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Notstional conv:ntions
~ ~

Observed

Quantile or

Distribution Variable symbol osqs1 calculated
~--~ -- Mvalue r - ".- ~.l. ._ . .. - _. .L . -. .-

Chi-squared
2 2 2

Parameter: X x,(df) x
df, df = 1, 2, . .

h ain:
Mean: df

2Variance: 2df 0sX g..
Cf. Chapters 4,10;

Table T 2
, ---. - . - - - _ _ - - _ _

Normal
2 -

Parameters: Y 7q(F. a ) y - - - - --

,-=<p<+=
o, O < a Domain:

Mean: p -m 5 Y $ +=
Variance: a2

*

Q. Chaptr 7

Standardized
. . . . - . _ _ _ . _ _ . _ , _ _

Z z, z - - - --

p ,7 , ,,, ,.

(None explicitly}
b""I"Mean: 0

'

Variance: 1 -" 5Z#+*
Q. Chapter 7;

Table T-1

Student's T
Parame'er: T t (df) t - ------- -- --- --

y
df, df = 1, 2, ... -- - - --- - - ,

Mean: 0 Domain:

Variance: -m s T s +=
df/(df- 2), df > 2

Cf. Chapters 8.11,14; - |

Table T-3

(Continued on back flyleaji
, - -

h M'- M et. .e4 Se = nM , .4 4.gpa .33,,%

- . s. ..-,
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Finally, with respect to errors-of any sort whatsoever-that may still be
present in these pages, we are of one mind: They are the results of
something the other one of us did or did not do. No one else can share
them.

Dan Lurie i.

Roger Moore
February 1994
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! Introduction
1
1

. . . _ _ _ . _ . _ . .
.

Applying Statistics is intended to be both a reference book and a textbook ( ,.

on statistical methods. The broad scope of statistics applies to almost
every scientific and technical field; while we had originally planned for

;

| the book to be used primarily by practitioners of quantitative methods in

| the field of nuclear energy, we expanded our range early on to provide

| and illustrate basic established statistical tools for a full spectrum of

; quantitative information analysis.
;

" ' ' ' ~ ~ " ~' ~' "

i We are convinced that a better knowledge of statistics can prove
^~~'

| invaluable for anyone facing the tasks of organizing and displaying

| information, formulating and resolving quantitative problems, computing
and expressing probability. We believe that this book will provide that

|
better knowledge to any reader with a reasonable grasp of college algebra;

| a good deal of the material is accessible even to readers with a minimal
background in mathematics.

Acquiring this knowledge should not be a daunting prospect to the reader. ~ ~ - ~ - -~ ~ - - ~ '|
' - - - - - -|After all, the essence of the discipline called statistics is contained in just

s few straightforward concepts: thinking, designing, modeling, thinking,
countinr, measuring, thinking, displaying, computing, thinking, and
repoding. We strongly subscribe to the precept expressed by our good
friend, Richard J. Beckman of the Los Alamos National Laboratory, who
has reminded us on numerous occasions that, in effect, " Statistics is

nothing but common sense applied to data."

Since the mid-1970s, we both have enjoyed the opportunity to introduce . - - - .. . .. . _ . . .

statistical processes to-and to reinforce them for-hundreds of

|
.. - --

-. . . . - -- - . . . ..- . .._ _. . _ _ . . _ _ . _. . __ _ _
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professional people, representing scores of disciplines, in the nuclear
energy and electricity supply communities. As have countless of others, \we found that existing texts were never quite what we needed for our

\particular audiences. So we opted to do what others have done in dealing
- ~~ ~ r -

-twith Mother Necessity: we decided to invent another text, custom-made.
. .__ . _ _ ._. ~ _ _

The titis Applying Statistics succinctly expresses our rationale for
preparing this material and presenting it in the fashion you find here.
When we recommend applying statistics to your work and to your play,
we don't mean that you should have to remember on command such
things as regression formulas and critical values and the rules of
hypothesis-testing. But we do mean that you should be able to recall the
elegance and power of these ideas and to know where to refresh your

- - - - - - - - -

knowledge of them when you need them. - _ . . _ _ _ . .

The material itself is organized into digestible segments, each exploring a
-

particular method of applying statistics. These segments, in turn, are
collected into chapters, each of which examines a set of linked statistical
ideas. This encourages a pick-and-choose approach, and it allows a
discussion-coordinator to point up specific illustrative information, no
matter how random the discourse taking place. Many of the bite-sized . . . . . , , _ , . _ _ _ _ . . _ _ _

segments contain examples of data which were encountered in-or _ . _

simulated from-the application of statistics in the Nuclear Regulatory
Commission and the Bonneville Power Administration. Because statistical
ideas coanect across all of our lives and interests, we also include a
number of non-nuclear-regulation-related datasets.

Chapters 1 through 5 introduce some fundamental statistical methods as an
approach to dealing with everyday problems. They include definitions, _ ,_,__ _ _,_

terminology, graphics, probabilistic-statistical linkage, contingency tables,
- ~~ ~

and descriptive statistier This is the " stuff" of statistics in today's world.
These very basic techniques give the reader the beginnings of the
vocabulary of statistics and amply demonstrate how much can be done
with just a few statistical formalities. ;

Chapters 6 through 10 describe and expand upon " errors" as a statistical
construct. They take you through the fundamental ideas of hypothesis-

- ~ ~

testing and confidence-interval construction with the focus on a single
- ~ - . . . ... . _ _ .

group.

-
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1

Chapters 11 through 14 focus on multiple-group situations, addressing
analysis-of-variance and simple linear regression and correlation methods.

|

| Chapters 15 through 18 deal with basic ideas of probability and apply
-

r-|- - -
- - - u

| them to hypergeometric, binomial, and Poisson processes, which are
- - - --- 1defined and explained and which are basic to probabilistic risk analysis. - -- -

Chapters 19,20, and 21 discuss the important field of quality assurance i
'

and two related and relatively knotty, easily misapplied, probabilistic
applications. Our purpose here is to illuminate how slippery is the slope
of incorrect or incomplete probabilistic thinking.

All of the special terms used in the book are fully defined and explained, ;
~ -- , _ _ ___ __

:as we get to them. No discipline is without its jargon-its peculiar, i
. !

sometimes colorful, phraseology. We set off special statistical terms and
concepts with italics, and index many of them in the left margin for easy
return reference, indeed, we use italics liberally in the text, whenever we
decided something is worthy of your special attention. We display tables
in rectangles bounded by double lines and set up graphics and charts as
" Figures," bounded by " rounded-corner rectangles."

;

n. . - ~ . . . - - , -
I

j Special subsect' ns, indicated by the "For discussion:" tag, are intended to " ~ ~ ~ ~ ~~~

'

stimulate further exploration, to emphasize particular points, to provide
theoretical support, and to connect the associated statistical topics to

| aspects o' our daily lives. Some of the items in these subsections are

| facts, some are questions, some are commentary, and some are viewpoints

| presented with varying amounts of tongue-in-cheekiness. Not all the facts

| are universally accepted, not all the questions have %rrect" answers, not
! all the commentary is widely supported, and not all issues are subjected to

authorial viewpoints. If you are not provoked, not challenged, or not { ~ ~ ~ ~ ~ ~ -~ ~ ~ ~ ~ ~~
exasperated at least once in each chapter, then we have, to that extent,
failed you. We have tried hard not to fail you.

The concluding section, called "Afterword: Know what thou art missing,"
gives some indication of what is not included in the book. A number of
individually worthy statistical topics are listed and briefly described, and
references are given for your further investigation.

- .

* MMC =*.54R %sw og g w,a, , ,
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' - -

- .-

This publication includes an extensive bibliography which you may' find' ,

'iuseful in itself, independent of the text. Most of the bibliographic entries _:
appear explicitly in the text. 'Some of those entries are general-purpose
sources whose titles are sufficiently descriptive to help you decide whether _

you want to look at them. ' You will also find a good selection of _.
,

. e f
'

tatistical tables, each illustrated and explained in sufficient'self-contained - - + - - ---- .
,

s

detail that you may use them without having to consult the text itself.

Our notational choices are explained in Chapter 3. At the endpapers of
this book, " Notational conventions" relates these choices to the eight basic
density functions give prominence throughout the text. :

?

An aside to ourfellow computerJunkien We prepared all -- - -~.

of the printed material on IBM-PC compatibles of the Intel . _ . .. _ _ _;

'386 and '486 vintages, using Microsoft's DOS 5.0 and .-
.

:
6.0 and Windows 3.1. Our software included
Wordperfect Corporation's Wordperfect 5.1 for DOS and '

5.1 and 5.2 for Windows, Microsoft's Excel 4.0, and

Borland's Quattro Pro 4.0 for DOS and Quattro Pro 1.0
-

!

; and 5.0 for Windows. We used Wordperfect-supplied
fonts and printed the pages with a Hewlett-Packard ., , _ _ _ ,_ ., _._ ,

tLaserjet 4. And we learned lots more about these modern
" ' ~ '- '" ~ ~ - ~

wonders than we expected to. ;
,

i
Applying Statistics was designed,~ written, and produced as a collaborative -
effort by t!.e Nuclear Regulatory Commission (NRC) and the Bonneville ' ,

iPower Administration, a power-marketing agency of the Department of '

Energy. We both have been synergized by the assignment and the
'

opportunity to reexamine and reflect on our lifetimes' work. We each -~ ~ ~ - ~ ~

thank the other's agency for supporting an effort which will benefit both
-' -

organizations and others seeking to improve their knowledge and use of -
,

basic statistical tools.

DL i

RHM-
February 1994

.. - - .. - - - . -

d'*' M -N-- h gS - ws M. 9 e w -M a.t M -4

m +--. .m e

'' ' W** ' M' - .me vm m - gm .q_ ._w__ 4 _ ,_

=-a- . = .- .,4 - -a, . .. ., .. 4 ,,, ... .__. , ,, _

-e- n e - e w-a r- u e. em -4 t-wL - is w - +s.



. - .. . - . . . . .

auri.no.A
.

,

~ - '^1 . . _ , . . . ".".""'..T.L-- ''%...!....". ?.? Z. ~...
_*d

-. -+ .

1.

:
1

i

; -- - - - c-
,

-
-- - - . .. :

|- I

!

i
i

i Table of contents
;

!

. .
.

i Acknowledgments /// , f -. ~e-
- --~w..- ,

C
. . _ _ . _ _

j introduction vil
j ' Chapter contents xiii
* Tcbies xix .
i Figures xxill'
i Examples xxv

Chapter 1: Whetting your statisticalintuition 1-1*

Chapter 2: Some statistical graphics methods 2-1
"^'''~~~~~''~'"" ~~

4 Chapter 3: Statistics and probability 3-1
i- Chapter 4: Contingency tables 4-1 -*- -" - - - - "~ ~~--

|. Chapter 5: Descriptive statistics 5-1
j Chapter 6: Errors, errors, ... everywhere 6-1
i Chapter 7: The normal distribution' 7-1
1 Chapter 8: Statistical estimation B-1-

~ Chapter 9: Testing statistical hypotheses: . one mean F-1 ;
~

Chapter 10: Testing statistical hypotheses: variances 10-1;

; Chapter 11: Testing statistical hypotheses: two means 11-1 -

!

i Chapter 12: ' Testing statistical hypotheses: severs /means 12-1 '

| Chapter 13: An overview of regression 13-1
|- ' Chapter 14: Simple linear regression and correlation 14-1 -

j- Chapter 15: More on probability- 15-1-
.1

; Chapter 16: ' Hypergeometric experiments 16-1

| Chapter 17: Binomial experiments 17-1 i

i Chapter 18: Poisson experiments 18-1 |
Chapter 19: Quality assurance 19-1 - - - - -- - - - - - -- - - -

.

Chapter 20: Quality assurance through process control 20-1 . _ _ . _ . . . _ . . . . . . _ _ _ .
3

I Chapter 21: Quality assurance through the 95/95 criterion 21-1
;
a

|
.

I

i
~ .- . . .

$ ~ * * * " N-- -niR*emi . A 4. MEW .m.hasi-sp.+- a e nte-e . . ie+w... ww p.. , . .,-_,,,,g , , ,, _, _

d

@

.

-- - - . . _ _ , . _ . _

. '.
.

,
1



- - - _. ... .. _. . . .

1. N ! a k i al.ud. d N,.
<

| xii Applying Statistics
. -

Afterword: Know what thou art missing A-1

{ Bibliography B-f
Statistical tables ST-1.

!, Index l-1
- . - . - , . . . ~ __ _ _.~,_

,
. . .

.

.

!

i
- - - - -.. .. ..- ._ . _ ..

s

J

| s

i

.

;

i.

.

. c . - . . . .. . . - - - .-

...-e . . . . . n w

1

4

;I

e
I

_ - - . _ . _ _ . _ _ _ _ _

-+

4

.

a

L
.

'
- - - . .

r

|'
.

. __ _ . _ . . _ . . . . _ _ . . . -

$

I

b

' - .. . . _.. _ ._ __

- - - - . . .- - .-- .-.., ..., -- . . - , ..m._. . . . _ ,, m ,y , _, ,, . , ,,_ , , , , , , , , _ , ,

1

~

4

* * - " v- e .n

.. __ w __, , 7 m _ ym_



_ _

b3d3b b.Ld_L.)_d_N
C-~f r _ -._

.

i
' -

,
,

Chapter contents N
-

Chapter 1: Whetting your Suggestions for constructing pie .

- --''~ ~ ~

statisticalintuition 1-1 charts 2-4
The bar chart 2-6

What to look for in The histogram 2-9
Chapter 1 1-1 The box plot 2-12

On statisticalintuition 1-2 What to remember about
Can definitions help? 1-3 Chapter 2 2-18

|Some popular misconceptions '

about statistics 1-4 Chapter 3: Statistics and . .. m . _.. ... ,,. _ , _ , _

Evaluating a statistical
statement 1-6 Probability 3-1 ... . . _, , , , ,_ ,

A grammar of information 1-7 What to look for in
Chapter 3 3-1 |Scales of measurement 1-12

'

Four basic concepts in is there a need to make a real
statistics 1-15 distinction between statistics

A definition of data for this and probability? '3-2
book 1-17 A short-but necessary-

(A definition of the discipline of discourse on a notation for ~~~ ~"~ ~ ' 'statistics for this book 1 17 probabilities 3-4
i^Introducing OSDAR 1-18 Linking probability and statistics:

What to remember about Experiments, sample spaces,
Chapter 1 1-20 and random variables 3-5

Statistical significance 3-12
Chapter 2: Some statistical Preliminary concepts of decision
graphics methods 2-1 and risk: Coin tossing and

statistical decision-making 315What to look for in
Chapter 2 21 Type I and Type 11 errors 3-17 - _ .. _. ._ _

From out of the past .. 2-2 What to remember about _ , , , _ . . _ _ , _ _ _ _ _

The pie chart 2-2 Chapter 3 3-22

._ _. _ __ . ._ .. _ __ _ _ . _ _. _. . _. __ . _

_%,,._m, _ 4 nw_ ew a %. --ws=-Ne ah. Wm%-e#wh .- -e - .4g--+e,- n.we .w sm- a-we ,. t<

'Oh s

. - 4 4 + hta meeg , e e. e * -e- . .me ner-< +



_ _ _ . _ - . - . __ _ _ .
-

xiv Applying Stztistics .
-

i
.

i Chapter 4: Contingency The weighted mean S-B
tables 41 Measures of variability 5-12

Nine steps to computing a sample
What to look for in standard riev|ation 5-22

Chapter 4 4-1 The mean and standard deviation ----, - - . _ ,- ---

On the value of contingency of coded variables 5-25 . _. _ _i _ _._ . , _ __

tables 4-2 The coefficient of variation 5-27>

Some contingency table An " Empirical Rule" 5-27
terminology 4-6 Estimating the standard deviation

Toward a general analysis of from the range 5-31
contingency tables 4-10 What to remember about

Some statistical rationale 412 Chapter 5 6-33
A shortcut calculation for 2 x 2

contingency tables 4-19 Chapter 6: Errors, errors, ... --' - - - - --- I
everywhere 6-1 - IThe formulation of rxc

contingency tables 4-22 '

Two more contingency What to look for in
tables 4-25 Chapter 6 6-1 ;

Some sample-size considerations Thinking about errors: Some |

in contingency table examples that set the |
analysis 4-28 scene 6-2 |

A contingency table look-alike: Characterizing errors: Accuracy |

McNemar's test statistic 4-29 and precision and - -. . . - .., . --., ,,, -. .

Simpson's paradox-you better uncertainty 6-4
__ , _ _ _ ._ _ _

watch out! 4-32 What to remember about
Simpson's paradox: Another Chapter 6 6-9

example 4-34
A protocol for r xc contingency Chapter 7: The normal

table analysis 4-37 distribution 7-1
This has been just a

What to look for inbeginning .. 4-39
What to remember about Chapter 7 7-1 . _.. __ ___ . __._.. __ l

Chapter 4 4-40 An experiment 7-2
_

Some necessary and useful
mathematics and details 7-4Chapter 5: Descriptive Testing data for normality 7-8

statistics 5-1 The Central Limit Thec cm 7-13
What to look for in One formulation of the Central

Chapter 5 5-1 -Limit Theorem and some
Why descriptive statistics? 5-2 interpretations ' 7-17
Measures of central value 6 J The standard error of the _ _

Mathematical representations of mean 7-1B
"~ ~ ~~ ~ ~ ' ~ '"

the mean 5-6 A sampling exercise 7-20
.

- - - - - . . m ,% . . 4, . . . . . .- . .-,, ,-..

m , , e e aews awhe eg+-- s.r oma+% ame ve we - - N,s e4 .mwp-.w._amm,n- -ae-e. ew--. a- -ee+w+ na-,.e- .*y- -aw-w.

M,



- . . -- .- - .. . .. . . . .-

b .b 3. b 1 6 . tad. d ied. M
xvChrpt:r contznts

' Using Table T 1: The cumulative Examining hypothesis-testing with
4

standardized normal distribution ' a " truth table" 9-8_

and selected quantiles '7-23 Consider the consequences:

What to remember about What happens after the
;

Chapter 7 7-31 hypothesis is tested? 9-10
. Another look at Example 9-1 [_ ____,, __,_ _ ] _]

_ _ ,_

|
Chapter 8: Statistical (traffic-court justice) 9-12

.

Estimation 8-1 A closer look at Example 9-2
;.

(response time) 9-12
What to look for in .

A view from the other side:
; Chapter 8 8.y What's left of the response-timeOn the concepts of statistical'

estimation and inference B-2 example? 9-15

Getting started with statistical' Summary of hypothesis-,

i

i estimation 6-3 testing 9-16 ,

-

.

4 -

! Point estimators 6-4 Power curves for
' interval estimators B-6 Example 9-2 9-19

Confidence intervals for a More power to you 9-23*

' mean 6-9 What to do when o is
,

Interpreting confidence unknown 9 27'

! intervals 614 Hypotheses with two-sided
Statistical tolerance limits for a alternatives 9-29

: normal population B-18 Getting formal: Testing a , , , , . . , , _ _ , , , , , ,

Confidence interval for a hypothesis about a single ^ ~~e

$ variance 8-19 mean 9-32
i A note on the determination of What to remember chout

sample size B-20 Chapter 9 9-34
What to remember about

Chapter 8 6-25 Chapter 10: Testing statistical,

i

Chapter 9: Testing statistical hypotheses:- variances 10-1
-

1 hypotheses: one mean S-1 What to look fcr in
.

~~~ ~ ~~"~~,
Chapter 10 10-1

i What to look for in . ~,~ -~~'"' - - -

Why worry about
| Chapter 9 91 variances? 10-2

*

i Testing statictic ! hypothe:c::
Testing the hypothesis that a

| Setting the stage 9-2
i Some basic hypothesis-testing population variance equals a

j
,

i concepts: Two examples given value '10-2 '

Testing the hypothesis that two
;i compared 9-3

groups have equal
4 Some terminology and

variances 10-5 _ _.

i processes 9-4
- - ~ - . . . .. ._ \

!
'

'

,

- , . . , ,

* * * h *- apee.e g4 , ,

l

. . _ ..

I

,, . , _ _ , _ . . -_. , .. ,



.. L . .a ( .a La m u_..L1. N .i ,
, , . ,

'

,

| xvi Applying Statistics

|
,

l Testing the hypothesis that the Calculations for the one-way
variances of several groups are ANOVA 12-1B
equal 10 7 Multiple-range tests 12-27

;

! What to remember about Toward a more generalized
Chapter 10 10-10 ANOVA 12-34 - _ . , . _ _ . __ __ . . _ . _ . ,__

On the equivalence of the T test '-

Chapter 11: Testing statistical and the ANOVA for two
hypotheses: two means 11-1 groups 12-36

What to remember about
What to look for in Chapter 12 12-40

Chapter 11 11-1
How might you look at the Chapter 13: An roserview

'9*** " '

On the v riance of a _ _ . . _ _ _ _ _ _ _

difference 11-4 What to look for in
'

On pooling the variances of two Chapter 13 13-1
groups 11-7 Recathng some algebra and

C:se 1: Paired geometry 13-2
I observations 11-10 On the role of regression 13-6

Case 2: Variances known 11-14 Modeling an imperfect line:
Case 3: Variances unknown but Dealing with error 13-B

| assumed equal 11-1B What to remember about
Case 4: Variances unknown and Chapter 13 13-10 , , , ,. . , , , , , , _ ._

not equal 11-21
What to remember about Chapter 14: Simple linear ~~|

Chapter 11 11-25 regression 14-1 |

What to look for inChapter 12: Testing statistical
Chapter 14 14-1hypotheses: several A m del f r simple linear

means 12-1 I
|

I regression 14-2
IWhat to look for in "Looking" at the data 14-4

~~ ' ' ~ ' ~ ~ ~ ' ~ ~ ~ ~ ~ ~ " ' ' ' ' "

Chapter 12 12-1 On representing (x, y) data 14-6 |
-!Setting up a one-way analysis of Assumptions for simple linear - -- -- ---

| variance 12-2 regression 14-7 |

| Formulating the generic one-way Estimating the intercept and the i
'

| analysis of variance 12-10 slope 14-10
A model for one-way Regression and the least squares

classification 12-14 criterion 14-13
Assumptions for the one-way Sources of variation in simple

;

ANOVA 12-15 linear regression 14-22
|

~

|
Stating hypotheses for the one- Simple linear regression

| way ANOVA 12-17 analysis 14-25
~~ ~ ~ -~ - -

|
|

_ _ .- .

.-. _. - _ -

|
|

|

,



d I.2k m.d.idN'm

Ch:pt:r cont:nts xvil

Student's T statistic in regression Sampling for attributes in finite
applications 14-31 populations 16-2

Constructing a confidence interval Sampling without replacement:
for the slope 14-35 An introduction to the

'

Hypothesis-testing and hypergeometric
confidence-interval construction distribution 16-3 [.

__. _ _ , ,.__m

_ _ _ _ . . _ _ . _ _ _ . _ , . _ _

for the intercept 14-36 Two relevant mathematical
Prediction with simple linear notations 16-5

regression 14-3B At last! The hypergeometric
The correlation coefficient 14-42 distribution stands up! 16-6
On the calculational similarities Applications 16-10

between regression and What to remember about
correlation 14-47 Chapter 16 16-15

Testing the correlation j
- - - - -- - - - ---

coefficient 14-4B Chapter 17: Binomial , . __ __.

Confidence interval for the experiments 17-1
correlation coefficient 14-51

What to look for inTo wrap things up, this one's just
for fun .. 14-55 Chapter 17 17-1 N

Four requirements for a b, nom,ali i xWhat to remember about
Chapter 14 14 56 experiment 17-2 N

*

Binomial probabilities 17-6 \,

A special exercise 17-11 .._.A_.___.,_.,_Chapter 15: More on
Measures of statistics derivedprobability 15-1 _

from the b,nomial probabilityi

What to look for in function 17-14
Chapter 15 15-1 On the calculation of binomial

Down to basics 15-2 probabilities 17-15
Probabilities associated with The normal approximation to

equally likely outcomes 15-6 the binomial distribution 17-17
More terminology and more rules Confidence intervals for the

of probability 15-8 binomial parameter: When the ___.-. . _ _ . . _ _ _ _ _ . . . _ . . . _

Summarizing some useful rules of normal approximation L .__. __

probability 15-12 suffices 17-19
A group exercise 15-17 Confidence intervals for the
What to remember about binomial parameter: When the

Chapter 15 15-19 normal approximation does not
suffice 17-20

Chapter 16: Hypergeometric The binomial approximation to
experiments 16-1 the hypergeometric

distribution 17-27 _

What to look for in What to remember about ~ ~ ~ ~' ~~ ^Chapter 16 16-1 Chapter 17 17-29

- .- - -- - - - _ . . . - _ . _ _ . . - . _ . _ .. ._

6

'~ *" ' --- -.---. .. _. . . . .. _, ,.

_ _ _ _ _ _ _ _ _ _ _ . _



. _ _ . .-. .. - . . . - ._.- - - _ - _ _ _ .

~ d.Li.b.bfLL1.d.d_b
xviii Applying Statistics g . . =, . _= __

'

<

;

Chapter 18: Poisson Process control and control charts'

for means 20-1experiments 18-1''

"Run"-ning with control
What to look for in charts 20-5

Chapter 18 16-1 cess control and control charts r - 4-
-- . ,, u4 -

Why the Poisson f r d.ispersion 20-6 .

-e .-

,
'

| distribution? 16-2 Control charts for
Probabilities of rare events 18-2 attributes 20-11

i Using the Poisson distribution as .
What to remember about; an approximation to the

binomial distribution 18.g Chapter 20 20-13'

Constructing a confidence interval4

| for a Poisson parameter 18-10 Chapter 21: Quality
What to remember about assurance through the 95/95

Chapter 18 18-13 criterion 21-1 a-w. .--- ... _ . . .

I,.
! What to look for inChapter 19: Quality Chapter 21 2. 1

assurance 19-1
1 Acceptance sampling
| What to look for ir. Interpreted 212

Chapter 19 19-1 The assurance-to-quality
'

What is quality assurance? 19-2 criterion 21-5 ;

Process control: Building quality The rules of the game 21-6 I

in 19-4 Calculating probabilities
,

Acceptance sampling: Verifying associated with the
' ~ ~"~~~~ ~ ~ ^ ~ ^

|
4 quality 19-5 A/O = 95/95 criterion 21-9 1

IWhat to remember about What's wrong with this,

Chapter 19 19-5 picture? 21-14
Sampling plans to meet other ~

Chapter 20: Quality assurance quality-to-assurance
through process control 20-1 specifications 21-18

| What to look for in What to remember about -- - -- - _. -__

Chapter 20 20-1 Chapter 21 21-20 _

:
i

.

:
i ._ .. .._ _ .- _ - . . _ __ ._. . _

i

i
.i

a
,

,

* *e I68*' *DM- *'M F#'lW 6 up .druml>+ b mA' * apt =W' @ei es'emB.-* .-.N -- qumpm ge qg ,ed

4 - pww- 4*e9+- '+a.-+e -eh. 4 * mmuss ee e - w w.ee a me--pe..W g ,-.%i.. m.4a.m,,,. .%w,, ,4,,, ,,q w

.!

.

_ t

swh - + =pm ee- = + g ar + e e o.a - m--= *einm e



... . . . - . --- __ ...

3l% C ,ilis A&&_&it

4 =cy.
,

3.
.

4,

-

i'

..

~

.g. . ,. 3- - .-

L3 _ _. _ a_ ._~

a

Tables.:

:
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1 Table 1-1: lilustrating the concept Table 4-3a: Calculations for. .~ " .
; '3 .

.

.

~~~ ~ '

. of a dataset (fictitious Table ' 4 3 - 4-17
.

~

j data) 1-10 Table 4-4: On the relationship-

Table 2-1: '1990 U.S. electric between computer training and
-

capability by energy source 2-3 the need for computer :
,

Table 2-2: Monthly rejects of fuel support 4-18 . .
N-:

--

rods 2-7 Table 4-5: A generic 2 x 2 -'

1 Table 2-3: - Water impurities -- contingency table 4-20
Table 4-Sa: Political party .jL

J. measured for 25 buckets in _ _ , , _ . . _ _ _ .:

parts per million.(ppm) 2-10 affiliation and support of nuclear
'' ~ '~ '' ^ ~ ~ ~ ~

j Tcble 2-4: Not shipper's and power 4-21
j receiver's weights (measured in Table 4-6:: A 2 x 3 contingency

j- kilograms) of UFs ylinders for table' 4-23c

j 10 consecutive months 215 . Table 4-6a: Detailed chi-squared -

Table 4-1: A 2 x 2 contingency . calculations for Table 4 6 4 24 *<

[ table for the smart-rich Table 4 7: Age and performance
~

' study 4-5 appraisal 4-25

| ' Tcble 4-2: A 2 x 2 contingency Table 4-8: . Drivers' ages and - - . = _ _ _ _ . . _ _ . _ _ _ _ _ . _ _ _ ,
-

table for weld inspections 4-7 . - accidents 4-27 ._ y. _ ,

3

i Table 4-2a: A 2 x 2 contingency ' Table 4-9:- Schematic . .

'

| table for the weld-quality study, representation for McNemar's
>

: displaying observed and. test 4-31. .

< (expected) frequencies 4-14 Table 4-9a: McNemar's test
j Ttble 4 2b: Calculations for the applied to filter laundering .

j. 2 x 2 contingency table in example 4-31
1 Table 4-2a 415 Tables 4-10s and 4-10b:

} Table 4-3: A 2 x 2 contingency Admission records of - - - - . - -- - . . .- -_._

table for the study-mastery ' Departments A and B, Fictitious' .. _ _ _ . _ , , _ ,,, . _

study 4-17 University 4-32,
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Table 4-10c: Aggregated Table 113: Comparing percent
admission records for of uranium in UO2 pellets for
Departments A and B of two processes with known
Fictitious University 4-33 variances 11-17

Tables 411a and 4-11b: Male Table 11-4: Measurements of ---- - _ y

iand female mico mortality radiological contamination, in ._.__ , , , , , _ , , _ ,_

2data 4-35 dpm/100cm 11-20
Table 4-11c: Aggregated mico Table 11-5: Data for comparing

mortality 4-36 yield stress (in ksi) for two
Table 4-12: A schematic r x c manufacturers of steel

contingency table 4-36 pipes (test conducted
Table 5-1: Weights of 150 at 100 F) 11-23

uranium ingots 5-29 Table 12-1: A data layout for
Table 5-2: Comparison of comparing the mean percent .

expected and actual contents of uranium from four production -,

intervals based upon the lines 12-3
" Empirical Rule" and the Table 12-1a: The data layout
" mound-shaped" uranium ingot from Table 12-1 with some
weight data in Table 51 and descriptive statistics
Figure 5-4 5-31 added 12-5

Table 7-1: The Wtest for Table 12 2: A data layout for a
normality applied to ADU generic one-way analysis of

* ' ' ' ' ' ' "' ' ' *" *-scrap 7-10 variance 12-10
Table 7-2: Comparing a single Table 12-2a: Descriptive - - - --

random variable with the mean statistics associated with the
of a sample of size n 7-19 data layout for a generic one-,

Table 9-1: A truth table for way analysis of variance in
statistical hypothesis- Table 12-2 12-11
testing 9-9 Table 12-3: A generic ANOVA

Table 9-2: Probability (#)-and its table for a one-way
complement (1 - S)-of f ailing to layout 12-19 ~ ~ " " ~ " ~ ~~ ~

reject the null hypothesis for a Table 12-3a: The generic ANOVA
~ ~ - 'selection of alternative table for a balanced one-way

candidate values of 9-21 layout with the second and third
Table 9-3: Shipper-receiver columns completed 12-24

differences 9-30 Table 12-3b: The generic ANOVA
Table 11-1: Pooling table for a balanced one-way

variances 11-9 layout with all columns
Table 11-2: UO2 container completed using data from

weights, in kg, as reported by Example 121 12-26 _ . _ _

two scales 11-13
. -~ _ . . . .. . ... ..

_ _ _. ._
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Tcble 12-4: Trials-to-f ailure for Table 15-2: Example showing
two types of relays 12-37 dependent events 15-15

Tcble 12-5: Analysis of relay Table 15-3: Table for group
trials before failure for two exercise 15-16
types 12-38 Table 16-1: Summary of p_,.-_-. _ , . __ ,, _ m

'
' '

Tchte 13-1: Selected values of x calculations for |

and corresponding calculated Example 16-1 16-11
values of y for the function Table 17-1: Measures of
y = 3x + 2 13-3 statistics derived from the

Tsble 13-2: Eight pairs of values binomial probability
of x and y 13-6 function 17-15

Tcble 14-1: Some simple data for Table 17-2: An example
starting the study of simple comparing hypergeometric and
linear regression 14-4 binomial probabilities 17-2B - --- - - -- - - - - -

Table 14 2: Calculations used to Table 18-1: Comparing binomial i _ _

select from among the three and Poisson probabilities for
lines in Figure 14-3 14-15 . n = 40, rr = 0.05,

Tcble 14-3: Calculations for and A = nrr = 2.0 16-9
simple linear regression applied Table 201: Average percent
to Example 141 14-19 uranium in batches of UO2

Table 14-4: A generic regression powder 20-3
analysis table 14-26 Table 21 1: Three different

Table * 4 5: The regression sampling plans that meet the < - - - + - - - - . . -, .-

analyals table for 95/95 assurance _
_ . , _ _

Example 14-1 14-29 criterion 21-10
Table 14-6: Calculations for Table 212: Selected binomial

Example 14-3 of the correlation probabilities, rr = 0.05 21-11
coefficient 14-45 Table 21-3: Three 95/95

Table 15-1: Example showing sampling plans summarized from
independent events 15-14 Table 21-1 21-14
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Figures !
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!

Figure 1-1: Linking knowledge, Figure 5-1: Number line for I , []
'

information and data 18 impurity measurements from
,

Figure 21: Pie chart derived from Table 2-3 5-15 |

data in Table 2-1. 2-4 Figure 5-2: Quantile plot for |
Figure 21a: A second pie chart impurity measurements from (

- derived from Table 2-1 2-6 Table 2-3 5-17
Figure 2-2: Bar chart obtained Figure 5-3: Interpolated quantile

from data on monthly fuel rod plot for impurity measurements
. rejects (Table 2-2) 2-6 from Table 2-3 5-16 -~-- -- , --i

Figure 2-2a: Fuel rod reject rates: Figure 6-4: A mound-shape . . . . . , _ . . . _ _ _ .

the second year 2-9 E derived from 150 uranium
Figure 2-3: Histogram derived ingot weights given in

from 25 values of water Table 5-1 5-30
Iimpurities recorded in Figure 6-1: Combinations of good

Table 2-3 2-12 and poor accuracy and good and
Figure 2 3a: An example of a box oor precision 6-7

plot (denved from 25 water Figure 7-1: The standardized
~ ' ' ~ ~ ~ ~ ^ ~ ~ ' ' ~Impurity measurements recorded normal distribution function,

,

| in Table 2-3) 2-13 fly), and density function,
---' -

-

I Figure 2-4: Box plots of net Ushipper's and receiver's weights
(measured in kilograms) of UFs . Rgure F2: Density funcdon for .j

the mean of a one-coln
'

cylinders for 10 consecutive toss 7-f4 j
months recorded in

| Table 2-4 2-16 Figure 7-3: Density function for ]'

the mean of a three-coln ;
Figure 3-1: The 5-coin

toss 7-15 . - . - . _ . _ _ _ . . .__ j
! experiment illustrated 310
|
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Figure 7-4: Density function for Figure 12-1: Graphic display of i

the mean of a ten-coin Table 12.1a's four production |

toss 7-16 lines' data values 12-6
Figure 7-5: Sketch f or Figure 13-1: A graph of the

Example 7-2 7-26 points in Table 13-1 and the - __. __ _ _ __ ,

Figure 7-6: Sketch for function y = 3x + 2 13-4 [, ._,,_ l _ _ .] j '
Example 7-3 7-28 Figure 13-2: A graph of the |

Figure 7-7: Sketch for points in Table 13-2 13-7
Example 7 4 7-29 Figure 14-1: Scatter diagram for ,

Figure 8-1: Schematic display of the data in Table 14-1 14-5 l

100 individual 50% confidence Figure 14-1a: litustrating the I

intervals covering when a is assumptions of simple linear
known 6-15 regression with the data in j

Figure 8-2: Schematic display of Table 14-1 14-9
100 individual 50% confidence Figure 14-1b: A wider-angle view ,

intervals covering p when a is of Figure 14-1b 14-10
unknown 6-16 Figure 14-2: Three candidate

Figure 9-1: Two schematic lines for the data in
representations for the testing Table 14-1 14-12
of the response-time hypothesis Figure 14-3: Displaying the

,

Ho: y = 8.1 against the distances between the points in'

alternative hypothesis Table 14-1 and Line 3 14-14
jH : y > 8.1 9-14 Figure 14-4: Data from Example .-4 . - - - . .. - - , <

3

Figure 9-2: Schematics for the z 14-1 and the regression line . _ . _ _. . _ . _ _ . _ _ _ .

statistic for a left-sided test of calculated in Table 14-3 14-20
H: = 8.1 against the Figure 14-5: Graphical

o
alternative Hj: p < 8.1 9-17 interpretation of arror i

'

Figure 9-3: Power curve for the components 14 23
test in Table 9-2 9-22 Figure 14-6: Endpoints of two-

Figure 9-4: Power curves for sided 95% prediction intervals
three different levels of for Example 14-1 14-41
significance 9-24 Figure 20-1: A control chart for -- - -- - - -- - --

1
'

Figure 9-5: Power curves for batches of UO2 powder .- --- _ .

three different sample recorded in Table 20-1 20-4
sizes 9-25 Figure 20-2: Control chart |;

Figure 9-6: Power curves for reproduced from Figure 20-2
three different values of the with 1-sigma and 2-sigma limits
standard deviation 9-26 added 20-7
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; Examples N i
!

f'

Example 41: On the connection Example 7 2: Find the probability { ~~ ~ ~ - --

)

; j

between intelligence and wealth that a random variable Y from a
(Or: If you're so smart, why normal distribution with mean

j ain't you rich?) 4-3 = 75 and standard deviation |

Example 4-1 (continued) 4-6 a = 8 will not be larger ]
; Example 4-2: Weld quality 4-7 than 91 7-25 i

f' Example 4-2a: Continuing the Example 7-3: If Y - N(100,16), j

j weld-quality study 4-13 find Pr(Y > 105) 7-27 !
_

|Example 4-3: Mastering technical . Example 7-4: Let Y be the mean'
em . ,-- - _..,__,_.

. . , ,_. |1 material 4-16 of 5 observations from
Example 4-4: Computer training N(86.8,1.21). Find the ;

.

j and the need for computer probability thatE will be less
; support 4-16 than or equal to 86.0 7-29

Example 4-5: Political party Example 8-1: Beam momentum - l'

'

affiliation and support for measuremer.ts from Frodesen, .,

,
nuclear power 4-20 et al. (1979, p.141) B-11 -

1 Example 4-6: A 2 x 3 contingency Example 8 2: Reconsidering ;

j table 4-23 Example 8-1: The beam '--" ~ ' - - - - - - - - - ~ l

i discrimination 4-25 example from Frodesen, et al. tr\-
- - - !Example 4-7: Age momentum measurements,

;
'

Example 4-8: Age and (1979, p.141), this time when ,A ;

accidents 4-26 a is not known end must be j...

