UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION

BEFORE THE ATOMIC SAFETY AND LICENSING BOARD

In the Matter of)
Sequoyah Fuels Corporation and General Atomics
(Gore, Oklahoma, Site Decontamination and Decommissioning Funding)

Docket No. 40-8027-EA
Source Material License No.
SUB-1010
ASLBP No. 94-684-01-EA
April 15, 1994

CHEROKEE NATION'S COMBINED RESPONSE TO SEQUOYAH FUELS CORPORATION'S ANSWER IN OPPOSITION AND
N.R.C. STAFF'S RESPONSE TO CHEROKEE NATION'S APPLICATION FOR ORDER ALLOWING INTERVENTION

COMES NOW the Cherokee Nation and submits this response to Sequoyah Fuels Corporation's Answer in opposition and N.R.C. staff's response to Cherokee Nation's Application for Order Allowing Intervention.

Sequoyah Fuels calls into question the ownership of the bed of the Arkansas River by the cherokee Nation. The N.R.C. Staff is concerned that the Cherokee Nation's petition (1) has not adequately demonstrated an injury in fact; and (2) failed to allege adequate facts demonstrating that the result of these proceedings will adversely impact its interest.

In 1970 the United States Supreme court ruled that the Cherokee, choctaw and Chickasaw Nations uniquely hold title to the bed and banks of a navigable waterway, the Arkansas River as the
same passes through the historical domains of those tribes. choctaw Nation V. Oklahoma, 397 U.S. 620 (1970) and Cherokee Nation V. State of Oklahoma, 461 F.2d 674 (1972). The bed and banks of the Arkansas River have been held in trust by the United states since 1906 pursuant to 34 Stat., 136. There is no doubt whatsoever that these tribes are the beneficial owners of ninety-six (96) miles of Arkansas riverbed including that portion adjacent to sequoyah Fuels plant site. The Cherokee Nation is the exclusive owner of the north bank of the river within $1 / 2$ mile south of this plant at the point of its confluence with the Illinois River. Choctaw Nation V. Cherokee Nation, 393 F.Supp. 224, 246 (E.D. Okla. 1975).

The concern of the tribe that there is contamination of the bed and banks of the Arkansas is not speculative. Attached hereto is a letter from Curtis Canard, Cherokee Nation office of Environmental Services dated September 24, 1992, explaining, inter alia, the results of EPA ground water monitoring tests on riverbed property at the confluence of the Arkansas and Illinois Rivers. These tests show significant levels of heavy metals, including barium, chromium, cobalt, copper, lead, vanadium, aluminum, nickel, beryllium, and zinc. Some contaminate levels are in excess of Superfund criteria for contamination and others exceed National Primary Drinking Water Standards. The test wells are located outside of the Sequoyah Fuels Corporation corporate boundary but within the near by riverbed. (See map attached) At least four of the wells run along the Arkansas riverbed. Recently completed cadastral surveys conducted by the Bureau of Land Management establish that the cherokee Nation owns much of the riverbed in
this immediate area. Unfortunately mapping of those surveys is not yet complete. Nevertheless, the natural flow of ground water in this area is to the west toward tribal property. ${ }^{1}$

The cherokee Nation by virtue of its property interests in the area, should be permitted to intervene in these proceedings regardless of its representational standing. Georgia Power \& Light, LBP-91-33, 34 NRC 138 (1941). Since the Cherokee Nation has property interests in the area which have likely been adversely effected by the operation of the Sequoyah Fuels Plant, the tribe has standing to intervene on its own as a tribe. Vermont Yankee Nuclear Power Station, LBP-87-7, 25 NRC 116, 118 (1987).

The Cherokee Nation's ownership of this portion of the Arkansas riverbed is established. If Sequoyah Fuels corporation does not do an adequate clean-up of the site and nearby tribal property it will remain contaminated. Groundwater run-off will continue to contaminate tribal property in the future. The health and care of tribal members who use the riverbed for hunting and fishing will be affected. The tribe will not be able to fovelop the property for its economic benefit if it remains contaminated. The tribe should be allowed to intervene to protect the health and safety of 'ts members and its economic development interests in the property. The tribe unconditionally supports the October 15, 1993, order issued to Sequoyah Fuels Corporation and General Atomics. The tribe asserts that with this additional filing that it has

[^0]demonstrated a nexus between the possible outcome of these proceedings and its interests.

