

Westinghouse Electric Corporation **Commercial Nuclear** Fuel Division

NRC-94-025

Drawer R Columbia South Carolina 29250

May 27, 1994

U. S. Nuclear Regulatory Commission C. R. Chappell, Section Leader Cask Certification Section 8F5, TWFN Storage and Transport Systems Branch Division of Industrial and Medical Nuclear Safety, IMNS 11555 Rockville Pike Rockville, MD 20852

Docket 71-5450: Application for Approval of Packaging, RCC Shipping Subject: Containers.

Gentlemen:

The Westinghouse Electric Corporation hereby submits six (6) copies of an application for approval of packaging of fissile radioactive material (RCC Shipping Containers) -- package identification number USA/5450/AF.

If you have any questions concerning this submittal, please write to me at the above address; telephone (803) 776-2610, extension 3426; or fax (803) 695-3964.

6.7. Sanders

C. F. Sanders, Manager Nuclear Material Management & Product Records

9406030215 940527 PDR ADOCK 07105450

Delete LA NTOI

Westinghouse Commercial Nuclear Fuel Division — Winner of the 1988 Malcolm Baldrige National Quality Award.

APPLICATION DETAILS

May 27, 1994

- 1. The shipments shall consist of 14x14 CE-1 type fuel assemblies.
- 2. The fuel stack will consist of 136.25 inches (nominal) of UO₂ enriched to 4.80% (maximum)²³⁵U, with the top 6.8 inches of the fuel made of annular pellets; the middle 122.65 inches of fuel made of solid pellets; and the bottom 6.8 inches of fuel made of annular pellets. Figure 1 shows the annular pellet; Figure 2 shows the fuel stack in the rod. The solid pellets are the same length and OD as the annular pellets.
- 3. All parameters for this fuel are listed in Table 1 of this application.
- Clamping frames are positioned at each zircaloy grid, and the 14x14 CE-1 assembly has seven (7) zircaloy grids. Figure 4 illustrates the positions of the clamping frame arms along the assembly's length.
- 5. KENO calculations and benchmarking are discussed in following pages.

Application for License Amendment Docket 71/5450 May 27, 1994 Page 1 of 24

FUEL ASSEMBLY PARAMETERS CE-1 TYPE ASSEMBLY WITH ANNULAR END ZONES

Fuel Assembly Description	14 x 14
Fuel Assembly Type	CE-1
Nominal Pellet Diameter	0.3765
Annular Pellet Inner Diameter	0.183
Nominal Clad Thickness	0.0280
Clad Material	Zircaloy
Nominal Clad Outer Diameter	0.4400
Guide Thimble Diameter	1.1110
Guide Thimble Thickness	0.0380
Guide Thimble Material	Zircaloy
Instrumentation Tube Diameter	1.1110
Instrumentation Tube Thickness	0.0380
Instrumentation Tube Material	Zircaloy
Maximum Stack Length	137
Nominal Assembly Envelope	8.110
Kg's ²³⁵ U/Assembly	18.6
Nominal Lattice Pitch	0.5800
Assembly K _∞	0.9296

Application for License Amendment Docket 71/5450 May 27, 1994 Page 2 of 24

ENRICHED ANNULAR AXIAL BLANKET PELLET

Application for License Amendment Docket 71/5450 May 27, 1994 Page 3 of 24

MAINE YANKEE 14X14 CE-1 FUEL STACK

Application for License Amendment Docket 71/5450 May 27, 1994 Page 4 of 24

MAINE YANKEE 14X14 CE-1 FUEL STACK

Application for License Amendment Docket 71/5450 May 27, 1994 Page 4 of 24

FUEL PIN GAP FLOODING WITH ANNULAR FUEL BLANKETS

This section considers the effect of flooding inside a fuel pin with full density water and outside the pins with full and partial density water. Included in the analysis is 6.8 inches of annular fuel at the top and bottom of each assembly. All fuel is enriched to $4.8 \text{ w/o}^{235}\text{U}$. The 14x14 CE-1 type fuel was considered. The KENO model of the shipping container used in the fuel pin gap flooding cases (with annular fuel measuring 6.8 inches at the top and bottom) is shown in Figure 3. For the fuel pin gap flooding evaluation, three-dimensional features were used to model the entire fuel stack length, including 6.8 inches of annular fuel at the top and bottom of the fuel stack length.

