by Formulas (2.9 - 1b) f not to as given	rness rati in Continu re Sidesw ed, not 1 9. But 5 (2.9 - 10 given belo exceed (below	o for ous ay is imited limited a) and w and Cc,
2. For columns in bro frames the maximum axial load P shall m	n not	2. The axi columns T not to ex	al load in braced aceed 0.8	in frames 5 Py

(See Case Study 4 also, for Slenderness ratio)

	Project	C5257		Page C.8-2
A Division of The Franklin Institute The Benjamin Franklin Parkway, Phila, Pa. 19103	BYRA	SEPT 81	h'k'd Date 77. D. 10/81	Rev. Date
3. a) Slenderness ratio	3	Ba.a Slender	ness ratio	0
I not to exceed 1-	20	& not to e	exceed C	c
b) The allowable	w	here Cc =	<u>2π² ε</u> Fy	
laterally unsupported distance	ar	nd for Fy	= 36 K	si,
$\mathcal{L}_{cr} = (60 - 40 \text{ mp})^{r} \gamma,$		Co	= 126.	
Formula (26) But ler 4	.35ry 3 4	The later		
c) <u>Kl</u> not to excent	ed d'	istance ler he following	not to e	exceed
200 in any case	20 r	$\frac{er}{y} = \frac{1375}{F_y} + 2$.5 (2.9	-1a)
		when + 1.0	07 <u>M</u> p7	-0.5
	Ar	nd		
	4	$\frac{ccr}{r_{Y}} = \frac{1375}{F_{Y}}$	(2.9 -	·1b)
	W	hen - 0.5 7 ;	M Mp > - 1.0	2
	30	Kl not to	exceed	200 in
	State and			

	Project	C5257		Page C.8-3
A Division of The Franklin institute The Benjamin Preview, Phila, Pa. 19103	By RA	SEPT 81	Ch'k'd Date	Rev. Date
4(a) Interaction formulas Single curvature are Formula (22) $\frac{M}{Mp} \leq B - G(\frac{P}{Py}) \leq 1.0$ $M \leq Mp$ and Formula (23)	for 4.	Interaction f Formula (2.4 $\frac{P}{Pcr} + \frac{Cm}{(1 - \frac{P}{Pcr})}$ and Formula	formulas (2.4-3)	are 0
$\frac{M}{M_{p}} \leq 1.0 - H(\frac{P}{P_{y}}) - J($	P/py)2	P + M8 Mp	≤ 1.0; M	1 4 Mp
Values of B, G, H and listed in tables as a function of slenderness r and Fy	1J v	where Por = Pe = Fa given by	(1.7 A Fa) $\frac{23}{12} \text{ A Fe}$ (1.5-1)	and
 (b) Interaction formulas for double curvature are formula (21) M ≤ Mp for P/py ≤ 0. M ≤ 1.18-1.18 (P/py) ≤ 1.0 	r 15	Fé given Tr Mm = Mp (= [1.07 (Unbrac	n Section I braced in weak direc $-\frac{(2/r_y)JFy}{3160}$ ed in weal	· 6.1 the tion)] Mo = Mp
for $P/P_y \ge 0.15$ and Formula (22) $\frac{M}{M_p} \le B - G(\frac{P}{P_y}) \le 1.0$ $M \le M_p$	ż	 a) For single 0.6 ≤ b) For dou 0.4 ≤ 	e curvaturi $Cm \leq 1.0$ ble curvaturi $Cm \leq 0.6$	e ture

	Project	Project C5257		
A Division of The Franklin Institute The Benjaman Franklin Parkway, 27nia, Pa. 19103	RA	SEPT'81	Ch'k'd Date	Rev. D
For comparison of these P/py VS M/mp are of 30,70 and 10 with Fy = 36 ksi has for our purposes S Single curvature (0.6 Curvature (0.4 ± Cm For frames with s graphs of P/py Vs two types of colu with Fy = 36 ksi. In the weak directing	e specifico drawn fi o. Typi been tal ieparate g i con con con ides way (ides way (ide	tions, gra for slender cal Column cen as ar raphs are (.0) and cases. Cm = 0.85 are drav WF150 ar assumed t araphs om the gra	phs of ness ratio 14 WF 150 n example drawn for double) allowed in for nd 12 WF to be brac phs that	45, ed
		,		
in all cases, the of allowable axial	load, w	change Ts hich is Th	the limit increased t	+ From
in all cases, the of allowable axial 0.5 Py to 0.75 P	load, w y for w	change Ts hich is m nbraced co	the limit noreased f lumns (Sto	t from desway

