Project 88-067 June 1994

CanonieEnvironmental

NRC Request for Information

Atlas Corporation Reclamation Plan Uranium Mill and Tailings Disposal Area

Moab, Utah

Submitted by:

Atlas Corporation Denver, Colorado

Prepared by: Canonie Environmental Services Corp. Englewood, Colorado 2406060234 940531 PDR ADDCK 04003453

NRC Request for Information Atlas Corporation Reclamation Plan Uranium Mill and Tailings Disposal Area

RESPONSE TO NUCLEAR REGULATORY COMMISSION REQUESTS FOR INFORMATION NOVEMBER 29, 1993 ENCLOSURE 1 - FAULTING, SEISMIC AND GEOMORPHIC CONSIDERATIONS ENCLOSURE 2 - OTHER CONSIDERATIONS JANUARY 3, 1994 ADDITIONAL QUESTIONS AND COMMENTS SURFACE WATER HYDROLOGY AND EROSION PROTECTION RECLAMATION PLAN URANIUM MILL TAILINGS SITE MOAB, UTAH

INTRODUCTION

Canonie Environmental Services Corp. (Canonie) has prepared a response to the Nuclear Regulatory Commission's (NRC's) November 29, 1993, and January 3, 1994, requests for information. This response is a partial response to the information requested and completes our submittal requirements for these information requests. A previous partial response to the November 29, 1994, request for information submitted to NRC on January 28, 1994, addressed erosion protection at Moab Wash and the Lower Impoundment Drainage Channel, construction specifications, and settlement. The responses to Enclosure 1, the remainder of the responses to Enclosure 2, and the responses to the January 3, 1994, request for information are provided in this document. In the following pages, each request for information is restated verbatim and a response to each request is provided. Calculation briefs and other back-up data for these responses are included as appendices.

ENCLOSURE 1 - REQUEST FOR INFORMATION - FAULTING, SEISMIC AND GEOMORPHIC CONSIDERATIONS

A. Potential Faulting and Seismic Considerations

New geologic information brought to our attention requires a reassessment of the stability of the site. Please analyze the structural stability and liquefaction potential

of the disposal area using current state-of-the-practice methodology by providing responses to the following:

Comment

There is evidence that a fault runs under the disposal site. Evaluate the extent
of faulting under the disposal site and determine if there is capability for
surface rupture.

Response

This response has been prepared by Woodward-Clyde Federal Services Corp., Oakland, California, under a consulting agreement with Canonie Environmental Services Corp. (Canonie) and is submitted under separate cover.

Comment

 Evaluate the seismic potential for faults adjacent to the site, including the potential for fault movement due to salt dissolution and changes due to the development of oil resources.

Response

The response to the first part of this comment (i.e., seismic potential for faults adjacent to site and potential for fault movement due to salt dissolution) is provided with the response to Comment 1. The response to the second part of the comment concerning the development of oil resources is provided below.

The nearest oil production to the Atlas mill and tailings area is near Dead Horse State Park, approximately 12 miles southwest of the Atlas mill (Hunt, 1994). The production in this area comes from several fields that produce from the "Cane Creek" zone of the Paradox formation (Morgan, 1992a). The Cane Creek zone is a shale zone with production coming from depths ranging from 7,000 to 8,000 feet in the vicinity of Dead Horse State Park (Mathews, 1994).

The nearest oil exploration activity to the Atlas mill was just west of Arches National Park at a field designated the Coors West Moab Valley Unit (Morgan, 1992a). This area is about five miles northwest of the Atlas mill. Several test wells were drilled in this area. Morgan (1992a) and other investigators in the region do not designate this area as a viable field, even though oil shows were indicated in a couple of units.

One test well (Embar Oil Well) was drilled on the Atlas mill site. Available information indicates that the well was drilled into the Paradox formation of the Hermosa Group; however, no information is available with respect to oil and gas shows. Morgan (1993) indicated that the "Cane Creek" shale is highly contorted in the area of large salt-cored anticlines making identification and correlation extremely difficult and regional exploration unpractical at this time. As the Atlas mill is located in the vicinity of the collapsed crest of the Moab anticline, it is expected that the shale zones of the Paradox formation are quite contorted in this area and the area will not be targeted for oil exploration.

Expanded development of the hydrocarbon resources at the oil fields in the vicinity of Dead Horse State Park (12 or more miles from the site) would not create a potential for affecting the integrity of the Atlas tailings embankment. Drilling operations conducted in this area are far removed from the embankment. Theoretically, withdrawal of hydrocarbons from reservoir horizons through wells can lead to subsidence. However, as the production zones in this area are generally below a depth of 7,000 feet and at a considerable distance from the Atlas mill, subsidence related to this production will not affect the Atlas site.

Even if production were to occur in the vicinity of the Atlas Mill site, it is expected that subsidence would not be noted at the surface. The "Cane Creek" shale is naturally fractured (as a result of folding and salt flowage) and is characterized by large "vertical" fractures with related microfractures (Morgan, 1993). The microfractures provide most of the fracture porosity in the reservoir. The "Cane Creek," having no available pore space and sealed above and below by salt, had to self-fracture to make room for hydrocarbons (Morgan, 1993). The result of this is that the "Cane Creek" shale is overpressured. The high fluid pressure helps to hold the formation fractures open (Morgan, 1993). A rapid drop in fluid pressure could

RM/W/88-067/RTNRC.RPT [May. 31, 1994]

cause closure of the fracture network around a borehole (Morgan, 1992b); however, the "plastic" nature of salt and its ability to creep and flow due to overburden pressures would only result in creep deformation of the overburden salt and would not be transmitted through the more rigid cap rock and the alluvium to the surface.

It is unlikely that the process of drilling an exploration hole and development of a production well could enhance dissolution of the salt. Steel casings are set into the salt and cemented in place from the surface to the salt. This prevents the upward or downward flow of fluids along the annular space of the borehole. Also, as mentioned above, the fluids in the salt are overpressured, creating an upward hydraulic gradient, so it unlikely that fresh water occurring in the alluvial aquifers will come in contact with salt formations.

Comment

3. Include in your analyses the earthquake loading considering the more recent information on Maximum Credible Earthquakes for the Colorado Plateau, which appears to require a value larger than you have used in the past. Consider in your reevaluation the information on geologic and geologic hazards for the Moab area that the State of Utah is currently preparing.

Response

The reclaimed embankment was analyzed under seismic loadings with both dry and partially saturated tailings. Factors of safety for the reclaimed embankment were computed using the computer program PCSTABL5 (Carpenter, 1986). Stability of the reclaimed embankment under the following scenarios was analyzed:

- Critical circular failure surface with 250-year earthquake loading without phreatic surface in coarse tailings
- Critical circular failure surface with 250-year earthquake loading with phreatic surface in coarse tailings

- Critical circular failure surface with earthquake loading corresponding to the Maximum Credible Earthquake (MCE) for the Colorado Plateau without phreatic surface in coarse tailings
- Critical circular failure surface with earthquake loading corresponding to the MCE for the Colorado Plateau with phreatic surface in coarse tailings
- 5. Trial failure surface between sand and tailings on embankment with earthquake loading
- Same conditions as Scenario 1, but maximum earthquake loading under which the reclaimed embankment is stable is determined
- Same conditions as Scenario 2, but maximum earthquake loading under which the reclaimed embankment is stable is determined

Dewatering of the existing tailings pile is currently ongoing. In the event that water is present in the tailings a phreatic surface is assumed for Scenarios 2, 4, 5, and 7 as a short term condition. The phreatic surface is assumed based on water level readings in piezometers at the tailings pile recorded on October 30, 1993, and provided to Canonie by Atlas Corporation (Atlas). Using the piezometers nearest the critical cross section, the phreatic surface has been extrapolated on Figure 1.

The longest return period for which horizontal earthquake acceleration maps are available is 250 years. United States Geological Survey Map MF-2120 (Algermissen, et al., 1990) is the most current map showing the mean horizontal earthquake acceleration which has a 90% probability of nonexceedance. For Moab, Utah, the 250-year horizontal acceleration is approximately 0.05 gravity (g). The 0.05 g value was confirmed by Utah Geological Survey personnel (Low, 1993).

The reclaimed embankment design life is a minimum of 1000 years. During this period an earthquake of larger magnitude could potentially occur. In discussions with Joel Grimm, Project Manager with the NRC on December 28, 1993, the MCE used for a nearby Colorado Plateau Green River Title 1 site was 6.2 on the Richter scale,

RM/W:\88-067\RTNRC.RPT [May. 31, 1994]

corresponding to a horizontal earthquake acceleration of 0.21 g (Department of Energy, 1989). This value is used for Scenarios 3, 4, and 5 along with a vertical earthquake acceleration of 0.05 g. The purpose of Scenarios 6 and 7 is to account for a potential earthquake of even greater magnitude during the design life of the reclaimed embankment. Under these scenarios, the maximum horizontal earthquake acceleration under which the reclaimed embankment is stable was determined.

Failure surfaces predicted by PCSTABL5 for the scenarios listed above are shown graphically on Figure 1. Soil properties and strength properties used in the analysis are also presented on Figure 1. Details of the stability evaluation are provided in Appendix A. Appendix A also contains the piezometer coordinates and the most current water level information.

The factor of safety against slope failure is greater than 1 for Scenarios 1, 2, and 3. For worst case Scenarios 6 and 7, the impoundment could withstand an earthquake with a horizontal earthquake acceleration of 0.25 g. This is 400 percent larger than the 250-year earthquake acceleration predicted for Moab, Utah, and 19 percent larger than the MCE loading. Based on the results of the stability analysis and the low probability of the MCE being exceeded, the reclaimed embankment design will provide an adequate factor of safety against shear failure.

B. Geomorphic Stability

Comment

 From the available data and our observations, there appears to be no basis to conclude that the Colorado River cannot erode in the direction of the tailings pile. There is also insufficient information currently available to us to determine the rate of erosion. We therefore conclude that this erosion could adversely affect the stability of the tailings pile during the project design life.

Accordingly, provide information to show that the Colorado River will not erode and migrate to the tailings embankment, or substantiate that your proposed design has considered and accounted for the potential for long-term

bank erosion and changes in the river's position in the valley. Include consideration of both structural stability and erosion protection.

If you cannot substantiate that the river will not migrate toward the tailings or that your design accommodated this condition, provide a revised design for our review and approval that considers a complete range of river conditions and positions that could be experienced in the project design life.

Include in your substantiation or redesign the estimated location, depth, and dimensions of the channel and any revised designs and analyses of the riprap to be placed along the sides of the toe of the pile. Also consider potential future channel locations, estimated depth of the channel, depth of scour, Probable Maximum Flood (PMF) water surface elevation, and other factors which enter into the erosion protection design. Since a new channel could possibly occur in a number of locations along the face of the pile, address in detail the areal extent of the erosion protection for the pile side slopes and toes. Include information to demonstrate that erosion protection is adequate to the scour depth that could be expected for the conditions described above.

Note

Additional comments concerning surface water hydrology and erosion protection were submit ad to Atlas on January 3, 1994. The comment is repeated below.

Comment

2. It appears that the cross-sections and other estimated hydraulic parameters used in your water surface profile analyses to assess flooding on the Colorado River may not be appropriate. Preliminary review of your data and analyses indicates that the computations presented may not reflect actual conditions, as indicated by direct staff observations of the Colorado River. We have questions and concerns in the following areas:

- Topographic and Colorado River cross-section data
- Underprediction of flow velocities in the river channel
- · Changes to river channel cross-sections during flood events
- Use of Manning's 'n' values

It appears that the topographic and cross-section data provided for determining water surface evaluations and velocities are not adequate for assessing flow velocities in the river channel. Based on an examination of the topographic and cross-section information provided, more detailed and correct crosssections are required to correctly analyze the flows in the Colorado River, particularly with regard to determining flood velocities. For example, the cross-section data provided with the HEC-2 analyses (Appendix F) do not agree with topographic data provided in Lyawing 88-067-E64 (Sheet 2 of 10). Specifically, cross-section 800 in the immediate site vicinity, does not reflect the elevations or channel widths indicated on the drawing. Further, direct observations and approximate staff measurements of the river depth indicate that the depths from the top of the bank to the channel bottom are greater than indicated in the HEC-2 data at cross-section 800 and at other crosssections. These apparent errors could significantly affect the flow profiles computed using HEC-2, particularly if the channel bottom elevations and bottom slope are not well-defined. The calculations take on added significance if the river channel is assumed to migrate toward the pile (see previous questions on geomorphology, dated November 29, 1993). Additional evidence to substantiate that the cross-section data are not correct is provided by direct observations of the flow velocities in the river, which indicate that the maximum predicted PMF channel velocity of about two to three feet per second has apparently been underestimated. The staff observed surface velocities of two to three feet per second in November 1993 during a low-flow period in the river. Channel velocities are likely to increase significantly as the discharge increases during flood events.

In addition, based on map studies, this reach of the river is known to change geometry during and after major flood events, since erosion and deposition occur in various places. Therefore, the flood analyses should assume that

changes will occur to the river geometry during a flood event. These changes would include erosion of channel bars and deepening of the channel during a large flood event. This assumption could be extremely important at crosssections near the "portal" area, for example, where it appears that significant constriction of flows occur and backwater effects are produced by constricted cross-sections. These sections may not be a significantly constricted during the course of a flood event. In particular, cross-section 200 indicates the presence of a sandbar which constricts flows, but could be eroded by high velocities during a major flood event. In addition, it becomes very important to define stable channel bottom elevations in these constricted sections, since the bottom elevations and bottom slope can have a great effect on velocities and depth of flow.

Also, the Manning 'n' values should be more conservative than those assumed. For example, the channel and overbank 'n' values are assumed to be 0.03. It is likely, particularly during large floods, that channel 'n' values would be less than this. It is also likely, based on the presence of significant amounts of vegetation, that overbank 'n' values would be greater than 0.03. The overall net effect of using lower channel 'n' values would likely be to increase channel velocities and possibly lower water surface elevations. This is significant if the riprap on the pile side slopes needs to be designed for river channel velocities, if the river is assumed to migrate toward the pile (see staff questions on geomorphology). If the river is not assumed to migrate, use of overbank 'n' values of 0.03 is likely to be acceptable, but should be checked and verified using appropriate equations for estimating 'n' values.

During our field visit to the area in November, the National Park Service pointed out high-water marks at the Highway 191 bridge for floods which occurred in the early 1980s. You should attempt to duplicate these historic profiles by adjusting Manning 'n' values, expansion and contraction losses, river geometry, etc. for the flows which occurred. These high-water marks should be surveyed and provided in the analyses as justification for the HEC-2 input parameters selected.

Accordingly, please provide revised and accurate cross-sections to properly model flood flows in the Colorado River. The new data should include surveyed cross-sections which accurately portray river geometry. Also, submit revised HEC-2 analyses using these new data to substantiate the adequacy of the proposed erosion protection on the pile side slopes.

Alternately, it may be possible to conservatively estimate the river depth and velocities to be used for the design of erosion protection using a minimal amount of data. Such estimates could be developed for:

- Overbank velocities for the case which the river channel is assumed to be stable and does not migrate toward the pile
- Channel velocities for the case where the channel is assumed to migrate toward the pile

In preparing these "bounding" calculations however, a certain amount of new information will need to be developed. While some river channel widths and bank elevations could possibly be estimated from topographic maps already available, the slope and elevation of the river bottom will need to be accurately determined by surveys. It may be possible to use such measured river slopes and overbank/channel geometry taken from maps in a worst-case analysis to estimate velocities in the vicinity of the pile using simple slope-area methods and conservative estimates of Manning 'n' values for the channel and overbank. This type of worst-case calculation could possible be acceptable, if adequately justified as being appropriate and/or conservative, using sensitivity analyses, for example. This analysis should also attempt to duplicate historic profiles and high water marks.

Response

This response has been prepared by Mussetter Engineering, Inc., Fort Collins, Colorado, under a consulting agreement with Canonie and is provided under separate cover.

RM\W:\88-067\RTNRC.RFT (May, 31, 1994)

ENCLOSURE 2 - REQUEST FOR INFORMATION - OTHER CONSIDERATIONS

A. Erosion Protection

Comment

1. Based on examination of the design and observation of nearby cliffs, we consider that a potential exists for sediment and large rocks to block or severely restrict Southwest Runoff Drainage Channel, the lower reaches of the Upper Impoundment Drainage Channel, and the upper reaches of the Lower Impoundment Drainage Channel. This could reduce their flow capacity and result in increased water surface elevations and flow velocities in the channels. Critical areas of potential sedimentation are at locations where concentrated flows in relatively well-defined natural channels enter the drainage channels. Critical areas of potential rock falls and blockage occur throughout the length of the Southwest Runoff Drainage Channel, along the last several hundred feet of the Upper Impoundment Drainage Channel, and along the first several hundred feet of the Lower Impoundment Channel.

Accordingly, provide a detailed analysis to demonstrate how the drainage channels will either safely store or flush out the expected rock falls and sediment load. If your analyses conclude that the channels will safely store the expected debris load, demonstrate that changes in the water surface profiles and flow velocities will not adversely affect the stability of the riprap in the channels or on the adjacent tailings pile side slopes. If your analyses conclude that channel velocities will naturally flush out the expected sediment and large rocks, you should demonstrate that flow velocities in the drainage channels will be high enough to accomplish this for a range of flood events.

In your analyses, consider that rocks weighing several tons may enter the drainage channels from the cliffs to the west. Rocks of this size would probably not be moved out of the channels, even during a Probable Maximum Flood. In this case, the design of the drainage channels may need to be

revised to accommodate the increased water surface elevations and velocities caused by these blockages. One possible design solution you may want to consider would be to eliminate the Southwest Drainage Channel and design the erosion protection on the tailings pile side slopes, assuming that large amounts of sediments and rocks are transported to areas immediately adjacent to the side slopes.

Response

Utah State Highway Number 279 (Highway 279) is located between the subject cliffs and the Atlas tailings embankment. To get a reasonable assessment of the frequency and size of rock falls from the cliffs, Canonie contacted the Utah Highway Department. Mr. Lloyd McKinley, Maintenance Supervisor for the Utah Highway Department, Moab District, was contacted with respect to the frequency of rock clearing operations along Highway 279 adjacent to the tailings embankment. Mr. McKinley indicated that he has worked in the Moab district for 28 years and has never cleaned rocks along this section of Highway 279. He indicated that they have only had to remove small rocks from the ditch along the cliff side of the highway. Mr. McKinley indicated that the talus slope generally stops at a bench or road cut in bedrock above the highway and most large rocks hang up above this point. A major portion of the cliff adjacent to the tailings embankment is covered with talus. The talus is composed of mostly large-sized material and is maintaining a fairly steep slope (i.e., approximately 25 to 35 degrees). The toe of the slope (at ditch on cliff side of the highway) is approximately 140 to 170 feet from the proposed Southwest Runoff Drainage Channel (SWRDC) and at a greater distance from the lower reaches of the Upper Impoundment Drainage Channel and upper reaches of the Lower Impoundment Drainage Channel. As rockfalls along this cliff are infrequent and the distance from the toe of the slope to the channel is such that rockfalls will probably not reach the channel, it is unlikely that rockfalls will reach the channel and restrict flow.

However, because of NRC's concerns that a potential exists for sediment and large rocks to block or severely restrict the SWRDC, the previously designed trapezoidal channel has been replaced by a natural drainage way. Riprap erosion protection along the base of the tailings pile side slopes has been redesigned to withstand flows down

RM/W:\88-067\RTNRC.RFT [May. 31, 1994]

the natural drainage channel. Sheet 4 of 10 and Sheet 6 of 10 of the Reclamation Plan drawings have been revised to reflect the design changes to the SWRDC. These figures are included in the Figures section of this document. Appendix B of this document contains a detailed analysis on the redesign of the erosion protection on the tailings pile side slopes.

Sheet 4 of 10 of the drawings identifies the selected D_{50} riprap erosion protection and the location of the riprap erosion protection along the base of the tailings pile adjacent to the natural SWRDC. An actual (oversized for durability) D_{50} of 9 inches has been designed for the base of the tailings pile adjacent to the SWRDC from the beginning of the SWRDC to Station 10+00 and from Station 12+00 to Station 18+15 (beginning of the width transition). From SWRDC Station 10+00 to 12+00, an actual D_{50} of 17.4 inches has been designed. These D_{50} values are sized adequately to withstand a Probable Maximum Flood (PMF) event in the natural drainage channel. Furthermore, the D_{50} values are adequately sized for flow conditions resulting from a rock fall into the channel of a reasonable volume of rocks, based on engineering judgement.

As illustrated on Sheet 4 of 10, a natural drainage way from Station 18+15 to the end of the SWRDC was not considered because existing contours adjacent to the reclaimed tailings pile do not provide for adequate drainage nor does a natural channel provide adequate protection at the outlet of the SWRDC. The designed trapezoidal channel will be used from the start of the width transition to the end of the channel including the rock cutoff wall. Rocks or sediments entering the lower reach of the SWRDC should not severely restrict drainage because the lower reach is fairly wide (50 feet) and the slope is steep (7.5 percent).

Cross Section J-J' on Sheet 6 of 10 of the drawings illustrates the vertical extent of the riprap erosion protection. The riprap erosion protection extends sufficiently below the existing grade to account for scour depth and sufficiently above existing grade to account for the maximum expected PMF depth under flow conditions resulting from falling rocks entering the channel. The maximum predicted PMF depth under flow conditions resulting from the rocks entering the channel is approximately 1.8 feet higher than the PMF depth with no rocks in the channel.

RM/W:/88-067/RTNRC.RPT (Muy. 31, 1994)

The U. S. Army Corps of Engineers (COE) riprap sizing method (Hydraulic Design of Flood Control Channels, EM 1110-2-1601, 1970) was selected to size the riprap erosion protection at the base of the tailings pile side slopes adjacent to the natural SWRDC. The depth of flow in the channel, required to apply the COE method, was determined through numerical modeling of the water surface profile using the COE HEC-2 Water Surface Profile computer program (September 1990 version). The redesigned channel was evaluated for both subcritical and supercritical flow using the HEC-2 computer program. Appendix B discusses in greater detail the COE method input and results.

Both initial conditions in the channel (i.e., following construction when no rocks or sediment may be blocking the channel) and future conditions (when sediment and rocks may have entered the channel) were evaluated as part of the redesign of the tailings embankment riprap erosion protection. For the initial channel conditions, the geometry of the natural side slope of the channel was determined from existing ground contours. The geometry of the tailings embankment side of the channel was determined by projecting upward from the channel invert to the top of the reclaimed tailings pile side slope.

For future conditions involving rocks or sediments entering the channel, approximately 500 cubic yards (cy) of rocks were distributed in the natural reach of the channel. This rock volume was determined by measuring boulders which are presently located in the vicinity of the southwest side of the tailings pile and north of Highway 279. The resulting volume was approximately 25 cy. It was assumed that the boulders and rocks had fallen in the past 50 years. To obtain a volume over the 1000-year design life of the tailings embankment, the 50-year volume of 25 cy was extrapolated to 1000 years.

The 500-cy rock volume was distributed over approximately 250 feet of the channel reach in areas of both subcritical and supercritical flow. Rocks were placed down the natural side slope of the channel to the channel invert. Placement of the rocks only on the natural side of the channel is consistent with currently observed rocks adjacent to the southwest portion of the tailings pile.

The final selected D_{50} sizes are recommended based on comparing evaluations of both the initial conditions (i.e., no rocks or sediment) and future conditions (i.e., with rocks and sediment) in the channel. As shown in Appendix B, placement of rocks in the channel resulted in a larger D_{50} at certain locations in the channel than the D_{50} required for the designed trapezoidal channel. However, in other channel cross sections, the D_{50} actually decreased depending on the distribution of the rocks. The D_{50} sizes finally selected are a conservative recommendation due to uncertainties in how and where rocks may enter the channel.

Between SWRDC Stations 10 + 00 and 12 + 00, a larger D_{50} is required because, in both the initial conditions and future conditions scenarios, the HEC-2 model predicted supercritical flow between these stations. As a result of the supercritical flow conditions, velocities are higher than those encountered under subcritical flow and the local boundary shear is increased. Therefore, a large D_{50} was required between these stations.

B. Radon Attenuation

Comment

Please substantiate that your exploration and laboratory testing program produced representative parameters that were used to model the radon attenuation. In particular, the parameters associated with the ore and the radiological parameters of all contaminated materials may not be representative, considering the number of samples tested. Address the activity of the coarse tailings that currently comprise the upper 10 feet of the embankment sideslopes which will be relocated over the fine tailings. If you cannot demonstrate that your procedures resulted in statistically valid representative values, propose a program of additional data collection and analyses, and submit the resultant revisions to the radon barrier design for review and approval.

Pesponse

General Response

The collection and analysis of three composite samples for each material in the tailings area (i.e., fine tailings, coarse tailings and ore) to determine engineering design parameters is justified because each material is relatively homogenous in composition, having been produced by identical processes or from similar sources. This homogeneity within each material type is confirmed by the laboratory results from the sampling program. Although the samples for each waste type were collected at test pits located large distances apart, the laboratory data for each sample show only a small variability for the parameters tested.

The radium concentrations reported by the laboratory are further validated by calculating the radium concentration for the tailings area using the average ore grade processed through the mill. This calculation results in an average radium concentration which is consistent with the laboratory results used in the model for radon attenuation design. Based on the tailings homogeneity and the ore grade calculations, additional sampling would not be expected to produce results that would significantly alter the design parameters or the proposed reclamation design. Additional details of the mill and tailings processes, the 1992 sampling and testing program, and the ore grade calculations are provided below.

Mill and Tailings Processes

The tailings produced by the Atlas mill resulted exclusively from the processing of blended ore. The ore was blended to achieve a uniform feed into the mill, both in terms of ore grade and physical characteristics. Table 1 presents a summary of the ore processed at the mill from 1978 to 1984. Based on an average dry tailings density of 90 pounds per cubic foot and a tailings area of approximately 100 acres, the two million tons of ore processed during this period represent the top 10 feet of the tailings in the tailings impoundment. As shown in Table 1, the combined ore grade ranged between 0.157 wt percent U_3O_8 and 0.394 wt percent U_3O_8 with an average grade of 0.228 wt percent U_3O_8 for the seven-year period.

The tailings waste was divided by natural processes within the tailings area into two components:

- 1. The coarse fraction located around the perimeter of the tailings area and closest to the discharge points
- 2. The finer fraction located in the center of the tailings area

The areal extents of the fine and coarse tailings were delineated in 1988 by a combination of visual observation at the site and a review of topographical maps of the tailings area. The fine tailings, due to their fine-grained nature and high moisture content, have a much lower angle of repose than the coarse tailings and consequently, there is a clear topographical demarcation between the coarse and the fine tailings. Based on this survey, the area of the coarse tailings was determined to be 62.2 acres, representing 68 percent of the tailings area, and the area of the fine tailings was determined to be 28.7 acres, representing 32 percent of the tailings area.

This natural division according to size of the tailings material was not completely uniform, hence there is some variability in physical and chemical characteristics within each of the two tailings areas. This variability is, however, small compared to that observed at solid waste sites where waste streams from different processes are collected and mixed and where a large number of samples is required to properly characterize the waste.

Similarly, the low-grade ore used to cover a portion of the tailings area is also relatively uniform in composition, having originated from a blended-ore stockpile and having been further mixed during loading and subsequent placement on top of the tailings area.

1992 Sampling and Testing Program

The exploration and testing program for determining representative parameters for the tailings and ore material consisted of excavating six test pits to a depth of 7 to 10 feet in the tailings area and collecting a composite sample over the entire depth

of the pit for each type of material represented. Composite samples of fine tailings were collected from Test Pits TTP-3, TTP-5 and TTP-6, located in the center of the tailings area. Composite samples of coarse tailings and ore were collected from Test Pits TTP-1, TTP-2 and TTP-4, located along the west, southeast and north perimeters, respectively, of the tailings area. The locations of the six test pits completed in 1992 are shown on Sheet 2 of 10 of the 1992 Reclamation Plan.

Table 2 presents the laboratory results for each of the three composite samples of fine tailings and the mean averages for these data which were used for radon attenuation modeling. Although the three test pits are located 600 to 1,000 feet apart, the collected samples from each pit exhibited similar results for each parameter tested. The uniformity of the results is evident by the low standard deviation for each parameter compared to its mean value.

The only result not exhibiting uniformity was the radon diffusion value of 2.0 x 10⁻⁶ square centimeters per second reported for the sample from Test Pit TTP-5. This value was much smaller than values reported for the other two samples and is probably related to laboratory error in the degree of moisture saturation. As discussed on page 3-5 of "Radon Attenuation Handbook for Uranium Mill Tailings Cover Design" (NUREG/CR-3533), small errors in moisture saturation will result in large apparent errors in the measured diffusion coefficient for samples close to saturation. The radon diffusion coefficient from this sample was not used in calculating the mean average for this parameter Excluding this value is consistent with conservative engineering design because a low diffusion coefficient in the source material requires less soil cover than a material with a high diffusion coefficient.

Table 3 presents the laboratory results from each of the three composite samples of coarse tailings and ore cover material and the mean averages for theses data which were used for radon attenuation modeling. These data represent locations which are up to 2,000 feet apart, yet the results are also very uniform with low standard deviations for all parameters including the radium activity level for coarse tailings.

As shown in Table 2, the radium activity level for the coarse tailings ranged between 193.8 picoCuries per gram (pCi/g) and 278.6 with a standard deviation of only

43.2 pCi/g. The mean activity level of 241 pCi/g is also consistent with coarse tailings activity levels reported at other tailings facilities (e.g., 303 pCi/g at Western Nuclear's Split Rock facility and 154 pCi/g at United Nuclear's Church Rock facility).

The only other radioactive material included in the reclamation design is the affected soil in the vicinity of the mill. This soil will be used as the initial cover over the tailings material because it has radium activity levels an order of magnitude less than those observed in the ore and coarse tailings. Because the affected soil's principal purpose is as a cover material, the sampling and testing program was based on the collection and analyses of composite samples from the affected material exhibiting the coarsest grain size. Using this coarse fraction to represent all of the affected material is consistent with conservative engineering design because the coarse material has the highest diffusion coefficient, which will result in an underestimation of the radon that will be attenuated by the affected soil cover. Additional details of the sample selection for affected soils are provided in Attachment C of Appendix B of the 1992 Reclamation Plan on pages B-99 through B-111.

Ore Grade Calculations

Several guidance documents were consulted to determine if statistical methods existed to determine the number of composite samples needed to adequately characterize a relatively homogenous waste such as the Atlas tailings. These manuals included the draft "Manual for Conducting Radiological Surveys in Support of License Termination (NUREG/CR-5849)" provided by the NRC and the U.S Environmental Protection Agency document "Test Methods for Evaluating Solid Waste." Both of these manuals provide statistical methods for characterization and cleanup of hot-spot type contamination requiring comparison of sample results to a "guideline value" or "regulatory threshold." While these methods can be applied to the remediation control survey conducted during cleanup of contaminated areas or the final status survey conducted after cleanup is complete, they are not appropriate for characterizing a homogenous waste for soil cover design purposes.

The document, "Radon Attenuation Handbook for Uranium" Il Tailings Cover Design" (NUREG/CR-3533) does, however, provide a second methodology for determining the

radium concentration of the tailings based on the ore grade processed by the mill. Comparison of the tailings radium concentration calculated by this method with the sampling results allows for verification of the sampling results. The ore grade methodology is conservative because it assumes that all of the radium-226 originally present in the ore was deposited in the tailings. Given this assumption, the radium concentration of the tailings is calculated using equation 18 of the handbook as shown below.

Radium Concentration (based on ore grade) =

[Ore Grade (wt% U-308)] x [2,812 (Ra-226) per gram soil/(wt% U-308)] =

0.228 x 2,812 pCi/g = 641 pCi/g

The analytical results obtained from the sampling of coarse and fine tailings can also be used to calculate an average radium concentration for the tailings as shown below.

Radium Concentration (based on sampling results) =

[Mean Fine Tailings Radium Conc. (pCi/g) x Proportion of Fine Tailings] +

[Mean Coarse Tailings Radium Conc. (pCi/g) x Proportion of Coarse Tailings] =

[1,275 pCi/g x .32] + [241 pCi/g x .68] = 572 pCi/g

The calculated upper bound value for the average radium concentration of the tailings area of 641 pCi/g is only 12 percent higher than the 572 pCi/g concentration calculated from the analytical results. This close correlation between processed ore grades and sample results indicates that the sample results accurately represent the radium concentrations for the tailings.

Additional sampling of the tailings may change the average concentration slightly. Such a change would, however, have a negligible effect on the design of the tailings cover. For example, if the radium concentrations for the fine and coarse tailings are

RM/W:/88-067/RTNRC.RPT (May. 31, 1984)

increased by 12 percent to correspond with the ore grade calculation, the average thickness of the sandy soil cover over the six-inch Mancos layer will increase by only 2.5 inches, from 6.0 inches to 8.5 inches. Because the soil cover design is not very sensitive to small changes in radium concentrations, no additional sampling of tailings material is recommended.

Comment

 Your reclamation plan does not establish a background concentration value of Ra-226 in soil. This value is necessary to estimate the amount of material that will be placed in the disposal area and the associated activity of that material. The background activity of 5.5 pCi/g referenced in License Condition No. 39 (B) was authorized in conjunction with cleanup activities of a small, isolated area. This value may not be appropriate for cleanup throughout the site area.

Accordingly, provide the background Ra-226 concentration for soil at your site that was used for design purposes and your basis for that value for our review and approval. If the background concentration cannot be substantiated, revise your reclamation plan as necessary and submit it for review and approval.

Response

General Response

The methods used in the reclamation plan to astimate the amount of affected material do not rely on the existing background concentration value for Ra-226, but rather are based on a qualitative comparison between background and contaminated levels. These methods provide an approximate volume of affected materials which is adequate for engineering design and cost estimating purposes. Conducting additional radiological surveys at this time will not provide any more definitive results regarding the volume of affected material, because most of the affected material is believed to be directly below the mill where sampling and analysis is precluded by the existing structures and foundations.

The validity of the existing background standard will become much more important during actual reclamation when delineation and excavation of the affected soils will be based on threshold gamma radiation levels. These threshold values will be established in accordance with NRC regulations at 5.0 pCi/g above the background radium concentration in the first 15 centimeters (cm) of soil and 15 pCi/g above background for any 15 cm layer of soil below the first 15 cm. To address NRC's concerns regarding the currently established background level, Atlas proposes to conduct a second background radiological survey prior to the implementation of the reclamation plan. The results of this survey will be used to establish threshold gamma radiation levels for excavation of affected soils and will be submitted to the NRC for review and approval.

Additional details regarding the estimate of affected soils and the use of this estimate in the engineering design are provided below.

Affected Soil Estimate

The estimate of affected material to be excavated and placed in the disposal area included 200,000 cy of contaminated soil in the mill area and 25,000 cy of contaminated soil located southeast of the tailings impoundment. Additional amounts of windblown tailings are also expected to be excavated on the north and west sides of the tailings impoundment. Because most of this windblown material was removed in earlier cleanup efforts, the estimated quantity of this material was not included in the reclamation design calculations.

The 200,000 cy mill area estimate is based on 45 borings completed in the mill area in 1987 by Dames and Moore. These borings extended to depths of approximately 10 feet and were completed with 1.5-inch PVC pipe. Gamma log surveys conducted in the bore holes typically showed elevated gamma levels near the surface with levels dropping and stabilizing at depth. The depth at which gamma levels first stabilized in a boring was considered the depth of contamination. Copies of the gamma log surveys are provided in Appendix C and the inferred depths of contamination are summarized in Table 4.

22

Dames and Moore grouped these borings into areas based on the depth of contamination and assigned representative contamination depths to each area. Appendix A provides the Dames and Moore figure showing the location of the borings and the delineated areas. An estimate of the volume of affected material was then calculated by multiplying each area by its depth of contamination. No borings were completed in the area adjacent to the Colorado River because only minimal contamination was anticipated in this area. A six-inch depth of contamination was assumed for this area when calculating the volume of affected material to be excavated.

The Dames and Moore estimate relied on a qualitative comparison of contaminated soil gamma levels to background levels. The estimate of affected material in the mill area is considered conservative because NRC does not require excavation of soil to background levels, but rather to threshold levels set at a prescribed level above background. However, the Dames and Moore estimate may have underestimated the volume of affected material in the immediate vicinity of the mill because cement pads and foundations precluded drilling in many of these areas.

The 25,000 cy estimate for contaminated soils southeast of the tailings impoundment was developed by EnecoTech, Inc. with the results presented in their report "Evaluation of Southeast Area, Atlas - Moab Mill Facility" dated June 30, 1987. The volume of contamination was based on soil sampling for uranium and radium-226 on a grid system. Review of the maps generated from this sampling effort reveal that the contamination is limited to a small area, approximately 1500 feet long by 400 feet wide and that activity levels for radium-226 decrease rapidly to less than the site's background standard in the surrounding areas. Because the contamination is very localized, it appears unlikely that an adjustment in the background standard will result in a significant change in the volume of affected material to be excavated.

The third area containing affected soils is the area west and north of the tailings impoundment where windblown tailings accumulated. The majority of this area was cleaned up by Atlas in 1987 with the excavated soils being placed within the tailings impoundment. Some additional cleanup is anticipated during final reclamation, but the

volumes of remaining affected soil to be excavated are believed to be small compared to those present in the mill area.

Affected Soil Cover Design

As discussed in the reclamation plan, the affected soils have radium concentrations that are an order of magnitude lower than the coarse tailings and ore and almost two orders of magnitude less than the fine tailings. Therefore, the affected soil can be used effectively as the initial cover over the tailings area. The reclamation design stipulates that a minimum of 16 inches of affected material be placed over the tailings area. This 16-inch depth is equivalent to approximately 200,000 cy of soil.

The use of a minimum of 16 inches of affected soil in the design and in the design model is conservative because the current estimate of 225,000 cy of affected soil in the mill area and in the southeast area would produce a cover thickness in excess of 18 inches. Affected soil is also expected to be generated from the cleanup of windblown tailings north and west of the tailings impoundment which would further increase the thickness of the affected soil cover.

In summary, if the volume of affected soil excavated during reclamation exceeds 200,000 cy, the affected soil cover will be greater than 16 inches thick resulting in additional radon attenuation. In the unlikely event that the affected soil excavated is less than 200,000 cy, the affected soil will be augmented with clean soil to achieve the minimum 16-inch thick soil cover stipulated in the design.

Comment

3. The estimated long-term moisture contents of the proposed clay material and of the fine tailings are not considered acceptable. The estimated values for these materials were based on the results from capillary moisture testing in accordance with recommendations in NRC Regulatory Guide 3.64 (RG 3.64), "Calculation of Radon Flux Attenuation by Earthen Uranium Mill Tailings Covers." It appears that the test procedure does not accommodate soils with large fractions of fines and may overestimate a long-term moisture. The

purpose of the capillary moisture test procedure is to establish a moisture content - moisture tension relationship for soils or, metric potential to water content. It was developed by the agricultural engineering disciplines to define soil/plant interactions, not to estimate a long-term moisture content in modeling the radon flux from a contaminated source. Accordingly, the results from this test should not automatically be applied in the modeling process and should only be used after evaluating the results with other available means of estimating the long-term moisture content.

The proposed long-term moisture content for the fine tailings was 30.9 percent. The in place moisture content you reported for the fine tailings was 27.7 percent. The average initial moisture content reported for the three capillary moisture relationship specimens was 27.5 percent; and the average calculated 100 percent saturation value was 35.0 percent the resulting moisture of 30.9 percent under -15 bar pressure indicates that the test procedure and/or test results may not be appropriate for consideration for fine grained materials.

For the clay material, the proposed long-term moisture content resulting from the capillary moisture test was 16.2 percent (average of three); but the average optimum moisture for this material was 15.1 percent. As indicated above, there is some question as to the validity of applying results from this test procedure.

For the clay material, you have supported the use of the capillary moisture test results because the specifications require that the radon barrier material be placed 2 to 5 percent greater than optimum moisture, making the projected minimum placement moisture approximately 17.1 percent. This argument is not considered valid. There is no basis to expect a soil to retain a moisture content above optimum over the 1000-year design life in a semi-arid climate. Evapotranspiration greatly exceeds precipitation at the Moab site. Even though the material will be insulated to some extent by the erosion protection layers and the sandy soil portion of the radon barrier, the assumption that the

long-term moisture content will be above optimum over the design life is not realistic nor conservative.

It is our position, based on the information that you have currently submitted, that acceptable estimates of the long-term moisture content for the fine tailings and the clay material are 20 percent and 10 percent by weight, respectively. Therefore, modify the long-term moisture contents and associated parameters in the model for the clay and fine tailings, or substantiate that your proposed values will provide reasonable assurance that the radon flux criteria will not be exceeded during the project design life.

Response

General Response

The comment regarding long-term moisture contents is similar to NRC's comment in the previous review of the 1992 Reclamation Plan which was addressed by Atlas under Response No. 14 of the April 1993 Response to NRC Comments. A compromise was reached on this issue with Atlas agreeing to increase the sandy soil layer of the radon barrier to one foot over the coarse tailings and two feet over the fine tailings. This modification to the plan provides an ample safety factor in the cover design because the added soil cover will further insulate the clay cover from the effects of evapotranspiration as well as providing additional attenuation capacity.

The moisture contents proposed by NRC appear to be set arbitrarily low and are not technically justified for either the encapsulated tailings material found at the site or for the compacted clay cover. The use of these moisture contents for attenuation modeling would result in a substantial change in the calculated diffusion coefficient for both the fine tailings and clay material. This in turn would result in an unnecessarily high soil thickness for the engineered cover. According to information provided by NRC during the June 21, 1993, meeting with Atlas, the proposed NRC clay moisture content of 10 percent was developed from an empirical equation for insitu soils present in uranium mining regions of the western United States. The use of such an equation to characterize an engineered soil cover ignores the following

RM/W:/88-067/RTNRC.RPT [May. 31, 1994]

mechanisms which result in increased moisture contents for an engineered soil cover compared to natural undisturbed soils:

- Water is added to the clay during placement and compaction to increase the moisture content to slightly above optimum, thereby providing the best degree of compaction. The compaction process also causes a higher degree of saturation due to reduced porosity.
- The water is held in the clay after placement and compaction by capillary tension, which is much higher in fine-grained soils such as the Mancos Shale clay.
- 3. The clay cover is protected from the effects of evapotranspiration by the overlying sandy soil cover and the erosion protection layer. The sandy soil cover and erosion protection layer have relatively large pore diameters indicating that they have low potential for capillary action (i.e., low potential to draw water away from the clay layer).
- 4. The erosion protection layer consists of a soil-rock matrix which, because of its coarse nature, will intercept runoff and channel it downward to the clay cover. This mechanism will help to maintain the long-term moisture content in the clay cover.

The use of the 15-bar permanent wilting point test to approximate long-term moisture content in the tailings and soil cover is one of the methods that NRC has accepted as providing conservative results. In fact, the NRC Regulatory Guide 3.64 (RG 3.64) states unequivocally that "The NRC staff will accept the moisture content at which permanent wilting occurs as a reasonable value of the long-term moisture content." The Mancos Shale clay is ideally suited for use in an engineered clay cover because it has a relatively high 15-bar moisture content. To arbitrarily assume an extremely low moisture content for this material to compensate for what appears to be too high a 15-bar moisture content is overly conservative and not representative of an engineering designed cover.

Atlas recommends that the previously agreed-upon solution of increasing the design thickness of the sandy soil cover to minimize moisture loss in the clay layer be implemented. This type of design provides an additional safety factor for radon attenuation without unfairly penalizing a cover material for having excellent moisture retention characteristics. Alternately, Atlas is agreeable to reducing the moisture contents for the fine tailings and clay in the radon attenuation model by approximately 10 percent to provide additional confidence in the design.

Comment

4. Because of the previous requests for information, it will be necessary to revise the design of radon barrier thickness and submit it for review and approval. The expected performance of the revised barrier over the design life should be included in the evaluation. For example, this should include such things as the potential for cracking and freeze-thaw effects.

Response

Responses to Comments 1 and 2 above do not propose any change in the design of radon barrier thickness. Regarding Comment 3, Atlas is agreeable to modifying the reclamation plan to increase the sandy soil cover to one foot over the coarse tailings and two feet over the fine tailings consistent with Condition 41.A of the 1993 draft license. This modification will provide for additional moisture retention in the underlying compacted clay cover and is shown on the attached revised Sheet 5 of 10 of the reclamation plan, "Reclaimed Impoundment Cross Sections and Soil Cover Details."

As discussed in the 1992 reclamation plan, the potential for frost heaving is low because the material below the cover material is relatively free draining and will not support the capillary action required for frost heaving to occur. The additional 6 to 18 inches of sandy soil cover will not change this characteristic of the reclamation design. The additional cover will enhance the stability of long-term moisture content in the underlying clay cover layer by isolating the clay further from the ambient

climate and attendant drying. This will reduce the possibility for shrinkage in the soil cover.

At the present time, Atlas is in the process of placing an interim cover over the tailings area as required by the NRC. It is anticipated that all but approximately 10 to 15 acres of the tailings area will be covered this spring with the remainder to be completed after the central area of the tailings dries up and consolidates sufficiently to allow placement of the interim cover. The interim cover consists of low-grade ore and affected soils and has averaged approximately 18 inches in thickness over the coarse tailings and 36 inches over the fine tailings. The affected soils used for the interim cover were excavated from the southwest portion of the mill area based on visual evidence of contamination. The excavated depths have, to date, either equaled or exceeded the projected depths of affected soils used for reclamation planning purposes.

Use of affected soils as the interim cover over the fine tailings is not included in the reclamation plan or in the evaluation of the attenuation capacity of the reclamation cover. The placement of this layer of affected soil directly over the fine tailings adds additional conservatism to the cover design because this material has low radioactivity compared to the fine tailings and provides increased radon attenuation capacity.

Atlas will prepare as-built drawings of the tailings area after the interim cover is completed. At that time, Atlas may elect to amend the reclamation plan to minimize re-excavation of the interim cover during reclamation. This modification of the reclamation plan would minimize exposure of the tailings material during final reclamation plus provide cost savings by eliminating some rehandling of the interim cover. Any amendment to the reclamation plan would be developed using the same engineering parameters and methods used in the current reclamation plan as approved by the NRC.

REFERENCES

REFERENCES

Algermissen, S.T., Perkins, D.M., Thenhaus, P.C., Hanson, S.L., Bender, B.L., 1990, "Probabilistic Earthquake Acceleration and Velocity Maps for the United States and Puerto Rico", Miscellaneous Field Studies Map MF-2120, Department of the Interior, U.S. Geological Survey.

Canonie Environmental Services Corp., 1992, "Atlas Corporation Reclamation Plan Uranium Mill and Tailings Disposal Area, Moab, Utah", prepared for Atlas Corporation, June.

Carpenter, J.R., 1986, "STABL5/PCSTABL5 User's Manual, Indiana Department of Highways Joint Highway Research Project, JHRP-86/14.

Damies and Moore, 1987, "Revised Cost Estimate of Reclamation Plan, Mill Decommissioning, and Tailings Pile Reclamation, Atlas Minerals, Moab Uranium Mill".

Department of Energy, 1989, "Remedial Action Plan and Final Design for Stabilization of the Inactive Uranium Mill Tailings at Green River, Utah, Final", Vol. I, II and III, January, UMTRA-DOE/AL 050510.GRNO.

EnecoTech, Inc., 1987, "Evaluation of Southeast Area - Moab Mill Facility".

Hunt, G., 1994, Utah Oil and Gas Division, Personal Communication, January 4.

Low, M., 1993, Utah Geological Survey, Personal Communication, November 5.

Mathews, F., 1994, Utah Oil and Gas Division, Personal Communication, January 18.

Morgan, C.D., 1992a, "Cane Creek Exploration Play Area, Emery, Grand, and San Juan Counties", Utah Geological Survey, Open-File Report 232, March.

Morgan, C.D., 1992b, "Horizontal Drilling Potential of the Cane Creek Shale, Paradox Formation, Utah", <u>Geological Studies Relevant to Horizontal Drilling in Western North</u> <u>America</u>, Rocky Mountain Association of Geologists.

RM/WV/88-067/RTNRC.REF (May. 31, 1994)

(Continued)

Morgan, C.D., 1993, "Horizontal Drilling Technology Re-opens Old Play", Survey Notes, Utah Geological Survey.

U.S. Environmental Protection Agency, 1986, "Test Methods for Evaluating Solid Waste", Washington, D.C.

U.S. Nuclear Regulatory Commission, NUREG/CR-3533, 1984, "Radon Attenuation Handbook for Uranium Mill Tailings Cover Design", Washington, D.C., NRC FIN No. B2269.

U.S. Nuclear Regulatory Commission, 1988, "Calculation of Radon Flux Attenuation by Earthen Mill Tailings Covers", Regulatory Guide 3.64.

U.S. Nuclear Regulatory Commission, NUREG/CR-5849, 1992, "Manual for Conducting Radiological Surveys in Support of License Termination", Draft Report for Comment, Washington, D.C., NRC FIN L1569.

TABLES

- 1 - 4

1

TABLE 1

SUMMARY OF ORE PROCESSED ATLAS MILL 1978 THROUGH 1984

Year	Acid Plant		Alkaline Plant		Combined	
	Tons	Grade	Tons	Grade	Tons	Grade
1978	229,079	.181	152,432	.131	381,511	.161
1979	250,753	.169	181,859	.139	432,612	.157
1980	275,918	.256	172,993	.139	448,911	.211
1981	267,835	.326	139,232	.170	407,067	.273
1982	164,337	.396	2,021	.212	166,358	.394
1983	171,936	.313			171,936	.313
1984	39,899	.298		***	39,899	.298
TOTAL	1,399,757	.266	648,537	.144	2,048,294	.228

Notes:

- 1. Data obtained from the daily plant summaries.
- 2. The alkaline circuit did not operate after January 1982.
- 3. Grade is shown as weight-percent U-308.
DATA USED TO DETERMINE FINE TAILINGS PARAMETERS FOR RADON ATTENUATION MODELING (a)

Material	Sample I.D.	Radium Concentration (pCi/g)	Radon Emanation Coefficient	Radon Diffusion Coefficient (cm ² /s)	Specific Gravity	Dry Density (g/cm ³)
Fine Tailings	TTP-3/Comfine-192	1,094 ± 3	0.36 ± 0.1	1.3E-4	2.97	1.32
	TTP-5/Comfine-292	1,270 ± 3	0.32 ± .01	2.0E-6(c)	2.84	1.28
	TTP-6/Comfine-392	1,461 ±4	0.36 ± .01	4.0E-4	2.92	1.13
	Mean	1,275.0	0.35	2.65E-04	2.91	1.24(b)
	Standard Deviation	184	0.02	NA	0.07	0.10

Notes:

(a) The data listed are from Rogers & Associates Engineering Corp. lab reports for composite samples dated 3/5/92 and 3/31/92 except for dry density which are from Lincoln DeVore, Inc.'s lab report for split-spoon samples dated 1/20/92.

(b) The dry density for fine tailings was adjusted to 89.8 lb/ft³ (1.44 g/cm³) to account for overburden stress during placement of the cover. Refer to Appendix B of the June 1992 reclamation plan.

(c) This value was not used in calculating the mean value because it was not consistent with the data reported for the other two samples.

DATA USED	TO DETERMINE COARSE TAILINGS AND ORE PARAMETERS
	FOR RADON ATTENUATION MODELING (a)

Material	Sample I.D.	Radium Activity Level (pCi/g)	Radon Emanation Coefficient	Radon Diffusion Coefficient (cm ² /s)	Specific Gravity	Dry Density (g/cm ³)
Coarse Tailings	TTP-1/Comcoarse-192	250.6 ± 1.3	0.28 ± .01	2.3E-02	2.72	1.54
	TTP-2/Comcoarse-292	278.6 ± 1.4	0.20 ± .01	2.8E-02	2.72	1.48
	TTP-4/Comcoarse-392	193.8 ± 1.2	0.22 ± .01	2.3E-02	2.69	1.58
	Mean	241.0	0.23	2.47E-02	2.71	1.53
	Standard Deviation	43.2	0.04	0.29E-02	0.02	0.05
Ore	TTP-1/Comore-192	180.4 ± 1.1	$0.25 \pm .01$	8.8E-03	2.70	1.59
	TTP-2,4/Comore-292	250.1 ± 1.3	0.32 ± .01	8.8E-03	2.70	1.73
	TTP-2,4/Comore-392	207.7 ± 1.1	0.28 ± .01	7.3E-03	2.71	1.83
	Mean	212.7	0.28	8.3E-03	2.70	1.72
	Standard Deviation	35.1	0.04	0.9E-03	0.01	0.12

Note: (a)

The data listed are from Rogers & Associates Engineering Corp. lab reports for composite samples dated 3/5/92 and 3/31/92 except for dry density which are from Lincoln DeVore, Inc.'s lab report for split-spoon samples dated 1/20/92.

CanonieEnvironmental

SUMMARY OF JULY 1987 GAMMA SURVEY RESULTS ATLAS MILL SITE MOAB, UTAH

Borehole No.	Sorehole Estimated Depth No. of Contamination (Feet)		Estimated Depth of Contamination (Feet)
1	7.5	24	0.0
2	0.0	25	6.5
3	7.5	26	0.0
4	5.0	27	7.5 +
5	7.5	28	0.0
6	7.5	29	4.0
7	0.0	30	3.0
8	8.0	31	0.0
9	6.0+	32	6.5
10	8.5+	33	6.0
11	0.0	34	6.0
12	0.0	35	0.0
13	0.0	36	7.0
14	0.0	37	0.0
15	0.0	38	
16	8.0	39	0.0
17	8.5	40	7.5
18	0.0	41	5.0
19	8.0	42	3.0
20	7.5	43	3.5
21	4.5	44	6.5
22 23	0.0 0.0	45	6.0

FIGURES

CanonieEnvironmental

APPENDIX A

STABILITY ANALYSIS RECLAIMED TAILINGS EMBANKMENT CALCULATION BRIEF

CanonieEnvironmental

 By JWS
 Date11/12/93
 SubjectStability
 Analysis-Reclaimed
 Sheet
 6
 5
 9

 Chkd
 By Pec_Date1-4-94
 Tailings
 Impoundment
 ATLAS
 Proj
 No
 88-067-11

Slope Stability Reclaimed Impoundment ATLAS 88-067-11

TABLE OF CONTENTS

헬륨 그는 그는 것은 것이 없는 것이다. 사망가 있는 것이 가 많아. 것을 많이 많다.	Sheet	of
Purpose	•••••	59
Methodology		5.9.
Results		
References	6 .	

TABLES

Table 1.	Factor of Safety Results for Loading Cases	 59
Table 2.	Soil Properties	 59

FIGURES

Figure 1. Vicinity Map	11 59
Figure 2. Plan view of the Reclaimed Taliings Impoundment	1259
Figure 3. Cross section of the 10:3 Slope of the Reclaimed Tailings Impour	ndment 59
Figure 4. Probabilistic 250 year Horizontal Earthquake Acceleration Map	14. 59
Attachments	
Attachment A. Phone Memo with Utah Geological Survey	15 59
Attachment B. Water Level Data in Tailings Pile	7.59
Attachment C. Soil Properties	2959
Attachment D. PCSTABL5 Input Data Files	3.259
Attachment E. PCSTABL5 Output Data Files	10 59

By JWS Date 11/12/93 Subject Stability Analysis-Reclaimed Sheet 1 of 59 Chkd By P& Date 1-4-94 Tailings Impoundment ATLAS Proj No 88-067-11

Purpose. The purpose of this calculation brief is to verify the stability of the Atlas Minerals Reclaimed Tailings Impoundment design presented in the Reclamation Plan (Canonie, June 1992 and April 1993). Figure 1 (sheet ||) shows the location of the existing tailings pile near Moab, Utah. The stability of the reclaimed impoundment will be analyzed under seismic conditions with (short term) and without (long term) a phreatic surface in the Tailings Pile.