The fuel pin gap flooding model considered for 14x14 CE-1 type fuel assemblies is a 3D model which considers half the length of the shipping container with a reflective boundary condition at the mid-plane. Seven clamping arms are modeled symetrically about the shipping container mid-plane. This approximation will have little effect on the overall reactivity of the model since the clamping arms are very small (0.8 inches) relative to the arm center-to-center spacing (19 inches). Vertical gadolinia plates were included in the model. Additional steel components are also modeled here as in the optimum moderation cases. The clamping frame spacing is illustrated in Figure 4.

Results are shown in Table 2 for water flooding at full density in both the fuel pin gap and annular fuel blanket annulus. These results show that the K_{eff} limit is met for 14x14 CE-1 type fuel assemblies under conditions of full density water flooding in the fuel pin gap and annulus and and full density water outside the pins. The input deck for this 14x14 CE-1 type fuel assembly KENO model is listed in Table 5.

Results are shown in Figure 5 for water flooding at partial densities to determine the peak reactivity. The peak K_{eff} is listed in Table 2. The fuel pin gap and annulus remain flooded with full density water. Results show a K_{eff} much less than 0.95 for conditions of full water density flooding in the fuel pin gap and annulus and partial water density flooding outside the pins. The input deck for this KENO model is listed in Table 6.

Application for License Amendment Docket 71/5450 May 27, 1994 Page 5 of 24

KENO MODEL OF SQUARE LATTICE ASSEMBLY WITHIN CONTAINER

(2) UNISTRUT CHANNEL-SIDE STRONGBACK SKIN - 4X3X.25 CRADLE ANGLE

- (b) 3x2x5/18 SEALING FLANGES 1.88x7.19x.19 SHOCKMOUNT ANGLE
- (c) 3x8x.38 SKID MOUNT FLANGE
- (d) CLAMPFRAME

Application for License Amendment Docket 71/5450 May 27, 1994 Page 6 of 24

GRID (CLAMPING FRAME ARM) SPACING 14X14 MAINE YANKEE FUEL ASSEMBLY

Application for License Amendment Docket 71/5450 May 27, 1994 Page 7 of 24

SUMMARY OF KENO CALCULATIONAL RESULTS

Assembly Type Enrichment Wt. %		KENO K _{eff} $\pm 1\sigma$	95/95 with Bias	
Fuel Pin Gap Floor	ding with Annular Fuel 1 Pi	Blankets ¹ Full Water I ins	Density Outside the	
14x14 CE-1	4.8	0.9349 ± 0.00167	0.9466	
Fuel Pin Gap Floodi	ng with Annular Fuel B Pi	lankets ¹ Partial Water	Density Outside the	
14x14 CE-1	4.8	0.7733 ± 0.00144	0.7843	

¹Annular fuel blankets consist of 6.8 inches of annular fuel and top and bottom of rods.

Application for License Amendment Docket 71/5450 May 27, 1994 Page 8 of 24

OPTIMUM MODERATION

Application for License Amendment Docket 71/5450 May 27, 1994 Page 9 of 24

BENCHMARK EXPERIMENTS AND APPLICABILITY

The criticality calculation method and cross-section values are verified by comparison with critical experiment data for fuel assemblies similar to those for which the shipping container is designed. This benchmarking data is sufficiently diverse to establish that the method bias and uncertainty will apply to shipping container conditions which include strong neutron absorbers and large water gaps.

A set of 32 critical experiments has been analyzed using the above method to demonstrate its applicability to criticality analysis and to establish the method bias and uncertainty. The benchmark experiments cover a wide range of geometries, materials and enrichments; ranging from relatively low enriched (2.35, 2.46, and 4.31 wt%), water moderated, oxide fuel arrays, separated by various materials (B_4C , aluminum, steel, water, etc) that simulate LWR fuel shipping and storage conditions; to dry, harder spectrum, uranium metal cylinder arrays at high enrichments (93.2 wt%), with various interspersed materials (Plexiglas and air). Comparison with these experiments demonstrates the wide range of applicability of the method.