Example 4-9: Effect of laundering estimated 8-13
4

; on protective mask filters 4-30 Example 8-3: Estimating the \
[ Example 7-1: Testing for average use of residential i

|normality with the W test 7-9 electricity 8-2.?
_ _
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|

| Example 8-4: lliustrating Stein's Example 14-1: Pressure
| procedure with the problem of stabilization 14-16

estimating the use of residential Example 14-1a: Pressure
electricity 8-23 stabilization (continued) 14-33

1 Example 9-1: A traffic-violation Example 14-2: Coefficient of T--' -" " ~ - - m.
example (innocent until found expansion of a manufacturer's L ._.-.. ._'_ ._ _.. . _ _. _ ._ _

| guilty?) 9-2 metal rods 14 34
| Example 9-2: A response-time Example 14-1b: Pressure

example (When is quick quick stabilization (continued
i enough?) 9-2 again) 14-36

| Example 9-3: Fuel pellets and Example 14-1c: Pressure

| solid lubricant additive 9-26 stabilization (continued one
i Example 10-1: Testing a more time) 14-40
L hypothesis about a single Example 14-3: Correlating the -- - - - - - ~

j variance 10-4 cost of crude oil and the cost of -

Example 10-2: Testing the premium gasoline 14-44
equality of two variances 10-6 Example 15-1: Gender and hiring

; Example 10-3: Testing equality of practice 15-13
| variances for several Example 15-2: Earthquakes and
! groups 10-9 tornados 15-15

Example 11-1: Pooling variances: Example 15-3: Elevator,

| An illustration 11-B failure 15-16
Example 11-2: Paired Example 15-4: Telephone call *-- -~ '- '- ~ ~ " ~

differences 11-12 routing 15-16 - - - - -

Examp!e 11-3: Mean percent Example 16-1: An inventory
uranium in UO pellets 11-15 audit 16-102

Example 11-4: Measuring radio- Example 16-2: Testing
logical contamination 11-19 hypothesis for the inventory

Example 11-5: Yield stress of audit of Example 16-1 16-11

|
stainless steel pipes 11-23 Example 16-3: Using the normal

; Example 12-1: Comparing mean approximation to the
percent uranium from four hypergeometric

- ~~ - - ~ - ~ ~ - ~ ~ '

production lines 12-2 distribution 16-13
^

Example 12-1a: Duncan's Example 17-1: A sequence of .

multiple-range test applied to heads in a series of coin
data in Example 12-1 12-29 tosses 17-6

Example 12-2: Number of trials- Example 17-2: Acceptance i

to-failure of relays-the one-way sampling of laser printer
ANOVA applied to two cartridges 17-6
groups 12-36 Example 17-3: Drug-testing 17-9
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Example 17 4: Binomial Example 18-3: Errors in a printed
hypothesis. testing using the document 18-9 ~
nor' mal approximation 17-18 Example 18-4: On the failure of ,

Example 17 5: Do computer motors to start .18-72 %
- - - - - - _ . . , ~.A

.cables meet standard Example 20-1:. Control chart for
L. l -- - - _[specifications? 17 20 percentage of uranium in UO2

Extmple 181: Errors in message powder 20-2
transmission 18-5 Example 20-2: Controf limits
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Whetting your statistical'

intuition-
'

What to look for in Chapter 1 - - > - - - -. '- -- - -~

_ _. . _. .._.. _ _ . _

Chapter 1 introduces the discipline and the practice of
statistics in commonly understood-and often

,

misunderstood-terms, thereby setting the stage for the
.

) ensuing chapters. Along the way, you'may fm' d that some
of your long-accepted statistical conceptions are, in fact,'

statistical misconceptions. Be neither dismayed nor
deterred. You will soon be equipped with a . _- ._. __ _ _ __ ___ _ . ___

straightforward set of questions that you can use to .. _ _. ._, . _ _ _ _ , , _ ,

appraise any statistical notion or statement. Among the
fundamental statistical concepts developed and illustrated
in this chapter-and expanded upon in the rest of the
book-are:

,

.

a data
(a statistics (the discipline) , _

n quantitative information ' ~ ~ ~ ~ ^^ ~ ^ ~~~'

a scales of measurement
a population

4
y

. . - . -. . . . . _ .

. - - - - - _. _ - . - _ - - - _ . _ _ .
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. , .._. . _ _.-. . . . . _ _ .

- .
.

a sample
a j.rarameter ;

a statistic (a summarizer of data).
t

After these several concepts are examined and discussed, {+-"~~~;' - ~ "- '' M
they are brought together to define data and the discipline ,

:
ofstatistics to set a consistent tone for the rest of the-
book. ' Finally, you will be introduced to OSDAR, your
checklist to improved data-acquisition investigations. ;,

. >

_ . _ _ _ _ !,On statistical intuition .
.

~ . . _. _ _.

*

>- - - - - - "-
r

When we attempt to solve a problem, we often resort ta - ,

our intuition to find an answer. By calling upon this -
.

. quick and ready apprehension of the issues and the facts
connected to the problem, we save time and effort-and - :

we can move on to the next matter at hand. But intuition
is personal and different in each of us; we have different- j

experiences, different training, different interests.; ;

Consequently, cuh of us provides a different intuitive "*--- -,.- -

solution to any given problem. - - . --, . -.-

i
'

Sometimes we recognize the failure of our own intuition'
|and call on friends and acquaintances for guidance. But

~ '

we're then usually left with the problem of summarizing
.

an ever-widening collection of others' intuitive solutions.
For example, have you ever asked five people what they
think about a particular brand and model of automobile? - _ _ _ _. . _ - . _ )

. . ,

This is not to say that your intuition or that of your ,

friends is faulty. Rather, we suggest that everybody's j
intuition can always stand a tuneup. This book is j

statistical designed to provide that tuneup to your statistical
intuition intuition: those insights and ideas and paradigms you bring

to bear on problems involving data. There's nothing like
a well-honed statistical intuition to get you headed toward _ . _ _ . _ _

the solution of any data-related problem. Equally, there's ,

" ' ~ ' ~~ " ' ~ ~ ~ ~ ~

Inothing like a slightly-skewed statistical intuition to get

;

es

|

,
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. . . . . -- _ __ ~ _._.._-_ . . _ _ _ . _ ... . _._'. __ . ._; ;,_, , _, . . _ , .

!

,

4

- '* * * ** * ~*. 4 + . . . , ...,_% 4 ,m , ,, . , , , , _ _

-'.t - g- T - --mv. -e e 6 .., e. --*en-r2 e- i5-.-*4 e -- c,, ..-n -



, ... . . __ . . . . . _ _ _ _ _ _ . _ _ ___ _- - --__ _

Eb11.d..Ld.u$M_b |
- Whstting your stztisticilintuition' 1-3 . _; .u-;- , -

e..-..._ _._. m
,

l

| you headed away from a solution. The rigor-and the
vigor-of statistical procedures will get you back on track.'

-Can definitions help? ] - , ,
.

,

You can approach an unfamiliar or little-understood
subject in many _ ways.' One technique is to settle on some i

'

definitions of the basic elements of the subject of: . .
discourse, and then build on those definitions as additional;

- topics and details arise. Eventually, the subject and you. i

will develop an affinity and comfort-level that frees you to j

go on to other subjects. F ' ~ ~ ~ ~ - - - --- - - ,

L -- . : . |
'

| !
.Here are some definitions of statistics that you may h' vea

encountered (along.with one that you may not have seen

before): .

A science of collecting and representing data.e
i

e The art and science of treating data.l
! e An area of science that deals with the collection of :. ~

~

m ~~ , - . - - w "- -

L data on a relatively small scale to form logical -!: w . _ _;. .. _ u_ _ . . .

conclusions about the general case. .

s' . An exact science dealing with inexact data,
A language, a mechanism for creating and -e
communicating quantitative concepts and ideas.

s A science of decision-making in the face of
uncertainty.

i
A science that supports statisticians and their familiese
(a declaration made by Mrs. Dan Lurie on a certain [_ _ _

_ _ . _ _

_

1

graduation day, July 1971).
!

.
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|

1For discussion:
< ,

[ 1

| c When does a body of knowledge become a science? When does its
' "' '

]
|

'
! use become an art? [ ,

0 What do you think data are? ;

o What is meant by exact and inexact? j

3 Data and statistics: singular or plural?
o What is the collection of data on a relatively small scale?
o What is the general case?

Do you see any problem with decision-making in the face of certainty?o
o What is uncenainty? (What is itsface like?)
0 Where and how do baseball statistics fit in with these concepts? i~~~ ~-~ ~~~ ~ 7

' - - - - -

Now, after all this, how would you define data and statistics?0

l
i

l

|
'

Some popular misconceptions about statistics
.i

The following books, all of which are real and are listed

|
in the bibliography, reflect some of the many { ,. , , _,, _ , ,_ ,

,_, ,_
;

misconceptions and many biases held by many people N
t

about many statistics (and about many statisticians)-
1

Use and Abuse of Statistics (Reichmann,1971)
How to Lie with Statistics (Huff,1954)

|
Flaws and Fallacies in Statistical Thinking (Campbell,1974)

| How to Tell the Liarsfrom the Statisticians (Hooke,1983).
. -. - ._ .._ . __ .

A j_

| i
| I

|
|

As stated in the introduction, we use these For discussion: sections to provoke your further1

I emptoration, to emphasize particular points, to provide theoretical support, and to connect the adjacent
- -

i topics to other aspects of our daily lives. sorne of the items are facts, some are questions, some are ,

commentary, and some are viewpoints bearing varying amounts of tongue in-checkiness. Not all the (__'

facts are universally accepted, not all the questions have * correct * answers, not all the commentary as

widely supported, and not all viewpoints are given to all issues. If you are not provoked, not
challenged, or not cassperated at least once in each chapter, then we have failed our intent.

- . - - - _ _ . . . _

# """ WH "' ^== *mos.- --my_, ,._w, s _
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2Of course, no discourse on statistics escapes the canard
that " ... there are three kinds oflies-lies, danmed lies,
and statistics." You really don't have to look very hard or
very far to find such statistical wisdom and/or
gobbledygook. All you have to do is to pay some

._.
_ _ _ i ____ L .__ _ j

- - . - . - _ . ; ,- _.,._

attention to the news media, read a few technical journals,
listen to your doctors and dentists, take note of your
politicians, and participate in everyday life. The fact is
that everyone is well acquainted with situations in which
statistics is/are used and misused. The real trick is to
develop and improve the insights and the tools to sort
through the blizzard of " quantitative facts" that surrounds
you. Indeed, your load is lightened considerably if you . . . _ _ . , __. ._ _ __

'

never lose sight of Mosteller's insightful rejoinder: "It's - ~~ ~ ~ ~ ~

casy to lie with statistics. But it is easier to lie without
them."3

For discussion:,

. . . . - . _ _ , _ _ _ _ _

Economists practice what has been called "the dismal science." . ... . . _ ._ __D
Teachers are constantly up against "those who can, do; those who
can't, teach; those who can't teach, teach teachers." Doctors and
dentists are "in it for the money and the condo investments."
Lawyers " chase ambulances." Statisticians " find problems for other |

statisticians to solve." Actors "can't get a real job." Engineers
design products to last "for the life of the warranty plus one day." ,

How is your profession seen by outsiders? . _ _ . _ . . _ _ _ _ , _ _ . _

_ . _
,

,

il

|

3 Attributed by Mark Twain (samuel Clemens, 1835-1910). American observer of the human . _ , , _ _ _ . _ , _

,

condition, to Benjamin Disraeli (18041881). British politician ard prime minister. Source: Thes ~ ~ - - - - - - -- -- --- - - - - - ---

Pocker Book of Quotations. edited by Henry Davidoff. Pocket Books, Inc.. New York, NY,1952.

3 Frederick Mosteller, quoted in Gance, vol.6, No.1,1993. pp. 6-7.

L
.D

-

* * * * ' * +- -- - - - . . . ._ , , . ,, _
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g . -

o

'Evaluating a statistical statement
\;

It's not necessary to "be a statistician" to react sensibly'

,

and responsibly to a statistical statement. Just about all N
problems attributed to " bad data" or to " bad statistics" are

~~ ~ ~~ - - ' ^ ~ ~ ~ ~ - ' -

'

.
-

avoidable. You simply must be aware of pitfalls along the
way and take proper precautions to deal with them.

| The following five questions, adapted from iluff (1954)
| Hug's criteria and hereinafter called Hug's criteria, provide a first-line-

of-defense against an incorrect interpretation of anyI

statistical statement offered by any advocate of any
position on any issue:

~ - ' - - - - - - -

._ . . __ _ . _ .

Who says so? (Does the advocate have an axe tom
'

grind?)
s How does the advocate know? (Does the advocate

have the resources to know thefacts?) N
m What's missing? (Does the advocate give you a N

'

complete picture?)
Did someone change the subject? (Does the advocates - -- - - - - - - - - -

ofer you the right answer to the wrong problem?) . -. -.--

m Does it make sense? (Is the advocate's conclusion
logical and consistent with what you already know?)

Throughout these discussions and, even more important,
long afterwards, as you go about your regular business,
personal or professional, maintain a healthy skepticism
about statistical claims and counter-claims. Try to . _ . _ - _ _ . _ _ _ . . .

evaluate statistical statements with liuff's uiteria in mind. _ ___ _

Indeed, you will find them applicable u no'rstatistical
statements as well, adding vigor and rige to your analyses
and value and meaning to your conclusions.

-.

|
~. . . . . - . .. . . .

s
!

|

.- . - . . . --. ..

"-== wir - e i - =*m,m=- --* * - - -~' .- --e<r- -h.-w---- - umspees -neemm+e-- ==-e +. -- -e. -

!

|
|

. .. -- . . . . .. -
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- .

l

|

For discussion: ]

How can you use Huff's criteria in your daily professional andO "T ' '' 7
personal activities? >~ . . . _ ___ __._ _. _ _..

!

I

A grammar of information
-

l

i

You conduct an investigation whnever you seek
,

| information information. For the purposes of this discussion, , _ _- - _ . . _. _. ___

. 4

information is a subset of knowledge: - - - . -

Information: knowledge acquired in any manner; facts;
data; learning; lore.4

Whether you are placing a telephone call to your local
library's reference desk or working over a microscope in a
laboratory, your focus is to gather information about a ''' ~ ~ "'^~~ ' ~ ''-

!
specific item. Your quest will lead you to examine at ' ~ ~ ~ ~ - --

! least one item of interest with the purpose of determining

at least one characteristic associated with that item.

That characteristic, which may be either quantitative or

variable qualitative, is called a variable, primarily because its
specific value or its specific nature is not known before

value, the item is examined. You determine a value for that " - ' - - - - - -

measurement characteristic by making a measurement of it (e.g., how
- -

big is it? how strong is it?) with an instrument or by
observation making an observation of it (e.g., what color is it? what

kind is it?) by looking at it. This single value for this

datum characteristic for this particular item is called a datum.

r - . . - .

. - - - . - _ . . ~ . .. . _ _ . . .

* Adapted from Webster's New Universal Unabridged Dictionary,2nd Ed., Dorset & Baber and Simon j|

& shuster, New York, NY,1979.

i

*

- - - - . . _ . _ _ . . _ . _ . . . _ _ _ _ _ . . _ . . _ . _ ._ _ __

l

e

* * "h * - + = . - +% .. . . . . ,_ ,,
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1-8 Applying St:tistics i

Generally, when gathering information, you will examine
more than one item and determine the values of more than
one variable associated with each item. You then have

data data (the plural of datum) to work with, and the door to
statistical ideas and processes is open. It cannot be readily , " ~ -T -~ ~ ~ - ' ' "

.

L-----------'closed.

Figure 1-1 conveys these inter-linked ideas of knowledge,
information, and data as a generalized Venn diagram.5

Figure 1-1:
Linking knowledge,information, and data * - - -' - - - - -

.. .. .. _ _ _

.
A Datum....m

C,=

,

g yt[d.;'. y,,,jeg ,, g ,-,

I m.4 s
'

pt? ;-m ' -
, , , .. ,_,m _ ,_____ .. ._._

: v: ,, e , s ,, ,

'

.

'

Data 'l -

'.'Y nr
..-

.
--. . _ . .- - - , _ . _ - . - . -

w -
'',.

D. _

'

.

1
,

a

i
1

- . . - - -

3 Venn diagrams, named for the English logician John Venn (18341923), are graphical depictions --- --~ - .- . --. .. - --

used in logic and set theory; they employ two-dimensional figures (e.g., circles, ovals) to represent
categoncal propositions and to aid in evaluating categorical syllogisrns. We have heard it said that,

! 'you use Venn diagrams when you don't know what else to do."

- -_ . . _ _ __ __ ._ ._ . ~ _m _ ___ __. __ . _ .

h .. .w- i... -e-._- e,.ege.. %e.m%- ..e s,%_ ,, % , ,. 9p ,

|

.

,

. .

.. . . . . . .
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The reason you examine more than a single item is that,
as "everyone knows," items identical in name and in
definition are not necessarily-or even probably-identical
with respect to all of their characteristics. Moreover, the
value you obtain for one item seldom provides sufficient -7 ~ r- , c s

information to assign a value for the next item. For ' - - - - - - - - - - '

example, if the item is a reactor fuel rod and the variable
is its weight, it simply is neither good science nor good
policy to assume a priori that two given rods have
predictably related weights.

Working with and discoursing about several items and
several variables can be difficult in almost any setting and - -- . - _. _._ . _ . .

with almost any audience. A useful device for doing both, . _

dataset with both theoretical and practical benefits, is the dataset,
literally a set of data. Datasets are commonly displayed in
two-way tables with the rows representing the items and
the columns representing the variables.

.

This idea of a dataset is strongly influenced by modern
database management theory and statistical computing . , , , , . , ... . , _ _ , ,

practice. In these disciplines, each row of the table is a
record, feld, record, each column is apeld, each entry at a row-columr

, ~ ~~ ~ ~ ' - ~ ~

value, intersect (often called a cell) is a value, and the entire

fle table is afle.

To illustrate these ideas (with an entirely fictitious
example), suppose you have determined values for two
variables-the weight and the machinist-for each of seven

~ ~ ~ ~ ~ ~ ' - ~ ~

fully identified and distinguishable reactor fuel rods.
~ - - -

Table 1-1 is one possible representation of the results of
"

this process.

. _ _

. _ _ _ . .. . _ . _

- - - ... - - . . - . .-- . -. .. . - - . - . . .-.

. g.' M W 6 e p. s . .- M N+* en 6$mm 4 ' Ws' ee 4 4ed-.

. . . .

. . ,
.. _ .
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|

Tcble 1-1: |

Illustrating the concept of a dataset (fictitiour data)

Rod Identification Weight Machinist -- ----- -- --., .
,

" ~ ' ~ ~ ~ ~ ~ ' ' ~ ~ ~ " ~ ~ ~ ~ ~ ~ '

5X345 - 600 Billy Smith

7809Q 546.76 Billy

SX345 600 Billy Smith

ABC 59.867 Smith

'

222-90WT 600.19 , , . . . . - _ . . - . _ _
,

' - 222-91wt 592.83 Smith ' ' .

ABC -59.857 Smyth

!
I discrete A variable is said to be discrete if it can assume only a

| meiable countable number of values. Examples of discrete

| - variables include the number of defective units in a batch . -

t

of manufactured items and the number of atomic
disintegrations in a sample of radioactive material in a
given unit of time. In Table 1-1, the variable labeled
- " Machinist" is discrete because only a countable number

of individuals could be machinists of the fuel elements.
(The variable labeled " Rod Identification" also is discrete;
it serves the special purpose of uniquely identifying the
rod to which the values in the row belong. . Two or more
rods with identical " Rod Identification" values would leave j- - --- - - 1,you in troubling circumstances.)

.

continuous In contrast, a variable is said to be continuous if it can

variable assume any value within its range. Examples of
continuous variables include linear dimensions and wave
lengths associated with the color spectrum. In Table 1-1,
the variable labeled ." Weight" is considered continuous
because any positive number might be reported as the

- -

weight of a fuel rod. -- . - ...--

; -

_

9 * * " ' "+ N -M i -4lpaamma hm . g=M e, ._eism>,g 4,,w . ,, p.44,. g. ,_ _ ,__,,_ _ __ _

|

:
!

!-

- . . .. .-- .. . . _.-._ .. __ . , _. __ . ..._. , _ __ _ _ , _

*
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l
!

',

For discussion: i
1.

When you pick up a telephone book, are you starting an investigation? - _ ._ _ _ , _ , _ __ _

_j0
*

~

~ |Are you working with a dataset? What are the items ofinterest to
.

N jyou? What are the variables? How are the data displayed? \ ]'

a ls the distinction between quantitative variables and qualitative R ;'

variables useful in your daily pursuits? Are you comfortable with the %' |
distinction?

Ic Take a careful look at Table 1-1. Have you ever seen a 21-element
~~~ ~ ~ ~ ~ ~

dataset that raises as many questions as this one does? What are some
~ ' ~ ~ ~~

of those questions?

0 The fact that a discrete variable can assume only a countable number ;

of values does not imply that those values are integers. For example, )

if a die is thrown four times and variable of interest is the average of
4

the four throws, then the variable can assume any of the 21 values in
the set {1,1.25,1.5,1.75, 2, ..., 5.75, 6}; it thus is discrete without
being an integer. '"' ' "~ ~ - ~ .~ ~. -...
Qualitative characteristics often are tags or labels associated witho'

examination of an item; e.g., { good, bad} or { hotel, motel, the Y,
campground} or { red, yellow, green}. Tags may be, and often are,1

i
recorded as codes, using numbers or characters instead of the tags,
such as {1,0} for { good, bad} or {H, M, Y, C} for { hotel, motel, the

j Y, campground} or {R, Y, G} for { red, yellow, green} Without a
basis or a legend for the code, your analysis has high potential of -- - - - - - - - - - -

leading to interesting adventures. What other codes might you- ._. &

consider for the set { good, bad}? For the set { hotel, motel, the Y,

j campground}? For the set { red, yellow, green?}

Suppose, with exceedingly fine and delicate instrumentation, you area
able to produce and report the weight of a reactor fuel rod as
10.01093034928 kilograms. Suppose further that you have a
pragmatic angel on one shoulder and an idealistic angel on the other. . _ . . _ . _ . _ _ _ . ..

Discuss the consequent dialogue between them with respect to discrete ,_ ___ , , . ,,. , _

and continuous variables in "the real world."

, ,

(t

- . -.-

# '**# N ' -WW_ ms-6 - _+. ..,4 ,

.
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t

_

|

| C How do you think you will react to the potentially synonymous use of
| observation and value as you explore the domain of statistics? j

! !

__,.~ . _ , _ . - _ ,,

t t. .. . . _ . _ .O.- _ _

Scales of measurement

variables Variables (i.e., measured values or observations) are
themselves categorized as arising from one of four

scales of scales of measurement, beginning with the nominal scale.
measurement The other three scales, called ordinal, interval, and ratio, I

, _ _ . _ _. _ _ _ __ _ |are successively built from the nominal scale by adding
icertain conditions. Without knowing the scale used in

. . :
making the observations, you risk producing erroneous 1

analyses because each scale's defining conditions |
determines which set of tools will be used in the analysis.

nominal scale The nominal scale (sometimes called the categorical scale) {
employs words, symbols, or numbers to identify the !

categories or groups to which the items of interest belong.
'' ~ * * * ~' "' "" "" ~" ~~ l

|
Thus, no special sequencing or ordering is implied by a

' - - ~ ^ - -

- - - - |
'

nominal scale; that is, the {yes, no} scale carries no more

|
information than the {no, yes} scale. Similarly the
(Democrat, Independent, Republican} scale carries no .

more information than the { Republican, Democrat, |
Independent} scale. Some other examples of a nominal
scale are { chocolate, vanilla, strawberry, bubblegum-
butter-brickle, ... }, { helium, uranium, lead, oxygen},

' - - - - - - - ~

| { green, yellow, brown, . . }, { married, divorced, single,
widowed}, { physician, engineer, senator, lawyer, --- - -- - -

statistician, ... }, and { acceptable, not-acceptable}.6

ordinal scale The ordinal scale (sometimes called the relative scale)
places an ordering or ranking of the groups designated by
a nominal scale. Thus, something special is implied in an

. .

- . .-- - . ... --

3
| If you feel some discomfort at using the terminology nominal scale. you are not alone. The ides

here is similar to the use of a zero in real numbers or the empty set in set theory; it completes the
,

concept of scales of rneasurement by providing a fundamental building block, see Stevens (1946).
'

|
. . _ _ e _ _ . _-.

., - ..m m- e.--, es, r re,.+--ww c a.-em wneep .* e em see w- - m.ugunsh.one. e Aqw.--o.mus he m. . .wwn,aa..y we,- h,44 . .w w . eempa,nz
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ordinal scale; that is, the { truck, auto, motorcycle} scale
carries different implications that the { motorcycle, auto,
truck} scale. Some other examples of an ordinal scale are
{ heavy, medium, light), { helium, oxygen, lead, uranitim},
{ cute, beautiful, gorgeous,10}, { nice, handsome, hunk. r--- - , , - u

-------L.------"beyond category"}, { excellent, good, fair, poor}, and ~

{ grade school, high school, college, graduate school}.

interval scale The interval scale (sometimes called the metric scale) ~

preserves the characteristics of the ordinal scale and, in
addition, assigns a numerical " distance" between each pair

- of objects. Thus, the differences between values are
important in an interval scale; thus, a scale that measures - - - - - - . -

distances among a group of cities permits the . . . - _. .;

determination of which two cities are closest and which
two are farthest apart and which pairs me the same
distance apart. - Some other examples . an interval scale
are {birthdates of a family's members} and { thermostat
settings in a group of single-family residences}.

ratio scale The ratio scale is an interval scale with a physically ... n ,, ,_ _,_ _ _,

meaningful and definable z'ero walue (indicated by the .
' - ~ ~ ~ ~ ~ ~ ~ ~ ,

symbol 0) which is the value reported when none of the
characteristics is detected by the measuring process. The>

ratio of any two measured values of the same type is
independent of the unit of measurement; e.g., the ratio of
the width to the length of a rectangle is independent of
whether both measurements are made in incaes, feet,
kilometers, or furlongs. Some other examples of a ratio'

~ ~ ~ ~ - ~ ~ ~ ~ "
scale are { weight; e.g., kilograms or pounds}, { length;

--~

e.g..' meters or inches}, and { volume; e.g., gallons or
liters}, all of whose ratios are independent of whether
English or metric or other units are used. Note, however, -
that a ratio of mixed units (e.g., width to length of
rectangles) does depend upon the units. Thus, a 2-meter
by 3-meter rectangle has a width-to-length ratio of 2/3, .
just as does a 200-centimeter by 300-centimeter rectangle.

* ~ ' ~ ~ ~ ~ - - - -- "But a 2-meter by 300-centimeter rectangle gives a width-
to-length ratio of 1/150. - - - - --

..

:p

*#"* *''" *' *e9 - ,e.ne. . .-wyAa,,, ,p,_ ,,,, ,
_

,

~ * '' - * - - ' - . . ~ . . . . . . _ . , . _ , , ,
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It must be noted that, since their introduction by Stevens
(1946), these four scales have been the subject of a
continuing controversy, sununarized in a paper by ,

Velleman and Wilkinson (1993), part of which reads: i
- - - - -

- _ , . . . .

Recent interest in anificially intelligent computer )
'-----------A'

programs that automate statistical analysis has renewed
attention to Stevens's work. Computer programs |'

.

Idesigned to assist in the selection of data analysis
methods have been based on his prescriptions. Even
some general-purpose programs have used them to
structure their interaction with the user.

Unfonunately, the use of Stevens's categones m '
-

selecting or recommending statistical analysis methods
* - ~- - - ~-

is inappropriate and can often be wrong. They do not
,

describe the attributes of real data that are essential to j4

j good statistical analysis. Nor do they provide a
classification scheme appropriate for modern data
analysis methods. Some of these points were raised ;;

even at the time of Stevens's original work. Others j

have become clear with the development of new data 1

" ' ~ ~ ~ ~ - ~ ~ ~

analysis philosophies and methods.
. - .. -. . - . . - - _ _ .

As with most controversies, there is something to be said'

for each side. We suggest a middle ground: Use the four
,

1 scales in your work as long as they are helpful to you and
your colleagues-but be especially alert to possible*

i problems arising from blind adherence to them, especially |

with respect to statistical software applied uncritically to !

]
~-~-^-7your data.

\3

i \
For discussion:.

\'r
o Which of the four scales is associated with the following s 1

n'easurements?
_
_.___x,_ !

'

,

~ ~ ~ ~

(1) The size (in bytes) of a computer file.
" ~ - - ~ ~~~~

(2) The ize (in kilobytes) of a computer file.

.- - . - . - .. . _.. . . _ . . - -

ei- ** mmm e - ,atip, . _-_,,. p.m , . , . . . _ .p%, g,m, ,. . . . , ,

* * - - _ . . . , ,
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(3) The average number of words per page in this book.
(4) The shortest distance between your home and your office.
(5) The Dow Jones average of 30 industrial stocks as an indicator o;

New York Stock Exchange activity. \
7- =1; - y u,

- - " '
' a Why would you be careful to distinguish the zero of the ratio scale

" - - - -

from the zero recorded when no observation was made on a particular

item? |
'

1

3 Can temperature be measured on a ratio scale? (Hint: Is the ratio of |
1

two temperatures measured in degrees Celsius the same as when they
are measured in degrees Fahrenheit?)

ye - gu====* ey e ..-m
_

.- ... ._. _.. . _ . _ _ . . . . ;_.--

; Four basic concepts in statistics _

_

} Four basic concepts underlie and integrate all of statistical thcoght
.

and processes. Nothing substitutes for addressing these four*

concepts early and often.,
-, .-_ . _ _ . _ . _ _ _

A population is a collection of items defined by some characteristic of the
~ ' - - - - - - - - - - - - - - -

items.
i

A sample is a subset of the population.

A parameter is a numerical measure of the population; its value is a.

function of the values of the variables of the members of the
* --- ' ---- - - - - - -

population.
-__ _

A statistic is a numerical measure of a sample; its value is a function of
the values of the variables measured for the me:abers of the
sample.

2
'

e . --- -.

D 44 h M '*.*@@ ummun.- M G. .m .mg.4 ges a om. .,

.

!

-- --- - - .- -- ,. . .,_. _ _ _ ,, _ _ ___, ,,,
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.

For discussion: .

_ - - . _ , . - . ..

O A population may be a collection of measurements (or responses) L ,,, _ ; _ , _ j ]. .'
rather than individual physical items (or automobiles or houses or N

N
employees) which were examined to obtain the measurements (or
responses). Does this idea cause you any anxiety or concern?

a in some contexts, you will find such terms as parent population,
universe, and/or universe of discourse instead of population. These |

terms serve as a reminder that a sample is an " offspring" of the ~~ ~' ~ ~ ~ ~~~f
population of interest. . . _ . . _ _ . . _ _

O Notice especially that the vclue assigned to a parameter is afunction
of the values of a population of interest. This is exactly the same as
the use of the term parameter in any mathematical discussion. For
example, in the mathematics of analytical geometry, y = mx +b is a
parametric expression of a general straight line with a symbolic slope
of m and a symbolic intercept of b. In comparison and contrast, the

* " " ~ " " * * " " * ~ " - -

expression y = 3x + 5 is a specific straight line with a slope of 3 and
an intercept of 5; thus, given any two points lying on that line, you

' - - -- -- - - - - -

| can determine its slope and intercept unequivocally.

O Contrast this idea of a parameter-and any of its specific
manifestations for a straight line (obtained, for example, by simply
setting m = 3 and b = 5)-to that of a statistic which depends upon

j measuring the items in a sample, it follows that the value obtained
! for a statistic depends upon the elements that appear in the sample.

- - - - -- -r

Thus, while populations and parameters remain creatures of our - -

i modeling, our imagination, and our intellectual belief systems, we are
stuck in the real world with understanding samples and statistics and
how they link those populations and parameters to the treatment of our
everyday problems,

e A sample can be the entire population, in which case it is called a
census. - -- . .-

.- .~. ~ .. .. .. . . . . .

1

i

|

!
t

- .- -. _ _ _ __ _-

- - - - - - - - - - - - - . - - - . - - - - - - . . . - - . . . . - .. . - . . . _ - _ _

. . _ _
,
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. _
_,

0 The term random sample is ubiquitous in statistical discourse. What
does random sample imply that sample does not? Why does it make

'

any difference?

: O A population's size (i.e., the number of its elements) can be finite or L -- - ,
;:

- , , - u.
'

-- - - - .

infinite. Give examples of each.?

c A population can, and usually does, have more than one parameter.

O How would you go about obtaining a value for a population's'

| parameters? Is the problem easier if it's limited tofnitepopulations?
Give an example of a population for which you can determine values

- -- - - -- - .. - -- - - - - - _

j for its parameters.
r . . . : .

|
_

c A sample can, and usually does, have more than one statistic.

4

c Can a sample be infinite?
,

:
:

i ~-c - - - - - -- ;- z a --

: A definition of data for this book.
. . . __ . _ . . _ . . _ _ . .

Data are those elements ofinformation that either;

are quantiped b) their basic nature'

or;

i are capable of quantipcation.

A definition of the discip/ine of statistics for this -- - -- - - - - - - - - -

-- - - -

! book
,

.

The discipline of statistics is :'

the science and the art of the treatment of data: \

|
their collection,

4 their analysis,
their summanzation,

~ ~ ~ -'

and
' ~ ~ - ' - - - ~ ~ ~ ~ - - - - -

their presentation.

I
;

l
*

1

4 - -+ _ ..

' * ' * "'N' 6.= 4 / v.ggesp 4 > @q ., _

;

1

0

-- .. no ,e ._. .em , e , n .. e ..+s - n n. ..,as,. .e., .s.

..r.,



- __. _ - - . - - - - -. - .- .-.- . .- . . -_. - _ .-.

bd ( b h tLd_ d d M.

. _ 3
- z. . 11-18 Applying Ststistics'

'

Introducing OSDAR
.

!

; When you contemplate conducting an investigation, one of the
# - first questions you must decide is whether you are going to collect , , . . _ _ , _ _ , ,

i data; i.e., will you require quantification of any of your findings? L_n_ ~ ~ ] ] j~
If the answer is no, you're off the statistical hook, and we won't4

'

nag you any more.

However, if the answer is yes, then these two pages have special
3

; meaning for you and your ways'of dealing with numerical
information. The basics are contained in an easy-to-remember
five-letter acronym, OSDAR.7 These five letters serve asI

reminders of five essential elements that must be considered F ~~~~' - -~~ ~ ~ l
*- - - - -- - - ' j~

! whenever you plan an investigation with the purpose of collecting

| data:
i

Objective (s)

| Scope .

Data collection .
i,.

! Analysis EL - --- - ---. - . -

.

'

Report. - - - - - - - - ---

; These five elements are important in two ways: as plarming
devices and as checkpoints during your study.

.

! Notice especially that there is nothing in OSDAR that inherently
implies a laboratory-with-instruments setting. These five elements.

j apply equally as well when you are involved in a literature search - - - - - - - - - - - -

| as when you are involved in a high-tech, no-funding-limit- -- -
-

investigation.
!

i '

i Each of the five elements is expanded upon on the facing page.
Make a copy of the following page. Keep it around your

t workspace. You never know.
;

!

i
.

\! We are especially indebted to James Cahill. Bonneville Power Administration. for a series of7

discussions in the spring and summer of 1992 that resulted in OSDAR's codification. ,

|

A

j
- - - -- - --. _ _ m ., ,_. _ . . _ _ , _ . . _

'** ->H- hr- empi.ra emumage.- % ,-a ,-we _-._,.ma,, ,,og, _, ,j _ _ _"'"8'-' o
'

-

t

4

.

,we ,

# * 8ee**-* i in ep.. .%,,. , m., , 4 ,

w w -m- , w -* m.-op- n- m p- - r. .y y,- .* c-
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OSDAR
Your checklist for investigations involving data acquisition

,, n.~~-r.- ,

--- 2- ~ _-.__ _.

Objective (s) State the objective (s) of the investigation carefully, clearly, and
completely. What target population (s) is/are of interest, and under what
conditions and for which time interval? Which variable (s) do you wish to
measure? Which hypothesis (es) do you intend to test? How is your new
work linked to that of other investigators? Do you have agreement from all

participants in the study?

Scope Specify the scope-the limits and the limitations--of the investigation.
What sampling population (s) will you use? Will it/th./ yield the variables J

- ' ~ ~ ~ ~ "-

you seek? What can you accomplish with your resources-personnel,
- 2'

equipment, material, budget? Do you have the proper analytical tools to
address the objective (s)?

Data Collection Ensure that your methods of data collection are planned a id
carried out realistically. Are your procedures feasible? Can they be
conducted properly in terms of your resources? Are the variables you can
obtain the same as those you expected to collect when you set your ''' '~ ' ' ' * ~ '^~

objective (s) and specified the scope of the work? Are the data properly
' -- - - - -

organized and labeled? Will they be sufficient to accommodate your analytic
tools? What data-quality monitoring will be performed?

Analysis Establish the methods of your analysis-assumptions, models, ,'

algorithms, computing processes. Does your preposed analysis address the
objective (s) and the scope of the investigation? Will you be giving the
correct answer to the wrong question?

- ~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ '

i
Report Plan the preparation and issuance of a report of your findings, keying [~~ - 4

those findings to your investigation's objective (s) and its scope. In which
medium (e.g., internal report, journal anicle, book) will you issue your

i

report? What are the limitations of your study and your analysis? Will your '

text, tables, and charts be properly labeled and integrated and easily l

interpreted? Does your report aid in understanding your work, or have you
created a contest in which your audience must labor to appreciate your
cleverness? What did you find? What did you not find? Ilow are your
results linked to those of other investigators? Do your data survive _

application of Huff's criteria? . - . _ _ . . _ . _ . . .. ..

.- _

-- - - - _..- __. _ _ . . _ _ _ _ _ _ _ _ _ _ , _ _ _ _ _ _ _ _

. . -. .. . . . . - . . . . . .. . .. ..- . . .. . . .



_ _ _ _ _ _ - - _ _ _ _ - _ _ _ _ _ _ ___-

1. 1.l..a k |L J .L a O . U Y
~

1-20 Applying Statistics
. .

.,

What to remember about Chapter 1

You now have a number of statistical concepts and ideas with
which to conduct investigations that involve the acquisition of

_ _ , _ . _ _ _ ,_
~data. *

L _ .._. . . - . ._ _ . _ _ _. __

Keep these concepts and ideas in mind (or refer back to this
chapter) when you encounter the following terms in subsequent
chapters:

a Huf's criteriafor evaluating statistical statements
a quantitative information

, _ _ _ _ _ _ _ _ _ _ ___

m discrete variables
'

a continuous variables ~ ~

a scales ofmeasurement
a populations
a samples
a parameters I

a statistics.

Check your regular task assignments against Chapter l's '' * ~~ -~ - - - - -

definitions of data and the discipline of statistics. - - - - - - -- --

Revisit OSDAR. Always remind yourself of OSDAR's precepts
when you are digging into data-acquisition matters.

Above all, as you peruse the following pages, enjoy thejourney.

- - . _ . . . . _ . .__. ._ .

..__ _. .

. . _ _ _ . . . ._

. - - _ ...e.. . .. . ._..

-

.

-* O' ** wm * .-+**|u. -eie,- N, -eweh .a .me, pE ,_.ap.-Ip,,4 , . h gg ..pw .g4..%og%,,,w., ,,p.,,, ._,4y, , 4pq ,., , ,, u,
,.

4

~ * - - - + - - + %. .. . ,, .. , . . . ._ , m.

_m - _ - _ - , _ - _ - - - - - - . - - . - - ---- ---~-
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Some statistical graphics !.

methods :
.

q4

' ~ ' ' ' ~ ~ ' ' ' - ~ ~ ~ ~ ~ ~ ~' ~~" -
)What to look for in Chapter 2

. . _.

Chapter 2 reminds you of some of the popular-and |

venerable-statistical graphs used to convey information,
including-

1

a pie charts'

a bar charts
' ~ ~ ' ~~ * '~~ ~- '~ ~' ~

a histograms.;
- _ . . . . ,

A relatively new special purpose graph, called the box ~ )
plot, is demonstrated. Some rules for the effective use of |

these four types of graphics are offered. )
I

- . ._ . _. . _ _ . __ .

b MM + 4**M 4t.' .O. M-4 $Q. a6 ng &a

$

. v .. -..

* * * -e .M.. .,'m .g4 < m y., .,.%,, g4w.,, ,3.344 ,gg ,, , ,q , , gg,,, ,, ,, , ,, ,

4

~ . . s-

$

- - - - . . _. -
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!

|

| From out of the past ...
I

| Since the dawn of man's record-keeping on the walls of

| caves, graphical methods and statistical procedures have _ _ _

been intertwined. Charts of all types, using all sorts of [ ~~~~' ~ ~.
~ '' L

~~~ ~~ -

colors and designs, are part of the fabric of modern life.
Ir. a variety of forms, some certainly more useful than

|
others, statistical graphics appear in newspapers,

,
magazines, television, and other media. As simple as

! some of these chart types may be, they scarcely can be
-

equalled es elegantly powerful devices to convey
information contained in a collection of data.