Methodology. The computer program PCSTABL5 (Carpenter, 1985) is used to determine the critical failure surfaces and corresponding factor of safety (FOS) against instability. The stability computation methods used in PCSTABL5 are the simplified Janbu, the Simplified Bishop, and the Spencer's method of slices. The Simplified Bishop method is used in this analysis.

Critical Cross Section

The most critical location for stability is on the southeast side of the impoundment as shown on the plan view of the impoundment in Figure 2 (sheet 12). The southeast as well as the northeast embankment slopes are the steepest slopes and longest slopes on the Reclaimed Impoundment. However, the southeast slope is selected as being more critical because the existing ground elevation is lower and slopes slightly downward toward the Colorado River and away from the 10:3 embankment.

Figure 3 presents a generalized cross section of the impoundment and existing ground corresponding to the location shown on Figure 2. For purposes of modelling the impoundment with PCSTABL5, the cross section has been divided into four soil types: the natural soil beneath the tailings pile, the coarse tailings, the sandy soil along the embankment and top of the impoundment, and the cover material (consisting of ore, affected soil, and clay) on top of the coarse tailings.

By JWS Date 11/12/93 SubjectStability Analysis-Reclaimed Sheet 2 of 59 Chkd By P& Date 1-4-94 Tailings Impoundment ATLAS Proj No 88-067-11

The erosion protection layer is not simulated as a separate soil type in the stability analysis. However, the weight of the erosion protection layer is accounted for by applying a surcharge load on the 10:3 embankment and on top of the impoundment. According to the Atlas Reclamation Plan (Canonie, 1992), an 8" riprap layer is along the 10:3 embankment and a 6" soil rock matrix layer is on top of the impoundment. Using a specific gravity of the riprap is 2.47 (specified in Atlas Reclamation Plan), and assuming a porosity of 40%, the bulk unit weight of the riprap is:

 $2.47 \times 62.4 \times (1-0.4) = 92.5 \text{ pcf}$

For an 8", riprap layer, the surcharge load is:

92.5 pcf x 8" x 1 ft/12" = 61.7 psf

Conservatively assuming the same bulk unit weight for the soil rock matrix, the corresponding surcharge load is:

92.5 pcf x 6" x 1 ft/12" = 46.3 psf

The individual 6" layer of clay, 16" layer of affected soil, and 6" layer of ore placed on top of the coarse tailings are not modeled as separate layers but rather as a single layer. Soil properties required by PCSTABL5 for this layer are determined as an average weighted by thickness. Soil properties are discussed further below.

Stability Scenarios

The following stability scenarios are analyzed by the PCSTABL5 model:

1) Long term - Critical circular failure surface with a 250 year earthquake return period loading and without phreatic surface in the coarse tailings.

2) Short term - Critical circular failure surface with a 250 year earthquake return period loading and with phreatic surface in the coarse tailings.

 By JWS__Date11/12/93
 SubjectStability_Analysis-Reclaimed____Sheet_3 of 59

 Chkd By___Date______Tailings_Impoundment_ATLAS___Proj_No_88-067-11

3) Critical circular failure surface with earthquake loading corresponding to the Maximum Credible Earthquake (MCE) for Colorado Plateau without phreatic surface in coarse tailings.

4) Critical circular failure surface with earthquake loading corresponding to the MCE for Colorado Plateau with phreatic surface in coarse tailings.

5) Trial failure surface between sand and tailings on embankment with earthquake loading corresponding to the MCE for Colorado Plateau with phreatic surface in coarse tailings.

6) Same conditions as Scenario 1 but maximum earthquake loading under which the reclaimed impoundment is stable will be determined.

7) Same conditions as Scenario 2 but maximum earthquake loading under which the reclaimed impoundment is stable will be determined.

For the circular failure surfaces, PCSTABL5 randomly searches for the most critical failure surface. For the trial failure surface in scenario 5, PCSTABL5 calculates a FOS for a user defined surface.

Earthquake Loads

To simulate earthquake loads, the PCSTABL5 model requires horizontal and vertical earthquake accelerations. The largest return period for which horizontal earthquake acceleration maps are available is 250 years. Figure 4 (sheet 14) is the most current map showing the mean horizontal earthquake acceleration which has a 90% probability of nonexceedance. For Moab, Utah the 250 year horizontal acceleration is approximately 0.05g (g is acceleration due to gravity) (The 0.05g value was

 By JWS
 Date 11/12/93
 Subject Stability
 Analysis-Reclaimed
 Sheet 4 of 59

 Chkd By Accord Date 1-4-94
 Tailings
 Impoundment
 ATLAS
 Proj
 No
 88-067-11

confirmed by Utah Geological Survey Personnel - see Phone memo in Attachment A). For vertical earthquake acceleration, a conservative estimate of 0.05g is assumed

The reclaimed impoundment design life is a minimum of 1000 years (i.e. greater than the 250 year return period) and potentially during this period an earthquake of larger magnitude could occur. In correspondence with Joel Grimm, Project Manager with the Nuclear Regulatory Commission on 12/28/93, the Maximum Credible Earthquake used for a nearby Green River Title 1 site was 6.2 on the Richter scale corresponding to a horizontal earthquake acceleration of 0.21g. This value is used for scenarios 3, 4, and 5 along with a vertical earthquake acceleration of 0.05g. The purpose of scenarios 6 and 7 is to account for an earthquake of greater magnitude than the 250 year earthquake during the design life of the reclaimed impoundment. Under these scenarios, the maximum horizontal earthquake acceleration under which the reclaimed impoundment is stable will be determined.

Phreatic Surface

Dewatering of the existing tailings pile is currently on going. In the event that water is present in the tailings, a phreatic surface is assumed for scenarios 2, 4, 5, and 7 as a short term condition. The phreatic surface is assumed based on current water level information readings in piezorneters at the tailings pile. Attachment B contains piezometer coordinates and the most current water level information. From the information in Attachment B, water levels in the piezometers have been transferred to Figure 2 and using the piezometers nearest the critical cross section, the phreatic surface is extrapolated on to Figure 3.

By JWSDate 11/12/93Subject StabilityAnalysis-ReclaimedSheet5of61Chkd By Per Date 1-4-94TailingsImpoundmentATLASProjNo88-067-11

Soil Properties

Table 1 provides the soil properties used in the stability analysis. The derivation and reference for the soil properties are included with Table 1. Attachment C contains excerpts from the references listed in Table 1 from which soil properties were determined.

PCSTAEL5 Input and Output.

The PCSTABL5 input files are included in Attachment D. Output files are provided in Attachment E. Boundary numbers and soil type numbers assigned are shown on Figure 3. Initiation and termination points of circular failure surfaces were adjusted until the minimum FOS was determined.

RESULTS. The factor of safety for the critical cross section for each of the scenarios discussed above are provided on Table 1 (sheet <u>8</u> of <u> \leq 9</u>). The circular failure surfaces have been sketched on Figure 1. The factor of safety are greater than 1 for scenarios 1 through 5. For the worst case scenarios 6 and 7, the impoundment could withstand an earthquake with a horizontal earthquake acceleration of 0.25g (400 % larger than the 250 year earthquake loading predicted for Moab, Utah and 19% larger than the MCE loading)

By_JWS_Date11/12/93	SubjectStability Analysis-Reclaimed	_ Sheet 6 of 51
Chkd By PE_ Date 1-4-94	T ilings Impoundment ATLAS	Proj No 88-067-11

References

Algermissen S.T., Perkins D.M., Thenhaus P.C., Hanson S.L., Bender, B.L., 1950, "Probabilistic Earthquake Acceleration And Velocity Maps for the United States and Puerto Rico", Miscellaneous Field Studies Map MF-2120, Department of the Interior, U.S. Geological Survey

Canonie, April 1993, Response to NRC comments Atlas Corporation Reclamation Plan Uranium Mill And Disposal Area

Canonie, June 1992, Atlas Corporation Reclamation Plan Uranium Mill And Disposal Area

Carpenter, J. R. "STABL5/PCSTABL5 User's Manual, 1986, Indiana Department of Highways Joint Highway Research Project JHRP-86/14

Dames and Moore, 1975 "Safety Analysis Report", Atlas Minerals Division, Atlas Corporation, Moab Uranium Mill

Das, Braja M. "Principles of Geotechnical Engineering", 1984

Grimm, Joel, Project Manager with the NRC, personal communication with Canonie Personnel on 12/28/93.

 By JWS
 Date11/12/93
 SubjectStability
 Analysis-Reclaimed
 Sheet
 7 of
 59

 Chkd
 By Pec_Date1-4-94
 Tailings
 Impoundment
 ATLAS
 Proj
 No
 88-067-11

Tables

Table 1

Scenario	Failure Surface	Minimum FOS	Horizontal Earthquake Acceleration
1. Dewatered Tailings	Circular	1.6	0.05g
2. Partially Saturated Tailings.	Circular	1.6	0.05g
3. Dewatered Tailings	Circular	1.1	0.21g
4. Partially Saturated Tailings.	Circular	1.1	0.21g
 Partially Saturated Tailings with Failure Surface Between sand and tailings on embankment. 	Trial	1.4	0.21g
6. Dewatered Tailings	Circular	1.0	0.25g
7. Partially Saturated Tailings	Circular	1.0	0.25g

Factor of Safety Results ATLAS Reclaimed Impoundment

8/59

differ 44

SOIL PROPERTIES - ATLAS MILL SITE STABILITY ANALYSIS

		Long Term	Specific		Density (pcf))	Cohesion	Angle of Internal
Material	Porosity	Moisture (%)	Gravity	Dry	Moist	Saturated	(psf)	Friciton (dea)
NATURAL SOILS					125	125	50	38
CLEAN SANC	0.3368	2.8	2.70	112	115	133	0	30
COVER MATERIAL	0.3302	7	2.73	114	122	135	0	30
COARSE TAILINGS	0.4350	4.4	2.71	96	100	123	0	37

Notes

-4-94

1) NATURAL SOIL PROPERTIES

- Properties taken from Dames and Moore (1977) - see Attachment C for excerpt.

- Natural soils are granular (sand and gravels, silts) and are within range of properties presented below for granular soils.

2) CLEAN SAND PROPERTIES

Clean sand and Affected Sand angle of internal friction assumed as 30 deg. based on typical value for sands. Values of angle of internal friction for sands from several sources are presented below:

Source	Angle of Internal Friction
Bowels (1988)	32 - 34 deg. (average value for sands)
Das (1985)	27 to 45 deg.(Drained angle for Sands)
Terzaghi, Peck, and Skempton	30 to 40 deg. (SC and SM soil types)
Pile Buck Inc. (1987)	28 to 41 deg. (loose to dense granular soils)

- Attachment C contains excerpts from these sources.

Porosity, long term moisture, and specific gravity of Clean Sand based on geotechnical testing performed on three representative samples from Clean Moab Wash Soils. Results are reported in ATLAS Reclamation Plan (Canonie, 1992) - See Attachment C for excerpts.

- Zero cohesion in sand is assumed.

SOIL PROPERTIES - ATLAS MILL SITE STABILITY ANALYSIS

- Moist density = Dry Density (1 + moisture content)

From Pile Buck Inc. (1987) moist density for granular soil ranges from 95 to 140 pcf.

Saturated Density = [(1-n)Gs + n] x Density of Water (62.4 pcf)
 From Pile Buck Inc. (1987) moist density for granular soil ranges from 120 to 150 pcf.

4) COARSE TAILINGS PROPERTIES

Properties based on geotechnical testing performed on three representative samples from Coarse Tailings.
 Results are reported in ATLAS Reclamation Plan (Canonie, 1992) - See Attachment C for excerpts.

5) COVER MATERIAL PROPERTIES

Cover material consist of a 6" clay layer, 16" affected sandy soil layer, and a 6" ore layer. Properties of each layer are averaged (thickness weighted) together to provided properties for on e composite layer. Properties for each are summarized below for each individual layer. Properties are from Canonie (1992) - See attachment C for excerpts.

Material	Thickness (in)	Porosity	Long Term Moisture (%)	Specific Gravity	Dry Density (pcf)
Clay	6	0.3897	16.2	2.80	106.7
Affected Soil	16	0.2954	2.8	2.72	119.2
Ore	6	0.3637	9.0	2.70	107.3
-Weighted Avg. =	-	0.3302	7.0	2.73	114.0

- Zero Cohesion for the cover material is conservatively assumed. An angle of internal friction of 30 deg. is assumed for the cover material based on typical literature values for sands and clays (see Attachment C).

 By JWS_Date11/12/93
 SubjectStability Analysis-Reclaimed
 Sheet //a of 59

 Chkd Byge
 Date1-4-94
 Tailings Impoundment ATLAS
 Proj No 88-067-11

Figures

P.2

Canonie Environmental By JWS Date<u>11/12/93</u> Subject<u>Stability Analysis-Reclaimed</u> Sheet <u>15</u> of <u>59</u> Chkd By <u>Pe-Date 1-4-94</u> <u>Tailings Impoundment ATLAS</u> Proj No <u>88-067-11</u>

ATTACHMENT A

0

PHONE MEMO WITH UTAH GEOLOGICAL SURVEY

Canonie Environmental	TELEPHONE CALL RECORD
Date: 11/5/53 Time: 10:15 Phone No.:	1-801- 467-7970
Project Name(s): A7LAS Project No.(s	s): 88-067-11
To: MIKE LOW OF UTAH CC	EOLOGICAL SURVEY
From: JOHN SJOSTROM OF CANMIE	
Other Participants:	
Subject(s): SELIMIC PROPERTIES OF MORE	3, 47.
MIKE PROVIDED ME THE FOLLO	WING INFO.
D HORIZONTAL EARTHEUARE ALLELERATI MORB, UT 15 ± 5% g FUR 250	YT EARTHQUAKE
WITH 10% PROBABILITY OF EXCEEPANC	ALCORDING
TO USES REPORT ME 2120 84 AL. GODTAINED MAP FEUR BAUG PERKINS. (2) THERE IS & MAD PULLING SAMITI IN	GERMISSEN ET. AL M RENUER USES PRUM
unes a differ 127 and \$17.00	UTAIT LALLEU
g di pelletin joi - cont tric	Distribution
I " BTAINED AN INTERIM CEOLOGI	To Office
MAP OF MONG FUR \$3.50 FARLIER WH	HCH OPW
SHOWS FAULTS)	······································
	File

NEX.

Canonie Environmental By JWS_Date11/12/93 SubjectStability Analysis-Reclaimed Sheet 17 of 39 Chkd By per_Date(-4-44 Tailings Impoundment ATLAS Proj No 88-067-11

ATTACHMENT B

WATER LEVEL DATA IN TAILINGS PILE

CanonieEnvir	unmental		TEL	EPHONE CALI RECORI
Date: 1/- 5- 93	Time: //00	Phone No.: 80	1-259-3	5/3/ 18
Project Naine(s): ATA		Project No.(s):	98-067-1	1
TO: CARL DINON	of	ATLAS		
From: PHIL CROUSE	e of	2ES		
Other Participants:	N SJOOTROM			
				RIVER
Subject(s): WATER L	EVEL DATA : 1	0-30-93		3951
Notes: WATER POND	15 DRY: 80 402	7		1/4 MILE
4 AL	3987.9	BS(14)	Dny	POND
= AZ	4002. 2	7 811	{	
Z A3	2995.19	815	1	
- AS	3975.01	B16	1	
- BZ(14)	4001. 91	B4	¥	
B4(17)	4021.85			
BIORM X BES	3970.05			
- BT X BEST E	0000 3971.62			
- HPPZ	3972.45			
- HPP3	3972.08			
- 88A4 1	4 008.07			
BRAZ BED'S	3995 63		7	o Office
RBAZ	3994. 74			and
- EE4	4016.34		A	<u>الار</u>
VEES	3996.13			
VEE2	3996.17			
Aq	DAY		Fi	D
- BI(15	1		Pa	ge (of 1
FM0006-1-93-M				

A WAR

A

127 PM FROM AMPRICAN WASTE DISP TO D007000186

PR

	<u>#</u>	ELEV	N.	E. 19	F
	BAA 2	4058.7	4021.0	6206.2	1
r.	<u> </u>	4055,8	4-064.6	6111.2	
er qq	10 1. 4	4055,1	4107.2	6110.6	
+ 196498819	EE Z	4056.8	5535.1	5243.4	
1.000000.00.0	EE 3	4056.3	54 96.1	5241.6	
-	EE 4	4054.0	5429.2	5234.2	
NOTUSE	P B-8	4039.4	3135.1	5453.5	598 A A
	- A-9	4008.0	3925.8	6321.9	
NOUS	co A-10	3986.7	3884.8	6384.2	
	- B.4(17)_	4039.8	5581.7	4682.3	
	- A-1	4039.9	5600.3	5219.5	
	- B-5(16)	40 40.5	5557.0	5759.2	
NOT	USEP A-4	4040.6	5142.2	6026.6	
NOT	1050 B-17	3987.1	5708.8	5388.0	
	B-16	4001,9	5641,2	5833,6	
	- A.Z	4030.4	5629.7	5220.9	
	- A.3	4019.9	5668.9	5223.3	
×	- A-5	4040.8	3988.0	6266.4	
	- B.1(15)	4040.8	4346.1	6395.6	
	- B-2(14)	4040.3	3572.0	5965.9	
	- 8-10	4057.6	3633,2	5917.3	
	- B-11	4010.9	3541.7	6051.0	
	- B-15	4055.2	5488.5	5699,6	
	- B-16	4001,9	5641.2	5833.6	
	B-7	4057.3	3211,2	5447.2	
	C-4	40 14,9	39 43,5	6199.7	
	HPP-2	4040,6	5112.7	6041.3	
	H PP-3	4040.7	4000.5	62.74.2	
		and the second			

enn 1912

1

By JWS Date <u>11/12/93</u> Subject <u>Stability Analysis-Reclaimed</u> Sheet <u>10 of <u>9</u> Chkd By <u>Fec</u> Date <u>1-4-94</u> <u>Tailings Impoundment ATLAS</u> Proj No <u>88-067-11</u></u>

ATTACHMENT C

SOIL PROPERTIES

B-14

2/57

2 Crak

FROM ATCHS REC. PLAN (CANONIC, 1992 TENE).

Table i RADON Input Parameters Atlas Minerais - 1992

MATERIAL	RADIUM CONC. (pCi/g)(c)	SNANATION FRACTION (c)	LONG-TERM HOISTURE (% WEIGHT)	DIFFUSION COEF. (cm^2/s)(c)	POROSITY (d)	DRY DERSITY (g/cm^3)
FINE TAILINGS	1275.0	0.35	30.9	a 2.65 8-04	0.5057	1.44 e
COARSE TAILINGS	241.0	0.23	4.4	a 2.478-02	0.4350	1.53 e
ORE	\$12.7	0.28	9.0	a 3.30 8-0 3	0.3637	1.72 e
AFFECTED MOAB WASH SOILS	19,5	0.28	2.8 8	1.975-02	0.2954	1.91 f
CLEAN MOAB WASH SOILS	3.0	0.00	2.8	2.108-02	0.3368	1.79 f
KLORDINE FLATS CLAY	0.0	0.00	16.2 4	a 1.088-03	0.3897	1.71 f
BERTONITE AMERDED SOIL	0.0	0.00	8.9 1	5.638-03	0.3162	1.84 f

(a) Measured 15-bar Moisture Content

(b) Estimated 15-bar Moisture Content using Rawl's Equation (Eqn. 5/RG 3.64)

(c) Average measured lab values

(d) Calculate based on n = 1-(rbo(s)/Gs*rbo(w)) (Eqn. 4/RG 3.64)

(e) Average measured in-situ dry density -

"f) Average dry density of based on 95% of Standard Proctor

TAOLE 2

MODIFIED 4/15/93

LAB TEST RESULTS ATLAS CORPORATION MOAB, UTAH

					Geotechnical						Radiological		
Material Description	Percent Passing 200 Sieve (%)	Hydrometer Percent Smeller then 0.005 mm (%)	Liquid Limit	Plestic Index	Ave. In-Place or Ave. Adjuste In-Place Dry Density (PCF)	Optimum Moleture Content (%)	Moisture Content at 15 Bar (%)	Porosity	Specific Gravity	Radium Content (pCI/Gram)	Diffusion Coefficient (cm²/sac)	Emanation	
Fine Tailings					1			1					
ComFine - 192	74	20	42	15	89.8	NT	31.9	0.518	2.97	1094	1.3E-04	0.38	
ComFine - 292	34	19	NP	NP	89.8	NT	27.5	0.493	2.84	1270	2.0E-06	0.32	
ComFine - 392	70	21	44	21	89.8	NT	33.3	0.507	2.92	1461	4.0E-04	0.36	
Coarse Tailings								1.1	C . 3	1.242.00	1.00		
ComCoarse - 192	21	9	NP	NP	95.6	NT	5.4	0.437	2.72	250.6	2.35-02	0.28	
ComCoarse - 292	14	7	NP	NP	95.8	NT	4.7	0.437	2.72	278.6	2.8E-02	0.20	
ComCoarse - 392	11	5	NP	NP	95.6	NT	3.2	0.431	2.69	193.8	2.3E-02	0.22	
Ore Plating													1.1.1.1
ComOre - 192	28	11	NP	NP	107.4	ni l	9.6	0.363	2.70	180.4	8.8E-03	0.25	
ComOre - 292	30	12	NP	NP	107.4	NT	8.8	0.363	2.70	250.1	8.8E-03	0.32	
ComOre - 392	31	16	NP	NP	107.4	NT	8.6	0.365	2.71	207.7	7.3E-03	0.28	
SN-Site Affected Soil				1				1					
1	17	6	NP	NP	125.8	8.1	2.8 *	0.259	2.72	18.2	2.3E-02	0.27	
2	17	8	NP	NP	125.5	8.4	2.9 *	0.259	2.72	20.8	1.4E-02	0.29	
3	17	7	NP	NP	125.8	8.1	2.8 *	0.256	2.71	19.5	2.2E-02	0.29	
N-Site Moeb Wesh Soil		1		1	1						0.6551		
1	11	5	NP	NP	118.0	9.9	2.8 °	0.294	2.68	IN T	2.3E-02	NT	
2	12	8	NP	NP	117.3	10.3	2.8 *	0.304	2.70	NI	2.6E-02	NT	
3	11	8	NP	NP	117.3	10.5	2.8 *	0.308	2.71	NT	1.4E-02	NT	
Mancus Snale (Klondike Flat)													
1	96	42	34	15	113.3	15.7	16.11	0.352	2.80	NT	7.4E-04	NT	
2	82	42	37	20	112.4	14.8	16.32	0.358	2.80	NT	1.5E-03	NT	-
3	81	42	38	21	111.9	14.9	16.21	0.362	2.81	NT	1.0E-03	NT	
Atlas Property		1 C			1.000		B (1993)			1000			
1	11	6	NP	NP	129.0	9.3	7.19	0.248	2.75	NT	8.9E-03	NT	
2	16	7	NP	NP	129.0	9.5	7.54	0.243	2.73	NT	1.3E-02	NT	
3	18	9	NP	NP	128.8	9.8	7.61	0.244	2.73	NT	9.3E-03	NT	
Bantonite Amended Moeb Wesh Soil													NO
1	16	8	1	1	120.3	10.9	9.07	0.286	2.70	NT	5.4E-03	NT	21
2	15	8			120.7	10.9	8.94	0.281	2.69	NT	7.9E-03	NT	4 5
3	18	8			121.2	10.7	8.57	0.273	2.67	NT	3.6E-03	NT	00

Note: NT = not tested.

ché à per Marcas PEC. PLAN 1-4-94 MARCAS PEC. PLAN

FOURTH EDITION

Rd FOUNDATION ANALYSIS AND DESIGN

UE triaxial tests and $s_{u, D}$ is from the direct simple shear test. According to Aas et al. (1986) (who also cite others) this may be the best value and is applicable for embankments, excavations, and shallow foundations. This strength parameter is also the most costly to obtain.

25/59

While the above comments may be used as a guide, each project must be evaluated separately for the strength recommendation. There are simply too many project dependent considerations to make a blanket recommendation to use either this or that particular strength value in any general use publication such as this.

2-11.9 Shear Strength Correlations and the s_u/p'_o Ratio

Shear strength correlations or parameters are widely used for both preliminary and final design studies. For example, shear tests on cohesionless soils are seldom made to obtain ϕ . Instead tabulated values as in Table 2-6 or values from in situ testing as in Table 3-4 are commonly used.

The drained angle of internal friction of cohesive soils can be estimated from

TABLE 2-6 Representative values for angle of internal friction ϕ

	Type of test*						
Soil	Unconsolidated- undrained U	Consolidated- undrained CU	Consolidated- drained CD				
Gravel							
Medium size	40-55°		10.000				
Sandy	35-50°		40-55				
Sand			35-50°				
Loose dry	28-340						
Loose saturated	28-34°						
Dense dry	35-46°						
Dense saturated	1-2º less than		43-50°				
	dense dev		43-50°				
ilt or silty sand	Genae Miy						
Loose	20. 220						
Dense	25-200		27-30°				
lav	0° if anti-	Sec. 1	30-35°				
	o is saturated	3-20°	20-42°				

* See a laboratory manual on soil testing for a complete description of these tests, e.g., Bowles (1986b).

Notes

1. Use larger values as y increases

2. Use larger values for more angular particles

3. Use larger values for well-graded sand and gravel mixtures (EGW, SW)

4. Average values for

Gravels: 35-38° Sands: 32-34°

76 FOUNDATION ANALYSIS AND DESIGN

Dr.

Relationships between angle of internal friction ϕ and unit weight y or relative density D_r .

FIGUI

26/39

ų,

ž

1

1-4-94

Prindle, Weber & Schmidt - * Duxbury Press - * PWS Engineering -Statler Office Building + 20 Park Plaza + Boston Massachusetts 02116

Copyright © 1985 by PWS Publishers.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means-electronic, mechanical, photocopying, recording, or otherwise -- without the prior written permission of PWS Publishers.

PWS is a division of Wadsworth, Inc.

To Janice and Val

Library of Congress Cataloging in Publication Data

Das. Braja M., 1941-Principles of Geotechnical Engineering.

Includes bibliographies and index. 1. Soil mechanics. I. Title TA710.D264 1985 624.1'5136 84-14237 ISBN 0-534-03765-8

ISBN 0-534-03765-8

Printed in the United States of America

85 86 87 88 89 - 10 9 8 7 6 5 4 3 2 1

Sponsoring Editor. Ray Kingman Editorial Assistant: Jane Parker Production: Stacey C. Sawyer, San Francisco Manuscript Editor: Jane Stanley Interior Design: Albert Burkhardt Cover Design: Albert Burkhardt Interior Illustration: Carl Brown Typesetting: Jonathan Peck Typographers, Ltd. Printing and Binding: Maple-Vall Book Manufacturing Group

< N

Pr.

O.n

BCR

per 1-4-94

However, the preceding equation could also have been easily derived using Mohr's circle and simple geometry.

Shear Failure Law in Saturated Soil

In saturated soil, the total normal stress at a point is the sum of the effective stress and the pore water pressure, or,

 $\sigma = \sigma' + u$

The effective stress, σ' , is carried by the soil solids. So, to apply to soil mechanics, Eq. (8.2) needs to be rewritten as

 $\tau_f = c + (\sigma - u) \tan \phi = c + \sigma' \tan \phi \tag{8.8}$

The value of c for sand and inorganic silt is zero. For normally consolidated clays, c can be approximated at zero. Overconsolidated clays have values of c that are greater than zero. The angle of friction, ϕ , is sometimes referred to as the *drained angle of friction*. Typical values of ϕ for some granular soils are given in Table 8.1.

8.2

Determination of Shear Strength Parameters for Soils in the Laboratory

The shear strength parameters of a soil can be determined in the laboratory primarily by two types of tests: direct shear test and triaxial test. The procedures for conducting each of these tests are explained in detail in the following sections.

Direct Shear Test

This is the oldest and simplest form of shear test arrangement. A diagram of the direct shear test apparatus is shown in Figure 8.4. The test equipment

Table 8.1 Typical Value Drained Angle of Frictio Sands and Silts	ies of on for
Soil type	$\phi(\deg$
Sand Rounded grains	
Loose	27-30
Medium	30-35
Dense	35-38
Sand Angular grains	
Loose	30-35
Medium	35 - 40
Dense	40-45
Gravel with some sand	34-48
Silts	26-35

Figure 8.4 Diagram of direct shear test arrangement

consists of a metal shear box in which the soil sample is plac may be square or circular in plan. The size of the sampl about 3 or 4 in.² (1935.48 or 2580.64 mm²) across and al high. The box is split horizontally into two halves. Normal is applied from the top of the shear box by dead weights. the samples obtained by the application of dead weight c lb/in.² (1034.2 kN/m²). Shear force is applied to the side box to cause failure in the soil sample.

Depending on the equipment, the shear test ca controlled or strain-controlled.

In stress-controlled tests, the shear force is lied equal increments until the sample fails. The failure takes t of split of the shear box. After the application of each it shear displacement of the top half of the box is measured gauge. The change in the height of the sample (thus the v sample) during the test can be obtained from the reading measures the vertical movement of the upper load og pla

In strain-controlled tests, a constant rate of shear disto the top half of the box by a motor acting through gests shear displacement is observed by a horizontal dial gauge force of the soil corresponding to any shear displacement (horizontal proving ring. The volume change of the same obtained in a manner similar to the stress-controlled test photograph of strain-controlled direct shear test equipme

The advantage of the strain-controlled tests is that, sand, peak shear resistance (that is, at failure) as well as h (that is, at a point after failure called *ultimate strength*) = 50 kN/m²

 $\sigma_3 + (\Delta \sigma_d)_f = 50 + 384.37$ 37 kN/m²

s are overconsolidated. Using the relationship given by Eq. (8.7)

$$\tan^2\left(45 + \frac{\phi_1}{2}\right) + 2c\,\tan\left(45 + \frac{\phi_1}{2}\right)$$

$$(00 \tan^2 \left(45 + \frac{\phi_1}{2} \right) + 2c \tan \left(45 + \frac{\phi_1}{2} \right)$$
 (8.14a)

(8.14b)

 $50 \ i \qquad \left(45 + \frac{\phi_1}{2}\right) + 2c \ \tan\left(45 + \frac{\phi_1}{2}\right)$

S.14b) from Eq. (8.14a)

$$= 50 \tan^2 \left(45 + \frac{\phi_1}{2} \right)$$
$$= \tan^{-1} \left[\sqrt{\frac{76.23}{50}} \right] = 51^{\circ}$$

 $\cdot 12^{\circ}$ in Eq. (8.14a) 100 tan²[45 + (12/2)] + 2c tan[45 + (12/2)]

152.5 + 2.47c

kN/m*

of Friction for Normally Consolidated Clay

ed angle of friction, ϕ , generally decreases with the plasticity his is shown in Figure 8.18 for a number of clays as reported by Although there is a considerable scattering, the general pattern ue.

Undrained Test

lidated-undrained test is the most common type of triaxial test. he saturated soil sample is first consolidated by an all-around pressure, σ_3 , resulting in a ainage. After the pore water presby the application of confining pressure is completely dissipated

Figure 8.18 Variation of sin ϕ with plasticity index for a number of soils (after Kenney, 1959)

(that is, $u_c = B\sigma_3 = 0$), the deviator stress, $\Delta\sigma_d$, on the sample is increased to cause shear failure. During this phase of the test, the drainage line from the sample is kept closed. Since drainage is not permitted, the pore water pressure, Δu_d , will increase. During the test, simultaneous measurements of $\Delta\sigma_d$ and Δu_d are made. The increase of pore water pressure, Δu_d , can be expressed in a nondimensional form as

$$\Lambda = \frac{\Delta u_d}{\Delta \sigma_d} \tag{8.15}$$

where A = Skempton's pore pressure parameter (Skempton, 1954)

The general patterns of variation of $\Delta \sigma_d$ and Δu_d with axial strain for sand and clay soils are shown in Figure 8.19d, e, f, and g. In loose sand and normally consolidated elay, the pore water pressure increases with strain. In dense sand and overconsolidated elay, the pore water pressure increases with strain up to a certain limit, beyond which it decreases and becomes negative (with respect to the atmospheric pressure). This is due to a tendency of the soil to dilate.

Unlike the consolidated-drained test, the total and effective principal stresses are not the same in the consolidated-undrained test. Since the pore water pressure at failure is measured in this test, the principal stresses may be analyzed as follows:

Major principal stress at failure (total):

$$\sigma_3 + (\Delta \sigma_d)_f = \sigma_1$$

Major principal stress at failure (effective).

$$-(\Delta u_d)_f = \sigma_1'$$

61

1.0

2

Minor principal stress at failure (total):

O1

	PROCTOR	COMPACTION							
5013	Maximum	Optimum		Permeability	CUMPRES	SIBILITY	HS	EARING STR	RENGTH
Group	Density	Content	Ratio	K, ber Year	2880 pst	7200056	°3	Csat	Tan 6
GW	> 119	< 13.3	(*)	27,000-	~ 1 h	W 50 P.s. I.	p.s.l.	p.s.l.	
GP	> 110 -	× 12.4	(*)	13,000			(*)	(*)	> 0.79
3	> 116		2 3	34,000	< 0.8	(#)	(*)	(*)	> 0.74
c.		C*** *	(*)	. 6.0 <	< 1.2	< 3.0	(*)	(*)	> 0.67
	-	1.41 >	(*)	> 0.3	< 1.2	< 2.4	(*)	(*)	> 0 60
NC 1	11975	13.322.5	0.3744	(*)	1.41+	(*)	5.720.6	(*)	n 70 ⁺ n
0-340	11672	12.441.0	0.50t0.03	>15.0	0.840.3	(*)	3.320.0	. 3	
E'S	1141	14.5+0.4	0.4840.02	7.544.8	1.240.1	3.040 4	2 040 0	· •••	·0-+/ •0
+ SC	11941	12.840.5	0.4140.02	0.8+0.6	1 40 3		7:01.1	2.9-1.0	0-67-0.
sc	11541	14 240 21	0 1,0 to 1 0			2.9-1.0	7.3-3.1	2.110.8	0.66±0.0
TAN (6/ c		4	10.0.04.0	0,3-0.2	1.220.2	2.4-0.5	10.9-2.2	1.6*0.9	0.60+0.0
- 20 m	1.501	19.2=0.7	0.6340.02	0.5910.23	1.5+0.2	2.670.3	9.721.5	1.34	1 760.
-17	109*2	16.8+0.7	0.54+0.03	031320.07.	1.0+0.2	2.220.0	9.2+2.4	1 214	1 (1 () () () () () () () () (
1	17801	17.3±0.3	0.56±0.01	0.08±0.03	1.4+0.2	2 6th h	t) e		0.0-20.0
DL	(*)	(*)	(*)	(*)	(*)	141	C*1	5.04.1	0.5410.0
H.	82#4	36.313.2	1540.12	0 1640 24: -		1.1	(x)	(*)	(*)
	qirt,	3c c+ 2		01'0-01'n	Z. 0-1.2	3.810.8	0.544.3	2.941.3.	0.47±0.09
	746	2.1-2.62	10.0.08.0	0.05-0.05	2.6+1.3	3.9-1.5	4.9-4.9	1.6-0.86	0.35-0 00
E	(*)	(*)	(*)	(*)	(*)	(*)	(*)	(*)	(*)

: ALEt Per

Soil Propertier - Independent of the theory used trompute earth pressure on retaining structures, the results can be no more accurate to in the soil properties used in the calculations. Because of the wide variations of subsurface conditions at various sites, the soil constants should be determined on the basis of an exploratory boring program and laboratory tests of representative samples. Only then can a safe and economical design be assured. However, for the purpose of preliminary design it is often necessary to assume appropriate soil properties. The following tables and graphs are included for this purpose merely as a guide.

Table 3 shows an approximate relationship between the relative density, standard penetration resistance, angle of internal friction, and unit weight of granular soils.

Compactness	Very L	oose Loos	te Mediu	m Dense	Ver	y Dense
Relative density D,	0	15%	35%	65%	85%	100%
Standard penetra- tion resistance, N=no, of blows	0	4	10	30	50	
perfoot φ (degrees) *		28	30	36	41	
Unit weight, pcf moist submerged	<100 < 60	95- 55-	125 110- 65 60-	130 110-14 70 65-85	40	>130 > 75

* highly dependent on gradation

Table 3 — Relationship between relative density, standard penetration resistance, angle of internal friction and unit weight for granular soils (after Teng⁴⁵).

Table 4 shows an approximate relationship between the unconfined compressive strength, standard penetration resistance and the unit weight of cohesive soils.

Very So	ft Soft	Medium	Stiff	Very Stiff	Hard
0	0.25	0.50 1	.00 2.	00 4.0	00
0	2	4	8 1	6 3	2
10	0-120	110-130	120	140	130+
Exudes from between fingers when squeezed	Molded by light finger pressure	Molded by strong finger pressure	Indented by thumb	Indented by thumb nail	Difficult to indent by thumb nail
	Very So 0 0 10 Exudes from between fingers when squeezed	Very Soft Soft 0 0.25 0 2 100-120 Exudes Molded from by light between finger fingers pressure when squeezed	Very Soft Soft Medium 0 0.25 0.50 1 0 2 4 100-120 110-130 Exudes Molded Molded from by light by strong between finger finger fingers pressure pressure when squeezed	Very Soft Soft Medium Stiff 0 0.25 0.50 1.00 2. 0 2 4 8 1 100-120 110-130 120 Exudes Molded Molded Indented from by light by strong by thumb between finger finger fingers pressure pressure when squeezed	Very Soft Soft Medium Stiff Very Stiff 0 0.25 0.50 1.00 2.00 4.0 0 2 4 8 16 .3 100-120 110-130 120-140 Exudes Molded Molded Indented Indented from by light by strong by thumb between finger nail fingers pressure pressure when squeezed

Table 4 — Relationship between unconfined compressive strength, standard penetration resistance and unit weight for cohesive soils (after Teng⁴⁵).

Town Share Buck 1

Canonie Environmental By JWS Date<u>11/12/93</u> Subject<u>Stability Analysis-Reclaimed</u> Sheet<u>32</u> of <u>59</u> Chkd By <u>Qce</u> Date<u>1-444</u> Tailings Impoundment ATLAS Proj No <u>88-067-11</u>

ATTACHMENT D

PCSTABL5 INPUT DATA FILES
- SCENARIO 1 DATA FILE -

et aa

PROFIL 10:3 EMBANKMENT SLOPE ATLAS MINERALS 9 3 0. 60. 560. 69. 1 560. 69. 863. 160. 2 863. 160. 1000. 157.5 2 560. 69. 584. 69. 1 584. 69. 874. 155.7 4 874. 155.7 882. 158.2 3 882. 158.2 1000. 156.5 3 874. 155.7 1000. 154. 4 584. 69. 1000. 69. 1 SOIL 4 125. 125. 50. 38. 0. 0. 0 115. 133. 0. 30. 0. 0. 0 122. 135. 0. 30. 0. 0. 0 100. 123. 0. 37. 0. 0. 0 LOADS 7 560. 610. 61.7 0. 610. 660. 61.7 0. 610. 660. 61.7 0. 710. 760. 61.7 0. 710. 760. 61.7 0. 803. 1000. 46.3 0. EQUAKE .05. .05 0. CIRCL2 50 50 525. 625. 700. 950. 0. 10. 0. 0. 33/59

```
· SCENARIO 2 DATA FILE ·
```

F.es.

Pet alx

PROFIL 10:3 EMBANKMENT SLOPE WITH WATER - ATLAS MINERALS 93 9 3 0. 60. 560. 69. 1 560. 69. 863. 160. 2 863. 160. 1000. 157.5 2 560. 69. 584. 69. 1 584. 69. 874. 155.7 4 874. 155.7 882. 158.2 3 882. 158.2 1000. 156.5 3 874. 155.7 1000. 154. 4 584. 69. 1000. 69. 1 5011 SOIL
 125.
 125.
 50.
 38.
 0.
 0.
 1

 115.
 133.
 0.
 30.
 0.
 0.
 1

 122.
 135.
 0.
 30.
 0.
 0.
 1

 100.
 123.
 0.
 37.
 0.
 0.
 1
 WATER 1 0. 4 795. 0. 850. 85. 950. 102.5 1000. 108. LOADS 560. 610. 61.7 0. 260, 610, 61, 70, 610, 660, 61, 70, 660, 710, 61, 70, 710, 760, 61, 70, 760, 810, 61, 70, 810, 863, 61, 70, 863, 1000, 46, 30, 6004KE EQUAKE .05 .05 0. CIRCL2 50 50 525. 650. 700. 950. 0. 10. 0. 0.

37/59

```
- SCENARIO → INPUT DATA FILE -

PROFIL

10:3 EMBANKMENT SLOPE ATLAS MINERALS - NO WATER 0.21g EQUAKE

9 3

0. 60. 560. 69. 1

560. 69. 863. 160. 2

863. 160. 1000. 157.5 2

560. 69. 584. 69. 1

584. 69. 874. 155.7 4

874. 155.7 882. 158.2 3

882. 158.2 1000. 156.5 3

874. 155.7 1000. 156.4 4

584. 69. 1000. 69. 1

SOIL

4

125. 125. 50. 38. 0. 0. 0

115. 133. 0. 30. 0. 0. 0

122. 135. 0. 30. 0. 0. 0

100. 123. 0. 37. 0. 0. 0

100. 123. 0. 37. 0. 0. 0

LOADS

7

560. 610. 61.7 0.

660. 710. 61.7 0.

660. 710. 61.7 0.

810. 863. 61.7 0.

863. 1000. 46.3 0.

EQUAKE

.21 .05 0.

CIRCL2

50 50

525. 625. 700. 950.

0. 10. 0. 0.
```

W.

Per in

35.59

```
----- SCENARIO # INPUT DATA FILE ------
                                    4
 PROFIL
  10:3 EMBANKMENT SLOPE WITH WATER - ATLAS MINERALS 0.21g EQUAKE
 93
9 3

0. 60. 560. 69. 1

560. 69. 863. 160. 2

863. 160. 1000. 157.5 2

560. 69. 584. 69. 1

584. 69. 874. 155.7 4

874. 155.7 882. 158.2 3

882. 158.2 1000. 156.5 3

874. 155.7 1000. 154. 4

584. 69. 1000. 69. 1

SOIL
  SOIL
<sup>1</sup>125, 125, 50, 38, 0, 0, 1
115, 133, 0, 30, 0, 0, 1
122, 135, 0, 30, 0, 0, 1
100, 123, 0, 37, 0, 0, 1
WATER
 1 0.
  4
795. 0.
850. 85.
 950. 102.5
1000. 108.
 LOADS
 560. 610. 61.7 0.
260, 610, 61, 7 0,
610, 660, 61, 7 0,
660, 710, 61, 7 0,
710, 760, 61, 7 0,
760, 810, 61, 7 0,
810, 863, 61, 7 0,
863, 1000, 46, 3 0,
Fouxy
EQUAKE
.21 .05 0.
CIRCL2
50 50
525. 650. 700. 950.
0. 10. 0. 0.
```

36/59

Re at

```
PROFIL

10:3 EMBANKMENT SLOPE ATLAS MINERALS TRIAL FAILURE SURFACE

9 3

0. 60. 560. 69. 1

560. 69. 863. 160. 2

863. 160. 1000. 157.5 2

560. 69. 584. 69. 1

584. 69. 874. 155.7 4

874. 155.7 882. 158.2 3

882. 158.1 1000. 154. 4

584. 69. 1000. 69. 1

SOLL

4

125. 125. 50. 38. 0. 0. 1

115. 133. 0. 30. 0. 0. 1

122. 135. 0. 30. 0. 0. 1

123. 0. 37. 0. 0. 1

100. 123. 0. 37. 0. 0. 1

100. 123. 0. 37. 0. 0. 1

100. 123. 0. 46.3 0.

WATER

1 0.

4

7

560. 610. 61.7 0.

850. 85.

950. 102.5

1000. 46.3 0.

WATER

1 0.

4

5

5

560. 69.

615. 78.

735. 114.

655. 150.

863. 160.
```

3 51

--- SCENARIO 5 INPUT DATA FILE -----

1 be 1 be

EXECUT

6

5-94 -4-94

- SCENARIO 2 DATA FILE -

PROFIL 10:3 EMBANKMENT SLOPE ATLAS MINERALS MAX 2QUAKE 9 3 0. 60. 560. 69. 1 560. 69. 863. 160. 2 863. 160. 1000. 157.5 2 560. 69. 584. 69. 1 584. 69. 874. 155.7 4 874. 155.7 882. 158.2 3 882. 158.2 1000. 156.5 3 874. 155.7 1000. 154. 4 584. 69. 1000. 69. 1 SOLL 93 SOIL ¹125. 125. 50. 38. 0. 0. 0 115. 133. 0. 30. 0. 0. 0 122. 135. 0. 30. 0. 0. 0 100. 123. 0. 37. 0. 0. 0 LOADS 560. 610. 61.7 0. 610. 660. 61.7 0. 660. 710. 61.7 0. 710. 760. 61.7 0. 760. 810. 61.7 0. 810. 863. 61.7 0. 863. 1000. 46.3 0. EQUAKE .25 .05 0. CIRCL2 50 50 525. 625. 700. 950. 0. 10. 0. 0.

NO WATER

38/39

7 - SCENARIO Ø DATA FILE -

PROFIL

SOIL

1 0. 4 795.0.

LOADS

50 50

525. 650. 700. 950. 0. 10. 0. 0.

stread

MAX. ENAKE WATER

10:3 EMBANKMENT SLOPE WITH WATER - ATLAS MINERALS

10:3 EMBANKMENT SLOPE WIT 9 3 0. 60. 560. 69. 1 560. 69. 863. 160. 2 863. 160. 1000. 157.5 2 560. 69. 584. 69. 1 584. 69. 874. 155.7 4 874. 155.7 882. 158.2 3 882. 158.2 1000. 156.5 3 874. 155.7 1000. 154. 4 584. 69. 1000. 69. 1 501L 4 125. 125. 50. 38. 0. 0. 1 115. 133. 0. 30. 0. 0. 1 122. 135. 0. 30. 0. 0. 1 100. 123. 0. 37. 0. 0. 1 WATER 850. 85. 950. 102.5 1000. 108.
 7

 560.
 610.
 61.7
 0.

 610.
 660.
 61.7
 0.

 660.
 710.
 61.7
 0.

 710.
 760.
 61.7
 0.

 760.
 610.
 61.7
 0.

 760.
 610.
 61.7
 0.

 760.
 810.
 61.7
 0.
 810. 863. 61.7 0. 863. 1000. 46.3 0. EQUAKE .25 .05 0. CIRCL2

39/69

 Canonie Environmental

 By JWS_Date11/12/93_Subjec_Stability Analysis-Reclaimed
 Sheet 40 of 59

 Chkd By Pe-Date 1-4 44
 Tailings Impoundment ATLAS
 Proj No 88-067-11

ATTACHMENT E

PCSTABL5 OUTPUT DATA FILES

** PCSTABL5M **

by Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: Time of Run: Run By: Input Data Filename: Output Filename:

11-10-93 3:00 JWS H:atl1.IN H:jnk

PROBLEM DESCRIPTION 10:3 EMBANKMENT SLOPE ATLAS MINERALS

Sumario #1

41/59

BOUNDARY COORDINATES

3 Top Boundaries 9 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	60.00	560.00	69.00	1
2	560.00	69.00	863.00	160.00	2
3	863.00	160.00	1000.00	157.50	2
4	560.00	69.00	584.00	69.00	1
5	584.00	69.00	874,00	155.70	4
6	874.00	155.70	882.00	158,20	3
7	882.00	158.20	1000.00	156.50	3
8	874,00	155,70	1000.00	154,00	4
9	584.00	69.00	1000 00	69 00	1

ISOTROPIC SOIL PARAMETERS

4 Type(s) of Soil

Soil Type No.	Total Unit Wt. (pcf)	Saturated Unit Wt. (pcf)	Cohesion Intercept (psf)	Friction Angle (deg)	Pore Pressure Param.	Pressure Constant (psf)	Piez. Surface No.
1	125.0	125.0	50.0	38.0	.00	.0	0
2	115.0	133.0	.0	30.0	.00	.0	0
3	122.0	135.0	.0	30.0	.00	.0	0
4	100.0	123.0	.0	37.0	.00	.0	0

Je to a

1

BOUNDARY LOAD(S)

7 Load(s) Specified

Load No.	X-Left (ft)	X-Right (ft)	Intensity (lb/sqft)	Deflection (deg)
1	560.00	610.00	61.7	.0
2	610,00	660.00	61.7	.0
4	710.00	760.00	61.7	.0
5	760.00	810.00	61.7	.0
6	810.00	863.00	61.7	.0
7	863.00	1000.00	46.3	.0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Horizontal Earthquake Loading Coefficient Of .050 Has Been Assigned

A Vertical Earthquake Loading Coefficient Of .050 Has Been Assigned

Cavitation Pressure = .0 psf

1

1

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

2500 Trial Surfaces Have Been Generated.

50 Surfaces Initiate From Each Of 50 Points Equally Spaced Along The Ground Surface Between X = 525.00 ft. and X = 625.00 ft.

Each Surface Terminates Between X = 700.00 ft. and X = 950.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

10.00 ft. Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

42/59

Failure Surface Specified By 25 Coordinate Points

Point	X-Surf	Y-Surf
NO.	(11)	(11)
1	569.90	71.97
2	579.73	73.78
3	589.55	75.68
4	599.35	77.67
5	609.13	79.76
6	618.89	81.95
7	628.62	84.23
8	638.34	86.61
9	648.03	89.09
10	657.69	91.65
11	667.33	94.32
12	676.94	97.08
13	686.53	99.93
14	696.08	102.87
15	705.61	105.91 -
16	715.11	109.04
17	724.57	112.27
18	734.01	115.59
19	743.41	119.00
20	752.77	122.50 -
21	762.10	126.09
22	771.40	129.78
23	780.66	133.56
24	789.88	137.42
25	794.60	139.46

Circle Center At X = 391.0; Y = 1075.8 and Radius, 1019.7

*** 1.649 ***

Individual data on the 28 slices

			Linkan	Max and	71-	42.4	The sector	an em le m	
			water	Water	Tie	11e	Earth	quake	
11 A 4	612.445	All a Carlo a	Force	FORCE	Force	rorce	FOI	rce sui	charge
stice	Width	Weight	Top	Bot	Norm	Tan	Hor	Ver	Load
NO.	Ft(m)	Lbs(kg)	Lbs(kg)	Lbs(kg)	Lbs(kg)	Lbs(kg)	LDS(kg)	Lbs(kg)	Lbs(kg)
1	9.8	650.9	.0	.0	.0	.0	32.5	32.5	606.9
2	9.8	1891.7	.0	.0	.0	.0	94.6	94.6	605.8
3	9.8	3012.7	.0	.0	.0	.0	150.6	150.6	604.6
4	9.8	4014.3	.0	.0	.0	.0	200.7	200.7	603.4
5	.9	402.5	.0	.0	.0	.0	20.1	20.1	53.7
6	8.9	4494.2	.0	.0	.0	.0	224.7	224.7	548.4
7	9.7	5660.5	.0	.0	.0	.0	283.0	283.0	600.7
8	9.7	6305.9	.0	.0	.0	.0	315.3	315.3	599.3
9	9.7	6833.6	.0	.0	.0	.0	341.7	341.7	597.8
10	9.7	7244.3	.0	.0	.0	.0	362.2	362.2	596.3
11	2.3	1782.6	.0	.0	.0	.0	89.1	89.1	142.5
12	7.3	5755.9	.0	.0	.0	.0	287.8	287.8	452.2
13	9.6	7717.2	.0	.0	.0	.0	385.9	385.9	593.1
14	56	7781.2	.0	.0	.0	.0	389.1	389.1	591.4
15	9.6	7731.3	.0	.0	.0	.0	386.6	386.6	589.6
16	9.5	7568.7	.0	.0	.0	.0	378.4	378.4	587.8
17	4.4	3410.0	.0	.0	.0	.0	170.5	170.5	270.9
18	5.1	3884.5	.0	.0	.0	.0	194.2	194.2	315.1
19	9.5	6909.7	.0	.0	.0	.0	345.5	345.5	584.0
20	9.4	6415.7	.0	.0	.0	.0	320.8	320.8	582.0
21	9.4	5813.7	.0	.0	.0	.0	290.7	290.7	580.0
22	9.4	5105.1	.0	.0	.0	.0	255.3	255.3	577.9
23	7.2	3397.8	.0	.0	.0	.0	169.9	169.9	445.9
24	2.1	893.7	.0	.0	.0	.0	46.7	44.7	129.9
25	9.3	3374 3	0	0	0	0	168 7	168.7	573 6
26	0.3	2355.1	.0	.0	0	.0	117.8	117.8	571 3
27	0.2	1235 7	0	0	0	0	61.8	61.9	560 0
28	4.7	167 3	.0	0	.0	0	84	8.4	201 3
2.47	4.1	101+2	* 10	1.0			0.4	0.4	2.211.0

43/59

** PCSTABL5M **

by Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: Time of Run: Run By: Input Data Filename: Output Filename: 11-10-93 3:00 JWS H:atlw.1N H:jnk

PROBLEM DESCRIPTION

10:3 EMBANKMENT SLOPE WITH WATER - ATLAS MINERALS

Sumario #2

BOUNDARY COORDINATES

3 Top Boundaries 9 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	60.00	560.00	69.00	1
2	560.00	69.00	863.00	160.00	2
3	863.00	160.00	1000.00	157.50	2
4	560.00	69.00	584.00	69.00	1
5	584.00	69.00	874.00	155.70	4
6	874.00	155.70	882.00	158.20	3
7	882.00	158.20	1000.00	156.50	3
8	874.00	155.70	1000.00	154.00	4
9	584.00	69.00	1000.00	69.00	1

ISOTROPIC SOIL PARAMETERS

4 Type(s) of Soil

Soil Type No.	Total Unit Wt. (pcf)	Saturated Unit Wt. (pcf)	Cohesion Intercept (psf)	Friction Angle (deg)	Pore Pressure Param.	Pressure Constant (psf)	Piez. Surface No.
1	125.0	125.0	50.0	38.0	.00	.0	1
2	115.0	133.0	.0	30.0	.00	.0	1
3	122.0	135.0	.0	30.0	.00	.0	1
4	100.0	123.0	.0	37.0	.00	.0	1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 4 Coordinate Points

Point X-Water Y-Water No. (ft) (ft)

You at

1

1

1	795.00	.00
2	850.00	85.00
3	950.00	102.50
4	1000.00	108.00

BOUNDARY LOAD(S)

1

1

1

7 Load(s) Specified

No.	X-Left (ft)	X-Right (ft)	Intensity (lb/sqft)	Deflection (deg)
	540.00	610.00	41.7	0
2	610.00	660.00	61.7	.0
3	660.00	710.00	61.7	.0
4	710.00	760,00	61.7	.0
5	760.00	810.00	61.7	.0
6	810.00	863.00	61.7	.0
7	863.00	1000.00	46.3	. 0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Horizontal Earthquake Loading Coefficient Of .050 Has Been Assigned

A Vertical Earthquake Loading Coefficient Of .050 Has Been Assigned

Cavitation Pressure = .0 psf

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

2500 Trial Surfaces Have Been Generated.

50 Surfaces Initiate From Each Of 50 Points Equally Spaced Along The Ground Surface Between X = 525.00 ft. and X = 650.00 ft.