DETAILS OF THE BENCHMARK CALCULATIONS

All experiments were modeled without complication. Material densities and geometries were taken directly from the references. No critical experiments were eliminated on the basis of anomalous results.

RESULTS OF THE BENCHMARK CALCULATIONS

Descriptions and results of the 32 critical experiments as executed on an HP-735 series workstation are provided in Table 3; benchmark calculation statistics are given in Table 4. These results are appropriate for all calculations performed after January 1, 1994.

The 32 low enriched, water-moderated experiments result in an average KENO Va K_{eff} of 0.9930. Comparison with the average measured experimental K_{eff} of 1.0007 results in a method bias of 0.0077. The standard deviation of the bias value is 0.0013 ΔK . The 95/95 one-sided tolerance limit factor for 32 values is 2.20. Thus, there is a 95 percent probability with a 95 percent confidence level that the uncertainty in reactivity, due to the method, is not greater than 0.0030 ΔK .

The results of even higher enrichment benchmark experiments show that the criticality method can correctly predict the reactivity of a hard spectrum environment, such as the optimum moderation scenario often considered in fresh rack and shipping cask designs. However, the results of such higher enrichment benchmarks are not incorporated into the criticality method bias because the enrichments are well beyond the range of typical

Application for License Amendment Docket 71/5450 May 27, 1994 Page 10 of 24 applications. Basing the method bias solely on the 32 low enriched benchmarks results in a more appropriate and more conservative bias.

The final equation for all K_{eff} calculations is defined as follows:

Final
$$K_{eff} = K_{nom} + B_{meth} + \sqrt{(Ks_{nom})^2 + (Ks_{meth})^2}$$

where,

Final K_{eff} is the calculated K_{eff} with bias and all uncertainties included at the 95 percent confidence level;

K_{nom} is the average K_{eff} generated from Keno Va;

 B_{meth} is the bias associated with the Keno methodology established from comparison with critical experiments;

Ks_{nom} is the 95/95 uncertainty on the KENO calculation result;

Ks_{meth} is the 95/95 uncertainty associated with the KENO method bias.

Application for License Amendment Docket 71/5450 May 27, 1994 Page 11 of 24

TABLE 3BENCHMARK CRITICAL UO2 RODLATTICE EXPERIMENTS USING AN HP-735 WORKSTATION

Critical Number	Enrichment ⁷⁹⁵ U wit%	Reflector Material	Separating Material	Soluble Boron (ppm)	Measured K _{et}	KENO Reactivity $K_{ut} \pm 1\sigma$
1	2.46	water	wator	0	1.0002	0.9935 ± 0.0023
2	2.46	water	water	1037	1.0001	0.9936 ± 0.0019
3	7.46	water	water	764	1.0000	0.9946 ± 0.0019
4	2.46	water	B ₄ C pina	0	0.9999	0.9877 ± 0.0022
5	2.46	water	B ₄ C pins	0	1.0000	0.9884 ± 0.0022
6	2.46	water	B ₄ C pins	0	1.0097	1.0013 ± 0.0022
7	2.46	water	B _c C pins	0	0.9998	0.9957 ± 0.0023
8	2.46	water	B ₄ C pine	0	1.0083	0.9991 ± 0.0021
9	2.46	water	Water	0	1.0030	0.9966 ± 0.0023
10	2,46	water	water	14)	1.0001	0.9971 ± 0.0020
11	2.46	water	stainless steel	514	₹.0000.	0.9986 ± 0.0020
12	2.46	waler	stainless steel	217	3.0000	0.9941 ± 0.0021
13	2.46	water	borated alternimers	1.5	1.0000	0.9923 ± 0.0022
14	2.46	wator	borated alugninum	92	1.0001	0.9885 ± 0.0021
15	2.46	water	borated aluminam	395	0.9998	0.9842 ± 0.0021
16	2.46	water	berated aluminum	121	1.0001	0.9847 ± 0.0021
17	2.46	water	bonsted aluminum	487	1.0000	0.9852 ± 0.0020
18	2.46	water	borated aligninum	197	1.0002	0.9920 ± 0.0021
19	2.46	water	borated aluminum	634	1.0002	0.9892 ± 0.0020
20	2.46	water	borated aluminum	320	1.0003	0.9946 ± 0.0020
21	2.46	water	borated aluminum	72	0.9997	0.9877 ± 0.0022
22	2.35	water	borated aluminum	0	1,000	0.9935 ± 0.0013
23	2,35	water	staicless steel	0	1.0000	0.9957 ± 0.0012
24	2.35	water	water	0	1.0000	0.9979 ± 0.0024
25	2.35	water	stainless steel	0	1.0000	0.9896 ± 0.0024
26	2.35	water	borated aluminum	0	0000	0.9884 ± 0.0023
27	2.35	Water	B ₄ C	0	1.0600	0.9902 ± 0.0023
28	4.31	water	stainices steel	0	1.0000	0.9906 ± 0.0025
29	4,31	water	water	0	1.0000	0.9899 ± 0.0023
30	4.31	wate/	stainless siec!	0	1.0000	1.0001 ± 0.0025
31	4.31	water	borated aluminum	0	1.0000	1.0007 ± 0.0025
32	4.31	water	corated aluminum	0	1.0000	1.0009 ± 0.0025