In all cases, the major change is the limit of allowable axial load, which is increased from 0.5 Py to 0.75 Py for unbraced columns (Sidesway allowed) and 0.6 Py to 0.85 Py for braced columns. But the acceptable design region in both codes is almost same. For single curvature we notice for $\frac{kl}{r} = 30$ the Formula (2.4-2) line for Cm=1.0 is below the formula (23) line, but for $\frac{kl}{r} = 70$, they overlap and for $\frac{kl}{r} = 100$, the formula (2.4-2) for Cm=1.0is above the formula (2.3) line. Thus for $\frac{kl}{r} = 30$ 1980 code being more conservative, while for $\frac{kl}{r} = 100$, 1963 code seems to be more $\frac{Conservative}{r}$. This change can thus be classified best as a **B** change.

	Project	C5257			Page	.8-10
A Division of The Franklin Institute The Benjaman Pranklin Parkway, Phila, Pa. 19103	RA	SEPT'SI	Ch'k'd	Date 13/81	Rev.	Dat
	1.55	34/1 01	¥. A., U.	10/01	1	
$F_y = 36 \text{ km} 1 \frac{k1}{T} = 100$	0 14w# 150	DOUBLE CURVATURE	y weak	direction		
		: Mm = Mp				
1963 Code		1980 Code				
Formula (21) M = M when P/Py < 0.15	5 (2.4-2)	$\frac{P}{P_{cr}} + \frac{r_{cr}}{(1-\frac{2}{p})M_{p}} \leq 1$	0.4 < C	0.6		
$\frac{M}{M_p} \leq 1.18 - 1.18(P/Py)$	1.0					
Formula (22) $\frac{M}{M} \leq B-G(P/Py) \leq 1.0$	(2.4=3)	$\frac{p}{p_y} + \frac{n}{1.18M_p} \le 1.0. M$	≤ Mp			
°> × ≤ ×,						
	×. ×.					
TIPICAL EXAMPLES	17)4.					
	м. м.					
	1 de 1					
A 1.0						
19 190 CODE WHIT		•				
a t -		1				
8.7		1.5				
04 1463 CODE LIMI	-	. 80.044				
	2.2.4					
	a come	~ +				
		6.4.3)-				
P3		the set				
0.1-		1				
0.3 -		T				
0 0.1 0.2 43	0.4 0.5 0.6	1.7 0.8 0.9 I.O				
		MILW.				
		170				

*

Franklin Processes Contra	Project C5257			Page C.9-1		
A Division of The Franklin Institute The Benjaman Franklin Partowny, Phila, Pa. 19103	BYRA	OLT 81	Ch'k'd	Date ////	Rev.	Date

CASE STUDY -9-

Comparison of AISC-1980 Section 1.10.6 with AISC-1963 Section 1.10.6, Reduction in Flange Stress, Hybrid Girders only.

The only change between the two codes is the introduction of formula (1.10-6) for case of hybrid girder, in the 1980 code. Formula (1.10-5) of 1980 Code with Fb in KSI is identical to Formula (12) of 1963 with Fb in Psi. Hybrid girder designed in 1963 would be designed in accordance with Formula (12) which is identical to (1.10-5) in 1980 code. But a hybrid girder designed in accordance with 1980 has to conform to both Formulas (1.10-5) and (1.10-6). For FB=25 KST and 50 ksi, we draw graphs of reduction Factor $\left(\frac{Fb}{Fb}\right)$ Vs. Area of web to Area of Flange ratio Fb (Aw/Af), using Formulas (1.10-5) and (1-10-6) for given d = 0.3, 0.6, and 0.9 and for given h/t nation (162, 172 & 182, for Fb=25ksi and 117, 127 & 137 for Fb=50 Ksi). We find in all six cases depending on Aw/Af ratio for x = 0.45, Formula (1.10-6) in the 19.80 code is quite conservative.