Each Surface Terminates Between X = 700.00 ft. and X = 950.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Υ = .00 ft.

10.00 ft. Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 24 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
NO. 1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 7 18 9 20 21	560.71 570.56 580.39 590.20 599.98 609.75 619.48 629.20 638.89 648.55 658.18 667.35 686.90 696.40 705.88 715.32 724.72 734.08 743.41 752.70	(+t) 69.21 70.96 72.80 74.76 76.82 78.98 81.25 83.63 86.10 88.69 91.37 94.16 97.06 100.05 103.15 106.35 109.66 113.06 116.57 120.17 123.88
23 24	761.95 771.15 777.20	127.68 131.59 134.23

Circle Center At X = 404.0; Y = 983.9 and Radius, 928.0

*** 1.650 ***

Individual data on the 27 slices

			Water	Water	Tie	Tie	Earth	quake	change
Slice	Width	Weight	Top	Bot	Norm	Tan	Hor	Ver	Load
No.	Ft(m)	Lbs(kg)	(bs(ka)						
1	9.8	688.1	.0	.0	.0	.0	34.4	34.4	607.6
2	9.8	1997.0	.0	.0	.0	.0	99.8	99.8	606.4
3	9.8	3174.3	.0	.0	.0	.0	158.7	158.7	605.1
4	9.8	4220.3	.0	.0	.0	.0	211.0	211.0	603.8
5	9.8	5135.2	.0	.0	.0	.0	256.8	256.8	602.4
6	.3	145.3	.0	.0	.0	.0	7.3	7.3	15.7
7	9.5	5774.3	.0	.0	.0	.0	288.7	288.7	585.2
8	9.7	6574.0	.0	.0	.0	.0	328.7	328.7	599.4
9	9.7	7099.0	.0	.0	.0	. C	354.9	354.9	597.7
10	9.7	7495.4	.0	.0	.0	.0	374.8	374.8	596.1
11	9.6	7764.1	.0	.0	.0	.0	388.2	388.2	594.3
12	1.8	1490.7	.0	.0	.0	.0	74.5	74.5	112.3
13	7.8	6415.3	.0	.0	.0	.0	320.8	320.8	480.2
14	9.6	7922.3	.0	.0	.0	.0	396.1	396.1	590.6
15	9.5	7813.9	.0	.0	.0	.0	390.7	390.7	588.7
16	9.5	7582.4	. 0	.0	.0	.0	379.1	379.1	586.6
17	9.5	7229.0	.0	.0	.0	.0	361.4	361.4	584.5
18	4.1	3013.4	.0	.0	.0	.0	150.7	150.7	254.4
19	5.3	3741.8	.0	.0	.0	.0	187.1	187.1	328.0
20	9.4	6162.5	.0	.0	.0	.0	308.1	308.1	580.1
21	9.4	5452.7	.0	.0	.0	.0	272.6	272.6	577.9
22	9.3	4627.4	.0	.0	.0	.0	231.4	231.4	575.5
23	9.3	3688.6	.0	.0	.0	.0	184.4	184.4	573.1
24	7.3	2173.8	.0	.0	.0	.0	108.7	108.7	450.5
25	1.9	464.4	.0	.0	.0	.0	23.2	23.2	120.1
26	9.2	1478.2	.0	.0	.0	.0	73.9	73.9	568.0
27	6.0	287.1	.0	.0	.0	.0	14.4	16.4	373.0

** PCSTABL5M **

by Purdue University

Scinario # 3

47/89

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: Time of Run: Run By: Run By: JWS Input Data Filename: h:atl3.in Output Filename: H:jnk

12-30-93 8:00

PROBLEM DESCRIPTION 10:3 EMBANKMENT SLOPE ATLAS MINERALS -NO WATER 0.21g EQUAKE

BOUNDARY COORDINATES

3 Top Boundaries 9 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	60.00	560.00	69.00	1
2	560.00	69.00	863.00	160.00	2
3	863.00	160.00	1000.00	157.50	2
4	560.00	69.00	584.00	69.00	1
5	584.00	69.00	874.00	155.70	4
6	874.00	155.70	882.00	158.20	3
7	882.00	158.20	1000.00	156,50	3
8	874.00	155.70	1000.00	154.00	4
9	584.00	69.00	1000.00	69.00	1

ISOTROPIC SOIL PARAMETERS

4 Type(s) of Soil

Soil Type No.	Total Unit Wt. (pcf)	Saturated Unit Wt. (pcf)	Cohesion Intercept (psf)	Friction Angle (deg)	Pore Pressure Param.	Pressure Constant (psf)	Piez. Surface No.	
1	125.0	125.0	50.0	38.0	.00	.0	0	
2	115.0	133.0	.0	30.0	.00	.0	0	
3	122.0	135.0	.0	30.0	.00	.0	0	
4	100.0	123.0	.0	37.0	.00	.0	0	

BOUNDARY LOAD(S)

7 Load(s) Specified

No.	X-Left (ft)	X-Right (ft)	Intensity (lb/sqft)	Deflection (deg)
1	560.00	610,00	61.7	.0
2	610.00	660,00	61.7	.0
3	660.00	710.00	61.7	.0
4	710.00	760.00	61.7	.0
5	760.00	810.00	61.7	.0
6	810.00	863.00	61.7	.0
7	863.00	1000.00	46.3	.0

Party a

1

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Horizontal Earthquake Loading Coefficient Of $\swarrow 210$ Has Been Assigned

A Vertical Earthquake Loading Coefficient Of .050 Has Been Assigned

Cavitation Pressure = .0 psf

1

1

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

2500 Trial Surfaces Have Been Generated.

50 Surfaces Initiate From Each Of 50 Points Equally Spaced Along The Ground Surface Between X = 525.00 ft. and X = 625.00 ft.

Each Surface Terminates Between X = 700.00 ft. and X = 950.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

10.00 ft. Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 25 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
NO. 1234567890111234567890111234567890122223	569.90 579.73 589.55 599.35 609.13 618.89 628.62 638.34 648.03 657.69 667.33 676.94 686.53 696.08 705.61 715.11 724.57 734.01 743.41 752.77 762.10 771.40 780.66	(11) 71.97 73.78 75.68 77.67 79.76 81.95 84.23 86.61 89.09 91.65 94.32 97.08 99.93 102.87 105.91 109.04 112.27 115.59 119.00 122.50 126.09 129.78 133.56
25	794.60	137.42

Circle Center At X = 391.0 ; Y = 1075.8 and Radius, 1019.7

*** 1.099 ***

** PCSTABL5M **

by Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Scimariated

49/49

Run Date: Time of Run: Run By: Input Data Filename: Output Filename:

12-30~93 8:00 JWS h:atlW3.in H:jnk

PROBLEM DESCRIPTION

10:3 EMEANKMENT SLOPE WITH WATER - ATLAS MINERALS 0.21g EQUAKE

BOUNDARY COORDINATES

3 Top Boundaries 9 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	60.00	560.00	69.00	1
2	560.00	69.00	863.00	160.00	2
3	863.00	160.00	1000.00	157.50	2
4	560.00	69.00	584.00	69.00	1
5	584.00	69.00	874.00	155.70	4
6	874.00	155.70	882.00	158.20	3
7	882.00	158.20	1000.00	156.50	3
8	874.00	155.70	1000.00	154.00	4
9	584.00	69.00	1000.00	69.00	1

ISOTROPIC SOIL PARAMETERS

4 Type(s) of Soil

Soil Type No.	Total Unit Wt. (pcf)	Saturated Unit Wt. (pcf)	Cohesion Intercept (psf)	Friction Angle (deg)	Pore Pressure Param.	Pressure Constant (psf)	Piez. Surface No.
1	125.0	125.0	50.0	38.0	.00	.0	1
2	115.0	133.0	.0	30.0	.00	.0	1
3	122.0	135.0	.0	30.0	.00	.0	1
4	100.0	123.0	.0	37.0	.00	.0	1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 4 Coordinate Points

1

1

Point No.	X-Water (ft)	Y-Water (ft)
1	795.00	.00
2	850.00	85.00
3	950.00	102.50
4	1000.00	108.00

BOUNDARY LOAD(S)

7 Load(s) Specified

No.	X-Left (ft)	X-Right (ft)	Intensity (lb/sqft)	Deflection (deg)
1	560.00	610.00	61.7	.0
2	610.00	660,00	61.7	.0
3	660.00	710.00	61.7	.0
4	710.00	760.00	61.7	.0
5	760.00	810.00	61.7	.0
6	810.00	863.00	61.7	.0
7	863.00	1000.00	46.3	.0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Horizontal Earthquake Loading Coefficient Of .210 Has Been Assigned

A Vertical Earthquake Loading Coefficient Of .050 Was Been Assigned

Cavitation Pressure = .0 psf

1

i

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

2500 Trial Surfaces Have Been Generated.

50 Surfaces Initiate From Each Of 50 Points Equally Spaced Along The Ground Surface Between X = 525.00 ft. and X = 650.00 ft.

Each Surface Terminates Between $$X = 700.00 $\mbox{ ft.}$ and $X = 950.00 $\mbox{ ft.}$ }$

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends 1s Y = .00 ft.

10.00 ft. Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

10 59

Failure Surface Specified By 24 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	560.71	69.21
2	570.56	70.96
3	580.39	72.80
4	590.20	74.76
5	599.98	76.82
6	609.75	78.98
7	619.48	81.25
8	629.20	83.63
9	638.89	86.10
10	648.55	88.69
11	658.18	91.37
12	667.78	94.16
13	677.35	97.06
14	686.90	100.05
15	696.40	103.15
16	705.88	106.35
17	715.32	109.66
18	724.72	113.06
19	734.08	116.57
20	743.41	120.17
21	752.70	123.88
22	761.95	127.68
23	771.15	131.59
24	777 20	136 23

Circle Center At X = 404.0; Y = 983.9 and Radius, 928.0

*** 1.099 ***

51/\$9

** PCSTABL5M **

by Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: Time of Run: Run By: Input Data Filename: Output Filename:

Wet 1

1

1

12-30-93 8:00 JWS h:atlT1.in H:jnk

PROBLEM DESCRIPTION

10:3 EMBANKMENT SLOPE ATLAS MINERALS TRIAL FAILURE SURFACE

BOUNDARY COORDINATES

3 Top Boundaries 9 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	60.00	560.00	69.00	1
2	560.00	69.00	863.00	160.00	2
3	863.00	169.00	1000.00	157.50	2
4	560.00	69.00	584.00	69.00	1
5	584.00	69.00	874.00	155.70	4
6	874.00	155.70	882.00	158.20	3
7	882.00	158.20	1000.00	156.50	3
8	874.00	155.70	1000.00	154.00	4
9	584.00	69.00	1000.00	69.00	1

ISOTROPIC SOIL PARAMETERS

4 Type(s) of Soil

Soil Type No.	Total Unit Wt. (pcf)	Saturated Unit Wt. (pcf)	Cohesion Intercept (psf)	Friction Angle (deg)	Pore Pressure Param.	Pressure Constant (psf)	Piez. Surface No.
1	125.0	125.0	50.0	38.0	.00	.0	1
2	115.0	133.0	. 0	30.0	.00	.0	1
3	122.0	135.0	.0	30.0	.00	.0	1
4	100.0	123.0	.0	37.0	.00	.0	1

BOUNDARY LOAD(S)

7 Load(s) Specified

Deflection
(deg)
* 0
.0
.0
.0
.0
0
.0

Sumario # 5

NOTE - Intensity is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface. 53/49

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

1

1

1

Piezometric Surface No. 1 Specified by 4 Coordinate Points

Point	X-Water	Y-Water
10.		1117
1	795.00	.00
2	850.00	85.00
3	950.00	102.50
4	1000.00	108.00

A Horizontal Earthquake Loading Coefficient Of .210 Has Been Assigned

A Vertical Earthquake Loading Coefficient Of .050 Has Been Assigned

Cavitation Pressure = .0 psf

Trial Failure Surface Specified By 5 Coordinate Points

No.	X-Surf (ft)	Y-Surf (ft)
1	560.00	69.00
2	615.00	78.00
3	735.00	114.00
4	855.00	150.00
5	863.00	160.00

Factor Of Safety For The Preceding Specified Surface = 1.378

** PCSTABL5M **

by Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: Time of Run: Run By: Input Data Filename: Output Filename:

be the at

1

1

11-10-93 3:00 JWS H:atl2.1N H:jnk

PROBLEM DESCRIPTION 10:3 EMBANKMENT SLOPE ATLAS MINERALS

BOUNDARY COORDINATES

3 Top Boundaries 9 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	.00	60.00	560.00	69.00	1
2	560.00	69.00	863.00	160.00	2
3	863.00	160.00	1000.00	157.50	2
4	560.00	69.00	584.00	69.00	1
5	584.00	69.00	874.00	155.70	4
6	874.00	155.70	882.00	158.20	3
7	882.00	158.20	1000.00	156.50	3
8	874.00	155.70	1000.00	154.00	4
9	584.00	69.00	1000.00	69.00	1

ISOTROPIC SOIL PARAMETERS

4 Type(s) of Soil

Soil Type No.	Total Unit Wt. (pcf)	Saturated Unit Wt. (pcf)	Cohesion Intercept (psf)	Friction Angle (deg)	Pore Pressure Param.	Pressure Constant (psf)	Piez. Surface No.
1	125.0	125.0	50.0	38.0	.00	.0	0
2	115.0	133.0	.0	30.0	.00	.0	0
3	122.0	135.0	.0	30.0	.00	.0	0
4	100.0	123.0	.0	37.0	.00	.0	0

BOUNDARY LOAD(S)

7 Load(s) Specified

X-Left (ft)	X-Right (ft)	Intensity (lb/sqft)	Deflection (deg)		
560.00	610.00	61.7	.0		
660.00	710.00	61.7	.0		
710.00	760.00	61.7	.0		
810.00 863.00	863.00 1000.00	61.7 46.3	.0		
	X-Left (ft) 560.00 610.00 660.00 710.00 760.00 810.00 863.00	X-Left X-Right (ft) (ft) 560.00 610.00 610.00 660.00 660.00 710.00 710.00 760.00 760.00 810.00 810.00 863.00 863.00 1000.00	X-Left X-Right Intensity (ft) (ft) (lb/sqft) 560.00 610.00 61.7 610.00 660.00 61.7 660.00 710.00 61.7 710.00 760.00 61.7 760.00 810.00 61.7 810.00 863.00 61.7 863.00 1000.00 46.3		

MAX EQUAKE MAX NOWATER

54/49

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Horizontal Earthquake Loading Coefficient Of .250 Has Been Assigned

A Vertical Earthquake Loading Coefficient Of .050 Has Been Assigned

Cavitation Pressure = .0 psf

A Critical Failure Surface Searching Method. Using A Random Technique For Generating Circular Surfaces, as Been Specified.

2500 Trial Surfaces Have Been Generated.

50 Surfaces Initiate From Each Of 50 Points Equally Spaced Along The Ground Surface Between X = 525.00 ft. and X = 625.00 ft.

Each Surface Terminates Between $X \approx 700.00$ ft. and $X \approx 950.00$ ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is γ = .00 ft.

10.00 ft. Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Failure Surface Specified By 25 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	569.90	71.97
2	579.73	73.78
3	589.55	75.68
4	599.35	77.67
5	609.13	79.76
6	618.89	81.95
7	628,62	84.23
8	638.34	86.61
9	648.03	89.09
10	657.69	91.65
11	667.33	94.32
12	676.94	97.08
13	686.53	99.93
16	696.08	102.87
15	705.61	105.91
16	715.11	109.04
17	724.57	112.27
18	734.01	115.59
19	743.41	119.00
20	752.77	122.50
21	762.10	126.09
22	771.40	129.78
23	780.66	133.56
24	789.88	137.42
25	794.60	139.46

Circle Center At X = 391.0 ; Y = 1075.8 and Radius, 1019.7

56/59

*** 1.010 ***

Individual data on the 28 slices

			Water Force	Water Force	Tie Force	Tie Force	Earth	quake rce Su	rcharge
Slice	Width	Weight	Top	Bot	Norm	Tan	Hor	Ver	Load
No.	Ft(m)	Lbs(kg)	Lbs(kg)	Lbs(kg)	Lbs(kg)	Lbs(kg)	Lbs(kg)	Lbs(kg)	Lbs(kg)
1	9.8	650.9	. 0	.0	. 0	.0	162.7	32.5	606.9
2	9.8	1891.7	.0	.0	.0	.0	472.9	94.6	605.8
3	9.8	3012.7	.0	.0	.0	.0	753.2	150.6	604.6
4	9.8	4014.3	.0	.0	.0	.0	1003.6	200.7	603.4
5	.9	402.5	.0	.0	.0	.0	100.6	20.1	53.7
6	8.9	4494.2	.0	.0	.0	.0	1123.6	224.7	548.4
7	9.7	5660.5	.0	.0	.0	.0	1415.1	283.0	600.7
8	9.7	6305.9	.0	.0	.0	.0	1576.5	315.3	599.3
9	9.7	6833.6	.0	.0	.0	.0	1708.4	341.7	597.8
10	9.7	7244.3	.0	.0	.0	.0	1811.1	362.2	596.3
11	2.3	1782.6	.0	.0	.0	.0	445.6	89.1	142.5
12	7.3	5755.9	.0	.0	.0	.0	1439.0	287.8	452.2
13	9.6	7717.2	.0	.0	.0	.0	1929.3	385.9	593.1
14	9.6	7781.2	.0	.0	.0	.0	1945.3	389.1	591.4
15	9.6	7731.3	.0	.0	.0	.0	1932.8	386.0	589.6
16	9.5	7568.7	.0	.0	.0	.0	1892.2	378.4	587.8
17	4.4	3410.0	.0	.0	.0	.0	852.5	170.5	270.9
18	5.1	3884.5	.0	.0	.0	.0	971.1	194.2	315.1
19	9.5	6909.7	. 0	.0	.0	.0	1727.4	345.5	584.0
20	9.4	6415.7	.0	.0	.0	.0	1603.9	320.8	582.0
21	9.4	5813.7	.0	.0	.0	.0	1453.4	290.7	580.0
22	9.4	5105.1	.0	.0	.0	.0	1276.3	255.3	577.9
23	7.2	3397.8	. 0	.0	.0	.0	849.5	169.9	445.9
24	2.1	893.7	.0	.0	.0	.0	223.4	44.7	129.9
25	9.3	3374.3	.0	.0	. 0	.0	843.6	168.7	573.6
26	9.3	2355.1	. 0	. 0	. 0	.0	588.8	117.8	571.3
27	9.2	1235.7	.0	.0	.0	.0	308.9	61.8	569.0
28	4.7	167.3	.0	.0	.0	.0	41.8	8.4	291.3

** PCSTABL5M **

by Purdue University

--Slope Stability Analysis--Simplified Janbu, Simplified Bishop or Spencer's Method of Slices

Run Date: Time of Run: Run By: Input Data Filename: Output Filename:

1

1

1

W

11-10-93 3:00 JWS H:atlW2.IN H: jnk

PROBLEM DESCRIPTION

10:3 EMBANKMENT SLOPE WITH WATER - ATLAS MINERALS

1

BOUNDARY COORDINATES

3 Top Boundaries 9 Total Boundaries Soil Type Below Bnd Boundary X-Left Y-Left X-Right Y-Right No. (ft) (ft) (ft) (ft) .00 560.00 863.00 550.00 60.00 69.00 560.00 23 69.00 863.00 160.00 157.50 2 160.00 2 4 69.00 584.00 69.00 584.00 5 69.00 155.70 874.00 4 874.00 155.70 67 882.00 158.20 3 882.00 158.20 1000.00 156.50 3 8 874.00 155.70 1000.00 154.00 4 9 584.00 69.00 1000.00 69.00

ISOTROPIC SOIL PARAMETERS

4 Type(s) of Soil

Soil Type No.	Total Unit Wt. (pcf)	Saturated Unit Wt. (pcf)	Cohesion Intercept (psf)	Friction Angle (deg)	Pore Pressure Param.	Pressure Constant (psf)	Piez. Surface No.
1	125.0	125.0	50.0	38.0	.00	.0	1
2	115.0	133.0	.0	30.0	.00	.0	1
3	122.0	135.0	.0	30.0	.00	.0	1
4	100.0	123.0	.0	37.0	.00	.0	1

1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED

Unit Weight of Water = 62.40

Piezometric Surface No. 1 Specified by 4 Coordinate Points

Scinorio # 7 MAX EQUARE WATCH

57/59

Point	X-Water	Y-Water
NO.	(ft)	(ft)
1	795.00	.00
2	850.00	85.00
3	950.00	102.50
4	1000.00	108.00

BOUNDARY LOAD(S)

7 Load(s) Specified

No.	X-Left (ft)	X-Right (ft)	Intensity (lb/sqft)	Deflection (deg)
1	560.00	610 00	61 7	0
2	610.00	660.00	61.7	.0
3	660.00	710.00	61.7	.0
4	710.00	760.00	61.7	.0
5	760.00	810.00	61.7	.0
6	810.00	863.00	61.7	.0
7	863.00	1000.00	46.3	.0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

A Horizontal Earthquake Loading Coefficient Of .250 Has Been Assigned

A Vertical Earthquake Loading Coefficient Of .050 Has Been Assigned

Cavitation Pressure = .0 psf

1

A Critical Failure Surface Searching Method, Using A Random Technique for Generating Circular Surfaces, Has Been Specified.

2500 Trial Surfaces Have Been Generated.

50 Surfaces Initiate From Each Of 50 Points Equally Spaced Along The Ground Surface Between X = 525.00 ft. and X = 650.00 ft.

Each Surface Terminates Between X = 700.00 ft. and X = 950.00 ft.

Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = .00 ft.

10.00 ft. Line Segments Define Each Trial Failure Surface.

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

+8/59

Č.

Failure Surface Specified By 24 Coordinate Points

Point	X-Surf	Y-Surf
NO.	(ft)	(ft)
	540 71	40.21
2	570 54	70 04
7	570.30	70.90
2	500,39	74.74
6) E	590.20	74.70
2	299.90	70.02
0	610 / 9	78.98
0	019,48	81.25
8	629.20	83.65
4	638.89	86.10
10	648.55	88.69
11	658.18	91.37
12	667.78	94.16
13	677.35	97.06
14	686.90	100.05
15	696.40	103_15
16	705.88	106.35
17	715.32	109.66
18	724.72	113.05
19	734.08	116.57
20	743.41	120.17
21	752.70	123.88
22	761.95	127.68
23	771.15	131.59
24	777.20	134.23

Circle Center At X = 404.0; Y = 983.9 and Radius, 928.0

*** 1.009 ***

Individual data on the 27 slices

		Water	Water	Tie	Tie	Earth	quake	charge	
Width	Weight	Top	Bot	Norm	Tan	Hor	Var Var	Load	
Ft(m)	Lbs(kg)	Lbs(kg)	Lbs(kg)	Lbs(kg)	Lbs(kg)	Lbs(kg)	Lbs(ka)	Lbs(ka)	
9.8	688.1	.0	.0	.0	.0	172.0	34.4	607 6	
9.8	1997.0	.0	.0	.0	.0	499.2	99.8	606.4	
9.8	3174.3	.0	.0	.0	.0	793.6	158.7	605 1	
9.8	4220.3	.0	.0	.0	.0	1055.1	211.0	603.8	
9.8	5135.2	.0	.0	.0	.0	1283.8	256.8	602.4	
.3	145.3	.0	.0	.0	.0	36.3	7.3	15.7	
9.5	5774.3	.0	.0	.0	.0	1443.6	288.7	585.2	
9.7	6574.0	.0	.0	.0	.0	1643.5	328.7	599.4	
9.7	7099.0	.0	.0	.0	.0	1774.7	354.9	597.7	
9.7	7495.4	.0	.0	.0	.0	1873.8	374.8	596.1	
9.6	7764.1	.0	.0	.0	.0	1941.0	388.2	594.3	
1.8	1490.7	.0	.0	.0	.0	372.7	74.5	112.3	
7.8	6415.3	.0	.0	.0	.0	1603.8	320.8	480.2	
9.6	7922.3	.0	.0	.0	.0	1980.6	396.1	590.6	
9.5	7813.9	.0	.0	.0	.0	1953.5	390.7	588.7	
9.5	7582.4	.0	.0	.0	.0	1895.6	379.1	586.6	
9.5	7229.0	.0	.0	.0	.0	1807.2	361.4	584.5	
4.1	3013.4	.0	.0	.0	.0	753.3	150.7	254.4	
5.3	3741.8	.0	.0	.0	.0	935.5	187.1	328.0	
9.4	6162.5	.0	.0	.0	.0	1540.6	308.1	580.1	
9.4	5452.7	.0	.0	.0	.0	1363.2	272.6	577.9	
9.3	4627.4	.0	.0	.0	.0	1156.9	231.4	575.5	
9.3	3688.6	.0	.0	.0	.0	922.2	184.4	573.1	
7.3	2173.8	.0	.0	.0	.0	543.4	108.7	450.5	
1.9	464.4	.0	.0	.0	.0	116.1	23.2	120.1	
9.2	1478.2	.0	.0	.0	.0	369.5	73.9	568.0	
6.0	287.1	.0	.0	.0	.0	71.8	14.4	373.0	
	Width) 9.889.99.99.99.99.99.99.99.99.99.99.99.9	Width Weight Ft(m) Lbs(kg) 9.8 688.1 9.8 1997.0 9.8 3174.3 9.8 4220.3 9.8 5135.2 .3 145.3 9.7 6574.0 9.7 7699.0 9.7 7495.4 9.6 7764.1 1.8 1490.7 7.8 6415.3 9.6 7922.3 9.5 7782.4 9.5 7229.0 4.1 3013.4 5.3 3741.8 9.4 6162.5 9.4 5452.7 9.3 4627.4 9.3 3688.6 7.3 2173.8 1.9 464.4 9.2 1478.2 6.0 287.1	Water Force Width Weight Top Ft(m) Lbs(kg) Lbs(kg) 9.8 688.1 .0 9.8 1997.0 .0 9.8 1997.0 .0 9.8 3174.3 .0 9.8 5135.2 .0 .3 145.3 .0 9.5 5774.3 .0 9.7 6574.0 .0 9.7 7099.0 .0 9.7 7099.0 .0 9.7 7495.4 .0 9.6 7764.1 .0 9.6 7764.1 .0 9.6 7922.3 .0 9.5 7813.9 .0 9.5 7829.0 .0 9.5 7829.0 .0 9.5 7229.0 .0 4.1 3013.4 .0 9.4 6162.5 .0 9.4 5452.7 .0 9.3 36688.6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Water ForceWater ForceTie ForceTie ForceTie ForceEarth ForceWidth Ft(m)Lbs(kg)Lbs(kg)Lbs(kg)Lbs(kg)Lbs(kg)Lbs(kg)Lbs(kg)9.8688.1.0.0.0.0.0172.09.81997.0.0.0.0.0.0499.29.83174.3.0.0.0.0793.69.84220.3.0.0.0.01283.8.3145.3.0.0.0.01643.59.75774.3.0.0.0.01643.59.77099.0.0.0.0.01873.89.67764.1.0.0.0.01873.89.67764.1.0.0.0.01873.89.67922.3.0.0.0.01895.69.57582.4.0.0.0.01895.69.57582.4.0.0.0.01895.69.57229.0.0.0.0.01895.69.57582.4.0.0.0.01895.69.57582.4.0.0.0.01895.69.57582.4.0.0.0.01895.69.57582.4.0.0.0.01863.29.33688.6.0.0.0.01540.69.4 <td< td=""><td>Water ForceTie ForceTie ForceTie ForceEarthquake ForceWidth Ft(m)Lbs(kg)Lbs(kg)Lbs(kg)Lbs(kg)Lbs(kg)Lbs(kg)Lbs(kg)9.8688.1.0.0.0.0172.034.49.81997.0.0.0.0.0172.034.49.83174.3.0.0.0.01055.1211.09.84220.3.0.0.0.01055.1211.09.85135.2.0.0.0.01443.6288.79.76574.0.0.0.0.01443.6288.79.77099.0.0.0.0.01443.6288.79.77099.0.0.0.0.01643.5328.79.77495.4.0.0.0.01774.7354.99.77495.4.0.0.0.01873.8374.89.67764.1.0.0.0.01863.8320.89.67922.3.0.0.0.0180.6396.19.57582.4.0.0.0.01807.2361.44.13013.4.0.0.0.01863.2272.69.33688.6.0.0.0.0156.9231.49.46162.5.0.0.0.0156.9231.49.33688.6<!--</td--><td>Water ForceTie ForceTie ForceTie ForceEarthquake ForceWidth Ft(m)Weight Lbs(kg)Top Lbs(kg)Bot NormTan Tan HorWor Ver Ver Load9.8688.1 0.0.0.0172.034.4607.69.81997.0 0.0.0.0.0172.034.4607.69.81997.0 0.0.0.0.0172.034.4607.69.83174.3 0.0.0.0.0193.6158.7605.19.84220.3 135.2.0.0.0.01283.8256.8602.43145.3 145.3.0.0.0.01443.6288.7585.29.76574.0 0.0.0.0.01774.7354.9597.79.77099.0 0.0.0.0.01873.8374.8596.19.67764.1 0.0.0.0.01633.8320.8480.29.67922.3 0.0.0.0.01807.2361.4586.69.57813.9.0.0.0.01807.2361.4584.54.13013.4.0.0.0.01807.2361.4586.69.57813.9.0.0.0.01953.5390.7587.79.57582.4.0.0.0.01807.2</td></td></td<>	Water ForceTie ForceTie ForceTie ForceEarthquake ForceWidth Ft(m)Lbs(kg)Lbs(kg)Lbs(kg)Lbs(kg)Lbs(kg)Lbs(kg)Lbs(kg)9.8688.1.0.0.0.0172.034.49.81997.0.0.0.0.0172.034.49.83174.3.0.0.0.01055.1211.09.84220.3.0.0.0.01055.1211.09.85135.2.0.0.0.01443.6288.79.76574.0.0.0.0.01443.6288.79.77099.0.0.0.0.01443.6288.79.77099.0.0.0.0.01643.5328.79.77495.4.0.0.0.01774.7354.99.77495.4.0.0.0.01873.8374.89.67764.1.0.0.0.01863.8320.89.67922.3.0.0.0.0180.6396.19.57582.4.0.0.0.01807.2361.44.13013.4.0.0.0.01863.2272.69.33688.6.0.0.0.0156.9231.49.46162.5.0.0.0.0156.9231.49.33688.6 </td <td>Water ForceTie ForceTie ForceTie ForceEarthquake ForceWidth Ft(m)Weight Lbs(kg)Top Lbs(kg)Bot NormTan Tan HorWor Ver Ver Load9.8688.1 0.0.0.0172.034.4607.69.81997.0 0.0.0.0.0172.034.4607.69.81997.0 0.0.0.0.0172.034.4607.69.83174.3 0.0.0.0.0193.6158.7605.19.84220.3 135.2.0.0.0.01283.8256.8602.43145.3 145.3.0.0.0.01443.6288.7585.29.76574.0 0.0.0.0.01774.7354.9597.79.77099.0 0.0.0.0.01873.8374.8596.19.67764.1 0.0.0.0.01633.8320.8480.29.67922.3 0.0.0.0.01807.2361.4586.69.57813.9.0.0.0.01807.2361.4584.54.13013.4.0.0.0.01807.2361.4586.69.57813.9.0.0.0.01953.5390.7587.79.57582.4.0.0.0.01807.2</td>	Water ForceTie ForceTie ForceTie ForceEarthquake ForceWidth Ft(m)Weight Lbs(kg)Top Lbs(kg)Bot NormTan Tan HorWor Ver Ver Load9.8688.1 0.0.0.0172.034.4607.69.81997.0 0.0.0.0.0172.034.4607.69.81997.0 0.0.0.0.0172.034.4607.69.83174.3 0.0.0.0.0193.6158.7605.19.84220.3 135.2.0.0.0.01283.8256.8602.43145.3 145.3.0.0.0.01443.6288.7585.29.76574.0 0.0.0.0.01774.7354.9597.79.77099.0 0.0.0.0.01873.8374.8596.19.67764.1 0.0.0.0.01633.8320.8480.29.67922.3 0.0.0.0.01807.2361.4586.69.57813.9.0.0.0.01807.2361.4584.54.13013.4.0.0.0.01807.2361.4586.69.57813.9.0.0.0.01953.5390.7587.79.57582.4.0.0.0.01807.2

59/59

APPENDIX B

SOUTHWEST DRAINAGE AREA EROSION PROTECTION DESIGN CALCULATION BRIEF

CanonieEnvironmental

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet 4 of 3/ Chkd By the Date 5/10/64 Southwest Channel - Atlas Proj No 88-067-12

EROSION PROTECTION ON BASE OF TAILINGS PILE SIDE SLOPES ADJACENT TO NATURAL SOUTHWEST RUNOFF DRAINAGE CHANNEL

ATLAS CORPORATION

88-067-12

TABLE OF CONTENTS

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet / of 3/ Chkd By M Date 5/20/44 Southwest Channel - Atlas Proj No 88-067-12

EROSION PROTECTION ON BASE OF TAILINGS PILE SIDE SLOPES ADJACENT TO NATURAL SOUTHWEST RUNOFF DRAINAGE CHANNEL ATLAS CORPORTION

88-067-12

Background and Purpose. In this calculation brief, the previously designed trapezoidal Southwest Runoff Drainage Channel (SWRDC) at the Atlas Corp. Tailings Pile in Moab, Utah is replaced by a natural drainage way and, as a result, the riprap along the base of the tailings pile is redesigned to withstand flows down the natural drainage channel. Figure 1 shows the location of the SWRDC and the adjacent tailings pile.

The Nuclear Regulatory Commission considers that the potential exists for sediment and large rocks from nearby cliffs to enter the SWRDC and block or restrict flow. As a result of this concern, the analysis will evaluate the effects of rocks entering the natural drainage way. Also, the necessary riprap toe protection based on the maximum scour depth expected under Probable Maximum Flood (PMF) conditions will be designed. In addition, in this calculation brief the volume of the designed riprap erosion protection along the base of the tailings pile adjacent to the SWRDC will be determined and compared to the riprap volume of the previously designed trapezoidal channel.

A natural drainage way for the lower reach of the SWRDC will not be considered because existing contours adjacent to the Reclaimed Tailings Pile do not provide for adequate drainage nor does a natural channel provide adequate protection at the outlet of the SWRDC. Instead, the previously proposed man-made channel from the start of the width transition to the end of the channel and including the rock cutoff wall is considered for the lower reach.

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet 2 of 3/ Chkd By M Date 5/20/49 Southwest Channel - Atlas Proj No 88-067-12

Results. Figure 1 identifies the selected D_{50} riprap erosion protection and the location of the riprap erosion protection along the base of the tailings pile adjacent to the natural SWRDC. An actual (oversized for durability) D_{50} of 9 inches has been designed for the base of the tailings pile adjacent to the SWRDC from the beginning of the SWRDC to station 10+00 and from station 12+00 to station 18+15 (beginning of the width transition). From SWRDC station 10+00 to 12+00, an actual D_{50} of 17.4" has been designed. These D_{50} values are sized adequately to withstand a PMF flow in the natural drainage channel. Furthermore, the D_{50} values are adequately sized for flow conditions resulting from a reasonable volume of rocks, based on engineering judgement, falling into the channel.

Figure 2 shows a typical cross section through the channel illustrating the vertical extent of the riprap erosion protection. The riprap erosion protection extends sufficiently below existing grade to account for scour depth and sufficiently above existing grade to account for the maximum xpected PMF depth in the channel under flow conditions resulting from falling rocks entering the channel. The maximum predicted depth under flow conditions resulting from rocks entering the channel was approximately 1.8 feet higher than PMF depth with no rocks entering the channel.

Table 1 summarizes the selected D_{50} sizes, the PMF depth, the average scour depth, and the width, area, and volume of riprap erosion protection throughout the natural reach of the channel. Table 2 presents the channel invert, riprap invert, and top of riprap elevations for the tailings embankment riprap erosion protection adjacent to the natural SWRDC.

Table 3 presents the required riprap volume of the previously designed man-made channel and compares the required riprap volume of the natural SWRDC to the riprap volume of the previously designed man-made channel. A total of approximately 6750

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet 3 of 3/ Chkd By WH Date 5/10/94 Southwest Channel - Atlas Proj No 88-067-12

cubic yards (CY) of riprap and filter material is required for the tailings embankment erosion protection adjacent to the natural SWRDC. For the previously designed manmade channel, a total of approximately 6850 CY of riprap and filter material is required. The volume calculation for the man-made channel assumed that riprap also would be placed 1.8 feet above PMF depth along the tailings embankment to account for rocks entering the channel.

Method. The US Army Corps of Engineers (COE) riprap sizing method (Hydraulic Design of Flood Control Channels, EM 1110-2-1601, 1970) was selected to size the riprap erosion protection at the base of the tailings pile side slopes adjacent to the natural SWRDC. Depth of flow in the channel, required to apply the COE method, was determined through numerical modeling of the water surface profile using the US Army Corps of Engineers HEC-2 Water Surface Profile computer program (September 1990 version). The COE method and the HEC-2 model are described are described below.

Army Corps of Engineers Riprap Sizing Method

Excerpts from EM 1110-2-1601 describing the COE method have been included in Attachment A of this calculation brief. The main steps in the COE method and the major equations are summarized below.

The general procedure followed when applying the COE method to determine the riprap size at a channel cross section for a given channel discharge is, as follows:

1) Select a D₅₀ (mean stone size of riprap in channel cross section).

2) Compute the local boundary shear at the channel cross section. (The local boundary shear is the shear at the location of interest in the channel. In this case, the local boundary shear will be computed for the tailings pile side of channel.)

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet 4 of 3/ Chkd By MA Date 5/20/44 Southwest Channel - Atlas Proj No 88-067-12

3) Compute the riprap design shear (the local boundary shear that the in-place riprap can withstand).

4) Compare the local boundary shear to the design shear.

5) If the local boundary shear is more than the design shear, select a larger D50 and repeat the steps until the local boundary shear is less than the design shear. If the local boundary shear is less than the design shear on the first iteration, verify that the selected D_{50} is the minimum practical D_{50} .

Figure 1 shows the locations of the channel cross sections selected for application of the COE method. Attachment B of this calculation brief contains profiles of each of the cross sections. Steps 1,2 and 3 of the COE method are described in detail below. Steps 4 and 5 are performed in the calculations section.

1. Selection of D_{60} . D_{50} values were selected based on previously designed riprap gradations for the Reclaimed Atlas Tailings Pile. Table 4 presents the pre-designed riprap gradations. For development of these gradations, see the Revised Riprap Gradation Calc. brief (Canonie, April 1993) and Mo Wash Channel Bank and Northeast Debris Pit Erosion protection Calc. brief (Canonie, 1994). The D₅₀ values shown on the table have been oversized by 2% based on the durability of the rock source (see Rock Quality - Assessment of Oversizing Requirements (June 1992 Atlas Crop. Rec. Plan). For application in the COE method, the raw or non-oversized D₅₀ values (i.e. oversized D₅₀ divided by 1.02) were selected as a more conservative approach.

2. Local Boundary Shear. The local boundary shear is determined with the following equation:

where

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet 5 of 3/ Chkd By We Date 5/20/44 Southwest Channel - Atlas Proj No 88-067-12

$$r = \frac{\gamma v^2}{[32.6LOG(\frac{12.2R}{k})]^2}$$

v = average local velocity, fps

R = local hydraulic radius, ft

k = roughness dimension taken as the spherical diameter of the average size bed material, ft (i.e. $D_{\rm 50})$

y = unit weight of water = 62.4 lb/ft³

The procedure outlined in Appendix IV of EM 1110-2-1601 (see Attachment A for excerpts) is followed to determine the average local velocity and the hydraulic radius. A channel cross section is divided in subsections as presented in Figure 3. The mean velocity, V_n , in subsection n is given by the following formula:

$$V_{n} = \frac{Q_{T} (CR^{1/2})_{n}}{\sum [(CR^{1/2})_{i} A_{i}]}$$

The term in the denominator of the equation is summed from i = 1 to the number of subsections of the channel cross section. Each variable in the equation is defined below:

 Q_T = total discharge through entire channel cross section, cfs

A = channel subsection area, ft²

R = Hydraulic radius of subsection calculated as:

$$R = A/P$$

where P = wetted perimeter of channel subsection.

C = Chezy's coefficient = 32.6 log (12.2 R/k) for channel subsections lined with riprap. For natural subsections, the Chezy's coefficient is estimated from * anning's n using the following formula from EM 1110-2-1601:

$$C = 1.486 R^{(1/6)} / n$$

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet 6 of 3/ Chkd By MAY Date 5/2014 Southwest Channel - Atlas Proj No 88-067-12

3. Riprap Design Shear. The riprap design shear for riprap placed on channel side slopes is given by the following equation from EM 1110-2-1601:

$$\tau' = \tau (1 - \frac{\sin^2 \phi}{\sin^2 \theta})^{0.5}$$

where

 $\tau = a (\gamma_s - \gamma) D_{50}$

 $\gamma_{\rm s}$ = unit weight of stone = 154.2 lb/ft³ from Surface Water Calc. (June 1992 Atlas Rec. Plan)

 γ = unit weight of water = 62.4 lb/ft³

a = coefficient = 0.04

 ϕ = Tailings embankment side slope angle of channel

 θ = angle of repose of riprap = 42° from Surface Water Calc. (June 1992 Atlas Rec. Plan)

HEC-2 Computer Model and Required Input

To determine channel subsection area, wetted perimeter, and hydraulic radius for the channel cross section locations shown on Figure 1, the depth of flow at each of these cross sections must be determined. The HEC-2 model was selected to compute the depth of flow at the cross section locations in the channel. The HEC-2 model is applicable to steady gradually varied flow conditions and has the capability of computing both subcritical and supercritical flow profiles. Friction losses in channels are calculated with the Manning's equation and water surface profiles are computed iteratively using the standard step method. Input required by the HEC-2 model is discussed below.

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet 7 of 3/ Chkd By UKP Date 7/20/94 Southwest Channel - Atlas Proj No 88-067-12

To compute a basic water surface profile in a channel, the HEC-2 computer program requires the following input: channel discharge, Manning's n, channel cross section geometry, and the distance between each cross section. A beginning water surface elevation at the farthest upstream point in the channel reach for supercritical runs and at the farthest downstream point in the channel reach for subcritical runs is also required as part of the input. Separate supercritical and subcritical HEC-2 simulations must be performed, if both supercritical and subcritical flow conditions are present in different reaches of the channel, because HEC-2 does not allow water surface profile computations to cross critical depth. Each input parameter is discussed below:

Channel discharge. The discharge selected to compute the water surface profile in the natural SWRDC was the PMF of 1605 cfs computed for the upper reach of SWRDC in the Revised PMF Flow Calculation brief (Canonie, April, 1993). The discharge is still applicable to the natural SWRDC because the same amount of water is expected whether the channel is man-made or natural.

Manning's n. The Manning's n is a coefficient of roughness for the channel. For the natural SWRDC with erosion protection on one side of the channel and natural ground on the other side of the channel, Manning's n varies across the width of the channel. For the tailings pile side (i.e. side with erosion protection), Manning's n was computed with the following equation from NUREG/CR-4620 (see Attachment A for excerpt) relating Manning's n to the riprap D_{50} :

 $n = 0.0395 (D_{50})^{(1/6)}$

where D_{50} is the mean rock size in feet. As an example, for a D_{50} of 4.9 inches, the corresponding Manning's n is 0.034. For the natural side of the channel, a Manning's n of 0.035 was chosen based on typical values found in the literature (Linsley et. al, 1982, and Lindeburg, 1992 - see Attachment A for excerpts) for natural channels with stones and weeds.
By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet 8 of 3/ Chkd By An Date 5/20/44 Southwest Channel - Atlas Proj No 88-067-12

Channel Cross Section Geometry. Locations of selected cross sections are shown on Figure 1 and profiles of the selected cross sections are presented in Attachment B. The cross sections were selected at representative locations throughout the channel reach and where water surface profile information was desired. Additional cross sections between sections 4 and 6 were chosen to allow for a more detailed analysis of the effects of rocks entering the channel. Looking downstream, the geometry of the right hand side of the channel was determined from existing ground contours. The geometry of the left hand side of the channel cross section (the tailings pile side slope) was determined by projecting upward from the channel invert to the top of the reclaimed tailings pile side slope. The channel invert is the lowest point in the channel. The only exception is cross section 10.0, the start of the width transition, where the channel geometry is trapezoidal (the previously designed man-made channel).

Channel inverts of the natural channel were aligned along the lowest point of the existing ground contours (see Figure 1). A minimum amount of cut was assumed to provide a uniform slope of 0.011 in the upper reach of the channel. Since the portion of the channel downstream from cross section 10.0 remains unchanged from the previously designed trapezoid, the invert elevation of 4010 feet at cross section 10.0 was held constant and the channel cross section invert elevations upstream of cross section 10.0 were extrapolated using a slope of 0.011.

For input into HEC-2, each point where the cross section side slope changes must be defined with a station number corresponding to the horizontal distance from a zero point on the left bank and an elevation. The HEC-2 runs contained in Attachments C and E present the station numbers and elevation for points in each of the selected channel cross sections. These values are contained on the HEC-2 "GR" cards.

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet 9 of 3/ Chkd By Mr Date 5/10/94 Southwest Channel - Atlas Proj No 88-067-12

Distance Between Each Cross Section. Distance between cross sections are defined as reach lengths. The left overbank, right overbank, and channel reach lengths are required for input to HEC-2. The left and right over bank reach lengths are measured along the anticipated path of the center of mass of the overbank flow. The channel reach length is measured along the deepest portion of the channel.

Beginning Water Surface Elevations. Beginning water surface elevations were specified as the elevations corresponding to critical depth at cross section 10.0 for subcritical runs and at cross section 1.0 for supercritical runs. Beginning the HEC-2 simulations at critical depth is reasonable. At cross section 10.0, a flow transition from subcritical to supercritical occurs because of the width transition in the channel at this location. This flow transition was previously demonstrated in the "HEC-2 Simulations on the Southwest Drainage Channel and the Impoundment Drainage Channel" Calc. brief (Canonie, April, 1993). Also, specifying critical depth at cross section 1.0 for the supercritical runs is reasonable because HEC-2 subcritical runs (see Attachment C) indicate that flow is subcritical at cross section 1.0. Since HEC-2 cannot pass a flow profile from subcritical to supercritical, the water surface elevation corresponding to critical depth is chosen as the starting water elevation at cross section 1.0.

Calculations. This section describes the HEC-2 simulations, D₅₀ riprap sizing analysis, scour depth calculations, and riprap volume calculations.

HEC-2 Simulations

The following HEC-2 simulations are presented:

- 1) Subcritical Run not accounting for rocks entering the channel.
- 2) Supercritical Run not accounting for rocks entering the channel.

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet /0 of 3/ Chkd By M Date 5/20/94 Southwest Channel - Atias Proj No 88-067-12

3) Subcritical Run accounting for rocks entering the channel at HEC-2 cross sections 4.0, 4.1, 4.2, and 5.0.

4) Supercritical Run accounting for rocks entering the channel at HEC-2 cross sections 4.0, 4.1, 4.2, and 5.0.

5) Subcritical Run accounting for rocks entering the channel at HEC-2 cross sections 5.0, 5.1, 5.2, and 6.0.

6) Supercritical Run accounting for rocks entering the channel at HEC-2 cross sections 5.0, 5.1, 5.2, and 6.0.

HEC-2 simulations 1 and 2; 3 and 4; and 5 and 6 are evaluated together when selecting the depth of flow at selected cross sections in the channel. For example for a given pair of simulations (i.e. 1 & 2; 3 & 4; or 5 & 6), when the flow condition is subcritical, depth of flow from the subcritical simulation is selected for sizing the D_{50} riprap protection. When the flow condition is supercritical, depth of flow from the subcritical simulation. Each simulation is discussed below.

Simulations 1 and 2. HEC-2 output from simulations 1 and 2 is presented in Attachment C. From the results of simulations 1 and 2, the flow condition is subcritical between cross sections 1.0 and 5.0, supercritical from cross sections 5.0 through 6.0, and subcritical between cross sections 6.0 through 10.0. Table 5 summarizes the depth of flow in the channel computed by HEC-2 at each of the selected cross sections. For cross sections 1.0 through 5.0 and 6.5 through 10.0 depth of flow is from simulation 1 (subcritical run) HEC-2 output. For cross sections 5.1 through 6.0, depth of flow is from simulation 2 (supercritical run) HEC-2 output.

Simulations 3, 4, 5, and 6. For simulations 3, 4, 5, and 6, approximately 500 CY of rocks were distributed in the natural reach of the channel. This rock volume was

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet // of 3/ Chkd By M Date Size and Southwest Channel - Atlas Proj No 88-067-12

determined by measuring boulders which are presently located in the vicinity of the southwest side of the tailings pile and north of highway 279. The resulting volume was approximately 25 CY. It was assumed that the boulders and rocks had fallen in the past 50 years. To obtain a volume over the 1000 year design life of the Tailings Embankment, the 50 year volume of 25 CY was extrapolated to 1000 years. Attachment D provides a detailed calculation of the predicted rock volume which may enter the channel.

For HEC-2 simulations 3 and 4, the rocks were placed on the natural side of the channel in between cross sections 4.0, 4.1, 4.2, and 5.0 from the lowest point the channel cross section to an elevation of approximately 4030 ft. These cross sections were chosen because they represent both subcritical and supercritical flow conditions. Attachment D illustrates how the rocks were incorporated into channel cross sections 4.0, 4.1, 4.2, and 5.0. Placement of the rocks only on the natural side of the channel is consistent with currently observed conditions adjacent to the southwest portion of the tailings pile.

HEC-2 simulations 5 and 6 were performed to evaluate an additional possible scenario of rocks entering the channel. For these simulations, the 500 CY of rocks were distributed on the natural side of channel cross sections 5.0, 5.1, 5.2, and 6.0 from the lowest point the channel cross section to an elevation of approximately 4030 ft. Flow is supercritical in these sections. Attachment D illustrates how the rocks were incorporated into channel cross sections 5.0, 5.1, 5.2, and 6.0.

HEC-2 output from simulations 3, 4, 5, and 6 are contained in Attachment E. Depth of flows computed by HEC-2 for these simulations are presented in Table 5. Comparing the depths of flow from simulations 1 and 2 to those of simulations 3, 4, 5 and 6, it is seen that by accounting for the effects of rocks entering the channel,

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet 12 of 3/ Chkd By My Date 5/10/49 Southwest Channel - Atlas Proj No 88-067-12

the depth of flow in the channel increases on the average approximately 1.2 feet. The maximum predicted increase in depth of flow was observed in cross section 4.1. The depth of flow at this section increased 1.8 ft from a depth of 6.6 ft with no rocks in the channel to a depth 8.4 ft when rocks were placed between sections 4.0 and 5.0. Accordingly, the tailings embankment riprap was extended by 1.8 ft above PMF depth calculated with no rocks in the channel as shown in Figure 2 and discussed in the riprap volume calculations.

D₅₀ Riprap Sizing Analysis

After determining the depth of flow at selected channel cross sections from the HEC-2 simulations, the D_{50} riprap sizes to protect the southwest tailings embankment were determined by the COE riprap sizing method. Detailed calculations of the COE method are contained in Attachment F using depths of flow computed from each of the HEC-2 simulations. Table 6 summarizes the results of the calculations in Attachment F. The minimum raw D_{50} values which were adequate to withstand a PMF flow down the natural SWRDC are presented in Table 6 for each of the HEC-2 simulations. Also presented on Table 6 are the recommended D_{50} sizes to protect the southwest tailings embankment based on comparing the results of the each of the HEC-2 simulations.

A 9" D_{50} riprap size (oversized) is recommended from HEC-2 cross sections 1.0 through 5.0 (start of the natural reach of the SWRDC to station 10+00) and from HEC-2 cross sections 6.5 through 10.0 (station 12+00 through 18+15). The 9" was selected for all sections except those between sections 5.0 and 6.0 as a conservative recommendation due to uncertainties in how and where rocks may enter the channel. When rocks were placed in HEC-2 sections 4.0, 4.1, 4.2, and 5.0 (Simulations 3 and 4) the necessary raw D_{50} size increased from 4.9 and 8.8 in section 4.1 and 4.2. It is conceivable that a similar increase in D_{50} size could occur had rocks been placed in sections 1.0, 2.0 and 3.0.

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet 13 of 3/ Chkd By M Date 5/24 au Southwest Channel - Atlas Proj No 88-067-12

A 17.4" D_{50} riprap size (oversized) is recommended from HEC-2 cross sections 5.0 and 6.0 (station 10+00 to station 12+00). The 17.4" D_{50} was selected for the channel reach between sections 5.0 and 6.0 because flow in these sections is supercritical and velocities are higher than those encountered under subcritical flow. Also, the raw D_{50} riprap sizes in sections 5.0 and 5.1 increased from 8.8" to 17.04" when rocks were placed in these sections. Therefore, 17.4" D_{50} is recommended between sections 5.0 and 6.0.

Scour Calculations

Depth of scour must be estimated to determine the depth the riprap toe protection should extend below the existing grade. To estimate the scour depth resulting from the PMF flow of 1605 cfs in the SWRDC, the applicable methods listed in Pemberton (1984) (see Attachment A for excerpts) will be used. Specifically, equations for riprap bank slope protection will be applied. Velocitie, from the HEC-2 simulations 1 and 2 (before the introduction of rocks into the channel) will be used to compute the depth of scour. The selected depth of scour methods are summarized below:

Method 1. Field Measurement of Scour.

 $d_s = K (q)^{0.24}$ (eq. 24 in Attachment A)

where

K = 2.45 (constant)

 $q = discharge (ft^3/s) / topwidth of channel flow (ft). Total PMF discharge in SWRDC is 1605 cfs. Topwidth of channel flow for the channel cross sections are given as part of the HEC-2 output in Attachment C.$

Method 2. Regime Equation by field measurement

a. Lacey Empirical Equation:

 $d_m = 0.47 (Q/f)^{1/3}$ (eq. 26 in Attachment A) where

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet 14 of 3/ Chkd By My Date 5/22/44 Southwest Channel - Atlas Proj No 88-067-12

Q = design discharge, cfs

 $f = Lacey silt factor = 1.76 D_m^{-1/2}$ where $D_m = mean grain size of bed material. A D_m of 2 mm is assumed based on grain size of soil material which will be scoured.$

 $d_s = Z d_m$ where Z = .25 straight bends.

b. Blench Equation for zero bed factor.

 $d_{fo} = (q_f)^{2/3} / F_{bo}^{1/3}$ (eq. 27 in Attachment A)

where

 d_{fo} = depth for zero bed sediment transport, ft

 q_t = design flood discharge per unit width (same as q in method 1)

 F_{bo} = Blench's zero bed factor in ft/s². From Figure 9 in Attachment A using $D_m = 2.0$ mm, $F_{bo} = 2.2$ ft/s²

 $d_s = z d_{to}$ where z = 0.6 for straight bends.

Method 3. Mean Velocity Method from field measurements:

 $d_s = d_m Z$

where

 d_m = mean channel depth, ft = area of flow (ft²)/topwidth of flow (ft) z = defined above as for method 2a.

Method 4. Competent or limiting control to scour method:

 $d_{e} = d_{m} (V_{m}/V_{c} - 1) (eq. 32 \text{ Attachment A})$

where

 $d_s = scour depth, ft$

 d_m = mean depth as defined above in Method 3.