The Cherokee Nation adopts the contentions of NACE that; (1) the N.R.C. has enforcement authority over General Atomics and (2) guaranteed decommissioning financing by General Atomics is required by N.R.C. regulations and is necessary to provide adequate protection to public health and safety, including the tribe's members, as well as the property interest of the tribe.

The tribe is concerned about the adequacy of funding for decommissioning efforts. The concerns of the tribe are the same as those described in the order from which Sequoyah Fuels now appeals. If decommissioning funding is inadequate, the Cherokee Nation will suffer an injury in fact.

I, James G. Wilcoxen, hereby certify that on, the (of day of May, 1994, copies of the foregoing Response was served byo Dirst class mail, on the following:

Administrative Judge James P. Gleason Chairman
The Atomic Safety \& Licensing Board U. S. Nuclear Regulatory commission Washington, D.C. 20555

Diane Curran, Esq.
Harmon, Curran, Gallagher \& Spielberg 6935 Laurel Avenue, Suite 204 Takoma Park, Maryland 20912

Administrative Judge Jerry R. Kline Atomic Safety and Licensing Board U. S. Nuclear Regulatory Commission Washington, D. C. 20555

Administrative Judge Thomas D. Murphy Atomic Safety and Licensing Board U.S. Nuclear Regulatory Commission Washington, D.C. 20555

Administrative Judge G. Paul Bollwerk, III
Atomic Safety and Licensing Board
U. S. Nuclear Regulatory Commission

Washington, D.C. 20555
Lawrence J. Chandler, Esq.
Assistant General Counsel for
Hearings \& Enforcement
Office of General Counsel
U. S. Nuclear Regulatory Commission

Washington, D.C. 20555
Maurice Axelrad, Esq.
Newman, Bouknight \& Edgar
1615 L Street N.W.
Suite 1000
Washington, D.C. 20036
Stephen M. Duncan, Esq.
Mays \& Valentine
110 South Union Street
P.O. Box 149

Alexandria, Virginia 22313-0149

John H. Ellis, President Sequoyah Fuels Corporation P.O. Box 610 Gore, OK 74435

John R. Driscoll
General Atomics
P.O. Box 85608

San Diego, CA 92186-9784
Lance Hughes, Director
NACE
P.O. BOX 1671

Tahlequah, OK 74465
Office of Commission Appellate
Adjudication
U.S. Nuclear Regulatory Commission

Washington, D.C. 20555
Steven R. Hom, Esq.
Susan L. Uttal, Esq.
Richard G. Bachmann, Esq.
office of the General Counsel
U.S. Nuclear Regulatory Commission Washington, D.C. 20555

The office of the secretary
U. S. Nuclear Commission

Washington, DC 20555
ATTN: Docketing and Services Branch
(Original and two copies)

Wilma P. Mankiller
Principal Chief
John A. Kelcher
Deputy Chlef

September 24, 1992

Mr. Jim Wilcoxen
112 N. 5th Street
Muskogee, Ok 74401

RE: GORE RIVERBED

Dear Mr. Wilcoxen;
The sampling process for the Site Investigation at Gore Riverbed is complete. The EPA Contract Laboratory Program has returned the sampling analysis data. Analysis data for the soil and sediment samples indicate no significant concentrations of contamination for either inorganic or organic. However, sampling analysis data for the groundwater (monitoring wells) revealed heavy metal contamination (inorganic) in five of the ten wells. Heavy metal constituents in these wells $\pi . . t$ the EPA Superfund criteria for contamination with background sample above the Contract Required Detection Limit (CRDL) and hit samples three times the background sample results. Although these contaminants are considered low concentration, some exceed the National Primary Drinking Water Standards (1974) and Proposed National Drinking Water Standards. Contaminants include barium, chromium, cobalt, copper, lead, vanadium, aluminum, nickel, beryllium, and zinc.