Application for License Amendment Docket 71/5450 May 27, 1994 Page 12 of 24

BENCHMARK CALCULATION STATISTICS FOR AN HP-735 WORKSTATION

Number of Experiments	32		
Average Measured K _{eff} (K _m)	1.0007		
Average KENO Va K _{eff} (K _c)	0.9930		
KENO Va Bias (K _m - K _c)	0.0077		
Bias Standard Deviation (s)	0.0013		
One Sided Tolerance Factor for 95/95 (k)	2.20		
95/95 Bias Uncertainty (ks)	0.0030		

Application for License Amendment Docket 71/5450 May 27, 1994 Page 13 of 24

REFERENCES

- 1. Ford III, W.E., et. al.; CSRL-V: PROCESSED ENDF/B-V 227-NEUTRON-GROUP AND POINTWISE CROSS-SECTION LIBRARIES FOR CRITICALITY SAFETY, REACTOR, AND SHIELDING STUDIES; NUREG/CR-2306; June 1982.
- Greene, N.M., et. al.; AMPX: A MODULAR CODE SYSTEM FOR GENERATING COUPLED MULTIGROUP NEUTRON-GAMMA LIBRARIES FROM ENDF/B; ORNL-TM-3706; March 1976.
- Petrie, L.M., Landers, N.F.; KENO Va AN IMPROVED MONTE CARLO CRITICALITY PROGRAM WITH SUPERGROUPING; NUREG/CR-0200; December 1984.
- 4. N. M. Baldwin, "Critical Experiments Supporting Close Proximity Water Storage of Power Reactor Fuel," B&W-1484-7, July 1979.
- S. R. Bierman and E. D. Clayton, "Criticality Separation Between Subcritical Clusters of 2.35 wt% 235U Enriched UO2 Rods in Water with Fixed Neutron Poisons," PNL-2438, Pacific Northwest Laboratory, October 1977.
- S. R. Bierman and E. D. Clayton, "Criticality Experiments with Subcritical Clusters of 2.35 wt% and 4.31 wt% 235U Enriched UO2 Rods in Water at a Water-to-Fuel Volume Ratio of 1.6," PNL-3314, Pacific Northwest Laboratory, July 1980.
- S. R. Bierman and E. D. Clayton, "Critical Separation Between Subcritical Clusters of 4.29 wt% 235U Enriched UO2 Rods in Water with Fixed Neutron Poisons," PNL-2615, Pacific Northwest Laboratory, August 1979.
- J. T. Thomas, "Critical Three-Dimensional Arrays of U(93.2) Metal Cylinders," Nuclear Science and Engineering, Volume 52, pages 350-359, 1973.