_ _ _ . , _ . _ _
,

Because statistical graphics are so powerful and so
- - 1

influential, they are subject to a range of ill-use, from
deliberate hiding of facts to inadvertent " chart junk," to

j use a concept emphasized by Tufte (1983). You will

!
encounter four basic types of graphical displays in this

,

chapter. You'll start with the venerable and ubiquitous!
pie chart, remind yourself of the revealing bar chart and

|

|
the always-important histogram, and finish with the late- ''----c-- - - . ~ -

c -- - . _ . _

|
20th-century box plot.

i
But statistical graphics do not stand alone; they can start

|
I their value-added function only after some data are

|
collected. You will find two keys to quality statistical

1graphics:
|
'

(1) they must display their source data in a readily
[__._ . -

___. _ . _ . . _ . _

apparent fashion, and .
.

(2) they must be free of irrelevancies. ,

1

The pie chart

The pie chart is a graphical display designed to show and
emphasize the relative proportions of several values of a -- - .

nominal scale (recall the discussion in Chapter 1 on scales . . . _ . _ . _ _ . _ . . _ . . _ , . , _

of measurement). Consider the data displayed in
Table 2-1 (NRC,1992, p.19).

_ .

' * * * -- eth- em.ep+-, w-pin. gem.-6-a -.4m ... p.w ,, , ,, ,

e. G = 4 6= e4.- 14 4 4- @ N mae*- m. .@d- 4 -e 4 4 we44
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:

Tcbis 2-1:
1990 U.S. electric capability by energy source x.

N
,

\
Sourte Gigawatts Percent of total .

,
. - . . .._ . _ _ _

Coal 300 43
,

,

Gas 120 17
i

Nuclear - 100 14

; Hydro 91 13

Petroleum 77 11 - - - - - - - - - . -

Other 4 1
' ~ ~ ' ' ~ ' ~~ ~ ~ - ' '

Totals 692 99*
.ta

* A rounding discrepancy. something featured in many tabulations.

1

i Table 2-1 is a typical set of data that leads to the use of a
pie chart. For each of several values of a nominal _ , . . _ , _ _ . . _ _ _ _ , _ .

,

scale-in this case, the energy source: (Coal, Gu.
.._ , __ . , , __ _

Nuclear, Hydro, Petroleum, Other}-you have a value of
: an interval scale (in this case, the amounts of energy).

Convert each of these interval values to a percentage of,

. their total. Then convert those percentages into
^

proportional segments of a circle to form the " slices of the
pie." The data in Table 2-1 are rendered as a pie chart in

'

Figure 2-1.
, _ _ _ _ _ _ _ _ _ , _ _ _

.
> es maswe. - %

)

y

p me a em emm- -ae w , ,_.

e. m.e ame *wi.w.A. . . e,. . . . ,

P

b

4

4

+* ** -- a e= 4.m- + - - w.mo .e ,. .,, % .,m, ,_ , ,, ,,

I

- . -~ -- . ~ . . _ , . , . . _ _ . . _ , , _ - . . . , _ . . . . - _ _ _. _ _ , _ . . ., _ _ _ _ . _ _ _ _ _ _ _

e e be.

+ * * ..s w

.
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Figure 21:
Pi) chart derived from data in Table 2-1

1990 U.S. Electric Capability -- - 7 - - m-*

~~' - ~ - -- - - -- - - - - - - -

(Total Capability = 692 GigawaL'at),

: .

r her: 4 (1%)Petroleum: 77 (11%)

,

i Hydro: 91 (13%) , ,_ _ . . _

. . i.-Coal: 300 (43%)

4

;

Nuclear: 100 (14%)
'

Gas: 120 (17%)
. . . - . . . - . , , . . , . . . _

'

. .- .. . . . ... . . .

f

;

!- Suggestions for constructing pie charts
.

m The number of slices of the pie should be between 4
j and 10. Having too many slices clutters the chart, ; _ _. _ __

; while having too few insults your audience. t _. .. _ , . _ _ ,

I

Arrange the slices in increasing or decreasing order oft e

magnitude.

Begin the first slice at the 12 o' clock position,i a

j followed clockwise by the other slices.
_- ..

m Show the " raw" data as well as the percentages,
._ , _ _ _ , _ , ,

8

,

:
1

-. .. 1_ ., .._,. ,,,

M ' '"*'O * W!W- .e. em '+.g wm. .g. 4g . , p. ,,. ,,, _, , , ,_
.

!

* * -- - .* - .. , .

'

- ,
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|

| Despite the pie chart's popularity, venerability, ands

! ubiquity, it is not universally endorsed as a statistical
display of data. For example, Stein, et al. (1985), list |

|the pie chart, among others, as not recommended.
. ~ - . . - . . . , . - . . " . -

- . .

'~~ - 7 ~ m-They go on to say specifically:

" Die pi: chart has the sole advantage of I

| indicating the data must add up to 100 percent.
At the same time, it is difficult to see the
relative size of two slices, especially if they j

are wit?nn 10 percent of each other, j

1.

| .....-.-..---_n. ,. \

I
. . .. - . - +

For discussion:

O Comment on the construction of pie charts, especially the suggestions g ;

given in this chapter. - !

)^

\
Look at the pie chan in Figure 2-la. Compare it with the pie chart inc

| Figure 2-1. - Is one format more informative or useful than the other? -..-.%-.._...._.,...

! Note the differences, for example, in the shadings 'of the slices and the ._ . . . _. . _. _ _ _.

angle of view. What are some other differences between the two
charts? Which of them enhance-or detracts from-the presentation of
the information?

|

|
_ ___.. _ _ _ _ . _ _ . . _ .

. _

|

1
1

. -- - |
1

.. . w . - .. .-

|

|

. ._ . ~ . . _ _ _ - ,_ _ ._.

.* amm ap -- .hJi --Jo w whg.p-+s 1-h.-#,-af --.we,.p-.s4.. -se,..ea n.Wy.- n.ea,.a~.

b

g..
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i

Figure 2-1a: j
A second pie chart derived from Table 2-1

l

i

1990 U.S. Electric Capability r.. . .. . - .-._ .

H
. ,

| (Total Capability = 692 Gigawatts)
N

'N l

-other: 4 (0.58%)
Petroleum: 77 (11.13%)

\ ___ l, . ..
' i j

Hydra: 91 (13.15%)
, ' ~ ~ ~ ~ ~ ~ ,

Coal: 300 (43.35%)
| )

1

Hucleat: 100 (14.45%)

Gas: 120 (17.34%)
, . . . . _ . . . . _ . _ . , _

- - _ _ _ .

Is Figure 2-1 or Figure 2-la the easier to read and interpret?j u

e Comment on this statement: It is easier to distort a graph than to
1 distort a table. - -- - . . - . - - . . . . - . _ .
1

The bar chart

bar chart The bar chart is a graphical representation used to display
data that come primarily from nominal or ordinal scales

(recall the discussion on measurement scales in
_. ..

Chapter 1). Consider the data displayed in Table 2-2 , _ _ _ . , . , , , , , , _ _ , ,

(Bowen and Bennett,1988, p.12).

|

.

- - . . .

~ ' " * - * N**" - eper-me m_.ny- ,, g, ,,p. ,, ,

P

t

|
!

|

- _ _ - - _ . - - - _ _ _ _ _ _ _ _
-

-



- - ~ . - - - . . . - --- .

b 113 h I.d.i.13 R31dlN
'

3

J
Soms stztistictigt:phics msthods 2-7

Table 2-2:
1 - Monthly rejects of fuel rods

Month Jan Feb Mar Apr May . Jun ----- -~, .,-- - - - ,
i..-_.L.___..__.

,'

Rejects 6 4: 4 2 4 -7
s

| Month Jul Aug Sep Oct 'Nov Dec

Rejects 6 '2 2 - 5 .- 4 ' 4
~

'

~ Table 2-2 contains a set of data that typically leads to a - - - - - - - - - - - - -

Jbar chart, such as that shown in Figure 2-2. . Each group -

(or category) has a frequency-of-occurrence. Each bar in
the bar chart is intended to represent one group (in this
case, Month), with the bar's height representing that

. group's frequency (in this case, Rejects). The width of
the bars is constant, as is the space between each pair of
bars; if either of these requirements is violated, the bar -
chart's " message" is subject to misinterpretation. If the . ...._ ._ ._ , , , ,, ., ,

categories are on an ordinal scale (as they are'in .

;

Table 2-2), the bars are placed in sequence, usually .
'

smallest to largest. The bars may be oriented horizontally.
or vertically.1 The data from Table 2-2 are rendered as a

'

vertical bar chart in Figure 2-2.
-

. . - - - . . - - - - - - . - . . , -

_.

,

|

. - - . - - . - . _ .. - . _ ..

. . _ _ - . . .. ... . . . . . ._ _

' la sorne contexts (e.g., Microsoft's spreadsheet Excel), vertical bar charts are called " column

charts.*

- _ _ _ _ _

j
- ~- . .~. .

. - . . . - . _. ._ .- . _ . . . - _ _ _ _ . _ . , _ , , . _ _ __ __ _ __.____

4

e

d +- ** -e u . . .e. ....,,g ,g,, , , , , . ,

_m-w - __ , w - m -+ , , ...-- m. e ., ,, ,
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l
a

i Figure 2-2:
j Bar chart obtained from data on monthly fuel rod rejects \j (Table 2-2)
l *\

.

1 .. _._,. .m.

[. _7 . - - - -. .

i
-; ,

,J
. ._.

i

j 10
,l

J

i
j e _ _ _. _ _ _._ _ _ _ _ _ _ _ _

1
;

| k6
-

- - - - - - r------- - - ~ - - -
'

.

; e L- . . . . . .. . . _ ._ .
j g
i ?
i r4 --

o

|
Jan ' Feb ' Mar ' Apr May' Jun ' Jul ' Aug ' Sep Oct ' Nov ' Dec II~~ ~ ~ '~~~

" * ~ ~ ' - - - - - - - - - -

Month!
!

}

:
!

! For discussion:
) [___..._____.._____What interpretation (s) do you give to the bar chart in Figure 2-2a7 _j e
:

)
I

3
4

- - - -

44 6 r , m. w 3h 4. g g g ,gg,.

t
!
I
1

}
.

,-
- -- -- -- ~ - _ . . ._ .. ,_. . . , _ , , _ ,, __, .t

E
- ---- -- ~.- .-. . _ , . , _ _ . . . _ - , . , , . .._. __ _, . ,

;

!
- -

. -

1

0
. . . .. . , -- - - - _ . . . . - . . _ . ._. .. - _ .--
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[ Some statisticalgraphics methods
i

:

i

: Figure 2 2a:
| Fust rod reject rates: the second year
i
P

-.. - ,,-.-.,. .- - m ...._.,. __
e

.. - . . . . - -- . . . __. _

,

! 10
t

|
i |-

8 ----- ----'
,

| |

I
) gs

. . ,_. ...

_ _ _ _ _ _ _ _
C .

f g

! Y
; e4 _ _ ___ _

e

i

2
I
i

i

| 0
4

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ~' ' * * * - - -~--~
Monthj

-.

i N |

|
Compare the bar chart in Figure 2-2a with that in Figure 2-2. How| o

j have things changed? Does the chart necessarily describe a

j deteriorating fuel rod quality as the year progresses? x

| Sketch these two charts as horizontal bar charts. Is either form,
~ '~~' ~\~ ~~~~~~'

!
o - -- -

horizontal or vertical, more informative than the other?'

1

! The histogram
:

)

| histogram The histogram is a specialized type of bar chart; it is used
primarily for displaying frequencies of a variable - - - _ . . - . . . . . . . _ _ _ _

!
measured on the interval (metric, continuous) scale or on,

]

|
:
4

:

b - - - - - . . - . - ._ _

d

!

!
4

4

i
4

- - - . _ _ . .... .. . _ .,

i
(

,. - - , - . .-. -,
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i-

class intervals the ratio scale. The measurements are grouped into class ,

- intervals 'usually of equal widths The middle of each.,

! class marker - interval is caDed the class marker for that interval. For
1 the purpose of,lisplay, then, all measurements falling into

a particular class interval are considered to have the same
- - mm- -

: ,

' --- ---- "I value as the class marker. A histogram usually shows the --- --

frequencies and/or the relative frequencies (i.e., the
'

j fra::tions of the measurements that " fall" into each class
j - inttrval) on the vertical axis. If the values are continuous, .-

no spaces are used between the bars of the histogram. ;
;
. ,

One monthConsider this fictional-yet-realistic example: _ '1

after a nuclear reactor shutdown,25 buckets of water were - - - - - - - -----

i drawn out of a nearby lake and inspected for impurities. . _. __ . _ _ _ _ . ;
Water impurities for each of the buckets, measured in
parts per million (pr n), are given in Table 2-3.

;
.. |
!

'

!

|. Table 2-3: .

-

j Water impurities measured for 25 buckets in -
! parts per million (ppm) , , . . . , , , _ . . _ , , . _ , _ . , . . ,,_.-

i . . - . . . __ . _ _. ___

|
42.50 42.61 42.49 43.17 - 42.63 42.45 42.61

*

,' 42.31 42.83 42.32 . 42.82' 42.91 42,42 42.97
42.48 42.62 42.83 42.93 42.67. 42.40 42.85;

i 42.65 42.72 42.45 42.59-
1

4
'

i

!
;

;
.___ _ . - _ __. _._w:

^t-

To build a histogram from the data in Table 2-3, you must
first determine the smallest and the largest values and :

i decide upon a class interval. Here is the ordered set, |
! from smallest to largest: {42.31,42.32,42.40,42.42,
: 42.45, 42.45, 42.48, 42.49, 42.50, 42.59,-42.61, 42.61, j

42.62, 42.63, 42.65, 42.67, 42.72, 42.82, 42.83, 42.83,
,

! 42.85, 42.91, 42.93, 42.97, 43.17}. The smallest valae
in this dataset is 42.31 ppm and the largest is 43.17 ppm.

~ - -

,
. . - -. .. .. . _...

4

>

f
a

* *-' ** *-*** -- -* .o em .- ._ .y ._ , . , ___

*###"' 8'**-- - -euni.m e-m. - ,,q,_ , , _
_

'A.
- - - - - . . . . -

_
__-_____,h.
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L

Next, suppose you decide upon a class interval width of
,

0.1 ppm, and you set up a scheme of class intervals that
have " nice" (i.e., easily set and managed) class markers.

-

For these particular data, you might decide on this set of
class markers (42.3,42.4,42.5, ...,43.2}. Given this. - ---- " 7 -

- - --- u. .

>5- -~-------:--.,

! choice, the first class interval contains all measurements
less than or equal t.o.42.35 ppm; the second contains all
those greater than 42.35 ppm and less than or equal to - ~;

42.45 ppm, and so on. .In this fashion, every one of the
~

'

25 values can be placed unambiguously into one of the 10 -
intervals so defined. This process yields the frequencies

-

| which are the basis for the heights of the bars.
- |! -, m , ~._ _. . _ _ __ __

Here, for example, you have two values associated with a . n,
>

42.3, four values associated with 42.4, ..., and one value
associated with 43.2. With these associations, you can
proceed to construct the histogram. 'It should look .

'

something like Figure 2-3.
:

H . . .,, m . . A - [- i - r,. 4 %

r . - - , -.. . _ ,

. .

,

I

.

- t.

FNWF G'M**t-#'N 9ede4hw.g .g y y pg

f

N he n
A-

i

~

*-am an ...- .a .s . . . . . . . . . . .._ _ ,

f

- .*- .< . . . . ,.. . , , .

*"9 8'M *m-=rrh i=w e .m 4, ,, , , g,,g ,

* . * - -- . . .. - --,. . , , . . , , _ , ,,, ,, , , , , ., _ _ _
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.. . 3 . ~ =.- g: - ---:-
'

| Figure 2-3:
| Histogram derived from 25 values of water impurities recorded in

Table 2-3

-

! L _;.
. - . .

' -
- -

10 0A0

8 032

& ~

h
,

, .

,
g6 024

$ ( L- . , _ . . . . _ _ . . - _ .

!4 0.16

a:

2 0.08

,

0 0.00 g ,

422 42.3 42A 42.6 42.6 42.7 42R 42.9 43.0 43.1 432 43.3 ,,...,_A__,_
Waterimpurity(ppm)

..

! The box plot
|

l

box plot A box plot is a graphical display designed to represent a _ _ _ _ _ _ . . _ _ . _ . . _ .

set of data in a relatively small amount of space and yet [_.__ . - _ _

give a picture of the extent of the data as well as its
distributional features. Figure 2-3a is another view of the
impurity data in Table 2-3, this time displayed as a box
plot.

. -. _ .. .

&&M.m,..P. - Whm4 49,e--e6$-- k- @@ % g. Sh ( e . N-

- .. . _ _ . . ._ ___ ._. .-_ __ _ . _ . .. . . _ . . _ . _ .

_.mem. . .. e+.- g. 4.--w-r A g .w ..a.m,4.. ...%- -m-.e am - ,w y

w

n 4 -
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Figure 2 3a: j
|An example of a box plot (derived from 25 water impurity

measurements recorded in Table 2-3)

- - , . . , - , . . -. , . _..

i..___. . _ . _ _ _ . _ . _ . _ .

26th 60th 76th
percontile percontile percentile

.

.'
- -- - - - ~ - - - . - ~*

..

p
| 1st 2nd 3rd |

| quartile quartlie quartile i

42.2 423 42A 42.6 42.6 42.7 42 2 42A 43.0 43.1 432 43.3 .. . , , , _ ..c . .-. , _, r
iWaterimpurities (ppm)

._. . . . _ _ _ _

|

The display itself consists of a rectangular box that
represents the bulk of the data and lines extending from N
each end of the box that indicate the range of the data. .,._(.._______._..__.

~~

The construction of a basic box plot requires the -
determination of five particular quantities from the data: ;

'

the minimum, the maximum, the median, the 25th
percentile, and the 75th percentile. The 25th percentile ;

'

and the median and the 75th percentile divide a set of data
into four equal parts. Thus, you will sometimes find them
called, respectively, the 1st, 2nd, and 3rd quartiles; they

~ ~ ^

are so indicated in Figure 2-3a.
.. .-- _ , - _. ..-._

-. ._ .._m _.

- _- - _ _ _ . _ _ - - - _ _ _ _ _ _ _ _ . - - _ _ _ - - -

i

-- - - - - - - -. _ . . . _ _ _ , _ . . . . , , , , , , . . . . , , ,_ , , , _

,

~ ,
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'

The five determining quantities for a box plot are obtained
in the following fashion (and are numerically illustrated
with the 25 water impurity values in Table 2-3):

The minimum: Find the smallest value in the group. m 7- - , , --

i-------------._The minimum of the 25 water impurities values is 42.31.

The maximum: Find the largest value in the group.
The maximum of the 25 water impurities values is 43.17.

The median: Arrange the observations in increasing order of magnitude.
Divide them into two equal-sized groups by taking

(a) the middle observation if the number of
- - - - - - _ - -- - _ _.

observations is odd or . .

(b) the average of the two middle observations 17

the number of observations is even.
The median of the 25 water impurities values is 42.62.

The 25th percentile: Find the median of the group containing the smaller
values.
The 25th percentile of the 25 water impurities values is ,, , . _, _, , , , _ , ._

(42.45 + 42.48)/2 = 42.465. .. . . ___

The 75th percentile: Find the median of the group containing the larger
values.
The 75th percentile of the 25 water impurities values is

(42.83 + 42.83)/2 = 42.83.

Owing to its particular power as a data-analysis tool, the
box plot has been expanded and refined in a number of its [~~~ ~ ~ ~ ~~- ~'~~ ~ ~ ~' '
aspects. For example, the box plot can include indicators
of " unusual" values and/or other characteristics of the
dataset. See Chambers, et al. (1983), pages 21-24, for an |

i
extended discussion.

Box plots are of special value when you are comparing
two or more sets of data with respect to the same variable.

- -

For example, consider the data in Table 2-4 in which 10
consecutive months of a shipper's reported net weights of

-- -- -- - - - --

uranium fluoride (UF ) cylinders are displayed beside6

_ _

* '*"'""--w+e ~sw emme,a 4, , , _

.=h e ,
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~

those reported by a receiver (Bowen and Bennett,1988,
pages 18-19). Box plots of these data are given in
Figure 2-4. !

|
,- _ - . ,,;

Tchle 2-4: ----------n

|~ N:t shipper's and receiver's weights (measured in kilograms) of I

UF cylinders for 10 consecutive months -e

Month Shipper Receiver |

1 1471.22 1468.12 ,

1

2 1470.98 1469.52 , . _ _ __ _. . . . . .

3 . 1470.82 1469.22 _ . . . . _

4 1470.46 1469.26

5 1469.42 1465.%
4

'
6 1468.98 1470.80 |

.I

7 1469.10 1467.89

8 1470.22 1472.28 i
|

-a a <- - -- - --- 4 - -- - --- - -- '9 1470.86 1469.02

10 1470.38 1470.16 - - - - - - - - - --- - -- '

\
,

median 1470.42 1469.24 j,

minimum 1468.98 1465.% .

1

25th percentile 1469.42 1468.12 |;
,

; 75th percentile 1470.86 1470.16

maximum 1471.22 1472.28 ,

j. _ . .. _. _ _. _ _

.

p. 4 es.m.m. .mape.no - . A,

f

;
.

i . _ _ _ |

. - -. __ . .. _ . . . ... . . . _ _ _ _ j

s

. .

1

. . . _ ,. --,

e *=* *- M --naupto w w- -h -u .-ep W- -.esen,e..g .,weg4. --.w.. , , , , , , . ,4 , ,,g.p ., ,
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|

*

!

Figure 2-4:
B:x plots of net shipper's and receiver's weights (measured in
kilograms) of UF cylinders for 10 consecutive months recorded in6

| Ttble 2-4
--~~-r--, .. . , _ _

. . - . _ _ . _ _ _ _ _

t

!

- -
. _ - _ _ _ _ _ _ _ _ _

Shipper g ,.

Receiver

! " '' " ' ' " ' ' ' ~ ' ' ~ " * ~ ~

| 1466 1466 1467 1468 1469 1470 1471 1472 1473 1474 1476
' ' 'K' ~ - - ~

j Weight (kilograms)

-

It doesn't require a great deal of data-analytic acumen to N
'

[''' ~ ~ ~-~~~~ - - - N*observe from Figure 2-4 that the Receiver is reporting
fewer kilograms of material than the Shipper is claiming.
Also, the Receiver's values are considerably more variable

'-
l

that the Shipper's. The message is there for all to
see-and without any particular statistical sophistication to
muddy up the discourse.

| Recall that the vertical line inside each box is the median
for the corresponding values of the variable, while the left
and right ends of each box are the 25th percentile and the

- -

! 75th percentile, respectively, of the variable. In box plot - - - ._--. - . . . . . . . _ .

parlance, the 25th and the 75th percentiles are called
1

t

.- - .- - _ _. -

* '- * - * *N %-m epigium.+w* .ew, a we 4- , ,w.., ,

.

,,

e

{
!

. _ . . .-. . . _ - . . . _ . . _ . _ . _ . . .
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hinges, hinges. The horizontal lines extending from the ends of
whiskers the box are called whiskers. Indeed, you often will find

that boxplots are called box-and-whiskers plots. You will ,

!

sometimes encounter box plots that are erected vertically
with the whiskers extending upward and downward. _. m. _. _ _ _

~ -- . _- .__. _ _ _ __

For discussion:

Discuss the advantages and disadvantages of a box plot compared with )m

a histogram.
- - - - -. - - - .. - _

Box plots have numerous variations in appearance. For example, . .m
unusual or extreme values may be shown as asterisks with the
whiskers curtailed according to a rule of practice. In other cases, the
box's width may be proportional to its sample size. What changes in
box plots would enhance their value in your data presentation?

|

The 25th,50th, and 75th percentiles, which are necessary for theu
construction of a box plot, are not necessarily members of the dataset. . , , , , , , , . . , ,, , , _

)
How can this be? . _ .

What interpretation do you have for the whiskers of a box plot? ,

m

\
%

s

. . - .- \ ..._ ..

b.go.=.=. ggewga,e , ,

W
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What to remember about Chapter 2

$ You now have been introduced to-and, of course,
thoroughly assimilated-a number of graphical tools for
conveying statistical information. Each of these tools has - 7~7 - ; - u- u'

,

its own strengths and weaknesses, and each has the
- "-'

potential to inform or to disinform..

The five statistical graphical tools mentioned in this'

chapter are:
.

' a pie chart
a bar chart 7' ' c- ~~~~ -

a histogram - L-- - :-

a box plot.

Some specific statistical terms used in connection with
these graphs include:

.

a class interval
a class marker . . - . - . - - - . - - - - - -,.--

a median .: . . _ . . . . . . - . _ . -

a 25th percentile
a 75th percentile
a hinges
a whiskers.

-- -. _-. -- -.7
L-

. ._ ._ _ . _ _

% M 44 W6M>4h Ju o-h6=is - MG & e6Mh+
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Statistics and probability
|
|
!

What to look for in Chapter 3 '

Chapter 3 aims directly at the hearts of two tighti-/ -. . - -. - . . -

interlaced subjects: statistics and probability. This - _ . . _ . . _ _ .-

material contrasts and links the two topics, paying
particular attention to the ideas of:

n experimer1
*

,

j' a sample space
a random variable.

[Y- _

. . _ _ _ _ _ . _ _ . _

|
In addition, the fundamentals of statistical decision-making _ _ . _ _

are described, along with such specialized terminology as:
|
I

j u statisticalsigmficance
a Type i error
n 1)pe 11 error

! a level ofsigmficance.
i

, .- - -

. - - - . . . . . . . . . . . .

. . .- _ _ . . _

* ** " - * * 9='= 6 m.m. -----me.. ,,e.. , , _ , . ,, ,_ _

!

,

t

i
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is there a need to make a real distinction between
statistics and probability?

Of course there's a need to make a distinction-or we N
wouldn't have brought up the subject. It's just that all of [~~~ ~ 7 ~ " ~ '

~ ~ ~~~~~

us are so used to seeing and thinking of statistics and
probability in close juxtaposition, like " wine and cheese"
and " milk and cookies," that we sometimes neglect to
work through the implications. We tend to forget that
each concept in the pair is individually important, even
though they are clearly interdependent in our use of them;
e.g., wine really is different from cheese ... but together

~~

~ }~ ~}|they are something special.

Similarly, probability really is different from stathtics . .
but together they are very special. It may seem that, as
you delve into these matters, these t.re twin tigers that you
have by their tails. Nevertheless, they are distinguishable N

tigers. More than that, you must be able to distinguish N
between them to progress in the analysis and interpretation

- - ~ ~ - - - ' - - -of data. Consider how that distinction is made in the " - -

following two scenarios, based on material in Gilbert - --

(1976, pp. 59-60).

Scenario 1: Consider a box containing 100 colored marbles,40 of
them are red and the other 60 are blue. Blindfolded, you
remove 10 marbles from the box. These 10 marbles are
a sample of size 10 taken from a population of size 100. -- - - - - - - . - - . - -

Before you examine your holding (i.e, the marbles in your ;__ __ __ . _

sample), you may ask such questions as:

What is the probability that all 10 of the marbles in the
sample will be red?

.

What is the probability that the sample will contain exactly
9 red marbles and i blue marble? _ . _ _ .

_ .. . . . . _ . _ .. _._

|

_ _ -._ ._ __ __ .__ _ _ _ . _ _ _

.+- -, - - . v

h
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What is the probability that at least 7 marbles in the
sample will be red?

What is the probability that not more than 3 marbles in the ~
sample will be blue? j~ r,, - -r - c-

m..--_.. _

What is the probability that the sample will contain exactly
4 red marbles and 6 blue marbles?

The processes by which these types of questions are
addressed are directly within the domain of the' discipline
of science called probability. Its practitioners are called

~ ~ - - - . -- - ; |probabilists. .

' . . _ _;; |

The essence of Scenario 1 (the Probability Scenario) is '
that you know the makeup of the population (the marbles
in the box and their pertinent characteristics-in this case,
the numbers of each color), but you don't see the sample
data (the colors of the marbles in your hand).

Scenario 2: You do not know the nature of the population; at least; .. . .. . _ .. . , _ ..... _.. ,. _ ,, _.

you don't know that 40% of the 100 marbles are red and ,, , . __. _ _ , , _

60% are blue. All you have to work with is the set of
data derived from the sample. For example, suppose you
know only that you have 3 red and 7 blue marbles in your-
hand. Once you've examined your holding, your
knowledge is reversed from Scenario 1; now you may ask
such questions as:

" ~ ~ ~~~~'

What is the fraction (proportion) of red marbles in the - ;-
. - - -

,

How " confident" are you of your estimate of that fraction?

... . _ . . _ . . - , .- - - -

... . - _ . . , . - . , . -

- .m --n _

-- # --+- v.w . w -- ummmmimme eM'. ,we.--4-gih(e s.Nm gE wam .@ -w -_ .4w 4h .m.ma...-.6 es- um-

. .. . . . -~ ,.. - -- . . . . . , . . .,. . - . , .,.r .
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!How many marbles are in the box?

The processes by which these types of questions are ,

addressed are directly within the domain of the discipline - .y
of science called statistics. ~ Its practitioners are called

-

-

,
,

" - - ~~~
statisticians.

t

The essence of Scenario 2 (the Statistics Scenario) is that
you don't know the makeup of the population (the marbles
in the box and theirpeninent characteristics-in this case,
the numbers of each color), but you do see the sample (the
marbles in your hand) and the information contained in it.

. - - - - - _ __

L - - - . .- -. :
*

A short-but necessary-discourse on a notation
for probabilities y

Probabilities are real numbers. They are never smaller
than zero or larger than one. But, like a myriad of other ,

scientific concepts, they can be difficult to deal with
without some kind of shorthand or notation. " . ' ' ~ ~ ' ~ . ~ '~ - ~ . ~ . - - ' - ~ ~
Probabilities are indicated in this book by a special
symbol: Pr{0}. The O between the braces is a
placeholder; i.e., it must be replaced with a meaningful
description of an event before the symbol Pr{0} has
meaning. You read the symbol as: "The probability of
the event O." Thus, Pr{H} = 0.5 might denote the I

probability of obtaining a head, symbolized by H, in a
~~ - - - - - - - -

i single throw of a " fair" coin. Similarly, the expression "-

i Pr{5R, SB | 100 marbles with 40R and 60B} might N
'denote the probability of drawing 5 red marbles and 5

r

\ ,

|
This problem is real. Such varied professionals as wildlife managers face it when they set out to

'

-- * -~

3

estimate the size of a population of particular species as do census takers when they attempt toi

! estimate the number of people not counted in a census operation. You will find material on these . , . _ _ _ _ . .. ,,, _ _ , _

problems and their salutions in Brownlee (1%5, pp 162-163), Chapman (1951), and Hogan (1992).

i

de
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_

blue marbles from a batch containing 40 red marbles and

L 60 blue marbles.

You will see more of these concepts as you work through
this chapter and on into the rest of the book.

' p- - - --
,

u. _ . _ _ . . _ _ _ _ _ . _ _ _ .

Linking probability and statistics: Experiments,
sample spaces, and random variables

As teachers and promoters of statistical techniques, we are
ever-sensitive to introducing any concept at any time that - . . , _ _ . _ _ _ _ _ _ _

risks bringing on an attack of YEGO 2 At the same time, ' ' ~ ~

certain ideas must be faced unflinchingly because, ome
conquered, they are keys to deeper understanding and
appreciation. In law, one faces contracts and torts. In
accounting, it's debits ad credit,. In engineering, it's -
wave guides and two-port parameter conversions. In
medicine, whatever the subject, it tends to be
unpronounceable. Yet, in each discipline, understanding ''''~' *^-~~~ - ' -

and progress are in the details.
. . - . . - - - __

In statistics, h's experiments, sample spaces, and random
variables tl'at serve both as barriers and as bridges.3 All
five of ther,e italicized words have common, everyday -
meanings sad values.' In the next few paragraphs, they
are given precise probabilistic/ statistical meaning.
Grappling with them at this point will bring satisfying .

- - - - - - - - - - - -

rewards later. -
, ;*

-

,

i
I

)

1

!

2 YEGO = Your Eyes Glaze Over.
-- - - -- _. . . - _

- . . _ . _ _ _ . . . . . . ..

The development of these ideas owes a great deal to careful and more detailed expositions in Brownlee3

|
(1%5, pp.1-86) and Meyer (1970. pp,1 116); eith nour:e will reward the interested reader.

I

- . -. = . _ _

- - -. - - - ._ _ _ . . _ _ _. _.__...- _ __ ,_ _ ,_ , _, , _ . _ _ _ _ , _
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,

i expenment, An experiment is a planned inquiry to obtain new facts or

i outcomes to confirm or deny the outcomes of previous experiments,

| where such inquiry will aid in decision-making,4

Some examples of experiments are: ~ ~ 7 '~~~ ~ ''
- . _ . . _ . _ _ _ . _ . . _. _ _

the tossing of 5 coins and observing the absolute valuea

of the diference between the number of heads and the
| number of tails

i
'

One of the canons of the scientific method is that an
experiment is capable of being repeated an indefinite

- ' - - - - - - - - ---

number of times under essentially unchanged
conditions. Fanciful as it seems, the main idea here is - - - - -

that you could, if you had the longevity and the
stamina, repeatedly toss those 5 coins and observe the

33outcomes a decillion (i.e.,10 ) times-or more.

! .

! N
N

j 4 nis definition is adapted from stecI and Torrie (1980, pp.122-136). Although their focus is on .. . .L_.....___ , _,,,_ ,, , , , .

[ agricultural experiments, their precepts are adaptable across all experimental situations, as shown by
- ----'

these excerpts from their material:

If we accept the premise that new knowledge is most often obtained by careful analysis and
interpretation of data, then it is paramount that considerable thought and effort be given to
planning their collection in order that maximum information be obtained for the least expenditure
of resources.,

l
| . expenments fall roughly into three categories, narnely, preliminary, critical, and
l

demonstrational, one of which may lead to another in a preliminary experiment, the
investigator tries out a large number of treatments in order to obtain leads for future work; most --- - - --- --- -- -- - -- -

treatments will appear only once. In a critical experiment, the investigator compares responses
_ ,

to different treatments using sufficient observations of the responses to give reasonable assurance
of detecting meaningful differences. Demonstrational experiments are performed when extension
workers compare a new treannent or treatments with a standard. In . . the critical type of
experiment . , it is essential that we define the population to which inferences are to apply,
design the experiment accordingly, and make measurements of the variables under study.

Every expenment is set up to provide answers to one or more questions. With this in mind,
investigators decide what treatment comparisons provide relevant information. hey then
conduct an experiment to measure or to test hypotheses concerning treatment differences under

~ ~ '

comparable conditions. They take measurements and observations on the experimental material.
From the information in a successfully completed experiment, they answer the questions initially -- _. . ..._ .. . . ._

posed. sound experimentation consists of asking questions that are of importance in the field of
research and in carrying out esperimental procedures which answer these questions.. *

_ _ _ _ __ _ . ._ __ _. _ _ ._. __,

-- .- -p. m. -,.. .em,,. .su .g. ,w,. .m. ., -amm .. _w .%

_
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the selecting of a painted automobilefenderfrom aa
production line and observing thefender's paint color

,

and the number offlaws in the paint j
<

|

I

!' Although'you may not be able to state what a .
r ;' -,y u-

-

'

particular outcome will be, you are able to describe L-- - ..._

the set of all possible outcomes of an experiment.
;

Thus, for any single fender, you could observe 0 or 1.

or 2 or ... flaws. - ,

1

. !

the selecting of 10 commercial establishments in aa

L (sufciently large) community and observing the
amo' nt offuel usedfor heating each of them . . - - - - . , - , - - - -

-. . . . . . .. _1

As you perform an experiment repeatedly, the:
individual outcomes are unpredictable. However, as

,

| you repeat the experiment a large number of times,
you expect a pattern in the frequencies of the
outcomes. . You could select 10 commercial buildings

many different ways, each time observing 10 differenti

values for the amounts of fuel. - Thus, each set of 10 . , _ , , _ _ ,
.

commercial buildings yields a different histogram of a._.__-__......____a

fuel use; although the histograms are different, you

; expect them to bear similar shapes, locations, and -

|
widths,

sample space A sample space is the set of all possible outcomes of an ,

; experiment.

" ~ ~ ~ " ~ ~ ~ ~ ~ ~ ~

You must have a clearly stated idea of the set of outcomes;

I (i.e., what you are observing) of the experiment. This
- - |-

i means that you must be ready to record what happens
when you conduct an experiment. How do you dec:le

; upon the sample space for the difference between the
numbers of heads and tails in the toss of 5 coins't |-

*

l
.

