Draft

NSRR Severe Fuel Damage Experiments Plan

January 1983

Reactivity Accident Laboratory

Division of Nuclear Safety Research

Japan Atomic Energy Research Institute

# NSRR SFD EXPERIMENT PLAN

#### GENERAL OBJECTIVES

- (1) DETERMINE NATURE OF FUEL ROD DAMAGES (CLADDING OXIDATION,
  BALLOONING TO RUPTURE AND FUEL LIQUEFACTION) AND FISSION
  PRODUCTS RELEASE FROM FUEL RESULTING FROM WIDE-RANGED
  SCD EVENTS.
- (2) CHARACTERIZE DEBRIS FORMATION BY REFLOOD QUENCHING.
- (3) STUDY COOLABILITY OF DEBRIS.

## EXPERIMENT PROGRAM

#### PHASE I:

PRELIMINARY AND SCOPING TESTS SIMULATING CORE UNCOVERY ACCIDENT EVENT.

## PHASE II:

DETAILED TESTS SIMULATING WIDE-RANGED SCD EVENTS USING MODIFIED NSRR AND DEVELOPED TEST TRAINS.

# PHASE I AND PHASE II EXPERIMENTS PROGRAM

|          |             | Accident type                                      | Reactor                                             | Peak fuel temperat | ure (°C)  | Pre-irradiation of test fuel rod | Remarks                                                |
|----------|-------------|----------------------------------------------------|-----------------------------------------------------|--------------------|-----------|----------------------------------|--------------------------------------------------------|
|          | Period      | to be simulated                                    |                                                     | quasi-steady state | transient | (burn up fuel)                   |                                                        |
| Phase I  | 1982 ~ 1984 | Core uncovery<br>transient<br>and<br>Reflood phase | Pulse<br>or<br>Steady-state                         | ~1600              | ∿3000     | no                               | Using present NSRR  and test equipments                |
| Phase II | 1986 ~      | PCM & ATWS in addition to above                    | Controlled power to simulate any types of accidents | ~2500              | ~3000     | yes                              | Using modified NSRR<br>and<br>developed test<br>trains |

<sup>\*</sup> Fuel temperature will be simulated mainly.

# EXPERIMENT PROGRAM IN PHASE I

# 1. OBJECTIVES

- (1) FUEL BEHAVIOR TEST & DEBRIS FORMATION TEST
  - (i) EXTENT AND TYPE OF FUEL ROD DAMAGE AND POSSIBLE FLOW BLOCKAGE RESULTING FROM A RANGE OF CORE UNCOVERY TRANSIENT.
  - (ii) CORRESPONDING AMOUNT OF FISSION PRODUCTS RELEASE FROM FUEL.
- (iii) FUEL FRAGMENTS SIZE AFTER REFLOOD QUENCHING.
  - (iv) KINETICS OF ZIRCALOY-STEAM AND-UO REACTIONS INCLUDING EFFECT OF ENVIRONMENTAL GAS AND CLADDING INNER SURFACE OXIDATION.

# 1. OBJECTIVES (CONT'D)

- (2) COOLABILITY TEST
  - · THERMAL-HYDRAULIC CHARACTERISTICS OF DEBRIS BEDS.

- 5

## 2. TEST SAMPLES

- (1) FUEL BEHAVIOR & DEBRIS FORMATION TESTS

  ZIRCALOY-4 CLAD UO<sub>2</sub> FUEL (14 X 14 PWR TYPE)
  - · UNIRRADIATED (FRESH) ROD
  - · SINGLE ROD (OR 5-ROD CLUSTER\*)
  - (2) COOLABILITY TEST
    - FUEL FRAGMENTS FROM FUEL DEBRIS FORMATION TESTS

      (SIZE AND SHAPE: UNCONTROLLED)
    - FUEL FRAGMENTS FROM NSRR RIA TESTS

      (SIZE: CONTROLLED, SHAPE: UNCONTROLLED)
    - · SPECIALLY-FABRICATED FUEL AND CLADDING CHUNKS

      (SIZE AND SHAPE: CONTROLLED)
  - \* A SIMULATED CONTROL ROD WITH LOW-MELTING POISION MATERIALS MAY BE REPLACED IN THE CENTER IN SOME CASES.