Franklin Research Center A Division of The Franklin Institute The Benjaman Frankan Parkway, Phila, 24, 19103	Project C5257			Page C. 9-2
	BYRA	OCT 81	Ch'k'd Date	Rev. Dat
But for 0.45 < d & or Formula (1.10-5) compared to each of for given Fb. Bu case, Formula (1.1 Thus we can mak on them.	t for to -5) is	Formula be conservending or a 7 0.75 more con following	(1.10-6) vative as h/t ra marrial judgment	tio YJ.
OLD Formulas		1	d	Scale
Formula (12), 1963 Cod $F_{b} \leq F_{b} [1.0 - 0.0005]$ with Fb In Psi. Formula (1.10-5) 1980 $F_{b} \leq F_{b} [1.0 - 0.0005$	te Aw (h - 24 tf (₩)] ????)],	10.45 and low Awy ratio	A
New Formula			0.45 to 0.75	в
Formula (1.10-6) 19 $F_{b} \leq F_{b} \left[\frac{12 + (AW)}{12 + 2(AW)} \right]$	$\left[\frac{x-d^3}{x}\right]$		7 0.75	С
Formula (1.10-6) 19 $F_{b} \leq F_{b} \left[\frac{12 + (AW)}{12 + 2(AW)} \right] (30)$	$\left[\frac{x-d^3}{x}\right]$		111	\$ 0.75

- 3

×.

Franklin Burnach Contas	Project	C5257		P	e C.10-1
A Division of The Franklin Institute The Benjaman Franklin Parkway, Phila, Pa. 19103	RA	SEPT'8)	Ch'k'd	Date Re	ev. Dat
CASE STUD	r -10	-			
		-			
Comparison of Section (1.	9.1.2) as	nd Appendi	x C (A	ISC	
1980) with Section 1.9	1.1 (AISC,	1963); W	idth-th	nicknes	5
ratio of unstitlened el	ements Sc	ubject to a	ixial		
compression and compress	aue	to bending	•		
In both section	ms the	limit of w	idth -		
thickness ratio is given	for the	following			
various cases.	가다	. 0			
CASE I : single - angl with separate	e Struts	; double -a	ingle st	truts	
CASE I : Struts com	prising de	ouble angle	s in	contact	
angles or ph	ites proje	cting from	girder	s,	'
Columns, or	other c	ompression	member	s ;	
Compression -	flanges o	f beams	; Str	ffeners	5
on plate gi	irders				
CASE III: Stems of T. Also	tees	t. th	. caril	instim	Lor
the above of	asec ut	eraing to th	e specig	162 40115	7.
members ex	ceed the	allowable	s wid	th-	
thickness rati	o, the	allowable	stresse	e .	
are reduced	by a f	actor base	d on	1	
formulas giv	ien in a	ppendix C			
which depend	is on yi	'eld stress	(Fy)	and	
the width.	- thicknes	s ratio.	1		

	Project	C5257		Pagr C.10-2
DUUU Franklin Research Center A Division of The Franklin Institute The Benjaman Franklin Parkway, Phila, Pa. 19103	BY	Date SEPT'81	Ch'k'd Dat	te Rev. Date 1
But according to When compression m Width - thickness acceptable if it sat requirements with effective width mea For the case stur 36 ksi and 50 ks two values for t T sections given	AISC, 191 embers e ratio, +1 risfies the a portion ets stress dy, two ii are cl ypical and in AISC	63 Specific exceed the ne member allowable n of width s requireme values of hosen. For gle section Manual	cations, allowabl is stress h ie. nts. f Fy the and	e
graphs Aave been Width - thickness ra Reduction Factor for on formulas given AISC, 1963, red of effective wid	plotted for tio. or AISC, th appen duction fo th to o	Reduction 1980 codi Idix C an actor is th actual wid	Factor e is ba nd for ne ratio dth of	<u>VS</u> Ised
the section. Based on for case I and width/thickness rai as Specifications 1963 code · But Specification is <u>A</u>	the grat Case IL tio would were mon for Case chang.	phs, the at higher id be a re conserva II the ch e as it i	change <u>C</u> chan ative Tr hange Tr s more ober	ge,

width - thickness ratio.