You must be able to conceptualize and articulate the-

number of outcomes in the sample space. A given sample - - " -

?

space may be one of the following: - - - - - - - - - - - . . . - -

3

!
1

4 l
1

i 1

- - -. . , - . _ . _ .

"" ''N 5 +46 em a > 4..mm 4 , , , ,
.

d

i

,

l4 .

- - .- . - . _ . - _ . _ . . . . . _ _ . . . . _ . _ . _ .,

_ _. . . - . .
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_

m fnite (i.e., have exactly k possible values, where k is a
positive integer)

- a countable (i.e., have an infinite number of possible
answers, each of which corresponds to the set of -
positive integers {0,1,2, ... })

b- - -----~ 7 '

- w t;

e continuous (i.e., take on any value in a range of real a-_ - -

values)

How, for example, might you conceptualize and articulate
the number of outcomes for the difference-between-heads-
and-tails experiment? For the fender-examining . |
experiment? For the fuel use experiment? ;

' |

l' An outcome of an experiment is not necessarily a number. _ . . . . . _ . _ _
nj

The color of the paint of the fender is not a number. But ,

this .is not to say that a number cannot be assigned to each
color. For example, you might assign the number 1 to ]
red and the number 2 to blue. Or you might decide to - i

- code each color according to its position in the spectrum.
1

1

ra'idom A random variable is a function that takes a defined value
<

' ~

uariable for each point in the sample space.
. - .- . . ..-.. -. . - - _ , ;

Although your intuitive understanding of " random ~ ;

variable" is sufiicient for some situations, it is important-
to know that the idea can be given precise definition. .)

Thus, to bite this bullet just a little harder:

Let S be a sample space associated with an-
experiment.' Thefunction X which assigns a real {- ')

-~

|-
number, X(s), to every element s contained in S,

! is called a random variable.
1

The degree to which this formality is intimidatmg is a
direct measure of the need to mxlerstand it. . So let's takec

another look at the toss-of-5-coins experiment. -|
l i

,, - - . . - . . - |
___._._.___...!

)

i

. . . .. . ._ _4 -_ _ .._ - _ . _ . .._ _ _ ._.. - _ . . . _ . . . _ _ _ .

- - - - - - .._. _ -. - - - _ _ - - - -- ._ . .- . . - - . . .

. . . .

se eg *. e. .y- 4 da.+. -w -.4 4amei i --es.-e eV As

!-
- - -

-. .- . . . . , _ . . - . __ ., _
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|
|

L i

|
The sample space for this experunent consists of six

| ordered pairs; i.e., S = {(5H,07), (4H,17), (3H,27),
| . (2H, 37), (IH, 47), (OH, 57)}.
L

- -||

Now define the random variable X as the absolute value of ,-"-i-- - - -
-- u

L -- - -- ;
the difference between the number of heads and the

--- -

number of tails in a toss of five coins. Thus, you have
X(5H,07) = 5, X(4H,17) = 3, X(3H,27) = 1,- |

X(2H, 37) = 1, X(1H, 47) = 3, and X(OH,- 57) .=. 5. |
i

Note especially that, even though the sample space .

i
contains six points, this random variable has only three

idistinct values: 1,3, and 5. See Figure 3-1 for a
graphical representation of this process.

- - - - - ~ - . _ _ _

- ..

. . . . . - . . . . . - . ,., ._

** a= w - a, _L.4-. ..

i-~~---,--_ ,p

- -
-

!

!

|
|
.

h e- e y.

. - - _ . - _ _ . . _ . - _ . _ . . _ . . . . . . _ .

|

|

l
i

" '~ ' " " " " ~*- -- . -. . , . .. ., _

.

- -. - - - - - - . - - . . - _ , . . - .. _ _ ,_ _ . - _ ____ _. _ _ _ _ _ _ ,

i
i

--- - --- - . _ , . . _ . . . . . . . .,_,. , . ,. f
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l
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Figure 3-1:
The 5-coin experiment illustrated

:V'
' -- - , . --,

_ . . . .

. -. - - . - - _ - _
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The Randomi

Variable - - -- - - - - -. - - . -- - -The Sample Space '
k. s

. . _ . . . _ _

'

With only minor modifications to keep notation consistent,
we concur with Meyer (1970, pp. 56-57) when he notes:

In referring to random variables we shall, almost
without exception, use capital letters such as X, Y, Z,

~ ' ~ ~ ~~~~' ~~~ ~~~ ~~ ~

'- - - -
etc. However, when speakir.g of the value of these
random variables assume wr. shall in general use lower
case letters such as x, y, z, etc. This is a very
important distinction to be made and the student might
well pause to consider it. For example, when we speak
of choosing a person at random from some designated
population and measuring his height (in inches, say),
we could refer to the possible outcomes as a random , _ _ _

variable X. We might then ask various questions about
X, such as Pr(X 2 60}. However, once we actually

- ~~ ~ ~ ~ ' " ~~~

_

'" " " * " "" h *ee'.+ e -s -.. .aw em= .ew._.. _,, % __, ,9 r , ,,m, , p

* 69.ap om en g g ,
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choose a person and measure his height we obtain a
specific value of X, say x. Thus it would be
meaningless to ask for Pr{x 2 60} since his height

| cither is or is not 2 60. This distinction between a
,

random variable and its value is important, and we shalli ' -''~_

u._.......u_.__.__'_.
-

make subsequent references to it. ,

As you explore statistical /probabilistic literature, you will
encounter some writers who use the term variate as aj.
synonym for random variable and/or use P(O) as a
symbol for the probability of the event O.

. .- . _. -. __, . . ___

.

- - .- . - - . .- . _ . _

For discussion:

Consider an experiment consisting of independently tossing two " fair"O
coins. Def' e a random variable, say Y, as the total number of heads| m
observed. Let the values of Ybe denoted by y. Show that the sample
space consists of these four points: (0,0), (0,1), (1,0), and (1,1).
Show further that, at these points, it is reasonable to declare that y " ~ " ' ~ ~ ~ ~ ' ~ ~~' ~

takes the values 0,1,1, and 2, respectively.
. . . . . _. .. _ . . _I

f a Define the sample space and corresponding random variable (s) for the
fender-examination example.

|
Define the sample space and corresponding random variable (s) for the| c
fuel-use example.

'~~ - ' ~ --- - - -- - -- ,

Do you have any experiments, sample spaces, and random variablesO ' - - ---- - - '

where you work? In your life? What are they? How do you
characterize them for yourself and for others?

|

|

. _ . - _ _ . ._ _

*---w .-- .... ... . . . . . _ . ,
|

- - -- - ._. __ ._ _ ,

'~ **" " " * * ~- wm . w._ ,,, ,, , _
_
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,

. Statistical ' significance'-.

I A couple of Webster-like definitions of sigmpcant are:
i

) 1. important, weighty. I ' ; ; ~ '' ' -

; 2. caused by something other than mere chance.
' '~"*~~~,~ ~~^~

.

,f:

Y -
y

The first definition has no place in statistical analys'ts.-

| Importance and weightiness derive primarily from the-

]- participants' circumstances and their perception of an - ;

j event; they do not derive from processes that lead to |
statistical assessments of that event. Moreover, when you

,

are dealing .with probabilistic/ statistical matters, you must
" -" - -

; );

avoid emotional involvement with the data. -- - ~ -- ~-- - - -- s
. )

3. Suppose that a guy named Joe buys an airplane. - To Joe, I
.

it's a personally sigmycant event. No doubt about it. But . I
'

i the event itself has nothing to do with statistical I
~

sigmfcance. . The event is not connected to a set of data -
i ' or to deciding what to do about the implications and

i consequences of the purchase. - - - - - - - - - -

j
.

.

.. - - - s _ , . _ _ _ . . . __

i But now suppose that Joe and 50 of his neighbors all buy .

j airplanes in the same month. They live in the same.
community, population: . 2,567. Now you have data-the4

event is now an informed event, and you can begin to -4

I consider implications and consequences: a secret ' society? :

i. a clever airplane sales pitch? sudden riches ... and you're )
4 not a part of it? is there some way to join them?. |._..__._____..__.__y
- ,

i This informed event now invokes the second definition:
that " mere chance" is rejected as a reason for the j*

ioccurrence of a specific event (a probable answer); i.e., -
something other than "the laws of chance" is believed

i linked to the event. That's the crux of statistical
} inference.- ,

1'

' ~ ~ ~ ~ ~ " ~ ~ ~

Consider the possibly apocryphal tale of the lady who
~ ~ ' ~ ~ ~ " ~ ' ~ ~ ~ ~ ~ ~ ~ '

3 bought tickets for several raffles at the Texas State Fair in
;

|
r

' -
.

d

. -= +== am - .e .w.. s.. e- ,,. . . . . , ,.. , % ., , ,. ,, , ., , ,,

. . . _ _. - _ . . _ -. . _ ._ _ . _ _ . . . _ _ . . . _ _ _ . _ . . _ _ _ , _ _ _ . __ __

.
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the fall of 1957 and then won an automobile in three of
those raffles. This is certainly personally signifcant to the
ticket buyer, but is it a statistically significant event?
Which explanation suits you: (1) she had " help" in
matching her tickets to the winning numbers, or (2) she ----;~-_. - _ ,, .

, ,.. __ . ,

T
'

truly was " lucky" and benefited from materialization of . - _ _ _ _ . _ . _ _

the very small probability of winning three raffles. ,

And what do you make of the fact that all seven of Edith
and Ed's children became undertakers? This fact has all
the makings of a significant event, doesn't it? And, just
to spice things up, it contains a touch of the macabre.
One explanation is that all the children were educated and - _ _ ._ __

motivated similarly. Another explanation is that the - ' '
.

children were not influenced similarly, but they
independently (i.e., "by chance alone") chose the same
career. (Could there be such a thing as mortician's-

genes?) Because the second explanation seems so
unlikely, you might opt to accept the firat.5

.

In everyday life, we all tend to be fairly loose in our use . . .'"'

of terms such as likely and unlikely and probable and - ' "!

improbable. However, one of the major contributions of
statistics to the 20th century is a body of knowledge and
processes with which you can tackle these matters, it

,

boils down to this question: When do you justifiably
classify an event as unlikely? ,

\
.|

. . \. - - . - - - .._,.
.

For discussion: )

!
.

a Consider these words and phrases: likely, unlikely, plausible,
i implausible, probable, improbable, possible, impossible, always,

.
- ,

3 The untold story: Both Edith and Ed were themselves undertakers. Every evening before the - ~ ~ ' - - - - - - * - -- - ----.-

children went to bed. the parents regaled them with tales of how much fun they had that day, going
on and on about their exciting professional activities. Now, is this significant. or is this significant?

- _ . . _ _ _

'' ' # ** 6'*-e.h - m .h _. ,, _ ,, _,

4

.. -- - .. . -. -- . -*- ....%,.4 m- . +, ..o. .,#-
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|

! never, certain, uncertain, now-and-then, once-in-a-while. What
| sequence of these words and phrases would you use to indicate

increasing degrees of belief 7 Which indicates the lowest level of
belief and which indicates the highest level? Where would you place
the word sigmficant in your sequence? -7-- - , ew

|
.._ _ _ _ .. _ _ ___

! O What are some other words and phrsses that convey similar degrees of
' belief? Where do they rank in your list?

O What, indeed, are degrees of belieft

0 . Comment on the pessimist's credo: Just about everything is 8-to-5
against. - - - - - - --

. .

a The following appeared as " Fisherman's Luck" in Sports Illustrated,
January 16, 1978:

A bass fisherman in the State of Washington worked out a
surefire formula that would allow him to fish without buying a
license, yet not get caught. Into a computer he fed data on his
county's population, the total miles of roads in the area, and the

~ '" - ' ~ ~~''' ' * " ' * - " *
number of wildlife agents in the region. The computer gave
back the answer that the odds were 10,000-to-1 against his being - -- - --

caught.

| 'Ibe fisherman later explained all this with some embarrassment to the
, wildlife agent who caught him and charged him with fishing without a \

license. \
Nt

What, if anything, is significant in the " Fisherman's Luck" story? _.,i_,__,__..,__
| ~~ .

!

|

|
- -

.__._..__...s . . . . . _ .-

|

!
. .. .. .-. _. . . . ..

!
. . . . . - . - _ -. - . - __ - - . - -._ - . - - - . _ . . . _ _ . - . _ _ -_

l.

.

.

. _- . _.. _ . . .. . . _ . _ _ - _ . _ _ _ _ . . . _ .. . _ . .

|

l
;
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Praliminary concepts of decision and risk:
,

- Coin-tossing and statistical decision-making,

Consider an experiment which is a game in which you toss -- - ---- -

- ,,. _
.

i a single coin one time: i..-__. . _ _ _ _

|

*

;

Heads: Tails:
i- you win a dollar you lose a dollar
4

4

! You expect to play with a " fair" (or " unbiased")_ coin, not
j - an " unfair" (or " biased") one. Of course, the ultimate . _ _ _ _ __,_____j
* - biased coin would have two tails, and you would expect to' . .

m ,

i have a difficult time winning.
1
1 Consider a second game: You toss a coin 4 times, and

you lose on every toss. You are out $4. Does this'

sequence of 4 straight losses seem "unlikely?" That is, do;

; you have reason to be suspicious that the coin is unfair

(biased)? What's the evidence? .

1. -s m..-
; .

. . . . . - . . . .

1- j

' ' How do you determine the " unlikeliness" of 4 straight
-' - - ~ - -

;

; losses with a " fair" coin? Suppose, admittedly' quite
: arbitrarily at this point, you decide to declare the coin to 1

be " unfair" only if you observe something unlikely when |
,

*

you play the game. Moreover, before examining the coin,'
;

you decide that "unlikely" means a result whose
,

probability is not larger than 5% (i.e., one chance in 20; jt

" - - - - - - - + -

i usually written as a decimal 0.05). With 4 tosses, you
L- -

-

: have the following 16 possible sequences:

I
! HHHH HHHT HHTH HHTT- HTHH HTHT :

i HTTH HTTT THHH THHT THTH THTT
' TTHH TTHT TTTH TTTT
1

1 4
: Of the 2 = 16 sequences enumerated here, only the very
t last one (TTTT) corresponds to 4 losses in a row. Based . _ .. .

j upon all sequences being mutually exclusive and equally _ . , _ _ _ _ _ , , _ _
,

b

I
'

i

n

,

a %

a

** * - - - -+~<......_.m . _ , , , . _ _ _ _ _ , _ , , , _ _ . _ , _ , __

.

i

'

i- .

- - - . . . . . _ _ _ _ _ _ . .__. ._ . ._ . _.

.. . _
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6likely to occur, the probability of such a loss (before the
game started, of course!) is exactly 1 out of 16, or 1/16 =
0.0625. Because this result is greater than your 0.05, you

,

conclude that, with a " fair" coin, a sequence of 4 tails out
of 4 tosses is not unlikely. -- - - - m m

. . . . _ . . __ .. _ __

Consider now a third game: You toss the coin 10 times,
and you lose on every toss. You are out $10. Now, do
you suspect that the coin is biased? "Probably, yes." ~

With a '' fair" coin, winning 0 out of 10 seems unlikely.
What's the evidence?. How do you measure this

-

unlikeliness?
- -

_

t
- _ _

. i;
|

As with the 4-toss case, you could set out to list all

! 210 = 1,024 possible sequences from HHHHHHHHHH, _
HHHHHHHHHT, HHHHHHHHTH, ..., through ...,
TTTTTTTTHT, TrrrrrrrTH,' TTTTTTTTTT.

If you lay out these 1,024 different sequences very
carefully, you will find that only the last one
(rrrrrrrTTT) corresponds to a no-win result. Hence, -.4.- . .- - . .- .. . _.- . -

you now know that the probability of losing 10 out of 10
~

is exactly 1 out of 1024, roughly 0.001. Because this
,

| result is considerably less than the 0.05 used-arbitrarily,
I it must be admitted-to identify unlikeliness, you conclude

that this 10-for-10 loss streak is very unlikely. The basis
for action is thus laid, although the details of the action
taken depend upon many additional factors. .

_

. _ _ _ ___ _ . ___. ___

,

l
_. ..

*
i
!

,

B

. . - _ ,

As with the concept of random variable. your intuitive understanding of mutually exclusive and6

equally likely will serve you well enough in this discussion. Both terms are more fully developed in
^ ~ ~ ~ ~~~ ~ "' ' ~

|
Chapter 15.

1

- -- - --- - - . ~ . ._. _ ,_ _ , __ _ _ _

'
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For discussion: j

u What do you suppose is meant by the terms mutually exclusive and
. . |equally likely? [

' '
<

.

o What's magic about 0.05 as the level of significance?
|

|

|The example of 10 straight tosses without the appearance of a head0
may seem to be an extreme we. Would you reject the coin if 9 tails |
showed up in 10 tossed Would you reject the coin if 8 tails showed |

up in 10 tosses? 7 in 107 6 in 107 .. 2 in 107 1 in 10? -
. . _ _ . _ ,

; O We admittedly flinched when it came to enumerating all 1,024
~' 2' '

possible outcomes of 10 tosses. The methodology for doing so, along
with the derived probabilities is discussed in Chapter 16. Pending that
discussion, speculate on how you might go about finding the4

probability of getting more than 8 tails in 10 tosses?i

. . . . . . . .
- . - - , .- :

,
' ~ -~ ~ ' ~ ~~ -

iType I and Type il errors

From a statistical point of view, you may regard the
games just described as processes designed to decide s]
whether a coin is fair or biased. You'd like to believe |

,

that your decision is correct. But you know that 10 tails
in 10 tosses of a fair coin is not impossible-it's just
unlikely. So, if you call the coin biased when it's not, [~ ~~~ ~ ~

-

~ ~ ~ ' ~,

' -

you make an error. On the other hand, a biased coin
1 might give a nearly equal heads / tails split, say 55-45, and |

you might declare it to be fair when it's not, thus
committing an error-although it is a different kind. ;'

!

Rather than submit to paralysis by analysis, consider the
following pair of statements:

,-. . _ -

6 w.m....- ... . . . . . . . .. . . . , _ .

T

, . .

- ' ' * * '* .'4pm - . .4gqmpu.m ay,m _ _ , , ,,, ,,, , _ _

h

* .. .+a . -4 . .~- m. --. s.,- . - we . . o. , , ~ -e
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If a coin is fair and you call it biased, you make an error.
This error (which is not necessarily your fault!) is called a'

: Type I error Type I error.
.

e

It .s coin is biased and you call it fair, you make an error. ~77 - .
..

: But it's a different kind of error. To keep track, this o - .-- - - -- - .

error (which also is not necessarily your fault!) is called a
Type 11 error Type Il error.

'

. '
If you find yourself struggling with the concepts of Type I
and Type 11 errors, be not of faint heart. You'll find them
in greatly extended form in Chapter 9. Until we reach .h _that point, consider this algorithm for dealing with such . -- . _ ~ .

situations: . - _ . _ . . _ . _ . .
4

m Determine the " standard state" of the situation.
; Example: A particular coin is fair; i.e., the

: probability of getting a head in a
single toss is 0.5.

s

i
Establish a procedure to examine the " standard state."s' _ , . . . , . . , _ _ . , _ . _ _ , , _ , , , _

; This procedure provides data, upon the analysis of ~ ~ ' ' ~ ~ ~ ~

which you will base a decision about the correctness
of the " standard state."

Example: Toss the coin 10 times. Observe the
number of tails. Reject the correctness:

of the " standard state" sfyou observe ,

10 tails. |
;

;
~~~

~ ~ ~ ~ ~ ~ ~~ IIf the " standard state" pertains and you declare that ita*

does not, you commit a Type I error. i

Example: The coin isfair, but you declare it
,

biased. This is a Type i error. ;
,

a If the " standard state" does not pertain and you declare
,

i that it does, you commit a Type Il error.
Example: The coin is biased, but you declare it

fair. This is a Type 11 error. ' . - - .. - . ~ - . . . . . . . . _ . .

>

- -- _ __ _ _. . _.

** * * * * * * "**- M- h a .ee.emme. Mmq2 -,es.m. . m , , , , , , _, , ., ,

.

i

4

-
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_

Now, let's restate the rules of the coin-tossing game'and -
display general expressions for its Type I and Type II
errors: You will toss a coin n times (4,10, 57, or
whatever) and reject the coin if each of the n tosses results ,

;

-|
- " ~''- -' - + win a tall. The probability of getting exactly n tails in n .'

,

- ~~ --- -- - - "itosses when the coin is unbiased, i.e., when

: Pr{ head in one toss} = Pr{ tail in one toss} = 1/2, is
written as-

.

[ Pr{n tails in n tosses [ coin is unbiased} = (1/2)".

.

In a similar fashion, when the coin is biased,

'. Pr{ tail in one toss} # Pr{ tail in one toss} which means -
- - - - - - - - -

1 !
I that Pr{T} # 1/2. It follows that the probability of
4 getting exactly n tails in n tosses can be expressed as: . )

f

!

: Pr{n tails in n tosses | coin is biased} = [Pr{T}T.
, .

.

. . !a

From a statistical point of view, you make your decision
about the bias or the non-bias of the coin only after you've
observed the results of the n tosses; that is, you wait untili' . . . . . . - - . .c,_,,.

I the coin is tossed n times and observe the results before ._ ., . _ , _, , . _ , ,

\
; you decide either (a) the coin is unbiased or (b) the coin is
j biased. (What you do after making this decision is your
'

own nonstatistical business.)

The number of tosses you will make depends on the risk -
i_

i you are willing to take in rejecting a coin which in reality -
is fair; i.e.,' the coin's " standard state" is that it is fair. In'

,_ __ ., _ _ ,

: terms of the defm' itions developed here, this risk is
' ~ - - ^

i measured as the probability of making a Type I error.

j The nearly universal statistical symbol for this probability

.' is the lower-case Greek letter alpha a. In mathematical
: symbols, for the coin-tossing experiment in which n tails
: appear in n tosses, this is expressed as

- a = Pr{ Type 1 error} :

Pr{n tails in n tosses | coin is unbiased} j1 =
~ ~ ~ ~ - - - - - - - - - - -

(1/2)".=

!
.

.

1

|

I

- -- - . _ . __ _ _ _ . _ _ _ . _ . _ _ _ . . . . _ . _ _ _ . . _ _ _ _ _ . _ . . . . _ _ _ . ._ _ , _ . . .. _ _ _. _

|

!
'

e

4
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= = .-.
.

Thus, if you are willing to play the game with a s 0.05,
go for a five-toss game because (1/2)" = (1/2)5 = 1/32
= 0.M125; a four-toss game is inappropriate because
(1/2)* a 1/16 = 0.0625 > 0.05. Similarly, for
a s 0.01, play 7 tosses; for a s 0.001, play 10 tosses.

{
"

;
-

The probability you are willing to take in committing a
level of Type I error is called the level ofsigmpcance of tne
signifcance game. Thus, you often encounter such phrases as "the a

level of significance" or "a-level" when these types of
studies are conducted.

As for the Type Il error, in which the probability of a tail p----------- - --

is not 0.5, i.e., Pr{T} # 1/2, the nearly universal ~

L. . . ... . ,

statistical symbol for its probability is the lower-case
Greek letter beta B. In symbols, # is expressed as

,

# = Pr{ Type Il error}
= Pr{at least I head in n tosses | coin is biased}
= 1 - [Pr{T}]".

. ,.n..-..._.,.-

. .___.._._._.m_.__ ,___

For discussion:

a The probabilities associated with the coin-tossing game are discrete.
This means that you may not be able to exactly match an arbitrarily
chosen level of significance. That is, you wind up adopting identical
strategies, whether your level of sigmfcance is 4%, 5 %, or 6%.

b _ _ _- -

- - - - - - - -

Statisticians cannot tell you what risk you should take (for that matter,
neither can probabilists), but they can help you make an informed
choice.

m For certain classes of problems, many federal agencies and private
industries have adopted the 5% level of significance level. In most of
this book, we set the probability of Type I error at the 5% level,
unless we have compelling reasons to do otherwise. Do you foresee _ _. _ _ _ __ _

any problems arising from this "one a fits all" approach? . . _ _ _ _ _ , _ . _ _ _

.-- . ..- - .- . - -

" " N **** 's==Nesmum % +h _ iguys.,g%. c,.,,,, . , , q, _ __

'" . ** m,a 4

.. .. ...
. . .

. ..
.

.
. .

,

__
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s

a Describe the coin-tossing game as an experiment. What is its sample
space? What random variable is involved? Can the experiment be x
repeated? Can you get different decisions (i.e., whether the coin is N,

| '

| biased) from different repetitions of the experiment? What might you
--- -m-- - -

;do about that?
u. _.. __ . _ _ _ . . .

c The following paragraph appeared in 7he Sunday Oregonian,
January 31,1993, p. D2, in a review of Assembling California,
published by Farrar Straus Giroux:

,

|
"The Geological Survey sees a 67 percent chance of another major

' San Francisco Bay Area carthnuake on either the San Andreas or the
Hayward Fault bcfore the year 2020," writes John McPhee in this . _ . . _. _... . . _ _ _ , _ . . _ _

fourth and concluding book in his excellent series on geologists and ~ ~ ~ ~ ~' ~ ~ ' ~ ~ ~
.

geology, Annals of the Former World.
,

!

Using whatever means you wish, whether based on this chapter or
derived from other knowledge, comment on the meaning and

,

| interpretation of McPhee's statement as displayed. What questions
come to mind? Is " chance" a synonym for " probability"? What!

happens when you apply Huff's criteria from Chapter 1 to the "" '' ~~~ ' - ~ ~ ~ " -~~

statement? How might you interpret the statement for your family,
your colleagues, your favorite teacher? Is it a statement that leads to

- - - - -

action?

_ _ . _ . _ . . __ _ _ . . _ . _ _ _ _

b. emessem- dSe

, . . --, _ . _. . .. .
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_ _

What to remember about Chapter 3

Chapter 3 contrasted and linked the two topics of statistics |
and probability, emphasizing the importance of

-.- - _ .- . . . ....n.-
,

.

" ^^ ~"' " ~ ~^^ ~~~ ~--

a experiments
a sample spaces
a random variables.

Statistical decision-making was described, along with such
specialized terminology as

~ ~~~ ~ ~~ ~~~~ ~ ~~Ta statistical sigmpcance
' ~~ ~ ~ '~ ~ ~a Type i error

n Type 11 error
a level of sigmpcance.

These concepts are further illustrated and implemented :

with respect to contingency tables in Chapter 4. |

!
.. .. . _ . , .,_.- _- . ._ . . .--

6 -e .e .* h w+-

p = + me enwn -v -sum en ese-e e= aim + p. hp 9

+.hg.-- ^

t

!

, . -. .
|

1
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I
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Contingency tables ,

|
,

What to look for in Chapter 4
|

~*^'~ "~"'"" '~~'~*~'*~
Chapter 4 introduces contingency tables and their

- -- - - '- ---

analyses. They serve as a vehicle for introducing the
formalities of statistical inference. Special topics and
ideas to look for include:

a 2x2 contingency tables
a chi-squared statistic

general two4imensional contingency tables
* -" -- ---- ~~

a

a some sample-size considerations
*

;

n McNemar's test statistic - -- - -

a Simpson's paradox.

| '

The chapter concludes with a general protocol for two-
'

dimensional contingency table analysis and makes a
connection with OSDAR's guidelines from Chapter 1.

. . _ . . .. . ._ .

> ee e. - m.. e em e . - - e4 m - .ma < . am 4 %

,

!
l

|.

. -.. - - - - - . _ - - . - . - - - - -..- . . _ _ _ . . . _ .. -
-|

|
1

|
*

-. - . -- .

|

,
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|4-2. Applying Stztistics gggg. . . gy

On the val'ue of contingency t' ables

This chapter breaks a long-standing tradition honored in |
|many books on applied statistics; they tend to relegate -

_._.I_i ' ', ' '' *
! their discussions and analyses of contingency tables to a J ,

"~

f position near the end of the text-if they bring up the topic
~

|
at all. Here you will find material on the construction,
analysis, and interpretation of contingency tables, which '
are of special value in the development of this text for the ..

following reasons;

e You can describe and demonstrate contingency tables
with very few, and often uncomplicated, data,

- - ~~ -^~~ p
_ - ,u_._____ __ _ _ _ .

You can use contingency tables to illustrate many of ;I e
.

the concepts required in making statistical inferences ~.

r

.without being bogged down by complex calculations. |

|
e You will find that contingency tables arise " naturally"

in many data-driven situations, that analysis of them is
a straightforward procedure, and that they provide you - - - - - - ~ ~ ~ - -

.. - - - ~ --. . . _ _ . . 7with a valuable tool that can be used in dealing with a-

| every-day problems.

m You will discover how contingency table processes
vividly illuminate situations in which statistical naivete
leads to incorrect inference.

We choose to delay a formal definition of contingency ' _ ._ . . _ . _
1

| tables until we have introduced a few underlying ideas by , _

| means of examples.
| - ,

1

,-

. . - . . . - . - . . - .

b meme a. am.o. .= m em A m.em.e s- em.g . . . -

1

.|
,

1

)
. . |

_ . _ ._ . _ . _. ._ _ _ - - . _ . _ . _ _ _ _ - _ _ _ . _ _ _ _

.- . .
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l

Ex:mple 4-1:
On the connection between intelligence and wealth (Or:If you're
to cmart, why ain't you rich?)

Suppose you wish to investigate whether intelligence and ~'~ - "~~ 7 - +;
wealth are related. As used here, the word "related" --- ---- --

I suggests a mutual connection or a linking between two \!

variables; in this case, the variables are intelligence and

wealth. But do not mistake this idea of connection or
! linkage as being cause-and-effect. Thus, in this example, \
[ you will not address the question "If you're so smart, why \

ain't you rich?" any more than you will address the
- - -L

y
symmetric question "If you're so rich, why ain't you

- . - - - -

| smart?"
_. ._ _

In order to legitimize this study of a difficult-even
emotional-matter, you must at least:

|

Define the population of interest (single, males, agede

18-35 years, ...).
|

. . . . . - ~ . . - . . _ _ , . _ . .

Define " rich" precisely (say, gross annual income , _ , __I e

| greater than $100,000).
1

Define " smart" precisely (say, Intelligence Quotientm

greater than 120),

Establish the sample size needed for the investigationa

(say,100). - - - --

~~~ - ~'~~ ~~ ~

Determine a procedure for obtaining a sample froma

the agreed-upon population.
.

m Have the resources (time, money, ..) to get the
needed data.

.-

--. . . - . . . . . . - .

. -. .-.

|

|
- - - - - - _. .._ ___ __ _ __ ._ _ _ . . . _ , _ _ , _ ,

_ - .. - . . ._ .. . . . . . . . . . . . . _ .



,
. . - - _. . . ..

e~. . . 44 . . . . ..

t

4-4 Applying Stztistics -

Know what analyses are available and appropriate.e

m Know how to interpret and present the results of the
analysis.; - , - . __ _. , , . __

1
'

Suppose that you are able to meet all of these conditions.
~ - - - - - - - - -

Suppose further that the sample you collect gives the
following data:

;

I 24 individuals who are smart and rich

6 individuals who are not-smart and rich
|

- - - - - . .- .- . - - .

56 individuals who are smart and not-rich - -

14 individuals who are not-smart and not-rich.

You begin your analysis by forming a 2x2 (read as two-
by-two) contingency table. That is, you place the data
(which are counts or frequencies) into 4 cells of a table
with 2 rows and 2 columns, as shown in the shaded cells . . . .. - - . . . - . _. -, -

in Table 4-1. The row totals and column totals usually . . . . . _. _

are added at the right and bottom as shown in Table 4-1.
The total in the lower right corner is called the

Grand Total Grand Total, which sometimes is also denoted by n to
indicate the number of individuals represented by the data.

-. . . - . . . - - - - - - . _ - . . - .

._ . - . .

I

|
|

i

, . .-- _ _ . _

k m .es ._..a.4... me . w.i .,4 ,eg e, %.

- _. _. _. . _ . . . .__ .. .. _ . . ____. . ..._ .. .. _.. ._ _ . . _ . . _ _ _ . .

0

4

- * - ..... . . . . , . ,_ ... . . ,

l
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l
Table 4-1: '

A 2 x 2 contingency table for the smart-rich study
\

Column 1: Column 2: -Tr =m~~

Smart Not-smart Row totals '- -- -----

Row 1: Rich 24 6 30

Row 2: Not-rich 56 14 70

Column totals 80 20 100

- . - - - _ . _ _ - . _ ,.

- - - -. .. _ _.
___

For discussion:

o Which of OSDArs elements have been included and discussed so far? 3
s

Look ag'dri at Table 4-1. Is there anything interesting or unusual or
'

D

curice air,ut these data?
- . _ _ _ _

If vo,. pick a person at random from the population of interest, whata .

is t).e probability that he will be smart? rich? smart and rich? What
assrmgion went into your answers to these questions?

a Scme probability-based terminology is useful in discussing
contingency table a talyses. In terms of the smart-rich study, for
example: . _ _ , . _ . _ . _ _ , _ , _ _ _

~ ~ ~ ' - ^

O The probability that a selected individual is smart, irrespective
of his being rich or nor, is called a marginalprobability,

! O The probability that a selected individual is both smart and
rich is called ajoint probability.

, - - . ..

!
. - - - - -- -. ... - . . . . ,

1
1

'
- .. .

-' -- *e- - = = = +.e... ._..%,,..m__,,, ,,_,, _ _ , , . _ , _

"4' , m,
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O The probability that a selected individual is smart, r,iven that
he is rich, is called a conditionalprobability.

D You will find an extended discussion of probability in Chapter 15.
- - - , . . - . . . ,

L.--_.-...-______

|

Example 4-1 (continued)

Note that, in your sample of 100 individuals, you find

30 (30%) classified as rich. Then note that 24 out of the
80 (30%) smart participants are rich. Similarly,30% of

- - - - - |the not-smart participants are rich. This indicates that, e- -

!

whether smart or not,30% of the participants in the study - . .

are rich. Hence, without any special statistical weaponry
or particular computational difficulty, you conclude that
wealth is independent of intelligence.

In a similar manner, you can see that 80% of the i

participants are smart, regardless of whether they are rich
or poor. Hence, you conclude that intelligence is . , , . ...-. . . . _ . ._ , ,_

independent of wealth. , __ . ._ _ _, ,_ _

Restated in a more generic formulation, the rows
(representing two different levels of wealth) and the

| columns (representing two different levels of intelligence)
l are independent. The independence is demonstrated by

the fact that the proportions of participants in the
individual cells are identical to the proportions given in
the row and column totals. {____ _ _,_,_

Your inevitable conclusion from Table 4-1 is that wealth
! and intelligence are independent.

!

~

. - . . - . . ... . -

~ * ''**"" "" *== n m -, ,,,,

~ ' " " '' "" **"'h 8' - --gym m.m- - . ,,,_g_ _ ,,_ _, , __

m e- O . Ses' 9h* e-4 ,4 4 hhe gem.s.- 4 A hyr- 4 +g.4 e 4 ,s.h .-i
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Example 4-2:
Weld quality

*

1

A certain welding operation is performed by two teams, i
, .. JA and B. A regional inspector periodically evaluates their --' m - ---

welds for acceptability. The inspection results for 100 - - - - - --- - - - 4

welds, selected at random from a single day's work, are
summarized in Table 4-2. You note that the row and

*

column totals are the same as those in Table 4-1, but the
tallies in the individual cells are different..

. .

|Tchle 4-2: - - -- -- - -- -

A 2 x 2 contingency table for weld inspections _.. _. . _e __; .,

l

Column 1: Column 2: Row )-

Acceptable Not acceptable totals

R:w 1: Team A 30 0 30
i
.

"**" ~~~ ~ ~ ~ ~ ~ ~

R:w 2: Team B 50 20 70
1

. _ . . .. . . _ _ _ _ _ .

Column totals 80 20 100
4

J.
Note that 80% (80 of 100) of all welds are acceptable.
Assuming row and colunm independence and again
judging by the row and column totals alone, you expect 24
(80% of 30) acceptable welds by Team A, but you get 30- " - - - ~ - - ' ~ ~ ~ ~ - - - ~

instead. You also expect: 56 acceptable welds from- ---

Team B, but you get 50; 6 unacceptable welds from -
Team A, but you get 0; and 14 unacceptable welds from
Team B, but you get 20.

:

|a

>

. . _ _ _ . - _ . . . ._ .
;

---- --- - . . . . . . . . -
,

!

4

4

$

- -- .. - . ._ w _ , . .

~ *=d Tw wow-. .,eme-em.a-e ow n e-- -mnasen.m* . Amg.,,g,,4%,_, _m.m,,gg,, _ _ _ .g . , _ , _

6
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i

l

For discussion:
;

Look again at Table 4-2. Is there anything unusual about these data?a ~r ~
' -1' u

More particularly, do they indicate a relationship between teams and , ,

~- ~ - -- ---

weld quality?

Do you think it is " fair" that only 30 welds from Team A are rated,m
J i

while 70 from Team B are rated? " Fair" (or " unfair") to which team? 1

What could be done to make things " fair"? Is there really a contest
I going on?

How important is it that the day's welds made by both teams are
' -'r-----

|
u

examined by the same inspector? Or is it important?
. - L-

'

!
1

Some contingency table terminology#

Paraphrasing Kendall and Buckland (1971, p. 32), a- ~ ' " " ~ " ' " ~ ~ * ' ~ ~ ' ~ ~

contingency contingency table results when the items in a sample are

table set out in a two-way table, the rows and the columns of
~~ ^~ ~~~~- ~ '- -

,

;

!
which are any two qualitative characteristics possessed by
the items, provided that no row or column is completely
empty. For example, if the first characteristic A is r-fold
(i.e., r categories) and the second characteristic B is c-fold
(i.e., c categories), then the resulting display is said to be
an rxc contingency table; that is, it is a two-way table

~ - - - - -,
' with r rows and c columns.

.. _ . .

k

Adding a row at the bottom to contain column totals and a
column at the right to contain row totals yields an
augmented table with (r + 1) rows and (c + 1) columns.-

The lower-right cell in the augmented table is called the |

Grand Total Grand Total. |

! With reference to Table 4-1, let characteristic A be wealth - -

and characteristic B be intelligence. Both are 2-fold - - - - - - . ... . -__ _

;

i
~ ~ " ~ ^-- - . - - .. . _.,, ,_,

' ^ - * - - * k-oue- e--- , _ , _ , , _ _.g,

i

1
.

* - ** + .---. . _ _ , . ,_ ., _ , ,,

w
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characteristics; i.e, each characteristic has two categories
which accommodate every member of the population being
studied. Table 4-1 is therefore a 2x2 contingency table,

,

: whose Grand Total = 100,
-- m. - . _ ,

_,

_ _ ' . . ___ __. .._ _.
'

Returning now to Table 4-2, note the following: .._ - . . .

m In a strict mathematical sense, if the rows and the
columns are independent, then the proportions
suggested in the totals are reflected in identical
proportions within every column and within every

!- row. Thus, the count in any cell would be the fraction
of the cell's column total that is equivalent to the ratio . .. _ _ _ _ _ _ . _ . , _ _ . , _

of the cell's row total to the Grand Total. The- .
, ,

expected resulting value is the expectedfrequency (sometimes

frequency called the expected count or expectation) of the cell.