Application for License Amendment Docket 71/5450 May 27, 1994 Page 14 of 24

KENO INPUT FOR FULL WATER DENSITY CASE

Full Water Density Case

title-cask with 14x14 ce 4.80 w/o assembly, clamps

```
read parameters
 tme=60 run=yes plt=yes
 gen=300 npg=310 nsk=005 lib=29
 xs1 = yes nub = yes
end parameters
read mixt sct=2
mix = 1
' solid uo2 pellet 4.80 w/o (96.5% td, 0% dish)
       1192235 0.0011465
       1192238 0.022451
       118016 0.047195
mix = 2
' h2o at 1.00 g/cc in solid pellet gap
        231001 0.066854
        238016
                 0.033427
mix = 3
' solid zirc fuel rod cladding
      2140302 0.043326
mix = 4
' h2o at 1.00 g/cc in blanket fuel annulus
       151001 0.066854
        158016
                 0.033427
mix = 5
' annular uo2 pellet 4.80 w/o (96.5% td)
       2292235 0.0011465
       2292238 0.022451
       228016 0.047195
mix = 6
' h2o at 1.00 g/cc in annular pellet gap
       341001 0.066854
       348016
                 0.033427
mix = 7
```

Application for License Amendment Docket 71/5450 May 27, 1994 Page 15 of 24

```
' annular zirc fuel rod cladding
       3240302
                  0.043326
mix = 8
' h2o at 1.00 g/cc
         31001
                 0.066854
         38016
                 0.033427
mix = 9
' carbon steel for strongback & shell
        36012 4.728898e-4
        315031
                 5.807008e-5
        316032 6.642906e-5
        325055 3.877064e-4
        326000 8.420119e-2
mix = 10
' gadolinia oxide absorber (0.02 gm gd2o3/cm2 @ 0.01016 cm thickness)
        48016
                 9.810529e-3
        464152
               1.308071e-5
        464154 1.373474e-4
        464155
               9.679722e-4
        464156 1.347313e-3
        464157
                1.026835e-3
        464158
               1.622008e-3
        464160
               1.425792e-3
mix = 11
' carbon steel sheet for gd absorber
        56012 4.728898e-4
        515031 5.807008e-5
        516032 6.642906e-5
        525055 3.877064e-4
        526000
                 8.420119e-2
end mixt
read geometry
unit 1
com =" 14x14 ce fuel rod - enriched region"
cylinder 1 1 0.478155 155.7655 0.0
cylinder 2 1 0.48768 155.7655 0.0
cylinder 3 1 0.55880 155.7655 0.0
cuboid
         8 1 4p0.73660 155.7655 0.0
unit 2
com=" 14x14 ce guide and instrument tube - enriched region"
cylinder 8 1 1.31445 155.7655 0.0
cylinder 3 1 1.41097 155.7655 0.0
```

Application for License Amendment Docket 71/5450 May 27, 1994 Page 16 of 24

```
cuboid
         8 1 4p1.47320 155.7655 0.0
unit 3
com = " 14x14 ofa fuel rod - blanket region"
cylinder
         4 1
               0.23241
                        17.272 0.0
         5 1
cylinder
               0.478155 17.272 0.0
cylinder
        6 1
               0.48768
                       17.272 0.0
       7 1
               0.55880 17.272 0.0
cylinder
         8 1 4p0.73660
                         17.272 0.0
cuboid
unit 4
com =" 14x14 ce guide and instrument tube - blanket region"
         8 1 1.31445
cylinder
                         17.272 0.0
         3 1
              1.41097 17.272 0.0
cylinder
        8 1 4p1.47320 17.272 0.0
cuboid
unit 7
         com = 'strong back, horizontal'
 cuboid 9125.4130.0 0.4572 0.0 204.01 0.0
unit 8
         com='strong back, vertical'
 cuboid
        9 1 0.4572 0.0 24.14 0.0 204.01 0.0
unit 9
         com = 'verticle gad poison plat between assembly'
 cuboid
        11 1 0.0889 0.0 18.415 0.0 204.01 0.0
 cuboid 10 1 .09906 - .01016 18.415 0.0 204.01 0.0
unit 10
         com = 'rest of strongback and cradle'
         8 1 7.1051 0.5149 12.1851 0.5149 204.01 0.0
 cuboid
 cuboid
         9 1 7.62 0.0 12.70 0.0 204.01 0.0
unit 11
         com='container flanges and bracket'
 cuboid 911.285 0.0 22.86 0.0 204.01 0.0
unit 12
         com='skid angle'
 cuboid 8 1 7.62 0.9652 7.62
                              0.9652 204.01 0.0
 cuboid
        9 1 7.62 0.0 7.62 0.0 204.01 0.0
unit 13
         com='middle top clamping assembly'
 cuboid 9126.21 0.0 2.1
                               0.0 1.05 0.0
unit 14
         com='middle side clamping assembly'
 cuboid 91 2.1 0.0
                       25.69 0.0 1.05 0.0
unit 15
         com='unistrut channel assembly'
 cuboid 8 1 1.799 0.0 3.556 0.7399 204.01 0.0
                        3.556 0.0 204.01 0.0
 cuboid 912.538 0.0
unit 16
         com='top clamping assembly'
 cuboid 9126.21 0.0 2.1
                              0.0 2.1 0.0
         com='side clamping assembly'
unit 17
 cuboid
        9 1 2.1 0.0 25.69 0.0 2.1
                                          0.0
```