-

Englylin Bassach Contas	Project	C5257			Page C.	10-6
A Division of The Franklin Institute The Benjamin Franklin Parkway, Phila, Pa. 19103	RA	SEPT'SI	Ch'k'd	Date 10/81	Rev.	Date

8

FY-SOKSI ANGLES IN CONTACT

REDUCTHON RATHO

.

÷

A Division of The Franklin Institute The Sengerun Franklin Parklin Institute

Project	C5257			Page C	.11-1
By RA	Date DCT'81	Ch'k'd	Date 11/81	Rev.	Date

CASE STUDY -11 -

Comparison of AISC 1980 Section 1.11.4 with AISC 1963 Section 1.11.4; Shear connectors for Composite beams, where longitudinal reinforcing steel acts with beam.

According to AISC 1980, Formula (1.11-5)

Vh = Asr Fyr/2 (1.11-5)

is given for continuous composite beam where longitudinal reinforcing steel is considered to act compositely with the steel beam in the negative moment regions, to calculate the total horizontal shear to be resisted by shear connectors between an interior support and each adjacent point of contraflexure.

Whereas in AISC 1963 specifications, the total horizontal shear to be resisted between the point of maximum positive moment and each end or a point of contraflexure in continuous beams is given as the smaller value of Formula (18) and (19)

$$V_{h} = 0.85 \frac{fe}{2} Ac}{(18)}$$

and $V_h = \frac{A_s F_y}{Z}$ (19)

	Project	C5257			Page C.	11-2
A Division of The Franklin Institute The Benjamin Franklin Parkway, Phile, Pa. 19103	BYRA	Date XT'BI	Ch'k'd	Date 11/1	Rev.	Date

There is no separate formula for negative moment region in AISC, 1963. The above formulas are the same in AISC, 1980; Formula (1.11-3) and (1.11-4) for the positive moment region. Moreover in AISC, 1963, there is no consideration of reinforcing steel in concrete acting compositely with the steel beam in negative moment regions.

This implies that in computing the section modulus at the points of negative bending, reinforcement parallel to the steel beam, and lying within the effective width of stab may be included according to AISC, 1980. But it is not allowed to include reinforcing steel in computing the section modulus for the above case as per the specifications of AlSC 1963. Thus design criteria is being liberalized in AISC 1980. Since the quantification of this Itberal criteria is unknown. this change can best be classified as C. Any Composite beam designed as per AISC 1963 specifications will show more moment capacity when calculated according to AISC. 1980 Specifications.

	Project	C5257			Page C.	.12-1
A Division of The Franklin Institute The Benjamun Franklin Parkway, Phila, Pa. 19103	By FMIN.	Date 10/81	Ch'k'd RK/MD	Date	Rev.	Date
CASE	STUDY -1	2.				
The allowable	peripheral	Shear S	tress			
(punching Shear Stress	s) as	stated in	the			
B & PV ASME	Code Sect	ion II D	iv. 2,			
1980 (ACI 359-80) Para.	CC-3421.	6 7:	5		
limited to Uc wh	ere Va	shall be	calcu	lated		
as the weighted avera	ge of V.	ch and 7	Ucm			
$U_{ch} = 4 \int f'_{c} \int I +$	(fm/4)5	.)				
$v_{cm} = 4 \int f'_{e} \int f'_{e}$	$1 + (f_{h}/45)$	fr)				
The ACI 318-63 (Lode Secti	on 1707	states	; th	at	
the ultimate Shear	Strength	Ju sha	ill no	ot		
exceed $V_c = 4 \int f$	fe .					
			- D.			
Comparing the	above .	two case	s the	-		
Torrowing is concil						
When:			3	Scale	27.5	
1. Membrane stre	sses are	compression	1e			
318-63 75	s more a	conservativ	e	(C)		

318-63 is less conservative (A)

Tian	1			Project	C5257			Page C.	12-2
UUU	A Divisi	klin Research Ce on of The Franklin Instit ren Franklin Parkway, Phila, Pa. 191	ute 03	BY MU.	Date 10/81	Ch'k'd RK/MD	Date 10/31	Rev.	Da
	The Benjan	nen Franklin Parkway, Phila., Pa. 191	03	2. 110.	10/81	RK/MD	10/31		
						Sc	ale		
	3.	Membrane	stresse	s are	zero	-			
		318 - 63	īs	identic	al	No	rating	È	
	4.	Membrane	Stress	ies are	opposite				
		in sign	المارج	ha lare	Care Server	+2/-	(A)	
		318-63	Could	de less	conserva	Tive		·	