:

: s The expected frequency in any cell is not necessarily
an integer.

;

A quick way to calculate the expected frequency of a , ' ^" ' ^" " '~ ' ~ ~ ~ ~' " ~ ~~s
cell is to multiply the cell's row total by the cell's

' ~ ~' - ~ -- ---,

column total and then divide the product by the Grand |'

Total. To illustrate with the data in Table 4-2, the
expected frequency in the Row 1, Column 1 cell is#

(30)(80)/100 = 24. i

1

Recall that the 2x2 table containing the raw data isa<

called a contingency table. The term itself can be
- '

, - '-- - ---- --
| related to the use of the table as a tool to investigate

| possible " mutual dependency" (i.e., a contingency) - - -

: between the two factors denoted by the rows and the
columns. Kendall and Buckland (1971, p. 32) state:

contingency "The contingency is the difference in the cells of a
"

4

contingency table between the actual frequency and the l"

expected frequency on the assumption that the twot

characteristics are independent...." How does your

3 dictionary define contingency? - - - -

-- _. _ _ _ .. . . . _._

!

i

4

,,-*wm . ,- % .4 .m. .- ,e - . m.. _w ..e - # ., m. #,

e * -e.r- > ogme . 6, ww -.eae, . .mmana qm. eimy.w.-you. ..m e em _ .g..w, ,w.. e eag + y .9 ade..a.ei i

,
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_ _

The expected frequency in a cell of a contingency -m

table need not be an integer,

Rarely do you obtain cell frequencies in a contingencya
.

table that agree exactly with their expected .
.

.

-r-- - ;-
_

frequencies. Cell frequencies fail to agree with their o.- - - - . - - - - - -

expectations for one of two reasons:

(1) random fluctuations arising from the process under
scrutiny give the appearance of a relationship, or

(2) the rows and the columns are indeed related.
;. _ . _ _ . . _ _ _ , _ . _ _

lBut how are you to determine which of these reasons
i

prevails for a given contingency table? That question
is treated in the next section.

I,

Toward a general analysis of contingency tables |

The general statistical approach to examining a relation i.... ~ ~ - - - - - . - , _

between the rows and the columns of a contingency table _ . . . . . _

fluctuation involves the use of some kind offluctuation index or
index, coeficient of contingency. This fluctuation index
coeficient of measures (i.e., is a function of) the discrepancies between
contingency the cell frequencies and the cell expectations and takes into

account the number of cells in the table.

lThe fluctuation index is constructed to be exactly zero if . ._. . _ . . _ _ _ _ . _ _ . _ _

the cell frequencies are exactly equal to their expectations
_ ._ ,

'

and positive otherwise. If the calculated value for this
index is "small" (close to zero), then you are tempted to
conclude that the rows and the columns are independent; ;

i.e., you have insufficient evidence to disprove the :
independence of the table's rows and columns, On the j

.

other hand, if the calculated value is "large" (considerably I

larger than zero), then you are tempted to conclude that
_ ,

the rows and the columns are not independent; i.e., based
.~ - .. . . . --. .

i

. . _ _ . _ _ .. . .. _. , . . _ . _ .. .._. . . _ .

. . - - - . - - - . - - . - - - - . - . - - - . - . . . . -. . _ . - .

.- - - .. . . - _. . .. - . . - . _. .. . . . . .. . .. . _. .

. _
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on the data at hand, further belief in row-column
indeoendence is untenable.

The fluctuation index most commonly associated with the

chi-squared analysis of contingency tables is called the chi-squared
-- - -"- -- - -

,

statistic statistic.! The calculated chi-squared statistic is matched
- - - - - - - - - - - -

against a criterion that is designed to determine whether it
(the alculated chi-squared statistic) is sufficiently large to
suggest that the rows and columns are not independent.

Recall the discussion in Chapter 3 where it was argued
that many decisions are based upon the 0.05 level of
significance. Hence, the calculated chi-squared statistic is - - - -- -- - - - -. -

termed "large" if the probability of obtaining such a value .

(or a higher value), when the rows and columns are
independent, is less than 0.05.

T urn now to Table T-2: Quantiles of the chi-squared
distribution. Y cu seek a specific value in Table T-2 with
which you compare your calculated chi-squared statistic.
Somewhere in the top row of the body of the table (the . , , . . _ , .. _ , ,,, _.., ,_

row labeled with 1 in the column labeled df), you find the , _ _

value 3.84. Now, locate the column heading above this
number. The heading is listed as 0.950. Thus, the value
3.84 is a value that is critical in the assessment of any
calculated chi-squared statistic with I degree of freedom at
the 0.05 level of significance. (The concept of degree (s)
offreedom associated with a calculated chi-squared value
is addressed later in this chapter when tables with more
than 2 rows and/or columns are described. For the time

' - ~ ~ ~ ~~ ~ ~~

being, as an aid in dealing with other examples in this
chapter, mark, highlight, or simply remember this
particular column as the "0.05 level of significance"
column.)

.

In this expression, chiis the Greek lettec (upper-case X and lower case x), pronounced like the chi in
" " ~ '' ' ' ''

3

chi-ropractor.

- - - - - -- - - - -. . _ __ _ __.

.w- .- wa-e-o ee--- --- -- e 4-m. -w dmise i- . 6a.- --*m < .-- . h.-

b-
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|

level of In the context of contingency table analysis, the level of !

signifcance sigmpcance is the measure of the risk you are willing to 1
-

take in concluding the rows and columns are related when |

in reality they are not. The number 3.84 is a " cutoff
point" for 1 df, a value beyond which the assumption of

~- 7 .
=-

no relationship is not supported by the data in the table, - ~ - - - . - - - - - -

That means that, if the calculated chi-squared statistic is
larger that 3.84 in Example 4-1, you claim that the
fluctuations of the observed frequencies from their
expectations are excessive, and you conclude that wealth
and intelligence are related. If the calculated chi-squared
statistic is smaller than 3.84, you conclude that you have -
no evidence to contradict the independence of wealth and

-

- - . _ . _ . _ - , _ _ - . _

critical value intelligence. The value 3.84 is the critical value .

.. . _ .,

(sometimes called the critical point), for a calculated chi-
squared statistic with I df.

Some statistical rationale

The calculated chi-squared statistic derived from a 2X2 - - - - " - - -- - -

contingency table " behaves" like a chi-squared random . . . . . . . _ . . _

variable with 1 degree offreedom when the rows and the
columns are not related. In this book, we use the square

| of the upper-case Greek letter (X ) as the symbol for a2

chi squared random variable.2 A chi-squared variable
with I degree of freedom variable has this particular
characteristic: 95% of its values are less than 3.84 and
5% of them are larger than 3.84. Thus, some authors . . . . - . _ _ . . _ _ . _ . _ _

' . place a label of "0.05" on the "0.05 level of significance" .. _... _

column, while others label it with "0.95."

!

|

| . - - - -

I '~~ ~ ~ ~ ~ ' ' ' ' " ' ~'
uared random variable with the square of a lower-case oreck letter! 3

Many authors indicate the chi-sq/.called cht. which looks like this:

- .- - . - ,- ... _ . - . _ .

. .- _- - - - - -- .- -- . -_ . _ . . . . . - - .

l |
l

!

|
|

. . _ . . . _ . . . _ . _ _ , . . . . . . . . . .__.._._..._4 . . . . . . .

. . . . - -
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For discussion:

c Consider a 2x2 table in which one column is empty; that is, its sum , _ _ . _ , . . , , _ , _
' .-

is zero, Discuss the implications. What's different about a 2x2 table
*

^ ~ ~ ~ ~~~

in which one row is empty?

c Suppose a calculated chi-squared statistic for a 2 x2 table in a weld-
quality study turns out to be 9,667. What conclusions might you
draw about the relation between team affiliation and weld quality?

;

Could you be wrong? In what way(s)?'

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

c Suppose the calculated chi-squared statistic were 2,087 (instead of
~ ~

9,667). What do you ' conclude?

c Suppose you calculated a chi-squared statistic exactly equal to 3,84.
What do you conclude?

!

C Suppose you calculated a chi-squared statistic exactly equal to -6,926.
;

|

What do you conclude?,

-... . . - . . . . . . , . . , -
|

t
i

| \
\

| Ex:mple 4-2a:
I

| Continuing the weld-quality study
1
1

Now combine the observed frequencies from Table 4-2 i

| with the expected frequencies of the individual cells.
-------------)' Table 4-2a shows both sets of frequencies, with the

-

!expected frequencies in parentheses. - - -

.

.. _ _ _ .. |
| ......_..._......_i

l
(

!
'

t

.. . .- .. - - -- . - . - .- - _ . . _ . . _

- _ . - . - - - - . . - - _ . . . . - . - . .. - _ . ,

.- . -.
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- . . .. .- ..._._ = =. .. =. -.r.; . _ : _.
-- .

Table 4-2a:'

A 2 x 2 contingency table for the weld-quality study, displaying
,

observed and (expected) frequencies

p ; x #
, ,,

I
Column 1: Column 2: Row
Acceptable Not acceptable totals

,

30 O

Row 1: Team A (24) (6) 30 .

50 20
- A

Row 2: Team B (56) (14) 70

Column totals - 80 20 100 . _ ____ _ _,

L._-_..e.- L.* . . . . . . ,

The next step is the calculation of the chi-squared statistic.'

itself. The details are displayed in Table 4 2b, where
several quantities for each cell in the body of Table 4-2a-

j. are repeated for clarity.

(1) The first column of Table 4-2b contains the row ___

indices repeated for each column ' Symbol: 1. .

__, .
_ , ,.

(2) The second column contains the column indices, j

repeated within each row index. Symbol: f. ]-

! |
I(3) The third column contains the observed

frequencies for each combination of row-column .
-

indices. Symbol: O.
,

Ig _

L -

! (4) The fourth column contains the expected
frequencies for each combination of row-column+

indices. Symbol: E.p ,

(5) The fifth column contains the differences between
Ithe observed and expected frequencies. Symbol:

(O - E ).
._ _ _

y y
. .

(6) The sixth column contains the squares of the - --- -- - - - - - - - - - - -

values in the fifth column. Symbol: (O - E )2y q

- .- - . . - .

*- P M 4" *' 4 meg e- n=eed...**uusume=v- .i.eem> r m.mm.gsr d-*-'p"'4.psahfe.. e se e e m..- haine * 4eer sh * == me-w W.,. g,.g.m s_w,.4ms .gy-

i

4

* *a e e-* - -- %-* * .pe + 4 me. .. 4 34.m.,, .,g,,,%. g, g, ,..w,, , ,. , , , , ,4,_

- - - . _ _ _ _ _ _ . _ - _ _ m _ . ~ , ,
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(7) The seventh column contains the ratios of the
elements of the sixth column to the elements of the

E )2y /E .; fourth column. Symbol: (O - py

[ (8) The cell at the bottom contains two important
~ ' - , ~ - * t

:

quantities:
- - - - --- --

| (8a) The sum of the four values in the last column
is called the calculated chi-squared statistic.

2Symbol: x,-

(8b) The degrees of freedom associated with the
chi-squared statistic. - For this example, there - - - - - - - - - - - -

u _ ;isIdf.

Note that all calculations reported in this chapter's-

analyses are recorded to four decimal places. If you
round or truncate your intermediate values, you may reach'

~

a wrong conclusion because the calculated chi-squared;
2statistic x may be incorrect.

,, -.. . .-- .- m .

. . . . . _ . _ . . - . _ _

Tchle 4-2b:4

CIlculations for the 2 x 2 contingency table in Table 4-2a
;

i

Rsw Col Observed Expected (0 - E) (0 - E)2 : (0 - E)2/E
36.0000/24.0000

,

1 1 30. 24.0000 6.0000 36.0000 = 1.5000
36.0000/6.0000

'

1 2 0 6.0000 -6.0000 36.0000 = 6.0000
' ~

36.0000/56.0000

i 2 1 50 56.0000 -6.0000 36.0000 = 0.6429
36.0000/14.0000

2 2 20 14.0000 6.0000 36.0000 = 2.5714'

; x 2 = 10.7143
with I df - - -

f
. me =s - 44 <- - m es. oo- o oos . .mw

.

,

""'N * **'W8' e6 86 *euw ggs , , , , , w ,,i. _ _ , _

,

T
.. ~,

. . ' ' - - . , . . . . . - , , - . . - - .
..,,_w, ...-.._.m.. __y _. . #,... _

M

% .

. . . . ._ -

I
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~ ,

Note the following facts that apply to all contingency table
analyses:

The sum of the cell expectations (fourth column)a

equals the sum of the cell frequencies (third column).
- m- ..

~ ~ - - -
.

. . _ _ _ . _ _ _ . _ _ _ . _ _ _ .

s The sum of the column labeled "(O - E)" is equal to
zero, apart from rounding errors.

These provide checks on your calculations.

!
- , , . _ _ _ _ . _ _ _ _ _ _ . . . . _ _ .

I For discussion:
-- - - - --- -- -

Draw your conclusions from Table 4-2b. Could you be wrong?04

What is the probability of that?.

.
*

o All of the contingency tables studied thus far are of the 2x2 variety.i ,

'
Extensions to larger tables are made later in the chapter. Do you

-~\----------
think the calculations will be more complicated?i

. . . - . _.. - _

iWhy is it necessary to record more significant figures in yourG

! intermediate calculations than appear in the given data in your
calculation of the chi-squared statistic? That is, why not just round
everything to integers at every step?

.

o Which OSDAR elements have been covered up to this point?

O Reconsider the data in Table 4-1. Why are the expected frequencies _.

identical to the observed frequencies?

:

| Example 4-3:
Mastering technicalmaterial

. - - - . -. _ .- .. _ __

,

Suppose you wonder whether the outside-of-class studying _ _ _._ _ . _ ,. , , , . _

of technical material improves a student's mastery of the

i

!

- - - - - - - - - - .- . .. .__ _

- -eipe s 'a ,-wtumn ., _., wee.ye , aw. ,4,,,, __g .
_*" *W" +*$h- - --

.i

e . =* 4 6 we.'u 6 4 M de eW4 .hy-'s. , e&*- 4 h wet-i-.-- -3.++ 4_-
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.

material. You might categorize a class of 170 students
into the four groups shown in Table 4-3.

,

-- -r y u .- - - -

Tcble 4-3: .c..
A 2 x 2 contingency table for the study mastery study

-- -- - - - - . --

4

: .

Column 1: Column 2: Row

Master Not-master totals

Row 1: 46 14

Study (22.9412) (37.0588) 60

Row 2: 19 91 .m _ m.__. _ . _ __. _

Not-study (42.0588) (67.9412) 110 _

.

;

Column
totals 65. 105 170

.

;

a

t
Table 4-3a: <

t

Calculations for Table 4-3'

;
-

- . . . - -:- .-- . -- , , , , , , ~ . . , ,,,

-

4

|s'
' ' ~~ '~ ~~ ~ ' ~~ ' ~~~

Row Col Observed Expected 0-E (0 - E)2 (0 - E)2/E - '

531.7093/22.9412,
i

1 1 46 22.9412 23.0588- 531.7093 = 23.1771
|531.7093/37.0588
|

| 1 2 14 37.0588 -23.0588 531.7093 = 14.3477
|

531.7093/42.0588
*

l 2 1 19 42.0588 -23.0588 531.7093 = 12.6420
- -|*~ *- -- - -- - - -

531.7093/67.9412
5 -|
! 2 2 91 67.9412 23.0588 531.7093 = 7.8260 --

l
;

!
x2 = $7.9928

with I df
f

j

1

. - + - . --. _ , .._ . . _

b" ' "'""-*M- M> M M =- M & Ag g _ , ,

d -

t

- . . ~.

" ***"' "N T nsue rW mi .i.w,, g ,,,
_

$

4

)

9

4

* * -w.;. . ,

., ., , ,..r
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.
-

'
For discussion:

.

c Draw your conclusions for Example 4-3. Could you be wrong? _. _ . _ , ,
' ~

,

What is the chance of that? ''

.

Example 4-4:,

Computer trainint) and the need for computer support
. _ _ _ . _ _ _ _ _ _ ._

Suppose you are on an office staff facing this problem: .

i Does formal computer training of staff reduce the number
~ ' ~ ~ ~ ~ ~ ~ " ~ - ~ '

of calls for computer-assistance services?. Suppose you;

are told of interviews of 198 employees during a specific
month. You develop the contingency table shown as,

i Table 4-4.

4 .
.

2 Table 4-4:
On the relationship between computer training and the need for - - -- -- --

;

computer support
.

'

Column 1: Column 2: Row
Given training No training totals ;

} Row 1: 36 124

Support required (37.1717) (122.8283)- 160 - - - - - - - - - - - - -

Row 2: 10 28 _. _ - .,

Support not required (8.8283) (29.1717) 38 \
,

Column totals 46 152 198 \
:

; x 2 = 0.2507 \
with I df x,

! N
, . . . . _ . _\. _ .

: . . . . _ _ . _ . _ . _ _ _ _ . .-

.

.

.= .-me. ..s.

e. M ..m - _ -m-- , me -r 6.W wh -e h_,- Sww.m we m wm. , ,,9 .g.j, g ,, _ _ _ , , , , , ,

,

. . . . --. . .. +. .. . . . . ._ ..
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l

)For discussion:
,

a Draw your conclusions from the data obtained in Example 4-4. j,

~7~7. --...-- _ . .~.' ."..' "-
~

| 0 Example 4-4 produces some curiosities: .
i

!The Grand Total = 198 is suspicious-at least worthy of '

exploration. Were two more employees interviewed but not
reported? Would the data from the two "missings" change the
conclusion? Irrespective, what.was the planned-for total sample
size?

How were the employees selected? What about those who didn't
-- - ' ' -- - - - - - - - -

even use their computers during the month studied?
- - - - --

What would OSDAR say about the sample-selection methodology?: G

a

A shortcut calculation for 2 x 2 contingency tables
- . . . _ , _ _ _ _ _ , _ . - , . . _ _

For any 2x2 contingency table analysis, a shortcut
' '' ~~ ~ ~ ~ ~ " -

calculation formula is available. Consider a generic 2x2.
'

.,

table with the cell frequencies designated by a, b, c, and
|d, as shown here in Table 4-5. The marginal sums are t

denoted by e,f, g, and h. The Grand Total is denoted \ |

I,

by n.1

i
, ., - .- -. y i

!
4w.+

0

|
1,

4

|

. , . - -.

'
. . - _ . _ - _ . _ . . . . . . . . . .

* . . .- .

- . - . . . -w. . - _ . .- -w. .- . -. .. . -...e=%4-~.-%m. ww. . . . . . . - . . . . . - . - . . . _-. .

,

. . - . . . 4 - = we es.ee.,4. . . + , . . 4 .,ee.. e .m.. =4
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|

Table 4-5
A generic 2 x 2 contingency table |

TjColumn 1 Column 2 Row totals ~~P'~" - ' - - ~ -: ''
. . . . - . - - - . - - _ .

Row 1 a b e=a+b

Row 2 - c d f=c+d l

n

=e+f
Column =g+h
totals g=a+c h=b+d =a+b+c+d. . _. _ u. _. _ _. . _ . ____

. L

The chi-squared statistic for this generic 2x2 contingency
table can be calculated directly from the cell entries a, b,
c, and d, as shown here:

p , n(a x d - b ' x c)2
exfxgxh <1

_

.

''' ' ~ ~~ ^~ ~~

This formula applies only to 2x2 contingency tables. The
~ ~ " - - ' ~ ~ ~ '' ~ ~"~

calculation is illustrated in Example 4-5.

Example 4 5:
PoHticalparty affiliation and support for nuclear power

Interviews of 100 randomly selected residents of a rural
' - ~~ ~~~'*

community were conducted to examine the relation

| between political party affiliation and support for nuclear
- -

| power. The results appear in Table 4-Sa.

1

. .. - - - - . . . . ~ - - -

m- **om.**.s..e.e. - ee e. * , + = m.. . .e s . -so m

~ " * * * * * ' " ' " - *~ *w be ee . -s +s. .,g. s., .

. . . _ . . _ _ . _ . _ . _ . _ . _ . ~ _ _ . _ _ . . _ _ . . _ . _ _ , , , , , . _ . _ . _ _ , . , _ , , _ _,

!

. . . - .. . .. -

>

l -- - . - - . . . _- - . ., . . . , , ,, , _ , ,.
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Table 4-5a: .

Political party affiliation and support of nuclear power
|

|

Column 1: Column 2: - - -- ~7
- . ,,_

Supports Does not support Row . . _ _ . . . _ . _ , _

nuclear power nuclear power totals

R.2w 1:
Party A a = 38 b=2 e = a + b = 40

Row 2:
Patty B c = 37 d = 23 f = c + d = 60

n=e+f=g+h
=a+b+c+d

. Column ~ ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

totals g = a + c = 75 h = b + d = 25 = 100
- - - -_

The calculated chi-squared statistic is:

,2 , 100[(38)(23) - (2)(37)]2 = 14.2222.
(40)(60)(75)(25) _ . _ . _ . _ _ . , _ _- . , ,

. . . . . _

| For discussion:
!

Calculate the chi-squared statistic for the Table 4-5 in the formal way.! O

Draw your conclusions. Could you be wrong? What is the chance of
that?

_ _ ._

__ _. __. _ .

Do these results reflect the sentiments of the state? Of the entireO

country? What sentiments do they reflect?

How would you prove that the shortcut calculation holds for all 2 x2O

contingency tables? That is, what steps are needed to show that the
|

|
simplified calculation works for any 2x2 contingency table? (Hint 1

Some algebra is required.) -'

- -w-= e4 - . . -. . . . . . . . . . . .

.

~ *** ~ -- -- . - - - .~ . . . . . . . . . _ _ , _, ,_ , _

|

- - _ _,_.. . ._. . .. . .. ,
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-

The formulation of rx c contingency tables
4

Up to this point, contingency tables have been of the 2 x2 ;

variety. No matter what the situation (assuming, of _ ._ _ ', _'
course, it is appropriately treated in a 2x2 contingency { '

' '

' <

,

table), the calculated chi-squared statistic is compared to
the value 3.84 for decision-making purposes because 3.84 ,i ~
is the critical value at the 0.05 level of significance with

'
'

I degree of freedom.;

I It is now time to extend the process to any arbitrary
number of rows and columns. To this end, let r be the

' '

number of rows and let c be the number of columns. This ~

'

is called an rxc contingency table. Before going further,
--

however, the concept'of degrees offreedom must be

i - defineu for this generic rxc contingency table. ,

; degrees of In an rxc contingency table analysis, the term degrees of

freedom freedom (df) refers to a parameter whose value is the
product of two terms: (number of rows minus 1) and*

(number of columns minus 1); i.e., df = (r - 1)(c - 1). ' ' + - - ' -- - ' - - -

'

i . -

For example, for all 2x2 contingency tables, <

df = (2 - 1)(2 - 1) = (t)(1) = 1. Similarly, for a i

contingency table with 9 rows and 6 columns,;

j df = (9 - 1)(6 - 1) = (8)(5) = 40.
'

| But what do you do with this df? Recall that, in a 2x2

.

contingency table analysis, you declare that a row-column t--- - - - .----

! relationship exists when the chi-squared statistic exceeds L__ 2 ;

I 3.84 (i.e., with a 5% chance of being wrong when the
; rows and columns truly are unrelated). Recall also that

the number 3.84 is obtained from the first' row (df = 1) of ,

the table of the quanti'es of the chi-squared distribution. |
',

; For contingency tables of different dimensions, different
table values are used to determine whether the chi-squared
statistic is "large." , . _. . _ _

i
4... -._ - &..

A ",

,

} '.'

$

.

-- - --~ ~ .- .- . - . . _ ,, , ,

*- a w - .m. . --. .-s -.__.w.. ._ . _ , , _ _ , . , , , _ , _ , , , , , . , , , ,

4

4

- a . . .

5

-.. -
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'

Thus, for a general rxc contingency table, you consult
your chi-square table for the row carrying
df = (r - 1)(c - 1) and the column that corresponds to the
predetermined level of significance. - - , . ~ , , , - . -_ . _ . , ,

.

-
.
-

To fix the idea, consult Table T-2 and verify that, for the t- - - -~ - - .__ _ .. .

0.05 level of significance, the table values are 12.6 if

df = 6 and 55.8 if df = 40.

Although " degrees of freedom" has the mixed redolence of
.

obscurity and complexity, it is a concept that occurs in
many contexts in statistical theory and practice. For
contingency table analysis, it's sensible and useful to

- .. _ __.._. _ _

-

regard " degrees of freedom" as an index which tells you .. , _ . -
:

which row to use in the chi-squared table.

s,

Example 4-6:
,

A 2 x 3 contingency table
.

Table 4-6 offers an example of a 2x3 contingency table, ,,,. . . . _ . , , , _ . ., _,.

4

and Table 4-6a displays its corresponding calculations. - . . _ _ _ . _ _ _ _ _ _ . _ . _ _

j
$

h

! Table 4-6:
A 2 x 3 contingency table

;

1

Column 1: Column 2: Column 3: Row
' ~ ~ ~ " - - - - - ~ ~ - -

Day shift Swing shift Graveyard shift totals'

_. .
._

I RowI:
No defects 155 180 90 425

Row 2:
Some dernts 16 60 4 80

| Column totals 171 240 94 505

j _ _ _ .

- - - _ . . _ . . . . . . . . . ___

h

-
. -. .-...

* ' - * " *+b meu . - - . . ,. , _ , _

h

- - __ _ . . . _ .
,l
1

. _ _ . .
i
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Table 4-6a:
Detailed chi-squared calculations for Table 4-6

Row Col Observed Expected 0-E (0 - E)2 (0 - E)2/E
~ ' ~ "~ " ~ ~ ~ '" ~ " ~

,

. . . .. .. _ . . ..._ __. . _.

I 1 155 143.9109 11.0891 122. % 83 0.8545

1 2 180 201.9802 -21.9802 483.1291 2.3920

1 3 90 79.1089 10.8911 118.6158 1.4994

2 1 16 27.0891 -11.0891 122.9683 4.5394 . -.. -.. ._ . - .. . . _. . - ...

.

2 2 60 38.0198 21.9802 483.1291 12.7073

2 3' 4 14.8911 -10.8911 118.6158 7.9656
.

x2 = 29.9582
with (2 -1)(3 -1) = 2 df

,

- . . . . - . . -- , . - . -- , .

. ._

For discussion:

o What might be a context for the data in Table 4-6? What value from
the chi-squared table do you select for comparison with the calculated
chi-squared statistic? What conclusions do you draw? Could you be
wrong? What is the chance of that? ._ ._ . . _ _ _ _ . _.__. ,_ _. ,__

~~ ~ ~ " ^

o How might you display graphically the results of the analysis of
Table 4-6?

|

|

. . . .. .

.. . . - . . ... . . .

1

. . .. e -. -
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Two more contingency tables

Contingency tables provide many opportunities to explore
and appreciate statistical issues. These two examples are . _ , _ , , _ , , . . . .

designed to extend your understanding of these matters, ,. _ _, ,L_,_ _ _ _f
|

Example 4-7:
Age discrimination

Suppose you are investigating whether your organization
practices age discrimination in its annual perfonnance
appraisals. The data you collect are displayed in ~~~~~~~~~~~~~~T
Table 4-7.

-- - - - ---

! Tcble 4-7:
I Ago and performance appraisal
!

l Needs Good Wonderful Row "" ''*~~"~ ~~'~~'

! Improvement performer performer totals - - - - -- _----

Age: Under 36 16 12 8 36

Age: 36-50 68 48 20 136

Age: Over 50 61 50 16 127

_._ . _.. . _ _ _ . ___._ . .. ___

Column totals 145 110 44 299

x2 = 2.3857
with 4 df

.- - . . . . . - ..

b 8' M *.aM wa...Mg. gg 4 g ..gg, 4

- . -

+W wee w Reim. ee.a.e .w..e. .e. .e,,gg.w ,,4 ,, , , _ ,

* *O* *N 40' M $M$ ime ebe.sg 4 .g e g qm 4

w-dv
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- _ .. - _ _ _ _ . jv- = ,= .

For discussion:
.

Draw your conclusions from the data in Table 4-7. Could you bem - -- _, .

wrong? L._, _._.i _ i _ _, ,g_,

is something missing in the descriptian of the study or in Table 4-77e

What is the population under study? What is the sample?
1

What problems do you see in the way the rows and columns arem

constructed in Table 4 7?

" ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' '
What happens to the calculated chi-squared statistic and the degrees of

'

m ' ~~ ~ ~ ' ~ ~' ~ ~ ~~ ~~
1

freedom if you reverse the roles of the rows and columns in
Table 4-7?

How does Example 4-7 stand up to Huff's criteria from Chapter 17e

. . , . . - _ _ - - _ , . _

Example 4-8: .

" ~ " ' ~ ~ ~ ~ ~ ~ ~ ~ " ' ' ' ' ~ ^ ~ ~ ~

Age and accidents

Suppose you are investigating a suspected relationship
between drivers' ages and their tendencies to be in
accidents. The data you collect are displayed in
Table 4-8. This example and its data are from Gilbert
(1976, p. 229).

. . . - - - . _ ,

i. - .

t

y e ~- p m

4 * * * - - + 4h e.er-ep h+4---644 .,aeh .6.w. s

i
i
i

!

I

- .- .~ ._ _ . ..

*~' * * * ' ***rr- -sw + -, ew -m. .gs , ,m,,g ., ,p, ,

+ 4 46 ,e .e .4 hs . ws a b n-. 4 a su e + g es g- @.u nee e, p 44-'
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Tcble 4-8:
Drivers' ages and accidents

~ ~ 7~ ~ ''' '
Ages: Ages: Ages: Row .

*~ ''''' ~ ~ ~ ~ - ~ - -

18-25 26-40 41-50 totals

No accidents 75 120 105 300

1 accident - 50 60 40 150

i

2 or more .

--- --- ----- - -- - _ _- !J accidents 25 20 5 50

- _.. . .... . _ _ . . _ . _ _ .- !
Column totals 150 200 150 500 !*

: x2 ,gg,4439
with 4 df

i -

1

,_. ..- . . _ . _ _ . - , . , - ,
,

For discussion: -- - --- - - - -- -- |
1

Draw your conclusions from the data in Table 4-8. Could you bea-

wrong? What is the chance of that? )
4

0 Is anything missing in Table 4-8? What is the population under
study?

i - . _ _ . . . _ _ _ _ _ ___ _ _ _ _ _ _ . _e_

a Do you see any problem with the partition of the data in Table 4-8? _

Could the data be set in a matrix of 3 rows by 4 columns? 4 rows by#

5 columns? Could you get different conclusions from different

; partitions?

a

I

.
- w -~e w - .e _ ~ ~

'h

= **es -- ..e d - - . em. 4. n. se ,,mm

I

a

4

- - _ .- __.

" * * * * - - ' -- -mea-em-h+. m mg,, ,,,w.,.,,qq , ,, _m , _ _ , ,

<

*

e- a+ .m e- 4 **h .4se 4.e .e e Le geh s D'A*4a- p <h - 4 .e a e

__.- _ . _ _ . . _ _
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Some sample-size considerationc in contingency
table analysis

The use of the chi-squared statistic to examine the _ , . __ _ . , . _ , _ .

independence of rows and columns may be inappropriate L _ , _ i _, , _,_ _, , j

for small sample sizes. A number of recommendations for
tackling this problem exist in the statistical literature.

| They often include cautions about interpreting the results.
Curiously, these rules are stated in terms of the cells''

expected frequencies rather than the number of
observations. One such widely respected rule states that:

N - .. _. _ . _ _ _ . _

!
In none of the rxc cells should the expected

- . - - - . ..

frequency be smaller than 5.

Using this rule alone, the sample size required, even for
! the smallest contingency table (2x2), must be at least 20.
|

Some authors offer alternatives to this " rule-of-5." For
example, Dixon and Massey (1983, p. 277) tolerate

i contingency tables which meet one of two conditions: ""' '~. " " ~~'".~ '. ~._
(1) No expected frequency smaller than 2 for any cell in

the table

or ,

i (2) No more than 20% of all the cells have expected
frequencies less than 5 with none of the expected |

- - -

values less than 1. L- -- -

.

This second condition is endorsed by Ott and Mendenhall
(1984, p. 436).

Even with the most careful planning, you cannot always
be sure that the expected frequency of a given cell will be
sufficiently large. This is particularly true for so-called . _ .

" rare events." For example, in studying the relationship . _ . _ _ _ _ . ,, , , _

between driver's age and number of accidents (Table 4-8),

|

! ,

|

_ _

-* " " " - e e- .-me ,e , 4 %., ., e, _

'

.. - - - . . . ..
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- -

-- -
,

>;you may find very few persons witt two or more _ ':;-
~

.

i accidents. This may be caused by the study's limitations.
It may also be caused by very fev people with two or
more accidents being licensed to drive. Remember: You ,-

- can speculate all you want about these sorts of things-but
- , c -- s.. c ,

' - - - - - "--,
~ you'll never really know the reason (s) until you seek them :
: out.
;.

-

<
. '

In some instances, you may be able to deal with small;

expected frequencies by "coFtpsing" rows and/or'

columns. ' Consider Table 4-8 again. _ Combine the second
j

row (1 accident) with the third row (2 or more accidents) -; ----"---!
| to form a single row of "one accident or more." This .

; process, clearly, also reduces the degrees of freedom. + - _ . .a

;

When your sample size is oub small (say, 30 or less), a ,

;i
-

; special technique for 2x2 t ntingency tables can be used.
' Fisher exact Called the Fisher exact probability test, this procedure is .;

probability especially useful when one of the four cells in' the table is
.;

.

) test empty (i.e., zero tally). Otherwise, the computations can
j - be quite extensiv: and inhibiting. See, for example, . , .. + :, - , :,. . _., _ ;

Rosner (1989, 336-342) or Siegel (1956, pp. 96-104). i
. , _; _ , _ , _ , _

.

I !
!

.

; . A contingency table look-alike: McNemar's test
! statistic '

,

i .. i

!.L' McNemar's McNemar's test statistic (McNemar,1947) is designed

I test statistic for situations in which you are interested in the change of j
- - - ----"--r

i a set of individuals after they receive some sort of ' '

; treatment or stimulus. In this case, all individuals 'in the
t

: sample serve as their own before/after controls. |

| In its setup, McNemar's test bears a strong resemblance to -

i the usual contingency table discussed in this chapter. But '

| this resemblance applies only to the use of a 2x2 table as

{-
a means of assembling the data. The actual purposes, ,-: -- - - -- ~ . - - ._

calculations, and interpretations are quite different. ._._._.m_ ... ._ __

1
,

."
|

*" -* -- - * * * * * . . .. ,,s . ,. ,_, _

# ' -87- -w .e+e .w. - -- mw-,w _ , ,_.,_,,,3,,,gm a -gy%y _ , , ,,.

'

1

i

2

- -

- - --- - - ; . . . , _ . , ;_ .. , _ , _ , . _ .
.
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_ _ _

-

Example 4 9: \

Effect oflaundering on protective mask R!ters
-i

Suppose you want to test the effect of laundering on a ' - - - - - :-- umask filter used to protect inspectors who enter a ,

contaminated area. Each of 70 filters is first exposed to - - - - - ---

the same contaminated environment. A chemical test is
then conducted to determine the acceptability (on a
pass / fail basis) of each filter by comparing the
contaminant's contents on the two surfaces (i.e., the

exposed and the protected surfaces) of the filter. .The
filters are then laundered, and the exposure and the ,

chemical test protocols are repeated. You find that some --4 - - - - - -
- -

filters pass both pre- and post-laundry tests, others fail . . . .. . . . _ . _

both, and still others pass one test and not the other. .

The issue under consideration here is whether the -
-

laundering has an effect on the rate of filters passing the 3
chemical examination. Restated, you wish to determine :

whether the passing rate is' independent of when the \
examination was made, either before or after the . _ . . . _ . _ _ _ _N _. __ _
laundering. _ _ _ __ _

Table 4-9 gives the schematic representation of these kinds
of data, whereas Table 4-9a provides fictional frequencies

!

for Example 4-9. -McNemar's test statistic employs the -
sensible principle that it (the test statistic) is a function

ionly of those cases that show change from one state to the
next (fail followed by pass or pass followed by fail). ;._ _ _ __

| The data are arranged in a 2x2 table similar to that used
- ^

| in 2x2 contingency analyses. The numbers in the cells
are designated a, b, c, and d, just like in the 2 x2 generic
contingency table we've all come to love. McNemar's
test statistic is given by the expression (b - c)2 (b + c)./
As you can see, the statistic employs only cases that show
differences and, thus, may be attributed to the treatments

~ '- ~ ~~ ~- - '~~ '

they receive. Because McNemar's test statistic behaves
- - - - - - - - ---

I:Ke a chi-squared variable with I degree of freedom, a -

.

!

- - . - . - . - _ ._ . ,_ . - . .. ,_ ._ ___,___|

-- - - - - ~ _. _ ._ .__._ _ _. _ _ . _ _ . _ _ _ , . _ _ _ _ _ _ _ __, __ _ __ _

- -~ -. ~ . .. . . ._. _ . ._. . . , , , ,, _ _ , ,__ , ,,,

- -
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__

value larger than 3.84 is significant at the 0.05 level of
significance.

Tcble 4-9: ' ~T ~ -- c

Scheenatic representation for McNemar's test ' - ---- - - - - - - - - -

,,

Before
After Totals -

Pass Fall

Pass a b a+b - - -- -- - - - - - - - - - - - -

- - .

Fall e d c+d

Totals a+c b+d a+b+c+d

McNemar's test statistic is calculated as (b-c)2 (b+c); it is compared with the/
.

appropriate chi squared value with I df (i.e.,3.84 for a = 0.05).

. . .........w.~-

Tcble 4-9a: \McNemar's test applied to filter laundering example s

Before Laundry
After Laundry 's

Fall Totah
,

, _, - _\__
_ _ _ .,,n_

Pass 24 16 40
- -- -

F;il 13 17 30

Totals 37 33 70

McNemar's test statistic is calculated as (16-13)2 (16+13) = 9/29 = 0.3103;/
it is compared with the appropriate chi-squared value with I df , __ _ _ .

(i.e. 3.84 for a = 0.05). _ _ _ _ _ _ , , ,, ,,, , , _

_ .. _

-- mw- -e mame i- - umge-um - ame 4 ew , -ems- ,ew-a m<p..e se sees- - +eteeam*-. de e sesy e es , +& % e m *m =

,
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I
L .

. i

| Because McNemar's test statistic in Table 4-9a falls short i

! of the 0.95 quantile for a chi-squared variable with df =1
(i.ei,0.31 is less than 3.84), you cannot claim statistical

.

evidence that the laundering changes the filter's ,

,

effectiveness, neither for the better nor for the worse. ~'
f - - _ _ _ '

-

|
; -

'

.