 V_m = mean velocity, ft/s = Q/A

 $V_c =$ competent velocity, ft/s \approx 3 ft/s (Fig. 12 in Attachment A using bed material size of 2 mm on the figure and depth of flow of 5 ft.)

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet 15 of 3/ Chkd By M Date 5/20 49 Southwest Channel - Atlas Proj No 88-067-12

Scour depth calculations for each of the channel cross sections are summarized in Table 7. The final scour depth is computed by averaging scour depths from each of the methods. From the literature supplied in Attachment A, methods 1 and 4 presented above may not be entirely applicable because these methods are more applicable for channels with coarser bed size material. However, by using all four methods, the final averaged scour depth result is slightly more conservative.

Using the final averaged scour depths at each channel cross (Page 3 of Table 7), the depth of riprap toe protection below grade was computed. The riprap toe protection was designed to extend 1.5 times the estimated depth of scour below the existing grade as recommended in NUREG/CR-4480 (see Attachment A for excerpts). Table 2 summarizes the riprap invert elevation computed by subtracting 1.5 times the scour depth from the channel invert elevation and Figure 2 illustrates the placement of the riprap toe protection.

Volume of Riprap Calculations

Vertically, the riprap erosion protection was placed 1.5 times the scour depth below the existing grade and 1.8 feet plus the PMF depth (with no rocks in the channel) above the existing grade as shown in Figure 2. The 1.8 feet above PMF depth was the maximum predicted increase in depth of flow in the channel when rocks were placed in the channel and is shown on Table 5. Volume of the riprap designed to withstand flows in the upper reach of SWRDC along the base of the tailings pile side of the channel was determined by multiplying the width of the riprap by the length of the riprap by the thickness of the riprap layer. Table 1 summarizes the riprap volume calculations. Two riprap filters are required for the 9" and 17.4" D_{50} riprap gradations. Volume of filter material for the filters are also shown on the table.

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet 16 of 3/ Chkd By Ar Date 5/26 Au Southwest Channel - Atlas Proj No 88-067-12

A corresponding volume of riprap and filter material for the previously designed trapezoidal channel is shown on Table 3. The trapezoidal channel requires slightly more overall material to construct. Also, it is anticipated that construction costs would be higher to build the trapezoidal channel than the natural channel.

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet 1/4 of 3/ Chkd By Shee Date 5/10/94 Southwest Channel - Atlas Proj No 88-067-12

REFERENCES

Response to NRC Comments Atlas Corporation Reclamation Plan, Uranium Mill and Tailings Disposal Area, April 1993 Canonie Environmental Report.

Atlas Corporation Reclamation Plan, Uranium Mill and Tailings Disposal Area, June 1992 Canonie Environmental Report.

Lindeburg, M.R, 1992, "Civil Engineering Reference Manual", Professional Publications Inc.

Linsley R.K, Kohler M., and Pahulhus J., <u>Hydrology for Engineers</u>, 1982, Third Edition, McGraw Hill

NUREG/CR-4480, 1986, " Erosion Protection of Uranium Tailings Impoundments", U.S. Nuclear Regulatory Commission

NUREG/CR-4620, June 1986, "Methodologies for Evaluating Long-Term Stabilization Designs of Uranium Mill Tailings Impoundments", U.S. Nuclear Regulatory Commission

Pemberton, E.L., and Lara, J.M., 1984 "Computing degradation and local scour", Bureau of Reclamation, Denver, CO., January, 1984

U.S. Army Corps of Engineers, "Hydraulic Design of Flood Control Channels", EM 1110-2-1601, July 1970

U.S. Army Corps of Engineers, September 1990 (Revised February 1991), "HEC-2 Water Surface Profiles" Hydrological Engineering Center, Davis, CA.

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet 18 of 3/ Chkd By the Date 5/10/94 Southwest Channel - Atlas Proj No 88-067-12

FIGURES

a marine

No. DATE ISSUE NUMBER / REVISIONS

ANSTEC APERTURE CARD

Also Available on Aperture Card

GENERALIZED CROSS SECTION A74AS RECLAIMED TAILINGS INFOUNDMENT STABILITY ANALYSIS

Alter and

11 0 w

Appendix IV 1 July 70

FIGURE 3. CHANNES SUBSECTION LE TRUC

Plate IV-1

IV-6

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet 22 of 3/ Chkd By May Date 5/20/44 Southwest Channel - Atlas Proj No 88-067-12

TABLES

SUMMARY OF TAILINGS EMBANKMENT EROSION PROTECTION DESIGN ALONG NATURAL SWRDC

		Selected		Average							Filter I Vol.	Filter II Vol.
SWRDC Station,	HEC-2	D50, in	PMF	Scour		Width of RR,	Dist. btwn	Avg. Area,	Layer	Riprap	ft ^a	ft ³
ft,	Sec. No.	(oversized)	Depth, ft.	Depth, ft	Z	ft	Sections, ft	ft²	Thick, in	Volume, ft ³	(0.35" D50)	(1.90" D50)
0+00 - Start of	1.0	9	5.37	3.17	3.00	37.73	250	9676.2	13.5	10885.8	4838.1	4838.1
Channel	2.0	9	5.99	3.56	2.85	39.68	260	10622.5	13.5	11950.3	5311.2	5311.2
	3.0	9	6.15	4.32	2.73	42.03	250	10897.5	13.5	12259.7	5448.7	5448.7
	4.0	9	6.46	4.56	2.82	45.15	66	3037.3	13.5	3416.9	1518.6	1518.6
	4.1	9	6.65	4.49	2.92	46.89	66	3080.5	13.5	3465.6	1540.3	1540.3
	4.2	9	6.71	4.57	2.85	46.46	120	5469.8	13.5	6153.5	2734.9	2734.9
10 + 00	5.0	17.4	6.14	4.95	2.73	44.71	66	3023.9	26.1	6577.0	1511.9	1511.9
	5.1	17.4	5.88	4.84	2.98	46.93	66	3083.9	26.1	6707.4	1541.9	1541.9
	5.2	17.4	5.21	4.14	3.37	46.52	66	3072.2	26.1	6681.9	1536.1	1536.1
12+00	6.0	17.4	4.33	3.79	3.81	46.57	75	3222.1	26.1	7008.0	1611.0	1611.0
	6.5	9	4.28	2.60	3.81	39.35	72	2833.5	13.5	3187.7	1416.8	1416.8
	7.0	9	4.49	2.61	3.72	39.36	150	5997.2	13.5	6746.9	2998.6	2998.6
	8.0	9	4.4	2.95	3.69	40.60	160	8050.9	13.5	9057.3	4025.5	4025.5
	9.0	9	5.2	2.75	5.30	60.03	150	7465.8	13.5	8399.0	3732.9	3732.9
18 + 15- Start of	10.0	9	4.6	4.06	3.00	39.51						
Width Transition								17.4"	Total, CY	999.0		
								9*	Total, CY	2797.1		
								То	tal Vol., CY	3796.2	1472.8	1472.8
						Grand T	otal Volume of	Riprap and Filte	r Material, CY	6741.9		

Note:

1) SWRDC denotes Southwest Runoff Drainage Channel.

2) Riprap to be placed along base of Tailings Pile adjacent to Southwest Runoff Drainage Channel.

3) Refer to Figure 1 for location and distance between HEC-2 sections and SWRDC Station No.

4) 1.8 feet is added to PMF Depth in computing width of riprap to allow for 1 ft. Free Board and potential depth increases due to rocks entering channel.

5) Z refers to side slope of Tailings Pile (Z - horizontal to 1 - vertical)

6) See Figure 2 for definition of Width of Riprap.

7) Average Area determined by multiplying average width of riprap by length between sections. (Avg. A = (Width1 + Width2)/2 x Dist. btwn Sec. 1 and 2)

8) For Layer Thickness see Table 4.

9) Riprap and Filter Volumes determined by multiplying area by layer thickness. Layer thickness is 6" for filter material.

ps. In

SWRDC(1) Station, ft.	SWRDC HEC-2 Cross Section(2)	Channel Invert Elevation (3), ft. msl.	Scour Depth(4) ft.	PMF Water Surface Elev.(3) ft	Riprap Invert Elevation(5) ft. msl.	Top of Riprap Elevation(6) ft. msl.
0+00 - Start of	1.0	4030	3.17	4035.4	4025.2	4037.2
Channel	2.0	4027.2	3.56	4033.2	4021.9	4035.0
	3.0	4024.4	4.32	4030.6	4017.9	4032.4
	4.0	4021.6	4.56	4028.1	4014.8	4029.9
	4.1	4020.9	4.49	4027.6	4014.2	4029.4
	4.2	4020.2	4.57	4026.9	4013.3	4028.7
10 + 00	5.0	4018.9	4.95	4025.0	4011.5	4026.8
	5.1	4018.1	4.84	4024.0	4010.8	4025.8
	5.2	4017.4	4.14	4022.6	4011.2	4024.4
12+00	6.0	4016.7	3.79	4021.0	4011.0	4022.8
	6.5	4015.9	2.60	4020.2	4012.0	4022.0
	7.0	4015.1	2.61	4019.6	4011.2	4021.4
	8.0	4013.4	2.95	4017.8	4009.0	4019.6
	9.0	4011.7	2.75	4016.9	4007.6	4018.7
18 + 15- Start of Width Transition	10.0	4010	4.06	4014.6	4003.9	4016.4

Summary of Southwest Runoff Drainage Tailings Embankment Erosion Protection Riprap Invert and Top Elevations.

Notes:

1) SWRDC denotes Southwest Runoff Drainage Channel.

2) See Figure 1 for SWRDC Stations and HEC-2 Cross Sections.

3) See HEC-2 Simulations 1 and 2 for Channel Invert and PMF Surface Water Elevations.

4) Scour Depth from values computed on Table 7.

5) Channel Invert Elevation - scour depth * 1.5 (Per NUREG 4480)

6) PMF Water Elev. + 1.8' For Free Board and sediments/rocks

7) Riprap to be placed along base of Tailings Pile adjacent to Southwest Runoff Drainage Channel.

UNY Sholay

24/3/

RIPRAP VOLUME CALCULATION - MAN MADE UPPER REACH OF SOUTHWEST RUNOFF DRAINAGE CHANNEL

	PMF	Bottom		Ditch Perim.	Channel	Riprap	Layer	Riprap Vol,	Filter I Vol.,	
Location	Depth it	Width, ft	Side Slope	,ft	Length, ft	D50, in	Thick, in	CY	CY	
Main Channel	4.7	20	3	61.1	1815	5	10	3423.3	2054.0	
4.1" to Reach Areal Extent of Riprap				17.5	1815	4.1	8	784.3	588.2	

Note:

1.8 feet is added to PMF Depth to account for free board and for possible rocks entering channel.

Summary of Riprap Volume Requirements

	Natural	Man Made	
Item	Vol, CY	Vol, CY	Alba -
17.4" Riprap	999.0		
9" Riprap	2797.1		
5" Riprap		3423.3	
4.1" Riprap		784.3	
Filter I	1472.8	2642.2	
Filter II	1472.8		
			Difference
Totals	6741.9	6849.7	107.1

3

TABLE 4

SUMMARY OF RIPRAP PREVIOUSLY DESIGNED GRADATION REQUIREMENTS (Allowable Percent Passing Given Dimension)

Location	Necessary D50 (a) (inches)	Actual D50 (inches)	Riprap Layer Thickness (inches)	54"	48*	36"	24-	20"	15"	12-	10-	6"	4"	3*	2*	1-	3/4*	1/2	: 3/1	Sieve 8" No. 4	e Rock 1 Type (b)
Lower Southwest Drainage Channei	32.4	32.4	49		100	42-60	16-34	4 10-2	6 4 16	0-12											CD
Lower Impoundment Drainage Channel	17.4	17.4	26				100	54-7	0 30 40	16-31	8-25	0-12									CD
Moab Wash Channel Bank (sec. L-L' to N-N')	9.0	9.0	13.5							100	38-64	12-30	0-18	0-10							CD
Upper Southwest Drainage Channel	4.9																				CD
Upper Impoundment Drainage Channel	4.3	5.0	10								100	46-60	20-40	6-28	0-14						CD
Collection Ditches	3.3																				
10:3 Embankment	4.1	4.1	8									100	34-48	18-32	2-19	0-3					CD
10:1 Embankment	2.7																				
Moab Wash (Sac P-P')	3.3																				
Northeast Debris Pit	0.55	1.3	6										100	82-100	50-78	16-35	5 8-23	0-1:	2		RA

Notes:

(a) Necessary riprap D50 based on design requirements and includes oversizing for rock durability and roundness (as necessary). See Appendix E.

(b) Gradation requirements are based on rock durability stings for particular material: "CD" denotes crushed diorite rock type.

(c) Gradation requirements are based on rock durabili", stings for particular material: "RA" denotes round alluvial cobbles.

INATLASISWCHITBL4.XLS [Revised 5/20/84]

16/3

HEC -2	HEC-2 Simula	tions 1 & 2	HEC-2 Simular	tions 3 & 4	HEC-2 Simula	Maximum	
Cross Section	Flow Condition	PMF Depth,	Flow Condition	PMF Depth,	Flav Cardinian	PMF Depth,	Increase in Depth
1.0	now condition		Flow Condition	11	Flow Condition	π	of Flow, ft
1.0	Subcritical	5.37	Subcritical	5.49	Subcritical	5.33	0.12
2.0	Subcritical	5.99	Subcritical	5.69	Subcritical	6.11	0.12
3.0	Subcritical	6.15	Subcritical	7.01	Subcritical	5.9	0.86
4.0	Subcritical	6.46	Subcritical	8.07	Subcritical	7.05	1.61
4.1	Subcritical	6.65	Subcritical	8.43	Subcritical	7.61	1.78
4.2	Subcritical	6.71	Subcritical	8.31	Subcritical	8.17	1.6
5.0	Critical	6.14	Critical	7.47	Subcritical	7.76	1.62
5.1	Supercritical	5.88	Supercritical	5.26	Subcritical	7.48	1.6
5.2	Supercritical	5.21	Supercritical	5.29	Critical	6.97	1.76
6.0	Supercritical	4.33	Supercritical	4.32	Supercritical	5.66	1.33
6.5	Subcritical	4.28	Subcritical	4.28	Subcritical	4.28	0
7.0	Subcritical	4.49	Subcritical	4.49	Subcritical	4.49	0
8.0	Subcritical	4.4	Subcritical	4.4	Subcritical	4.4	0
9.0	Subcritical	5.2	Subcritical	5.2	Subcritical	5.2	0
10.0	Subcritical	4.6	Subcritical	4.6	Subcritical	4.6	0

Summary of Depth of Flow from HEC-2 Simulations

Average Maximum Increase in Depth of Flow in Sec. 1.0 to 6.0 = 1.24

Overall Maximum Increase in Depth of Flow = 1.78

Notes

- HEC-2 Simulations 1 & 2 are initial conditions with no rocks or sediment in Channel.
 (1 is based on subcritical flow calculations, 2 is based on supercritical calculations)
- 2) HEC-2 Simulations 3 & 4 have rocks /sediment in Channel Sections 4, 4.1, 4.2, and 5.0.
 (3 is based on subcritical flow calculations, 4 is based on supercritical calculations)
- HEC-2 Simulations 5 & 6 have rocks /sediment in Channel Sections 5.0, 5.1, 5.2, and 6.0.
 (5 is based on subcritical flow calculations , 6 is based on supercritical calculations)
- 4) Increase in depth of flow refers to the maximum amount the depth of flow was increased from Simulations 1 & 2 to Simulations 3, 4, 5, and 6.

21 w

MAR S/20/24

SWRDC	Minimum F	lequired Rav	v D50, in	Recommended	Recommended		
HEC-2	HEC	-2 Simulatio	on	Raw	Oversized		
Section	1 & 2	3 & 4	5 & 6	D50, in	D50, in		
1.0	4.02	4.02	4.02	8.8	9		
2.0	4.9	8.8	4.9	8.8	9		
3.0	8.8	4.02	8.8	8.8	9		
4.0	8.8	4.9	4.02	8.8	9		
4.1	4.9	4.02	4.02	8.8	9		
4.2	4.9	8.8	4.02	8.8	9		
5.0	9.8	17.04	8.8	17.04	17.4		
5.1	8.8	17.04	8.8	17.04	17.4		
5.2	17.04	17.04	8.8	17.04	17.4		
6.0	17.04	17.04	17.04	17.04	17.4		
6.5	4.02	4.02	4.02	8.8	9		
7.0	4.02	4.02	4.02	8.8	9		
8.0	4.9	4.9	4.9	8.8	9		
9.0	4.02	4.02	4.02	8.8	9		
10.0	8.8	8.8	8.8	8.8	9		

Summary of D50 Riprap Sizing Analysis for Tailings Embankment Erosion Protection

Notes

1) See Attachment F for COE method calculations for each HEC-2 simulation.

2) Raw D50 is not oversized for durability

3) Oversized D50 is oversized by 2% based on durability of rock source.

4) D50 conservatively recommended due to uncertainties in how and where falling rocks may enter the channel.

UAR 5/20/44

28/31
Table $\underline{\mathcal{F}}$

Scour Depth Calculations

		Top Width.			
Section	Q, ft ³ /s (2)	ft. (2)	g, ft	ds, ft	
1.0	1605	66.4	24.17	5.26	
2.0	1605	56.24	28.54	5.48	
3.0	1605	42.91	37.40	5.84	
4.0	1605	39.77	40.36	5.95	
4.	1605	40.37	39.76	5.93	
4.2	1605	39.4	40.74	5.96	
5.0	1605	36.17	44.37	6.09	
5.1	1605	37.45	42.86	6.04	
5.2	1605	47.33	33.91	5.71	
6.0	1605	54.18	29.62	5.53	
6.5	1605	91.6	17.52	4.87	
7.0	1605	90.81	17.67	4.88	
8.0	1605	76.39	21.01	5.09	
9.0	1605	81.47	19.70	5.01	
10.0	1605	47.61	33.71	5.70	
Method 2a					
	ALC: 1 191	100 C 400 L	and the second se		

Section	Bend Type	Z (3)	Dm, mm	f	dm,ft	ds,ft
All	Straight	0.25	2	2.49	4.06	1.02

Method 2b

Method 1

Section	Fbo, ft/s ²	dfo, ft	Z (3)	ds, ft
1.0	2.2	6.43	0.6	3.86
2.0	2.2	7.18	0.6	4.31
3.0	2.2	8.60	0.6	5.16
4.0	2.2	9.05	0.6	5.43
4.1	2.2	8.96	0.6	5.37
4.2	2.2	9.10	0.6	5.46
5.0	2.2	9.64	0.6	5.78
5.1	2.2	9.42	0.6	5.65
5.2	2.2	8.06	0.6	4.83
6.0	2.2	7.36	0.6	4.42
6.5	2.2	5.19	0.6	3.11
7.0	2.2	5.22	0.6	3.13
8.0	2.2	5.85	0.6	3.51
9.0	2.2	5.61	0.6	3.37
10.0	2.2	8.02	0.6	4.81

5/20/64 SCOUR.XLS

29/31

Scour Depth Calculations

Method 3						
		Area (2)	Top Width(2)			
Section	Bend Type	ft²	ft	dm, ft	z (3)	ds, ft
1.0	Straight	205.18	66.4	3.09	0.25	0.77
2.0	Straight	187.61	56.24	3.34	0.25	0.83
3.0	Straight	163.75	42.91	3.82	0.25	0.95
4.0	Straight	160.94	39.77	4.05	0.25	1.01
4.1	Straight	167.37	40.37	4.15	0.25	1.04
4.2	Straight	165.71	39.4	4.21	0.25	1.05
5.0	Straight	141.7	36.17	3.92	0.25	0.98
5.1	Straight	139.59	37.45	3.73	0.25	0.93
5.2	Straight	136.32	47.33	2.88	0.25	0.72
6.0	Straight	136.67	54.18	2.52	0.25	0.63
6.5	Straight	222.94	91.6	2.43	0.25	0.61
7.0	Straight	226.16	90.81	2.49	0.25	0.62
8.0	Straight	190.5	76.39	2.49	0.25	0.62
9.0	Straight	238.02	81.47	2.92	0.25	0.73
10.0	Straight	155.57	47.61	3.27	0.25	0.82

Method 4

		Area (2)					
Section	Q, ft ³ /s	ft²	Vm, ft/s²	Vc, ft/s²	dm,ft	ds, ft	
1.0	1605	205.18	7.82	3	3.09	4.97	-
2.0	1605	187.61	8.55	3	3.34	6.18	
3.0	1605	163.75	9.80	3	3.82	8.65	
4.0	1605	160.94	9.97	3	4.05	9.41	
4.1	1605	167.37	9.59	3	4.15	9.11	
4.2	1605	165.71	9.69	3	4.21	9.37	
5.0	1605	141.70	11.33	3	3.92	10.87	
5.1	1605	139.59	11.50	3	3.73	10.56	
5.2	1605	136.32	11.77	3	2.88	8.42	
6.0	1605	136.67	11.74	3	2.52	7.35	
6.5	1605	222.94	7.20	3	2.43	3.41	
7.0	1605	226.16	7.10	3	2.49	3.40	
8.0	1605	190.50	8.43	3	2.49	4.51	
9.0	1605	238.02	6.74	3	2.92	3.65	
10.0	1605	155.57	10.32	3	3.27	7.97	

6/20/94 SCOUR.XLS

30/31

Scour Depth Calculations

31/31

Summary of Methods - Scour Depths, ft

Section	Method 1	Method 2a	Method 2b	Method 3	Method 4	Scour Depth, ft
1.0	5.26	1.02	3.86	0.77	4.97	3.17
2.0	5,48	1.02	4.31	0.83	6.18	3.56
3.0	5.84	1.02	5.16	0.95	8.65	4.32
4.0	5.95	1.02	5.43	1.01	9.41	4.56
4.1	5.93	1.02	5.37	1.04	9.11	4.49
4.2	5.96	1.02	5.46	1.05	9.37	4.57
5.0	6.09	1.02	5.78	0.98	10.87	4.95
5.1	6.04	1.02	5.65	0.93	10.56	4.84
5.2	5.71	1.02	4.83	0.72	8.42	4.14
6.0	5.53	1.02	4.42	0.63	7.35	3.79
6.1	4.87	1.02	3.11	0.61	3.41	2.60
7.0	4.88	1.02	3.13	0.62	3.40	2.61
8.0	5.09	1.02	3.51	0.62	4.51	2.95
9.0	5.01	1.02	3.37	0.73	3.65	2.75
10.0	5.70	1.02	4.81	0.82	7.97	4.06

Notes:

1) See main text for description of methods and equations.

2) From HEC-2 Runs with no "rocks" in channel (See Attachment D)

3) From Table 7 in Pemberton et. al.

UNP 5/20/94 5/20/94 SCOUR.XLS

Canonie Environmental

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet A-/ of A-32 Chkd By M Date 5/20/44 Southwest Channel - Atlas Proj No 88-067-12

ATTACHMENT A

EXCERPTS FROM

EM 1110-1601-2

NUREG 4480

NUREG 4620

LINSLEY ET. AL AND LINDEBURG

PEMBERTON, et. al. "COMPUTING DEGRADATION AND LOCAL SCOUR"

REPRINT WITH CHANGE 1 thru 4 INCLUDED.

ENGINEER MANUAL

ENGINEERING AND DESIGN

HYDRAULIC DESIGN OF FLOOD CONTROL CHANNELS

DEPARTMENT OF THE ARMY CORPS OF ENGINEERS OFFICE OF THE CHIEF OF ENGINEERS EM 1110-2-1601 1 July 70

the interaction of the local boundary shear and the size and gradation of the riprap material.

(2) <u>Average boundary shear</u>. The average boundary shear over the wetted perimeter of a channel cross section (from ref 3) is given by

$$\bar{\tau}_{o} = \gamma RS$$
 (30)

A-3

where

 $\bar{\tau}_{o}$ = average boundary shear, psf

 γ = unit weight of water, pcf

R = hydraulic radius, ft

S = slope of energy gradient

By utilizing equations 1 and 6, equation 30 becomes

$$v_{0} = \frac{\gamma v^{2}}{\left(32.6 \log_{10} \frac{12.2R}{k}\right)^{2}}$$
(31)

where

V = average cross-sectional velocity, fps

k = equivalent channel boundary surface roughness, ft

(3) Local boundary shear. In a straight trapezoidal channel with equal bottom and side roughness, the boundary shear varies over the wetted perimeter as shown in plate 31. By substituting in equation 31 the depth Y (in feet) for R, the average local velocity in the vertical \overline{v} (in feet per second) for V, and the average stone theoretical diameter D_{50} (in feet) for k, the local boundary shear at any point on the wetted perimeter can be determined by the equation

$$\tau_{0} = \frac{\gamma \bar{v}^{2}}{\left(32.6 \log_{10} \frac{12.2 y}{D_{50}}\right)^{2}}$$
(32)

14g(3)

40

EM 1110-2-1601 Change 4 15 Sep 82

1-4

The average local velocity in the vertical at any point should be determined as illustrated in Appendix IV. The subsection width used to determine \overline{v} should not be too great. Where there is a significant difference in roughness over the wetted perimeter, as may occur in a channel with riprap bank revetment and a natural invert, a local effective friction coefficient as determined from Hydraulic Design Chart 631-4 or Appendix IV should be used in computing values of \overline{v} . A graphic solution of equation 32 is presented in plate 32.

(4) <u>Boundary shear in bends.</u> The distribution of local boundary shear in a bend of a trapezoidal channel with equal bottom and side roughness is indicated in plates 33 and 34 (compiled from data in refs 53, 54, and 55). Average boundary shear values obtained by equation 31 should be multiplied by the indicated ratios of $\tau_{\rm b}^{-}/\bar{\tau}_{\rm o}$ to obtain local boundary shear values in a bend.

(5) <u>Riprap design shear</u>. The riprap design shear is defined as that amount of local boundary shear that the in-place riprap will safely withstand. The design shear for riprap placed on an essentially level channel bottom is given by reference 56.

$$\tau = a \left(\gamma_{e} - \gamma\right) D_{50} \tag{33}$$

where

 γ_s = the unit weight of stone saturated surface dry (SSD) coefficient "a" = 0.040

The design shear for riprap placed on channel side slopes is given by the following equation taken from reference 3

$$\tau' = \tau \left(1 - \frac{\sin^2 \phi}{\sin^2 \theta} \right)^{0.5}$$
(34)

where

 ϕ = the angle of the side slope with the horizontal

0 = the angle of repose of the riprap, normally about 40 deg

EM 1110-2-1601 1 July 70

A-5

APPENDIX IV

Notes on Derivation and Use of Hydraulic Properties by the Alpha Method

1. <u>General.</u> Appendix A of reference 89[†] is reproduced here, with minor modifications and rearrangements, to illustrate use of the "Alpha" method for determining the local boundary shear and composite roughness. The Alpha computations are applicable to uniform and gradually varied flow problems. Computations for effective average channel roughness k with and without considering the energy correction factor are included as well as computations for Manning's n. The necessary basic equations and a computation procedure are given in the paragraphs that follow. Illustrations of the Alpha method applied to the effective channel roughness problem are given in plates IV-1 through IV-4.

2. <u>Basic Procedure and Equations.</u> a. The cross section (plate IV-1) is divided into subsections bounded by vertical lines extending from water surface to the wetted perimeter. The mean velocity in the vertical of the subsection is given by V_n and the subsection discharge by $V_n A_n$. The integer subscript n defines the channel subsection. As explained in Chow³ (para 6-5), a simplifying assumption becomes necessary. It is assumed that the energy grade line has the same slope across the entire cross section, that S in the familiar Chezy equation (V = C (RS)^{1/2}) is constant at each subsection, and that the following proportion may be written

$$V_n :: \left(CR^{1/2} \right)_n \tag{IV-1}$$

where C is Chezy's coefficient and R is the hydraulic radius.

† Raised sumbers refer to similarly numbered references in Appendix I.

IV - 1

EM 1110-2-1601 Appendix IV 1 July 70

b. The resistance equation for hydraulically rough channels (para 8c) is

$$C = 32.6 \log_{10} \frac{12.2R}{k}$$

where

C = Chezy's coefficient

R = hydraulic radius, ft

k = equivalent roughness dimension, ft

This equation is plotted in plate IV-2.

c. As $(CR^{1/2})_n$ is proportional to V_n , then $(CR^{1/2})_n A_n$ is proportional to Q_n . From this the following equations are derived[†]

$$Q_{n} = \frac{Q_{T} \left(CR^{1/2}\right)_{n} A_{n}}{\sum \left[\left(CR^{1/2}\right)_{i} A_{i}\right]}$$
(IV-2)

A-6

$$V_{n} = \frac{Q_{T} (CR^{1/2})_{n}}{\sum \left[(CR^{1/2})_{i}A_{i} \right]} \text{ or } \frac{Q_{n}}{A_{n}}$$
(IV-3)

$$\left(CR^{1/2}\right)_{mean} = \frac{\sum\left[\left(CR^{1/2}\right)_{i}A_{i}\right]}{\sum_{i}A_{i}}$$
(IV-4)

$$S = \frac{\overline{v}^2}{\left[\left(CR^{1/2}\right)_{mean}\right]^2}$$
(IV-5)

$$\overline{R} = \frac{\sum \left[R_{i}\left(CR^{1/2}\right)_{i}A_{i}\right]}{\sum \left[\left(CR^{1/2}\right)_{i}A_{i}\right]}$$
(IV-6)

† The subscript i assumes all values of n.

IV-2

10

EM 1110-2-1601 Appendix IV 1 July 70

A.7

3. <u>Backwater Computation</u>. a. All the cross-section hydraulic parameters necessary for backwater computations are computed in plates IV-1 and IV-3. Computing the same parameters at several water-surface elevations and plotting the results permits ready interpolation for intermediate values. The method is programmed for digital computer use^{89,90} if manual computations for a particular project are too time consuming.

b. The boundary and hydraulic characteristics of a channel reach are assumed to be those obtained by averaging the conditions existing at each end of the reach. This procedure implies that the roughness dimensions k assigned to the upstream and downstream sections extend to the midsection of the reach. Therefore, it is important that the reach limits be carefully selected. Two different sets of subsection roughness values should be assigned in cases where the boundary condition changes abruptly such as at the beginning or end of an improved reach. One set of values would apply in the improved reach and the other in the natural channel.

4. Roughness Relation. The roughness dimension k may be taken as equivalent spherical diameter of the average size bed material when the hydraulic losses in the flow regime are attributable to friction alone. In a flow regime where hydraulic losses in addition to friction are present, k may still be used if the losses result in a reasonably uniform slope of the energy grade line. In this case, k will be larger dimensionally than the equivalent spherical diameter of the average size bed material. As Chezy C and Manning's n are equatable $\left(\frac{C}{1.486} = \frac{R^{1/6}}{n}\right)$, k may be determined from a knowledge of Manning's coefficient n. While k remains fairly constant with changing R, n varies with the one-sixth power of R. Therefore, it is better to extrapolate from known conditions to unknown by the use of k rather than n. The k must be evaluated for each subsection. Subsections should be chosen with this in mind so that differing bed materials or bed conditions producing frictionlike losses, such as ripples, dunes, or other irregularities will appear in separate subsections. Hydraulic losses tending to cause breaks in the energy grade line, such as expansion and contraction.

IV-3

Appendix IV 1 July 70

A-B

Plate IV-1

IV-6

EM 1110-2-1601 Appendix IV 1 July 70

> 1. ALCULATE THE AVERAGE VELOCITY, V VIQ./A ₩ = (20,000)/(1864.0) = 10.7 FPS 2. CALCULATE THE DISCHARGE THROUGH EACH SUB-SECTION, Q. $\Omega_{n} = \frac{\Omega_{\tau}(CR^{1/2})_{n}A_{n}}{\Sigma[(CR^{1/2})_{1}A_{1}]} = \frac{20,000(CR^{1/2})_{n}A_{n}}{343,600}$ 0, = 0.0572(34400) = 1968 CF5 Q2 = 0.057211652001 = 9449 Q3 = 0.057211264001 = 7230 Q = 0.0572(13900) = 795 Q = 0.0572(9700) = 555 20 = 19,997 3. CALCULATE THE VELOCITY THROUGH EACH SUB-SECTION $v_{\rm B} = \frac{Q_{\rm B}}{A_{\rm B}}$ V, = (1968)/(225.0) = 8.7 FPS V2 = (9449) '(700.0) = 13.5 ¥3 = (7230) (655.0) = 11.0 V 4 = (795)/1104.01 = 7.5 V 5 = (555)/(180.01 = 3.1 4. CALCULATE THE MEAN SLOPE OF ENERGY GRADE LINE. 5 S = ____(Q)² (CR 1/2) 2 MEAN $(CN^{1/2})_{MCAN} = \frac{\sum[(CN^{1/2}), A_j]}{A} = \frac{348,800}{1864.0} = 188$ s = (10.7)²/(108)² = 0.00324 5. CALCULATE THE MEAN HYDRAULIC RADIUS, R \$[(c#2/2); A;] 前日 Σ[(c*1/2), Aj] A = (4.13 = 10⁸)/(0.9496 + 10⁸) = 11.8 FT 6. CALCULATE THE AVERAGE SHEAR FORCE TO 7 = y#s = (62.5)(11.8)(0.00524) = 2.39 L8/FT ALPHA METHOD HYDRAULIC PROPERTIES

A-9

Plate IV-3

IV - 8

NUREG/CR-4620 ORNL/TM-10067

A-10

Methodologies for Evaluating Long-Term Stabilization Designs of Uranium Mill Tailings Impoundments

Manuscript Completed: May 1988 Date Published: June 1986

Prepared by

J. D. Nalson, S. R. Abt, R. L. Volpe, D. van Zvl, Colorado State University N. E. Hinkle, W. P. Staub, Oak Ridge National Laboratory

Colorado State University Fort Collins, CO 80623

Under Contract to: Oak Ridge National Laboratory Oak Ridge, TN 37831

Prepared for Division of Waste Management Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, D.C. 20555 NRC FIN B0279

11

EDITS MADE FROM NRC'S ERRATH SHEET ON 1/92 Jum profiles can be estimated. The computational procedure is based on the solution of the one-dimensional energy equation with energy losses due to friction. The HEC-2 procedure is similar to the Standard Step Method for computing water surface elevations. The program was developed for flood plain management, floodway encroachment evaluation and flood hazard designations.

4.7 DETERMINATION OF THE MANNING ROUGHNESS COEFFICIENT

The greatest difficulty in applying the Manning formula and other flow models such as HEC-2 is the determination of the boundary roughness coefficient, n. The n value is an estimate of flow resistance. There is not an exac procedure or method for determination of flow resistance. It is imperative to recognize that the selection of an appropriate n value requires careful judgment and reason.

The n values commonly available were formulated for flows in natural and artificial channels. Factors affecting Manning's roughness coefficient include surface roughness, vegetation, channel irregularity, channel alignment, flow depth, silting and scouring, obstructions and channel shape. Chow (1959) and Barnes (1967) present a comprehensive list of n values for open channel applications. Values of n range from 0.017 for smooth channels fr e from growth to 0.07 for cobble bed streams (Chow, 1959). Equations 4.39 and 4.40 are extremely sensitive to the n value. Therefore the selection of an appropriate n value may require several iterations.

The Manning formula is commonly used to estimate discharge for overland flow, particularly over large areas in which runoff channelization has not yet initiated. Overland or sheet flow is characterized by a flow depth less than 1.0 ft. and is significantly influenced by the boundary shear or resistance to flow. The n value may vary with flow depth.

Morris and Wiggert (1972) published a list of n values that have been adopted by the U.S. Bureau of Reclamation and are presented in Table 4.2. These values apply to well-seasoned, straight channels on mild slopes with flow depths less than 3.0 ft.

A series of values for the Manning Coefficient, n, were adopted by the Department of the Interior (DOI, 1975) for natural channels and streams. These values are presented in Table 4.3.

One of the most difficult Manning's roughness values to determine is for riprap. Riprap serves as an alternative surface stability technique that provides considerable resistance to flow resulting in velocity and energy dissipation. An expression for determining the value of the Manning coefficient, n, for riprap was presented by the Corps of Engineers (COE, 1970) and by Anderson et al. (1970) is:

r = 0.0395 (dso)1/6

(4.41)

NUREG/CR-4480 PNL-5724 RU

A -12

Erosion Protection of Uranium Tailings Impoundments

Manuscript Completed: August 1986 Data Published: September 1986

Prepared by W. H. Walters, R. L. Skaggs, M. G. Foley, P. A. Beedlow

Pacific Northwest Laboratory Richland, WA 99352

Prepared for Division of Engineering Safety Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555 NRC FIN B2370 cannot satisfy these criteria, two or more filter layers may be necessary. The finer filter overlies the top layer of the radon suppression cover and the coarser filter lies between the finer filter and the riprap.

A- 13

The grain-size curve of the filter material should have a smooth s-shape without pronounced breaks and should be roughly parallel to the grain-size curve of the soil being protected, although other smooth shapes may be used.

Thickness of Filter. The filter layer should have a minimum thickness of 12 in. and be at least equal to one-half the riprap layer thickness. Where two filter layers are required, the finer filter layer should have a minimum thickness of 12 in. and be at least equal to one-half the coarser filter layer thickness.

The use of these layer thicknesses assumes that the underlying radon suppression cover is structurally stable and capable of supporting the loads imposed by the construction equipment and the filter and riprap layers. If this is not the case, larger filter layer thicknesses may be needed to support construction equipment or the riprap. Larger filter layer thicknesses may also account for larger differential settlements caused by consolidation of the underlying materials. The greater layer thickness should be determined in the field based on the actual condition of the radon suppression cover.

Toe Protection

A riprap toe protection is required at the base of all impoundment side slopes. In general, the toe protection can be one of two types as shown in Figure 10.

For Method A, the riprap layer constructed on the slope may extend below grade to a depth of 1.5 times the estimated depth of scour at the impoundment perimeter. The angle of the below-grade protection may be steeper than the relatively flat slope angle, if the stability of the impoundment after scour is adequate. The sizing of the riprap is based on the actual slope used, assuming that the full design-estimated depth of scour has occurred.

A second approach, Method B, includes a horizontal riprap toe. The width of the horizontal protection should be at least equal to the estimated depth of scour times 1.5. The thickness of the layer should be at least 1.5 times the thickness of the riprap on the slope.

Gully Erosion Protection

The remaining unprotected side slope surfaces above maximum flood elevation require protection from gully erosion. These surface areas are the most vulnerable to gullying because of their steepness. Once gullies are initiated, the process can proceed rapidly (one year or several years) toward breach in the impoundment. Each impoundment will require some minimum thickness of rock riprap completely covering the side slopes for the purpose of preventing gully erosion. This will be the case irregardless of whether flooding is a consideration. Because of the threat of this potentially long-term protection of the side slopes. However, the problem is complicated by other factors.

Gullies that form from land surface depressions and rills can actively be prevented by rock riprap applied to the side slopes of impoundments since they are the direct result of overland flow. Gullies caused by differential settlebecause they are not the direct result of rainfall-runoff. However, in these situations, the presence of an engineered rock cover could mitigate the effects of these processes by self-adjustment of the rock cover itself. This vidual rocks to accommodate the new surface runoff by the shifting of indiarmor may prevent further damage caused by differential settlement, slope failure, and piping, it is best that preventive measures for these types of cover.

Design Suggestions for Gully Erosion Protection

A study by Walters and Skaggs (1986) determined that there are no procedures available to design rock riprap to protect against overland and gully erosion. The study results indicated that movement of runoff over a soil cover armored by rock may involve both interflow through the rock layer and filter and cascading flow over the rock surface. Not enough information is the rock layer can be described by the equations of porous musica flow. The interstitial voids in the rock layer can be extremely large and would allow

The lack of information on the hydraulic roughness (Manning's n) for flow over the rock surface poses another problem. The results of field and laboratory testing are very limited for unprotected soil surfaces and nonexistent for rock surfaces. Therefore, the inability to predict the flow characteristics over and through the rock layer would limit any analysis to very rough assumptions. A second approach, Method B, includes a horizontal riprap toe. The width of the horizontal protection should be at least equal to the estimated depth of scour times 1.5. The thickness of the layer should be at least 1.5 times the thickness of the riprap on the slope.

14

Gully Erosion Protection

The remaining unprotected side slope surfaces above maximum flood elevation require protection from gully erosion. These surface areas are the most vulnerable to gullying because of their steepness. Once gullies are initiated, the process can proceed rapidly (one year or several years) toward a breach in the impoundment. Each impoundment will require some minimum thickness of rock riprap completely covering the side slopes for the purpose of preventing gully erosion. This will be the case irregardless of whether flooding is a consideration. Because of the threat of this potentially long-term protection of the side slopes. However, the problem is complicated by other factors.

Gullies that form from land surface depressions and rills can actively be prevented by rock riprap applied to the side slopes of impoundments since they are the direct result of overland flow. Gullies caused by differential settlement, slope failure, and piping cannot always be prevented by rock riprap because they are not the direct result of rainfall-runoff. However, in these situations, the presence of an engineered rock cover could mitigate the effects of these processes by self-adjustment of the rock cover itself. This would help prevent further erosion by surface runoff by the shifting of individual rocks to accommodate the new surface configuration. Although rock armor may prevent further damage caused by differential settlement, slope failure, and piping, it is best that preventive measures for these types of failures be considered in the design of the embankment foundation and earthen cover.

Design Suggestions for Gully Erosion Protection

A study by Walters and Skaggs (1986) determined that there are no procedures available to design rock riprap to protect against overland and gully erosion. The study results indicated that movement of runoff over a soil cover armored by rock may involve both interflow through the rock layer and filter and cascading flow over the rock surface. Not enough information is available at this time to indicate whether the movement of the runoff through the rock layer can be described by the equations of porous media flow. The interstitial voids in the rock layer can be extremely large and would allow runoff to move through rapidly.

The lack of information on the hydraulic roughness (Manning's n) for flow over the rock surface poses another problem. The results of field and laboratory testing are very limited for unprotected soil surfaces and no. xistent for rock surfaces. Therefore, the inability to predict the flow characteristics over and through the rock layer would limit any analysis to very rough assumptions.

COMPUTING DEGRADATION AND LOCAL SCOUR

TECHNICAL GUIDELINE FOR BUREAU OF RECLAMATION

N-1-

U.S. Department of the Interior Bureau of Reclamation

Inch-pound units	Metric units
$L_g = \frac{37.05}{0.00112}$	$L_{q} = \frac{1.625 (6.94)}{0.00112}$
$L_{g} = 33100ft$	Lg = 10100 m
for the subreaches:	
Inch-pound units	Metric units
$L_1 = \frac{22.8}{2(0.00112)} = 10\ 200\ ft$	$L_1 = \frac{6.94}{2(0.00112)} = 3100 \text{ m}$
$L_2 = \frac{3(22.8)}{8(0.00112)} = 7$ 600 ft	$L_2 = \frac{3(6.94)}{8(0.00112)} = 2 300 \text{ m}$
$L_3 = \frac{3(22.8)}{4(0.00112)} = 15 300 \text{ ft}$	$L_3 = \frac{3(6.94)}{4(0.00112)} = 4700 \text{ m}$

and

CHANNEL SCOUR DURING PEAK FLOODFLOWS

The design of any structure located either along the riverbank and flood plain or across a channel requires a river study to determine the response of the riverbed and banks to large floods. A knowledge of fluvial morphology combined with field experience is important in both the collection of adequate field data and selection of appropriate studies for predicting the erosion potential. In most studies, two processes must be considered, (1) natural channel scour, and (2) scour induced by structures placed by man either in or adjacent to the main river channel.

Natural scour occurs in any moveable bed river but is more severe when associated with restrictions in river widths, caused by morphological channel changes, and influenced by erosive flow patterns resulting from channel alinement such as a bend in a meandering river. Rock outcrops along the bed or banks of a stream can restrict the normal river movement and thus effect any of the above influencing factors. Manmade structures can have varying degrees of influence, usually dependent upon either the restriction placed upon the normal river movement or by turbulence in flow pattern directly related to the structure. Examples of structures that influence river movement would be (1) levees placed to control flood plain flows, thus increasing main channel discharges; (2) spur dikes, groins, riprapped banks, or bridge abutments used to control main channel movement; or (3) pumping plants or headworks to canals placed on a riverbank. Scour of the bed or banks caused by these structures is that created by higher local velocities or excessive turbulence at the strucutre. Structures placed directly in the river consist of (1) piers and piling for either highways or railroad bridges; (2) dams across the river for diversion or storage, (3) grade control structures such as rock cascades, gabion controls or concrete baffled apron drop

structures; or (4) occasionally a powerline or tower structure placed in the flood plain but exposed to channel erosion with extreme shifting or movement of a river. All of the above may be subject to higher local velocities, but usually are subject to the more critical local scour caused by turbulence and helicoidal flow patterns.

1.2

The prediction of river channel scour due to floods is necessary for the design of many Reclamation structures. These Reclamation guidelines on scour represent a summary of some of the more applicable techniques which are described in greater detail in the reference publications by T. Blench (1969), National Cooperative Highway Research Program Synthesis 5 (1970), C. R. Neill (1973), D. B. Simons and F. Senturk (1977), and S. C. Jain (1981). The paper by S. C. Jain (1981) summarized many of the empirical equations developed for predicting scour of a streambed around a bridge pier. It should be recognized that the many equations are empirically developed from experimental studies. Some are regime-type based on practical conditions and considerable experience and judgment. Because of the complexity of scouring action as related to velocity, turbulence, and bed materials, it is difficult to prescribe a direct procedure. Reclamation practice is to compute scour by several methods and utilize judgment in averaging the results or selection of the most applicable procedures.

The equations for predicting local channel scour usually can be grouped into those applicable to the two previously described processes of either a natural channel scour or scour caused by a manmade structure. A further breakdown of these processes is shown in table 6 where Type A equations are those used for natural river erosion and Types B, C, and D cover various manmade structures.

The importance of experience and judgment in conducting a scour study cannot be overemphasized. It should be recognized that the techniques described in these guidelines merely provide a set of practical tools in guiding the investigator to estimate the amount of scour for use in design. The collection of adequate field data to define channel hydraulics and bed or bank materials to be scoured govern the accuracy of any study. They should be given as much emphasis as the methodology used in the analytical study. Field data are needed to compute water surface profiles for a reach of river in the determination of channel hydraulics for use in a scour study. With no restrictions in channel width, scour is computed from the average channel hydraulics for a reach. If a structure restricts the river width, scour is computed from the channel hydraulics at the restriction. In all cases, scour estimates should be based upon the portion of discharge in and hydraulic characteristics of the main channel only.

30

4 18

Table 6. - Classification of scour equation for various structure designs

Equation type	Scour	Design
A	Natural channel for restric- tions and bends	Siphon crossing or any buried pipeline. Stability study of a natural bank. Waterway for one-span bridge.
В	Bankline structures	Abutments to bridge or siphon crossing. Bank slope protection such as riprap, etc. Spur dikes, groins, etc. Pumping plants. Canal headworks.
с	Midchannel structures	Piling for bridge. Piers for flume over river. Powerline footings. Riverbed water intake structures.
D	Hydraulic structures across channel	Dams and diversion dams. Erosion controls. Rock cascade drops, gabion controls, and concrete drops.

Although each scour problem must be analyzed individually, there are some general flow and sediment transport characteristics to be considered in making the judgmental decision on methodology. The general conclusion reached by Lane and Borland (1954) was that floods do not cause a general lowering of streambed, and rivers such as the Rio Grande may scour at the narrow sections but fill up at the wider downstream sections during a major flood. Another general sediment transport characteristic is the influence of a large sediment load on scour which includes the variation of sediment transport associated with a high peak, short duration flood hydrograph. The large sediment concentrations usually of clay and silt size material will occur on the rising stage of the hydrograph up and through the peak of the flood while the falling stage of the flood with deposition of coarser sediments in the bed of the channel may be accompanied by greater scour of the wetted channel banks. Channel scour also occurs when the capacity of streamflow with extreme high velocities in portions of the channel cross section will transport the bed material at a greater rate than replacement materials are supplied. Thus, maximum depth of channel scour during the flood is a function of the channel geometry, obstruction created by a structure (if any), the velocity of flow, turbulence, and size of bed material.

Design Flood

The first step in local scour study for design of a structure is selection of design flood frequency. Reclamation criteria for design of most structures

shown in table 6 varies from a design flood estimated on a frequency basis ' from 50 to 100 years. This pertains to an adequate waterway for passage of the floodflow peak. The scour calculations for these same structures are always made for a 100-year flood peak. The use of the 100-year flood peak for scour is based on variability of channel hydraulics, bed material, and general complexity of the erosive process. The exception in the use of the 100-year flood peak for estimating scour would be the scour hole immediately below a large dam or a major structure where loss of structure could involve lives or represent a catastrophic event. In this case, the scour for use in design should be determined for a flow equal to 50 percent of the structure design flood.

Equation Types A and B (See Table 6)

Natural river channel scour estimates are required in design of a buried pipe, buried canal siphon, or a bankline structure. For most siphon crossings of a river, the cost of burying a siphon will dictate either the selection of a natural narrow reach of river or a restriction in width created by constructing canal bankline levees across a portion of the flood plain. A summary of available methods for computing scour at constrictions is given by Neill (1973). The four methods for estimating general scour at constricted waterways described by Neill (1973) are considered the proper approach for estimating scour for use in either design of a siphon crossing or where general scour is needed of the riverbed for a bankline structure. The four methods supplemented with Reclamation's procedure for application are given below:

Field measurments of scour method. - This method consists of observing or measuring the actual scoured depths either at the river under investigation or a similar type river. The measurements are taken during as high a flow as possible to minimize the influence of extrapolation.

A Reclamation unpublished study by Abbott (1963) analyzed U.S. Geological Survey discharge measurement notes from several streams in the southwestern United States, including the Galisteo Creek at Domingo, New Mexico, and developed an empirical curve enveloping observed scour at the gaging station. This envelope curve for use in siphon design was further supported by observed scour from crest-stage and scour gages on Gallegos. Kutz, Largo, Chaco, and Gobernador Canyons in northwest New Mexico collected during the period from 1963 to 1969. The scour gages consisted of a series of deeply anchored buried flexible tapes across the channel section that were resurveyed after a flood to determine the depth of scour at a specific location. The results of these measurements are shown on figure 8 along with the envelope curve for Galisteo Creek that support scour estimates for wide sandbed (D50 varying from 0.5 to 0.7 mm) ephemeral streams in the southwestern United States by the equation.

$$d_{s} = K(q)^{0.24}$$
 (24)

where:

ds * Depth of scour below streambed, ft (m)
K * 2.45 inch-pound units (1.32 metric units)
q * Unit water discharge, ft³/s per ft of width (m³/s per m
of width)

1-20

The use of equation 24 except as a check on other methods would be limited to channels similar to those observed on relatively steep slopes ranging from 0.004 to 0.008 ft/ft (m/m). Because of shallow depths of flow and medium to coarse sand size bed material the bedload transport should also be very high.

Regime equations supported by field measurements method. - This approach as suggested by Neill (1973) on recommendations by Blench (1969) involves obtaining field measurements in an incised reach of river from which the bankfull discharge and hydraluics can be determined. From the bankfull hydraulics in the incised reach of river, the flood depths can be computed by:

$$d_{f} = d_{i} \left(\frac{q_{f}}{q_{i}}\right)^{m}$$
(25)

A-21

where:

df * Scoured depth below design floodwater level

d; = Average depth at bankfull discharge in incised reach

of = Design flood discharge per unit width

qi = Bankfull discharge in incised reach per unit width

m = Exponent varying from 0.67 for sand to 0.85 for coarse gravel

This method has been expanded for Reclamation use to include the empirical regime equation by Lacey (1930) and the method of zero bed-sediment transport by Blench (1969) in the form of the Lacey equation:

$$d_m = 0.47 \left(\frac{Q}{T}\right)^{1/3}$$
 (26)

where:

 $d_m = Mean depth at design discharge, ft (m)$ Q = Design discharge, ft³/s (m³/s)f = Lacey's silt factor equals 1.76 (D_m)^{1/2} where D_m equal meangrain size of bed material in millimeters

and the Blench equation for "zero bed factor":

$$d_{fo} = \frac{q_f^2}{F_{bo}^{1/3}}$$
 (27)

where:

 d_{fo} = Depth for zero bed sediment transport, ft (m) q_f = Design flood discharge per unit width, ft³/s per ft (m³/s per m) Fbo = Blench's "zero bed factor" in ft/s² (m/s²) from figure 9

The maximum natural channel scour depth for design of any structure placed below the streambed (i.e., siphon) or along the bank of a channel must

consider the probable concentration of floodflows in some portion of the natural channel. Equations 25, 26, or 27 for predicting this maximum depth are to be adjusted by the empirical multiplying factors, Z, shown for formula Types A and B (table 6), in table 7. An illustration of maximum scour depth associated with a flood discharge is shown in a sketch of a natural channel, figure 10. As shown in table 7 and on figure 10, the ds equals depth of scour below streambed.

d	s		Z	df	(28)
d	s	*	Z	dm	(29)
d	s		Z	dfo	(30)

1.23

Table 7. - Multiplying factors, Z, for use in scour depths by regime equations

Condition	Value of Z				
Condition	ds = Z df	Lacey ds = Z dm	Blench d _s = Z d _{fo}		
Equation Types A and B					
Straight reach Moderate bend Severe bend Right angle bends Vertical rock bank or wall	0.5 0.6 0.7	0.25 0.5 0.75 1.0 1.25	} <u>1</u> / 0.6 1.25		
Equation Types C and D			1		
Nose of piers Nose of guide banks Small dam or control across river	1.0 0.4 to 0.7	1.50 to 1.75 1.5	0.5 to 1.0 1.0 to 1.75 0.75 to 1.25		
across river		1.5	0.75 to 1		

1/Z value selected by USBR for use on bends in river.

NOTE: dep > de > den. Point C is low point of notural section.

Figure 10. - Sketch of natural channel scour by regime method.

Although not shown on figure 10, the df from Neill's equation 25 is usually less than the dfo from Blench's equation 27 but greater than the dm from Lacey's equation 26.

K.24

The design of a structure under a river channel such as a siphon is based on applying the scoured depth, d_s , as obtained from table 7 to the low point in a surveyed section, as shown by point C on figure 10. This criteria is considered by Reclamation as an adequate safety factor for use in design. In an alluvial streambed, designs should also be based on scour occuring at any location in order to provide for channel shifting with time.

Mean velocity from field measurements method. - This approach represents an adjustment in surveyed channel geometry based on an extrapolated design flow velocity. In Reclamation's application of this method, a series of at least four cross sections are surveyed and backwater computations made for the design discharge by use of Reclamation's Water Surface Profile Computer Program. In addition to the surveyed cross sections observed, water surface elevations at a known or measured discharge are needed to provide a check on Manning's "n" channel roughness coefficient. This procedure allows for any proposed waterway restrictions to be analyzed for channel hydraulic characteristics including mean velocity at the design discharge. The usual Reclamation application of this method is to determine the mean channel depth, d_m , from the computer output data and apply the Z values defined by Lacey in table 7 to compute a scour depth, d_s ,

Examples of more unique solutions to scour problems were Reclamation studies on the Colorado River near Parker, Arizona, and Salt River near Granite Reef Diversion Dam, Arizona, where an adjustment in "n" based on particle size along with a Z value from table 7 provided a method of computing bed scour. The selection of a particle size "n" associated with scour in the above two examples was computed from the Strickler (1923) equation for roughness of a channel based on diameter of particles

$$K = \frac{C}{D_{90}^{1/6}}$$
 (31)

 $C\approx 26$ from Nikuradse (1933) and "n" = 1/K. The appropriate "n" values for the two rivers based on particle size and engineering judgment were selected as follows:

KIVEr	D (mm)	Particle size "n"	Selected "n"
Colorado Salt	0.2 18	0.01	0.014

In the Colorado River study, the existing channel "n" value of 0.022 was adjusted down to 0.014 due to bed material particle size to give a computed water surface at design discharge representative of a scoured channel. With a Z value of 0.5, the scoured section in the form of a trianglular section combined with the accepted "n" of 0.022 provided a close check on the water surface computed without scour. An illustration of this technique is shown in sketch on figure 11a. Another example is shown on figure 11b for a Salt River scour study where the particle size "n" of 0.02 gave a reduced mean depth. Scour was assumed to be in the shape of a triangle where the average depth of scour would be equal the depth at an "n" equal to 0.02 subtracted from depth at an "n" equal to 0.03. (See example problem in subsequent paragraph.)