Page C.13-1 Project C5257 Franklin Research Center S. m.W. Date Ch'k'd Date Rev. Date A Division of The Franklin Institute The Benjamin Franklin Parkway, Phila, Pa. 19103 10/M PK/MD 10/81 CASE STUDY -13-The B & PV ASME Code Section III Division 2, 1980 (ACI 359-80) Para. CC-3421.7 states that the shear stress taken by the concrete resulting from pure torsion shall not exceed Vcz where $U_{ct} = 6\sqrt{f_c} \sqrt{1 + \frac{f_h + f_m}{6\sqrt{f_c'}}} + \frac{f_m f_h}{(6\sqrt{f_c'})^2}$ While the ACI 318-63 Code Section 1707 limits the ultimate Shear Strength Un to $V_c = 4/f$ From the above two cases the following is concluded; when : Scale 1. Membrane stresses are compressive 318-63 is more conservative (C)

> 2. Membrane stresses are tensile 318-63 is less conservative (A)

	Project	C5257			Page C.	13-2
A Division of The Franklin Institute The Benjamen Franklin Parkwey, Phila, Pa. 19103	BY Enn W	Date 10/21	Ch'k'd RYMD	Date 10/31	Rev.	Date

Scale

- 3. Membrane stresses are zero 318-63 is more conservative (C)
- 4. Membrane stresses are opposite in sign 318-63 could be less conservative (A)

	Project C5257				Page C	.14-1
A Division of The Franklin Institute The Benjamin Franklin Parkway Phila, Pa. 19103	By C. M.W	Date 4182	Ch'k'd TCS	4/82	Rev.	Date

CASE STUDY -14-

Section 1301(c) - Allowable bond stresses - working stress design.

Allowable bond stresses for working stress design in the 318-63 code were newly described as functions of both the square root of concrete compressive strength and reinforcing bar diameter. The 318-56 code defined allowable bond stress as a linear function of concrete compressive strength only.

Plots for three commonly used concrete compressive strengths showing bond stress allowed by each code for deformed bars conforming to ASTM-A-305 plotted against bar diameter show that for small diameter bars the old code is more conservative and for large diameter bars the new code is more conservative. For bars No. 10, 11, 14 and 18 the new code is considerably more conservative.

Based on the plots shown, a reasonable interpretation of the code changes us regards scale rating is that for deformed bars conforming to ASTM-A-305:

- For reinforcing bars with diameter less than or equal to 0.875 in. (Nc. 7 bar) - Scale C
- For reinforcing bars with diameter greater than 0.875 in. (No. 7 bar) - Scale A
- For deformed bars conforming to ASTM-A-408 for all diameters - Scale A