- . - .-- .

|
I Simpson's paradox-you better watch out!

Consider the following example in which two
departments-indeed the only two--of Fictitious University
are under investigation for sex discrimination in their

" ' ~ ~ ~ ~ ~ - ~~~ 7-admission procedures. Each department processes 600
! applications. Their admit / deny vs. men / women records

- "- -- - -'

are shown in Tables 4-10a and 4-10b.
.'

Tables 4-10a and 4-10b:
Admission records of Departments A and B, Fictitious University

. . .. . . . . . -m ,._

4-10s: Depamnent A 4-10b: Department B . .- - - --- ,.- -

Row Row

Admit Deny totals Admit - Deny totals .-

Men 200 200 400 Men t 50 100 150

Women 100 100 200 Women 150 300 450 !

._~ . . _ _ _ _ _ _ . _ _

Colmun Column
~ ~ ~ ~ ^ '

| totals 300 300 600 totals 200 400 600

x2 = 0.0000 x2 = 0.0000
with I df with I df

1

i

The chi-squared statistics for both departments are exactly i
* - ~ ~ ' ' ~ ~ ~ ~ ' '

zero. Thus, there is absolutely no statistical evidence of a
'----' - - - - -

sex-based bias in admission of either department.

|
!

.

.. - . _ ._ _ .. __ _ ._ _ , _- - - - .- .-- .

' N ---miw .+-w ee .. gesp e ,.m g,, . ,

e b.
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However, this two-table display tells one story for each of
the two departments, while an aggregation over the two

.

tables tells another story for the university as a whole.
-

Table 4-10c shows the aggregated records.
"*- - -- -, , --, y j

u .- . .. .. .. . .- _ __. .. _

Tcble 4-10c:
Aggregated admission records for Departments A and B of
Fictitious University ;

I Row

Admit Deny totals
. .- .._ . .... ---. _._.

Men 250 300 550 . _ _ ___

Women 250 400 650

I Column totals 500 700 1200

x2 = 5.9940|
with I df

-,..-. - ._,__, -._

| - . - __ _ ... _ _ _.

Now things look considerably different. The large value
of the chi-squared statistic, clearly larger than the 3.84
criterion, indicates that there is a difference between the

admission rates of men and women when the entire
university's admission records are employed.

.

.. . --. .. -.- ..- - . _- ... .. .

1.__ _ .

For discussion:

Suppose you are an official at Fictitious University and are faced withO
these data which have arisen as a result of legal action charging sex
bias in admission. What would you do?

' ~~

This example of Simpson's paradox is not farfetched. It is based on a '~~ ~ ~ ~ ~ ~ ~ ~~ - - - - -c
real situation; see Bickel, et al. (1975) for an extended discussion.

.

--

' " " ' - " * * * ' - 4 aw m em,w., , _ , , ,
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,

4

a Don't look for simple explanations when you encounter Simpson's
paradox. By definition, paradoxes-whether real in terms of a |

rigorous philosophic analysis or temporarily confusing in terms of i'

"everything you know"-don't come equipped with simple
explanations. -~-~~"~~'- -". - _.:.-- 7 ||

-

a. . . . - - - . - _ . .

i
,

Simpson's paradox: Another example

Fictitious University's admissions example of Simpson's
paradox might be dismissed as something that happens , , . _ __ __. ._ _ _ _ _ _ _

|only in sociology or among academics practicing some
' '

other " soft" science. But it can show up in the "hard""

sciences, too.
i

A new drug is tested on diseased mice. The treatment
i cutcomes are given in Table 4-ila for male mice and in

Table 4-ilb for female mice.3i

4 .. . . . . . _ . .. , , , ., . - - . , _.

- - , . . _. . - . - - .

d

E

4

i
a

4

- - -- - - - - . + , , . . .

w- .-

!

e
J

;

|

|
. . - - 1

. -- -- - . - .. ... .. .

4
These data were given to DL by a former student whose identity is lost3

4

i

;
- - - -- ~ -- - .- .- . - - ., . . _ _ __ , _ _ __ ., __

- . - -- - . - - - . . _ . - . . _ . . _ _ _ . _ _ _ _ _ _, __, _ . _ _ , _ , _ ,

d

..

. -,
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Tcbles 4-11a and 4-11b:
Male and female mica mortality data

-- . -n _ _ . , _ ,
.

, ,

4-11a: Male mice 411b: Female mice - - - - --

Lived Died Row totals Lived Died Row totals
l

Treated 18 12 30 Treated 2 8 10

|

Not Not

treated 7 3 10 treated 9 21 30 . . . _ , _ _ _ _ _ .._. _.. _ _..__ ,_. _

. . . . .

Column Column
totals 25 15 40 totals 11 29 40

x2 = 0.3200 x2 = 0.3762 '

with I df with I df

Survival rates: Survival rates:

Treated - 18/30 = 60% Treated - 2/10 =20% - . .- . . . , ..- . . - . , . -

Not treated 7/10 = 70% Not treated - 9/30 = 30% . _ . _ . . _ _

:
|

|
.

Now compare the results shown in Tables 4-11a and 4-11b ,

'

with the aggregated data Table 4-11c. t

;
i

- .. . - _ _ _ - . _ . _ .

_-{.

|

- -- - - - . -

| . __- _ _ . _ _ _ . _ . .... . . . _
'

,

|

.- -- . .
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| Tcble 4-11c:
'

Aggregated mice mortality

77~T. - - . _ _ - . _ - ' . . ' . .

Lived Died Row totals
~ m '

,

Treated 20 20 40

! Not .

'

treated 16 24 40
'

Column
totals 36 44 80 . . _ . _ _ _ - _ _ _ - _ _

u .. . ;. I

with I df

Survival rates:
Treated - 20/40 = 50%

Not treated - 16/40 = 40%
!

. . . . , . . . . . _ . , . -
!

( The inescapable conclusion: This treatment is bad for
'

- - - - - - * - - - ' - - - -

male mice and bad for female mice; the treatment is
associated with a smaller proportion of survival, as seen in
Table 4-11a (for male mice) and Table 4-11b (for female
mice). But wait! When you look at the aggregated data,

! thcrc's an appearance of a distinct improvement: treated
j mice survive at a greater rate than untreated mice. Even

if it's not statistically significant, the calculated chi- - - - - - - -

'

squared statistic is larger for the aggregated data than for ~

the male and female data analyzed separately. The
quintessential contingency table paradox! So: what're
you gonna do?

The answer lies in recognizing that paradoxes seldom have -

comforting outcomes. But Bickel, et al. (1975) are
convincing when they argue that you ought not to use the . . . . _ . _ _ . _ . . _ .

aggregated tables. The reason is that the aggregated tables _ _ _ _ _ _ , . . _ . , , ._

do not account for an important factor (namely, the

!

l
.. . _ . _ . _ . _ j

i
, - _. . - . . - - - ..__...__,_u..,__. ,. _ . _ . _ . , _ . _ _ , . _ . _ , , _ . , , _ . _ ,

j

.~
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i
'

.l

i department effect in Tables 4-10a-c and the sex effect in
Tables 4-11a-c). The moral: Whenever individual tables
are in conflict with an aggregated table, you should report'

' ~

the individual tables.

. _. . _..___ _ ._.." '. (
~

-,
,

,

i

A protocol for ex c contingency table analysis '

This section is devoted to an 11-step protocol for N |.

contingency table analysis. Each step is keyed to N{
i OSDAR's elements (Chapter 1) as indicated to the left.

'

! Objective Step 1. Define the task: test the hypothesis that two
'' ' ~ ~ ' ~ ~ - ~ ~

7
classification criteria (rows and columns) are independent.

- - - - ---- - --

i Scope Step 2. Decide on the risk you are willing to take in
claiming that the rows and the columns are related when

! in reality they are not. This risk, written as a probability
j (or as a percentage, when multiplied by 100) is denoted as

a. Following the practice discussed in Chapter 3,

; a = 0.05 is used in most applications in this book, " - - ' ~ --- - - - - - -- -

-- _ ._ _ . .. . -, ..._.

Step 3. Determine n, the number of observations to be
used in the study.

Data Step 4. Collect the data. Tally the observations in a
Collection two-way table. Let r denote the number of non-empty

|
rows and c denote the number of non-empty columns.

. . _ . . . - _ . _ . . _. . _ __ _ _ ..

! Step 5. Be absolutely sure that every individual in the ._.

|sample is counted and that no individual is counted more
than once. |;

|
'

Analysis Step 6. Complete the table with its marginal totals as
shown in the schematic rxc contingency table of
Table 4-12, in which O denotes the observed number ofg

; sample members who fall into the cell at the intersection _ . _ ,

j of the i* row and thej* column. . . , , . . _ , _ _ . , _ _ _ , , _

| 4

*
i
i

.... .. - - -

_mi.a e.e. . w .d .es='*-e.iimm-en.m ai. mum-me.i e auspo == .h e .w e r e uppmess,- wa==h+=- 6m e u .amar- m dr e am.
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Tcble 4-12: j

A schematic rx c contingency table
|

4

Column 1 Column 2 Column c Row totals ~ ~ ~ ~ . -' ~ ' ~ w
. . . ,,

. . - . - -.- .._ ._

$- Row 1 0, , 0 O boil12 lc* * *

J=1-
'

c

O b02jRow 2 Oy, 0 * * *
22 2c

j=1'

|
.

. . . . .

.
.

-
. - ., . -. _ . . . . - - . _ . _ _ _. . . . .

i -
. . . .

. ._ .

C

O,, {07jRow r 0,, og . . .

)=1
r c

[[Og} Column r r r

bOj totals { o, {O lc '*3/*1* * *j i2
i i=1 i=1 i-1 = Grand Total

=n* . , , , , , . . _ , . . . _. ., _ . . , ,,, _..

u . . . . . _ . . . ._. . . _ _ _ .

Step 7. For each of the rc cells, determine the observed
count, O , and the corresponding expected count, E .g q;

The exp*ected count is computed as the product of the total1

of the i row and the total of thej* column, divided by,

* the Grand Total.

Step 8. Complete the following three calculations , _. _ _ _ .__. _,

'

; (O - E ), (O - E )2, and (O - E )2q /Egy g y q y

for each of the rc cells.

Step 9. Add the values calculated for the third expression
3

in Step 8. The sum thus obtained is the calculated chi-4

, . _ _ _

D 8@ m -- 4.m .ee,.h_,,g _w.,. -g,g g, .m ,

)

4

- --- - - -- , . ._ __ _ ._ __ _ , _ _, , _ , , , _ _ , _ _ ,
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squared statistic. Mathematically, this sum can be
expressed in two equivalent formulas:

,

2
E )2 0(O# y, g _ , , , , , _ .p. ,,,

E
,

; j.gj.g y i.g j.g g - - . . . . . ~ . . - - . _ - - -

!

where n is the Grand Total. You may find the second
formula faster to use and less subject to rounding errors.

Step 10. Determine the associated degrees of freedom as -

| df = (r - 1)(c - 1). - - - - - - --

.,. .. - - -e +,w.-

Step 11: Consult Table T-2 in this book and find the
value from the chi-squared distribution for the row

associated with df and the column associated with a. This
tabled value is called the critical value of the test. Note.

that inter} olation may be necessary.
;

R: port Step 12: If the chi-squared statistic exceeds the critical , . . , . . _ . _ . , _ _ , . _ . , _

value, you conclude that the rows and the columns are not _. _ , _ _ _ _ _ . __

independent. Otherwise, at best, you can say that you -
have insufficient evidence that the rows and the columns -
are related.

This has been just a beginning ... !
_ __-__ _.. _ _

categorical ... of the study of categorical data analysis. The ..._.._; .

' data analysis extension to k dimensions is not a trivial matter. Until the
general availability of substantial and inexpensive
computing resources in the 1970s and 1980s, reser.chers 1

were limited to particular extensions of the two- |

dimensional rxc contingency table to perhaps three or - '|
four dimensions. However, research and procedures for
dealing with k-dimensional tables are developed and being . _ _

refined. Two references are Agresti(1990) and Upton
_ . _ . . _ . , _ _ . . __ _ , , , . _ ___

(1978).

- - . _ ~ -
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!

What to remember about Chapter 4

Chapter 4 introduced and explored an especially useful - . . - - - ,. . '. '
statistical tool: rXc contingency tables, Among the >

"'' '' ~ - ~ ~~-- - ~~ ~ ~~~~~

related ideas developed in the chapter were

a 2x2 contingency tables
chi-squared statistica

a general twodimensional contingency tables
a some sample-size considerations
a McNemar's test statistic

~ ~ ' ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

a Simpson's paradox.

The chapter concluded with a general protocol for two-
dimensional contingency table analysis and made a
connection with OSDAR's guidelines from Chapter 1.

- . .. , _ . .. . . . _.., . _.

-- . - . . .

|

| .- - _ . _ - . _ _ _ - ... ._ .
t

' ..._. _ . =

!

, ,

i - _ .. .- !

_ . - . _ _ . . . . . . . . _ _
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Descriptive statistics

What to look for in Chapter 5
,

i
Chapter 5 defines, illustrates, and differentiates among a y..._ _ _ _. _ _ _ _

variety of descriptive statistics by focusing on data of the a.,._.,,__,,___

continuous type (measured on an interval or a ratio
scale).3 Topics include:

measures of central value, including the mean, thea
median, the mode, the midrange, the trimmed mean,
the Winscrized mean, and the weighted mean

_ - _ _ . _ _

, n ' measures of variability, including the range, the (~ ^

|

percentiles, the quartiles, the quantiles, the variance,
and the standard deviation

, -. _ - _ . - . . _ ._ .

Discrete data are considered in greater detail in Chapters 16-18.3 , , _ . , _ _ _ _ , _ . , , , , _ .

|

I

.- - -- - -. .- . - . _ . . _ . . . _ _

'* -A h- ..e--- _.- - .. . _ . % ,,, _, ,,_
"

- . . - .. -. _ -_ . _. . _.. . - .. . ._ __ . . . _ . _ . . _ . _ . . _ _ _ _

!
-_
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a coeficient of variation
.

a efects of variable coding.

The chapter concludes with two handy shortcuts useful in -- - --- r-

dealing with data-
N

an empirical rule that provides a convenient way of 'ya
summarizing the portion of a dataset that lies in an
interval

a methodfor estimating the standard deviation of aa

datasetfrom its range. . - . -- . - - .. .-. -,

_ . _ .

\Nhy descriptive statistics?
|

Consider a dataset with a single variable. Numeric valuesl

extracted from a data set with the intention of

| characterizing the behavior of the variable are called
descriptive descriptive statistics. If the dataset is a sample, the -,.--.---.-.-,n.-

statistics descriptive statistics often are the basis for making _ _ ... , _ _ _ _
'

inferences about the population from which the sample is
believed to have been drawn.

You are exposed to-and quite likely use-descriptive
| statistics of some form in your daily life. To name a few:
,

t

What were yesterday's high and low temperatures __ . _ ___._ _. . _ .. __

for your region? C_ ,

What is your " share" of the national debt?

What was your average annual income over the
last 10 years?

Many commonly used descriptive statistics are easily
~

obtained using an electronic calculator and often as a
. - -. - . . ...

!

. .-. --
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byproduct of a computer package. Because descriptive ;

statistics are so readily available and because the casual,
.

even thoughtless, use of them may have serious
consequences, it is incumbent upon each of us, as users of
these conveniences, to make sure that only appropriate -- -

- - . ,- a" ',

i statistics are used in our work. L -- _ _

s

For discussion:

o You may encounter the term data reduction in reference to descriptive
- ~ -- -r'

statistics. What does " data reduction" suggest to you? What, indeed, ^

*

is being reduced?
,
..

;

Measures of central value4

,

measures of Measures of central value (or location) are numbers , , , , ,. , _. . . . ,. ,_ ,

central designed to " represent" an entire set of values that a
^ ^ ~ ~' ~ ~ ~ ~~~~

value variable might achieve. An often-used alternate term,
" central tendency," describes the proclivity of a set of
values to cluster around a single value, but the term itself'

doesn't really help you "to locate" the set of values.
Consequently, you seek a measure of a variable's central
value to help you position the variable on a scale or on an
axis, often with respect to other variables.

, . - _ _ . . _ _ _ _ _ . _ _ _ _ _ . _ _ .

In order to make specific quantitative comparisons in the
- - - - -

following material, consider a specific dataset composed
of 6 values:

.

{ 1.7, 3.2, 3.2, 4.6, 1.4, 2.8} .'

. . ... . _ . . . ,

I

-4- - - - . . . L . .. ...,,m )
1

I I

l
4 1

en
J

e

d

* * '- " - ~- - .-- -.* - .. . .._ , ,,, , , ,_,

-- ~ . _ _ _ . ._ _ . .. . __ _ ___ . . _ _ . _ _ _ ..,___ _ . ._ _ _ _ _
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g
The mean of n observations is the sum of the observations divided by n..

: For the 6 observations {1.7, 3.2, 3.2, 4.6,1.4, 2.8}, the
mean is calculated as

:

( 1.7 + 3.2 + 3.2 + 4.6 + 1.4 + 2.8 )/6 . 7 r- - - -~ ~
.

,
'

*~ -- - -- - u-~ - s ;= 16.9/6
= 2.82.

1-

Here, consistent with venerable statistical practice,' the
mean is reported to one more decimal place than reported

-'

in the data themselves.
i.

Other terms synonymous with the mean are the arithmetic-' - -----a--

; mean, the arithmetic average, and sometimes simply . . . . . _ . _ - ... . ._ _ . _ ; . .
,

i- average.
:

i The median for an odd number of observations is the middle observation -
when the observations are arranged in order of their
magnitude (i.e., size). The median for an even number of'

T observations is the mean of the two middle observations

j when the observations are arranged in order of magnitude. ., ,,..._, _ ., ,,_ , , _ , ,_ , _.

The ordered set of 6 observations becomes {1.4,1.7,2.8, .

! 3.2, 3.2, 4.6}. Because 6 is an even number, the median -
, , ._ , _ _,

'

is calculated as

|j (2.8 + 3.2)/2 =. 3.00.
d

j' Recall that the median is an important measure used in the
: ' construction of box charts (Chapter 2).
5 _ ; _ . _ . _ _ . _ . . _

i i
'- -- -

The mode of a set of observations is the measurement that occurs most
i often in the set. For the set of observations {l.7,3.2,

3.2, 4.6, 1.4, 2.8 } , the mode is seen to be the value'

.

'

! 3.2.
!
i

!- Some datasets may have more than one mode, a condition
~ ~- ~- ~ ~--

you may find described by the word multi-modal.
'

,

. - - . ... . _.. ._ _.

k

i i

i

i
a

a
- ** *w =~e- ..n. - s - . . . . . .. ._ ,_ ,

_

'~ - ~k ~ - - - e. - me.. ..,,.m , ,_n . . _ . , . m_., , ,, _ _

.

i |
4

' ~ ~ + * =-4 ++ w7+. .-wa. , == 4 a . . , y.p ,,.,,.,,% , ,

.
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'-
_

- The' mid.unge of a set of observations is the mean of the smallest and the
largest values in the set. For the set of observations

-

{ l .7, 3.2, 3.2, 4.6, 1.4, 2.8} , the smallest value is 1.4
"

and the largest is 4.6, so that the midrange is calculated as..
- - ; -- - , ,- .u

. ,

(1.4 '+ 4.6)/2 = 3.00.
- ~.

N,

!

; The trimmed mean of a set of observations is the averry of the set after
' the smallest and the largest observatiom have been-

removed. For the set of observations
{ l .7, 3.2, 3.2, 4.6, ' 1.4, 2.8} , removal of the smallest

.

; (1.4) and the largest (4.6) gives the trimmed mean as
: .- . , _ __ . ._2 _

"- - - - -1-(1.7 + 3.2 + 3.2.+' 2.8) = 10.9/4 = -2.72. -s

.You may encounter trimmed means ' calculated after a
certain proportion of the dataset's smaller and larger
numbers are removed. - For example, a 10%-trimmed
mean_is computed by removing 5% of the smaller and 5%
of the larger values.-

-. _.-. .. - .._. , _ , . w -

The Winsorized mean is related to the trimmed mean. If you replace the ._ . . ._ _ . . . . _ , _ _ _

largest value in the dataset with the next-to-largest value '.
and, symmetrically,''the smallest value with the next-to-
smallest value, the mean of the modified dataset is called '

theprst-level Winsorized mean. (The adjectiveprst-level -
refers to the replacement of only one value at each
extreme of the data.) For the set of observations
{ 1.7, 3.2, 3.2, 4.6, 1.4, 2.8} , you create the modified set _ . _ . _ . _ _ ,,._, _ _ _ . -

. '

{ 1.7, 3.2, 3.2, 3.2, 1.7, 2.8 } . Then the first-level ' ~~" ^

Winsorized mean is calculated as

(1.7 + 3.2 + 3.2 + 3.2 + 1.7 + 2.8) = 2.63.

For a fuller discussion of trimmed and Winsorized means,
see Dixon and Massey (1983, pp. 380-382). .j

.. - - -

6- 4.4m..z. _M- .e Am -4 . e den.4 6 .94 6 e. mesh.

%

. . . . _. __

_ _ . _ . _ . ._.___.-_-...._m. . ... ~ .4 .__ . ,_ ,, _,

t
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:

For discussion:

0 Other measures of central value are found in the literature, some of - - _ _ , _ , _ , . . _ . , _ . .
'

them developed for specific situations, For example, the geometric c. _ _. _ ____ ._. ._ _
,

mean and the harmonic mean are described by Kendall and Buckland'

(1975). Ilow do you feel about the golden mean (found in almost any
English dictionary)?

Have you ever encountered terms like mean median or average mode?D

What do you suppose is meant by them?
. .. . . -.- . -. - - . - ..

. . .

i Mathematical representations of the mean

Denote a discrete finite population's size by N and the |
#

numerical value associated with the i ' element in the
population by Yg. Then the population mean is defined by

. . - . . . . .. . , _. -., .-

.

Y+Y+ +Y - -

i 2 N
Y= N

,

N.

Y,;=

J=1

that is, the mean of a population is the arithmetic average
of the values of the N elements in the population. Thus, - _ _ . _ _ _ _ _ _ _ _ . _ _ . _ _

to compute the mean, you add all the values and divide t_ _...
,

: the sum by the number of values in the population,

i.

4

|

e - _ . _

.

( . , . _ ___. . ... ... ._

$

+ . .eme _wa ..e.im.e

w= can--. e-. e- -- -.. _, w.,, 4, 4.,% ,,,, ,, _ g _ , _ _

d

4

..

* * * . W* m.* -me 4+. -, ., . . . . , ,,,,%,, , ,,, , , , , ,

4
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_

When there is no ambiguity, you may see the expression

1. for p written with fewer details, such as ,

a
^

:

fY
Y .or Yg or [ Y or [ Y. | L4 A
i i

;.
e

.

When the population is discrete and infinite, similari
~

| expressions are used. But now, because the values are not -
.

necessarily equally probable, the probability of each value
,

i
' Yg must be brought into the picture. To this end, let the .
probability associated with Yg be Pr{Y,}. Then the mean is - r - - ,- = -- -

'

L-------,__n__-_- ?.c .
; given by

|
|; p a[ Yg Pr{Yg}; .,

i '

; that is, you sum the products shown here over all the -
values of Yg.

y . .

The mean of a continuous population is a bit' complicated' , . _ . _ _ _ _ ___ _

j to describe; it requires the integration of the product of c , _, u . _ _ . _, .,; _, _

j each possible value of y multiplied by an expression of its
.

'

density densityfunction, which is a functionf(y) with two -

function particular properties:
;
:

.

I f(y) 2.0
l. .

!^ and . _ _ _ _ _ _ _ _ _ _ _ _ .
..
i .p

-
-.w

,

'f(y)dy = 1.
.

i .
L
j In this case, designate the variable of interest by the

unsubscripted y and its density function byf(y), Then the
: mean is given by the expression
s
?
' e -. - ,

C M M 'F=.amMM,, qMg 4 m. pgA,,, .gg g , ,. .g4j,

L
i
l

i

- -

4
- - - - . - - -. ~ . . . . - . . _ _ _ . , _ _ _ _

:
,

j
I

.

+ . *

1
.- , . . . ~ . . _ . . . . . . . . . . . , _ _ _ . . _ _ . . , , _ _ , . _ . __. , . . _ ,.

1
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where the integration is understood to be for all values of
the variable y. You will fmd more about density functions

.

in Chapter 7. - - , , - - - _ , . . - - _ _ - _ _. ,_._
,

sample mean The sample mean is dermed generally in a similar fashion.
-^ - ~ - - -- -- --- -

Denote the sample size by n and the individual
observations by {Y, Y . > Y }. Then you can write thei 2 n

; mean as

5'=1[n Yg.
" i-l .. ... -. ... .--.. _ . _

which, when there is no ambiguity, may be written as - -- - - - --

b[ Y.![Yi or
n n

<

" ' " ~' " ~~ ''^ ' - ~ ~~ ~
: For discussion:

. . _ . . . _. ._.._ ____

a What similarities do you see in the notations of the means of different
types (finite, discrete, continuous) of populations? What differences?

a Engineers and physicists will recognize the expression for y as the
center of gravity of a system. What does " system" mean to you? In
what sense are the mean of a variable and the center of gravity of a

i system alike? r-----------
L-. _ .

.

The weighted mean
i 1

The weighted mean arises m circumstances in which certain values in a
'

-i dataset are considered to be "more valuable" than others;
~

that is, some are given more " weight" than others when
. _ _ _ . . . _ _ . _ _ _ _ . .. . . __. _

1

,

.~

m - -m ummarium- - - mp we 6 p- -M-4 5gameee y= mew m e .- ew- sw+* 4h- =-- e oeem

I

4

4

4
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t

.

the data are summarized. In this sense, it is akin to the
mean of a population in which the variable's values havei

differing probabilities ~of occurring. The weighted mean is -

: . a statistic calculated in such a fashion as to accommodate
,

_

.-- w;these different weights. Note the special notation, Y,, t, 4 , , .

'~ '

used here to designate the weighted mean.
.

2

The situation is this: you have K values Y,; each one is
associated with its own weight W,. The weighted mean is

' calculated as+

.

'K
, - . . . . . ,y
' .

p , f.i,

w g.

? [Wg
i=1

! You may encounter some texts and formulations of the
,

weighted mean that use nj (usually when Y is a summary.f _

value based upon ng ndividual values), rather than W.i j'

n-m......_.... . . , . , _ . _ , , ,_
I

Consider now some typical cases where the weighted . - _ - . . ._ . _ . _ _ . _ _ . . _ _ _
'

j mean might be used:

Case 1. Specific values are repeated several times in the '
,
~ data. The number of repetitions of a score is the weight
: of the score.

Here is an example involving the years-to-first-rust ofi e . _ . . - . _ _ _ _ . . _ . _ _ . . _ _ . _ . _ .
,

metal containers; it has n = 9 observations with L_._. _
_$

K = 6 distinct values. The mean of the observations'

is 5.30.
;

;

,

Data: 2.3, 3.4, 3.4, 3.4, 5.2, 5.2, 6.6, 7.8,
' 10.4; n = 9 ~ ..

Values: yi = 2.3, y2 = 3.4, y3 = 5.2, y4 = 6.6, s

75 = 7.8, y6 = 10.4; K = 6 . A__ . . . ._

i.
4 6. - - .. ~ . . , ..... _.

-

J

.

'

.- . _ . . ._

-- ~ _ _ . - _ . _. ._ _ _ _ . . . . . _ _ . . _ _ _ ,_ . _ _ _ . _ _ __

,

?

4 .

' ~ OO "O W 4M d. _.. ._es age . A ,M g ,g, g g

1
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_ ,

.

Wj = 1, W = 3, W = 2, W = 1, ;Weights: 2 3 4

W =le W " I b5 6

EW=9 ij.
E Wpj = 47.7 -

~- -" ~ - ~ ~ ~ -- -~ ,-- - * :

y, = 47.7/9 = 5.30.
* * = a*'a wa ..s-a, . . . , ._,.,_ ,,

1-
. ' *

.'I

l. '

'

Case 2. Data are grouped into intervals. The number of

responses falling into an interval is the weig*ht associated
.

with that interval.1 Thus, each value in the i interval ,

assumes the value of the interval's midpoint; that midpoint
is designated by Yg. The mean of the observations is 5.42

_. .. __ . ._ ___ _ . _ . .. . _ _ _ _ _ _ . . _ _ . . ,

a I

Here is an example involving the measured forces
- - - - -

e
required to break 11 bolts, reported in kilopounds
(kips): !

'

Data: 2.1, 2.6, 2.7, 3.4, 5.2, .5.5,' 5.9, 6.6, 7.4,
i7.8,10.4; n = 11

Values: The values are grouped into 9 intervals,
each one kip wide, starting at 2 and ending -, - ' - ,. . . .. . . - . . -

at 11, yielding these 9 midintervals: . . . - .. . . . ._._ _.. _ _ . .

yi = 2.5, y2 = 3.5, y3 = 4.5, y4 = 5.5,
y3 = 6.5, y6 = 7.5, y7 = 8.5, yg = 9.5,
yg = 10.5
W = 3, w2 = 1. W = 0, W = 3,Weights: i 3 4
W = 1. W = 2, W = 0, W = 0,

5 6 7 e
,

! W=19
E W, = 11 .

-

E Wpj = 59.5 ' _
_

y, = 59.5/11 = 5.41.

. . .. - .. .. . . . ..

E.Ge g. w e>. , eM-e eh Mp 4 v he&,. eg e .,, q w q6 4.-gap,.

!

!

t
. ___ _ ._ . _ _ . _ _ . . - _ . _ . . _. - .._. ._

,

.. - . _ _ _ . . _ . .. .. ... _ . , .__ .._ . . . _ _ . . . . . . . . - .- . . -- .~_.

i

c

.

d .. in
'

no eev -eA 4= 4 u+. 4 e=-. . e.e...w a. eee,w. .e.i.ee., e .m. . sq. . m.. ..e...

;

|
:s
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Case 3. Responses have diferent degrees of
"importance. " According to some authority or tradition,
certain responses are more important than others, and the
more important responses carry heavier (i.e., larger)

,

weights than those that are less important.
-

7 --
- ,r a'

---- . _-,_

p

Here is an example involving the assignment ofm

weights to three. classroom examinations: first (20%),
second (20%), and final (60%). The mean of the

i student's three scores is 75.0.
i
,

Data: 70,60,95 (scores for one student); n = 3I

Values: yi = 70, y2 = 60, y3 = 95 - _ . . _ -___ ___

W = 20, W = 20, W = 60 . . _Weights: i 2 3

E W = 100f

|
E Wyf = [(20)(70) + (20)(60) + (60)(95)]/100

l
= 8300

( y, = 8300/100 = 83.0.
.

. . . . . - - - . . .. . . . _ , _ .

For discussion:
- - - - - -

C In Case 1, in the discussion of the weighted mean, the mean of the
;

data (47.7/9 = 5.30) is identical to the weighted mean. Is this a
l coincidence?

| c in Case 2, the mean of the data (59.6/11 = 5.42) is not identical to
the weighted mean (59.5/11 = 5.41). Thus, some detail is lost when

- - - - - - - - -

you assign the values to the midintervals. Find at least one
- - - - -

observation whose value is changed by this process.

In Case 3, weights of 20,20, and 60 are used. However, you get thea
same result when you use weights of 2,2, and 6 or of 1,1, and 3. i

Thus, it is the ratios of the elements of the set of weights, not their |
specific values, that are important in this type of application. How |

. - |might you demonstrate (i.e., prove) this statement? Is there

. . _ . . . . .. . _ , . . ,

i

-

* -N M'F h=G= - sew p, , ,, p,,,_,_ _ _
'

..
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something special about using 20,20, and 60 as weights in the
example?

-----, - ~ _ , , - _ - . . _ . ,,
,

,

Measures of variability
- ^' ~~ - - - - - -

,

! A measure of central value-be it the mean, the median,
'

the mode, or whatever-generally is considered to be the
most important parameter / statistic associated with a set of
observations. However, a measure of location does not
tell the whole story about a variable. To be able to make , _ _ _ _ __ _

inferences about a variable, some measure of variability or,
'

~

uncertainty or " noise" of the data is necessary. Recall the
box plot concept from Chapter 2 and how it illustrates
more about a set of data than merely its location. i

1

Several different measures of variability are described in |
. this section: the range, the percentile and the ' |

|quartile-both of which are special cases of the quantile-
' ' ' ~ ''~ ' * ' * - ' - -the variance, and the standard deviation. Calculational

| details are illustrated by the same set of six data values. - - - - --

! { l .7, 3.2, 3.2, 4.6, 1.4, 2.8} , used to illustrate the

|
various measures of central tendency.

The range is the difference between the largest value and the smallest
value in a set of numbers. In the set {l.7,3.2,3.2,4.6, ,

! 1.4,4.8}, the largest value is 4.8 and the smallest is 1.4,
'

so that the range is -- - -- - - -- - ---

----.. . .

4.8 - 1.4 = 3.4.

. . _ .. _ _. , _.

.. . _. . _ . ._ . . ... . _ __

-

h

- .. .- - .. . -..

. . _ - . . - __ . - . - - - - - - - - -

.*
4
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1

l

. -For discussion:

o Ranges can be associated with a population of values as well as with _ _ _ _ _ . , , _ _ ,,._
,

samples. However, for some populations and samples, the range _ _ ,._ _____j
cannot be determined. Can you think of cases where the range can be ;

determined
a

i
| for neither the population nor the sample?o

for the sample but not for the population?o
for the population but not for the sample?O

o The sample range cannot be larger than the population range; indeed,
~ ~ ~ ~ ' ~~ ~~~ ~ - -~ ~ - ~

l

!

seldom are the two equal.
~ ~ ' ~- - - ' -

5 The percentiles can be obtained for any set of values on an ordinal scale
or on an interval scale. They are based upon the division

|dof a set of data into 100 equal parts. The k ' percentile is
,

" '' '^*'~~ ~ ~ ~ ' "'-~' ^

a value such that k% of the measurements are smaller than
i

|that value and (100 - k)% are larger than that value.
- - - - - ---

1

The quartiles are three particular percentiles of special interest in
describing sets of data:

!

Thefirst quartile is the 25th percentile of a dataset. |
!The second quartile is the 50th percentile of a dataset.

- ' - - - -- - - - --

'

(From Chapter 2, recall that the second quartile
- 1also is called the median.)

-- -

The third quartile is the 75th percentile of a dataset.

Thus, the quartiles divide the dataset into 4 equal parts.
Related to the quartiles are the quintiles (5 equal parts)
and the deciles (10 equal parts).

1

- eus- = a. e se .

k eggud -- AM -e w 4@g, , h3 4g4 A ,,,g,g

4

W

- - . . ~ , w.<- . .. .-, me,

.-- --** *e,.= en em ,e-_ ..m.,... ow-,, ..m.,,, e, .pm,,, ,,, ,4g. , ,, _ _ ___

1

** * * -- e m. .. mar s . .e <ae. 6.- w- 4 ..e..
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___.
_r;_;

.

The quantiles are measures of variability which are, according to
.. Chambers, et al. (1983, pp.11-12),

'

*

| ... closely connected to the familiar concept of .

percentile [s]. When we say that a student's college
-

- '' :.-,

board exam score is at the 85th percentile, we mean -q- ----,--

that 85 percent of all college board scores fall below - % |

that student's score, and that 15 percent of them fall - )
above. Similarly, we define the ,85 quantile of a set of ;

I
data to be a number on the scale of the data that divides
the data into two groups, so that a fraction .85 of the
observations fall below and a fraction .15 fall above. .

' We will call this~ value Q(.85). The only difference ..

~ ~~ '~ ~~~~ ~~ ~~ ~ '

between percentile and quantile is that percentile refers ,

to_ a percent of the : t of data and quantile refers to a
- - - - - - "

fraction of the set of data.... .

i

Thus, a quantile can refer to any portion of a set of data !

. while percentiles necessarily refer only to portions
'

measured in hundredths.

|Figure 5-1 depicts the 25 water impurities data given in - - - - - - - - - - -

Table 2-3 plotted along a number line with Q(,85) . _ . . _ ... .. . _ . ..- _ ..

indicated, Notice especially that none of the observations
serves to set a value for Q(,85) and ;ome arbitrarmess ;

cannot be avoided. Here, Q(.85) lies between the 21st
~

and 22nd ordered value.
;

,,.-w--.+ = - . .. . . - _ . . .

P

s . aw.=ee , m. . - ' s

:
;

_ . . - .

. M4 |'4 iM- *p- .M.h,-.k a.Mae+. .6& %..@h M ..

| !1
i

:

i
~

i

?

J

, . - j
- - . . ..__ __ - _ _ . _____. . _ _ . . . . _ _ , . . . . _ . , _ _ _ _ _ _ _ _ , . . . . . _ . _ . _ _

,

I

| .n.

I
; !
l- .- 1'

. ., . , - , .. - .. . . . . . . . , , .. . -
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i

Figure 5-1: ,

'

| Number line for impurity measurements from Table 2-3

-_g . .. - . - - . - .

-- - -- - - - - - -- - -- t

| What's the value of the .06 quantile?
|
.

|
h
!

? . Q(.96) . ?
. -_ .. _ ,_________

- - .- . . _.. . . . _ _ _

786% .? ? - 16% . ?
. .. . .. . . . . . .

|

.

42.2 42.3 42.4 42.6 42.6 42.7 42.8 42.9 43.0 43.1 43.2 43.3
Waterimpurity (ppm)

. .. . _ _ . . . . _ . . _ . _ , , _

. . . ._.

As Chambers, et al. (1983, pp.12-14) go on to explain, .

this definition
!
i

| ... runs into complications when we actually try to
-- -- - - - -- -- - - - --

'ute quantiles from a set of data. For instance, if . - . . . - . .

;

i .mt to compute the .27 quantile from 10 data
imues, we find that each observation is 10 percent of
-;

i the whole set, so we can split off a fraction of .2 or .3 - . i

'

of the data, but there is no value that will split off a
! fraction of exactly .27. Also, if we were to put the

split point exactly at an observation, we would not
|

| know whether to count that observation in the lower or
~

j. upper part.
. -- .- _.. .... . . _ . ..

%

i. . . - %..

" " ' '" h h v- - * * . ' .am --p . .w.,., , _ _ _

* ~ #" d d4i4 Mt, e. , _

T4---
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;.

To overcome these difficulties, we construct a *

convenient operational definition of quantile. Starting

!. with a set of raw data yg, for i = 1 to n, we order the
|! data from smallest to largest, obtaining the sorted data -

yg, for i = 1 to n.2 Letting p represent any fraction 7 -- - , ,,-

between 0 and 1, we begin by defining the quantile im ._ _ _ , . , __,_ , _

Q(p) corresponding to the fraction p as follows: Take
Q(p) to be y ; whenever p is one of the fractionsg
pg = (i - 5)/n, for i = 1 to n. i

Thus the quantiles Q(p) of the data are just the ordered
data values themselves, y ;. The quantile plot in ...g
[ Figure 5-2 is a plot of pg against Q(p) of the water -

-- -- ~ " - - -impurities] data. The ... [ vertical) scale shows the - ~

'

fractions pg and goes from 0 to 1. The ...- [ horizontal] - - - - - -. . .._;

scale is the scale of the original data. Except for the
way the ... [ vertical] axis is labeled, this plot would
look identical to a plot of ... [i against y ;].p

a , _,, s-, , , . -. .._

4

T

* ...: t.-. . . -... .. . . . . . .

| ?