The following tables are a summary of the EPA/CLP data. Also included is a map showing the location of the monitoring wells where groundwater samples were collected. The approximate depth to groundwater for these wells was eight to twenty feet. Groundwater samples were collected in June of 1992.

Sincerely,

Curtis Canard, Office of Environmental Services

Enclosure

CCler

GENERAL INFORMATION (continued)
SIIE SKETCH

SURFACE SEDIMENTS ($0-6$ INCHES) INORGANIC ANALYTIC RESULTS

ANALYTE	CONCENTRATION (MG/KG)													
Contaminant	Station 1 (Background)	CRDL	$\begin{gathered} \text { Station } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { Station } \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \text { Station } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \text { Station } \\ 6 \\ \hline \end{gathered}$	Station 7	$\begin{gathered} \text { Station } \\ 8 \end{gathered}$	Station 9	Station 10	Station 11	Station 12	$\begin{gathered} \text { Station } \\ 13 \end{gathered}$	Station 14
Aluminum	13.500	40	17,800	20.400	8.180	14.700	29,100	20.200	17.800	19.100	14.800	12.500	7.450	7.160
Antimony	ND	2	ND											
Arsenic	ND	2	3.7	3.2	5.7	ND	3.6	ND						
Banum	75	40	100	107	50	93	186	117	133	115	110	88	53	51
Berylinum	1	1	1	1	1	1	1	1	1	1	1	1	ND	ND
Carmum	ND	1	ND											
Chromium	27	$\frac{1.000}{2}$	1.450	$\frac{1.020}{34}$	761	1.660	1.960	1.650	1.970	1.900	1.820	1.740	2.320	2.130
Cobalt	5	10	6	6	4	$\frac{24}{5}$	43	31	25	29	22	19	11	13
Copper	5	5	7	6	3	6	10	8	6	6	6	4	4	ND
iron	10.500	20	11.200	13.400	13.200	10.800	17700	13500	12.700	$\frac{8}{13.600}$	7	5	4	ND
lead	7.5	1	11.6	8.9	8.1	11.2	14.7	14.0	$\frac{12,700}{11.8}$	$\frac{13.600}{0.4}$	12.700	10,600	6.890	6.810
Magnesium	1.210	1,000	1.380	1.760	623	1.320	2,120	1.540	2.510	2.46	11.6	8.0	5.5	4.7
Manganese	188	3	248	374	192	313	-रु.	271	600	$\frac{2,4}{37}$	444	2,050	2.040	1,730
Mercury	ND	0.1	ND	I	237									
Nickel	9	8	10	11	ND	7	13	10	8	9	8	ND	ND	ND
Potassium	1,990	1.000	2.480	3.130	1.140	2.200	3.950	2.700	3.010	3.370	8.340	5	3	ND
Seieruum	ND	1	0.4	ND	0.4	ND	ND	0.6	ND	ND	ND	2,19	1.420	1.380
Silver	ND	2	ND	0.4	ND	0.6								
Sodium	175	1.000	141	158	100	122	186	134	180	171	125	ND	ND	ND
Thallium	ND	2	ND	12.	155	149	157							
Vanadium	26	10	31	36	21	28	50	36	33	34	28	ND	ND	ND
Zinc	32	4	41	41	24	40	57	49	43	49	37	30	15	15
Cranide	ND	5	ND	28	25									