global

unit 21

com=" 14x14 ce assembly in cask "

Application for License Amendment Docket 71/5450 May 27, 1994 Page 17 of 24

array 1 0.0 0.0 0.0 cuboid 8 1 40.9448 -3.1 25.7048 -38.56 205.74 0.0 hole 7 -0.4572 -0.4572 0.0 hole 8 -0.4572 0 0.0 hole 9 -0.8979 -0.8128 0.0 hole 10 24.958 -18.237 0.0 11 39.21 -12.7 hole 0.0 hole 12 30.48 -37.9172 0.0 23.60 0.0 hole 13 0.01 hole 14 26.225 0.01 0.0 hole 16 0.01 23.60 48 hole 17 26.225 0.01 48 16 0.01 hole 23.6 96 17 26.225 hu.e 0.01 96 hole 16 0.01 23.6 144 hole 17 26.225 0.01 144 15 -2.997 hole 20.87 0.0 9 1 41.17086 -3.1 cuboid 25.93086 -38.786 205.74 0.0 unit 22 $com = "2x^2$ bundle of fuel rods - enriched region" array 2 2r-1.47320 0.0 unit 23 com=" 2x2 bundle of fuel rods - blanket region" array 3 2r-1.47320 0.0 end geom read array ara=1 nux=7 nuy=7 nuz=2 com=" 14x14 ce assembly "loop 22 1 7 1 1 7 1 1 1 1 2264264 111 2441 4 4 1 111 23 1 7 1 1 7 1 221 4 2 6 4 2 6 4 221 4441441 221 end loop

ara=2 nux=2 nuy=2 nuz=1 com = 2x2 bundle of fuel rods - enriched region" fill f1 end fill

Application for License Amendment Docket 71/5450 May 27, 1994 Page 18 of 24

```
ara=3 nux = 2 nuy = 2 nuz = 1 com = "2x2 bundle of fuel rods - blanket region"
fill f3 end fill
end array
read bounds
all=specular
end bounds
read plot
 ttl='box slice through cask'
 pic=box
 nch='0ugiugiabcdefhjklmnop.'
 xul = -4.0 yul = 26.0 zul = 48.2
 xlr = 45.0 ylr = -40.0 zlr = 48.2
 uax = 1.0 vdn = -1.0 nax = 130 end
 ttl='mat slice through cask'
 pic=mat
 nch = '0u.z.u.z._{b-}
 xul = -4.0 yul = 26.0 zul = 48.2
 xlr = 45.0 ylr = -40.0 zlr = 48.2
 uax = 1.0 vdn = -1.0 nax = 130 end
 ttl='mat slice through assembly'
 pic = mat
 nch = '0u.z.u.z.sgs'
 xul = 0.0 yul = 21.0 zul = 48.2
 xlr = 21.0 ylr = 0.0 zlr = 48.2
 uax = 1.0 vdn = -1.0 nax = 130 end
 ttl='mat slice through annular pellet'
 pic=mat
 nch = 'Ou.z.u.z.sgs'
 xui = 0.0 yul = 21.0 zul = 165.0
 xlr = 21.0 ylr = 0.0 zlr = 165.0
 uax = 1.0 vdn = -1.0 nax = 130 end end
end plot
```