I-

'
.

|
l.

| n-.--.. -- - --- -. .-.- .
,

|
_ -.._ .

|

t , _. ;

1 3 This notation for the " ordered statistics" of a set of data is widely used. Thus, yggy s the smallesti
" ' ' ~ ' " " " '-*- " --~ ~-~

member of the dataset, ya3 s the second srnallest, . . and yg) is the largest.i

i

_ . '.. . _ . . _

. . . . - . . , ~ --. .~ ~ - . . . . . _ _ . . , , , . _ _ , . , . _ . . . . _ . _ _ _ _ _ . . . _ , _ _ , _ , . ,,_., ,,, . _ __.,

I

" . . 3 ., 4. ,

.-g? .. q p 4 my w y 4 w-U mv-. er i ..e p -
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|

Figure 5 2: 1

IQuantile plot for impurity measurements from Table 2-3

. . . - , , . , . .- ,- -
. .

,

,
w...-- ...- . . . _ -. - ; . ,

1.0 .

.
.

.
*

02 - .
.
.

.
*

0.6 : .g ..
. .. . -.. - _ . . - _ . .- ..- __

.
i.Qj$ .~ ~. . , . % ..e.~..

- w :
.

0.2 2
*

..
t

.

l .
**

0.0 . . . . . . . . .

i 42.2 423 42A 42.6 42.6 42.7 42A 423 43.0 43.1 43.2 43.3
Quantiles of waterimpurity(ppm) . , L,..__ _ _ ;_ ,_

s

_ .. . .

. . . . _ _ _ _ -_

So far, we have only defined the quantile function Q(p) ,

for certain discrete values of p, namely pg.- Often this
is all we need; in other cases, we extend the definition
of Q(p) within the range of the data by simple

; * ~ ~ ~ ~ ~ ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -

| interpolation. In ... [ Figure 5-2] this means connecting
1

|
consecutive points with straight line segments, leading -

to ... [ Figure 5-3]. In symbols, if p is a fraction f of
way from pf o Fl+1, then Q(p) is defined to bet

.

Q(p) = (1 -f)Q(pg) + f Q(pg+n).

. _. .
,

I

- |a. . e4 .e ,.'.m...ea... ..as.s... w.. .em ..

|

. _. _ _ . _ _ . _ . . _ . . . _ . . _ . . _ _ . . . . _ . . ._ . _ . . . . . . .._ . _ .

!
'

!
|
f

l

~. . . .- . . . -. .. . . . . . . - . - ..

- - - - . - - _ _ _ . - _ _ . _ . _ _ _ _ _ _ _ ~ t. . , , _ _
_ _g,,p.,_

-
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)Figure 5-3:
interpolated quantile plot for impurity measurements from
Table 2-3

.-
.

-
- ; . ,,,

.. . .. . - . - - - . .

\,1.0

0.8 i
,

5
50.6 ig . . . . _ _ .,_ _._ . _

h . . . _ . . _ . _-

DA -
u.

0.2 -

0.0 , , . . , 1 -

42.2 42.3 42A 42.5 42.6 42.7 42.8 42.9 43.0 43.1 43.2 43.3 ~' " * ' ~~~"~ ~ ~ ~ ~ ' ~ * * * - "-~~

Quantiles of waterimpurity(ppm)
.. . . ._ ... . .__

We cannot use this formula to define Q(p) outside the
range of the data, where p is smaller than .5/n or larger
than 1 . 5/n. Extrapolation is a tricky business; if we
must extrapolate we will play safe and define

' ~ ~~ ~ ~ ~ ' ' ~ ~ ~ ~ ~ ~ -

Q(p) = yyy for p < pg and Q(p) = ym; for p > p,,
which produces the short . . [ vertical] segments at the - - - - -

beginning and the end of ... [ Figure 5-3].

Why do we take pj to be (I .5)/n and not, say i/n?
There are several reasons, most of which we will not
go into here, since this is a minor technical issue.
(Several other choices are reasonable, but we would be
hard pressed to see a difference in any of our plots.)

~ ~

We will mention only that when we separate the
. -- ~ _ . . . . . . .. . .._,._

$

..-. .__

y. p. -e** *e. =r e,w+ m W4 +%w q Nee. =,,gswe+ em aps. - e4.istemana e -ie e.-- 4a sb. ''.se'rsk a ,%.4.p-... ae om.p-e..no

e
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.

=

ordered observations into two groups by splitting
exactly on an observation, the use of (i .5)/n means
that the observation is counted as being half in the
lower group and half in the upper group.

- ,. - _. __ ,, -
! >

The variance and the standard deviation forpopulations are commonly L - - - - - - - - . -

used statistical tools for measuring variability. For afinite

| population of size N, with values {Yj, i = 1, ..., N}, the
variance is defined by

N

| { (Y, p)2

2 , i-1a , " , _ ~ ~ _ ~ _ ~ _ ,

N
. .

For a continuous population with density function f(y), the
variance is defined by the integral

=

(y _ g)2 f(F) dY.2o ,

,

In either case, the standard deviation of the population is . . , , _ , _ , , , _ , , , , ,

the positive square root of the variance; i.e.,

a = f.

i

i For discussion:
. _ _ _ _ _ _ . _ _ _ . . _ . _

,

| "The population variance measures line fluctuation of the data around t. _ . .0
| the population mean." How do you interpret that remark? N

q
2c The value of a is rarely known. Can you think of situations in which

2it is known? Indeed, what does to know a really mean? g

2o Engineers may recognize a as the moment of inertia of a system
around its center of gravity. What does the term " system" mean? ._ _ . _ _ _ .

. _ . _ _ _ _ . . _ - . . .__

- .. . -. . -

| - _ __ - _ . _ _ _ _ _ . _ _ _ _ . _ _ . _ . _ _ _ _ _ _ _ _ _ _ _ _ ._. _ _. . __

- - - . - - . .. . .. . . _ _ . . . _ _ . . . _ . . . .. ..
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|

|
What does the term " moment of inertia" mean? How do you link

| them to the statistical issues discussed in this chapter?
|

| C The variance is sometimes called the Mean Square Error. Why? l,
. - , - ._.. . . _ , , _ . .,

o The concept of standard deviation is generally easier to conceptualize
-- - - - - - ---- - - --

than that of the variance because the standard deviation is expressed in

|
* the same units of measurement as the original data,

l

I
i

|
t

The variance and standard deviation for samples, like those for
populations, also are commonly used statistical tools for

- - - - -- - - - -

~ ~ ~ ~ - ~ - - - - m
'

measuring variability.

For a sample of size n, the sample variance is defined by
one of two expressions, according to whether you know j

,

the value of the population's mean .

'

J

On those rare occasions when p is known, the sample ,s
1

:variance is -- - - - - - - - - - - - ~ ~ - -

n . . . ... - - - . _. I

| {(Yg- )2
S2 , 91| . ,

1 n
i

.

When p is not known and must be estimated from the| s
i

sample itself by E, the sample variance is!

| . - - . . . . - .,

n

{ (Y - E)2
- -

f
g2 , bl ,

n-1

The second expression is the definitionformula for the |
sample variance. An alternative formula, called the
workingformula, can be written in several forms, two of
which are: . .-- .- . . _

- _ _ _ _ _ _ . _ ._. ... . ,__

|

- - - -. -.

" "' " "'"M ' - * ***v wines a- m. Amim.. , , , g 4 p_

l

* * m- y ,_a.
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n

Yi n nn

[ yg* - . ''' n[yg - ([y)2
# ~~ ~ ~ ~~'* - - -- *7'32 , dal i=1 i=1

,
,

n-1 n(n - 1) -- - - - - -- -- -"

In either case, the standard deviation of the sample is the
positive square root of the sample variance; i.e.,

S = h.
.- . - - , , . . -.-- .

For discussion:

2o S , the variance of the sample, is an unbiased estimator of the
2 2population variance, o . This means that S may be (and usually ist)

2 2 2different from o , but that on the average S equals a . What does on
the average mean in this context?

. . . . _ _ . . . .. . - . ,, , --

2o The denominator of S , either n or (n 1) according to whether you
- - - - --

know the mean, in the formula for the sample variance is called the
degrees offreedom. What does degrees offreedom mean in this
context, compared to its use in the analysis of contingency tables
(Chapter 4)?

o Some personal calculators use a, and a,, i o denote the standard
- -- - -- --- - --

t

deviations for the population and the sample, respectively. Some
calculators use a and s to make the distinction. Still other calculators -- - -

fail to differentiate between the two in any way. To see what your
calculator does, enter the values 1,2, and 3 and press the standard
deviation key. If the display shows exactly 1, your calculator uses
(n - 1) in the denominator. If the display shows a number in the
neighborhood of 0.8165, your calculator uses n. If some other

-

number appears in your display, check your operator's manual or buy ,

another calculator (no, it's not the batteries gone sour!). What does A- - -- - . - ~_

your calculator do? 4.. _ . . ._... . . . . _ _ . _ .

,

.

-- -.d.**- 4 +- - me w e=% ..my ...w.i m, p4 .g ,, , , _

@ ***8- $@ #W $ 5--4 e M 48 SO - ( eda e a hea e a == b M- A e d- . 4 am.e. 4
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,

If you use spreadsheet software, be aware that some built-in functionsa
(e.g., Lotus 1-2-3's @ VAR (list) and @STD(list)) are incorrect for

-

,

samples in that they use n, rather than (n - 1), in their denominators.

; If you must use these functions, multiply @ VAR (list) by n/(n - 1) and
~~~-7-@STD(list) by the square root of n/(n - 1) to get sample estimates of

- -

u

a and a, respectively. You may find other interesting choices among
- -- - -- -- --- - -- - -- -2

the functions in various spreadsheet packages. Check your software's"

- manual (s).
4

,

1 Nine steps to computing a sample standard
_ _

deviation . . _ _ _ _

i

Even though modern computers and calculators have taken
much of the fear, loathing, anger, anxiety, inaccuracy,
and pain out of variance and standard deviation

; computations, this section is designed to help you become
comfortable with various ideas and nomenclatures that you
may encounter elsewhere. It is a nine-step procedure: -, . , . . . _ . _ . _ _ , _ _

Step 1: Denote the n observations in your sample as the set
- ~ ' " ~ -

,

{Y , Y . . Y l-
] i 2 n

kStep 2: Denote the sample sum by one of the forms: ,

n "
i '

i [ Y;, [ Y,, [ Y;, [ Y, Y., or Y. . . -,,

0 i=1 i [_ _ _ ,

Note: You will find the last of these forms, i.e., Y.
(called y-dot), used extensively in statistical literature.

| Step 3: Calculate the sample mean:

n

$ ~~ ~

y , i=1
* * ' " ~ '' *** ** * ~ ' ' ~ - - - -*

n

!

;

- . -.

.,.s ., _-- .w- +w. _w- .w-c.- _--- we,.a. . es e y,. - 4,-pu . New a 86.se -* * " * - +- - 'er -eW w

i
1

- -
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St*,p 4: Calculate the unadjusted sum of squares:

|

j SSzg3 = [ Y;2
1 - - . , , - _ __. ,, ,

| ,
,

'~ - -' - -- - - - -

St:p 5: Calculate the correction term:

CT = (E Y,)2 = n(F)2,
. _

n

Step 6: Calculate the sum of squared deviations (sometimes called
the adjusted sum ofsquares):

. ~ . . - . - - - ~ - _ . - . - . . _

SSD=[(Yg~5)2
'

' - -- .

= E(Y,2) _ ([ Y)2g

n

= SS(g) - (CT).

St:p 7:- Calculate the degrees of freedom:
,
,

. , . , . - , . . - - .. . _ - - , . - . .
|

df = (n-1), ,

St;p 8: Calculate the sample variance:

2 = SSDS
df.

Step 9: Calculate the sample standard deviation: , _ . _ _ . . . . _ . _ _ _ _ _ _ _ . _ _ .

S=y(S ,
- ..w

2 N
\
x

| -\.
, s

! N'
| . .. . . - .. - _ .. . ..t .

l
- - - ~ ~ . . . . . _ + . .~ -.

'
I

!

I
:

- -- - -- . . _. . _ .

t _ . _ . _ _. _ __ . _ _ _ _ . . . _ . . _ . _ _ . . ___ _ _ . _ .___ . _ . . _ _ . _.

'- * - ** *- - -.4 e . e.. . 4 - . .-e+ m , .yo,_. ,,.%,, , u , , , , , _ , , , _

.-, w - - , y --- .P m-
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For discussion:;

e Is it obvious that the relation , _ . , . . _ _ . _ , . . _ _ , , , .

_ . - . . . . _ . _ - - . . _ _ . _ .

[(Yg-Y) = 0

holds for any set of values {Y, Y Y }7 How would you provei 2 n

it? Can you prove it using " simple algebra"? Aside from the
algebraic demonstration, why might you expect this relation to hold<

true?

The equivalence of the definition formula and the working formula for
~ ~ ~ ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

m

the variance can be verified by algebra. Try your hand at showing
- ' - - - -

this.

If your hand-held calculator has statistical functions, it calculates thea
variance using the working formula. Why should this be the case? ,

The working formula, generally, is easier to apply than the definitiona
formula. However, the working formula may cause an error if the - - ' - - - - - - - - --

data entries are large enough to cause a computer / calculator overflow. - .-

Would you rather use the definition formula or the working formula?a
Can you suggest cases where the definition formula is superior?
What is the advantage of the working formula?

|
As noted, the two methods may disagree due to rounding errors. Fore
most datasets, the working formula is recommended; it requires fewer - -- . . _ .-- - - _ . _ _

operations. For numbers with many significant figures, the definition . __. _ _ . _ _

formula is recommended; it is less sensitive to rounding or truncation
of intermediate results.

A variance cannot be negative. If you see a negative variance, youm

know something is wrong. What might that be?

. - _ . . _ _ _ . . ... . .__

.

-- -- - -* - - - . .. . . . . _ , ,__. ..,,__ ,

4 * me-44 4,4 g
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,

i.

|

The variance can be identically zero. Under what conditions? Give0
an example.

- - - , . - . . _. _ _ , .

+; .

"~~~~~~^~~~~~~~i

The mean and standard deviation of coded variables

Consider a set of values {Y, i = 1, ..., n} with a mean E i
'g

and a standard deviation Sy Suppose you multiply each
value by a constant K and then add another constant C.'

What happens to the mean and the standard deviation?
:
2

Algebraically, you have created a new set of values by
,

3
coding (i.e., applying a linear transformation ) the Y, to
create a new set of values, call them X,, where

X; = KY, + C , i = 1, . . . n . '

1

The mean of the Xj ecomes E = (Ki + C), and theb-

standard deviation of the X becomes Sy = KSy.f - , . . - . . . . . . . , . _ . , ._
,

Because any linear transformation can be written in terms
._ _ _ _ _

of the constants K and C, you have full knowledge of the
results without actually calculating them. For example, ifj
you wish to add 10 units to each Y, in a dataset, simply set
K = 1 and C = 10. Then you know immediately that

5 = ? + 10 and that Sy = Sy, no matter what the actual

values of i and Sy.i . _ _ _ _ _ _ _ _ . _ _ . . _ _

.,
.- _.

i
1

; |

1

I! '

4

's
. . .. . . ._-

A linear transformation is a procedure in which a variable is multiplied by a constant K,3 ~~ ~ ' ' ' " ' ~

immediately followed by the addition of a constant C.

|
"

,

,

, _ ,
- - ..

. - - . - _ ~ - . .- . . . _ . . . _ . . - . . _ _ _ _ _ _ _ _

>.

4

'

|

- - -- - -- .- . . _. ... _ _ _ , _ ,, _ , ,

_
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|
|

For discussion:

D Consider this set of 10 values: {98,99,101,97,100,98,95,101, .._, _ _. .,

99,99}. Compute the mean, variance, and standard deviation. L._.,, _'___ ____
o Add 10 to each of the values and repeat the calculations. Are they as

the formulas specify?

o Subtract 10 from each of the original values. What will be the mean,
the variance, and the standard deviation? Do they agree with your
expectation? . . _ . _ . _ . _ . _ _ _ _ . _ _ _ _ _

''

Multiply each of the original values by 100. What will be the mean,
- ~ - - - -

c
the variance, and the standard deviation? Do they agree with your
expectation?

Divide each of the original values by 5. What will be the mean, the \O

variance, and the standard deviation? Do they agree with your \
expectation? ....._-.-)L._.__..__,,_._

a Subtract 32 from each of the values and then multiply those values by - - - -- - ---

5/9. What will be the mean, the variance, and the standard deviation?
Do they turn out to be as you predict?

O Why would you even consider coding a set of data in the first place?
What are the advantages in coding data?

You may have occasion to apply other, but non-linear, transformations r- --e
to a set of data. Proceed with some caution because the results are l_

- -

_- ---
- -

.

not necessarily predictable in terms of the descriptive statistics. For
example, suppose you apply the square root transformation to the 10
values given here. Then what are the mean and the standard

( deviation? Is the square root of the original mean the same as the
'

mean of the square root values?

.
.

. 58.- .e

...-.a. - ..__;

. . ,,

"" - - -- +- - - . -. ......._%,, , _,_, , . , ,, _ , , . ,, , , , ,_, , , , ,.

- -.. - . . . . .
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|

| Th3 coefficient of variation
:

The coeficient of variation-also known as the coeDicient
of variability and/or the relative standard deviation-is , , _ _ __ _ '

_

-

'

widely used in a number of disciplines. It is defined as
'

|
~ ~ ~ ~ ~ ~

the standard deviation divided by the mean. Interestingly,
the coefficient of variation has not acquired a widely used
single symbol. Thus, in this book, for a population, you
have

cv -?. - . ,. . , - - - . _ . _ _ , _ _p p
_ c.

In a similar fashion, in this book, for a sample, you have

CV = b.s y
|

!
' - .. . . . . - .. - , c

For discussion:
. . . . . . . - - .

ca Compute the coefficient of variation for each of the transformations
you made in the previous For discussion: section. Draw your
conclusions. Why do you suppose you need the coefficient of
variation? What are its units? What problems do you see with using

| and reporting the coefficient of variation? _ ,_ , _ _ _ ,,

.- -. - ..

An " Empirical Rule"

Many sets of measurements, when rendered as a
;

histogram, yield " mound-shaped" images. That is, wheni

all the measurements are plotted as a histogram, where the __ _

horizontal axis represents the measurements and the ._ _, __. _, , , , _ _

,

- -. -- . - . . - .

'' * *- a4.i==.. wes-m+- w - q,.....ig,,. , ,

i

i
. . . . . _ . . . .. .. .. .. . . . .. . = _ . _ _.. . - .
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,

:
'

1:

vertical axis gives the frequencies (or the relative
|,

frequencies) of the measurements, you obtain a relatively -
symmetric, relatively smooth curve with tapering tails to

'

} the left and to the right of a center " mound."
.. ._.,.- - - - . . , . ~ _ . . _ . _- ..

4
, ,

' ~"-' - "--- -
|- The histogram of such measurements is seldom truly
! symmetric. Nevertheless, for many mound-shaped sets of

numbers with mean P and standard deviation S, Ott and -

i- Mendenhall (1984, pp, 76-82) offer the following

| " Empirical Rule":

i

| For a histogram that is mound-shaped, the interval -
,. - . . . , - - - - . , - _ _

- - ,

| -from (Y - S) to (Y + S)
' - - - - - -~

! contains approximately 68% of the measurements;-
4

j from (Y - 25) to (Y + 2S)

contains approximately 95% of the measurements;'

.and . - .

from (? - 3S) to (? + 3S).
'' ' ~ - - - - - ' - --'

i

i contains all or nearly all of the measurements.
;
,

1

| This empirical rule supports convenient summaries

! regarding the nature of various portions of a set of data. ,

| For example, consider the 150 uranium ingot weights
j (Bowen and Bennett,1988, pp.12-15) displayed in F~~~ - - ' - ~"-~

Table 5-1. The mound shape derived from these weights - -

,

i is shown in Figure 5-4. The mean of these 150 weights is - ,

;. y = 426.40, the standard deviation is s' = 2.83, and the ,

range is 15.7. .

!
e
r . .

___. _ ___ _

i.

.

I

-|

[ . .

!

-
- . - _ _ _ _ _ _ _ _ . . . _ . _ _ , _. . . _ . _ . _ _ . _ . _ . . _ _

J

i
l'

,

j . .i

{
- - . - - . , -- . . - __. . . - + ..,

.

,e-- -er.,., ,..,-:-e,- , y er , . , , , . . , - ,, -- ,,,,.,.a.- , .~ . - . . , ,,e,. .- . , , , , , , - ,-
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,_ _ _

-

Tcble 51:
Wcights of 150 uranium Ingots

!
i

~ ' ~ " ~ ' ~ " ~ - - '
t.425.0 426.7 423.3 429.4 427.9 425.9 422.1 ,

422.5 424.4 427.8 428.9 425.3 425.4 427.3- - - --~~------1

424,9 422.4 426.1 424.8 432.4 427.9 421.9

431.7 432.2 422.4 427.3 . 427.3 423.7 425.7

426.3 427.8 424.8 428.0 426.3 428.6 425.9

424.5 431.3 431.2 427.3 418.5 428.8 431.6

426.1 425.8 429.8 429.5 425.3 424.5 424.6

423.1 426.8 430.9 423.9 421.9 425.1 421.8
'!

428.3 424.8 427.0 425.1 425.2 - 424.4 432.3
^ ~ ~ ~ ~ ~~~ ' -~ ~ ' 7

.

*

423.2 423.6 427.9 427.9 428.5 424.7 '428 8 ,.

428.2 424.8 421.0 423.6 428.0 427.7 425.7' * * -
<

429.1- 429.7 419.6 421.3 426.8 421.2 425.2

424.2 430.3 424.6 430.0 423.5 427.2 430.0

429.7 423.2 428.8 425.4 427.5 429.4 424.9

424.8 431.0 427.9 423.6 421.7 425.9 426.6

427.2 428.0 428.0 429.7 427.4 426.6 426.2

428.3 426.6 428.4 427.1 427.5 425.5 - 426.2

429.3 425.4 423.1 426.9 425.7 429.2 434.2
' ' '' * ~ ' ' "' ~ ~ '~* ~ " *~'

421.8 427.3 425.2 427.3 425.7 426.5 ~ 420.4

424.0 426.0 424.9 430.5 - 426.3 426.3 424.9
~ - - - - - -

428.0 423.3 431.1 426.4 429.0 429.9 423.3

427.4 424.2 428.2

.

:
t

|
. _ _ ._- _ _ __ _ , _ _ . _

6.~. -. ,

: ,

i

|

.

y a - amp,- .w e, w e . gem.,.

; .. .. - -. m .._. . _ ......__ .

,

%

'

,. .. e .m

. . . . _ . .e ., ,-- .w.. a*~. ch-ws ee--=, ..cm.-.a ,--m-.w -e. -i.ei.m; .-=m .u ..une ; -i... g .+ h

'

.

I

I

r 6-

,

j . . . . _ . . . . . _ . . . . .. . . . - .- . . . .. . . . - . . . . . ~ , ,. -

- ,,, , . . , , . - - - . , - - - - - - . . . - . . - - - - -..
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,

Figure 5-4:
A mound-shape derived from 150 uranium ingot weights given in
Tcble 51

|

|

. _ , . , . . - _ .. ,. , 1
,

.

;

-.- . . _ __ .- . _ .- ._. .

30

24 -

,

-
1
,

18
-

. - - _ -_.-. -- - -. _ _ . . ..

. .. ._.. _ _- _ _ _ . _

2u. 12 _

_

__

6

j __ .

! #""'
O

' '

! 416.0 420.0 426.0 430.0 436.0 ....,. _. . .-- .-- . ... ~.., -_.
' Weight (kilograms)

. . . . .. - _

These intervals and their corresponding percentages for
the uranium ingot data are displayed in Table 5-2. .-__. ._. - _ _ _ _ - _ __ _

- ..- ~ . -

!

!

| 1

:

. . .

. . _ _ . . . _ . . - . . ... ...-. --.

. -

e i.e.ur -^ Me ww .Oma.a4 edS.o en e <-1a$. . eq D,e. e 6.g%.- ese - m w . .w + g-hw +4 .+Es- see' e t"-s.
'
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|
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t ,

Tchle 5-2: -!

Comparison of expected and actual contents of intervals based |+

! upon the " Empirical Rule". and the "mt and-shaped" uranium ingot
'' | weight data in Table 5-1 and Figure 5-4

%- p-, , , ,

-..- --

!
is expected but actually -'

.,

| - De laterval defined by which evaluates as to contain contains :

V |

(p ,, g), (p g) -- (423.58, 429.23) 68 % = 69.3%

f- ( - 25), (E + 25) (420.75, 432.06) 95 % 95.3 %
_ .. . I_ s..__._ _;.

,

.

3
.

:
i (Y - 3S), (Y + 3S) . (417.93, 434.88). 100 % -100 %

- - - ~ - --

I ,

2

| Estimating the standard deviation from the range i
.

1 .
. . .

[ Related to the '' mound-shaped" conditions that support the
' Empirical Rule is an inequality involving the ratio of the .,,,._,..__..aw_._,_

range and the standard deviation for almost every set of. ____._..,_,_|-

! data you will ever encounter: _

.

'#"E' < 6.3< ,.

i standard deviation
i
i
I You may use this relationship to check on the calculation . _ . _ . _ _ _ _ _ _ . . _ _ ,

! of the standard deviation. For example, if the ratio of the ,

- ~~~ ~

! range to the standard deviation is 15, you get a hint that j

;. something is either unusual or just plain wrong, r
'

Furthermore, it can be shown mathematically that no
:

| matter what.the shape of the distribution is, the ratio of
;" the range to'the standard deviation cannot be smaller than ,

i
i 1.4142 (the square root of 2).

, -
!,,

!
|

I .-..--.,........._~|e

1

4 .

.

4

.

..

,

'.

. __ .. _ _ ._ . . _ . _ . . _ . _ _ . . . _ .
. - --

l

;
.I 1

k

1-

i

. . . -

"
_ - . , -_.. - .. ., , - . - , , , .
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You can use the following rule to obtain rough estimates
of the standard deviation from the range as:

i
i

range /4 for a small set of measurements (say,20!

i measurements or fewer), ------- - -- c-
.. . _ . . . ... _. ._ ..__ . . . . _

l

| range /5 for a large set of measurements (say,
.

between 20 and 100 measurements), and'

range /6 for a very large set of measurements (say,
more than 100 measurements).

|

| Because n = 150 and the range = 15.7 for the uranium . ._ _._ _ _. . _ .. ._

ingot data of Figure 5-4, you could use 15.7/6 = 2.62 as

|
a rough estimate of the standard deviation. Recall that the

| "real" standard deviation is 2.83.

i

|
These two empirical results provide useful, albeit
informal, computational and/or " eyeball" checks in many
statistical investigations. However, because they do not
always apply to every set of data (not even to those that ' ' ' ' ~~ ~ '' ~ ~ ~''' '~

are " mound-shaped"), some care is needed in their use.
They shoald never be used as substitutes for exact

' ~~ ~ '~ ~ ^ - -'

|
calculations in formal studies.'

|
._ . __. ____ _ . . _ .m . _. _

L _ _ _.. _. -

|

\

. _

6m.S sm gh 4 64 4h. . e. eM s'

.. . _ .. _. ._ .. . _ . . . _ ___. _ . _

..c - - . . w-e ---, e-ei. g e ew = e- ..w- - ,,- --e

. .

. . . .. . . . - . . . . .-. . .. . . - . ..

l
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| . .
-

What to remember about Chapter 5i

.

4

Chapter 5 defined, illustrated, and differentiated among a *

variety of descriptive statistics by focusing on data of thei

j continuous type (measured on an interval or a ratio scale). [~~~"~~~,"~~ - '' ' - '

" ~ - " - - - ' -
; Topics included:

measures of central mlue, including the mean, the :,a
median, the mode, the midrange, the trimmed mean,
the Winsorized mean, and the weighted mean'

measures of variability, including the range, the
' a ,

~~- - - " - - %,
percentiles, the quartiles, the quantiles, the variance,

!- and the standard deviation
' -- - - - . --- ---

4

| e - coeficient of variation
!

.4

> e efects of variable coding.
.

The chapter concluded with two handy shortcuts useful in .
dealing with data: " . . . ~ . . - .. . . . _ - - . ~ - - , -.

' -

- . -_ .. . _ _ _

: . an empirical rule that provides a convenient way ofe

.
summarizing the portion of a dataset that lies in an'

? interval
i
E

.

a method estimating the standard deviation of an

) datasetfrom its range,
a ~~s -- m w.o. . ._n._ w. ,

]L_._ _ _ .i-

:

$ i

i

?

i.
t - -

. _ _ _- ._. _ . . . . . . . _

i
,

J

..

.

4

m ++ .

!
.- . . . . _ . . . _ . _ . ,,_ .,..._ _ _ . _ . _ _ . . .__.__ _ ., , _ _ _ _ __ _ ._ . _ , , _ . , _

!

.

b~

s

O

,

*
. w s

. . ~ - - . . , , - - - -
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! -Errors, errors, ... everywhere
.

:

What to look for in Chapter 6
" " ~~' " ~~ " " ~ ~ ~ ~ ~ " " -

Chapter 6 invites you to consider methods of
characterizing and analyzing errors You will encounter ' -

'

| such special ideas as:
.

a measurement system,

a error
e accuracy

,

a bias-

* a precision ~ *- -- ---------

a uncertainty, -i~. - - --

.

These ideas pave the way for Chapter 7's examination of
y the normal distribution whose nature and wide
, applicability provide the touchstone for all modern
1 statistical procedures.
4

*
y e..

i; . - -. - . ... .. . . . ,

4
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Thinking about errors: Some examples that set the
scene

Have these things ever happened to you? - - , - - . , - ~ -. ,,-

--_.a.. ._.-.. -.-.-

You weigh yourself in the morning. You don't like the
number the scale gives you. You rationalize that the scale
is in error. Further, you decide that this dubious
measurement could be the result of one or more of the
following:

m Instrument error _ _ . . _ _ _ . . - . _ . . _ _

m Resolution error u . n
a Calibration error
a Replication error

Sampling errora

a Accuracy error
Design errora

a Day-of-the-week error
a Time-of-the-day error

' ' ' ' " ~ ' ~ ' ' '' ~ ~ ~ ~ ~ ~
a Seasonal variation error
m Random error

- ~-- - ~ ~ ' - -~~

m Rounding off error
a "Something i ate" error
a "After/before" shower error
a Your spouse, your children, and your dog make you

nervous.

But which error is it that gets your morning off to such a - - - - - - - - -

start? Or which set of errors is the culprit? Whatever it -- -

is, you cannot cope with it at the moment because now it
is time to go to work.

Just as you get settled at your work station, your manager
brings you the report you recently submitted so
confidently-and well ahead of your deadline. Some
computer some place has contradicted your " bottom line" . - _ - -

figure by an order of magnitude. You immediately . . _ _ _ . . _ . _ _ . . _ . . . . - _

attribute the error to one or more of the following:

|

|

_ ._.

-. .- -- -. . . . - .-_ -. - -- -. _- . . _ - .-

. . . - .. . .. -. . . . . . . . . .
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| e Program error
a Programmer error
a Counting error
a Laboratory error
a Technician error

- r--~ - - m -- -e
- - - - - - - - - - - . _

a Recording error
m Transcription error
a Modelling error

Significant figure errora
a " Wrong column" error
a Definition error
a Printer error ,

. ||a Transmission error
- - - -- - - -- - y .

m Erasure error
Your boss, your colleagues, and your deadline make |m

|

you nervous.

|

| But which error is it that causes your professional i

|
j discomfort? Or which set of errors?

. . . . - . . . . . . . . . . . . , . _ .

.

For discussion: \
i

|

0 Were any errors left off either list? What are they?

O Which errors in these lists are redundant?

O What is the difference between an error and a mistake? " _ - ~ ~ ~ - ~ ~ - - ~ - ~ ~ ~ - - - '! . . _ _ _ . _

C If, as Alexander Pope observed, "To err is human," then what's this
fuss all about?

c Pick a process from the work you do. List the potential errors. How
could you proceed to quantify those errors?

. - . .. .

. - - - . . . ... . . . . . -

!
!

I
|
! - - - -- .- - - - . _ . . _ _ _ . . _ _ _,

|
-. - -- . - - - . . _ - . . . . . . . . . __. ._ _. _ _ ,

!

!
- . .. . . . . . . -- .. . .. .-

,
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Characterizing errors: Accuracy and precision and i

uncertainty |

|
Measurement is fundamental to scientific study. But - - - - - -- r -

metrology measurements are made, not born. Metrology is the - _. _i _ _ . _ _ . ._
science that studies and codifies the measurement process.
Coleman (1985) says:

'Ihe first concept to grasp about metrology is that any
measurement measurement comes from a measurement system, not

system from measurement equipment alone. In other words,
the weight shown on your bathroom scale is the result ,_ __ _ _ __

of more than the mere existence of you and the scale....
.

Eisenhart, in Ku (1969, p. 23-163), offers this
perspective:

Measurement is the assignment of numbers to material
things to represent the relations existing among them
with respect to panicular properties. The number
assigned to some panicular property serves to represent - . ..- - - - - - -. -

the relative amount of this property associated with the _

object concerned.

Measurement always penains to propenies of things,
not to the things themselves. Thus we cannot measure
a meter bar, but can and usually do, measure its length;
and we could also measure its mass, its density, and
perhaps, also its hardness...

._ .__- _ _ . ._. _._

As Walter A. Shewhart has remarked: .._ _ _

,

It is imponant to realize . . that there are two*

aspects of an operation of measurement; one is quantitative
,

and the other qualitative. One consists of numbers or pointer
readings such as the observed lengths in n measurements of \ *

the length of a line, and the other consists of the physical
manipulations of physical things by someone in accord with N

instructions that we assume to be describable in words .N.. . ._ ._

constituting a text." iShewhart 1939 p 130]
. _ .. .. _ . ... _

,.

;

I

_

e <% -. m 4-e emu . w- e e. m.4..m. a.m. eree- ..-em==meh- ee n.e.e w g w

b e 4 e 45 64 er.t&O .M 6 & agi.. O
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More specifically, the qualitative factors involved in the
measurement of a quantity are: the apparatus and
a ailiary equipment (e.g., reagents, batteries or other
source of electrical energy, etc.) employed; the
operators and observers, if any, involved; the --- - - - ,-

operations performed, together with the sequence in -.-. _ . ...?______._.._.______
which, and the conditions under which, they are
respectively carried out.

Now consider a particular system of measurement. It is
the truth designed to measure the trath of something. That truth is

designated in this discussion by the Greek letter r (tau).
Let Ybe a measurement produced by the system. That _ _ _ _ _ _ _ _ _

measurement may or may not be "close" to the truth r.
error The difference between Yand 7 is called an error.

~ ' ' ~ -~ ^-

lTo formalize these matters, let the English letter E be the
error associated with the Y that is produced by the system
in its attempt to determine 7. The three symbols are , ,

linked by the expression

E = Y-7.
~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -

. . .. .. _-_

,

Now consider a series of such measurements produced by

the system, {Y , Y ' , . Y,
...}, and the series of theiri 2 i

corresponding errors {E , E , .., E , ...}. The conceptst 2 j
.

of accuracy and precision are quantifiable in terms of the
behavior of the errors shown in the sequence (E , E -j 2

E,...}. 1

i ~l

accuracy Each measuring system carries its own accuracy with it. -

If the errors in the measurements average to zero in the .

To designate the error, we elect to use the upper-case English letter E. This is consistent with the3

notation established in Chapter 3. but you will find other designations in other hterature, Many. if
- -

not rnost writers in this area use the lower-case Greek letter epsilon. e, perhaps because-by . . _ .. . _ . _ , , _ , , , ,, _ . , _

convention or tradition or strong training in calculus-e suggests "stnaHness," a quahty rnost of us
would like our errors to posses.

. .. ..-

-- .-w em. sy w . m+-u-. amemie se m 4 ee.- ye.w-.m h- g % . es.
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i,

accurate long run, then the system is said to be accurate. If the;

[ errors in the measurements average to something other
! inaccurate - than zero, the system is said to be inaccurate.
.

| For the most part, accuracy is a relative matter that is -
- - - ;' - - / -u

_

- - -- ---- - -
based upon the comparison of two or more measuring;

t systems. Consider a second measurement system, also

j aimed at determining the truth r. If-again in the long
run-the average of the values of Yof the first system are.

: closer to r than the average of the values of Y for the-
>

second system, then the_ first system is said to be more -

',

! accurate than the second system. Of course, all of this

| presumes that the truth is known-calling for another
- -- - - - ---

.

.
discourse altogether. .

- - _ .- __ - - ._ ,-

1

i The concept of accuracy is directly illustrated by rifle -

| target practice. Even if you aim carefully at the target,
>

sometimes you shoot to the left and sometimes to the
'

y

right, sometimes high and sometimes low. If, on the
,

j' average, you score a bull's-eye, the system (you, the rifle,
i the weather, the shooting range, inter alia) is considered . -. , , - . .._ - . , , _ , , , . , _

[ accurate. Note that the system can be accurate, even if .

| you never hit the bull's-eye.
i

| bias A system is said to have a bias (or to be biased) if it is

3'
inaccurate. Whether the magnitude of the bias is critical- ;

j depends upon the system and the use to which it is
applied. In a similar fashion, an accurate system is i

; unbiased unbiased. W ._..__ _ _ __;,

i

j. Irrespective of a system's accuracy, it carries its own
precision precision with it. The idea behind precision is how

: "close" the elements of the series of measurements are to
-

; cach other. The " closeness" (i.e., the precision) of a
i series is measured by its variance. One system of

I measurements is said to be more precise than a second

j system if it has a smaller variance than the second system.
- - - . - -

*k .e M > * -,*.Asse.-e, 44be .-her- eM- 6 4, man enew w

!
'

,

3

i - i

\) ''

s

i i

I !

_ _ _ _. _.

m e. ..me . .@ grung. ,.w* = h.* - m.ge.m9.a- ,-%,-- W.e -' . eumpm.eW -reme44.mu..- -a.i -m a p- d.ci.-v -h be + e weige v g.h .er. se--4a

g
2

3

d

i
a

J

A

- e- - s4 - , a s m- . e-, 4

i
. .., - - - _ - -- - ._m, , - .._ . ..~.- - . . --= _ ._ ,



. . - - - . . - - . - . . -. .

. . l .b .b.a ia .ul L:3.d..O |
Errors, Errors, ... avitywhira 6-7 i

'

!

i

( As with accuracy, the concept of precision is directly j

illustrated by rifle target practice. Regardless of where ||

your bullets hit, the system is precise if all the hits are m
exactly the same place. Clearly, if you and your rifle and

,

your shooting range are simultaneously accurate and -~~ 7 - - -- -u -
|' precise, you have a statistically superb system.