# 3. TEST CONDITIONS

- (1) IRRADIATION (RAMPING OF POWER)
  - · STEADY-STATE POWER
    - EXPECTED PEAK FUEL TEMPERATURE: ~1600°C
    - HEATING RATE : 0 ~ 10°C/SEC (VARIABLE)
  - · PULSING POWER
    - EXPECTED PEAK FUEL TEMPERATURE: ~3000°C
    - HEATING RATE : VERY FAST (NOT VARIABLE)
  - (2) COOLING (TERMINATION OF TEST)
    - SLOW (0 ~ 50°C/SEC) CR QUENCH
  - (3) COOLANT (ENVIRONMENT OF TEST FUEL)
    - ATMOSPHERIC PRESSURE OF WATER, STEAM, AIR, HELIUM OR THEIR MIXTURES

## 4. TEST PARAMETERS

(1) HEATING RATE

VERY QUICK

(PULSE OPERATION)

SLOW 0 ~ 10°C/SEC (STEADY-STATE OPERATION)

(2) TEMPERATURE OF FUEL OR CLADDING

PEAK : 1000 ~ 3000°C (PULSE OPERATION) .

1000 ~ 1600°C (STEADY-STATE OPERATION)

HOLDING: 0 ~ 10 MIN (STEADY-STATE OPERATION ONLY)

TIME .

(3) COOLING CONDITION (TERMINATION OF TEST) SLOW (0 ~ 50°C/SEC) OR QUENCH

(4) ENVIRONMENT GAS

STEAM, HELIUM OR MIXTURE

# 5. TEST DATA

- (1) TRANSIENT
  - (I) TEMPERATURES OF FUEL CENTERLINE, CLADDING SURFACE,
    DEBRIS AND ENVIRONMENT GAS
  - (II) FUEL DISPLACEMENT
  - (III) DIFFERENTIAL PRESSURE ACROSS DEBRIS BED
  - (IV) FUEL MOTION OBSERVATION
  - (2) POST-IRRADIATION EXAMINATION
    - (1) DIMENSIONAL MEASUREMENT
    - (II) METALLOGRAPHY AND CERAMOGRAPHY
    - (III) HYDRONGEN AND FISSION PRODUCTS ANALYSIS
      - (IV) SIEVE ANALYSIS (TO DERMINE FRAGMENTS SIZE)

Time Schedule for NSRR Experiments

| Trom Trom       | 82                    | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84                            | 85                 | 86               | 8/                                    | 99              |
|-----------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------|------------------|---------------------------------------|-----------------|
| Modification of | Preliminary<br>Design |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                    |                  |                                       |                 |
| Experimental    | Safety (in            | Safety Evaluation E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Evaluation<br>(by Government) | Reactor            | Reactor Shutdown |                                       |                 |
|                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Manifacturing                 | turing             | Reactor Cha      | Reactor Characteristics Test          |                 |
|                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Design & Fabrication          | ation installation | lation           |                                       |                 |
|                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                    | Cold Run f       | Cold Run for Irradiated Fuel Handling | Handling        |
|                 |                       | Louis Fried                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tacte                         |                    | - 11             | Irradiated Fuel Tests                 | its             |
| RIA Experiments | 5                     | University of the less of the | 5753                          |                    | Ť                | (scoping tests)*(parameter tests)     | srameter tests) |
| 400             |                       | Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phase I                       |                    | ]                | Phase 11                              |                 |
| o experiments   | !                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                    |                  |                                       |                 |

|   | , |   |   |   |  |
|---|---|---|---|---|--|
|   |   |   |   |   |  |
| , |   | ۰ | ė | , |  |
|   |   | 2 |   | i |  |

| Test Designation            | Specific Objectives                                                                                                                                              | Key Test Parameters                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel<br>Behavior<br>Test    | <ol> <li>Determine nature of fuel rod damages</li> <li>Study Zry-H<sub>2</sub>O and -UO<sub>2</sub> reactions</li> <li>Determine amount of FP release</li> </ol> | <ul> <li>Peak fuel temperature: 1600 ∿ 3000°C (pulse irradiation only, no heating rate controlled)</li> <li>Environmental gas: He, air, steam or their mixtures</li> <li>Cooling rate: slow or very slow</li> <li>Holding time at peak temperature: 0 ∿ 10 min (max, peak temperature ∿ 1600°C</li> <li>Heating rate: 0 ∿ 10°C/sec (up to 1600°C)</li> </ul> |
| Debris<br>Formation<br>Test | Characterize debris formation     by reflood quenching     Determine amount of FP     release                                                                    | Same as above     (Water is injected under above conditions)                                                                                                                                                                                                                                                                                                 |
| Coclability                 | Study thermal-hydraulic     characteristics of debris beds     upon reflooding                                                                                   | Fuel temperature before water injection: 500~1000°C     Debris bed depth: 5, 10 (15) cm     Particle size : 1 10 m approximately                                                                                                                                                                                                                             |