8

 By Date ADMINION Research Center ADMINION of The Franklin Institute By M.M. Har Onter Algo Chikid Date Rev. Date Mult 4/82 By Mult 4/82 Mult 4/82 Mult 4/82 Mult 4/82 Rev. Date Rev. Date Rev. Date Rev. Date Mult 4/82 By Mult 4/82 By Mult 4/82 Rev. Date Rev. Date Rev. Date Rev. Date Rev. Date Mult 4/82 By Mult 4/82 Mult 4/82 Rev. Date Rev. Date Re	 By Date Chikid Date Rev. Date Algo Date Alg	 Bulle Franklin Research Center A Deter A Deter Tranklin Instance By Date A/32 MLP 4/32 MLP 4/32 By Date A/32 MLP 4/32 By A/A A/32 MLP 4/32 By A/	non		Project	5257			Page C.	15-2
Subsection 1.5.1.3.3, 1963 code & 2 ND paragraph section 15(a)(2), 1953 code. For axially loaded bracing and secondary members when l/r exceeds 120 both the new (Formula 3) and old allowable stress equations are shifted vertically up on the above type plot by the same function new allowables remain above the old Scale Rating C	Subsection 1.5.1.3.3, 1963 code & 2 ND paragraph section 15(a)(2), 1953 code. For axially loaded bracing and secondary members when l/r exceeds 120 both the new (Formula 3) and old allowable stress equations are shifted vertically up on the above type plot by the same function new allowables remain above the old Scale Rating C	Subsection 1.5.1.3.3, 1963 code & 2 ND paragraph section 15(a)(2), 1953 code. For axially loaded bracing and secondary members when lir exceeds 120 both the new (Formula 3) and old allowable stress equations are shifted vertically up on the above type plot by the same function	A Th	TANKIIN RESEARCH Center Division of The Franklin Institute e Benjamun Franklin Parkway, Phila, Pa. 19103	By C. M.J.	Date 4/32	Ch'k'd MLP	4 82	Rev.	Da
B Subsection 1.5.1.3.3, 1963 code & 2 ND paragraph section 15(a)(2), 1953 code. For axially loaded bracing and secondary members when l/r exceeds 120 both the new (Formula 3) and old allowable stress equations are shifted vertically up on the above type plot by the same function new allowables remain above the old Scale Rating C	B Subsection 1.5.1.3.3, 1963 code & 2 ND paragraph section 15(a)(2), 1953 code. For axially loaded bracing and secondary members when l/r exceeds 120 both the new (Formula 3) and old allowable stress equations are shifted vertically up on the above type plot by the same function A new allowables remain above the old Scale Rating C	Subsection 1.5.1.3.3, 1963 code & 2 ND paragraph section 15(a)(2), 1953 code. For axially loaded bracing and secondary members when lirexceeds 120 both the new (Formula 3) and old allowable stress equations are shifted vertically up on the above type plot by the same function A new allowables remain above the old Scale Rating C								
For axially loaded bracing and secondary members when lir exceeds 120 both the new (Formula 3) and old allowable stress equations are shifted vertically up on the above type plot by the same function new allowables remain above the old Scale Rating C	For axially loaded bracing and secondary members when lir exceeds 120 both the new (Formula 3) and old allowable stress equations are shifted vertically up on the above type plot by the same function new allowables remain above the old Scale Rating C	For axially loaded bracing and secondary members when lir exceeds 120 both the new (Formula 3) and old allowable stress equations are shifted vertically up on the above type plot by the same function new allowables remain above the old Scale Rating C	๎฿	Subsection 1.5.1.3.3, section 15(a)(2),	1963 code &	2 ND par	agr a p	'n		
				For axially load members when lir (Formula 3) and old are shifted vertice plot by the same fu new allowables Scale Rating	exceeds 120 allowable str ally up on th unction c	nd seco both th ess equi le above ove the	ondar nei nei ations e type old	2 0		

7

APPENDIX D

ACI CODE PHILOSOPHIES

ACI CODE PHILOSOPHIES

The American Concrete Institute (ACI) Building Code Requirements for Reinforced Concrete delineate two philosophies of design which have long been in use: the so-called working stress method, which was in general acceptance and predominant use from early in this century to the early 1960's, and the ultimate strength method, which has been rapidly replacing working stress since about 1963.

Working Stress Method

The working stress method of design is referred to as the "alternate design method" by the most recent ACI code. By this method, the designer proportions structural elements so that internal stresses, which result from the action of service loads* and are computed by the principles of elastic mechanics, do not exceed allowable stress values prescribed by the code.

The allowable stresses as prescribed by the ACI code are set such that the stresses under service load conditions will be within the elastic range of behavior for the materials involved. As a result of this, the assumption of straight line stress-strain behavior applies reasonably for properly designed structural members. The member forces used in design by this method are those which result from an elastic analysis of the structure under the action of the service loads.

Ultimate Strength Design

The ultimate strength method is referred to as the "strength method" in the most recent ACI code. By this method, the proportioning of the members is based on the total theoretical strength of the member, satisfying equilibrium and compatibility of stress and strain, at failure. This theoretical strength is modified by capacity reduction factors which attempt to assess the variations to be encountered in material, construction tolerances, and calculation approximation.

*Service loads are defined as those loads which are assumed to occur during the service life of the structure.