4 Competent or limiting velocity control to scour method. - This method assumes that scour will occur in the channel cross section until the mean velocity is reduced to that where little or no movement of bed material is taking place. It gives the maximum limit to scour existing in only the deep scour hole portion of the channel cross section and is similar to the Blench equation 27 for a "zero bed factor."

The empirical curves, figure 12, derived by Neill (1973) for competent. velocity with sand or coarser bed material (>0.30 mm) represent a combining of regime criteria, Shields (1936) criterion for material >1.0 mm, and a mean velocity formula relating mean velocity V_m to the shear velocity. The competent velocities for erosion of cohesive materials recommended by Neill (1973) are given in table 8. The scour depth or increase in area of scoured channel section with corresponding increase in depth for competent velocity, V_c , is determined by relationship of mean velocity, V_m , to V_c in the equation:

$$d_{s} = d_{m} \left(\frac{V_{m}}{V_{c}} - 1 \right)$$
(32)

1.25

6

where:

 $d_s = Scour depth below streambed, ft (m)$ $<math>d_m = Mean depth, ft (m)$

Table 8. - Tentative guide to competent velocities for erosion of cohesive materials* (after Neill, 1973)

		Competent mean velocity							
Depth of flow		Low values - easily erodible		Average values		High values - resistant			
ft m	material		ft/s	m/s	n.ate	rial			
		ft/s	m/s			ft/s	m/s		
5 10	1.5	1.9	0.6	3.4 3.9	1.0	5.9	1.8		
20 50	6 15	2.3	0.7	4.3	1.3	7.4	2.3		

* Notes: (1) This table is to be regarded as a rough guide only, in the absence of data based on local experience. Account must be taken of the expected condition of the material after exposure to weathering and saturation. (2) It is not considered advisable to relate the suggested low, average, and high values to soil shear strength or other conventional indices, because of the predominating effects of weathering and saturation on the erodibility of many cohesive soils.

11-26

a. Colorado River Study

b. Solt River Study

Figure 11. - Sketch of scour from water surface profile computations and reduced "n" for scour.

The use of figure 12 and table 8 recommended by Neill (1973) has had limited application in Reclamation, but appears to be a potential useful technique for many Reclamation studies on scour and armoring of the channel.

1.27

Equation Type C (See Table 6)

The principal references for design of midchannel structures for scour such as at bridge piers are National Cooperative Highway Research Program Synthesis 5 (1970), C. R. Neill (1973), Federal Highway Administration, Training and Design Manual (1975), Federal Highway Administration (1980), and S. C. Jain (1981). The numerous empirical relationships for computing scour at bridge piers include one or more of the following hydraulic parameters: pier width and skewness, flow depth, velocity, and size of sediment. The many relations available were further broken down by Jain (1981) to two different approaches: (1) regime, and (2) rational.

The Federal Highway Administration has funded numerous research projects to assist in improving their designs of bridge piers. This research has not resulted in any one recommended procedure. Reclamation's need for scour estimates at midchannel structures is limited. The procedures adopted are to try at least two techniques and apply engineering judgment in selecting an average or most reliable method. The regime approach is to use either equations 26, 27, 28, or 30 and a Z value from table 7. An appropriate Z value to use for piers is 1.0 as found for the railway bridge piers applied to the Lacey equation 29 reported by Central Board of Irrigation and Power (1971).

The rational equation selected for scour at piers is described by Jain (1981) in the form:

$$\frac{a_{s}}{b} = 1.84 \left(\frac{d}{b}\right)^{0.3} \left(F_{c}\right)^{0.25}$$
(33)

where:

d_s * Depth of scour below streambed, ft (m) b * Pier size, ft (m) d = Flow depth, ft (m) F_c = V_c/ \sqrt{gd} = Threshold Froude number V_c = Threshold velocity, ft/s (m/s) from figure 12 g = Acceleration due to gravity, 32.2 ft/s² (9.81 m/s²)

Equation Type D (See Table 6)

Immediately downstream from any hydraulic structure the riverbed is subject to the erosive action created by the structure. Some type of stilling basin or energy dissipator as described by Reclamation (1977) is provided in the design of such structures to dissipate the energy thereby reducing the erosion potential. There still remains at most structures, below the point where the structure ends and the natural riverbed material begins, a potential for scour. The magnitude of this scour hole will depend on a combination of flow velocity, turbulence, and vortices generated by the structure. Simons and Senturk (1977) describe many of the available equations.

.

-

1.28

Figure 12. - Suggested competent mean velocities for significant bed movement of cohesionless materials, in terms of grain size and depth of flow (after Neill, 1973).

41

11-29

HYDROLOGY FOR ENGINEERS

Third Edition

Ray K. Linsley, Jr.

Professor Emeritus of Hydraulic Engineering Stanford University President, Linsley Kraeger, Assoc, Ltd.

Max A. Kohler

Consulting Hydrologist Formerly Associate Director, Hydrology U.S. National Weather Service

Joseph L. H. Paulhus

Consulting Hydrometeorologist Formerly Chief, Water Management Information Division U.S. National Weather Service

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogotá Hamburg Johannesburg London Madrid Mexico Montreal New Delhi Panama Paris São Paulo Singapore Sydney Tokyo Toronto

ing of Wastewater Rewie

nt Systems

rinciples and

igineers

15

ng and

484 HYDROLOGY FOR ENGINEERS

Table A-18 Values of n for the Manning Formula [Eq. (4-7)]

Channel condition	n†
a single deput tubing	0.009
Plastic, glass, urawn ruonig	0.010
Neat cement, smooth metal	0.011
Planed timber, asbestos pipe	0.012
Wrought iron, welded steel, canvas	0.013
Ordinary concrete, aspnaited cast not	0.014
Unplaned umber, vitrined clay, glazed offer	0.015
Cast-iron pipe, concrete pipe	0.016
Riveted steel, brick, dressed stone	0.017
Rubble masonry	0.018
Smooth earth	0.020
Firm gravel	0.023
Corrugated metal pipe and flumes	01000
Natural channels:	0.029
Clean, straight, full stage, no pools	0.035
As above with weeds and stones	0.039
Winding, pools and shallows, clean	0.047
As above at low stages	0.042
Winding, pools and shallows, weeds and stones	0.052
As above, shallow stages, large stones	0.065
Sluggish, weedy, with deep pools	0 112
Very weedy and sluggish	

A-30

 \uparrow Values quoted are averages of many determinations; variations of as much as 20 percent must be expected, especially in natural channels.

CIVIL ENGINEERING REFERENCE MANUAL

A31

Sixth Edition

Michael R. Lindeburg, P.E.

PROFESSIONAL PUBLICATIONS, INC. Belmont, CA 94002

OPEN CHANNEL FLOW

Appendix A: Design Use Values of Manning's n

channel material	n
clean, uncoated cast iron	0.013-0.015
clean, coated cast iron	0.012-0.014
dirty, tuberculated cast iron	0.015-0.035
riveted steel	0.015-0.017
lock-bar and welded	0.012-0.013
galvanized iron	0.015 - 0.017
brass and glass	0.009-0.013
wood stave	
small diameter	0.011-0.012
large diameter	0.012-0.013
concrete	
with rough joints	0.016-0.017
dry mix, rough forms	0.015-0.016
wet mix, steel forms	0.012-0.014
very smooth, finished	0.011 - 0.012
vitrified sewer	0.013-0.015
common-clay drainage tile	0.012-0.014
asbestos	0.011
planed timber	0.011
canvas	0.012
unplaned timber	0.014
brick	0.016
rubble masonry	0.017
smooth earth	0.018
firm gravel	0.023
corrugated metal pipe	0.022
natural channels, good condition	0.025
natural channels with stones and weeds	0.035
very poor natural channels	0.060

A 32
Canonie Environmental

Canonie Environmental By JWS Date<u>5/10/94</u> Subject <u>Riprap Size Design Natural Sheet</u> <u>B-1</u> of <u>B-1</u> Chkd By M Date <u>5/10/94</u> <u>Southwest Channel - Atlas</u> Proj No <u>88-067-12</u>

ATTACHMENT B

NATURAL SOUTHWEST RUNOFF DRAINAGE CHANNEL CROSS SECTIONS

B-2

B-3

6-6

CROSS SECTION NO. 4.1 - LOOKING DOWNSTREAM

6-7

CROSS SECTION NO. 4.2 - LOOKING DOWNSTREAM

8.9

B-11

B-13

CROSS SECTION NO. 7 - LOOKING DOWNSTREAM

8-14

CROSS SECTION NO. 8 - LOOKING DOWNSTREAM

13-16

CROSS SECTION NO. 10 - LOOKING DOWNSTREAM

Canonie Environmental

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet C-1 of C-29 Chkd By My Date 5/10/94 Southwest Channel - Atlas Proj No 88-067-12

ATTACHMENT C

HEC-2 SUBCRITICAL AND SUPERCRITICAL RUNS (SIMULATIONS 1 AND 2) WITH NO ROCKS IN CHANNEL

IMULATION

2

C-13

1.0 5.0 6.0 6.5 1.0 Chand Invert Simili (suburilial) (m. +2 (suburilial) (suburilial) 10

HEC2 S/N: 1916530006 HMVersion: 6.50 Data File: H:SWSUB.IN

**	*****	******	****	*****	******	**
۴.	HEC-2 WAT	ER SURFA	CE PI	OFILES		*
						*
	Version	4.6.2:	May	1991		
						*
•	RUN DATE	19MAY	95	TIME	16:48:05	*
	********	*******	44444		**********	4.4

*****	*****
* U.S. ARMY CORPS OF ENGINE	ERS
* HYDROLOGIC ENGINEERING CE	NTER
* 609 SECOND STREET, SUITE	D
* DAVIS, CALIFORNIA 95616-4	687
* (916) 756-1104	1
*********	*****

	2	6					Х)	(X	X	Х	X	X)	6			Х	X)		()	ς											X	X	X	X)	¢									
)	¢					х)	(Х					X)	6				>	(
)	£.					х)	(X)	(
	3	(X	UX	x	X	X	X)	a	X	X					X									3	X	X	XX	ć.			X	X	X	<u>()</u>	ć									
	5	ĩ	1	1	1		Ŷ		1	ï		7					X									ſ	1			١.		1	ï	1	~	1	1									
	ŝ	1					Ŷ		1	è							Ŷ					v										1	2													
	1	2					0		1				5	2	,		^	4				<i>.</i> ^										1						,								
	1	1					A		1	6.8	A	٨	A/	K.)	۶.			A	8.3	1	0	1										1	CX	×	A.	K)	0	6								
						_												J														1														
				1	1				1	12	1	7	1	1	1		1	1		-	1	1	1	0	1	1	1					/														
				3		5	E	1	ſļ	1		U	1	1			A	Ŀ		1	1	1	6	1	ſ	ų					1	1														
			1	۳.				1		1				4	*																1															
	: :	1	1	1	1	1	\$	1	: :	í.	1	1	1	: :	1		1	ż	11	h		1	1	ż.	i i	1	1	1	i i	÷	÷	: :	i i	ż	ž	23	1	1.1								
	: :		1	1	1				2 1		1	ŝ	÷			1		5					-	1			1				÷			-			ò									
			0	1	0	1		7	1		1	ŝ	2		1	1		1			1	1	1	1	-	1		0	1	1	ē	1	1	1	2	1										
						e			ĕ.		í i	-	01	۰.		ų,		D		r e			÷		51			=	47				-				1	1								
						2	-	-	•		14	-	n, i	4		-	-	-	9	1.5	10	٩.	Å	en e	1	. 5	m	51	N 1	0	9	1	74			ł	1	1								
	11	1.5																																		1	1	1								
		1.0		ŝ	2	2	2	1	1	1	÷	ŝ	1		1	1	÷	ŝ	1	1	1	1.0	-	\$.	1	1	1	*	1	-	-	ŧ.	19	4	ŝ,	-	1	1								
	; ;	1.2	3	1	;	;	-	ŝ.	: ;	13	1	\$	1	: :	; ;	1	1	2	\$ 1	11	1	1	\$	ŧ.	13	d	1	1	2.3	1	\$	11	11	1	t		1	1								
								1	i a	- 11	12		=	**	1.0	: 2	=				13		=	51	82		a	-	n e	-																
								1	ł.			ġ	1	ē.	1		۸	1	n.			M		r.	1		н	1	5	n		0														
												2					2		Ľ.,			2	_		4				Ľ.,	1	_	2														
								1		1	1	1	-		1	1	1	-	- 1		1	1	-		1	1	-	1	-	-	1															
A							2						1																				1		1											
37 Brookside	-	0	a	d					1	18	Ţ	ę	ri	D4	11	Y	+	1	Ģ¢	21	H.	1e	C	ť,	10	1	IT.		Q	0	1	18	5		*		1	5	0.	5)	1	25	2.0	16	56	0

C-2

Run Date: 19MAY94 Run Time: 16:48:05 HMVersion: 6.50 Data File: H:SWSUB.IN

Page 1

63

	*********	*********	********	****					THIS RUN	EXECUTED 19M	IAY94 16:48:05
H	EC-2 WATER	SURFACE PR	OFILES								
V	ersion 4	.6.2; May	1991	****							
FR 1123	SOUTHWEST ATLAS MINI SUB	CHANNEL ERALS 88-06 CRITICAL RU	57 5/12/94 JN - NO WED	GE							
11	ICHECK	1 NQ	NINV	IDIR	STRT	METR	IC HVINS	٩	WSEL	FQ	
	0.	0.	0.	0	-1.	0.	1.5	1605. 4	014.61	Ο.	
12	NPROF	IPLOT	PREVS	XSECV	XSECH	FN	ALLDC	IBW	CHNIM	ITRACE	
	0,	0.	0.	0	0	0	-1				
	0.03 2 10 4032 4020	0.03 0.038 8 0 240	0.03 204.2 4015.7 4030	0.03 32 15 27	5 5 0 0	325 0 4010 4037	0.00 0 167.1 325	0 0 4010	0 0 187.1	0 0 4015.7	0 0 204,2
HH (1 GR	2 9 4040 4040	0.034 7 0 270	150 0 4011.7 4040.0	0.03 32 150. 320.	5 0 0	320 150 4011.7	0 150 160	0 150 4020	0 0 230	0 0 4030	0 0 255
H (1 SR SR	2 8 4050 4040	0.034 7 0 250	135.0 0.0 4013.4 4050.0	0.03 310. 135. 310,	5 0 0 0	310.0 160.0 4013.4	0 160 145	0 160 4020	0 0 220	0 0 4030	0 0 235
iH (1 SR	2 7 4050 4040	0.034 7 0 240	130.0 0.0 4015.1 4047.0	0.03 290. 130. 290.	5 0 0 0	290.0 150.0 4015.1	0 150 140	0 150 4020	210	0 0 4030	0 0 225
ŧH	2	0.034	AI 130.0	0.03	5- 12	290.0	576 L - 11 EN	0	11700	0	0
in ar	(4050 / 4040	8 0 240	0.0 4015.9 4048.0	290. 130. 265.	007	72.0 4015.9 4048.0	72 140 290	4020	205	4030	220
,]	ev.	A.NO		1514.			Ronah	L'Bank	Center	Cheach to	n; (n;)
	χ	NO.	भ -	1	Bog.	51A.	End	51A			

X:CC NO.

UAP 5/2/92

	Run Date:	19MAY94	Run Time:	16:48:05	HMVersion: 6	6.50 Data F	ile: H:SWS	JB.IN		Page
HH AR AR	2 6 4050 4040	0.042 8 0 230	127.0 0.0 4016.7 4050.0	0.035 285.0 127.0 245.0	285.0 75.0 4016.7 4050.0	75 133 285	75 4020	160	4030	205
KH K1 GR	2 5.2 4050 4050	0.042 7 0 230	110.0 0.0 4017.4 4058.0	0.035 280.0 110.0 280.0	280.0 66.0 4017.4	66 115	66 4030	175	4040	220
HHK1 SR	2 5,1 4050 4050	0.042 7 0 225	95.0 0.0 4018.1 4058.0	0.035 280.0 95.0 280.0	280.0 66.0 4018.1	66 105	66 4030	125	4040	205
朝 (1) 記 記	2 5 4050 4050	0.038 7 0 200	85.0 0.0 4018.9 4058.0	0.035 275.0 85.0 275.0	275.0 66.0 4018.9	66 95	66 4030	112	4040	150
	2 4.2 4050 4050	0.038 7 0 155	85.0 0.0 4020.2 4058.0	0.035 275.0 85.0 275.0	275.0 120.0 4020.2	120 95	120 4030	110	4040	125
H A A A A A A A A	2 4.1 4050 4050	0.038 7 0 135	85.0 0.0 4020.9 4058.0	0.035 270.0 85.0 270.0	270.0 66.0 4020.9	46 95	66 4030	i 10	4040	125
H AR AR	2 4 4050 4050	0.038 7 0 140	80.0 0.0 4021.6 4058.0	0.035 255.0 80.0 255.0	255.0 66.0 4021.6	66 90	66 4030	105	4040	120
iH (1 iR iR	2 3 4050 4050	0.034 7 0 140	70.0 0.0 4024.4 4058	0.035 250.0 70.0 250	250.0 250.0 4024.4	0 250 80	0 250 4030	0 0 95	0 0 4040	0 0 115
	2 2 4050 4050	0.034 8 0 175	65.0 0.0 4027.2 4060.0	0.035 230.0 65.0 195.0	230.0 260.0 4027.2 4060.0	0 260 75 230	0 260 4030	0 0 85	0 0 4040	0 0 145
H T T R	2 1 4050 4060	0.034 7 0 175	60.0 0.0 4030.0 4060.0	0.035 220.0 60.0 220.0	220.0 250.0 4030.0	0 250 70	0 250 4040	0 0 145	0 0 4050	0 0 155

UNP 5/20/92

2

Run Date:	19MAY94	Run Tir	me: 16:48:0	5 HMVe	rsion: 6.50	Data F	ile: H:	SWSUB.IN	
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH 1DC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK ELE R-BANK ELE SSTA ENDST
PROF 1									
RITICAL DEPT	H TO BE	CALCULATED	AT ALL CRO	SS SECTIO	¥S				
490 NH CARD	USED								
720 CRITICAL 10.000 1605.0 0.00 0.014959	DEPTH A: 4.60 0.0 0.00 0.00	SSUMED 4014.60 1605.0 10.32 0.	4014.60 0.0 0.00 0.	4014.61 0.0 0.000 0	4016.25 155.6 0.038 4	1.65 0.0 0.000 0	0.00 0.0 0.000 0.00	0.00 0.0 4010.00 47.61	4032.00 4037.00 153.29 200.91
490 NH CARD SECNO 9.000	USED								
302 WARNING:	CONVEY	ANCE CHANGE	OUTSIDE C	F ACCEPTAR	BLE RANGE,	KRATIO =	1.58		
9.000 1605.0 0.01 0.006000	5.20 0.0 0.00 150.	4016.90 1605.0 6.74 150.	4016.12 0.0 0.00 150.	0.00 0.0 0.000 2	4017.60 238.0 0.035 8	0.71 0.0 0.000 0	1.35 0.7 0.000 0.00	0.00 0.2 4011.70 81.47	4040.00 4040.00 122.42 203.89
490 NH CARD SECNO 8,000	USED								
8.000 1605.0 0.01 0.011656	4.40 0.0 0.00 160.	4017.80 1605.0 8.43 160.	4017.67 0.0 0.00 160.	0,00 0,0 0,000 3	4018.91 190.5 0.035 15	1.10 0.0 0.000 0	1.30 1.5 0.000 0.00	0.00 0.5 4013.40 76.39	4050.00 4050.00 118.73 195.12
490 NH CARD	USED								
7,000 1605.0 0.02 0.008277	4.49 ().0 0.00 150.	4019.59 1605.0 7.10 150.	4019.13 0.0 0.00 150.	0.00 0.0 0.000 2	4020.37 226.2 0.035 11	0.78 0.0 0.000 0	1.46 2.2 0.000 0.00	0.00 0.8 4015.10 90.81	4050.00 4047.00 113.29 204.10

490 NH CARD USED

6.5

Page 3

Run Date:	19MAY94	Run Ti	me: 16:48:0	5 HMVe	rsion: 6.50	Data F	ile: H:	SWSUB.IN		
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR 1 CONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK ELE R-BANK ELE SJTA ENDST	vv
SECNO 6.500										
6.500	4.28	4020.18	4019.82	0.00	4020.98	0.80	0.61	0.00	4050.00	
1605.0	0.0	1605.0	0.0	0.0	222.9	0.0	2.6	1.0	4048.00	
50.0	0.00	7.20	0.00	0.000	0.035	0.000	0.000	4015.90	113.67	
0.008784	12.	12.	16.	2	15	U	0.00	91.60	205.27	
490 NH CARD	USED									
SECNO 6.000	marries	Distant.								
185 MINIMUM	SPECIFIC	ENERGY								
A DOD	L B7	4021 57	4021 57	0 00	4023 01	1 43	0.84	0.00	4050 00	
1605.0	0.0	1605.0	0.0	0.0	167.1	0.0	2.9	1.1	4050.00	
0,02	0.00	9.60	0.00	0.000	0.037	0.000	0.000	4016.70	108.41	
0.014736	75.	75.	75.	0	8	0	0.00	58.67	167.08	
	USED									
SECNO 5.200	Caro									
185 MINIMUM	SPECIFIC	ENERGY								
720 CRITICAL	DEPTH AS	SUMED								
5.200	5.69	4023.09	4023.09	0.00	4024.65	1.56	0.97	0.00	4050.00	
1605.0	0.0	1605.0	0.0	0.0	160.2	0.0	3.1	1.2	4058.00	
0.02	0.90	10.02	0.00	0.000	0.038	0.000	0.000	4017.40	90.80	
0.014097	00.	00.	00.	0	0	0	0.00	21.31	142,10	
490 NH CARD	USED									
185 MINIMUM	SPECIFIC	ENERGY								
720 CRITICAL	DEPTH AS	SUMED								
5.100	6.00	4024.10	4024.10	0.00	4026.03	1.93	0.99	0.00	4050.00	
1605.0	0.0	1605.0	0.0	0.0	144.0	0.0	3.4	1.2	4058.00	
0.03	0.00	11.15	0.00	0.000	0.038	0.000	0.000	4018.10	77.12	
0.015295	66.	66.	66.	0	8	0	0.00	37.96	115.09	
490 NH CARD	USED									
SECNO 5.000										
185 MINIMUM	SPECIFIC	ENERGY								
720 CRITICAL	DEPTH AS	SUMED			and the second					
5.000	6.14	4025.04	4025.04	0.00	4027.03	1.99	0.96	0.00	4050.00	
1605.0	0.0	1005.0	0.0	0.0	0.036	0.0	0.000	4018 00	4058.00	
0 013810	66	66	66	0.000	0.020	0.000	0.000	36 17	104 40	

6.6

Page

4

	10414.40/	Pres - 77		e unite	anione d Ed	Date 1	the Hel			
Kun Date:	19MA194	Kun III	ne: Ib:40:0	o mmve	rsion; 0.00	Data r	ite: h:	2M208'IN		
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VRO6 XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH 1DC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK EI R-BANK EI SSTA ENDST	LEV LEV
90 NH CARD	USED									
4.200 1605.0 0.03 0.009206	6.71 0.0 0.00 120.	4026.91 1505.0 9.69 120.	4026.29 0.0 0.00 120.	0.00 0.0 0.000 3	4028.37 165.7 0.036 5	1.46 0.0 0.000 0	1.34 4.0 0.000 0.00	0.00 1.4 4020.20 39.40	4050.00 4058.00 65.87 105.27	
90 NH CARD SECNO 4.100	USED									
4.100 1605.0 0.03 0.009121	6.65 0.0 0.00 66.	4027.55 1605.0 9.59 66.	4026.93 0.0 0.00 66.	0.00 0.0 0.000 2	4028.97 167.4 0.036 11	1.43 0.0 0.000 0	0.60 4.3 0.000 0.00	0.00 1.5 4020.90 40.37	4050.00 4058.00 65.59 105.95	
90 NH CARD	USED									
4.000	6.46	4028.06	4027.62	0.00	4029.61 160.9	1.54	0.63	0.00	4050.00 4058.00	

SECNO 4.100									
4.100	6.65	4027.55	4026.93	0.00	4028.97	1.43	0.60	0.00	4050.00
1605.0	0.0	1605.0	0.0	0.0	167.4	0.0	4.3	1.5	4058.00
0.03	0.00	9.59	0.00	0.000	0.036	0.000	0.000	4020.90	65.59
0.009121	66.	66.	66,	5	11	0	0.00	40.37	105.95
490 NH CARD	USED								
4.000	6.46	4028.06	4027.62	0.00	4029.61	1.54	0.63	0.00	4050.00
1605.0	0.0	1605.0	0.0	0.0	160.9	0.0	4.5	1.5	4058.00
0.03	0.00	9.97	0.00	0.000	0.036	0.000	0.000	4021.60	61.78
0.010119	66.	66.	66.	2	11	0	0.00	39.77	101.55
490 NH CARD	USED								
3.000	6.15	4030.55	4030.17	0.00	4032.04	1.49	2.43	0.00	4050.00
1605.0	0.0	1605.0	0.0	0.0	163.7	0.0	5.4	1.7	4058.00
0.04	0.00	9.80	0.00	0.000	0.035	0.000	0.000	4024.40	53.18
0,009348	250.	250.	250.	2	11	0	0.00	42.91	96.10
490 NH CARD SECNO 2.000	USED								
2.000	5.99	4033.19	4032.67	0.00	4034.33	1.14	2.29	0.00	4050.00
1605.0	0.0	1605.0	0.0	0.0	187.6	0.0	6.5	2.0	4060.00
0.05	0.00	8.56	0.00	0.000	0.035	0.000	0.000	4027.20	47.92
0.008319	260.	260.	260.	2	11	0	0.00	56.24	104.15
490 NH CARD	USED								
1,000	5.37	4035.37	4034.78	0.00	4036.32	0.95	1,99	0.00	4050.00
1605.0	0.0	1605.0	0.0	0.0	205.2	0.0	7.6	2.4	4060.00
0.06	0.00	7.82	0.00	0.000	0.035	0.000	0.000	4030.00	43.89
0.007617	250	250.	250.	2	15	0	0.00	66.40	110.29
						-			1 1 17 4 86 7

1490 NH CARD USED *SECNO 4.100 4.100 6. 1605.0 0

(-7

Page 5

PLOTTED POINTS (BY PRIORITY) E-ENERGY, W-WATER SURFACE, I-INVERT, C-CRITICAL W.S., L-LEFT BANK, R-RIGHT BANK, M-LOWER END STA

LEVATION	4010. CUMDIS	4015.	4020	402	25.	4030.	4035.	4040.	4045.	4050.	4055.
10.00	0.	1	W. E	1.1.1	1.0		L	R	12267		
	20.	1	W E	1.1			- L	. R .		110.00	
	40.	.1	W E				L	. R .		1997 - 1992 - 1992 - 1992 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 -	
	60.	.1	CW E	1.1				L R .		10.164	
	80.	. 1	.CW E	- A. (C 11 - 14		. L R .	1.1		
	100.	- 1	.CW E					. L R .	1.		
	120.		. CW E	- e	- A. 1			. L.R.	1.111		1.1.1.1.4
0.00	140.	5 d	. LW E		+			LX		1.1.1.1.1.1.1	
9.00	180		. C WE	*				×	1.1.1.4	12.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
	200		CW E								
	220.	1	CW E			1.11		C 1115			1.1.1
	240.	· 1	. CW E		- 10 A			- C - C -	<u>-</u> - (-	1.1.1.1.1.1	
	260.	. 1	. CW E							L .	
	280.	. 1	. W 6		1.1			Sec. 1. 5		k .	
	300.	. 1	. W E	· ·	1.4	1.1		x		ι.	
8.00	320.	. I	. CW	Ε.	- 1 A	1.1.1		* ×		L	
	340.		. W	5				- 1. C. X.		RL	
	300.	7 C3	- 4	N C.						RL	
	400	<u>.</u>	1 1	Y E.				* *		PI	
	420.		1. (W E				1.1.1.1.		RI	
	440.	2	Ĩ	WE						RL	
7.00	460.		I	CW.E						R L	
	480.		. I	CWE					11 - The Sec.	R L	
	500.		. I	CWE				÷		R L	
	520.		- I	CW E				Sec. 1. 1. 1.		RL	
6.50	540.	*	- 1	WE				· · · · · ·		RL	
	500.	·	· * · · ·	W E	1			4		K L	
	600	1	1	. WE		1.1				PI	
6.00	620		14.5		F			1			
0100	640.	1	1		ε.	1.12		C 10	1		R
	660.		. 1	1.1	Ε.			10 D	1.	ĩ	R
5.20	680.		. 1		W E.			x · · · · · ·		L	
	700.	2 C	, I		WE			No. 2010 Tax		L.	
	720.	*	. 1		W.E			A	1	L .	
5.10	740.	4 C C	. 1		W . E						
	760.	r	11.13		W. 1			A	1000	- C - F	1.1.1.1.1.1.1
	780.	•		1.2	- W. 1			A 10.0 PK	1.1.1.1.1.1.1		1.1
5.00	820	11.1	1.1	1 .		с . с		1		1.1	
2.00	840	1		1.	CH	E		1		1	
	860.			1.	.W	E		1		L	
	880.			1.	. CW	Ε.					
	900.			1	. 0	WE.		4		L	
	920.			1	. CI	HE.				L	
4.20	940.	4		1	. (CWE.				L	
	960.	4		- + I		CW E .		×		L	
1.10	980.	* · · · · · ·	×			EWE .				L	*
4,10	1000.					CW E .		A			
	1060		*			CU E			· · · ·	-	
4 00	1060	1.141.3	1	1		CW E					
4.00	1080	1.000		1 1		ru r		1977 - H			· · · · ·
	1100		- C	1	1	CW F				i	
	1120.			1.1		CW F			1	Ĩ.	
	1140.					CW .	E		1.000	L	
	1160.		1			CW .	E			L	
	1180.	*			1 .	CW.	ε	· · · · ·		L	
	1200.		1.00	*	1 .	CW.	E			L	
	1220.	A			1 .	٧.	E			L	
	1240.				1 .	Ch	E	8 1 1 1 1	1.	-	
	1260.		A 1.4		1 .	Ch	E	No. of the second s	1.		

6.8

	1280.		-		1.	CW E				L		R .
	1300			- C - C - C - C	1.	CW E				6	÷	R
3.00	1320				1	CH F	1 - C - C - C - C - C - C - C - C - C -			ĩ.	3	8
2.00	1840			15. THE		CHE		100 C 100 C 100 C		î.	C	P
	4340				1	CH E				1		
	1300.			1.00		CU E	8 I G I I I			1		n .
	1380.		1.00		1. A	.UW E	1.11		8	-	*	R
	1400.		1. A.			. CW E	8 oc - 11 o	A	*		3	K x
	1420.			1.6.1		. CW E	8. S. S. S. S. S.	*		L		R
	1440.			18 Jac 1 1	+1	. CW E	 	4. C 199	• • • • • • • • • • • • • • • • • • •	L		R .
	1460.			1.00		. CW E	4.1			L		R .
	1480.				+ I	. CW E	÷	10 C		L	*	R.
	1500.				. 1	. CW E		V		L	* 1	R.
	1520.		Sec. 1. 1.	1000		. CW E	2.11	• • • • • • • •	212030	L		R.
	1540.		10 A A A A A A A A A A A A A A A A A A A		1 1 1	. CW E	2 C	200 men		L		R.
	1560.			QL 244		CW E		1.11	21 U S F S S	L	0	R
2.00	1580.				1.1	CW E				1	2.1	R
A + 9.5	1600	A	St. 1. 1.	- A		CH F		1.11.11		ĩ	5	p
	1620				1 1	CHE		100 A A A	1	7	÷	0
	1020.			- T	1.5	CU CU	ċ			1		2
	1040.	(A. 1), L.		×		· UW	C		A. 19	2		ĸ
	1000.			- X	- * . · · * . ·	. CW	E.	*	•	5	*	к
	1680.		*	7.1		. CW	E	*	· · · · · · · · · · · · · · · · · · ·	L		R
	1700.		A	×		· CW	.E		1000	L	*	R
	1720.		A	×	· · · · · · · · · · · · · · · · · · ·	. CW	.E	8 C. C. P. S.	¥112 - K.S.	L		R
	1740.			× 11 1	1	. CW	.E	A	8 - E - E - E - E - E - E - E - E - E -	L	*	R
	1760.					. C	WE	÷		L		R
	1780.					I. C	WE			L		R
	1800.	1.1				C	W E			L		R
1.00	1820.				*	1	CW E	× 1	• 1.1	L	*	R

0-10

Ruh Date: 19MAY94 Run Time: 16:48:05 HMVersion: 6.50 Data File: H:SWSUB.IN

Page 6

THIS RUN EXECUTED 19MAY94 16:48:07

***** *** HEC-2 WATER SURFACE PROFILES

Version 4.6.2; May 1991

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

SUBCRITICAL RUN - NO WE

SUMMARY PRINTOUT TABLE 150

	SECNO	XLCH	ELTRD	ELLC	ELMIN	Q	CWSEL	CRIWS	EG	10*KS	VCH	AREA	.01K
	10.000	0.00	0.00	0.00	4010.00	1605.00	4014.60	4014.60	4016.25	149.59	10.32	155.57	131.23
Ċ,	9.000	150,00	0.00	0.00	4011.70	1605.00	4016.90	4016.12	4017.60	60.00	6.74	238.02	207.21
	8.000	160.00	0.00	0.00	4013.40	1605.00	4017.80	4017.67	4018.91	116.56	8.43	190.50	148.66
	7.000	150.00	0.00	0.00	4015,10	1605.00	4019.59	4019.13	4020.37	82.77	7.10	226.16	176.42
	6.500	72.00	0.00	0.00	4015.90	1605.00	4020.18	4019.82	4020.98	87.84	7.20	222.94	171.24
	6.000	75.00	0.00	0.00	4016.70	1605.00	4021.57	4021.57	4023.01	147.36	9.60	167.12	132.21
	5.200	66.00	0.00	0.00	4017.40	1605.00	4023.09	4023.09	4024.65	146.97	10.02	160.23	132.39
	5.100	66.00	0.00	0.00	4018.10	1605.00	4024.10	4024.10	4026.03	152.95	11.15	143.95	129.78
	5.000	66.00	0.00	0.00	4018.90	1605.00	4025.04	4025.04	4027.03	138.10	11.33	141,70	136,58
	4.200	120.00	0.00	0.00	4020.20	1605.00	4026.91	4026.29	4028.37	92.06	9.69	165.71	167.28
	4.100	66.00	0,00	0.00	4020.90	1605.00	4027.55	4026.93	4028.97	91.21	9.59	167.37	168.05
	4.000	66.00	0.00	0.00	4021.60	1605.00	4028.06	4027.62	4029.61	101.19	9.97	160.94	159.55
	3.000	250.00	0.00	0.00	4024.40	1605.00	4030,55	4030.17	4032.04	93.48	9.80	163.75	166.01
	2.000	260.00	0.00	0.00	4027.20	1605.00	4033.19	4032.67	4034.33	83.19	8.56	187.61	175.98
	1.000	250.00	0,00	0.00	4030.00	1605.00	4035.37	4034.78	4036.32	76.17	7.82	205.18	183.90

SUBCRITICAL RUN - NO WE

SUMMARY PRINTOUT TABLE 150

SECNO	Q	CWSEL.	DIFWSP	DIFWSX	DIFKWS	TOPWID	XLCH .
10.000	1605.00	4014.60	0,00	0.00	-0.01	47.61	0.00
9.000	1605.00	4016.90	0.00	2.30	0.00	81.47	150.00
8.000	1605.00	4017.80	0.00	0.91	0.00	76.39	160.00
7.000	1605.00	4019.59	0.00	1.78	0.00	90.81	150.00
6.500	1605.00	4020.18	0.00	0.59	0.00	91.60	72.00
6.000	1605.00	4021.57	0.00	1.40	0.00	58.67	75.00
5.200	1605.00	4023.09	0.00	1.52	0.00	51.31	66.00
5.100	1605.00	4024.10	0.00	1.01	0.00	37.96	66.00
5.000	1605.00	4025.04	0.00	0.94	0.00	36.17	66.00
4.200	1605.00	4026.91	0.00	1.87	0.00	39.40	120.00
4.100	1605.00	4027.55	0.00	0.63	0.00	40.37	66.00
4.000	1605.00	4028,06	0.00	0.52	0.00	39.77	66.00
3.000	1605.00	4030.55	0.00	2.48	0.00	42.91	250.00
2.000	1605.00	4033.19	0.00	2.65	0.00	56.24	260.00
1.000	1605.00	4035.37	0.00	2.18	0.00	66.40	250.00

Page 7

3-12

Run Date: 19MAY94 Run Time: 16:48:05 MMVersion: 6.50 Data File: H:SWSUB.IN

SUMMARY OF ERRORS AND S' CAL NOTES

CAUTION	SECNO#	10.000	PROFILE=	1	CRITICAL DEPTH ASSUMED		
WARNING	SECNO	9.000	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE	ACCEPTABLE	RANG
CAUTION	SECNO=	6.000	PROFILE=	1	CRITICAL DEPTH ASSUMED		
CAUTION	SECNO=	6.000	PROFILE=	1	MINIMUM SPECIFIC ENERGY		
CAUTION	SECNO=	5.200	PROFILE=	1	CRITICAL DEPTH ASSUMED		
CAUTION	SECNOR	5.200	PROFILE=	1	MINIMUM SPECIFIC ENERGY		
CAUTION	SECNO=	5.100	PROFILE=	1	CRITICAL DEPTH ASSUMED		
CAUTION	SECNO=	5.100	PROFILE=	1	MINIMUM SPECIFIC ENERGY		
CAUTION	SECNO=	5,000	PROFILE=	1	CRITICAL DEPTH ASSUMED		
CAUTION	SECNO=	5.000	PROFILE=	1	HINIMUM SPECIFIC ENERGY		

***	****	***********
	HEC-2 WATER S	URFACE PROFILES *
		*
	Version 4.6	.2; May 1991 *
*		*
*	RUN DATE 1	9MAY94 TIME 16:47:51 *
***	****	****

**	****	**	****	****	****	****	******	******
*	U.S.	A	RMY	CORP	S OF	ENG	NEERS	
	HYDR	OL	OGIC	ENG	INEE	RING	CENTER	
*	609	SE	COND	STR	EET.	SUIT	ED	1000
Ŕ	DAVI	S,	CAL	IFOR	NIA	95616	-4687	1.04
*			(5	16)	756-	1104		
4.4.4	a second		44.44				and the second second	

		X	έ.,			Х		XX	(X)	ΧХ	XX	(X	(X	XX	(X	(X)	XX	X							
		X	ί.			X		Х					X				X								X)	X						
		X	6			X		X					X															1	x						
		X	00	XX	хx	X		XX	X	x			X							X	XX	хx	ć.		X	X	κx	x	1						
		ŝ	í.			X		X		12			X							1					x			-							
		Ŷ	1			Ŷ		Ŷ					Ŷ				¥								Ŷ										
		5	2			ŝ		0.	nyo.	vv	vv		^	Y)	iv	vv	î								ς,		~	No							
		1				^		~^	-		~	1		~	1.4.	20	٩.								^^	A	~	~	٩.						
			1	12				6.1	Ľ,					5.						z			1.	1	2										
		1	1	1	1	1	1	14	F,	1	1	1	"	7,	1	0	2	1	1					1	-										
		J		1		1	0	1	L	- 1	1	1	/	/	. 4		1	V					al.												
		j,	5.											u.			1		ú.		Э							÷	i.						
		1	1		• •	-		11	2	• •	11	•	11	1	1	11	-	11	1	1	11	1	1			1		1	1.1						
		13		111			;;	11	3		13		11	-	11	11	3	• •		4	11	11	•	1		4.1	1	1	17						
		1.1	1											5														\$: :						
		13	7		F	UI	LL	M	111	CR	0.	C	OM	PL	1Ti	ER		IM	IP1	E	ME	NT	A	1	ON			1	11						
		11	2																									1	: :						
		::	: :	111	;;	11	i i	11	1	11	::	1	11	\$ 3	11	11	1	11	11	1	::	11	11	1.1	11	11	: :	\$: :						
		::	11	111	11	2.7	11	11	1	11	11	1	::	: 1	11	11	1	::	11	1	::	::	11	11	11	11	11	1	1.1						
							-	-	:25 1	2.2	12.12	: 22 3	-	=	1.001	22	120	= =	-	123	**	2.2	-	:2											
							н	A	1		S	T	A	0	5		м	F	1	1	H	0	D	S											
							-	22			22	122 3	12	=				12	-																
															1									1											
37 B	rookside	2	-	he		*		u.		ar.	hu.	100		1	-	-	-		11			0	63	70	R			1	10	120	7	ng rg	- 1/	the	
ar 0	ours rue	. 19	90	19.94				H C		e.1	P.M.		11		100	ता	141	- 5	1.6	24		.9	01	U.	63			1	1.6	031	1	30	16	100	

Run Date: 19MAY94 Run Time: 16:47:51 HMVersion: 6.50 Data File: H:SWSUP.IN

Page 1

-17

HIS RUN EXECUTED 19MAY94 16:47:51

****** HEC-2 WATER SURFACE PROFILES

Version 4.6.2; May 1991

FR 11 12	SOUTHWEST ATLAS MINI SUPI	CHANNEL ERALS 88-06 ERCRITICAL	57 5/12/94 RUN - NO W	EDGE							
11	1 CHECK	INQ	NINV	IDIR	STRT	METRIC	HVINS	Q	WSEL	FQ	
	0.	0.	0.	i	-1.	0	1.0	1605.	4034.8	0.	
IC IH II	0.03	0.03 0.034 7.0	0.03 60 0.0	(0.035	220 250.0	250.0	250.0	0.0	0.0	0.0
R	4060.0	175.0	4060.0	1	220.0	4030.0	70.0	4040.0	145.0	4050.0	155.0
H IN IR IR	2 2.0 4050.0 4050.0	0.034 8 0.0 175.0	65 0.0 4027.2 4060.0		0.035 230.0 65.0 195.0	230 260.0 4027.2 4060.0	260.0 75.0 230.0	260.0 4030.0	85.0	4040.0	145.0
H (1 SR	2 3.0 4050.0 4050.0	0.034 7 0.0 140.0	70 0 4024.4 4058	(250 70.0 250 250	250 250 4024,4	250 80.0	250 4030.0	95.0	4040.0	115.0
iH (1 iR iR	2 4.0 4050.0 4050.0	0.038 7 0.0 140.0	80 0 4021.6 4058.0	2	255 80.0 255.0	255 66 4021.6	66 90.0	66 4030.0	105.0	4040.0	120.0
H 11 IR IR	4.1 4050.0 4050.0	0.038 7 0.0 135.0	85 0 4020.9 4058.0	2	270 270 85.0 270.0	270 66 4020.9	66 95.0	66 4030.0	110.0	4040.0	125.0
H I I R	2 4.2 4050.0 4050.0	0.038 7 0.0 155.0	85 0 4020.2 4058.0	0	275 85.0 75.0	275 120 4020.2	120 95.0	120 4030.0	110.0	4040.0	125.0

	Run Date:	19MAY94	Run Time:	16:47:51	HMVersion:	6.50 Data	File: H:SW	SUP.IN		Pag
NH K1 GR	2 5.0 4050.0 4050.0	0.038 7 0.0 200.0	85 0 4018.9 4058.0	0.035 275 85.0 275.0	275.0 66 4018.9	66 95.0	66 4030.0	112.0	4040.0	150.0
NH K1 GR	2 5.1 4050.0 4050.0	0.042 7 0.0 225.0	95 0 4018.1 4058.0	0.035 280 95.0 280.0	280.0 66 4018.1	66 105.0	66 4030.0	125.0	4040.0	205.0
KH K1 GR	2 5.2 4050.0 4050.0	0.042 7 0.0 230.0	110 0 4017.4 4058.0	0.035 280 110.0 280.0	280.0 66 4017.4	66 115.0	66 4030.0	175.0	4040.0	220.0
HHK1 GR	6.0 4050.0 4040.0	0.042 8.0 0.0 230.0	127 0.0 4016.7 4050.0	0.035 285.0 127.0 245.0	285.0 75.0 4016.7 4050.0	75.0 133.0 285.0	75.0 4020.0	0.0 160.0	0.0 4030.0	0.0 205.0
	2 6.5 4050.0 4040.0	0.034 8.0 0.0 240.0	130 0.0 4015.9 4048.0	0.035 290.0 130.0 265.0	290.0 72.0 4015.9 4048.0	72.0 140.0 290.0	72.0 4020.0	205.0	4030.0	220.0
HH (1 GR	2 7.0 4050.0 4040.0	0.034 7.0 0.0 240.0	130 0.0 4015.1 4047.0	0.035 290.0 130.0 290.0	290 150.0 4015.1	150.0 140.0	150.0 4020.0	0.0 210.0	0.0 4030.0	0.0 225.0
HH SR SR	2 8.0 4050.0 4040.0	0.034 7.0 0.0 250.0	135 0.0 4013.4 4050.0	0.035 310.0 135.0 310.0	310 160.0 4013.4	160.0 145.0	160.0 4020.0	0.0 220.0	0.0 4030.0	0.0 235.0
	2 9.0 4040.0 4040.0	0.034 7.0 0.0 270.0	150 0.0 4011.7 4040.0	0.035 320.0 150.0 320.0	320.0 150.0 4011.7	150.0 160.0	150.0 4020.0	0.0 230.0	0.0 4030.0	0.0 255.0
	2.0 10.0 4032.0 4020.0	0.038 8.0 0.0 240.0	204.2 0.0 4015.7 4030.0	0.035 325.0 150.0 270.0	325.0 0.0 4010.0 4037.0	0.0 167.1 325.0	0.0 4010.0	187.1	4015.7	204.2

Wishaday

6-15

2

Run Date:	19MAY94	Run Tim	e: 16:47:51	HMVer	sion: 6.50	Data	File:	H:SWSUP.IN	
SECNO	DEPTH	CWSEL QCH	CR I WS GROB	WSELK ALOB	EG ACH	HV AROB	HL VOL	OLOSS TWA	L-BANK ELEV R-BANK ELEV

SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK E R-BANK E SSTA ENDST
PROF 1									
1490 NH CARD SECNO 1.000	USED								
5720 CRITICA	L DEPTH A	SSUMED	1001 00	1001 00	1071 20				
1.000 1605.0 0.00 0.013059	4.78 0.0 0.00 0.	4034.78 1605.0 9.56 0.	4034.78 0.0 0.00 0.	4034.80 0.00 0.000 0	4038.20 167.8 0.035 4	0.0	0.00 0.000 0.00	0.00 0.0 4030.00 60.20	4050.00 4060.00 45.66 105.86
490 NH CARD	USED								
685 20 TRIA 693 PROBABL	LS ATTEMP E MINIMUM	TED WSEL,C SPECIFIC SSUMED	WSEL ENERGY						
2.000	5.49	4032.69	4032.69	0.00	4034.24	1.55	3.20	1.60	4050.00
1605.0	0.0	1605.0	0.0	0.0	160.4	0.0	0.9	0.3	4060.00
0.012555	250.	250.	250.	20	8	0.000	0.00	51.79	101.14
490 NH CARD	USED								
685 20 TRIA	LS ATTEMP E MINIMUM	TED WSEL,C	WSEL Energy						
720 CRITICA	L DEPTH A	SSUMED	4030 17	0.00	4032 00	1 83	3 25	1 61	4050 00
1605.0	0.0	1605.0	0.0	0.0	147.8	0.0	1.9	0.6	4058.00
0.01	0.00 260.	10.86 260.	0.00 260.	0.000	0.035	0.000	0.000	4024.40 41.12	54.22 95.34
SECNO 4.000	USED								
685 20 TRIA	E MINIMUM	SPECIFIC I	WSEL Energy						
4.000	6.02	4027.62	4027.62	0.00	4029.56	1.94	3.26	0.03	4050.00
1605.0	0.0	1605.0	0.0	0.0	143.5	0.0	2.7	0.8	4058.00
0.02	250.	250,	250.	20	0.036	0.000	0.000	4021.60	100.75

6-16

Page 3

617

Run Date: 19MAY94 Run Time: 16:47:51 HMVersion: 6.50 Data File: H:SWSUP.IN SECNO DEPTH CWSEL CRIWS WSELK EG HV HL OLOSS L-BANK ELEV O QLOB OCH GROB ALOB ACH AROB VOL TWA R-BANK ELEV

Q TIME SLOPE	QLOB VLOB XLOBL	OCH VCH XLCH	QROB VROB XLOBR	ALOB XNL ITRIAL	ACH XNCH IDC	AROB XNR I CONT	VOL WTN CORAR	TWA ELMIN TOPWID	R-BANK SSTA ENDST	ĒĹ
490 NH CARD	USED									
685 20 TRIA	LS ATTEMP	TED WSEL, CI	WSEL							
693 PROBABL	E MINIMUM	SPECIFIC I	ENERGY							
720 CRITICA	L DEPTH A	SSUMED	1021 05	0.00	1030 00	1.07	0.01	0.00	1050 00	
4.100	0.05	4020.95	4020.95	0.00	4020.00	0.0	2.91	0.08	4050.00	
0.02	0.00	11.15	0.00	0.000	0.036	0.000	0.000	4020.90	67.34	
0.013673	66.	66.	66.	20	5	0	0.00	37.62	104.96	
1400 NH CARD	LISED									
SECNO 4.200	0.960									
685 20 TRIA 693 PROBABL	LS ATTEMP E MINIMUM	TED WSEL, CI SPECIFIC I	WSEL ENERGY							
4.200	6.11	4026.31	4026.31	0.00	4028.27	1,95	0.90	0.38	4050.00	
1605.0	0.0	1605.0	0.0	0.0	143.1	0.0	3.1	0.9	4058.00	
0.02	0.00	11.22	0.00	0.000	0.036	0.000	0.000	4020.20	67.56	
0.013659	66.	66.	66.	20	5	0	0.00	36,80	104.36	
490 NH CARD	USED									
SECNO 5.000		aller salar di	and the							
685 20 TRIA	LS ATTEMP	TED WSEL, CI	WSEL ENERGY							
720 CRITICA	L DEPTH A	SSUMED	CNCKUT							
5.000	6.15	4025.05	4025.05	0.00	4027.03	1.98	1.64	0.69	4050.00	
1605.0	0.0	1605.0	0.0	0.0	142.1	0.0	3.5	1.0	4058.00	
0.03	0.00	11.29	0.00	0.000	0.036	0.000	0.000	4018.90	68.19	
0.013700	120.	120.	120.	20	5	0	0.00	36.22	104.42	
490 NH CARD	USED									
SECNO 5.100	1.1	Terms and	larada ana		the be					
5.100	5.88	4023.98	4024.12	0.00	4026.04	2.05	0.99	0.00	4050.00	
1605.0	0.0	11 50	0.0	0.0	0.078	0.0	0.000	4018 10	4058.00	
0.016606	66	66	66	0.000	0.030	0.000	0.00	37.42	114 80	
01010000	000 -		Service a			9	0.00	ALCAR.	114.07	

490 NH CARD USED

Run Date:	19MAY94	Run Ti	me: 16:47:51	HMVe	rsion: 6.50	Data F	ile: H:	SWSUP.IN		
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK R-BANK SSTA ENDST	ELEV
*SECNO 5.200			ini a s		dan di k		1912	1016		
5.200	5.21	4022.61	4023.09	0.00	4024.77	2.15	1.27	0.00	4050.00	
1605.0	0.0	11 77	0.0	0.0	130.3	0.0	0.000	4017 40	4058.00	
0.022603	66.	66.	66.	4	8	0.000	0.00	47.36	139.79	
1490 NH CARD	USED									
*SECNO 6.000				0.00	1003 13	100				
6.000	4.33	4021.03	4021.55	0.00	4023.17	2.14	1.59	0.00	4050.00	
0.03	0.00	11 74	0.00	0.000	0.037	0.000	0 000	4016 70	4050,00	
0.025768	66.	66.	66.	5	11	0	0.00	54.18	164.65	
1490 NH CARD	USED									
*SECNO 6.500		Second Second	dared are		the set	1.6.			1.22	
6.500	3.38	4019.28	4019.82	0.00	4021.15	1.88	2.02	0.00	4050.00	
1605.0	0.0	10 00	0.00	0.00	0.035	0.0	0 000	4015 00	4048.00	
0.028247	75.	75.	75.	5	11	0.000	0.00	76.45	193.57	
1490 NH CARD	USED									
SECNO 7.000	C ATTEMOT	ED LICEL CI	1071							
3693 PROBABLE 8720 CRITICAL	MINIMUM DEPTH AS	SPECIFIC I	ENERGY							
7.000	4.02	4019.12	4019.12	0.00	4020.28	1.16	1.39	0.02	4050.00	
1605.0	0.0	1605.0	0.0	0.0	186.0	0.0	4.7	1.5	4047.00	
0.03	0.00 72.	8.63 72.	0.00 72.	0.000 20	0.035	0,000	0.000	4015.10 82.47	115.01 197.48	
1490 NH CARD SECNO 8.000 8685 20 TRIAL	USED S ATTEMPT	ED WSEL, CV	VSEL							
6693 PROBABLE 6720 CRITICAL	MINIMUM DEPTH AS	SPECIFIC E	ENERGY							
8.000	4.27	4017.67	4017.67	0.00	4018.91	1.24	2.07	0.03	4050.00	
1605.0	0.0	1605.0	0.0	0.0	179.7	0.0	5.3	1.7	4050.00	
0.04	0.00	150	0.00	0.000	0.035	0.000	0.000	6013.40	119.26	
0.013623	150.	150.	150.	20	8	0	0.00	14.23	193.49	