| Heating<br>rate<br>during<br>ramping<br>(°C/sec) | Peak fuel<br>temperature | Holding time<br>at peak<br>temperature<br>(°C) | Cooling<br>rate                      | Environmental<br>gas before<br>reflooding | Test<br>date                                              | Status of fuel                                                                                               |
|--------------------------------------------------|--------------------------|------------------------------------------------|--------------------------------------|-------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|                                                  | 1600                     |                                                | slow<br>quench                       | He<br>He                                  | 1983. 1<br>1983. 6                                        | Cladding and fuel slightly molten<br>due to UO <sub>2</sub> -Zry reaction                                    |
| Very<br>high<br>/pulse \                         | 1800                     | -                                              | stow<br>quench<br>stow               | He<br>He<br>mixture<br>steam              | 1983. 1<br>1983. 9<br>1983. 3<br>done<br>(104-7)          | Cladding and fuel partially molten<br>due to UO <sub>2</sub> -Zry reaction<br>unless severe oxidation occurs |
| (irradia-<br>tion                                | 2000                     | -                                              | slow<br>very slow*<br>slow<br>quench | He<br>He<br>steam<br>steam                | done<br>(104-10)<br>1984. 1<br>done<br>(104-6)<br>1983. 9 | metalic cladding molten and liquified fuel formed                                                            |

.

6 .

| Heating<br>rate<br>during<br>ramping | Peak Fuel<br>temperature | Holding time<br>at peak<br>temperature | Cooling<br>rate                     | Environmental<br>gas before<br>reflooding | Test                                      | Status of fuel                                 |
|--------------------------------------|--------------------------|----------------------------------------|-------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|
| (°C/sec)                             | (°C)                     | (°C)                                   |                                     |                                           |                                           |                                                |
| very<br>high<br>pulse                | 2500                     | _                                      | slow<br>quench<br>slow<br>very slow | air<br>air<br>He<br>He                    | 1983. 2<br>1983. 11<br>1983. 3<br>1984. 1 | large amount of liquified fuel<br>formed       |
| tion                                 | 3000                     | -                                      | slow                                | a1r<br>He                                 | done<br>(104-4)<br>1983. 4                | fuel molten, but fuel fragmentation may occur. |

A total of  $\sim 5$  tests will be added for unspecified quench experiments to study debris formation upon reflood quenching.

\* Fuel temperature will be kept high with well-desiged thermal insulator(s) or auxiliary electric heater installed.

Table 2 Fuel Behavior & Debris /Formation Tests (3/3) (Steady state Reactor Operation)

| Heating<br>rate<br>ramping | Peak fuel<br>temperature | Ablding time<br>at peak<br>temperature | Cooling                | Environmental gas before date reflooding | date                             | Status of fuel              |
|----------------------------|--------------------------|----------------------------------------|------------------------|------------------------------------------|----------------------------------|-----------------------------|
| (°C/sec)                   | (0,)                     | 121                                    | 1                      |                                          |                                  |                             |
| 1                          | 1,600*                   | 10                                     | slow                   | He                                       | 1583. 10                         | due to UOIry reaction       |
| × 0.5                      |                          |                                        | slow                   | 華                                        | 1983. 10                         |                             |
|                            | 1600                     | 0                                      |                        |                                          | 11 5401                          |                             |
|                            | 1600                     | -                                      | slow<br>slow<br>quench | He<br>steam<br>steam<br>mixture          | 1983. 12<br>1983. 12<br>1983. 12 |                             |
|                            |                          |                                        |                        |                                          | -                                | the state of tests          |
| 1                          | **                       | not specified                          | pa                     |                                          | 1984. 12                         | 1984. 12 All numbers of the |

- 14 -

As high as possible with thermal insulator(s) installed.

\*\* As high as possible with thermal insulators(s) and auxiliary electric heater(s) installed.

Table 3 Coolability Test

| fuel Temperature<br>before | Particle<br>size<br>(mm) | Debris Bed<br>Depth<br>(cm) | Debris Bed<br>Diameter<br>(cm) | Gas before<br>Kaflooding | during Reflood               | Test Date                                 |
|----------------------------|--------------------------|-----------------------------|--------------------------------|--------------------------|------------------------------|-------------------------------------------|
| 800°C                      |                          | 01<br>01<br>01<br>5         | un                             | Steam                    | Steady State<br>Reactor Ope. | 1983. 4<br>1983. 5<br>1983. 9<br>1983. 10 |
| 3,0091<br>100001           |                          |                             | NO.                            | Steam                    | None<br>(Pulse Ope.)         | 1983. 11                                  |

- 15 -

. To be determined based on previous tests

FIG. 1 TEST TRAIN OF FUEL BEHAVIOR &



- 16 -

Fig. 2 Test Train of Coolability Test