end data end

> Application for License Amendment Docket 71/5450 May 27, 1994 Page 19 of 24

KENO INPUT FOR PARTIAL WATER DENSITY CASE

Optimum Moderation Density Case

title-cask with 14x14 ce 4.80 w/o assembly, clamps

```
read parameters
 tme = 60
          run=yes plt=yes
 gen = 300 npg = 310 nsk = 005 lib = 29
 xs1 = yes nub = yes
end parameters
read mixt sct=2
mix = 1
' solid uo2 pellet 4.80 w/o (96.5% td, 0% dish)
       1192235
                 0.0011465
       1192238 0.022451
        113016 0 047195
mix = 2
' h2o at 1.00 g/cc in solid pellet gap
        231001
                0.066854
        238016
                  0.033427
mix = 3
' solid zirc fuel rod cladding
      2140302
                 0.043326
mix = 4
' h2o at 1.00 g/cc in blanket fuel annulus
        151001 0.066854
        158016
                  0.033427
mix = 5
' annular uo2 pellet 4.80 w/o (96.5% td)
       2292235 0.0011465
       2292238 0.022451
        228016
                 0.047195
mix = 6
' h2o at 1.00 g/cc in annular pellet gap
        341001 0.066854
        348016
                  0.033427
mix = 7
' annular zirc fuel rod cladding
```

Application for License Amendment Docket 71/5450 May 27, 1994 Page 20 of 24

```
3240302
                  0.043326
mix = 8
' h2o at 0.01 g/cc
         31001
                 0.00066854
         38016
                 0.00033427
mix = 9
' carbon steel for strongback & shell
        36012
                 4.728898e-4
        315031
                 5.807008e-5
        316032 6.642906e-5
        325055
                 3.877064e-4
        326000
               8.420119e-2
mix = 10
' gadolinia oxide absorber (0.02 gm gd2o3/cm2 @ 0.01016 cm thickness)
        48016 9.810529e-3
        464152
                 1.308071e-5
        464154 1.373474e-4
        464155
                9.679722e-4
        464156
               1.347313e-3
        464157
               1.026835e-3
        464158
                1.622008e-3
        464160
               1.425792e-3
mix = 11
' carbon steel sheet for gd absorber
        56012
                 4.728898e-4
        515031
                 5.807008e-5
        516032
                 6.642906e-5
        525055
                 3.877064e-4
        526000
                 8.420119e-2
end mixt
read geometry
unit 1
com=" 14x14 ce fuel rod - enriched region"
cylinder 1 1 0.478155 155.7655 0.0
cylinder
         2 1 0.48768 155.7655 0.0
cylinder
         3 1 0.55880
                        155.7655 0.0
cuboid
         8 1 4p0.73660 155.7655 0.0
unit 2
com=" 14x14 ce guide and instrument tube - enriched region"
cylinder 8 1 1.31445 155.7655 0.0
         3 1 1.41097 155.7655 0.0
cylinder
cuboid
         8 1 4p1.47320 155.7655 0.0
```

Application for License Amendment Docket 71/5450 May 27, 1994 Page 21 of 24

```
- unit 3
com = " 14x14 of a fuel rod - blanket region"
          4 1
                0.23241
                        17.272 0.0
cylinder
cylinder
          5 1
                0.478155 17.272 0.0
        6 1
cylinder
                0.48768 17.272 0.0
cylinder
         7 1
                0.55880 17.272 0.0
          8 1 4p0.73660 17.272 0.0
cuboid
unit 4
com =" 14x14 ce guide and instrument tube - blanket region"
cylinder
          8 1 1.31445 17.272 0.0
cylinder 3 1 1.41097 17.272 0.0
cuboid
         8 1 4p1.47320 17.272 0.0
unit 7
         com='strong back, horizontal'
  cuboid
         9 1 25.413 0.0 0.4572 0.0 204.01 0.0
unit 8
         com='strong back, vertical'
  cuboid
         9 1 0.4572 0.0 24.14 0.0 204.01 0.0
unit 9
         com='verticle gad poison plat between assembly'
  cuboid 11 1 0.0889 0.0 18.415 0.0 204.01 0.0
  cuboid 10 1 .09906 -.01016 18.415 0.0 204.01 0.0
unit 10
         com = 'rest of strongback and cradle'
  cuboid 8 1 7.1051 0.5149 12.1851 0.5149 204.01 0.0
  cuboid 917.62 0.0 12.70 0.0 204.01 0.0
unit 11 com='container flanges and bracket'
  cuboid 911.285 0.0 22.86 0.0 204.01 0.0
unit 12
         com='skid angle'
  cuboid 817.62 0.96527.62 0.9652204.01 0.0
  cuboid
        9 1 7.62 0.0 7.62 0.0 204.01 0.0
unit 13
         com='middle top clamping assembly'
  cuboid
          9 1 26.21 0.0 2.1
                               0.0 1.05 0.0
unit 14
         com = 'middle side clamping assembly'
  cuboid
          9 1 2.1 0.0 25.69 0.0 1.05 0.0
unit 15
         com = 'unistrut channel assembly'
  cuboid 8 1 1.799 0.0 3.556 0.7399 204.01 0.0
 cuboid 912.538 0.0 3.556 0.0 204.01 0.0
unit 16
         com = 'top clamping assembly'
 cuboid
         9 1 26.21 0.0 2.1 0.0 2.1
                                           0.0
unit 17
         com='side clamping assembly'
 cuboid
         91 2.1 0.0
                        25.69
                                0.0 2.1
                                           0.0
global
unit 21
com = " 14x14 ce assembly in cask "
array 1 0.0 0.0 0.0
```