5

C.18

Run Date:	19MA194	Run Tu	ne: 16:47:51	нмуе	rsion: 6.50	Data F	ile: H:	SWSUP.IN		
SECNO	DEPTH	CWSEL	CR I WS	WSELK	EG	HV	HL	OLOSS	L-BANK	ELEV
Q	QLOB	QCH	QROB	ALOB	ACH	AROB	VOL	TWA	R-BANK	
TIME	VLOB	VCH	VROB	XNL	XNCH	XNR	WTN	ELMIN	SSTA	
SLOPE	XLOBL	XLCH	XLOBR	ITRIAL	IDC	I CONT	CORAR	TOPWID	ENDST	
1490 NH CARD SECNO 9.000 3685 20 TRIAL 5693 PROBABLE	USED S ATTEMPT MINIMUM	ED WSEL, CV SPECIFIC E	#SEL ENERGY							
9.000	4.40	4016.10	4016.10	0.00	4017.38	1.28	2.16	1.10	4040.00	
1605.0	0.0	1605.0	0.0	0.0	176.7	0.0	6.0	2.0	4040.00	
0.04	0.00	9.08	0.00	0.000	0.035	0.000	0.000	4011.70	126.69	
0.013320	160.	160.	160.	20	8	0	0.00	70.39	197.08	
1490 NH CARD I SECNO 10.000 6685 20 TRIAL 693 PROBABLE 720 CRITICAL	USED S ATTEMPT MINIMUM DEPTH AS	ED WSEL,CW SPECIFIC E SUMED	VSEL INERGY							
10.000	4.59	4014.59	4014.59	00.0	4016.25	1.66	2.12	0.90	4032.00	
1605.0	0.0	1605.0	0.0	0.0	155.2	0.0	6.5	2.2	4037.00	
0.05	0.00	10.34	0.00	000.0	0.038	0.000	0.000	4010.00	153.31	
0.015046	150.	150.	150.	05	8	0	0.00	47.57	200.89	

6

PROFILE FOR STREAM SUPERCRITICAL RUN - NO

Ö

EVATION SECNO	4010. CUMDIS	4015.	4020.	4025.	4030.	4035.	4040.	4045.	4050.	4055.	
1.00	0	· · · ·			5 1	ú	E		11		
1.00	20.				i	Ψ.	Ē .		ĩ.		
	40.			· · · · · · · · · · · · · · · · · · ·	1.	Ψ.	Ε .		L.		
	60				1.	ω.	Ε		L.		
	80				1 .	Ψ.	Ε		L		
	100				1.	₩.,	Ε.		L		. 1
	120				1 .	ω.	Ε.		L .		
	140	*	*		1.	W E			ι.		
	160	+	*	*	1 .	WE		*	L		
	180				1 .	W E			L		
	200		*		- <u>1</u> - 1	W E.		*			
	220				- 1 - Y	W E.					1.1.1.1.1.1.1
2.00	240	*	*		1	W E.			1		
6.00	280			*	1 1	Ű Ĕ	*	*			
	300.				1	WE.			i.		R
	320				-1 .	WE.			i.		R
	340				1 .	WE.			L		. R.
	360				1 .	WE.			L		. R.
	380				1	WE.			L		. R.
	400		+	1	÷	WE.			L.		. R.
	420	a.		- 1	*	WE.			L		. R.
	440	.*	*			WE.		*	- L -		. R .
	460	1	1			WE .	14	*	1		. R .
	480	4	*			E .		*			. к.
3.00 4.00 4.10	500, ,		*	1.		E X					, K ,
	540		*	1		E ,					
	560			÷.	ü	E			ĩ		R
	580, .			1 .	Ψ.	ε.			ĩ.		. R .
	600			1 .	ω.	Ε .			L		. R .
	620			1 .	Ψ.	Ε.			L		. R .
	640	*		1.	Ψ.	Ε.			L		. R .
	660		8	, I	W .E		<i>A</i>		L		, R ,
	680	*		1 .	Ψ.Ε		*	1.1.1	L		. R .
	700				WE	4		1.1.1			. R .
	720	*	3	1. A	WE			· · ·			· K ·
	740	*		1	W E		· · ·				. K .
	780		•	4 1	W E.				1 - 1 - P		, n ,
	800			r îs	W F.				i.		
	820.			î . î	W E.			111.1	ĩ		R
	840			1	WE.				L		. R .
	860		.1	· · · ·	WE.		÷		L		. R .
	880	× .	. 1		WE.	1			- L		. R .
4.20	900		1		Ψ Ε .				L		. R .
	920		1		E .	*			L		. R .
	940				к С .			S. 5. 15			· K ·
	980.		1		E ·	*			-		. к . р
	1000				E .		11111		1.1.1.1		
5.00	1020.	6.63	11	Ú.	Ē			- C L C.			
	1040.		1.1	WC	Ε .				E		R
	1060		1 .	Ψ.	Ε .			1000	ĩ.		. R .
5.10	1080	2012 B	1 .	₩. 8					L		. R .
	1100	1	1 .	WC .E		1.1.1			L		. R .
	1120		1	WC .E			1.1.1.1.1.1		L.		. R .
	1140		1 .	WC E	1.1.1.1			1. J. K.	L		. R .
5.20	1160		1	WC E					L.		. R .
	1180		1	WC E.	×.	*			1		.R .
	1200		1 14.	WC E.	1				L	R	
6.00	1220	· · · ·	1 . 1	CE.	· · · · · ·			*			
	1240		1	e .				· ·	RL		
	16.670.0 4								N L		

PLOTTED POINTS (BY PRIORITY) E-ENERGY, W-WATER SURFACE, I-INVERT, C-CRITICAL W.S., L-LEFT BANK, R-RIGHT BANK, M-LOWER END STA

C-21

(.22

Run Date: 19MAY94 Run Time: 16:47:51 HMVersion: 6.50 Data File: H:SWSUP.IN

Page 7

THIS RUN EXECUTED 19MAY94 16:47:53

****** HEC-2 WATER SURFACE PROFILES

Version 4.6.2; May 1991

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

SUPERCRITICAL RUN - NO

SUMMARY PRINTOUT TABLE 150

	SECNO	XLCH	ELTRD	ELLC	ELMIN	Q	CWSEL	CRIWS	EG	10*KS	VCH	AREA	.01K
	1.000	0.00	0.00	0.00	4030.00	1605.00	4034.78	4034.78	4036.20	130.59	9.56	167.83	140.45
e i	2.000	250.00	0.00	0.00	4627.20	1605.00	4032.69	4032.69	4034.24	125.55	10.00	160.44	143.24
	3.000	260.00	0.00	0.00	4024.40	1605.00	4030.17	4030.17	4032.00	124.09	10.86	147.79	144.08
	4.000	250	0.00	0.00	4021.60	1605.00	4027.62	4027.62	4029.56	137.59	11.18	143.54	136.83
	4.100	66.00	0.00	0.00	4020,90	1605.00	4026.95	4026.95	4028.88	136.73	11.15	143.94	137.26
	4.200	66.00	0.00	0.00	4020.20	1605.00	4026.31	4026.31	4028.27	136.59	11.22	143.06	137.33
	5.000	120.00	0.00	0.00	4018.90	1605.00	4025.05	4025.05	4027.03	137.00	11.29	142.13	137.13
	5.100	66.00	0.00	0.00	4018,10	1605.00	4023.98	4024.12	4026.04	166.06	11.50	139.59	124.55
	5.200	66,00	0.00	0.00	4017.40	1605.00	4022.61	4023.09	4024.77	226.03	11.77	136.32	106.76
	6.000	66.00	0.00	0.00	4016.70	1605.00	4021.03	4021.55	4023.17	257.68	11.74	136.67	99.99
	6.500	75.00	0.00	0.00	4015.90	1605.00	4019.28	4019.82	4021.15	282.47	10.99	146.05	95.50
1	7.000	72.00	0.00	0.00	4015.10	1605.00	4019.12	4019.12	4020.28	139.58	8.63	186.04	135.85
	8.000	150.00	0.00	0.00	4013.40	1605.00	4017.67	4017.67	4018.91	136.23	8.93	179.72	137.51
	9,000	160,00	0.00	0.00	4011.70	1605.00	4016.10	4016.10	4017.38	133.20	9.08	176.73	139.07
	10,000	150.00	0,00	0.00	4010.00	1605.00	4014.59	4014.59	4016.25	150.46	10.54	155.24	130.85

SUPERCRITICAL RUN - NO

SUMMARY PRINTOUT TABLE 150

	SECNO	Q	CWSEL	DIFWSP	DIFWSX	DIFKWS	TOPWID	XLCH
e	1.000	1605.00	4034.78	0.00	0.00	-0.02	60.20	0.00
*	2.000	1605.00	4032.69	0.00	-2.09	0.00	51.79	250.00
*	3.000	1605.00	4030.17	0.00	-2.52	0.00	41.12	260.00
*	4.000	1605.00	4027.62	0.00	-2.55	0.00	37.70	250.00
*	4.100	1605.00	4026.95	0.00	-0.67	0.00	37.62	66.00
*	4.200	1605.00	4026.31	0.00	-0.63	0.00	36.80	66.00
*	5.000	1605.00	4025.05	0.00	-1.26	0.00	36.22	120.00
	5.100	1605.00	4023.98	0.00	-1.07	0.00	37.42	66.00
	5.200	1605.00	4022.61	0.00	-1.37	0.00	47.36	66.00
	6.000	1605.00	4021.03	0.00	-1.58	0.00	54.18	66.00
	6.500	1605.00	4019.28	0.00	-1.76	0.00	76.45	75.00
•	7.000	1605.00	4019.12	0.00	-0.15	0,00	82.47	72.00
*	8.000	1605.00	4017.67	0.00	-1.46	0.00	74.23	150.00
er -	9.000	1605.00	4016.10	0.00	-1.57	0.00	70.39	160.00
•	10.000	1605.00	4014.59	0.00	-1.50	0.00	47.57	150.00

(-23

C-24

Page 9

Run Date: 19MAY94 Run Time: 16:47:51 MMVersion: 6.50 ata File: H:SWSUP.IN

SUMMARY OF ERRORS AND SPECIAL NOTES

CAUTION	SECNO=	1.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO=	2.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO	2.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION	F 1. 1. 19	2.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
CAUTION	SECNO=	3.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO=	3.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION	SECNO=	3.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
CAUTION	SECNO=	4.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO=	4.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION	SECNO	4.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
CAUTION	SECNO=	4.100	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO=	4.100	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION	SECNO=	4.100	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
CAUTION	SECNO=	4.200	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO=	4.200	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION	SECNO=	4.200	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
CAUTION	SECNO=	5.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO=	5.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION	SECNO#	5.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	7.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO=	7.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION	SECNO=	7.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	8.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO=	8.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION	SECNOR	8.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	9.000	PROFILE	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNOR	9.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION	SECNO=	9.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	10.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
AUTION	SECNO=	10.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION	SECNO=	10,000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL

Canonie Environmental

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet 01 of 0-9 Chkd By UAP Date 5/20/94 Southwest Channel - Atlas Proj No 88-067-12

ATTACHMENT D

PREDICTED ROCK VOLUME CALCULATIONS AND HEC-2 CROSS SECTIONS ILLUSTRATING PLACEMENT OF ROCKS

CanonieEn, ironmental

By BWH Date 4/13/94 Subject ATLASCOLP MOAB - PELECTSheet No. 1 of Z CF Park FALLS TO SW Proj. No. 88-067-12 RUNCFAS DRIVINGECHAMREL 1/4 X 1/4 Chkd. By ____ Date ___ Lock Volume Determination and Assumptions ibserved and, measured boulders along southwest side of pile and nor the of huy 279 (vicinity of Sa dvoriage channel , Photos (attached) taken at boulders in oneo. We are assuming these boulders, rolled since construction of vood and mill. volume of vock as follows: Vol. AT Plioto # dimensions (ft) ff's 4×5×3 60 60 2 2×1×2 4 1.5×1× 1 1.5 2 × 2 × 2 8 2 × 1.5 × .5 1.5 3 × 2 × 2 12 2 × 2 × 2 8 4 39 2×2×1 6 x 3 x 3 3 54 54 8 × 12 × 4 4 384 384 8× 5×4 5 160 160 697 ft3 Tot. vol - say so years 13,940 ft 3 In 1000 yrs 1000 20 × 697 Tot yd 3 - 500 yd

 \bigcirc

XSEC1.XLS Chart 4

0-3

XSEC1.XLS Chart 11

0.4

CROSS SECTION NO. 4.1 - LOOKING DOWNSTREAM

0.5

XSEC1.XLS Chart 5

2 (56+60) 16 + 160+68) 66 - (68-54) 66

= 12078F73 - 44704

P-6

XSEC1.XLS Chart 13

0.7

CROSS SECTION NO. 5.1 - LOOKING DOWNSTREAM

p-8

CROSS SECTION NO. 5.2 - LOOKING DOWNSTREAM

D-9

Canonie Environmental

By JWS Date 5/10/94 Subject Riprap Size Design Natural Sheet El of E-49 Chkd By 1989 Date 5/10/94 Southwest Channel - Atlas Proj No 88-067-12

ATTACHMENT E

HEC-2 SUBCRITICAL AND SUPERCRITICAL RUNS (SIMULATIONS 3 AND 4; AND 5 AND 6) WITH ROCKS IN CHANNEL

EC2 S/N: 1916530006

****	***
HEC-2 WATER SURFACE PROFILES	*
Version 4.6.2: May 1991	
	*
RUN DATE 19MAY94 TIME 17:30:03	*

******* * U.S. ARMY CORPS OF ENGINEERS * HYDROLOGIC ENGINEERING CENTER * 609 SECOND STREET, SUITE D * DAVIS, CALIFORNIA 95616-4687 * (916) 756-1104

E-2

XXXXXXX XXXXX XXXXX Х X X X X X X X X х X X X х XXXXX XXXXX XXXXXXX XXXX X X X X X Х Х X X X X X XXXXXXXX XXXXX XXXXXXX D :::: ::: FULL MICRO-COMPUTER IMPLEMENTATION 2.5.5 111 111 111 HAESTAD METHODS 37 Brookside Road * Waterbury, Connecticut 06708 * (203) 755-1666 see Sim. 84 (superiorit, Girit 1,0 606.5 70 50 10 Sim # 5 (Subiritien!) (subcritica) ROCKS

Run Date: 19MAY94 Run Time: 17:30:03 HMVersion: 6.50 Data File: H:SWSUB45.1N

Page 1

6-3-

THIS RUN EXECUTED 19MAY94 17:30:03

***** HEC-2 WATER SURFACE PROFILES

Version 4.6.2; May 1991

FR 11 12	SOUTHWEST ATLAS MIN SUB	CHANNEL ERALS 88-06 CRITICAL RU	57 5/13/94 JN WITH WED	GE SEC 4.0.	4.1,4.2,	and 5.0					
11	ICHECK	ING	NINV	IDIR	STRT	METRIC	HVINS	Q	WSEL	FQ	
	0.	0.	0.	0	-1.	0.	1.5	1605. 4	014.61	0.	
12	NPROF	IPLOT	PREVS	XSECV	KSECH	FN	ALLDC	18W	CHNIM	ITRACE	
	0.	0.	0.	0	0	0	-1				
NC	0.03	0.03	0.03	0.035		325	0.00	0	0	0	0
K1 GR GR	10 4032 4020	8 0 240	0 4015.7 4030	325 150 270	4	0 01C 037	0 167.1 325	4010	0 187.1	4015.7	204.2
NH K1 GR	2 9 4040 4040	0.034 7 0 270	150 0 4011.7 4040.0	0.035 320 150.0 320.0	401	320 150 1.7	0 150 160	0 150 4020	0 0 230	0 0 4030	0 0 255
NH K1 GR	2 8 4050 4040	0.034 7 0 250	135.0 0.0 4013.4 4050.0	0.035 310.0 135.0 310.0	31 16 401	0.0 0.0 3.4	0 160 145	0 160 4020	0 0 220	0 4030	0 0 235
NH K1 GR	2 7 4050 4040	0.034 7 0 240	130.0 0.0 4015.1 4047.0	0.035 290.0 130.0 290.0	29 15 401	0.0 0.0 5.1	0 150 140	0 150 4020	0 0 210	0 0 4030	0 0 225
H	2	0.034	130.0	0.035	25	0.0	0	0	0	0	0
BR	4050	0 240	4015.9	130.0	401	5.9	140 290	4020	205	4030	220

uppl 5/10/14

	Run Date:	19MAY94	Run Time:	17:30:03	HMVersion: 6.	50 Data	File: H:SWS	UB45.IN		Page
NH K1 GR	2 6 4050 4040	0.042 8 0 230	127.0 0.0 4016.7 4050.0	0.035 285.0 127.0 245.0	285.0 75.0 4016.7 4050.9	75 133 285	75 4020	160	4030	205
WH X1 GR	2 5.2 4050 4050	0.042 7 0 230	110.0 0.0 4017.4 4058.0	0.035 280.0 110.0 280.0	280.0 66.0 4017.4	66 115.	66 4030.0	175	4040	220
NK K1 GR	2 5.1 4050 4050	0.042 7 0 225	95.0 0.0 4018.1 4058.0	0.035 280.0 95.0 280.0	280.0 66.0 4018.1	66 105.	66 4030.0	125	4040	205
NH K1 GR	2 5 4050 4058.0	0.042 6 0 275.0	112.0 0.0 4018.9	0.035 275.0 85.0	275.0 66.0 4030.0	66 112	66 4040	150	4050	200
NH (1) SR	2 4.2 4050 4058.0	0.038 6 0 275.0	118.0 0.0 4020.2	0.035 275.0 85.0	275.0 120.0 4035.0	120 118	120 4040	125	4050	155
HH (1 GR	2 4.1 4050 4058.0	0.038 6 0 270.0	110.0 0.0 4020.9	0.035 270.0 85.0	270.0 66.0 4030.0	66 110	66 4040	125	4050	135
HH K1 GR	2 4 4050 4058,0	0.038 6 0 255.0	105.0 0,0 4021.6	0.035 255.0 80.0	255.0 66.0 4030.0	66 105	66 4040	120	4050	140
H K I S R S R	2 3 4050 4050	0.034 7 0 140	70.0 0.0 4024.4 4058	0.035 250.0 70.0 250	250.0 250.0 4024.4	0 250 80	0 250 4030	0 0 95	0 0 4040	0 0 115
AH K1 GR	2 4050 4050	0.034 8 0 175	65.0 0.0 4027.2 4060.0	0.035 230.0 65.0 195.0	230.0 260.0 4027.2 4060.0	0 260 75 230	0 260 4030	0 0 85	0 0 4040	0 0 145
	2 1 4050 4060	0.034 7 0 175	60.0 0.0 4030.0 4060.0	0.035 220.0 60.0 220.0	220.0 250.0 4030.0	0 250 70	0 250 4040	0 0 145	0 0 4050	0 0 155

UNA Spolan

E-4

2

Run Date:	19MAY94	Run Ti	me: 17:30:0	03 HMVe	rsion: 6.50	Data F	ile: H:	SWSUB45.IN		
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CR1WS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACK XNCH IDC	HV AROB XNR ICONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK ELE R-BANK ELE SSTA ENDST	1
PROF 1										
CRITICAL DEPT	H TO BE C	CALCULATED	AT ALL CRO	DSS SECTIO	NS					
490 NH CARD	USED									
720 CRITICAL	DEPTH AS	SUMED								
10,000 1605.0 0,00	4.60 0.0 0.00	4014.60 1605.0 10.32	4014.60 0.0 0.00	4014.61 0.0 0.000	4016.25 155.6 0.038	1.65 0.0 0.000	0.00 0.0 0.000	0.00 0.0 4010.00	4032.00 4037.00 153.29	
0.014959	0.	0.	0.	0	4	0	0.00	47.61	200.91	
490 NH CARD	USED									
302 WARNING:	CONVEYA	NCE CHANG	OUTSIDE C	OF ACCEPTA	BLE RANGE,	KRATIO =	1.58			
9.000 1605.0 0.01 0.006000	5.20 0.0 0.00 150.	4016.90 1605.0 6.74 150.	4016.12 0.0 0.00 150.	0.00 0.0 0.000 2	4017.60 238.0 0.035 8	0.71 0.0 0.000 0	1.35 0.7 0.000 0.00	0.00 0.2 4011.70 81.47	4040.00 4040.00 122.42 203.89	
490 NH CARD	USED									
SECNO 8.000	1.10	1017 00	1047 17	0.00	1010 01	4.40	1.70	0.00	1050 00	
1605.0	0.0	4017.80	4017.67	0.00	190.5	0.0	1.5	0.00	4050.00	
0.01	0.00	8.43	0.00	0.000	0.035	0.000	0.000	4013.40	118.73	
0.011656	160.	160.	160.	3	15	0	0.00	76.39	195.12	
490 NH CARD I	USED									
7.000	4.49	4019.59	4019.13	0.00	4020.37	0.78	1.46	0,00	4050.00	
1605.0	0.0	1605.0	0.0	0.0	226.2	0.0	2.2	0.8	4047.00	
0.008277	150.	150,	150.	2	11	0.000	0.00	90.81	204.10	

490 NH CARD USED

E-5 Page 3

Run Date:	19MAY94	Run Ti	me: 17:30:03	HMVe	rsion: 6.50	Data F	ile: H:	SWSJB45.1N		
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CR I WS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK EL R-BANK EL SSTA ENDST	EV
SECNO 6.500	6.28	4020 18	4010 82	0.00	4020.98	0.80	0.61	0.00	4050 00	
1605.0	0.0	1605.0	0.0	0.0	222.9	0.0	2.6	1.0	4048.00	
0.02	0.00	7,20	0.00	0.000	0.035	0.000	0.000	4015.90	113.67	
0.008784	72.	72.	72.	2	15	0	0.00	91.60	205.27	
1490 NH CARD	USED									
7185 MINIMUM	SPECIFIC	ENERGY								
720 CRITICAL	DEPTH A	SSUMED								
6,000	4.87	4021.57	4021.57	0.00	4023.01	1.43	0,84	0.00	4050.00	
1605.0	0.00	9.60	0.00	0.000	0.037	0.000	0.000	4016.70	108.41	
0.014736	75.	75.	75.	0	8	0	0.00	58.67	167.08	
LOD NH CAPO	tiern									
SECNO 5.200	0360									
185 MINIMUM	SPECIFIC	ENERGY								
720 CRITICAL	DEPTH AS	SSUMED	1027 00	0.00	102/ 45	1.54	0.07	0.00	1050 00	
1605.0	0.0	1605.0	4023.09	0.0	160.2	0.0	3.1	1.2	4058.00	
0.02	0.00	10,02	0.00	0.000	0.038	0.000	0.000	4017.40	90.80	
0.014697	66.	66.	66.	0	8	0	0.00	51.31	142.10	
490 KH CARD	USED									
185 MIN'MUM	SPECIFIC	ENERGY								
720 CRITICAL	DOPTH AS	SSUMED								
5.100	6.00	4024.10	4024.10	0.00	4026.03	1.93	0.99	0.00	4050.00	
1605.0	0.0	1605.0	0.0	0.0	144.0	0.0	0.000	4018 10	4058.00	
0.015295	66.	66.	66.	0.000	8	0.000	0.00	37.96	115.09	
490 NH CARD	USED									
SECNO 5.000		1.1.1								
185 MINIMUM	SPECIFIC	ENERGY								
5,000	7.47	4026.37	4026.37	0.00	4028.30	1.92	1.11	0.00	4050.00	
1605.0	0.0	1605.0	0.0	0.0	144.2	0.0	3.6	1.3	4058,00	
0.03	0.00	11.13	0.00	0.000	0.042	0.000	0.000	4018.90	64.58	
0.018746	66.	66.	66.	0	11	0	0.00	38.60	103.17	

E-6

Page 4

Run Date:	19MAY94	Run Tim	we: 17:30:0	3 HMVe	rsion: 6.50) Data F	ile: H:	SWSUB45.IN	
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS GROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK ELE R-BANK ELE SSTA ENDST
490 NH CARD SECNO 4.200	USED								
302 WARNING	CONVEY	ALCE CHANGE	OUTSIDE O	F ACCEPTA	BLE RANGE,	KRAT 0 =	1.44		
4.200 1605.0 0.03 0.009057	8.31 0.0 0.00 120.	4028.51 1605.0 9.16 120.	4027.75 0.0 0.00 120.	0.00 0.0 0.000 3	4029.81 175.2 0.038 5	1.30 0.0 0.000 0	1.51 4.0 0.000 0.00	0.00 1.4 4020.20 42.20	4050.00 4058.00 61.31 103.52
490 NH CARD	USED								
SECNO 4.100 4.100 1605.0 0.03 0.006593	8.43 0.0 0.00 66.	4029.33 1605.0 7.97 66.	4028.10 0.0 0.00 66.	00.00 0.0 000.0 2	4030.32 201.4 0.038 15	0.99 0.0 0.000 0	0.51 4.3 0.000 0.00	0.00 1.5 4020.90 47.79	4050.00 4058.00 60.37 108.16
490 NH CARD	USED								
SECNO 4.000 4.000 1605.0 0.04 0.007956	8.07 0.0 0.00 66.	4029.67 1605.0 8.51 66.	4028.74 0.0 0.00 66.	0.00 0.0 0.000 3	4030.79 188.5 0.038 15	1.13 0.0 0.000 0	0.48 4.6 0.000 0.00	0.00 1.5 4021.60 46.74	4050.00 4058.00 57.27 104.01
490 NH CARD	USED								
SECNO 3.000 3.000 1605.0 0.04 0.005203	7.01 0.0 0.00 250.	4031.41 1605.0 7.92 250.	4030.17 0.0 0.00 250.	0.00 0.0 000.0 2	4032.38 202.7 0.035 19	0.97 0.0 0.000 0	1.59 5.7 0.000 0.00	0.00 1.8 4024.40 47.01	4050.00 4058.00 50.82 97.83
490 NH CARD SECNO 2.000	USED								
302 WARNING:	CONVEYA	NCE CHANGE	OUTSIDE O	F ACCEPTA	BLE RANGE,	KRATIO =	0.70		
2.000 1605.0 0.05	5.69 0.0 0.00 260	4032.89 1605.0 9.40	4032.66 0.0 0.00 260	0.00	4034.26 170.8 0.035	1.37 0.0 0.000	1.87 6.8 0.000	0.00 2.1 4027.20	4050.00 4060.00 48.79

1-7 Page 5

Run Date:	19MAY94	Run T1	me: 17:30:0.	S HMVe	rsion: 6.50	Data F	ile: H:	SWSUB45.IN		
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK E R-BANK E SSTA ENDST	LEV
90 NH CARD	USED									
1,000 1605.0 0,06 0,006876	5.49 0.0 0.00 250.	4035.49 1605.0 7.53 250.	4034.78 0.0 0.00 250.	0.00 0.0 0.000 2	4036.37 213.2 0.035 15	0.88 0.0 0.000 0	2.11 7.9 0.000 0.00	0.00 2.5 4030.00 67.65	4050.00 4060.00 43.53 111.18	

1.8

Page 6

PROFILE FOR STREAM SUBCRITICAL RUN WITH WE

PLOTTED POINTS (BY PRIORITY) E-ENERGY, W-WATER SURFACE, I-INVERT, C-CRITICAL W.S., L-LEFT BANK, R-RIGHT BANK, M-LOWER END STA

LEVATION SECNO	4010. CUMD I	4015, s	4020.	4025.	4030.	4035.	4040.	4045.	4050. 4055.	
10.00	0.	1	W. E .			L .	R .			
	20.	1	WE.		4	L .	R .			
	40.	.1	W E		8-1 L L	L. e	R .	1.1.1.1		
	60.	.1	CW E		4	L	R .			
	-30.	· · · ·	CWE .		· · · · ·		L K .			
	120	1 A. C.	CWE		*	*				• •
	140.		. CW E				LR			
9.00	160.	1 1	. C WE				L			
	180.	. 1	. CW E .		e		1.1.1.	ι		
	200.	 I 	. CWE		4			L .	111111	
	220.		. CWE .		an shi sheka			1 × 2	1.1	
	260.	1	CW E					. – <u>L</u>		
	280.	1	. WE						1	
	300.	. 1	. WE.		x				L .	
8.00	320.	. 1	. CWE.		к. к				1	
	340.	× . 1	W E .		×		· · · · · ·		RL	
	380.		- CWE.		<			1.1.1.1	RL	
	400	1. J. J.	1 CUF		1		*		PI	
	420.	S	1. CW E						RL	
	440.	4.1	1 W 8						RL	
7.00	460.		I CW.	.Ε			· · · · ·	1	R L	
	480.		.1	/E	x				RL	
	500.			le i e					RL	
6.50	540	10 I I I I		L F	5 . .				R L	• •
0.00	560.			WE	1			11.11.1	RL	
	580.		. 1	WE			e ber en de		RL	
	600.	1.1	. 1 .	CW E	1 1 1 A		· · · ·		RL	
6.00	620.	A	· · · ·	WE				10.00	L	
	040.		- 19 Berry 1	WE	* *	1.1.1			L R	
5.20	680		1.14	 						K
	700.	6 H. S.	1 1 1	W	E				ĩ	R
	720.	Sec. 13.	. 1 .	W	.E .				i .	. R .
5.10	740.			W	. E	- 1 A.			1	. R .
	760.		- 1 - I - I		WE.					. R .
	780.	*	- <u>i</u> , i		.W E			(1997) A.	1	. R .
5.00	820	*			. W E .					. К р
	840.		1 1		W E .			14 - A		R
	860.	Q	. 1.		. W E .				L	, R .
	880.				. CW E.		- 1. J.A.		L.	. R .
	900.	*			- CW E.		1.11	1.		. R .
6 20	920.	1.1.1	1 1		CW E.		1.1.1			· R ·
4160	960.		2.11	I	CWE				L	
	980.	19. s 1 s s	1. N 3	i	CWE		1 - - -	0.00	ĩ	R
4.10	1000.			1	. C W.E				L	. R .
	1020.	A		1	. C W.E		1.		L	. R .
1 00	1040.			1	- C W.E		1.1.1.1.1.1		L .	. R .
4.00	1060.			1	. C.W.	ε				. R .
	1100	1	A. 1		- C W	E .		1.11		. K .
	1120.			1	. CW	Ē	11.1.1.1.1.1.1.1			. R .
	1140.			1	. CW	E	1.0.0		ĩ	. R .
	1160.		10.111	1	. C.L	E.			L	. R .
	1180.			1	. C.1	E .			L	. R .
	1200.	*		1	. C.1	E .			L	. R .
	1220.	*		1	· C.	WE .				· R ,
	1260					WE .			L	, к,
	1 BL 0 6 A					10 Ar 3				

8-9

1-10

	4380					C U E			1.1.1		
	1280.	. *	*		1,1	LWE	x				к.
1	1300.			1.1.1	1. A. C. A.	CWE					к.
3.00	1320.			1.1.1	1.	CWE		10 A 10	L		R .
	1340.	* *		1.1.1.4.4.4.4	1.	.CWE			L		R .
	1360.				1	.CWE		1000	L		R .
	1380.	4.50		1.1.1.1.1.1.1	1	.C WE		4	L		R.
	1400.			1.0	.1	, C W E		1000	L		R.
	1420.				.1	. CWE	1. 1. 1. 1. 1. 1. 1. 1.		L		R.
	1440.	- C - F -		10.00	.1	CW E			î.		R .
	1460	10.11	en Setel		1.1	CW E		1.1.1.1.1.1.1	i i		R
	1480			1996	1.1.1	CHE			i.		P
	1500	10.1	10.12		1 C Tr	CV F			ĩ		p
	1520			10.00		CH E		1.1.1.1			0
	1520.	11.1			10 A. A.	U E			1		R.,
	1240.			1.11.11.1		· W C					к.
	1560.	25.77	1		1.1.1	. CW C	 No. 		6		ĸ
2.00	1580.	8.1.1				. GW E	er en streten e		L		R
	1600.	100			× 1	. W E	e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1. S. M. 199	L		R
	1620.	×	· · ·		· · · · · · · · · · · · · · · · · · ·	, CW E	4.1.1		L		R
	1640.	*	· · ·			1 . CW	ε .		L		R
	1660.	*				1 . W 1	ε	1.1.2	L		R
	1680.	1.1	· · · ·		*	1 . CW	έ		L		R
	1700.					1 . CW	.E .		L		R
	1720.	G				1 . CW	.E .		L		R
	1740.	12.1				I. CW	.E .		L	- 12 mil	R
	1760					1. 01	U E		1		P
	1780	- C				1. 0	U F		1		P
	1800					1	u é		ĩ		P
1.00	1820		4			1	ru r		i.		R D
1.00	1020.	1.1		18		1	UM 6 1				ĸ

Run Date: 19MAY94 Run Time: 17:30:03 HMVersion: 6.50 Data File: H:SWSUB45.1N

THIS RUN EXECUTED 19MAY94 17:30:05

E-11

Page 7

****** HEC-2 ATER SURFACE PROFILES

Version 4.6.2; May 1991

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

SUBCRITICAL RUN WITH WE

SUMMARY PRINTOUT TABLE 150

SECNO	XLCH	ELTRD	ELLC	ELMIN	Q	CWSEL	CRIWS	EG	10*KS	VCH	AREA	.01K
10.000	0.00	0.00	0.00	4010.00	1605.00	4014.60	4014.60	4016.25	149.59	10.32	155.57	131.23
9.000	150.00	0.00	0.00	4011.70	1605.00	4016.90	4016.12	4017.60	60.00	6.74	238.02	207.21
8.000	160.00	0.00	0.00	4013,40	1605.00	4017.80	4017.67	4018.91	116.56	8.43	190.50	148.66
7.000	150.00	0.00	0.00	4015.10	1605.00	4019.59	4019.13	4020.37	82.77	7.10	226.16	176.42
6.500	72.00	0.00	0.00	4015.90	1605.00	4020.18	4019.82	4020.98	87.84	7.20	222.94	171.24
6.000	75.00	0.00	0.00	4016.70	1605.00	4021.57	4021.57	4023.01	147.36	9.60	167.12	132.21
5.200	66.00	0.00	0.00	4017.40	1605.00	4023.09	4023.09	4024.65	146.97	10.02	160.23	132.39
5.100	66.00	0.00	0.00	4018.10	1605.00	4024.10	4024.10	4026.03	152.95	11.15	143.95	129.78
5.000	66.00	0.00	0.00	4018.90	1605.00	4026.37	4026.37	4028.30	187.46	11.13	144.19	117.23
4.200	120.00	0.00	0.00	4020.20	1605.00	4028.51	4027.75	4029.81	90.57	9.16	175.24	168.65
4.100	66.00	0.00	0.00	4020.90	1605.00	4029.33	4028.10	4030.32	65.93	7.97	201.44	197.67
4.000	66.00	0.00	0.00	4021.60	1605.00	4029.67	4028.74	4030.79	79.56	8.51	188.53	179.94
3.000	250.00	0.00	0.00	4024.40	1605.00	4031.41	4030.17	4032.38	52.03	7.92	202.65	222.52
2.000	260.00	0.00	0.00	4027.20	1605.00	4032.89	4032.66	4034.26	106.45	9.40	170.83	155.56
1.000	250.00	0.00	0.00	4030.00	1605.00	4035.49	4034.78	4036.37	68.76	7.53	213.17	193.55

Run Date: 19MAY94 Run Time: 17:30:03 HMVersion: 6.50 Data File: H:SWSUB45.1N Page 8

SUBCRITICAL RUN WITH WE

SUMMARY PRINTOUT TABLE 150

SECNO	Q	CWSEL	DIFWSP	DIFWSX	DIFKWS	TOPWID	XLCH
10.000	1605.00	4014.60	0.00	0.00	-0.01	47.61	0,00
9.000	1605.00	4016.90	0.00	2.30	0.00	81.47	150.00
8.000	1605.00	4017.80	0.00	0.91	0.00	76.39	160.00
7.000	1605.00	4019.59	0.00	1.78	0.00	90.81	150.00
6.500	1605.00	4020.18	0.00	0.59	0.00	91.60	72.00
6.000	1605.00	4021.57	0.00	1,40	0.00	58.67	75.00
5.200	1605.00	4023.09	0.00	1.52	0.00	51.31	66.00
5.100	1605.00	4024.10	0.00	1.01	0.00	37.96	66.00
5.000	1605.00	4026.37	0.00	2.27	0.00	38.60	66.00
4.200	1605.00	4028.51	0.00	2.13	0.00	42.20	120.00
4.100	1605.00	4029.33	0.00	0.82	0.00	47.79	66.00
4.000	1605.00	4029.67	0.00	0.34	0.00	46.74	66.00
3.000	1605.00	4031.41	0.00	1.74	0.00	47.01	250.00
2.000	1605.00	4032.89	0.00	1.48	0,00	53.53	260.00
1.000	1605.00	4035.49	0.00	2.60	0.00	67.65	250.00

52

IMAGE EVALUATION TEST TARGET (MT-3)

SU

IMAGE EVALUATION TEST TARGET (MT-3)

SEI SEI VIIII SZIIIII

Run Date: 19MAY94 Run Time: 17:30:03 HMVersion: 6.50 Data File: H:SWSUB45.IN

SUMMARY OF ERRORS AND SPECIAL NOTES

CAUTION	SECNO=	10.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
MARNING	SECNO=	9.000	PRGPILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
CAUTION	SECNO=	6.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO=	6.000	PROFILE=	1	MINIMUM SPECIFIC ENERGY
CAUTION	SECNO=	5.200	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO=	5.200	PROFILE=	1	MINIMUM SPECIFIC ENERGY
CAUTION	SECNO=	5.100	FROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO=	5.100	PROFILE=	1	MINIMUM SPECIFIC ENERGY
CAUTION	SECNO=	5.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO=	5.000	PROFILE=	1	MINIMUM SPECIFIC ENERGY
MARNING	SECNO=	4.200	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
MARNING	SECNO=	2.000	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE

**	******	******	****	******	*******	192
*	HEC-2 WAT	ER SURFA	CE PR	OFILES		*
*						*
*	Version	4.6.2;	May	1991		*
						*
	RUN DATE	19MAY	94	TIME	17:29:47	*
**	*********	*******	****	******	********	

	1-14	
**	******	****
*	U.S. ARMY CORPS OF ENGINEERS	*
*	HYDROLOGIC ENGINEERING CENTER	*
*	609 SECOND STREET, SUITE D	*
*	DAVIS, CALIFORNIA 95616-4687	*
*	(916) 756-1104	*
**	***	****

ХХ	XXXXXXX XXXXX	XXXXX
ХХ	X X X	X X
ХХ	X X	X
XXXXXXXX	XXXX X	XXXXX XXXXX
X X	X X	X
X X	X X X	Ŷ
Ç Ç	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	000000
· · ·	~~~~~	*****
CLA	1.	11
IN	III in IIANI	4
0/11	VEN // VIV	/
1111111		1111111111111111111
11111111		
111		:::
::: FU	LL MICRO-COMPUTER IMPL	EMENTATION :::
111		111
	HAESTAD MET	HODS
37 Brookside Road *	Waterbury, Connectio	ut 06708 * (203) 755-1666

Run Date: 19MAY94 Run Time: 17:29:47 HMVersion: 6.50 Data File: H:SWSUF45.IN

E-15 Page 1

THIS RUN EXECUTED 19MAY94 17:29:47

**** HEC-2 WATER SURFACE PROFILES

Version 4.6.2; May 1991

FR 11 12	SOUTHWEST ATLAS MINI SUPI	CHANNEL ERALS 88-06 ERCR: TICAL	57 5/13/94 RUN WITH W	EDGE sec 4,4	.1,4.2,5					
11	ICHECK	INQ	NINV	IDIR S	STRT MET	RIC HVINS	Q	WSEL	FQ	
	0.	0.	0.	1	-1,	0 1.0	1605.	4034.8	0.	
	0.03	0.03 0.034 7.0	0.03 60 0.0	0.035	220 250.0	250.0	250.0	0.0	0.0	0.0
R	4050.0 4060.0	0.0	4030.0 4060.0	60.0 220.0	4030.0	70.0	4040.0	145.0	4050.0	155.0
H (1 GR GR	2 2.0 4050.0 4050.0	0.034 8 0.0 175.0	65 0.0 4027.2 4060.0	0.035 230.0 65.0 195.0	230 260.0 4027.2 4060.0	260.0 75.0 230.0	260.0 4030.0	85.0	4040.0	145.0
HH AR AR	2 3.0 4050.0 4050.0	0.034 7 0.0 140.0	70 0 4024.4 4058	0.035 250 70.0 250	250 250 4024.4	250 80.0	250 4030.0	95.0	4040.0	115.0
AH K1 GR	2 4.0 4050.0 +058.0	0.038 6 0.0 255.0	105. 0 4021.6	0.035 255 80.0	255 66 4030.0	66 105.0	66 4040.0	120.0	4050.0	140.0
	2 4.1 4050.0 4058.0	0.038 6 0.0 270.0	110 0 4020.9	0.035 270 85.0	270 66 4030.0	66 110.0	66 4040.0	125.0	4050.0	135.0
	2 4.2 4050.0 4058.0	0.038 6 0.0 275.0	118 0 4020.2	0.035 275 85.0	275 120 4035.0	120 118.0	120 4040.0	125.0	4050.0	155.0

NRP 5/20/04

										2-16	,
	Run Date:	19MAY94	Run Time:	17:29:47	HMVersion: (6.50 Data	File: H:SW	SUP45.IN		Page	2
NH X1 GR	2 5.0 4050.0 4058.0	0.042 6 0.0 275.0	112 0 4018.9	0.035 275 85.0	275.0 66 4030.0	66 112.0	56 4040.0	150.0	4050.0	200.0	
NH X1 GR	2 5.1 4050.0 4050.0	0.042 7 0.0 225.0	95 0 4018.1 4058.0	0.035 280 95. 280.0	280.0 66 4018.1	66 105.	66 4030.0	125.0	4040.0	205.0	
NH K1 GR GR	2 5.2 4050.0 4050.0	0.042 7 0.0 230.0	110 0 4017.4 4058.0	0.035 280 110.0 280.0	280.0 66 4017.4	66 115.	66 4030.0	175.0	4040.0	220.0	
NH K1 GR	2 6.0 4050.0 4040.0	0.042 8.0 0.0 230.0	127 0.0 4016.7 4050.0	0.035 285.0 127.0 245.0	285.0 75.0 4016.7 4050.0	75.0 133.0 285.0	75.0 4020.0	0.0 160.0	0.0 4030.0	0.0 205.0	
NH K1 GR	2 6.5 4050.0 4040.0	0.034 8.0 0.0 240.0	130 0.0 4015.9 4048.0	0.035 290.0 130.0 265.0	290.0 72.0 4015.9 4048.0	72_0 140.0 290.0	72.0 4020.0	205.0	4030.0	220.0	
NH K1 GR	2 7.0 4050.0 4040.0	0.034 7.0 0.0 240.0	130 0.0 4015.1 4047.0	0.035 290.0 130.0 290.0	290 150.0 4015.1	150.0 140.0	150.0 4020.0	0.0 210.0	0.0 4030.0	0.0 225.0	
NH K1 GR	2 8.0 4050.0 4040.0	0.034 7.0 0.0 250.0	135 0.0 4013.4 4050.0	0.035 310.0 135.0 310.0	310 160.0 4013.4	160.0 145.0	160.0 4020.0	0.0 220.0	0.0 4030.0	0.0 235.0	
NH K1 GR	2 9.0 4040.0 4040.0	0.034 7.0 0.0 270.0	150 0.0 4011.7 4040.0	0.035 320.0 150.0 320.0	320.0 150.0 4011.7	150.0 160.0	150.0 4020.0	0.0 230.0	0.0 4030.0	0.0 255.0	
NH K1 GR	2.0 10.0 4032.0 4020.0	0.034 8.0 0.0 240.0	204.2 0.0 4015.7 4030.0	0.035 325.0 150.0 270.0	325.0 0.0 4010.0 4037.0	0.0 167.1 325.0	0.0 4010.0	187.1	4015.7	204.2	

Run Date:	19MAY94	Run Ti	me: 17:29:	67 HMVe	rsion: 6.50	Data F	ile: H:	SWSUP45.IN		
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS OROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK E R-BANK E SSTA ENDST	ELEN
PROF 1										
490 NH CARD	USED									
720 CRITICAL 1.000 1605.0 0.00 0.013059	DEPTH AS 4.78 0.0 0.00 0.	SSUMED 4034.78 1605.0 9.56 0.	4034.78 0.0 0.00 0.	4034.80 0.0 0.000 0	4036.20 167.8 0.035 4	1.42 0.0 0.000 0	0.00 0.0 0.000 0.00	0.00 0.0 4030.00 60.20	4050.00 4060.00 45.66 105.86	
490 NH CARD SECNO 2.000 685 20 TRIAL	USED S ATTEMPI	TED WSEL,C	WSEL							
693 PROBABLE 720 CRITICAL	DEPTH AS	SPECIFIC	ENERGY							
2.000 1605.0 0.01 0.012555	5.49 0.0 0.00 250,	4032.69 1605.0 10.00 250.	4032.69 0.0 0.00 250.	0.00 0.000 20	4034.24 160.4 0.035 8	1.55 0.0 0.000 0	3.20 0.9 0.000 0.00	1.60 0.3 4027.20 51.79	4050.00 4060.00 49.35 101.14	
490 NH CARD	USED									
SECNO 3.000 685 20 TRIAL 693 PROBABLE	S ATTEMPT MINIMUM	TED WSEL,C SPECIFIC	WSEL ENERGY							
3.000	5.77	4030.17	4030.17	0.00	4032.00	1.83	3.25	1.61	4050.00	
1605.0 0.01 0.012409	0.00 260.	1605.0 10.86 260,	0.00 260.	0.000 20	147.8 0.035 8	0.00 0.000 0	1.9 0.000 0.00	0.6 4024.40 41.12	4058.00 54.22 95.34	
490 NH CARD SECNO 4.000 685 20 TRIAL 693 PROBABLE 20 CRITICAL	USED S ATTEMPT MINIMUM	ED WSEL, CI	WSEL Energy							
4.000 1605.0 0.02 0.015319	7.14 0.0 0.00 250,	4028.74 1605.0 10.88 250.	4028.74 0.0 0.00 250.	0.00 0.0 0.000 20	4030.57 147.5 0.038 11	1.84 0.0 0.000 0	3.44 2.7 0.000 0.00	1.63 0.8 4021.60 41.33	4050.00 4058.00 59.90 101.24	

2-17 Page 3

Run Date:	19MAY94	Run Ti	me: 17:29:4	7 HMVe	rsion: 6.50	Data F	ile: H:	SWSUP45.IN		
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH 1DC	HV AROB XWR I CONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPHID	L-BANK R-BANK SSTA ENDST	ELEV
1490 NH CARD	USED									
*SECNO 4.100 3685 20 TRIAL 3693 PROBABLE	S ATTEMPT MINIMUM	TED WSEL,CO SPECIFIC I	WSEL ENERGY							
4.100	7.23	4028.13	4028.13	0.00	4029.95	1.82	1.00	0.12	4050.00	
1605.0	0.0	1605.0	0.0	0.0	148.3	0.0	2.9	0.9	4058.00	
0.02	0.00	10.82	0.00	0.000	0.038	0.000	0.000	4020.90	63.87	
0.014919	66.	66.	66.	20	5	0	0.00	41.00	104.87	
1490 NH CARD	USED									
*SECNO 4.200										
3685 20 TRIAL 3693 PROBABLE	S ATTEMPT MINIMUM	SPECIFIC I	WSEL Energy							
4 200	7 52	6077 72	6027 72	0 00	4020 66	1 04	1 00	0 00	4050 00	
1605.0	0.0	1605.0	0.0	0.0	143.7	0.0	3.2	1.0	4058.00	
0.02	0.00	11.17	0.00	6.000	0.038	0.000	0.000	4020.20	63.55	
0.015386	66.	66.	66.	20	8	0	0.00	38.21	101.77	
1490 NH CARD	USED									
*SECNO 5.000										
3685 20 TRIAL	S ATTEMPT	ED WSEL, CV	SEL							
3720 CRITICAL	DEPTH AS	SUMED	INCAUT							
5.000	7.47	4026.37	4026.37	0.00	4028.30	1,92	2.03	1.11	4050.00	
1605.0	0.0	1605.0	0.0	0.0	144.3	0.0	3.6	1.1	4058.00	
0.03	0.00	11.12	0.00	0.000	0.042	0.000	0.000	4018.90	64.57	
0.018707	120.	120.	120.	20	5	0	0.00	38.61	103.18	

3

1490 NH CARD USED *SECNO 5.100

1645 INT SEC ADDED BY RAISING SEC 5.10, 0.400 FT AND MULTIPLYING BY 1.009

301 HV CHANGED MORE THAN HVINS

6.18 Page 4

Run Date:	19MAY94	Run Tim	e: 17:29:4	7 HMVer	rsion: 6.50	Date F	ile: H:	SWSUP45.IN		
SECHO Q TIME SLOPE	DEPTH QLO8 VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK I R-BANK I SSTA ENDST	ELEN
3302 WARNING:	CONVEY	ANCE CHANGE	OUTSIDE O	F ACCEPTA	BLE RANGE,	KRATIO =	1.54			
1.010 1605.0 0.03 0.044525	4.62 0.0 0.00 33.	4023.12 1605.0 16.58 33.	4024.47 0.0 0.00 33.	0.00 0.0 0.000 6	4027.39 96.8 0.038 15	4.27 0.0 0.000 0	0.91 3.6 0.000 0.00	0.00 1.1 4018.50 31.81	4050.40 4058.40 82.01 113.83	
1645 INT SEC	ADDED BY	RAISING SE	c 1.0	1, -0.400	D FT AND MU	LTIPLYING	BY 0,99	1		
301 HV CHANG	ED MORE 1	THAN HVINS								
5.100 1605.0 0.03 0.026483	5,26 0.0 0.00 33.	4023.36 1605.0 13.69 33.	4024.11 0.0 0.00 33.	0.00 0.0 0.000 5	4026.27 117.2 0.038 11	2.91 0.0 0.000 0	$1.11 \\ 3.7 \\ 0.000 \\ 0.00$	0.00 1.1 4018.10 34.53	4050.00 4058.00 79.32 113.85	
1490 NH CARD	USED									
5.200 5.200 1605.0 0.03 0.020971	5.29 0.0 0.00 66.	4022.69 1605.0 11.45 66.	4023.06 0.0 0.00 66.	0.00 0.0 0.000 2	4024.72 140.2 0.038 8	2.03 0.0 0.000 0	1.55 3.9 0.000 0.00	0.00 1.2 4017.40 48.03	4050.00 4058.00 92.16 140.18	
1490 NH CARD	USED									
6.000 1605.0 0.03 0.026111	4.32 0.0 0.00 66.	4021.02 1605.0 11.80 66.	4021.55 0.0 0.00 66.	0.00 0.0 0.000 5	4023.18 136.0 0.037 11	2.16 0.0 0.000 0	1.54 4.1 0.000 0.00	0.00 1.3 4016.70 54.08	4050.00 4050.00 110.52 164.60	
490 NH CARD	USED									
6.500 1605.0 0.03 0.028161	3.38 0.0 0.00 75.	4019.28 1605.0 10.98 75.	4019.82 0.0 0.00 75.	0.00 0.00 0.000	4021.15 146.2 0.035 11	1.87 0.0 0.000 0	2.03 4.4 0.000 0.00	0.00 1.4 4015.90 76.49	4050.00 4048.00 117.11 193.60	

E-11 Page 5

Run Date:	19MAY94	Run Ti	me: 17:29:47	HMVe	rsion: 6.50	Data F	ile: H:	SWSUP45.IN	
SECNO Q TIME	DEPTH QLOB VLOB	CWSEL QCH VCH	CR1WS QROB VROB	WSELK ALOB XNL	EG ACH XNCH	HV AROB XNR	HL VOL WTR	OLOSS TWA ELMIN	L-BANK ELE R-BANK ELE SSTA
SLOPE	XLOBL	XLCH	ALUBR	ITRIAL	IDC	TCONT	LUKAK	TOPWID	ENUSI
490 NH CARD	USED								
SECNO 7.000	C ATTEND	TED LICEL C	1000						
4003 PROBARL	E MINIMUM	SPECIFIC	ENERGY						
720 CRITICA	L DEPTH A	SSUMED							
7.000	4.03	4019.13	4019.13	0.00	4020.28	1.15	1.38	0.02	4050.00
1605.0	0.0	1605.0	0.0	0.0	186.2	0.0	4.6	4015 10	4047.00
0.013926	72.	72.	72.	20	11	0.000	0.00	82.51	197.51
490 NH CARD	USED								
685 20 TRIA	LS ATTEMP	TED WSEL.C	WSEL						
693 PROBABL	E MINIMUM	SPECIFIC	ENERGY						
720 CRITICA	L DEPTH A	SSUMED	1017 17	0.00	1010 01	1.4	0.07		1050 00
8.000	4.27	4017.67	4017.67	0.00	4018.91	0.0	5 3	0.02	4050.00
0.04	0.00	8.94	0.00	0.000	0.035	0.000	0.000	4013.40	119.27
0.013649	150.	150.	150.	20	8	0	0.00	74.21	193.47
SECNO 9.000	USED								
685 20 TRIA	LS ATTEMP	TED WSEL, CI	WSEL						
693 PROBABL	E MINIMUM	SPECIFIC	ENERGY						
720 CRITICA	L DEPTH A	SSUMED	4016 00	0.00	4017 38	1 28	2 14	1 10	4040 00
1605.0	0.0	1605.0	0.0	0.0	176.6	0.0	5.9	2.0	4040.00
0.04	0.00	9.09	0.00	0.000	0.035	0.000	0.000	4011.70	126.70
0.013348	160.	160.	160.	20	8	0	0.00	70.36	197.07
450 NH CARD	USED								
SECNO 10.00	0								
685 20 TRIA	LS ATTEMP	TED WSEL, CI	WSEL						
720 CRITICAL	DEDTH A	SPECIFIC I	ENERGY						
10.000	4.59	4014.59	4014.59	0.00	4016.25	1.66	1.90	0.87	4032.00
1605.0	0.0	1605.0	0.0	0.0	155.2	0.0	6.5	2.2	4037.00
0.05	0.00	10.34	0.00	0.000	0.034	0.000	0.000	4010.00	153.31
0.012045	150.	150.	150.	20	8	0	0.00	47.57	200.89

E 26 Page 6
PROFILE FOR STREAM SUPERCRITICAL RUN WITH

6-21

PLOTTED POINTS (BY PRIORITY) E-ENERGY, W-WATER SURFACE, 1-INVERT, C-CRITICAL W.S., L-LEFT BANK, R-RIGHT BANK, M-LOWER END STA