Strength Reduction Factor

In the present code, the capacity reduction factor (ϕ) varies for the type of member and is considered to account for the relative seriousness of the member failure as regards the overall integrity of the structure.

Load Factors

Also, by this method, the designer increases the service loads by applying appropriate load factors to obtain the ultimate design loads in an attempt to assess the possibility that the service loads may be exceeded in the life of the structura. The member forces used to proportion members by this method are based on an elastic analysis of the structure under the action of the ultimate design loads.

Importance of Ductility

A critical factor involved in the logic of ultimate strength design is the need to control the mode of failure. The present ACI code, where possible, has incorporated a philosophy of achieving ductility in reinforced concrete designs. Ductility in a structural member is the ability to maintain load carrying capacity while significant, large deformations occur. Ductility in members is a desired quality in structures. It permits significant redistribution of internal loads allowing the structure to readjust its load resistance pattern as critical sections or members approach their limiting capacity. This deformation results in cracking and deflections which provide a means of warning in advance of catustrophic collapse. Under conditions of loading where energy must be absorbed by the structure, member ductility becomes very important.

This concern for preserving ductility appears in the present code in many ways and has guided the changes in code requirements over the recent decades. Where research results have confirmed analysis and intuition, the code has provided for limiting steel percentages, reinforcing details, and controls-all directed at guaranteeing ductility. In those aspects of design where ductility cannot be achieved or insured, the code has required added strength to insure potential failure at the more ductile sections of structures.

Franklin Research Center

D-2

Examples of this are evident in the more conservative capacity reduction factors for columns and in the special provisions required for seismic design.

Strength and Serviceability in Design

There are many reasons for the recent trend in reinforced concrete codes toward ultimate strength rather than working stress concepts. Research in reinforced concrete has indicated that the strain distributions predicted by working stress computations in general do not exist in the members under load. There are many reasons for this lack of agreement. Concrete is a brittle, non-linear material in its stress-strain behavior, exhibiting a down trend beyond its ultimate stress and characterized by a tensile stress-strain curve which in all its features is approximately on the order of one tenth smaller than its compressive stress-strain curve.

Time-dependent shrinkage and creep strains are often of significant magnitude at service load levels and are difficult to assess by working stress methods. While ultimate strength methods do not eliminate these factors, they become less significant at ultimate load levels. In addition, ultimate strength methods allow for more reasonable approximations to the non-linear concrete stress-strain behavior.

In the analyses of structures, the designer must, by necessity, make certain assumptions which serve to idealize the structures. The primary assumptions are that the structure behaves in a linearly elastic manner, and that the idealized member stiffness is constant throughout each member and constant in time.

Working stress logic does not lend itself well to accounting for variations in stiffness caused by cracking and variations in material properties with time. Although the ultimate strength method in the present code requires an elastic structural analysis to determine member forces for design, it recognizes these limitations and, in concept, anticipates the redistribution resulting from ductile deformation at the most critically stressed sections and in fact proportions members so that redistribution will occur.

Franklin Research Center

In addition to strength, a design must satisfy serviceability requirements. In some designs, serviceability factors (such as excessive deflection, cracking, or vibration at service load) may prove to be more important than strength. Computations of the various serviceability factors are generally at service load levels; therefore, the present code uses elastic concepts in its controls of serviceability.

Factors of Safety

Factors of safety* are subjects of serious concern in this review. For working stress, the definition of the factor of safety is often considered to be the ratio of yield stress to service load stress. This definition becomes suspect or even incorrect where nonlinear response is involved. For ultimate strength, one definition of factors of safety is the ratio of the load that would cause collapse to the service or working load. As presented in the present code, a factor of safety is included for a variety of reasons, each of which is important but has no direct interrelation with the other.

The present ACI code has divided the provisions for safety into two factors; the overload factors and the capacity reduction factors (considered separately by the code) are both provisions to insure adequate safety but for distinctly different reasons. The code provisions imply that the total theoretical strength to be designed for is the ratio of the overload factor (U) over the capacity reduction factor (ϕ). The present ACI code has assigned values to the above factors such that the ratio U/ ϕ ranges from about 1.5 to 2.4 for reinforced concrete structural elements.

*Factors of safety (FS) are related to margins of safety (MS) through the relation MS = FS - 1.

Franklin Research Center