[^1]GROUND WATER INORGANIC ANALYTIC RESULTS

ANALYTE	CONCENTRATION (UG/L)											
Contaminant	$\begin{array}{\|c} \begin{array}{c} \text { Station 1 } \\ \text { (Background) } \end{array} \\ \hline 85200 \end{array}$	$\frac{\text { CRDL }}{}$	$\begin{aligned} & \text { Station } \\ & 2 \\ & 87.3 \mathrm{~m} \end{aligned}$	Station $\xrightarrow{67}$	$\begin{gathered} \text { Station } \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \text { Station } \\ 5 \\ \hline 8 \end{gathered}$	$\begin{gathered} \text { Station } \\ 6 \\ \hline \end{gathered}$	Station 7	$\begin{gathered} \text { Station } \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \text { Station } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { Station } \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \text { Station } \\ 11 \\ \hline \end{gathered}$
Aluminum Antimony	$\frac{85200}{\text { ND }}$	$\frac{200}{60}$	$\frac{82.300}{N D}$	$\frac{67.300}{\text { ND }}$	$\frac{908.000}{399}$	$\frac{8299.000}{100}$	128.000	-327,000	13.400	$12^{\circ} .000$	- -3130000	402:90005
Arsenic	ND	10	ND	ND	ND	100	ND	100	ND	$\wedge \mathrm{D}$	104	132
Banum Berv-lium	835	200	773	427	"-2.910 -3	$\frac{\mathrm{ND}}{1.380}$	ND	ND	ND	ND	ND	ND
Berylium	7	5	7	5	-58	-23:	58	$\frac{3.160}{16}$	1.770	1.70	-35530	2.750
Cadmum Calsum	ND	5	ND	入	$\underline{\square-28}$	\cdots						
Calcrum Chromium:	31.300	5.000	34.900	49.700	: 140.000	. 97.200	28.400	97.900 .	143.000	${ }_{73} \frac{1}{4 m}$	ND	ND
Chromium	100	10	90	65	$\underline{1} \times 1.790$.	- - 554	194	$321=$	165	73.400	-1203006	-434.000
Cobalt	45B	50	20	ND	[. $* 556$	- 153	40	104	56	43	- -335	-563\%
Copper:	45	25	29	26	, 680 - -	- 178.	43	136	108	71	- 2240	- $\pm 162=$
lron	85.900	100	78.100	67.100	$1.510 .000=$	- 2333.000	110.000	308.000	138.000	148000	$\cdots-208$	- $-232 \cdots$
Lead	64	5	50	32	- 367	50	28	78	72	148	$-372,004=$	454.000%
Magnesium Manganese	13.800	5,000	18,600	38,500	-261.000%	- 74.600	19.900	-66.500^{-1}	2.67:600-32	44.390	- -60800	174
Manganese	3.510	15	1.780	1.450	13,500 = -	5.070	3.900	- $24.4 .700=-1$	3.220	3: 30	$=-30,800$	$\frac{120,000}{8,670}$
Miercury	ND	0.2	ND	ND	0.46	ND	ND	0.28	ND	ND	$-\frac{2-370}{0.33}$	8.670
Nickel	78	40	48	39	5. -1.7600	$433-$	146	271 -	115	14	- 0.33	0.41
Potzssium	13,900	5.000	15.900	11.700	$=73.100$ =- 8	34.700	15.700	31.900	27.100	1930	- $422=$	- -399
Seienium	ND	5	ND	33,300	$\because 43.300^{-}$							
Silver	ND	10	ND									
Sodium	17.300	5.000	6.240	-185.000.7	356.000	330.000	13.100	16,200	14.000	1930	ND	ND
Thallum	ND	10	ND	0,900	13,500							
Vanadium Zinc	115	50	124	84	$-1.5600=-$	$521-$	195	417:- $=$	225	105	519	$\frac{\mathrm{ND}}{-649}=$
Zinc Cranide	340	20	253	220	-6.300% ?	- 1.540	334	985	444	$4{ }^{2}$	991	\cdots
Cvanide	ND	10	ND	$\frac{1.300}{N D}$								

Bes Background $\geq \mathrm{CRDL}$. Hit 3 times background

* Background flagged B (> IDL < CRDL), Hit 3 times background

[^0]: 1 Sequoyah Fuels Corporation itself admits that "groundwater flows in a generally westward direction." See affidavit of John Dietrich dated December 3, 1993, paragraph 8, attached to Sequoyah Fuels Corporation's Answer in Opposition to NACE's Motion to Intervene, dated December 6, 1993.

[^1]: Background \geq CRDL, Hit 3 times background