LEVATION	4010. CUMDIS	4015.	4020.	4025.	4030,	4035.	4040.	4045. 405	0. 4055.	
1.00	0					. W	Ε .	10112	L	R
	20		A			W.	Ε .	24103400	L	. R
	40		1.1.1.1.1.1.1		1.	Ψ.	Ε.		L	R
	60				· 1.	W.E			L L	R
	80	1. S. S.			1	W E	1.11.14	1 1 N N N N N	L	. R
	100.				1	W.E		1.1.1.1.1.1.1.1	L	. R
	120				1	W .E			L	R
	140				Ι.	W E	1. A.		i i	R
	160		- 1		1	W E		- A	L.	R
	180				1 .	W E		1	1	R
	200				1	W E.			i i	R
	220				1	W E.			1 1	R
	240				1	W E.		- i- i 19 i i-	i.	R
2.00	260		· ·		1	WE.			i i	R
	280.			1	1	W E.			Ĩ.	P
	300				1	W E.			ĩ	P
	320.				1	W E			ĩ	. p
	340.				1 1	W F			ĩ	·
	360				1	U F			- 17 - C	. p
	380				1 1	W.F				, p
	400			1		WE			1	. n.
	420					WE		1	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	· .
	440			1		W F			1.1	
	460					U E			1	, K ,
	480.			1		U F			- 10 million	, n .
	500			1		U F		<u>1</u>	1.1	
3 00	520								1.1	, n ,
5.00	540		*	1					1	
	560								1	
	580							1.1.1.1.1.1.1.1		
	400			1 1		e				
	620		1.1.1			E .	1	and the second		
	640					E		10.000	-	
	640				w.,	E .		- 1. States	-	· K ·
	600			· . · ·	w.,		*		1 - Carlos -	. K .
	000			1.1	W .	E				. к.
	700			1.1	ω.	E			-	. к.
	720		- C	1.1	ω.	E	1.00		-	. R .
1 00	740			1.	Ψ.	.E .			L	. R .
4.00	760	- 1 - K	*	1	Ψ	E .			L.	· 8 ·
	/80			1	ω.	E .			L.	. R .
	800				WE				L	. R .
1 40	820	10 (July 74)		1 N.	WE			· · · · · · · · · · · · · · · · · · ·	-	. к.
4.10	840		· · · ·	4	WE				-	. к.
	860		- 4		W 2					. к.
1 20	880				94 E		e			. R .
4.20	900	요즘 가지			W E.	C	1.1.1.1.1.1			. R .
	920		1		W E.				L.	. R .
	940	10.00			WE.	1. S. C. S. C. M.	5 - S - S - S - S - S - S - S - S - S -	1997 - S. Maria A.	L .	s R +
	960		1.		WE.				L	• R •
	980		1.		WE,	6 C. C. C. K.	1	5	6	. R.
	1000		Ι.,		Ψ Ε .		· · ·		L	. R .
5.00	1020	- 10 - 16 -	1		WE,		10.0	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	L	. R .
	1040	1.	1 .	WC	E .				L	. R .
1.01	1060		Ι.	W C.	Ε.	- C - K		1.	. L	. R .
5.10	1080	1.	1 .	WC .	Ε.		1.11		L	. R .
	1100		1 .	WC.	Ε.	1.111.1		1. T	L	. R .
	1120		1 .	WC .E		1.11.1	11 A		L	. R .
	1140		1 .	W E		1. C. 1. C. 1.			L	. R .
5.20	1160	19 F. 19	1 .	WC E.				1.	L .	. R .
	1180	1.	1	WC E.			1000		L.	.R
	1200.	1.11.1	1	WC E .					L R	
6.00	1220.		1	C E					L	
	1240		1	C E			1.2.2.2		RL	
	1260.		. WC	F					RL	

	1280	11				1		we	F		1												R 1	1	
6 50	1300	1			1.1	1		NC	£		÷.						÷.			÷.		2	- î		
0.30	1720				1	* · ·		in.	E								*					D.			ê.,
	1320.				14			ALC: 1			*			. *								n .			
7 66	1340.	1			11			HL-I			*						. 4					ĸ			*
1.00	1360.				1			H -1	£								18				K		- F		
	1380.				1			K E			*			*						. *		R	L		
	1400.	1.18.1			Ι.		W	E														R	L,		A
	1420.				1.		W	Ε.			*									*		R	L	× .	
	1440.			1			M	Ε.												*		1	RL		×
	1460.			1			W	Ε.															RL		
	1480.			1			WI	Ε.															RL		
	1500.			1			WE	Ε.															1	1.4	2.11
8.00	1520.			1		1	1 1	έ.,						4.1									L		2.11
	1540.		1			1	I E							1									1 .		
	1560.	1.1	1				E							-0.1			1.					L			3 i - 1
	1580.	1.2	1			W	E				÷.			12			1				t.	7		1.1	9 A A
	1600.		1			W	F				÷.			0.1						1					C
	1620	10.	Ť		2.1	Ы.	F				0.1								1						1
	1660	1.1	1			N.	E			1.1				11											×
	1660				× .		1	1.0																	*
0.00	1000.				2.4	W 5					× 1						21	5						1.1	*
9.00	1000.		1		11						×.					12.1	5								10
	1700.				1.1	NE					× .						к.								× .
	1720.		1		- W	E										LR	18							- *	*
	1740.		1		. W	E									r.	R									
	1760.		1		- W	E		~ 10						. 1		R									
	1780.	.1			W	E								L .		R									*
	1800.	. I			W	E		18			*		L		P		14								*
10.00	1820.	1		- 1	d .	E					4.1	L			R								1.1		

E.22

Run Date: 19MAY94 Run Time: 17:29:47 HMVersion: 6.50 Data File: H:SWSUP45.IN

6-23 Page 7

THIS RUN EXECUTED 19MAY94 17:29:50

****** HEC-2 WATER SURFACE PROFILES

Version 4.6.2; May 1991

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

SUPERCRITICAL RUN WITH

SUMMARY PRINTOUT TABLE 150

SECNO	XLCH	ELTRD	ELLC	ELMIN	Q	CWSEL	CRIWS	EG	10*KS	VCH	AREA	.01K
1.000	0.00	0,00	0.00	4030.00	1605.00	4034.78	4034.78	4036.20	130.59	9.56	167.83	140.45
2.000	250.00	0.00	0.00	4027.20	1605.00	4032.69	4032.69	4034.24	125.55	10.00	160.44	143.24
3.000	260,00	0.00	0.00	4024.40	1605.00	4030.17	4030.17	4032.00	124.09	10.86	147.79	144.08
4.000	250.00	0.00	0.00	4021.60	1605.00	4028.74	4028.74	4030.57	153.19	10.88	147.46	129,68
4.100	66.00	0.00	0.00	4020,90	1605.00	4028.13	4028.13	4029.95	149.19	10.82	148.30	131.40
4.200	66,00	0.00	0.00	4020.20	1605.00	40 :7.72	4027.72	4029.66	153.86	11.17	143.66	129.39
5.000	120.00	0.00	0.00	4018.90	1605.00	4026.37	4026.37	4028.30	187.07	11.12	144.30	117.35
5.100	66.00	0.00	0.00	4018.10	1605.00	4023.36	4024.11	4026.27	264.83	13.69	117.24	98.63
5.200	66.00	0.00	0.00	4017.40	1605.00	4022.69	4023.06	4024.72	209.71	11.45	140.21	110.83
6.000	66.00	0.00	0.00	4016.70	1605.00	4021.02	4021.55	4023.18	261.11	11.80	136.02	99.33
6.500	75.00	0.00	0.00	4015.90	1605.00	4019.28	4019.82	4021.15	281.61	10.98	146.22	95.64
7.000	72.00	0.00	0.00	4015.10	1605.00	4019.13	4019.13	4020.28	139.26	8.62	186.20	136.01
8.000	150.00	0.00	0.00	4013.40	1605.00	4017.67	4017.67	4018.91	136.49	8.94	179.60	137.38
9.000	160.00	0.00	0.00	4011.70	1605.00	4016.09	4016.09	4017.38	133.48	9.09	176.59	138.92
10.000	150.00	0.00	0.00	4010.00	1605.00	4014.59	4014.59	4016.25	120.45	10.34	155.24	146.24

6-24 Page 8

SUPERCRITICAL RUN WITH

SUMMARY PRINTOUT TABLE 150

SE	CNO	Q	CWSEL	DIFWSP	DIFWSX	DIFKWS	TOPWID	XLCH
1	.000	1605.00	4034.78	0.00	0.00	-0.02	60.20	0.00
2	.000	1605.00	4032.69	0.00	-2.09	0.00	51.79	250.00
3	000	1605.00	4030.17	0.00	-2.52	0.00	41.12	260.00
4	000	1605.00	4028.74	0.00	-1,43	0.00	41.33	250.00
4	100	1605.00	4028.13	0.00	-0.60	0.00	41.00	66.00
4	200	1605.00	4027.72	0.00	-0.41	0.00	38.21	66.00
5	.000	1605.00	4026.37	0.00	-1.34	0.00	38.61	120.00
5	100	1605.00	4023.36	0.00	0.25	0.00	34.53	66.00
5	200	1605.00	4022.69	0.00	-0.67	0.00	48.03	66.00
6.	000	1605.00	4021.02	0.00	-1.67	0.00	54.08	66.00
6.	500	1605.00	4019.28	0.00	-1.74	0.00	76.49	75.00
7	000	1605.00	4019.13	0.00	-0.15	0.00	82.51	72.00
8.	000	1605.00	4017.67	0.00	-1.46	0.00	74.21	150.00
9.	000	1605.00	4016.09	0.00	-1.57	0.00	70.36	160.00
10.	000	1605.00	4014.59	0.00	-1.50	0.00	47.57	150.00

SUMMARY OF ERRORS AND SPECIAL NOTES

CAUTION	SECNO=	1.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO	2.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO=	2.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION	SECNO=	2.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
CAUTION	SECNO=	3.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO=	3.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION	SECNO=	3.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	4.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
CAUTION	SECNO=	4.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
CAUTION	SECNO=	4.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	4.100	PROFILE=	1	CRITICAL DEPTH ASSUMED
AUTION	SECNO=	4.100	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
AUTION	SECNO=	4.100	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	4.200	PROFILE=	1	CRITICAL DEPTH ASSUMED
AUTION	SECNO=	4.200	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
AUTION	SECNO=	4.200	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	5.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
AUTION	SECNO=	5.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
AUTION	SECNO=	5.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	5.100	PROFILE=	1	INTERPOLATED X-SECTIONS USED
AUTION	SECNO=	7.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
AUTION	SECNO=	7.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
AUTION	SECNO=	7.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	8.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
AUTION	SECNO=	8.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
AUTION	SECNO=	8.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	9.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
AUTION	SECNO=	9.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
AUTION	SECNO=	9.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO	10.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
AUTION	SECNO=	10.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
AUTION	SECNO=	10.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL

HEC2 S/M: 1916530006

t-26

t al	****	*****	*****	*****	******	****
ŧ.	U.S.	ARMY	CORPS	OF ENGI	NEERS	
ŧ	HYDR	OLOGIC	ENGI	NEERING	CENTER	
ŧ	609	SECON	STRE	ET, SUIT	ED	
ŧ.	DAVI	S, CAL	IFORN	11A 95616	-4687	
ŧ.		(9	216) 7	56-1104		
**	****	*****	*****	*****	*****	****

**	***	******	****	******	******	**
*	HEC-2 WAT	ER SURFA	CE PR	OFILES		*
*						*
*	Version	4.6.2:	May	1991		*
*		a second				*
*	RUN DATE	19MAY	94	TIME	17:58:09	*
**	********	*******	****	******	*******	**

X XXXXXX XXXXX XXXXX XX X X Х X X х X X Х х XXXXX XXXXX XXXXX XXXXX Х X Х X X X Х X XXXXXXX XXXXX XXXXXXX X MUL ATION ::: ::: FULL MICRO-COMPUTER IMPLEMENTATION 111 111 111 111 HAESTAD METHODS

37 Brookside Road * Waterbury, Connecticut 06708 * (203) 755-1666

Ocntical 1.0 5.01 32 6.0 6.5 10.0 Rocks Simulation 5 (suboritical) Sim 6 Similarin 5 (Suprent) (Subiritinal)

Run Date: 19MAY94 Run Time: 17:58:10 HMVersion: 6.50 Data File: H:SWSUB56.1N

6-27

Page 1

THIS RUN EXECUTED 19MAY94 17:58:10

HEC-2 WATER SURFACE PROFILES

Version 4.6.2; May 1991

FR T1 SOUTHWEST CHANNEL T2 ATLAS MINERALS 88-067 5/12/94 T3 SUBCRITICAL RUN WEDGE SEC 5, 5.1, 5.2, 6

11	ICHECK	INQ	NINV	IDIR ST	RT METRIC	HVINS	Q	WSEL	FQ	
	0.	0.	0.	0 -	1. 0.	1.5	1605.	4014.61	0.	
JS	NPROF	IPLOT	PREVS	XSECV XS	ECH FN	ALLDC	1BW	CHNIM	ITRACE	
	0.	0.	0.	0	0 0	+1				
NC NH K1 GR	0.03 2 10 4032 4020	0.03 0.038 0 240	0.03 204.2 0 4015.7 4030	0.035 325 150 270	325 0 4010 4037	0.00 0 167.1 325	0 0 4010	0 0 187.1	0 0 4015.7	0 0 204.2
NH K1 GR GR	2 9 4040 4040	0.034 7 0 270	150 0 4011.7 4040.0	0.035 320 150.0 320.0	320 150 4011.7	0 150 160	0 150 4020	0 0 230	0 0 4030	0 0 255
NH K1 GR GR	2 8 4050 4040	0.034 7 0 250	135.0 0.0 4013.4 4050.0	0.035 310.0 135.0 310.0	310.0 160.0 4013.4	0 160 145	0 160 4020	0 0 220	0 0 4030	0 0 235
NH K1 GR GR	2 7 4050 4040	0.034 7 0 240	130.0 0.0 4015.1 4047.0	0.035 290.0 130.0 290.0	290.0 150.0 4015.1	0 150 140	0 150 4020	0 210	0 0 4030	0 0 225
NH K1 GR	2 6.5 4050 4040	0.034 8 0 240	130.0 0.0 4015.9 4048.0	0.035 290.0 130.0 265.0	290.0 72.0 4015.9 4048.0	0 72 140. 290	0 72 4020	0 205	0 4030	0 220

WW 5/20/94

										5-26	8
	Run Date:	19MAY94	Run Time:	17:58:10	HMVersion: 6	.50 Data	File: H:SW	SUB56.1N		Page	2
NH X1 GR GR	2 6 4050 4040	0.042 8 0 230	160.0 0.0 4016.7 4050.0	0.035 285.0 127.0 245.0	285.0 75.0 4024 4050.0	75 160 285	75 4023.0	160.1	4030	205	
NH X1 GR GR	2 5.2 4050 4040	0.042 8 0 220	140.0 0.0 4017.4 4050	0.035 280.0 110.0 230	280.0 66.0 4028. 4058.0	66 140. 280.0	66 4024.5	140.1	4030	175	
NH X1 GR GR	2 5.1 4050 4058.0	0.042 6 0 280.0	125.0 0.0 4018.1	0.035 280.0 95.0	280.0 66.0 4030	66 125	66 4040	205	4050	225	
NH X1 GR GR	2 5 4050 4058.0	0.042 6 0 275.0	112.0 0.0 4018.9	0.035 275.0 85.0	275.0 66.0 4030	66 112	66 4040	150	4050	200	
NH X1 GR GR	4.2 4050 4050	0.038 7 0 155	85.0 0.0 4020.2 4058.0	0.035 275.0 85.0 275.0	275.0 120.0 4020.2	120 95	120 4030	110	4040	125	
NH X1 GR GR	2 4.1 4050 4050	0.038 7 0 135	85.0 0.0 4020.9 4058.0	0.035 270.0 85.0 270.0	270.0 66.0 4020.9	66 95	66 4030	110	4040	125	
NH X1 GR GR	2 4 4050 4050	0.038 7 0 140	80.0 0.0 4021.6 4058.0	0.035 255.0 80.0 255.0	255.0 66.0 4021.6	66 90	66 4030	105	4040	120	
NH X1 GR GR	2 3 4050 4050	0.034 7 0 140	70.0 0.0 4024.4 4058	0.035 250.0 70.0 250	250.0 250.0 4024.4	0 250 80	0 250 4030	0 0 95	0 4040	0 0 115	
NH X1 GR GR	2 2 4050 4050	0.034 8 0 175	65.0 0.0 4027.2 4060.0	0.035 230.0 65.0 195.0	230.0 260.0 4027.2 4060.0	0 260 75 230	0 260 4030	0 0 85	0 0 4040	0 0 145	
NH K1 GR GR	2 1 4050 4060	0.034 7 0 175	60.0 0.0 4030.0 4060.0	0.035 220.0 60.0 220.0	220.0 250.0 4030.0	0 250 70	0 250 4040	0 0 145	0 4050	0 0 155	

WN 5/20/44

Run Date:	19MAY94	Run Ti	me: 17:58:	10 HMVe	rsion: 6.5	0 Data I	File: H:	SWSUB56.IN	
SECNO Q TIME	DEPTH QLOB VLOB	CWSEL QCH VCH	CRIWS QROB VROB	WSELK ALOB XNL	CG ACH XNCH	HV AROB XNR	HL VOL WTN	OLOSS TWA ELMIN	L-BANK ELEV R-BANK ELEV SSTA
SLOPE	XLOBL	XLCH	XLOBR	ITRIAL	IDC	ICONT	CORAR	TOPWID	ENDST
*PROF 1									
CRITICAL DEPT	H TO BE	CALCULATED	AT ALL CR	OSS SECTIO	NS				
1490 NH CARD *SECNO 10.000	USED								
10.000	4.60	4014.00	4014.60	4014.61	4016.25	1.65	0.00	0.00	4032.00
1605.0	0.0	1605.0	0.0	0.0	155.6	0.0	0.0	0.0	4037.00
0.00	0.00	10.32	0.00	0.000	0.038	0.000	0.000	4010.00	200.91
1490 NH CARD *SECNO 9.000	USED								
3302 WARNING:	CONVEY	ANCE CHANG	E OUTSIDE (OF ACCEPTA	BLE RANGE,	KRATIO =	1.58		
9.000 1605.0 0.01 0.006000	5.20 0.0 0.00 150.	4016.90 1605.0 6.74 150.	4016.12 0.0 0.00 150.	0.00 0.0 0.000 2	4017.60 238.0 0.035 8	0.71 0.0 0.000 0	1.35 0.7 0.000 0.00	0.00 0.2 4011.70 81.47	4040.00 4040.00 122.42 203.89
1490 NH CARD	USED								
8.000	4.40	4017.80	4017.67	0.00	4018.91	1.10	1.30	0.00	4050.00
1605.0	0.0	1605.0	0.0	0.0	190.5	0.0	1.5	0.5	4050.00
0.011656	160.	160.	160.	3	15	0.000	0.00	76.39	195.12
1490 NH CARD	USED								
7.000	4.49	4019.59	4019.13	0.00	4020.37	0.78	1.46	0.00	4050.00
1605.0	0.0	1605.0	0.0	0.0	226.2	0.0	2.2	0.8	4047.00
0.02	0.00	7.10	0.00	0.000	0.035	0.000	0.000	4015.10	113.29
0.000277	150.	150.	150.	6	11	0	0.00	40.01	204.10

1490 NH CARD USED

E - 27 Page 3

Run Date:	19MAY94	Run Ti	me: 17:58:10	HMVe	rsion: 6.50	Data F	ile: H:	SWSUB56.IN		
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK R-BANK SSTA ENDST	ELEV ELEV
*SECNO 5.500	1 28	4020 18	4010 82	0.00	6020 08	0.80	0.61	0.00	4050.00	
1605.0	4.20	1605.0	0.0	0.0	222.9	0.0	2.6	1.0	4030.00	
0.02	0.00	7.20	0.00	0.000	0.035	0.000	0.000	4015.90	113.67	
0.008784	72.	72.	72.	2	15	0	0.00	91.60	205.27	
1490 NH CARD	USED									
*SECNO 6.000	ODECLEUC	ENERGY								
3720 CRITICAL	DEPTH AS	SUMED								
6.000	6.16	4022.86	4022.86	0.00	4024.46	1.60	0.93	0.00	4050.00	
1605.0	0.0	1605.0	0.0	0.0	158.3	0.0	2.9	1.1	4050.00	
0.02	0.00	10.14	0.00	0.000	0.042	0.000	0.000	4016.70	103.49	
0.019009	75.	75.	75.	0	14	0	0.00	51.37	154.86	
1490 NH CARD	USED									
*SECNO 5.200	ODFOILTIO	ENEDEN								
7100 MINIMUM	DEDTH AS	CUMED								
5,200	6.97	4024.37	4024.37	0.00	4026.13	1.76	1.23	0.00	4050.00	
1605.0	0.0	1605.0	0.0	0.0	150.6	0.0	3.1	1.1	4058.00	
0.02	0.00	10.65	0.00	0.000	0.042	0.000	0.000	4017.40	86.49	
0.018343	66.	66.	66.	0	8	0	0.00	43.24	129.72	
1490 NH CARD	USED									
SECNO 5.100	7 48	4025 58	4025 30	0.00	6027 27	1.60	1 14	0 00	4050 00	
1605.0	0.0	1605.0	0.0	0.0	154.1	0.0	3.3	1.2	4058.00	
0.03	0.00	10.42	0.00	0.000	0.042	0.000	0.000	4018.10	72.71	
0.016216	66.	65.	66.	2	8	0	0.00	41.16	113.87	
1490 NH CARD	USED									
SECNO 5.000	7 76	1026 64	40% . 70	0.00	1028 31	1 45	1.04	0.00	4050 00	
1605 0	0.0	1605 0	0.0	0.00	155 7	0.0	3.6	1 3	4058.00	
0.03	0.00	10.31	0.00	0.000	0.042	0.000	0.000	4018,90	63.78	
0.015264	66.	66.	66.	2	5	0	0.00	40.11	103.89	

(-30 Page 4

Run Date:	19MA 194	Run Tim	e: 17:58:1	0 HMVe	rsion: 6.50	Data F	ile: H:	SWSUB56.1N	
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK ELE R-BANK ELE SSTA ENDST
1490 NH CARD 1 *SECNO 4.200	JSED								
3302 WARNING:	CONVEY	ANCE CHANGE	OUTSIDE O	F ACCEPTA	BLE RANGE,	KRATIO =	1.97		
4.200 1605.0 0.03 0.003922	8.17 0.0 0.00 120.	4028.37 1605.0 7.04 120.	4026.29 0.0 0.00 120.	0.00 0.0 0.000 2	4029.14 227.9 0.037 15	0.77 0.0 0.000 0	0.83 4.1 0.000 0.00	0.00 1.4 4020.20 45.80	4050.00 4058.00 61.70 107.50
1490 NH CARD L *SECNO 4,100	JSED								
4.100 1605.0 0.03 0.005075	7,61 0,0 0.00 66,	4028.51 1605.0 7.71 66.	4026.95 0.0 0.00 66.	0.00 0.0 0.000 3	4029.43 208.3 0.036 15	0.92 0.0 0.000 0	0.29 4.4 0.000 0.00	0.00 1.5 4020.90 44.76	4050.00 4058.00 62.78 107.54
1490 NH CARD U *SECNO 4.000	JSED								
4.000 1605.0 0.04 0.006973	7.05 0.0 0.00 66.	4028.65 1605.0 8.68 66.	4027.62 0.0 0.00 66.	0.00 0.0 0.000 3	4029.82 184.9 0.036 15	1.17 0.0 0.000 0	0.39 4.7 0.000 0.00	0.00 1.5 4021.60 42.45	4050.00 4058.00 60.14 102.59
1490 NH CARD L	JSED								
3.000 1605.0 0.04 0.011210	5.90 0.00 250.	4030.30 1605.0 10.47 250.	4030.17 0.0 0.00 250.	0.00 0.0 0.000 3	4032.00 153.3 0.035 15	1.70 0.0 0.000 0	2.18 5.7 0.000 0.00	0.00 1.8 4024.40 41.75	4050.00 4058.00 53.86 95.61
1490 NH CARD L	JSED								
2.000 1605.0 0.05 0.007569	6.11 0.0 0.00 260	4033.31 1605.0 8.25 260	4032.66 0.0 0.00 260	0.00 0.0 0.000	4034.37 194.5 0.035	1.06 0.0 0.000	2.37	0.00 2.1 4027.20	4050.00 4060.00 47.57

CIDEZ IN

6-31 Page 5

Run Date:	19MAY94	Run Ti	me: 17:58:1	0 HMVe	rsion: 6.50	Data F	ile: H:	SWSUB56.IN		
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK E R-BANK E SSTA ENDST	ELEV
1490 NH CARD	USED									
1.000 1605.0 0.06 0.007864	5.33 0.0 0.00 250.	4035.33 1605.0 7.92 250.	4034.78 0.0 0.00 250.	0.00 0.0 0.000 2	4036.30 202.8 0.035 15	0.97 0.0 0.000 0	1.93 7.9 0.000 0.00	0.00 2.4 4030.00 66.01	4050.00 4060.00 44.00 110.01	

1.32

Page 6

PROFILE FOR STREAM SUBCRITICAL RUN WEDGE S

PLOTTED POINTS (BY PRIORITY) E-ENERGY, W-WATER SURFACE, I-INVERT, C-CRITICAL W.S., L-LEFT BANK, R-RIGHT BANK, M-LOWER END STA

LEVATION	4010. CUMDIS	4015.	4020.	4025.	4	030.	4035.	4040.	4045.	4050.	4055.	
10.00	0. 1		. Е .		11		L 1	R .				
	20. 1		WE.		4.1		- L .	R .	6 - 11 A.	1.		1.1.1.1
	40	1	WE.				k	R .			1. S. C. K.	1.1.1.4
	60	I	CW E .				- L	R .	· · · · · · · · · · · · · · · · · · ·			
	80	1	.CWE .			*		L R .				
	120	1	CUF .		18.11	*		L R .				
	140.	1	CWE					LR	1.1.1.1.1.1	1.00		
9.00	160	i	. C WE .		÷.	- ÷		L		1.1		
	180	1	. CW E .						L	1.1.1.1.2	1	
	200	1	. CWE .						L .			
	220	1	. CWE .		×				Ε.,			
	240	1	. CWE .				×	•	- L	1		
	280.	1	UF.							· · ·	1.1.1	
	300	î	. WE .		÷					- L .		
8.00	320	1	. CWE.							L		
	340	1	. WE.						1. A.	RL		1. C. A.
	360	1	. CW E.		*	*		*		RL	1.11	
	380	1,	WE.					*		RL		1.1.1
	420	i i	CWE.		÷	*				PL	1.	
	440.	· · · · ·	1 WE		- 10 - 11 - 1					RL	100.00	
7.00	460		I CW.	E	÷.					R L		
	480		.I CW	E						R L		
	500		.I CW	E						R L	1.00	
1 00	520		. I CW	E		*		- x		R L	- 1 - C	1.1.1.4
6.50	540		- 1 - W	CUE				×.	1.1.1	RL	•	
	580			UF						PI		
	600.		1 1	₩ E	11	<u>-</u> -				RL		
6.00	620			W	Ε.				1.1.1	L		
	640		. 1 .	W	E				1.1.1.4	L	R.	
	660				.E	1 A.		· · · · · · · · · · · · · · · · · · ·		L	R	
5.20	680		4 C 🕴 🖓 🖓		W.E				1.1. T. M.	L.		R .
	700		1 . A 1		W. E		- 11 E	1.1.1.1				к.
5.10	740.		1 1		.W	E			-242.25	1		P ·
	760.		<u>.</u>		. CW	E .			1090	ĩ		R
	780				. W	Ε.				L		R .
	800				. W	Ε.	1.1.1	1.11.11.11		L		R.
5.00	820		1 <u>.</u> .		- W	Ε.			1.1	L	1	R .
	840		- L.			(L . ·			1.00	L	*	R,
	880.		1			WE .	(1	18 M (* 1	P ·
	900	1	. i		. C	WE.				ĩ		R
	920		. 1		. C	WE.				Ĺ		R .
4.20	940		. 1		. C	WE .		A. A. A.	1.1.1.1	L		R,
	960			1	. C	WE .	C 1 1 A	1.	1.1	L		R.
6 10	980	1.11	<	1.	. C	WE.						R .
4.10	1020.	1.1.1.1		÷.		W F.	· · · · *			1		R ·
	1040.			1	1.1	CWE.				ĩ		R
4.00	1060			1		CWE		1.1.1.1.		ĩ		R
	1080			1	+ -	CWE	1.1	1 (Charles)		L		R .
	1100			1		CWE	1	1.00		L	· · · ·	R,
	1120	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	e - 1996 e	1	*	CW.E			(1) (1) (4)	L		R .
	1140		· · · · · ·		×	CW.E			*	L		R .
	1180	1.2.1		1		CW.E	1.1.1				1 · .	R ·
	1200	1.1		î.	-	CH. I				1		R
	1220.			1	1	W. 1	1. The second			1		R
	1240			1		CW	E			Ĩ.		R
	1260.			1		CW	E .			· · · ·		P

5-33

											6	
	1280.			1.000		W E			1.1	1		
	1300				1.	W F						
3 00	1320		1.1		11	CU E		1.1		ĩ		
2.00	1320.			*	4 4	UN E	*					
	1340.				12	W E			18, 11 E	h.	× 8	6 - A - 1 - 1 - 1
	1360.					.CW E				L .		R .
	1380.				1	.CW E			*	L		R .
	1400.		*		.1	. W E	1.1	1. Q. H. 1. 1. 1. 1.		L		R .
	1420.				.1	. CW E				L		R .
	1440.			0.00	.1	W E				î.		P
	1460				1	CU I				Ĩ.		P .
	1/80				11	CU I				1		n .
	1400.			A 1997	· · ·	· · · · ·			- A - A - A - A - A - A - A - A - A - A			к.
	1500.					- LW B				L	× 11.	R.
	1520.					. CW	Ε.		A	L	*	R.
	1540.				• I	. CW	Ε,			L		R.
	1560.				. 1	. CW	Ε.			L	4	R
2.00	1580.			1.	. 1	- C \$	WE.			L		R
	1600.	14 C C C		1. A A A A A A A A A A A A A A A A A A A	. 1		WE.	1.	1	L		R
	1620.		2010/01/01	S. 1997		C C	E.	101111		i.		P
	1660					C	UF	10 - S. O		1	· · · · · ·	P
	1660			· · · · · ·			CLI E					0
	1600.	1.1			- C	A	OW E	· · · · · · · ·		-	*	ĸ
	1000.			*			UN E	1000				ĸ
	1700.		*	A	14 H. H.		. W.E	×		L		R
	1720.		*	4		×	CW.E			L	*	R
	1740.			x			CW.E	- K	1. C.	L		R
	1760.			ar 1 - 1			CWE		wheel wheel	L		R
	1780.			÷			CW E	G	Q 84 P.	1		R
	1800.				1.0		CW E		1.111	1		R
1.00	1820	1.0				1	CH F		S. 19	1		p
1100	1.000.00	×			*		OH L	- A				K

-34

Run Date: 19MAY94 Run Time: 17:58:10 HMVersion: 6.50 Data File: H:SWSUB56.1N

6-35 Page 7

THIS RUN EXECUTED 19MA'94 17:58:12

**** HEC-2 WATER SURFACE PROFILES

Version 4.6.2; May 1991

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

SUBCRITICAL RUN WEDGE S

SUMMARY PRINTOUT TABLE 150

	SECNO	XLCH	ELTRD	ELLC	ELMIN	Q	CWSEL	CRIWS	EG	10*KS	VCH	ARLA	.01K
	10.000	0.00	0.00	0.00	4010.00	1605.00	4014.60	4014.60	4016.25	149.59	10.32	155.57	131.23
1	9.000	150.00	0.00	0.00	4011.70	1605.00	4016.90	4016.12	4017.60	60.00	6.74	238.02	207.21
	8.000	160.00	0.00	0.00	4013.40	1605.00	4017.80	4017.67	4018.91	116.56	8.43	190,50	148.66
	7.000	150.00	0.00	0.00	4015.10	1605.00	4019.59	4019.13	4020.37	82.77	7.10	226.16	176.42
	6.500	72.00	0.00	0.00	4015.90	1605.00	4020.18	4019.82	4020.98	87.84	7.20	222.94	171.24
÷.,	6.000	75.00	0.00	0.00	4016.70	1605.00	4022.86	4022.86	4024.46	190.09	10.14	158.31	116.41
	5.200	66.00	0.00	0.00	4017.40	1605.00	4024.37	4024.37	4026.13	183.43	10.65	150.64	118.50
	5.100	66.00	0.00	0.00	4018.10	1605.00	4025.58	4025.39	4027.27	162.16	10.42	154.06	126.04
	5.000	66.00	0.00	0.00	4018.90	1605.00	4026.66	4026.39	4028.31	152.64	10.31	155.73	129.91
	4.200	120.00	0.00	0.00	4020.20	1605.00	4028.37	4026.29	4029.14	39.22	7.04	227.89	256.29
	4.100	66.00	0.00	0.00	4020.90	1605.00	4028.51	4026.95	4029.43	50.75	7.71	208.30	225.29
	4.000	66.00	0.00	0.00	4021.60	1605.00	4028.65	4027.62	4029.82	69.73	8.68	184.90	192.20
	3.000	250.00	0.00	0.00	4024.40	1605.00	4030.30	4030.17	4032.00	112.10	10.47	153.32	151.59
	2.000	260.00	0.00	0.00	4027.20	1605.00	4033.31	4032.66	4034.37	75.69	8.25	194.46	184.49
	1.000	250.00	0.00	0.00	4030.00	1605.00	4035.33	4034.78	4036.30	78.64	7.92	202.76	180.99

136 Page 8

SUBCRITICAL RUN WEDGE S

SUMMARY PRINTOUT TABLE 150

SECNO	Q	CWSEL	DIFWSP	DIFWSX	DIFKWS	TOPWID	XLCH
10.000	1605.00	4014.60	0.00	0.00	-0.01	47.61	0.00
9.000	1605.00	4016.90	0.00	2.30	0.00	81.47	150.00
8.000	1605.00	4017.80	0.00	0.91	0.00	76.39	160.00
7.000	1605.00	4019.59	0.00	1.78	0.00	90.81	150.00
6.500	1605.00	4020.18	(.00	0.59	0.00	91.60	72.00
6.000	1605.00	4022.86	0.00	2.69	0.00	51.37	75.00
5.200	1605.00	4024.37	0.00	1,50	0.00	43.24	66.00
5.100	1605.00	4025.58	0.00	1.21	0.00	41.16	66.00
5.000	1605.00	4026.66	0.00	1.07	0.00	40.11	66.00
4.200	1605.00	4028.37	0.00	1.71	0.00	45.80	120.00
4.100	1605.00	4028,51	0.00	0.14	0.00	44.76	65.00
4.000	1605.00	4028.65	0.00	0.14	0.00	42.45	66.00
3.000	1605.00	4030.30	0.00	1.65	0.00	41.75	250.00
2.000	1605.00	4033.31	0.00	3.02	0.00	57.31	260.00
1.000	1605.00	4035.33	0.00	2.01	0,00	66.01	250.00

1 37 Page 9

SUMMARY OF ERRORS AND SPECIAL NOTES

CAUTION	SECNO=	10.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
WARNING	SECNO	9.000	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
CAUTION	SECNO=	6.000	PROFILE=	1	CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
CAUTION	SECNO= SECNO=	5.200	PROFILE= PROFILE≃	1	CRITICAL DEPTH ASSUMED MINIMUM SPECIFIC ENERGY
JARN ING	SECNO=	4.200	PROFILE=	1	CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE

***** * HEC-2 WATER SURFACE PROFILES * Version 4.6.2; May 1991 * * RUN DATE 19MAY94 TIME 17:57:52 *

					10		
**	*****	*****	*****	****	****	******	*****
*	U.S.	ARMY	CORPS	OF	ENGI	NEERS	*
*	HYDRO	LOGIC	ENGI	NEER	ING	CENTER	*
*	609 s	ECOND	STRE	ET,	SUIT	ED	*
*	DAVIS	, CAL	I FORN	1A 9	5616	-4687	*
*		(9	16) 7	56-1	10%		*
**	*****	*****	****	****	++++	******	******

1.38

	x			X		XX	X	ox	X)	(X)	XX	X)	(3	X	X	(X							
	Х			Х		X					X				X								х				X						
	X			Х		Х					X																X						
	X)	(XX	X	XX		XX	X	¢			X							X	(X)	XX			3	(X	X	(X							
	Х			Х		Х					X												х										
	Х			X		X					X				X								х										
	Х			Х		XX	X)	(X)	XX	(X)	XX	XX	ζ.								X)	(X	X)	X	X						
			1																														
		1	7		11	1	1	1	1			i,	1	6		à	2			1	٢.												
			1	1	V	10	1	1	6	1	Ŋ	1	1	0	1	G	1		1	1	2												
	4																		×	-													
	:::	: : :	-	:::	::	::	11	1.2	* 3	-	::		11	11	1	11	0.8	11	1	11		1.7	21	2	11	0.0	*	:					
	***	11	2		22	::	::			2	::	-	12	::	1	::	:;	::			2	1			1.1	-	*	1					
	11)														1								-	1			2	2					
	:::	S	3	FUI	11	M	10	R	0-	CI	OM	PI	11	ER	٢.	IM	PL,	EP	1E	NT	A	11	0	٩.		-	\$	1					
	:::																									;	*						
	:::	:::	1	:::	::	::	::	1.2.	:;	-		2	11	::		11	;;	11	1	::	3		11	: :	11	1	2	:					
	1.7.1	:::	1	:::	12	11	2.2	1.2	1.5	1	1.1	23	13	::	-	: ;	11	1		::	-	: 2	::	1	14	2		:					
					-	気沢	23.5	1 22.1	5.4	-	2.2	===	1	5.2	1 22 3	22	影響	10.2	1.001	==	-	12											
					H	A	£		S	Т	A	1)		M	E	Ţ	1	1.1	0	D	S											
					-	==	22	1 22 2	22	-	22.22	-	22	22	:#:	22	22	-	2.001	22	\$	24											
	1											1															L,			-	-		
37 Brookside	RC	ad		*		Wa	te	1.1	Di.	11)	γ,	4	20	nn	101	ct	10	ut		0	61	0	8		×		G	203))	15	5-	16	66

Page 1

THIS RUN EXECUTED 19MAY94 17:57:52

NEC-2 WATER SURFACE PROFILES

Version 4.6.2; May 1991

12	ATLAS MINE SUPE	ERALS 88-06 ERCRITICAL	NINV	EDGE SEC !	5, 5.1, STRT	5.2, 6 METRIC	HVINS	Q	WSEL	FQ	
	0.	0.	0.	1	-1.	0	1.0	1605.	4034.8	0.	
	0.03 2 1.0 4050.0 4060.0	0.03 0.034 7.0 0.0 175.0	0.03 60 0.0 4030.0 4060.0	0.0 220 60 220	35 .0 .0	220 250.0 4030.0	250.0 70.0	250,0 4040,0	0.0 145.0	0.0 4050.0	0.0 155.0
H K1 GR	2 2.0 4050.0 4050.0	0.034 8 0.0 175.0	65 0.0 4027.2 4060.0	0.03 230 65 195	35 .0 .0 .0	230 260.0 4027.2 4060.0	260.0 75.0 230.0	260.0 4030.0	85.0	4040.0	145.0
H K1 GR	2 3.0 4050.0 4050.0	0.034 7 0.0 140.0	70 0 4024.4 4058	0.0 2 70 2	35 50 .0 50	250 250 4024.4	250 80.0	250 4030.0	95.0	4040.0	115.0
HH (1) GR	2 4.0 4050.0 4050.0	0.038 7 0.0 140.0	80 0 4021.6 4058.0	0.03 25 80 255	35 55 . 0 . 0	255 66 4021.6	66 90.0	66 4030.0	105.0	4040.0	120.0
H (1 GR GR	2 4.1 4050.0 4050.0	0.038 7 0.0 135.0	85 0 4020.9 4058.0	0.03 27 85. 270.	35 70 .0 .0	270 66 4020.9	66 95.0	66 4030.0	110.0	4040.0	125.0
	4.2 4050.0 4050.0	0.038 7 0.0	85 0 4020.2	0.03	35 75 .0	275 120 4020.2	120 95.0	120 4030.0	110.0	4040.0	125.0

MR sloeland

	Run Date:	19MAY94	Run Time:	17:57:52	HMVersion: 6	.50 Data	File: H:SW	SUP56.IN		Pa
NH K1 GR	2 5.0 4050.0 4058.0	0.042 6 0.0 275.0	112 0 4018.9	0.035 275 85.0	275.0 66 4030.0	66 112.0	66 4040.0	150.0	4050.0	200.0
HHK1 GR	2 5.1 4050.0 4058.0	0.042 6 0.0 280.0	125 0 4018.1	0.035 280 95.0	280.0 66 4030.0	66 125.0	66 4040.0	205.0	4050.0	225.0
H K A R S R	2 5.2 4050.0 4040.0	0.042 8 0.0 220.0	140 0 4017.4 4050.0	0.035 280 110.0 230.0	280.0 66 4028. 4058.0	66 140, 280,0	66 4024.5	140.1	4030.0	175.0
H K1 GR	2 6.0 4050.0 4040.0	0.042 8.0 0.0 230.0	160 0.0 4016.7 4050.0	0.035 285.0 127.0 245.0	285.0 75.0 4024. 4050.0	75.0 160 285.0	75.0 4023.0	0.0 160.1	0.0 4030.0	0.0 205.0
H AR AR	2 6.5 4050.0 4040.0	0.034 8.0 0.0 240.0	130 0.0 4015.9 4048.0	0.035 290.0 130.0 265.0	290.0 72.0 4015.9 4048.0	72.0 140. 290.0	72.0 4020.0	205.0	4030.0	220.0
	2 7.0 4050.0 4040.0	0.034 7.0 0.0 240.0	130 0.0 4015.1 4047.0	0.035 290.0 130.0 290.0	290 150.0 4015.1	150.0 140.0	150.0 4020.0	0.0 210.0	0.0 4030.0	0.0 225.0
H I I R R	2 8.0 4050.0 4040.0	0.034 7.0 0.0 250.0	135 0.0 4013.4 4050.0	0.035 310.0 135.0 310.0	310 160.0 4013.4	160.0 145.0	160.0 4020.0	0.0 220.0	C.0 4030.0	0.0 235.0
H I R R	2 9.0 4040.0 4040.0	0.034 7.0 0.0 270.0	150 0.0 4011.7 4040.0	0.035 320.0 150.0 320.0	320.0 150.0 4011.7	150.0 160.0	150.0 4020.0	0.0 230.0	0.0 4030.0	0.0 255.0
IH IN IR	2.0 10.0 4032.0 4020.0	0.038 8.0 0.0 240.0	204.2 0.0 /015.7 4030.0	0.035 325.0 150.0 270.0	325.0 0.0 4010.0 4037.0	0.0 167.1 325.0	0.0 4010.0	187.1	4015.7	204.2

USP Stratare

1 90 Page 2

Run Date:	19MAY94	Run Ti	me: 17:57:	52 HMVe	rsion: 6.50	Data F	ile: H:	SWSUP56.IN		
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR 1CONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK E R-BANK E SSTA ENDST	LEV
*PROF 1										
1490 NH CARD	USED									
*SECNO 1.000	DEDTH AS	SIMED								
1.000 1605.0 0.00 0.013059	4.78 0.0 0.00 0.00	4034.78 1605.0 9.56 0.	4034.78 0.0 0.00 0.	4034.80 0.0 0.000 0	4036.20 167.8 0.035 4	1.42 0.0 0.000 0	0.00 0.0 0.000 0.00	0.00 0.0 4030.00 60.20	4050.00 4060.00 45.66 105.86	
1/00 NU CARD	1075									
*SECNO 2.000	USED									
3685 20 TRIAL	S ATTEMPT	ED WSEL, C	SEL							
5693 PROBABLE	DEPTH AS	SPECIFIC I	ENERGY							
2.000	5.49	4032.69	4032.69	0.00	4034.24	1.55	3.20	1.60	4050.00	
0.01	0.00	10.00	0.00	0.000	0.035	0.000	0.000	4027.20	4060.00	
0.012555	250.	250.	250.	20	8	0	0.00	51.79	101.14	
1490 NH CARD	USED									
5685 20 TRIAL	S ATTEMPT	ED WSEL, CI	SEL							
5693 PROBABLE	MINIMUM	SPECIFIC I	ENERGY							
3.000	5.77	4030.17	4030.17	0.00	4032.00	1.83	3.25	1.61	4050.00	
1605.0	0.0	1605.0	0.0	0.0	147.8	0.0	1.9	0.6	4058.00	
0.012409	260.	260.	260.	20	8	0.000	0.00	41.12	95.34	
1490 NH CARD	USED									
SECNO .000 685 20 .RIAL	S ATTEMPT	ED WSEL, C	SEL							
3720 CRITICAL	DEPTH AS	SUMED	NERGY							
4.000	6.02	4027.62	4027.62	0.00	4029.56	1.94	3.26	0.03	4050.00	
0.02	0.00	1605.0	0.0	0.0	143.5	0.0	0.000	4021.60	4058.00	
0.013759	250.	250.	250.	20	8	0	0.00	37.70	100.75	

1-4/ Page 3

KUN Date:	19MAT94	Kun 11	me: 1/12/12	c neve	rsion: 0.30	Data	ite: h:	SWSUP20.IN		
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR ICONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK I R-BANK I SSTA ENDST	ELEV
1490 NH CARD	USED									
*SECNO 4.100			10001							
3683 PROBABLE	E MINIMUM	SPECIFIC	ENERCY							
3720 CRITICAL	DEPTH AS	SSUMED	ALTER THE I							
4.100	6.05	4026.95	4026.95	0.00	4028.88	1.93	0.91	0.08	4050.00	
1605.0	0.0	1605.0	0.0	0.0	143.9	0.0	2.9	0.9	4058.00	
0.013673	66.	66.	66.	20	0.038	0.000	0.00	37.62	104.96	
1400 NH CAPD	USED									
*SECNO 4.200	out o									
3685 20 TRIAL	S ATTEMP	TED WSEL, C	WSEL							
5693 PROBABLE	DEDTH A	SPECIFIC	ENERGY							
4.200	6.11	4026.31	4026.31	0.00	4028.27	1.95	0.90	0.38	4050.00	
1605.0	0.0	1605.0	0.0	0.0	143.1	0.0	3.1	0.9	4058.00	
0.02	0.00	11.22	0.00	0.000	0.036	0.000	0.000	4020.20	67.56	
0.013659	66.	66.	66.	20	5	0	0.00	36.80	104.36	
1490 NH CARD	USED									
SECNO 5.000	S ATTEMPT	TED USEL C	USEI							
8693 PROBABLE	MINIMUM	SPECIFIC	ENERGY							
3720 CRITICAL	DEPTH AS	SSUMED	and the second	·	Sec.	10.00	1.00	- 1 ku -		
5.000	7.47	4026.37	4026.37	0.00	4028.30	1.92	1.91	0.93	4050.00	
0.03	0.00	11.13	0.00	0.000	0.042	0.000	0.000	4018.90	4058.00	
0.018746	120.	120.	120.	20	11	0	0.00	38.60	103.17	
1490 NH CARD	USED									
SECNO 5.100		ER LOPI -	1051							
KAO'S PROBABLE	S ATTEMPT	SPECIELC	WOLL							
5720 CRITICAL	DEPTH AS	SUMED	ERENUT							
5.100	7.32	4025.42	4025.42	0.00	4027.26	1.84	1.22	0.01	4050.00	
1605.0	0.0	1605.0	0.0	0.0	147.3	0.0	3.7	1.1	4058.00	
0.03	0.00	10.89	0.00	0.000	0.042	0.000	0.000	4018.10	73.20	
0.010210	00.	00.	00.	2.0	0	0	0.00	40.60	113.45	

2-42 Page 4

Run Date: 19MAY94		Run Ti	ue: 17:57:52	HMVe	rsion: 6.50	Data F	ile: H:	SWSUP56.1N		
SECNO Q TIME SLOPE	DEPTH QLO8 VLO8 XLOBL	CWSEL QCH VCH XLCH	CRIWS GROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR I CONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK R-BANK SSTA ENDST	ELEV
490 NH CARD	USED									
6685 20 TRIAL 6693 PROBABLE 6720 CRITICAL	S ATTEMP MINIMUM DEPTH A	SPECIFIC I	WSEL ENERGY							
5.200	6.99	4024.39	4024.39	0.00	4026.13	1.74	1.20	0.52	4050.00	
1605.0	0.0	1605.0	0.0	0.0	151.6	0.0	4.0	1.2	4058.00	
0.03	0.00	10.59	0.00	0.000	0.042	0.000	0.000	4017.40	86.41	
0.018028	66.	66.	66.	20	8	0	0.00	43.38	129.79	
490 NH CARD	USED									
SECNO 6.000		and the second second	A local second							
6.000	5.66	4022.36	4022.87	0.00	4024.62	2.26	1.51	0.00	4050.00	
1605.0	0.0	1605.0	0.0	0.0	133.1	0.0	4.2	1.2	4050.00	
0.03	0.00	12.00	0.00	0.000	0.042	0.000	0.000	4016.70	105.44	
0.030179	00.	60.	00.		11	0	0.00	47.10	152.55	
490 NH CARD	USED									
SECNO 6.500	7 00	1018 00	1010 00	0.00	1001 74	5.07	2.0/	0.00	1050 00	
1605 0	5.00	4010.90	4019.02	0.00	4021,70	2.80	2.80	0.00	4050.00	
0.03	0.00	13.57	0.00	0.000	0.035	0.000	0 000	4015 00	4040.00	
0.049689	75.	75.	75.	6	19	0	0.00	68.94	187.51	
490 NH CARD SECNO 7.000	USED									
645 INT SEC	ADDED BY	RAISING SE	c 7.00,	0.400	FT AND MUL	TIPLYING	BY 1.03	3		
TOT NY CHANC	ED MORE									
JOI IN LIANG	ED MORE I	INAM NYINS								

302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = 0.64

1.010	3.66	4019.16	4019.47	0.00	4020.67	1.50	1.09	0.00	4050.40
1605.0	0.0	1605.0	0.0	0.0	163.0	0.0	4.5	1.4	4047.40
0.03	0.00	9.84	0.00	0.000	0.035	0.000	0.000	4015.50	120.18
0.020302	36.	36.	36.	6	11	0	0,00	78.57	198.76

t Y7 Page 5

t-44 Page 6

DEPTH CWSEL CRIWS SECNO WSELK EG HV HL OLOSS L-BANK ELEV ALOB QCH VOL QROB AROB QLOB 0 ACH TWA R-BANK ELEV TIME VLOB VCH VROB XNL XNCH XNR WTN ELMIN SSTA ENDST SLOPE XLOBL. XLCH XLOBR ITRIAL IDC I CONT CORAR TOPWID 1645 INT SEC ADDED BY RAISING SEC 1.01, -0.400 FT AND MULTIPLYING BY 0.968 3685 20 TRIALS ATTEMPTED WSEL, CWSEL 3693 PROBABLE MINIMUM SPECIFIC ENERGY 3720 CRITICAL DEPTH ASSUMED
 7.000
 4.03
 4019.13
 4019.13
 0.00
 4020.28

 1605.0
 0.0
 1605.0
 0.0
 186.9

 0.03
 0.00
 8.59
 0.00
 0.000
 0.035

 013790
 36.
 36.
 36.
 20
 8
1.15 0.60 0.30 4050.00 4.7 1.5 4047.00 0.000 4015.10 114.97 1605.0 0.000 0.013790 0.00 82.65 197.63 0 1490 NH CARD USED *SECNO 8.000 3685 20 TRIALS ATTEMPTED WSEL, CWSEL 3693 PROBABLE MINIMUM SPECIFIC ENERGY 3720 CRITICAL DEPTH ASSUMED
 8.000
 4.27
 4017.67
 4017.67
 0.00
 4018.91
 1.24

 1605.0
 0.0
 1605.0
 0.0
 0.0
 179.9
 0.0

 0.04
 0.00
 8.92
 0.00
 0.000
 0.035
 0.000

 0.013590
 150.
 150.
 150.
 20
 8
 0
2.05 0.03 4050.00 1.7 4050.00 5.3 4013.40 0.000 119.25 0.00 74.26 193.52 1490 NH CARD USED *SECNO 9.000 3685 20 TRIALS ATTEMPTED WSEL, CWSEL 3693 PROBABLE MINIMUM SPECIFIC ENERGY 8720 CRITICAL DEPTH ASSUMED
 9.000
 4.40
 4016.10
 4016.10
 0.00
 4017.38

 1605.0
 0.0
 1605.0
 0.0
 176.6

 0.04
 0.00
 9.09
 0.00
 0.0035

 013344
 160.
 160.
 160.
 20
 8

 1.28
 2.15
 1.09
 4040.00

 0.0
 6.0
 2.0
 4040.00

 0.000
 0.000
 4011.70
 126.70

 0
 0.00
 70.36
 197.07
1605.0 011.70 126.70 70.36 197.07 0.013344 0 0.00 490 NH CARD USED SECNO 10.000 6685 20 TRIALS ATTEMPTED WSEL, CWSEL 8693 PROBABLE MINIMUM SPECIFIC ENERGY 8720 CRITICAL DEPTH ASSUMED
 1.66
 2.12
 0.10

 0.0
 6.5
 2.2
 4037.00

 0.000
 0.000
 4010.00
 153.31

 0
 0.00
 47.59
 200.89

 10.000
 4.60
 4014.60
 4014.60
 0.00
 4016.25

 1605.0
 0.0
 1605.0
 0.0
 0.0
 155.4

 0.05
 0.00
 10.33
 0.00
 0.000
 0.038
1.66 155.4 0.015005 150. 150. 150. 20 8 0

Run Date: 19MAY94 Run Time: 17:57:52 HMVersion: 6.50 Data File: H:SWSUP56.IN

PROFILE FOR STREAM SUPERCRITICAL RUN WITH

1-45°

PLOTTED POINTS (BY PRIORITY) E-ENERGY, W-WATER SURFACE, 1-INVERT, C-CRITICAL W.S., L-LEFT BANK, P-RIGHT BANK, M-LOWER END STA

LEVATION	4010. CUMDIS	4015.	4020.	4025.	4030.	4035.	4040.	4045.	4050.	4055.	
1.00	0	÷.			1	W 8	Ε.	a series a	. 1	5105	. R
	20		×		1	W. 1	Ε.		. L	1.000	. R
	40	*			1.	W. 8	Ε		. L	1	. R
	60		× *		1.	W.E		6 - C	· •		. R
	80					W .E			• · · · · ·		. R
	100	× .	*	×	1.	W.E					. R
	120			*	1.1	W .E		e - 1 - 1 - 1	·		• R
	140	*			. <u>1</u>	WE		N	· · · · · ·		. R
	160	*				WE			·		. R
	180				1 1	W E			· · · · ·		. K
	200	*			1.1	W E.					. к
	240	,			1	W F					K P
2 00	260		× .		1	U F			· · · · ·		, N
	280				î î	V F			1		P
	300.				i .	WE.			ĩ		R.
	320				1 .	WE.					. R.
	340			÷	1 .	WE.			L		. R.
	360				Ι.	WE.			. L		. R .
	380				. 1	WE.			L		. R.
	400			.1		WE.			L		. R.
	420			. [· · · ·	WE.			L		. R.
	440		*	. 1	× 1	WE.			. L		. R .
	460					WE.			- i k		. R.
	480			1	- W	E .				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	, R ,
7 00	500				- 94	E .			· · · · ·	1.117	. к.
5.00	540			1.	W	E .					. к.
	540			1 1	H L	с . к					. к.,
	580			1	υ.	F					, n .
	600.			1	W. 1	-					R
	620.			1 1	W.1	E .			· · ·		R
	640.			1 .	W . 1	E .			i i i		R
	660			1 .	W .E				ĩ.	1.00	. R .
	680	1 C C C		1 .	W .E			- 14. A.A.			R .
	700			1	W E		· · · ,				. R .
	720			1	W E				in a la		. R .
	740			1	W E			11 C C C C C	l l	1.	, R ,
4.00	760			Ι.,	W E.				L		, R ,
	780			1 .	W E.				en en si k		. R .
	800	*			W E.				e i li li li		. R .
1 10	820				W E.			1.1.1.1.1.1.1.1			R .
4,10	860	*	· · · · · · · · · · · · · · · · · · ·		W E.		1.1.1		6.6 S.		. к.
	880				U F			1	1.11.11		R +
4.20	900.		i		Ü F				10 - 10 A		
	920.		î		WE.						8
	940		Ĩ		WE.			1.1.1.1.1	i de la cita	1000	R
	960		1.		WE.						R
	980		Ι.		WE.			1.11	L		. R .
	1000		1 .	1.	WE.		C	- P.G	L		. R .
5.00	1020		1.		WE.			11.1	L		R .
	1040		1.	1.1.1	IE.				L.		R .
	1060	1.1.1.1.1.1.1.1	. 1 .		E .		1.1.1.4	1.00	L		, R .
5.10	1080	11111	1 1	- 14	Ε.				L		R .
	1100	1.1.1.1.1	1	W	E .	×		1.1.1.1.1.1.1.1	L		R.
	1120		1 *	W	8 ×			1.2.1.27			R .
5 20	1160.	1. 1. 1.	1 .	W. E		A					R .
5.00	1180	1.1.1.1.1.1.1	1 .	W. 2							R .
	1200			WC E							K *
6.00	1220	S. 15. 11	1	WC E					-	κ.	*
0.00	1240		1	WC F					Pi	10.200	
	1260.		T	F					PI		