cuboid 8 1 40.9448 -3.1 25.7048 -38.56 205.74 0.0 hole 7 -0.4572 -0.4572 0.0 hole 8 -0.4572 0 C.0 9 -0.8979 -0.8128 0.0 hole 10 24.958 hole -18.237 0.0 hole 11 39.21 -12.7 0.0 hole 12 30.48 -37.9172 0.0 hole 13 0.01 23.60 0.0 hole 14 26.225 0.01 0.0 16 0.01 hole 23.60 48 hole 17 26.225 0.01 48 hole 16 0.01 23.6 96 17 26.225 hole 0.01 96 hole 16 0.01 23.6 144 hole 17 26.225 0.01 144 hole 15 -2.997 20.87 0.0 cuboid 9 1 41.17086 -3.1 25.93086 -38.786 205.74 0.0 unit 22 com = " 2x2 bundle of fuel rods - enriched region" array 2 2r-1.47320 0.0 unit 23 com=" 2x2 bundle of fuel rods - blanket region" array 3 2r-1.47320 0.0 end geom read array ara=1 nux=7 nuy=7 nuz=2 com=" 14x14 ce assembly " 100p 22 1 7 1 171111 2264 2 6 4 111 2441 4 4 1 11 23 1 7 1 171221 4264 2 6 4 221 4 4 4 1 4 4 1 2 2 1 end loop

÷.

ara=2 nux=2 nux=2 nuz=1 com="2x2 bundle of fuel rods - enriched region" fill f1 end fill

Application for License Amendment Docket 71/5450 May 27, 1994 Page 23 of 24

```
ara=3 nux = 2 nuy = 2 nuz = 1 com = "2x2 bundle of fuel rods - blanket region"
fill f3 end fill
end array
read bounds
all=specular
end bounds
read plot
  ttl='box slice through cask'
  pic = box
  nch='Ougiugiabcdefhjklmnop.'
  xul = -4.0 yul = 26.0 zul = 48.2
  xlr = 45.0 ylr = -40.0 zlr = 48.2
  uax = 1.0 vdn = -1.0 nax = 130 end
  ttl='mat slice through cask'
  pic=mat
  nch = '0u.z.u.z.sgs'
  xul = -4.0 yul = 26.0 zul = 48.2
  xlr = 45.0 ylr = -40.0 zlr = 48.2
  uax = 1.0 vdn = -1.0 nax = 130 end
  ttl='mat slice through assembly'
  pic = mat
  nch = 'Ou.z.u.z.sgs'
  xul = 0.0 yul = 21.0 zul = 48.2
  xlr = 21.0 ylr = 0.0 zlr = 48.2
  uax = 1.0 vdn = -1.0 nax = 130 end
  ttl='mat slice through annular pellet'
  pic = mat
  nch = '0u.z.u.z.sgs'
  xul = 0.0 yul = 21.0 zul = 165.0
  xlr = 21.0 ylr = 0.0 zlr = 165.0
  uax = 1.0 vdn = -1.0 nax = 130 end end
end plot
```

end data

Application for License Amendment Docket 71/5450 May 27, 1994 Page 24 of 24