																				£ -46
	1280					1		U.C.	E									D 1		~ / ~
6 50	1300	1.			1.1	1.		1 6					•					R L		
0.30	1200.				1.1			W W		*			*				1.1	KL		
	1320.								5								R	6		10 C 10 C 10 C
1.01	1340.				11			WC.E									R			
7.00	1360.	18.			1			W .E									R	1		
	1380.	1.6			1			WE.									R	1		
	1400.				1.		4	E										RL		
	1420.				1.		4	Ε.		1.00								RL		
	1440.	1		1	121		W	Ε.					Q. 1					RL		
	1460.			1			W	Ε.					Ģ. 1	1.1.1.1.1.1.1				81		
	1480.			1			W I	F					3.1					P1		
	1500	1.1		1			ũ i											n L		
8 00	1520			i		1				1.1			÷	0.01527						1. The second
0.00	1540			1									*			*			· · · · · ·	
	1540.	. *		÷			1 5	*					*				14.14	h e		
	1500.			1	. *	?	4 5	1.					* 1	110.00				× .		
	1580.		116	8		W	1						*				5			
	1600.		- 1			W	E							1000		L		1.1		
	1620.		1			₩.	8						4	0.001144		1.				
	1640.		1			W	E	1.1						121.042	L	1.1				
	1660.		1		1.1	14 8	2	1		1.4			21		L					
9.00	1680.		1		1.5	1 1	÷	1.0			1.1.1		0.1	- L						
	1700.		1			JE		10.1					0	LR.				1.1		
	1720		1		M	F		- 1.		1.1			2.1	I P				· · · ·		
	1740		i		ü	Ē							1	L D						
	1760		1			E		1.1		2.4.2.2			÷.,	L						
	1700.	· * .	4			-						1.1.1	×.br	к.						
	1700.				W	2								к.						
40.00	1800.	- 1			W	E						. L		R .						
10.00	1820.	1			W .	E						L		R						

2 47 Page 7

THIS RUN EXECUTED 19MAY94 17:57:55

HEC-2 WATER SURFACE PROFILES

Version 4.6.2; May 1991

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

SUPERCRITICAL RUN WITH

SUMMARY PRINTOUT TABLE 150

SECNO	XLCH	ELTRD	ELLC	ELMIN	Q	CWSEL	CRIWS	EG	10*KS	VCH	AREA	.01K
1.000	0.00	0.00	0.00	4030.00	1605.00	4034.78	4034.78	4036.20	130.59	9.56	167.83	140.45
2.000	250.00	0.00	0.00	4027.20	1605.00	4032.69	4032.69	4034.24	125.55	10.00	160.44	143.24
3.000	260.00	0.00	0.00	4024.40	1605.00	4030.17	4030.17	4032.00	124.09	10.86	147.79	144.08
4.000	250.00	0.00	0.00	4021.60	1605.00	4027.62	4027.62	4029.56	137.59	11.18	143.54	136.83
4.100	66.00	0.00	0.00	4020.90	1605.00	4026.95	4028.95	4028.88	136.73	11.15	143.94	137.26
4.200	66.00	0.00	0.00	4020.20	1605.00	4026.31	4026.31	4028.27	136.59	11.22	143.06	137.33
5.000	120.00	0.00	0.00	4018.90	1605.00	4026.37	4026.37	4028.30	187.46	11.13	144.19	117.23
5.100	66.00	0.00	0.00	4018.10	1605.00	4025.42	4025.42	4027.26	182.70	10.89	147.32	118.74
5.200	66.00	0.00	0.00	4017.40	1605.00	4024.39	4024.39	4026.13	180.28	10.59	151.63	119.54
6.000	66.00	0.00	0.00	4016.70	1605.00	4022.36	4022.87	4024.62	301.79	12.06	133.11	92.39
6.500	75.00	0.00	0.00	4015.90	1605.00	4018.90	4019.82	4021.76	496.89	13.57	118.29	72.00
7.000	72.00	0.00	0.00	4015.10	1605.00	4019.13	4019.13	4020.28	137,90	8.59	186.88	136.68
8.000	150.00	0.00	0.00	4013.40	1605.00	4017.67	4017.67	4018.91	135.90	8.92	179.89	137.68
9.000	160.00	0.00	0.00	4011.70	1605.00	4016.10	4016.10	4017.38	133.44	9.09	176.61	138.94
10.000	150.00	0.00	0.00	4010.00	1605.00	4014.60	4014.60	4016.25	150.05	10.33	155.39	131.03

1-48 Page 8

SUPERCRITICAL RUN WITH

SUMMARY PRINTOUT TABLE 150

	SECNO	Q	CWSEL	DIFWSP	DIFWSX	DIFKWS	TOPWID	XLCH
*	1.000	1605.00	4034.78	0.00	0.00	-0.02	60.20	0.00
*	2,000	1605.00	4032.69	0.00	-2.09	0.00	51.79	250.00
*	3.000	1605.00	4030.17	0.00	-2.52	0.00	41.12	260.00
*	4.000	1605.00	4027.62	0.00	-2.55	0.00	37.70	250.00
*	4.100	1605.00	4026.95	0.00	-0.67	0.00	37.62	66.00
*	4.200	1605.00	4026.31	0.00	-0.63	0.00	36.80	66.00
e .	5.000	1605.00	4026.37	0.00	0.06	0.00	38.60	120.00
*	5.100	1605.00	4025.42	0.00	-0.95	0.00	40.25	66.00
	5,200	1605.00	4024.39	0.00	-1.03	0.00	43.38	66.00
	6.000	1605.00	4022.36	0.00	-2.03	0.00	47.10	66.00
	6.500	1605.00	4018.90	0.00	-3.46	0.00	68.94	75.00
*	7.000	1605.00	4019.13	0.00	-0.03	0.00	82.65	72.00
•	8.000	1605.00	4017.67	0.00	-1.46	0.00	74.26	150.00
*	9.000	1605.00	4016.10	0.00	-1.57	0.00	70.36	160.00
*	10.000	1605.00	4014.60	0.00	-1.50	0.00	47.59	150.00

2-49 Page 9

SUMMARY OF ERRORS AND SPECIAL NOTES

AUTION	SECNO=	1.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
AUTION	SECNO=	2.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
HOITUA	SECNO=	2,000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
AUTION	SECNO=	2.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	3.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
AUTION	SECNO=	3.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
AUTION	SECNO=	3.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	4.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
AUTION	SECNO=	4.000	PROFILE=	1	PROBABLE MINIM M SPECIFIC ENERGY
AUTION	SECNO=	4.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	4.100	PROFILE=	1	CRITICAL DEPTH ASSUMED
AUTION	SECNO=	4.100	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
AUTION	SECNO=	4.100	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	4.200	PROFILE=	1	CRITICAL DEPTH ASSUMED
AUTION	SECNO=	4.200	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
AUTION	SECNO=	4.200	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	5.000	PROFILE=	1	CRITI DEPTH ASSUMED
AUTION	SECNO=	5.000	PROFILE=	1	PROBAL HINIMUM SPECIFIC ENERGY
AUTION	SECNO=	5.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	5,100	PROFILE=	1	CRITICAL DEPTH ASSUMED
AUTION	SECNO=	5,100	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
AUTION	SECNO=	5.100	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	5.200	PROFILE=	1	CRITICAL DEPTH ASSUMED
AUTION	SECNO=	5.200	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
AUTION	SECNO=	5.200	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	7.000	PROFILE=	1	INTERPOLATED X-SECTIONS USED
AUTION	SECNO=	8.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
AUTION	SECNO=	8.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
AUTION	SECNO=	8.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	9.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
AUTION	SECNO=	9.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
AUTION	SF CNO=	9.000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL
AUTION	SECNO=	10.000	PROFILE=	1	CRITICAL DEPTH ASSUMED
AUTION	SECNO=	10.000	PROFILE=	1	PROBABLE MINIMUM SPECIFIC ENERGY
AUTION	SECNO=	10,000	PROFILE=	1	20 TRIALS ATTEMPTED TO BALANCE WSEL

Canonie Environmental By JWS_Date5/10/94 Subject Riprap Size Design Natural Sheet F. of F. O Chkd By M Date 5/20144 Southwest Channel - Atlas_Proj No 88-067-12

ATTACHMENT F

COE RIPRAP SIZING METHOD CALCULATIONS

Canor	ne Frwi	ronmen	tal	\bigcirc
Tal				- t-2
By	Date Su	ibject OE MET	Hon Graph	Sheet No of
Chkd. By MY	Date _ 5/10/44	(01		Project No
				1/4" X 1/4"
	COE RIPR, (ACCULATIO	AP SPEING MI ON FOR H	ETHOD ZXIA EC-2 CRESS	NALE SECTION 1.0
FROFICE	01 (1	ress section	1.0:	
(4050,0) TAILINES	J.O J.O SUBSECTION	dry In of flow = scasection 2.0 subs. 3.0 30,60), 14030,70) 7.5 1.0	5.37 (See HEC- NAT (4090,145)	ZEUTPUT) TIRA GROUND
57EP 1 - Se	alle 1 050.	- Try Deo 1	t 4.9"	
<u>5768</u> 2. 1 7.	- ADDUTE 100. - Y 72 [32.6/09/12	AC BOUNDARY NOTE	SHEAR AT SO Unly Merd 10 beral ruibeak	t at subsection t at subsection use this is tailings ment side.
+ FIND	V - 146.	LOCAL VELOCITY	IN SUBSECT.	or 1.0
F.	$\frac{\partial_{\tau}/\ell \kappa^{\prime\prime}}{\mathbb{Z}\left[\ell \ell \kappa^{\prime\prime}\right]}$	A;]		
C in	Sugsection 1.	0 = 32 6 log [1.	2.2 R/r)	
use C:	486 R 1/4/1	to it.	t. C.	schenter 2 13

Canor	nieEnv	vironmental		\bigcirc
By Jal	Date \$18/94	Subject 108 METTHON	HAMPLE Sheet No.	2 of 24
Chkd. By MP	Date Stadad	CALC	Project No.	88-067-12
			4/40 3/ 4/	

X 1/4

R: N/p Dipth of Flow in X-SEC. 1.0 = 4.78 F7 (from HEC-2)

JUMMARIZE R, P, R <u>1 2 3</u> 43.26 53.7 108.14 ft² P 16.98 10 40.63 ft R 2.55 5.37 2.66 FE

 $\frac{(OMPUTE}{C_1} = \frac{C}{32.6} \log(12.21255/4.9/12)) = 61.35$ $C_2 = 1.486 (5.37)^{1/6} (0.035) = 56.18$ $C_3 = 1.486 (2.66)^{1/6} (0.035) = 49.98$

Compute V FOR SUBSES. 1.

 $\overline{V}_{1} = \frac{(1605)(61.35)(2.55)^{1/2}}{(61.35)(2.55)^{1/2}} (55.18)(537)(537) + 49.98(2.66)^{1/2}(08.14)}$ = 7.84 fps

Canor	nieEnviro	nmental		0,4
By Jus	Date 5/18/99 Subject	LOE METHER GAMAG	Sheet No.	3 or 4
Chkd. By UH	Date 5/20/44	CALL_	Project No.	88.067-12.

1/4" X 1/4"

10 MPOTE E, TI= 62.4/7.84)2 (61.35)2 121 = 1.02 pst = Lance Boundary SHEAR

STEP 3.0

COMPUTE RIPEAP DESIGN SHEAR 2'= 2 (1- 51, 2) 0.5

where Z= a (85- 8) 050

= 0.04(154.2-62.4) 4.9/12 = 1.50 p.5+

\$= SIM SLOPE ANGLE IN SUBJECTION 1.0 = TAN"(13.0) = 18.40

Z = 1.32 pst : SIDE SLOPE DESIGN SHEAR (ALLOWABLE)

O: Repoir & of Riprop = 420 · T = 1.50 (1- Sm/(18.4)) 12 SINY 42)

Cano	nieEnvironmental	
By JUS	Date 3/18/44 Subject 108 GRAMPLE CALC.	Sheet No. 4 of 4
Chkd. By Ut	Date 5/2d94	Project No. 98.067-12
	. 이상 전에 대해 이 같은 것은 것은 것이 있는 것이 같은 것이 같이 많이 많이 했다.	

1/4" X 1/4"

STEP 4. COMPARE LOCAL BOUNDARY SHEAR TO OCITER SHEAR. PLOCKE = 102 pit Tolosign = 132pst KLICAC & Edings - therefore solected Do of 4.9" is adoquate

STEP 5. Select DSO of 4.02" AND repeat Steps 1 through 4. - SEE TITTACHED TABLE FOR THESE PALCULATIONS USING USO = 4.02" FOR X-SEC 1.0. t' corresponding to following Tables:

1) Sec. No. refers to HEC-2 cross section number. See Figure 1 for location of HEC-2 sections.

2) See Figure 2 for subsection detail

0

3) Depth of flow is from HEC-2 simulations. See Table 5 for summary.

4) Station refers to distance on channel cross section profile measured from the tailings embankment.

5) Sta. Elevation refers to elevation of point on channel profile corresponding to station (see note 3).

see Attachment B for channel profiles and HEC-2 "GR" card in Attachments C and E for stations and elevations.

6) Zn is channel subsection side slope (ZH:1V). Values in () denote bottom width of channel subsection.

7) An is channel subsection area.

8) Pn is channel subsection wetted perimeter.

9) Rn is hydraulic radius of Channel Subsection

10) See Main Text of Calc. for discussion of Manning's n.

11) k is roughness dimension of channel subsection. k is defined as raw (not oversized) D50 for subsection 1

and only previously deigned riprap gradations (see Table 1 for listing) are considered. Minimum D50 has been determined for subsection 1.0

 12^{12} C is Chezy's coefficient = 32.6 log (12.2 R/k) for subsection 1 and C = 1.486 R⁻(1/6)/n for other subsections.

ee Main text of Calc. and Attachment A for definition of average local velocity, local boundary shear, Allow bottom shear, and allowable side shear.

RIPRAP SIZING ANALYSIS FOR NATURAL SOUTHWEST RUNOFF DRAINAGE

CHANNEL USING ARMY CORP OF ENGINEER METHOD

INITIAL CONDITIONS WITH A

Qtotal, cfs 1605 Riprap Unit Wt., Ib/ft* 154.1 INITIAL CONDITIONS WITH NO "ROCKS" IN CHANNEL

Depth of Flow from HEC-2 Simulations 1 and 2 - see Attachment C.

Riprap Angle of Repose, Deg. 42

CHANNEL GEOMETRY PROPERTIES								CHANNEL ROUGHNESS				AVERAGE LOCAL VELOCITY AND SHEAR STRESS CALCULATIONS FOR SUBSECTION 1					
SEC	Sub	Depth of		Sta. Elevation,					Manning's				Avg. Lcl.	Lcl. Bnd.	Allow, Bot.	Allow Side	Shear Allow >
No.	section	Flow, ft	Station, ft	ft	Zn	An, ft ²	Pn,ft	Rn.ft	n	kn,in	С	CR*(1/2)n	Velocity, fps	Shear, psf	Shear, psf	Shear, psf	Shear Avg.
			0	4050													
1.0	1		60	4030	3.00	43.26	16.98	2.55	0.034	4.02	64.14	102.36	8.12	1.00	1.23	1.08	YES
0	2		70	4030	(10.00)	53.70	10.00	5.37	0.035	14.86	56.18	130.20					
1.0	3		145	4040	7.50	108.14	40.63	2.66	0.035	11.42	49.98	81.54					
Totals		5.37		1. A. 1. 2. 4.		205.09			1				7.83				
			0	4050													
2.0	1		65	4027.2	2.85	51.14	18.10	2.83	0.034	4.9	62.81	105.58	9.06	1.30	1.50	1.30	YES
2.0	2	1.43.93	75	4027.2	(10.00)	59.90	10.00	5.99	0.035	15.41	57.22	140.03					
2.0	3		85	4030	3.57	45.90	22.22	2.07	0.035	10.25	47.92	68.87					
2.0	4		145	4040	6.00	30.53	19.40	1.57	0.035	9.07	45.79	57.43	1900 B 2013				
Totals		5.99		Sine of the		187.47							8.56				
			0	4050													
3.0	1		70	4024.4	2.73	51.71	17.91	2.89	0.034	8.8	54.82	93.16	8.23	1.41	2.69	2.31	YES
3.0	2		80	4024.4	(10.00)	61.50	10.00	6.15	0.035	15.54	57.47	142.52					
3.0	3	10 - HA	95	4030	2.68	50.25	16.01	3.14	0.035	12.20	51.37	91.01					
3.0	4	62516	115	4040	2.00	0.30	1.23	0.25	0.035	3.35	33.61	18.67					
Totals	_	6.15				163.76							9.80				
			0	4050													
4.0	1	12.1	80	4021.6	2.82	58 78	19.21	3.04	0.020	0.0		06.05	0.47	1.45			
4.0	2		90	4021.6	(10.00)	64 60	10.00	6 46	0.035	15 70	57.04	147 27	0.47	1.40	2.69	2.33	YES
40	3		105	4030	1 79	27.26	12.22	2.40	0.035	15.75	57.94	147.27					
Totals		6.46	100	4030	1.75	160 64	13.22	2.02	0.035	11.09	50.46	84./1					
						100.04							9.99				
			0	4050													
4.1	1		85	4020.9	2.92	64 59	20.52	2.15	0.020	4.0	64.22	114.00	0.05		1.50		
4.1	2		95	4020.9	(10.00)	66.50	10.00	6.65	0.035	15.04	E0 22	150.14	8.95	1.21	1.50	1.31	YES
4.1	3		110	4030	1.65	36.45	12.82	2.84	0.035	11.72	50.52	95 20					
Totals		6.65				167.53	12.02	2.04	0.035	11.73	50.53	65.20	9.59				
													3.58				

77

Page 1 of 3
RIPRAP SIZING ANALYSIS FOR NATURAL SOUTHWEST RUNOFF DRAINAGE

CHANNEL USING ARMY CORP OF ENGINEER METHOD

a 41

Qtotal, cfs 1605 Riprap Unit W/t., lb/ft* 154.1 42

INITIAL CONDITIONS WITH NO "ROCKS" IN CHANNEL

Depth of Flow from HEC-2 Simulations 1 and 2 - see Attachment C.

Riprap Angle of Repose, Deg.

				CHANNEL GEO	METRY	PROPERT	ES		CHAI	NNEL R	OUGHNE	ESS	AVERAGE LO	CAL VELUCIT	Y AND SHEA	R STRESS CA	LCULATIONS
SEC	Sub	Depth of		Sta. Elevation,					Manning's				Avg. Lcl.	Lcl. Bnd.	Allow. Bot.	Allow Side	Shear Allow >
No.	section	Flow, ft	Station, ft	ft	Zn	An, ft ²	Pn,ft	Rn,ft	n	kn,in	С	CR 1/2)n	Velocity, fps	Shear, psf	Shear, psf	Shear, psf	Shear Avg.
			0	4050					1. 1.1.								
4.2	1	11.4	85	4020.2	2.85	64.21	20.28	3.17	0.038	4.9	64.41	114.61	9.01	1.22	1.50	1.30	YES
2	2		95	4020.2	(10.00)	67.10	10.00	6.71	0.035	15.98	58.31	151.04					
4.2	3		110	4030	1.53	34.46	12.27	2.81	0.035	11.67	50.43	84.52					
Totals		6.71				165.77							9.68				
		(0, 0)	0	4050	1.1.1.												
5.0		- 166	85	4018.9	2 73	51 52	17.87	2.88	0.038	8.8	54.80	93.04	9.43	1.85	2.69	2 31	VES
5.0	2	1997 B	95	4018.9	(10.00)	61.40	10.00	6 14	0.035	15 54	57.45	142 36	0.40	1.00	2.00	2.01	125
5.0	3	in the second	112	4030	1 53	28.87	11 23	2.57	0.035	11 25	49 69	79.67					
Totals		6.14		4000	1.00	141.79		2.07	0.000	11.20	40.00	10.01	11.32				
	(Crime)		0	4050	100.00												
5.1	1	2018	95	4018.1	2.98	51.48	18.47	2.79	0.038	8.8	54.32	90.68	9.65	1.97	2.69	2.37	YES
5.1	2	2.5	105	4018.1	(10.00)	58.80	10.00	5.88	0.035	15.32	57.04	138.31					
5.1	3	1111	125	4030	1.68	29.05	11.50	2.53	0.035	11.17	49.55	78.76					
Totals		5.88				139.34						i na ini	11.52				
			0	4050													
5.2	1		110	4017.4	3.37	45.80	18.34	2.50	0.038	17.04	43.41	68.60	9.50	2.99	5.21	4.73	YES
5.2	2		115	4017.4	(5.00)	26.05	5.00	5.21	0.035	14.71	55.90	127.60					
5.2	3		175	4030	4.76	64.63	25.35	2.55	0.035	11.21	49.62	79.23					
Totals		5.21				136.47							11.76				
			0	4050													
6.0	1		127	4016.7	3.81	35.75	17.07	2.09	0.042	17.04	40.92	59.21	8.63	2.78	5.21	4.82	YES
6.0	2		133	4016.7	(6.00)	25.98	6.00	4.33	0.035	13.78	54.20	112.79					
6.0	3		160	4020	8.18	72.36	27.20	2.66	0.035	11.41	49.98	81.51					
6.0	. 4		205	4930	4.50	2.39	4.75	0.50	0.035	5.08	37.86	26.84					
Totals		4.33				136.48							11.76				

RIPRAP SIZING ANALYSIS FOR NATURAL SOUTHWEST RUNOFF DRAINAGE

CHANNEL USING ARMY CORP OF ENGINEER METHOD

Qtotal, cfs 1605

Riprep Unit Wt., Ib/ft* 154.1 Depth o

INITIAL CONDITIONS WITH NO "ROCKS" IN CHANNEL

Depth of Flow from HEC-2 Simulations 1 and 2 - see Attachment C.

Riprap Angle of Repose.Deg. 42

			CI	HANNEL GEO	METRY P	PROPERTI	ES	10.0	CHAN	INEL RO	UGHNE	ESS	AVERAGE LOO	CAL VELOCIT	Y AND SHEAD	R STRESS CA N 1	LCULATIONS
SEC	Sub	Depth of	S	ta. Elevation,					Manning's				Avg. Lcl.	Lcl. Bnd.	Allow, Bot.	Allow Side	Shear Allow >
No.	section	Flow, ft	Station, ft	ft	Zn	An, ft ^a	Pn,ft	Rn,ft	n	kn,in	С	CR*(1/2)n	Velocity, fps	Shear, psf	Shear, psf	Shear, psf	Shear Avg.
			0	4050		_											
9.5	1	10.0	130	4015.9	3.81	34.92	16.87	2.07	0.042	4.02	61.20	88.05	7.70	0.99	1.23	1.14	YES
.5	2		140	4015.9	(10.00)	42.80	10.00	4.28	0.035	13.72	54.10	111.92					
6.5	3		205	4020	15.85	144.95	65.13	2.23	0.035	10.59	48.51	72.37	11. State 11.				
6.5	4	7.1.1	220	4030	1.50	0.02	0.32	0.07	0.035	1.56	27.56	7.54					
Totals		4.28				222.69							7.21				
			0	4050													
7.0	1		130	4015	3.72	37.55	17.32	2.17	0.033	4.02	61.86	91.08	7.66	0.96	1.23	1.13	YES
7.0	2	S	140	4015.1	(10.00)	44.90	10.00	4.49	0.035	13.96	54.53	115.55					
7.0	3		210	4020	14.29	144.00	64.30	2.24	0.035	10.62	48.56	72.68					
Totals		4.49				226.45							7.09				
			0	4050				90 A 1									
8.0	1		135	4013.4	3.69	35.70	16.82	2.12	0.033	4.9	58.76	85.62	8.61	1.34	1.50	1.38	YES
8.0	2		145	4013.4	(10.00)	44.00	10.00	4.40	0.035	13.86	54.35	114.00					
8.0	3		220	4020	11.36	110.00	50.19	2.19	0.035	10.52	48.39	71.63					
Totals		4.4				189.70							8.46				
			0	4040													
9.0	1		150	4011.7	5.30	71.66	28.05	2.55	0.033	4.02	64.18	102.59	7.13	0.77	1.23	1.18	YES
9.0	2		160	4011.7	(10.00)	52.00	10.00	5.20	0.035	14.70	55.88	127.43					
9.0	3		230	4020	8.43	114.02	44.16	2.58	0.035	11.27	49.73	79.91					
Totals		5.2				237.68							6.75				
							_			-							1.1.1.2.5.1
			150	4015.7													
10.0	1		167.1	4010	3.00	31.74	14.55	2.18	0.038	8.8	50.85	75.12	7.80	1.47	2.69	2.37	YES
10.0	2		187.1	4010	(20.00)	92.00	20.00	4.60	0.035	14.08	54.75	117.43					1.1.1
10.0	3		204.2	4015.7	3.00	31.74	14.55	2.18	0.035	10.50	48.35	71.42					
Totals		4.6				155.48		10.00					10.32				1.00

0

4.4

S RIPRAP SIZING ANALYSIS FOR NATURAL SOUTHWEST RUNOFF DRAINAGE CHANNEL USING ARMY CORP OF ENGINEER METHOD

Qtotal, cfs 1605

FUTURE CONDITIONS WITH "ROCKS" IN CHANNEL SEC NO. 4, 4.1, 4.2, AND 5.0

Riprap Unit Wt., Ib/ft* 154.1

Riprap Angle of Repose, Deg. 42

Depth of Flow from HEC-2 Simulations 3 and 4 - see Attachment E.

APP. 545 CY OF ROCK/SEDIMENT

			CHAN	NEL GEOMETR	Y PROPE	ERTIES			CHAI	NNEL R	DUGHN	ESS	AVERAGE LO	CAL VELOCIT FOI	TY AND SHEA	R STRESS CA	LCULATIONS
SEC	Sub	Depth of	S	Sta. Elevation,					Manning's				Avg. Velocity,	Avg. Bnd.	Allow. Bot	Allow Side	Shear Allow >
No.	section	Flow, ft	Station, ft	ft	Zn	An, ft ²	Pn,ft	Rn,ft	n	kn,in	С	CR*(1/2)n	fps	Shear, psf	Shear, psf	Shear, psf	Shear Avg.
1.0	1	1.1.1.1.1.1	60	4030	3.00	45.21	17.36	2.60	0.033	4.02	64.45	104.00	7.83	0.92	1.23	1.08	YES
0	2		70	4030	(10.00)	54.90	10.00	5.49	0.035	14.97	56.39	132.13					
0.	3		145	4040	7.50	113.03	41.54	2.72	0.035	11.52	50.17	82.75					
Totals		5.49				213.14							7.53				
			0	4050													
2.0	1		65	4027.2	2.85	46.15	17.19	2.68	0.038	8.8	53.79	88.13	8.82	1.68	2.69	2.34	YES
2.0	2	144.8	75	4027.2	(10.00)	56.90	10.00	5.69	0.035	15.15	56.73	135.32					
2.0	3		85	4030	3.57	42.90	21.10	2.03	0.035	10.18	47.79	68.13					
2.0	4		145	4040	6.00	25.06	17.58	1.43	0.035	8.67	45.04	53.77					
Totals		5.69				171.01							9.39				
			0	4050							(i						
3.0	1	120 a.	70	4024.4	2.73	67.18	20.41	3.29	0.033	4.02	67.77	122.95	7.61	0.79	1.23	1.05	YES
3.0	2		80	4024.4	(10.00)	70.10	10.00	7.01	0.035	16.20	58.74	155.51					
3.0	3	U	95	4030	2.68	63.15	16.01	3.94	0.035	13.32	53.37	105.99	1				
3.0	4	1.1.1.1	115	4040	2.00	1.99	3.15	0.63	0.035	5.74	39.32	31.22					
Totals		7.01				202.42							7.93				
		1	0	4050	1.1.1.1.1.1								1. I. I.				
4.0	1		80	4021.6	2.82	91.73	24.12	3.80	0.034	4.9	67.31	130.66	9.51	1.26	1.50	1.30	YES
4.0	2		105	4030	2.98	96.91	25.34	3.82	0.035	13.17	53.09	103.84	1.				
I _		8.07				188.64			Contract of the Contract of th				8.51				
			0	4050					la destada				1.				
4.1	1		85	4020.9	2.92	103.79	26.03	3.99	0.033	4.02	70.48	140.75	9.04	1.03	1.23	1.08	YES
4.1	2		110	4030	2.75	97.62	24.65	3.96	0.035	13.34	53.40	106.28					
Totals		8.43				201.41							7.97				
				1050									10.00				
1 12			05	4050	2.05	00.40		0.00	0.0001	0.0							
4.2	2		110	4020.2	2.85	98.49	25.12	3.92	0.038	8.8	59.15	117.13	9.65	1.66	2.69	2.34	YES
Totale	2	0.31	110	4035	2.23	175.47	20.31	3.79	0.035	13.12	53.02	103.23					
Totals		6.31	++			1/5.4/							9.15				
			0	4050													
5.0	1		85	4018.9	2.73	76.26	21.74	3.51	0.042	17.04	48.22	90.31	10.76	3 11	5 21	4 47	VES
5.0	2		112	4030	2.43	67.87	19.65	3.45	0.035	12.67	52.20	97.02		0.11	0.21	4.47	125
Totals		7.47				144.12							11.14				

SWCHW46.XLS 5/20/94

La.

Page 1 of 3

RIPRAP SIZING ANALYSIS FOR NATURAL SOUTHWEST RUNOFF DRAINAGE CHANNEL USING ARMY CORP OF ENGINEER METHOD

Qtotal, cfs 1605

FUTURE CONDITIONS WITH "ROCKS" IN CHANNEL SEC NO. 4, 4.1, 4.2, AND 5.0

Riprap Unit Wt., Ib/ft* 154.1

Riprep Angle of Repose, Deg. 42

Depth of Flow from HEC-2 Simulations 3 and 4 - see Attachment E.

APP, 545 CY OF ROCK/SEDIMENT

			CHAN	INEL GEOMETH	RY PROP	ERTIES			СНА	NNEL R	OUGHN	ESS	AVERAGE LO	CAL VELOCIT	Y AND SHEA	R STRESS CA	LCULATIONS
SEC	Sub	Depth of		Sta. Elevation,					Manning's				Avg. Velocity,	Avg. Bnd.	Allow. Bot.	Allow Side	Sheer Allow >
No.	section	Flow, ft	Station, ft	ft	Zn	An, ft ²	Pn,ft	Rn,ft	n	kn,in	С	CR*(1/2)n	fps	Shear, psf	Shear, psf	Shear, psf	Shear Avg.
	1.1.1.1																
1			0	4050					· · · · · · ·				L				
1	1		95	4018.1	2.98	41.20	16.52	2.49	0.042	17.04	43.38	68.50	9.75	3.15	5.21	4.58	YES
5.1	2		105	4018.1	(10.00)	52.60	10.00	5.26	0.035	14.76	55.99	128.41					
5.1	3		125	4030	1.68	23.25	10.29	2.26	0.035	10.68	48.64	73.12	1 · · · · · · · · · · · · · · · · · · ·				
liotais		5.26				117.05							13.71				
	10 m.		0	4050													
52			110	4017.4	3 37	47 21	19.62	2 5 4	0.042	17.04	1 42 62	69 47	0.07	2.02	E 21	4.70	VEC
5.2	2	1.1.1.1.1.1	115	4017.4	15 001	26.45	5.00	5.29	0.042	14 70	1 43.03 SE 04	120 00	5.2/	2.82	5.21	4.12	TES
5.2	3		175	4030	4 76	£6.63	25 74	2.59	0.035	11.20	49.75	80.04					
Totals		5.29			4.10	140.29	20.14	2.00	0.000	11.20	40.70	00.04	11 44				
					1								1				
10.113			0	4050									1 .				
6.0	1		127	4016.7	3.81	35.59	17.03	2.09	0.042	17.04	40.88	59,10	8.66	2.80	5 21	4.82	YES
6.0	2		133	4016.7	(6.00)	25.92	6.00	4.32	0.035	13.77	54.18	112.62					
6.0	3		160	4020	8.18	72.09	27.20	2.65	0.035	11.40	49.95	81.31					
6.0	4		205	4030	4.50	2.34	4.70	0.50	0.035	5.05	37.80	26.67	E				
Totals		4.32				135.94							11.81				
			0	4050													
1 5	1		130	4015.9	3.81	34.92	16.87	2.07	0.033	4.02	61.20	88.05	7.70	0.39	1.23	1.14	YES
.5	2		140	4015.9	(10.00)	42.80	10.00	4.28	0.035	13.72	54.10	111.92					
6.5	3		205	4020	15.85	144.95	65.13	2.23	0.035	10.59	48.51	72.37					
6.5	4	0.000	220	4030	1.50	0.02	0.32	0.07	0.035	1.56	27.56	7.54					
Totals	1.1.1.1	4.28				222.69		1.1			2012		7.21				
	1.1.1.1		0	4050													
7.0	1		130	4015.1	3.72	37.55	17.32	2.17	0.033	4.02	61.86	91.08	7.66	0.96	1.23	1.13	YES
7.0	2		140	4015.1	(10.00)	44.90	10.00	4.49	0.035	13.96	54.53	115.55	1945 - A. 195				
7.0	3		210	4020	14.29	144.00	64.30	2.24	0.035	10.62	48.56	72.68					
Totals		4,49				226.45							7.09				
1			0	4050						_							
8.0	1		135	4013.4	3.69	35.70	16.82	2.12	0.034	4.9	58.76	85.62	8.61	1.34	1.50	1.38	YES
8.0	2		145	4013.4	(10.00)	44.00	10.00	4.40	0.035	13.86	54.35	114.00					
8.0	3		220	4020	11.36	110.00	50.19	2.19	0.035	10.52	48.39	71.63					
liotais	1	4.4		and the later of the second	1	189.70							8.46				

Page 2 of 3

RIPRAP SIZING ANALYSIS FOR NATURAL SOUTHWEST RUNOFF DRAINAGE CHANNEL USING ARMY CORP OF ENGINEER METHOD

44

Qtotal, cfs 1605

FUTURE CONDITIONS WITH "ROCKS" IN CHANNEL SEC NO. 4, 4.1, 4.2, AND 5.0

Riprap Unit Wt., lb/ft* 154.1

Riprap Angle of Repose, Deg. 42

Depth of Flow from HEC-2 Simulations 3 and 4 - see Attachment E.

APP. 545 CY OF ROCK/SEDIMENT

			CHANN	NEL GEOMETR	Y PROPE	RTIES			CHAI	NNEL RO	UGHN	ESS	AVE	RAGE LOG	CAL VELOCIT FOI	TY AND SHEA	R STRESS CA N 1	LCULATIONS
SEC	Sub	Depth of	S	ita. Elevation,					Manning's				Avg.	Velocity,	Avg. Bnd.	Allow. Bot.	Allow Side	Shear Allow >
No.	section	Flow, ft	Station, ft	ft	Zn	An, ft ²	Pn,ft	Rn,ft	n	kn,in	С	CR*(1/2)n		fps	Shear, psf	Shear, psf	Shear, psf	Shear Avg.
			0	4040								- 25						
.0	1		150	4011.7	5.30	71.66	28.05	2.55	0.033	4.02	64.18	102.59		7.13	0.77	1.23	1.18	YES
9.0	2	122.27	160	4011.7	(10.00)	52.00	10.00	5.20	0.035	14.70	55.88	127.43						
9.0	3		230	4020	8.43	114.02	44.16	2.58	0.035	11.27	49.73	79.91	1					
Totals		5.2				237.68							-	6.75				
			150	4015.7														
10.0	1		167.1	4010	3.00	31.74	14.55	2.18	0.038	8.8	50.85	75.12		7.80	1.47	2.69	2.37	YES
10.0	2	11.1	187.1	4010	(20.00)	92.00	20.00	4.60	0.035	14.08	54.75	117.43	1					
10.0	3		204.2	4015.7	3.00	31.74	14.55	2.18	0.035	10.50	48.35	71.42						
Totals		4.6				155.48				Second Second				10.32	La Roman			

0

2.4

RIPRAP SIZING ANALYSIS FOR NATURAL SOUTHWEST RUNOFF DRAINAGE CHANNEL USING ARMY CORP OF ENGINEER METHOD

Qtotal, cfs 1605

FUTURE CONDITIONS WITH "ROCKS" IN CHANNEL IN SECTIONS 5, 51. 5.2, AND 6

Riprap Unit Wt., lb/ft* 154.1

Riprep Angle of Repose, Deg. 42

APP. 447 CY. OF ROCK/SEDIMENT

Depth of Flow from HEC-2 Simulations 5 and 6 - see Attachment E.

													AVERAGE	LOCAL VELO	CIT	Y AND SHEA	R STRESS CA	LCULATIONS
				CHANNEL GE	OMETRY	PROPERT	TIES		CHAI	NNEL RO	DUGHNE	ESS			FOI	R SUBSECTIO	N 1	
SEC	Sub	Depth of		Sta.					Manning's				Avg. Veloc	ty, Avg. Bn	d.	Allow. Bot.	Allow Side	Shear Allow >
No.	section	Flow, ft	Station, ft	Elevation, ft	Zn	An, ft ²	Pn,ft	Rn,ft	n	kn,in	С	CR*(1/2)n	fps	Sheer, p	sf	Shear, psf	Shear, psf	Shear Avg.
1.0			60	4030	3.00	42.61	16.85	2.53	0.033	4.02	64.03	101.81	8.	22 1.	.03	1.23	1.08	YES
.0	2		70	4030	(10.00)	53.30	10.00	5.33	0.035	14.82	56.11	129.55						
0.	3		145	4040	7.50	106.53	40.33	2.64	0.035	11.38	49.92	81.13						
Totals		5.33	1			202.45							7.	93				
1.1.1			0	4050									1					
2.0	1		65	4027.2	2.85	53.21	18,46	2.88	0.034	4.9	63.09	107.11	8	73 1.	21	1.50	1.30	YES
2.0	2		75	4027.2	(10.00)	61,10	10.00	6.11	0.035	15.51	57.41	141.90						
2.0	3		85	4030	3.57	47.10	22.66	2.08	0.035	10.28	47.96	69.15	1					
2.0	4		145	4040	6.00	32.87	20.13	1.63	0.035	9.23	46.07	58.86						
Totals		6.11				194.28							8	26				
1.2.			0	4050											1			
3.0	1		70	4024.4	2.73	47.59	17.18	2.77	0.038	8.8	54.23	90.27	8	78 1	64	2.69	2.31	VES
3.0	2		80	4024.4	(10.00)	59.00	10.00	5.90	0.035	15 34	57.07	138.63				2.00		
3.0	3		95	4030	2.68	46 50	16.01	2 90	0.035	11 83	50 71	86.42	1					
3.0	4		115	4040	2.00	0.09	0.67	0.13	0.035	2 30	30.38	11 13						
Totals		5.9				153.18			0.000	2.00	00.00	11.10	10	48				
					1		and the local diversion of the local diversio						1				the second s	
			0	4050									J					
4.0	1		80	4021.6	2.82	70.00	21.07	3.32	0.033	4.02	67.90	123.75	8.	40 0.	95	1.23	1.06	YES
4.0	2		90	4021.6	(10.00)	70.50	10.00	7.05	0.035	16.23	58.79	156.10						
0.	3		105	4030	1.79	44.38	14.43	3.08	0.035	12.10	51.20	89.79	10 C 1					
Totals		7.05				184.88			1				8	68				
	1.1.1.1		0	4050	l								1					
4.1	1		85	4020.9	2.92	84.58	23.50	3.60	0.033	4.02	69.03	130.98	7.	50 0.	74	1.23	1.08	YES
4.1	2		95	4020.9	(10.00)	76.10	10.00	7.61	0.035	16.61	59.55	164.26	1					
4.1	3		110	4030	1.65	47.73	14.67	3.25	0.035	12.37	51.68	93.22	1000					
Totais		7.61				208.41							7.	70				
1			0	4050									1.0					
4.2	1		85	4020.2	2.85	95.20	24.69	3.85	0.033	4.02	70.00	137.44	6.	88 0.	60	1.23	1.07	YES
4.2	2	S	95	4020.2	(10.00)	81.70	10.00	8,17	0.035	16.96	60.25	172.23						
4.2	3		110	4030	1.53	51.08	14.94	3.42	0.035	12.62	52.11	96.37						
Totals		8.17				227.98							7.	04				
		Contract of the second	1		1													

Page 1 of 3

14

54

RIPRAP SIZING ANALYSIS FOR NATURAL SOUTHWEST RUNOFF DRAINAGE CHANNEL USING ARMY CORP OF ENGINEER METHOD

Qtotal, cfs 1605

FUTURE CONDITIONS WITH "ROCKS" IN CHANNEL IN SECTIONS 5, 51. 5.2, AND 6

Riprap Unit Wt., Ib/ft* 154.1

Riprap Angle of Repose, Deg. 42

APP. 447 CY. OF ROCK/SEDIMENT

Depth of Flow from HEC-2 Simulations 5 and 6 - see Attachment E.

													AVERAGE LO	CAL VELOCIT	TY AND SHEA	R STRESS CA	LCULATIONS
				CHANNEL GE	OMETRY	PROPERT	TES		CHAI	NNEL RO	DUGHN	ESS		FO	R SUBSECTIO	N 1	
SEC	Sub	Depth of		Sta.					Manning's				Avg. Velocity,	Avg. Bnd.	Allow. Bot.	Allow Side	Shear Allow >
No.	section	Flow, ft	Station, ft	Elevation, ft	Zn	An, ft ²	Pn,ft	Rn,ft	n	kn,in	С	CR^(1/2)n	fps	Shear, psf	Shear, psf	Shear, psf	Shear Avg.
			0	4050													
.0	1		85	4018.9	2.73	82.29	22.58	3.64	0.038	8.8	58.11	110.93	10.85	2.17	2.69	2.31	YES
0.	2	2.24	112	4030	2.43	73.24	20.41	3.59	0.035	12.85	52.53	99.52					
letals		1.16				155.53							10.32	and the state of the state			
i 1				1050													
			0	4050	0.00	00.01	00 F.0		0.000	0.01				0.05			
5.1			30	4018.1	2.98	83.31	23.50	3.55	0.038	8.8	57.73	108.69	10.95	2.25	2.69	2.37	YES
5.1	2	7 40	125	4030	2.52	70.53	20.29	3.48	0.035	12.70	52.26	97.43					
Totais		7.48				153.84							10.43				
			0	4050													
5.2			110	4050	2.27	01.00	24 52	2.24	o o a a l	0.01	50.00	102.00		2.40	2.60		VEG
5.2	2		140	4017.4	3.3/	61.30	24.03	3.34	0.038	8.8	50.89	103.98	11.15	2.40	2.69	2.44	TES
Totale	-	6 97	140	4020	2.00	150 71	20.92	3.23	0.035	12.42	51.//	53.84	10.05				
TUIAIS		0.07				150.71							10.05			and the second second second second	
11 J			0	4050									1				
6.0			127	4016.7	3.81	61.09	22.22	2.74	0.042	17.04	44.71	72 07	11.22	2.04	E 21	4.00	VEC
6.0	2		160	4010.7	4.52	72.41	26.02	0.76	0.0%2	11 50	50.20	/3.3/	11.23	3.34	0.21	4.82	TES
Totals	-	5.66	100	4024	4.52	122.50	20.20	2.70	0.035	11.55	50.25	03.00	12.02				
Totais		0.00	0	4050		100.00							12.02				
55			130	4015.9	3.81	24.92	16.87	2.07	0.022	4.02]	61 20	00 OE	7.70	0.00	1.00		VEC
5	2		140	4015.9	110.001	42.00	10.00	1 20	0.035	4.02	E4 10	111.00	1.70	0.99	1.23	1.14	TES
65	3		205	4010.0	15.95	144.95	65 12	2 22	0.035	10.59	10 E1	70.02					
Totals		4 28	200	TOLO	10.00	222 67	00.10	2.20	0.035	10.55	40.01	12.01	7 21				
			0	4050		44.4.4.07							1.41				
70	1		130	4015.1	3.72	37 55	17 32	2 17	0.033	4.02	61.96	91.08	7.66	0.96	1 22	1.12	VEC
7.0	2		140	4015.1	110 001	44 90	10.00	4 49	0.035	12.96	54.52	115 55	7.00	0.90	1.23	1.13	TES
7.0	3		210	40.20	14 29	144.00	64 30	2 24	0.035	10.62	49.55	72.60					
Totals		4 49	210	4020	14.20	226.45	04.50	2.24	0.035	10.02	40.00	12.00	7.00				1. S. S. S. S. S.
Totals		4,40				220.45							7.05				
	1.1.1.1		0	4050									181 (SE) 4				
8.0	1		135	4013.4	3.69	35 70	16.82	2 1 2	0.034	4 9	58 76	85 62	9.61	1.24	1 50	1 20	VEC
8.0	2		145	4013.4	(10.00)	44.00	10.00	4 40	0.035	13.86	54 35	114.00	0.01	1.34	1.30	1.38	163
8.0	3		220	4020	11.36	110.00	50.19	2 19	0.035	10.52	49.39	71.63	1.12.1.1.1.1				100
Totals		4.4				189.70	00.10	2.10	0.000	10.02	10.00	11.00	8.46				
					1								0.40				

RIPRAP SIZING ANALYSIS FOR NATURAL SOUTHWEST RUNOFF DRAINAGE CHANNEL USING ARMY CORP OF ENGINEER METHOD

Qtotal, cfs 1605

FUTURE CONDITIONS WITH "ROCKS" IN CHANNEL IN SECTIONS 5, 51. 5.2, AND 6

Riprap Unit Wt., Ib/ft* 154.1

Riprep Angle of Repose, Deg. 42

APP. 447 CY. OF ROCK/SEDIMENT

Depth of Flow from HEC-2 Simulations 5 and 6 - see Attachment E.

				CHANNEL GE	OMETRY	PROPERT	IES		CHAI	INEL RO	UGHNE	SS	AVER	RAGE LOC	CAL VELOCIT	Y AND SHEA	R STRESS CA N 1	LCULATIONS
SEC	Sub	Depth of		Sta.					Manning's				Avg.	Velocity,	Avg. Bnd.	Allow. Bot.	Allow Side	Shear Allow >
No.	section	Flow, ft	Station, ft	Elevation, ft	Zn	An, ft²	Pn,ft	Rn,ft	n	kn,in	С	CR ⁻ (1/2)n		fps	Shear, psf	Shear, psf	Shear, psf	Shear Avg.
			0	4040														
0.	1		150	4011.7	5.30	71.66	28.05	2.55	0.033	4.02	64.18	102.59		7.13	0.77	1.23	1.18	YES
.0	2		160	4011.7	(10.00)	52.00	10.00	5.20	0.035	14.70	55.88	127.43						
9.0	3		230	4020	8.43	114.02	44.16	2.58	0.035	11.27	49.73	79.91						
Totals		5.2				237.68								6.75				
			150	4015.7														
10.0	1		167.1	4010	3.00	31.74	14.55	2.18	0.038	8.8	50.85	75.12		7.80	1.47	2.69	2.37	YES
10.0	2		187.1	4010	(20.00)	92.00	20.00	4.60	0.035	14.08	54.75	117.43						
10.0	3		204.2	4015.7	3.00	31.74	14.55	2.18	0.035	10.50	48.35	71.42						
Totals		4.6				155.48								10.32	6112161			

5

4

APPENDIX C

GAMMA LOGS FROM ATLAS MILL SITE

CanonieEnvironmental

. ...

03×29×0

81.40

* 1(T) - 0+(- 19+5() = "

4765	INDEP	ENDENCE STREET	
WHEAT	RIDGE	(DENVER), CO 80033	
	(303) 422-5478	

NUCLEAR LOGGING SERVICE, INC.

BOX 670 NUCLA, CO 81424 (303) 864-2213

COMPANY: DAMES &	MOORE		-CALIBRATION-			-H	OLE DATA-	
PROJECT AREA: ATLAS MIL	1 SITE	CHART	SCA/E: 1.0"	= 5.01	DRILL	ING CONTRACTOR:		
HOLENO: 1 THRI	20				DRILL	NO:		
L ///// L	~~	.8 FT. K FAC	TOR (AIR)		DEPTH	DRILLED:		FT.
DATE: 22 JUly	1987	WATER FACTOR	CASING FACTOR		HOLE	DIAMETER:	.O UNCASED	IN.
COUNTY: GRAND		DEAD TIME:		U SEC.	DRILL	ING FLUID:	AUGER	
BTATE: UTAH		PROBE NO.	771		FLUID	LEVEL:	averi	FT.
SECTION: TWN:	RNG:	PROBE DIAM	ETER: 11/A	IN.	DEPTH	LOGGED:		FT.
ELEVATION:		5" - FULL S	CALE		TOTAL	FOOTAGE LOGGED.	1944 - 1947 - 19	FT.
INITIAL RUN		GAMMA	RERUNS				DENSITY	
GAMMA-FULL SCALE 200 CPS	SCALE:	CPS.	SCALE:		CPS.	SCALE:		CPS.
TIME CONSTANT 2 SEC.	TIME CONSTANT	SEC.	TIME CONSTANT		SEC.	TIME CONSTANT		SEC
LOGGING SPEED: 20 FT./MIN.	LOGGING SPEED:	5 FT./MIN.	LOGGING SPEED:	5 PT	/MIN.	LOGGING SPEED:	,	T./MIN.
RESISTANCE OHMS/DIV.	FROM:	FT.	FROM:		FT.	FROM:		FT.
SELF POTENTIAL: MV/DIV.	то:	FT.	TO:		FT.	то:		FT
	TOTAL	FI.	TOTAL		FT.	TOTAL:		FT
		GAMMA	RERUNS			NE	UTRON-NEUTRON	and the second second
TOTAL DEPTH FT.	SCALE:	CPS.	SCALE:		CPS.	SCALE:		0.000
	TIME CONSTANT	SEC.	TIME CONSTANT		SEC.	TIME CONSTANT		CPa.
UNIT NO: 15	LOGGING SPEED:	5 FT./MIN.	LOGGING SPEED:	5 FT	/MIN	LOGGING SPEED		SEC.
OPERATOR: Fellerar	FROM:	FT.	FROM:		FT.	FROM	F	JMIN.
DRIVE 4. O HRS.	TO:	FT.	то:		FT.	10.		FT.
STANDBY: 1.0 HRS. TIME IN:	TOTAL:	FŸ.	TOTAL:		FT.	TOTAL		FT.
LOGGING A CHAS. TIME OUT:	REMARKS;							FT.
TOTAL: 9.0 HRS.	SURFACE	BACKGRO	UND ROCA	RDen	6	SACH IH-		-
ROUND TRIP MILEAGE: 175 MILES					8	- A Bigs		
		the second second						

FEXAS INS NCORP 0

DE IN U.S.A

TEXAS INSTRUMENTS INC

CHART NO. WH-7

TEXAS INSTRUMENTS INCORPORT

CHART NO. WH-7

V. TEXAS, U.S.A.

INTS INCORPORATED, HOUSTON, TEXAS, U.S.A.

CHART NO. WH-7

TEXAS INSTRUMENTS INCORPOR

TXAS INSTRUMENTS INCORPORATED, HOUSTON, TEXAS, U.S.A.

WEE IN N'S'W

TEXAS INSTRUMENTS INCORPORATED, HOUSTON, TEXAS, U.S.A.

CHART NO. WH-7

MADE IN U.S.A.

TEXAS INSTRUMENTS INCORPORATED, HOUSTON, TEXAS, U.S.A.

CHAN ON TRAHD

TEXAS INSTRUMENTS INCORPORATED, HOUSTON, TEXAS, U.S.A.

NOJECT AREA: ATLAS A	MOORE		-CALIBRATION-		-HOLE	DATA-
DLENO: DE TID.	III SILE			DRI	LLING CONTRACTOR:	
El THRO	45			DRI	LL NO:	
TE 21 Tulu	1007	.8 FT. K FA	ACTOR (AIR)	DEP	TH DRILLED:	
UNTY: DAL	1701	FACTOR	FACTOR	HOL	E DIAMETER: 19 1.11	A // Q
JEAN	0	DEAD TIM	E: 2/ SI	C. DRIL	LING FLUID	2.0 PVG "
UIAM		PROBE NO.	771	FLU	AUG	R
TION: TWN: VATION:	RNG:	PROBE DIA	METER: 144 IN	DEAT	U LEVEL:	F
		8" - FULL	SCALE	UEPT	H LOGGED:	F
INITIA. RUN		GAMM	APEDINE	TOTA	L FOOTAGE LOGGED:	F
MA-FULL SCALE 200 CPS	SCALE.					DENSITY
CONSTANT Z SEC.	THE CONCE	CPS.	SCALE:	CPS.	SCALE:	
ING SPEED: 20 FT.MIN	TIME CONSTANT	SEC.	TIME CONSTANT	SEC.	TIME CONSTANT	CP
TANCE OHMB/DIV	LOGGING SPEED:	5 FT/MIN.	LOGGING SPEED: 5	PT./MIN.	LOGGING REED.	SE
POTENTIAL:	FROM:	FT.	FROM:	FT.	FROM.	FT./MI
Me/Ule.	TO:	FT.	TO:	FT	70.	β
	IOTAL:	FT.	TOTAL	FT	TOTAL	F
DERTH		GAMMA	RERUNS	Construction of the second sec	LIVIAL	F
FT.	SCALE:	CPS.	SCALE:		NEUTRON	I-NEUTRON
13	TIME CONSTANT	SEC.	TIME CONSTANT	CPS.	SCALE:	CP
	LOGGING SPEED:	5 FT/MIN.	LOGGING SPEED	SEC.	TIME CONSTANT	SEC
A A	FROM:	FT.	FROM	FT/MIN.	LOGGING SPEED:	FT/MIN
GO HRS.	TO:	FT.	TO:	FT.	FROM:	FT
BY: HRS. TIME IN:	TOTAL:	FT	TOTAL	FT.	TO:	
AGO . GIAS. TIME OUT:	REMARKS;		TOTAL:	FT.	TOTAL:	
Y. OHRS.	SURFACE	BACKCO	auto Da	~		FT.
TRIP MILEAGE: 175 MILES		- as ye	Keorde	0 (a)	BACH Hole	

TALFS PROP

WADE IN U.S.A.

ROONI STNEMURTENI RAXET

CHART NO. WH-7

A.S.U , PAXET , NOTEUOH , DETAR

ġ

TEXAS INSTRUMENTS INCORPORATED, HOUSTON, TEXAS, U.S.A.

1

+---

TEXAS INSTRUMENTS INCORPORATED, HOUSTON, TEXAS, U.S.A.

Ø

TEXAS INSTRUMENTS INCORI

CHART NO. WH-7

.

EXAS INSTRUMENTS INCORPORATED, HOUSTON, TEXAS, U.S.A.

.....

American

here have

the second

8

CHART NO. WH-7

. HOUSTON, TEXAS, U.S.A.

.

.