-- -- --- - - -

Figure 6-1 displays four combinations of good / poor ,

accuracy and good / poor precision in a one-dimensional |
|system.

- - ~ - - -- -- -- ---|Figure 6-1:
Crmbinations of good and poor accuracy and good and poor- - .

pricision
f

I

Good accuracy and good precialon:

** "*
. . . . . . . . . .- ,. _ . , . .

| Good accuracy and poor precialon: - - - - - -. -- !|

!
. .. . .. .. .

l
|

Poor accuracy and good preclalon:
1-
i

... .. ..

Poor accuracy and poor precision:
!

. . . . .
.__,_. . _.._ .._ _.. _ _ _ . _ _ _ ,

-- . - . . .

:

"The Truth"
,

!

!

!

. . _ - _ . . , ,

e am an,. . m s. w - am . . 4m .4 . 6m s. 4..so...

,

* mb <% .w a .mp

* '* '" N -4Mh e 3-h.e- .. m... ,,,__ ., , , , , g ,,

|

-- -- - - .- , -- +- . - . .._ . . . . . . . . . _ _ , .

- -e - . = _.- ._ ,e.- t i= -. -
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I

uncertainty Attention must be paid to the concept of uncertainty. This
broadly used term refers to the " incorrectness" in a set of N

\data arising from inaccuracy, imprecision, or both. The
term itself is troublesome because it conveys such a broad x

| spectrum of meaning and suffers from an equally broad
- m-

, ,

' spectrum of interpretation. On the whole, it seems best to
- - - - - - - - - - - - -

avoid using " uncertainty" in technical discussions unless it
is carefully qualified and, if possible, quantified.

,

,

i

For discussion: . _ . . _ _ . _ _ _ _ _ _

'

l ~ ^ ~ ' ' ' ~

| c The phrase in the long run arises several times in this chapter. What
does it mean to you? Do you have a way of quantifying the-
associated ideas?

!

N
I a Re-examine the two lists of errors presented at the beginning of the

chapter regarding your morning's weigh-in and your office report. A
Which errors affect accuracy? Which affect precision? Which affect . .X-
neither?

.. . ~ -.

!

| a If a measurement system is declared to be accurate andprecise, what
i virtues are being claimed for the system?
l
,

i 0 Kendall and Buckland (1971, p. 50) have this to say:
|

|
' Error In general, a mistake . . in the colloquial sense. There may,

| for example, be a gross error or avoidable mistake; an error of : -- - - - - - - -

reference, when data concerning one phenomenon are attributed to L- - - -

another; copying errors; an error of interpretation, in a more
limited sense the word " error" is used in statistics to denote the
difference between an occurring value and its "true" ... value.
'Ihere is no imputation of mistake on the pan of a human agent; the ;

| deviation is a chance effect....

Does this statement clarify things for you?
_

. ... . . . . . . . . . . _ . . ,

-- e w ~ e. .

- -- - - - -- _ - . - , - . _ . _ - ._ .-. -. _ -
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o Your old watch stopped working years ago. How good is it as an
instrument for measuring time? When you look at it (at random -

moments, of course) it always reads 8:07. Thus, it is an accurate
"

instrument: half of its readings overstate the true time and half
, ~ ~ ~ " ~ ~ ~ ~ " - - --understate it, and thus their errors average to zero. It also is a very!

precise instrument: all of its readings are identical, and thus their
variance is exactly zero. With such an accurate and precise x

,

! instrument for measuring time, why should you ever consider buying
'

a new watch?

s
|

~ ~ ~~ ~ ~ ~~ ~ ~

What to remember about Chapter 6
. . . -_.,

Chapter 6 focused on methods of characterizing and
analyzing errors. You found definitions of:

a measurement system
a error
a accuracy

. , , , _ , . . . . . . . _ . . , _ , . _ .

a bias
^~~~^~~~ ~ -

a precision
a uncertainty.

i

| These ideas lead directly to Chapter 7's examination of the

| normal distribution. Indeed, you will encounter them in a
variety of special statistical topics as you move throughl

Chapters 8-21.
. - . . _ . _ . _ _ _ _ . _ . _ _ . . . _ _ . _ _

-.

|

|
-- -

. . . . . . . . . . .. . . . - .

l
. - - - - . -- -- - . _ - . - . . - - . . _ . - . _ _ _ _ _ __

l

l

,

!
.- .- .

t
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The normal distribution
|

| What to look for in Chapter 7 *

Chapter 7 explores the single most important concept in - -- - - -

modern statistics-the normal distribution. In addition to -- - - -- - --- -- -

its mathematical tractability, the normal distribution

| provides a more-than-adequate model for many natural

| phenomena and supports a wide variety of decision-
making processes. As you work through this chapter, you
will encounter such important ideas as

distributionfunction ia - - - - - -- - - - - - - -- --

a densityfunction . . - . - a.

n the normal distributionfunction ,

a the normal densityfunction
a the standardized normal distribution
a testing datafor normality
a the Central Limit Theorem,

Finally, you will learn how to use a single page tabulation , . _. _ .

(Table T-1) to quantify nearly everything you need to .

know about the normal distribution.

. - .. - .- .-

- - - _ _ - _ . - - - . _ _- _. - . .. .

|

|

I

I

|

|

i

; ~ . .

1

i
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I
l

! An experiment

When you weigh an object, " chances are" that your

( reading is incorrect, no matter what the quality of your ._ _ , _ , ,

" '
scale or its manufacturer's claims. For one thing, no

,^ ~~ ~~'" ~ ~ ~~ ~ ~ ~ '|
4

scale is blessed with an infinite number of significant'
figures. As discussed in Chapter 6,'your reading most
certainly is in error. Whether you can live with that error
depends upon many factors. The discipline of statistics-
provides methods for addressing, assessing, and coping' ,

|
|

with such errors. ..

,

" ~ ~~~ ~~ ~" - T;If a single weighing of an object contains an error, then a
.

''

reasonable strategy is to weigh the object a number of
~ -

times and " average out" the errors. Thus, you expect to
,

| find comfort in a procedure that balances positive and -

i negative errors to produce a value that is " closer to the
! - truth" than any single value.; ;

To illustrate, suppose you place an object (weighing, say,
in the neighborhood of 12 kilograms) on a scale many -

" ' " ~ ~ - ~ ~ ~ ~ -

times during the same day (say, every 15 minutes between - - - - - --- - - --

8 a.m. and 5 p.m.), removing the object from the scale -
! ' after each weighing. : With a good scale (say, correct to ;

L the nearest decigram), you should not expect to get ,

identical readings each time. Rather you should expect -
them to vary / More than that, you hope that you obtain ,

- random (i.e., unpatterned) readings. ,

.
. -r- ,

You record all your readings (say, a total of 32 because !_._ d
!

you take time for lunch), and you then constmet a
histogram for these values. You expect to see a " peak" |

; *

; frequency in the center with reduced frequencies to the left
and the right. The more readings you have and the
narrower the histogram's class interval width, the more .

J
you might expect your histogram to look symmetric and

j
" bell-shaped," e 1 of the telling characteristics of a . _ _

mathematical-s: .stical concept which we affectionately ,.. _ _ _ _ , _

call the no mal distribution. ,

|

.

- -- ~. . , _ ,

dwhe w$.g + 4- -W r-- . magummu * a h --M -e > E -gerpW -- *-h4 eir'4M- - 4h ewed-W h ,p-hw A N- -i$-weggs.a- h4 e e ,,er - 4e m - .h y

.i

,

- - .m ;

|

|
. . . . , - -, - . --
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For discussion:

In the object-weighing experiment, what is a reasonable interval width| 0 ',__ __ ~ '
to use in the construction of the histogram? Do you have all the facts .. . - - - - - . . . _ _ _ _ _ -.

to make this judgement now?

What will you gain (or lose) if the scale is correct to the nearest gram!. O

| rather than the nearest decigram?

( c Why would you bother to remove the item from the scale between

( weighings? - . - . -

What do you gain by taking measurements both in the morning and in
' -

f G
! the afternoon?

What do you do if the histogram is not as you expect; i.e., not| 0

| " peaked" in the middle with reduced frequencies to the left and to the
; right? Most importantly, do not despair. Sometimes it's just a matter

| of transforming your measurements. Sometimes it requires extended
' '" ~ - --

|
modeling. Sometimes it means recognizing that you're into new

| " stuff" and need some help. Making measurements is by no means a - - - . _ - . _

trivial or casual activity.8
i

!. .

.

[

!

~~ ~ ~ ~ ~ - ' - ~ ~ ~ ~ * * '

One place to start your inquiry is with Coleman (1985) who defines metrology as "the science of3

studying and understanding rneasurements.* In his concluding paragraph, Coleman reminds us that: - _. .

N
Measurements enter all phases of work and life. However, hardly any of us ever measure

',
'

measurements. Problems with measure nents are commonly thought to belong to spectometrists

who try to identify minute chemical qua.tities, or . . operators . . who inspect incoming ,_

material. Actually, problems with measuiements are epidemic. They cloud understanding, and
they reduce quality and productivity.. W can take safeguards by: \
(1) Recognizmg that measurements come | om measurement systems.
(2) Deliberately conducting measurement .apability studies accordmg to statistically designed , ._ _ _ _ _ , _,

| expenments. " " ~ - * ' " - - - - - - - - --
' (3) Analyzing the data correctly afterward .

- - . .- _ _ ._

-- -.ee.- - --sm. iss-. ~.e- .%. .a.ms.-e. 4e ss,- m -e#, - . . . . . . . .e e, ,

!

!
!

" - -.- ..-- - . . . . . . . _ . . .

I

!
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|

Some necessary and useful mathematics and details

The modern mathematical formulation of the normal
distribution derives essentially from the function developed ._ _ _ , . _ _ _

by Carl Friedrich Gauss (1777-1855) in his 1809 book, ~ ^ " ~~ 1

Theoria Motus Corporum Coelestium in Sectionibus ~~ ~ ~ ~ ~ ~ j
Conicis Solem Ambientium (Theory of the Motion of the
Heavenly Bodies Revolving Around the Sun in Conic

| Sections). The importance of the normal distribution in i

I statistical analysis and interpretation cannot be overstated. J

Nor is there any substitute for your biting the " math-stat |

bullet" for a bit as you enter into these matters. It will
'' ~ ~ ~ ~ ~ ~ ~ ~ ~ '

benefit you in all future discussions involving data-based
- decisions.

- -- -- '

l
Consider a continuous random variable, say Y. In order
for Y to be declared normally distributed, certain

| conditions must be met. These conditions are summarized
'

in the normal variable's distribution function and its

|
corresponding densityfunction.2 Both of these functions

~--~|are expressed in terms of the normal distribution's two
- ' - - - - ~ - -

parameters: p (the mean) and a (the standard deviation). - - ---

Here are the basics of these ideas.

distribution The distributionfunction, indicated by F(y) = Pr{Y % y},
! function of a random variable Yis the probability of obtaining a

value for the random variable that is less than or ear .1 to
I a specific value y.

. . - - . ~ . . .- .-- .-- - --

density The corresponding densityfunction, indicated by f(y), - _ ._ _ .

function specifies the way in which the frequencies of possible
values that can be taken by the random variable are
dispersed among Y's possible values; i.e., mnemonically,
the density function tells you how " densely packed" you
will find those possible values. Mathematically, the

_ ,

In adoptmg this termmology, which is applicable to all random variables, we follow the leads of
"

2

Feller (1957. p.168) and Mood, et al. (1974. pp. 57-84)

.. - ._ -. . - . . - ._. ._- . _. ._ ._ . .. _ . _ _ _

l

- .
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.

.

1

density function is the first derivative of the distribution
function with respect to y.

The mathematical expression for the normal distribution
~ ~ "

function associated with a random variable Y is given by v1 i
,

.- - ..- - _.

| F(y) = Pr{Y s; y} = N(y)
1 (s-8)2y

I ,T #'

. e ds, -m<s(+=,
2. [2

~

a

. ,_-._ . _ __ __.

2where N(y) is a special notation used to indicate the . *

normal distribution function. The symbol e denotes is the .
base of the natural logarithms (approximately 2.71828);
the symbol r demotes the basic mathematical constant

. (approximately 3.14159).

t

|. .When you plot the normal distribution function, F(y),

| ogive . against y, you get a curve cal!ed an ogive (an elongated .

. - . , . - . :.,-..-.c....-

j
i S-shape); . _ _. _ _ . . _ ___

The corresponding normal density function is given by

n
1 (y u)2

1 ~7 /f(y) = n(y) = c -=<y<+=,,

o5 7.-- -..._- ---. ._-

~ ~ ~ ^

| where n(y) is a special notation used to indicate the normal
! density function.
I

i

When you plot the normal density function,f(y), against y,'

bell-shape you get the familiar symmetric bell-shape. ,

I
A widely used notation for the normal distribution is

2 2N(y; y, a ) where p and a are the mean and variance,
' ~ ~ ~ ~ ~ ~ ^ ^ ~ ~ ' ~ ~ - - - ' ~

respectively. Thus, N(y; 100, 200) denotes a normal ,

>

i

.- .

'e=4A'N' 9 -64 a4 7 4e=. M W -- me. .qq..,, p.a,,p , __

| |

|
,

I

. - - . -- -- - --. . .. . .- ,. . .._

|-
: __ . _ _
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distribution with p = 100 and a2 = 200. Another
common notation for the normal distribution function

2
omits the y from the parentheses, thus writing N(p, a ),
Some authors prefer to employ a, the standard deviation,
in place of a in this notation-so be alert!. p -'' ~ ~;- - -e - c -2

u. -._--.-.-:._._..

When p = 0 and a2 = a = 1, the normal distribution is
standardized said to be standardized. Figure 7-1 contains plots of both

the standardized normal distribution function and the
standardized normal density function.

'' ~ ~ ~ ~ ' ~ ~~ ~ ~ ~ - - ~ "
Figure 7-1: -

The standardized normal distribution function, Fly), and density ... - - - . - . . - - - - -

function, fly) -
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;

The shape of the density function in Figure 7-1 shows that i

the normal values are more closely packed in the center ;

than they are near the left and right ends; that is, a j

Irandom normal variable is more likely to be in the center
where the values are " denser" than it is to be in the left or ~~ ~ ~ T ~ ''7i

right tails where the values are "less dense."
--- - - - - - "-|

|

4

Recall from Chapter 6 that a difference between an
observation, say Y, and the mean, say p, written Y- p, is 1

;

called an error. When a set of errors is said to be . |!
l

normally distributed, you conclude that those errors have
at least the following two properties:

.. - ._ , -

Positive and negative errors are equally likely to - -_- .a

| occur.

Large errors are less likely to occur than small errors.m

|
In many investigations about the numerical characteristics
of populations, the populations are assumed to bei

I" normal." For many measurements of interest, this . < , . . - . . . . . . _ m. -
i

|
| assumption is reasonable, proper, and consistent with what _ . _ . . _. __

is known about the process under study. However,:

( systems that have errors with these properties are not
necessarily producing normally distributed errors. Thus, i'

at times, you may have reasons to challenge the normality |
,

l assumption. Accordingly, you need some tools to
'

'

| investigate that assumption.
..-_.__.__.___..h_.__.

l
._ ._

!

For discussion:

G There are several distributions which are bell-shaped but which are
not normal. One such distribution is Student's Tdistribution which ;

!you will meet in detail in Chapter 9 and see its applications in later
chapters. . - .- . . . _ _ . .

. _ . . . _ _ . _. . . . . _ _

i
i

. -- -- . .- . - . - .. -_. . . , .

_._. _ _. _ _ _ _ _ ._ _ . _ _ . _ _ _ . _ __ _ _ ._ _ . _ . . . __

|

|

|

.

. . _ __ _ _ .. .. _ _ _ - . . - , ... . - . . .

l

!
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|
!

! O Are there datasets generated from your work with variables that are -
usually characterized-or at least regarded and accepted-as normal?
How do you know that they are normal?

| - - - , . -. ,-

. - . - - . - - - - - - - . - _ .

:

| Testing data for normality

Numerous methods for testing normality may be found in

! the statisticalliterature. A commonly used " eye ball"

| method requires the use of special " normal probability

| paper." This technique, called probability plotting and .
.

described by Hahn and Shapiro (1967, pp. 261-294), tendsi ;

to be both limited and subjective.

! Among analytical methods (those involving objective data-

|
based hypothesis-testing in contrast to subjective " eye-

|
ball" techniques), some are superior to others in their

| sensitivity to departures from normality under different
scenarios. Four of the more widely applied analytical

-
. _ . , _ _. . . . . . .

methods are listed here:
- . -. . . - - .

The chi-squared goodness-of-Jit test compares a| u
histogram of sample values with the frequencies of a
related normal density function. For a development of
the chi-squared goodness-of-fit test, see Dixon and
Massey (1983, pp. 64-66).

|
,

The Anderson-Darling statistic compares the sample ~ - - - - - - - - - - - - - - -

| a

distribution function with a normal distribution - - - . - - - -
-

function. Two cases are considered: (1) both y and a
have known values and (2) neither p nor a have
known values. For development of the Anderson-

'

Darling statistic, see Pearson and Hartley (1976,
-

pp.117-119).
N <

The Lilliefors testfor normality compares the sample . 3 .- . . . . .. |
? a .

standardized distribution function with a standardized .. __ |,_ _. _.

normal distribution function. For a discussion of the |

!,

:<

|

|

!

- . _ _ _

-. - . - - . . - - . .-. . . . _ _ . _ . _ _ - _ _ , _ . . _ . - _ _ . - _.

l

i

i

!
-- - - -~ . . . - - . . - _ . - . _ _ . . . ,

I
-
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1

| i

-!t-
| Lilliefors test for normality, see Bowen and Bennett
l (1988,' pp. 531-532). |

\u The W test is applicable when neither nor a have -
.known values ' The calculations are lengthy but ~ {~

r-m --i , ,

straightforward; their tedium is relieved with the use
' "

' of a computer. For a development of the W test and
-

procedures when n s 50, see Hahn and Shapiro .
'

:(1%7, pp. 295-298); if n > 50, see Madansky (1988,' -
| pp. 20-29). The W test is called an " omnibus test for -

normality" because of its applicability to sample sizes
as small as 3 and its superiority to cier procedures -

- -- - -

y'
'

over a wide range of problems and data-connected -

! conditions requiring the investigation of the L--_----,
- _ . _ -

assumption of normality. A perhaps unexpected
feature of the Wtest is its use of lower quartiles as '

- -
~

,

critical values. This is shown in here, based on the
l' six steps given by Hahn and Shapiro and the example . N

given by Bowen and Bennett (1987, pp. 532-535).

. __ _ _ _ _ _w '

Example 7-1: a . .. - - . _ _ . ._ _ _ _ 1

T.mting for nonneHty with the W test
,

| . The following data are the percent uranium value for 17

i
cans of ammonium diuranate (ADU) scrap:

!

l 35.5 79.4' 35.2 40.1 25.0 78.5
! 78.2 37.1 48.4 28.6 75.5 34.3
I. 29.4 29.8 28.4 23.4 77.0. T. ~

~ ~ ' ~ ~ ~

-

You wish to test these data for normality with a = 0.05.

The W test is detailed here as an eleven-step procedure.

| Step 1. Arrange the n sample observations in ascending
order. Using established convention, for a sample

- ~~ ~~ -

'f
'

{Y , Y . . Y . Y } of size n, let Y(i) denote thei 2 l n - - - . - - -. _..

|

|
!

!

| \
!. .- _ _ . . . . _ .

'

# *'- Mw ash- * -h.g -w . .m.._ , , , , ,,
.

,

i

'

- . _ - . ._ . . . . . ._ ._. . _
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%

smallest observation, Y(2) the second smallest observation,
..., Y ) the i* ordered observation, ..., and Y(n) the largestU

observation. Thus, Y ) s Y 6 6 I 5 5 Y -gi 2 l n
The ordered observations are given in the second column \

: '"
rank of Table 7-1, wherein the rank of an observation (in the E ~ ~ T - ~ ~~ w

first column) refers to its numeric-order assignment.
' ' ~ - - - - ~ ~ ~ ~ -- - -

4

1

Table 7-1:
The W test for normality applied to ADU scrap

Ascending Descending Table T-6a . - - _ _ _ - _ . _ _ . _

ordered ordered coefficients for -

, , , , , , , .._ _ _

Rank data data Difference k=8 i

8 (F(n-i+1) " J )) ](0 ' JU) J(n-a1) 1(n4+ 1) - J(o 8 i U4

1 23.4 79.4 56.0 '0.4968 27.8208 s.

2 25.0 78.5 53.5 0.3273 17.5106

3 28.4 78.2 49.8 0.2540 12.6492

4 28.6 77.0 48.4 0.1988 9.6219 " " *^~' - -~~ ~ ~~-*' - -

-

5 29.4 75.5 46.1 0.1524 7.0256 - - - - - - --

6 29.8 48.4 18.6 0.1109 2.0627

7 34.3 40.1 5.8 0.0725 - 0.4205

8 35.2 37.1 1.9 0.0359 0.0682

9 35.5

10 37.1

11 40.1

(-- -. -

- - - - - -

12 48.4 ,

13 75.5

14 77.0
,

*

15 78.2

I~ 16 78.5
, 17 79.4
i

b = 77.1796
_ _

,

&..m. ens -44 e aesa M.em.. g 1.64.-- egw a .a.N .e

[

.- ....

- ene w w an- asm,g -%4# g%ww,~ m .M %4 w pi,eim. .,,.w. - .-em a.m -4- ww.' h - 2e=wnim.- *4ma->.- m eaumm - mde ve mmes.4mm++r ,

4

e

L

. . . - . _ - - . _ _ , _ . _
-
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Step 2. If n is even, set k = n/2; if n is odd, set
k = (n - 1)/2. For Example 7-1, where n _= 17, set
k = 8,.

Step 3. Rearrange the observations in descending order T.r-; ,

" - - - -

--

7 p.
"-

of magnitude, and enter the first k of them'as shown in the
' third column of Table 7-1.

.

| Step 4. Calculate the differences between the -
' corresponding entries of the third and the second columns -

of Table 7-1 and enter those differences in the fourth -
column;

. .. - . _ _._
; -.

,

' Step 5. - From Table T-6a, copy the k coefficients {a3, a2 " ' - ~ ~^" " -

..., aj, ... , a4} associated with sample size n into the fifth '
column of Table 7-1~.

Step 6. Multiply the associated elements of the fourth and -
the fifth columns of Table 7-1. Enter the corresponding--
products in the sixth column of Table 7-1.

. ...,...c..._ , . - -

Step 7. Sum the sixth column of Table 7-1.--Denote the a . _ _ . _ _u..

sum by B. In Example 7-1, the sample value is
b = 77.1796.,

i
,

2Step 8. Calculate S , the sample variance of the n -
'

observations. In Example 7-1, the sample value'is .
2 '

s = 476.5%8.
a- - - - . --

Step 9.' Calculate the test statistic, W, where 2

N
2 ' \BW= N

2 s
(n-1)S

N,

in Example 7-1, the sample value is
. . , -. - .. .. . . . . . . .

(77.1796)2 . .- - . _-.- . - - - -. - - - -

0.7811.w= =

(16)(476.5968)

. _ .. ._ . ._ . . _ . . _ _ _ _.

- -- am .M-. ma.mu. #M a--sggesw - .u mm-ng-utg.mae-- N >* seh . g.fe %eug & -u-MNe, * gr h--wee mbd.-rhi, e-smed.ep- r -Wg--i-:4+m4

e

|-

'
t

I ,

!

,

^

. 4. . . - , a m ..-en.. . . . . >, .- me a. . , . .4.'

.

r - c - C r + . - t -- - - * - - -.. r- -- ---
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,

!

|

Step 10. From Table T-6b, obtain the critical point w,(n)
'

:

for the corresponding sample size and the appropriate
level of significance. In Example 7-1, or = 0.05, mjn = 17, and you find wo.05(17) = 0.892. ~ ~7- -- - :

;. . . - - . . . . . - _ . _ .

| Step 11. Compare w from Step 9 to w, in Step 10. If w

| is smaller than w,(n), the hypothesis of normality is
rejected. In Example 7-1, w = 0.7811 is less than
w 05(17) = 0.892; thus, the data in this example yieldo.

I sufficient evidence to reject normality.
,

.. . -.-. - . .. . _ ,_

.

-. . . .- . .. . . _ .

| For discussion:

f a What would your conclusion be for Example 7.1 if w > w 05o. ?
.

2o In calculating the variance, s , for the sample, would you use the
original data {yi, y2 Jn} or the ordered data {y(i), y(2). 7(n)}-
Does it make a difference? " ' ' ' ~ ~ ~ ~ - ' . ~ ~ ~ ~ * . ~ . ~ ~ _ ~.

Suppose you conduct a test and do not reject the hypothesis ofa
normality. What can you say about the population from which the
sample was drawn? What can you say about the sample itself7 What

| can you say about the next sample you draw from that population?
How comfortable are you with your answers? What would you write

| in a single-paragraph statement to convince your supervisor that you
-- - - -- - - -- --

| have a sample from a normal population?
L._ . ._._. . _. _

| Measurements of some natural phenomena (like wind velocity) are
believed to follow the lognormal distribution, in that the logarithm of
the observations is distributed normally. Show how you would use

the W test to test whether a set of observations is consistent with a
lognormal distribution.

i

I

r .- . - . . - - - s . .. . . . _ . . ,

|
|

| |

-- - - . . .

*- * -*8**' '.+w.- . - -=m. +en e ,,- , _,

|
|

|

.. |

|
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The Central Limit Theorem

The Central Limit Theorem is fundamental to many
statistical procedures because it links many commonly ~ ,' .+
encountered situations to the normal distribution. When t,, .

.
-

.

its conditions are met,'it provides powerful ways of-
answering a variety of statistical questions. This section
leads you into the Central Limit Theorem through a series - . ,

of plausibility arguments.

I In preparation'for the ensuing discussion which involves .
' the tossing of several coins, we elect to call the value . .

associated with a single toss a "mean." This idea leads to'
~ -

- - ~~
.

! '

L no ambiguity because the mean of a sample consisting of a
-

'

single number is the number itself.

?

First, consider a coin-tossing experiment similar to those
set out in Chapter 3. This time, you record your

,

! - responses, using 1 if a head appears and 0 if a tail shows '

up. With repeated tossing of an unbiased coin, you would
'

' expect to score a "1" for half of the' tosses and a "0" for - r4** - - - ~ - - - - - -
.

'

the other half. . These two means can be indicated by the . - -

- set {0/1,1/1}. In graphical form, this expectation is
- trepresented as a density function as shown in Figure 7e2.

Thus, Figure 7-2 shows a density function that displays ;
<

the probability' of each possible value.

e w-n-.u..e -.e - p. , ,?

b, ,

i

P

.

,

. . + - . ~. - ,, .. . . . 4_.

6ee menn.wu,. w.. me.e_ k. ,. , we - w ,o m.m ,

1

|
, - . - --- - .. _ .

_ _ _ _ . _ . . _ _ . _ _ . _ _ . . _ _ _ _ _ . . ._ _ _. __ _ _ _ _

|
|

.

!
- - . . < ~ - . . , . . _ , _ , _ . . . , . . . _ , _ , . _ , _

c

. . . _ - - , . - - - .-- - . - . .. - . . . - - ..,.
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, p. . _7 ;
_

|

|_ Figure 7-2:
| Density function for the mean of a one coin toss

i

p- .c=f - wmm- |3, ,

. . . . _ . . , . _

ji 020
i

I
'

# 0.00

I
$ . . _ _ _ _ . _ . _

E oAo i

_

: ,

c .__ _ .._.. . _ . , . . . _ .. . . . . _ . . . _ . .

|
!

020

om q,4g3

Possible Mesns for One.coln Tosses
'

,, , . - - . .-,.~. - - _,.,,r.

1
l

i . . . - . -. . . . . . - - .

!

;

Next, suppose you toss three unbiased coins, each yielding
a score of 0 or 1. The mean of these three scores can be .

L characterized as belonging to the set {0/3,1/3,2/3,3/3}.
'

If you toss the three coins many times, each time --- .- -- ._ .-_

calculating the described mean, those means will " pile up"
~

in a pattern similar to the one given in Figure 7-3.

. - -

. b 6 4M. M. mii.tamm M e,.M, e M A, . . .h 4 fp...gg m .

l

!

l

|
- _ - . . ._ _ __ _

-- '-A"- S$. he- w,w - -4 _ ,,p,, .g.4,p, , , .,, __

t

. - .

!
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Figure 7-3:
Dinsity function for the mean of a three-coin toss

~ " ' ''

1.00 i

O.00

g 0.60
Il
2. - . . . - . . . . - - - - _ _ . - , -

:

0.20

02 00 113 23 30

Possible Means forThree4oin Tosses
- , .. . .- . s. - , . . . - - , ._

. ,.. . ._ . . . __. __

The pattern (i.e., the " density") in Figure 7-3 has several
characteristics: It is centered around 0.5 (not surprisingly,
the mean of 0 and 1); it is symmetric about 0.5; it peaks

, ._ _ ___ ___, __

around the center; and it tapers off symmetrically from the
_ . . . _ _ . _._ _.

center.
.

I Next, suppose that you toss ten coins. The possible means
are the set {0/10,1/10,2/10,3/10,4/10,5/10,6/10,
7/10, 8/10, 9/10, 10/10}. The characteristics that are
displayed in Figure 7-3 are even more pronounced in a
ten-coin toss, depicted in Figure 7-4.

- . - - .

M MM"+'*M- pm -4W b 46 4, :G $ $ m-64 g,,

_ . _ _ _

' * * ' * * * ' ' ' * * - * eeunom-. -meg,4 .q.gsey,g - _, _,, , , ,,, ,,

.

m e e .r . , e e4 - .e--in- * .e - .o v e ,a

1



- - - - - . - _ _ _ _ _ _ _ - _ . .

Ud a d .adaLA.l.Ld.td.j_h .
| q

7-16 Applying Statistics K. . =

s

Figure 7-4:
Density function for the mean of a ten-coin toss i

-,

s
i N

--n n,

1.00
'

i
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|

!

! ) 0.60
, ._
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. , . . . . , , . - - . _ , _ . . . . _ _ , . _

.- . . . . - - -.

|

|

| |
\,

l For discussion:
. _ . . ..

Referring to Figures 7-2 through 7-4, which show results for small ._ _ _ . _m

samples from an obviously non-nonnal distribution, you observe that,
as the sample size increases:

O The density function of the sample means tends toward a " bell-
shaped" curve.

O The mean of the sample means remains equal to the mean of the
" parent" distribution. _

O As the sample size increases, the sample means " hug" their , , , _ . ,, , , . , , _ _, _ , ,

" parent" mean more tightly.

.

. _ _ _ .- . , _ - - _ . . _ - - ._ ~ ~ , ~._ . -. .. . , _ , . . _ . .. . . . . .

,

- . - _ - - _ _ _ . _ . . - - _ _ _ _ - _ _
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0 Suppose you were to perform this experiment with 100 coins. What
are the possible_ values of the sample means? What would you expect
the "mean of the sample means" to be? Sketch the resulting density
function. Did you use the same scale as that in Figures 7-2,7-3, and

~~"~~" -~ ~ ~~ '77-4? Any comment?
u.-.. - - . - _. e--- - _ ..

O In order to define a density function on a finite set of discrete points,
the probabilities must add to one. How might you go about proving
that this coin-tossing experiment yields a proper density function, no
matter how many coins you use?

. _ _ _ ~ _ _ _ __ __

One formulation of the Central Limit Theorem and
~ ~

some interpretations

The Central Limit Theorem holds a singularly important
place in the development of modem statistics because it
ties the normal distribution to a vast variety of inferential
methods. Here is one version of this important theorem: ,, , . .. . . . ., ,. _ _ . . ,

Suppose that random samples, each containing afixed .

number, n, of measurements, are repeatedly drawn from
a population with a mean p and a standard deviation a.

! If n is sufficiently large, the sample means will have a

| distribution that is approximately normal with a mean !

| equal to p and a standard deviation equal to a/4n.
i
,

Three interpretations, of varying degrees of mathematical.
~~~ ~~~~ ~ ~ ~ ~

|
- -

statistical complexity, of the Central Limit Theorem are
offered here. But first, your experimental situation must
be established: i

I
You collect a sample of size n from some populationa

of measurerrants. You do not have to know the
parameters of this distribution.

._ _ . , .

Whatever this population is, assume that it has a mean --- - - -- - - - - -

|
u

(call it p) and a standard deviation (call it a).

!

. . - - .- . - - .- . - _ _ -. _

-m - - *ew = -mae, _ ..- . s -- .,m4 , ge.g_., , . . _ , , , , , , , , , , _ ,, ., , _ _ _ _

|
.

~ " * '40 d 'O 4 '.i>Mw +6* ee pia- e . +M- 4e e. + g.

i-----.--m_ _ - m-
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,
_

The sample mean, E,, is a random variable. Note: -|a

the subscript in the symbol Y, serves as reminder that
the mean is function of the sample size n. ,

.]._ y . .. _ . _ . _ .

'

jThe sample size, n, is "large."
-- - -"-- --- -- ua

i

Now for the three interpretations of the Central Limit |
;_

| Theorem:

f Interpretation 1: The sample mean, Y,, is distributed approximately
-

as a normal variable having a mean p and a standard
' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

;deviation o/Jn.
. . . . - - - . . - - _ _ . .

|
Interpretation 2: The more observations, n, you have in the sample

! the better, because the sample mean, Y,, has a
standard deviation of o/Jn, which becomes smaller
as n becomes larger. Moreover, even if the original .

distribution is not known, thus making certain other
inferences difficult if not impossible, the distribution -, . . . . . _ _ _ _ _ _ , _ _ , _ .

.

of ?, can be approximated by the normal ._ . , , , _ _ . .

! distribution which has manageable characteristics.

2
-

F, _ g( , ,2/n),Interpretation 3: Y ~ 7(p, a ) >
where the symbol " " is read as "is distributed

;as," the 7 indicates an unspecified distribution, the
,

! letter N designates the normal distribution, and the
------ !

symbol > indicates "tends to." -

_ _ _ _ _ _..

1

The standard error of the mean

Let Y be a random variable with mean y and standard
deviation o.

Let Y, = (EY)/n, where all n of the Yvalues come from - - . - _ . ._ ... _ _.i

the same distribution as Y. Obviously, Y, also is a
|

|

. - - . . .-

* "* *M " - " * ' .=mme at$de.. . -su .m. g insp . , , , , ,4 , , _ _,

|

- - . - _ _. . ~ .
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'
.

random variable. Like any " decent" random variable, E,
has a mean and a standard deviation. How do these =

random variables, Y and E,, compare? Look at
Table 7-2. - ~~T ~ '-" - 'N

.. ~ . . .-- .- -. _ _ _.

Table 7-2:
Ccmparing a single random variable with the mean of a sample of
siza n

!
I-

. Sample Standard ... -._ . . _. ._._ . . . _ . . _ ___. _ _
-

Variable Size Mean Deviation
_ _ t

Y. 1 p a

n p aI4nY,

|-

standard The standard deviation of'a sample mean often is called - ~'" " *~~' # ""' *~'*

error the standard error of the mean; when there is no - - - -- -

(of the mean) ambiguity, it is simply the standard error.

The term standardized variable denotes a special
,

transformation. This transformation is brought about by
subtracting the variable's mean from the variable and
dividing the result by the variable's standard deviation.

. _ _ .- __ _. _ _ _ . . . ._.._ _ <

1his is an importantpoint: .-

Regardless of the distribution of the random.
variable, the mean and variance of its standardized
variable are always 0 and 1, respectively.

Applying the transformation to the sample mean yields:
. . _ ..- . . . . . - .

Z,, = (E, - )/(a/Jn). - - -- - - - - - - --

. - - ... - ..-. ..-

.-e *w 4 m= % e- sa-mm -m. a.,,qss.- +-w e .%m,,g _g e-.9 we-6-. - w -h-. M=a - w .- aM-= h@ e mW e% s

.

4 4 4 g.e>= an==,**4 - 44-. e.s-+ 4 . .,n.,e- a ,wr&-e-
,

.,

-----.*e r-r--- + .- . - . . -,,, . . . .4 -.-
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By the Central Limit Theorem, then, the standardized
.

variable for the mean of a sample of size n, Z,, is
approximately distributed normally with mean 0 and ...

standard deviation 1. The approximation improves with 'x
~~

increasing sample size. In words, you say that "Z |
' =''r

n
A-

approaches N(0,1) as n approaches infinity."
- ---

,

A sampling exercise

This exercise is designed to reinforce some of the concepts-
- associated with the Central Limit Theorem. The strategy

' ' ~ ~ ~ ~ - - - ~
for the exercise is to first generate several random samples - '

of a fixed size from a distribution with known population
: - - - + - -

mean ( ) and standard deviation (a). The next step is to
calculate the mean and the variance for each of these ~

samples and to compare those statistics to the known '
population parameters. Finally, we investigate the g
variability of the sample means to show that the average 4: .-

. of the means is quite close to p and that the standard N
-------A,._.,_

deviation of the sample means is approximately a //n, as
suggested by the Central Limit Theorem.' As you . . . . , _ _ .

recognize, this exercise doesn't prove the Central Limit
Theorem; but we are confident that, with a sufficiently
large number of samples, the flavor of the theorem will ~
come through.

For this exercise we ask that you pick 10 numbers, each
of which is made of three random digits between 0 and 9. .;. _ _ _ _ . . . ,_

Hence, each of the 10 numbers you pick will be a random
number between, and including,000 and 999.. One way
of picking those digits is to " throw darts" at Table T-12,
or you might follow the procedure suggested at the
explanatory notes to that table. Or you may use a _

calculator with a built-in random number generator. Such
<

a generator typically generates numbers between 0 and 1.
The function key for this operation is usually labeled _ _ _

"RND" or " RAND." In order to get three-digit random
' - ~ ~ ~ ~ " ~ ^ -

integers from 000 to 999, multiply the number obtained

|
.

. . _ , _ , ,

b - d **>4 .sw er om. ..w. .qw . ,, , ,,

t

- ' - u.. ,

ehm-' w '- -. w.
- w v- --t-1- v- v - g -w--a ---e* -
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!

! . .

i
from your calculator by 1000 and discard the fractional

! part. Thus, if the number generated is 0.12345, multiply -
that number by 1000 to get 123.45, discard the fraction'

(.45), and record 123.
- - , - - . . . . , - . .. , . .

!' Now write down your ten 3. digit numbers: . _ _ _ . _._. __ ._.1 ___T'
-

1. 2. 3.

4. 5. 6.

7. .8. 9.
..... _ _.._ ._ _ _... _ ..__ _

-10. .. .. t ..

(
' Determine and record the following statistics for your 10

values:

I

minimum (the smallest number) .. . .. . ._ ,,._

maximum (the largest number)
~ ' -' " ^~

t

range

!
!~ variance

standard deviation
. - _ _ _ . ~ . _ _ _ . . _ _ . . . _ _ .

. . - -
-

'

| Now that you have completed the exercise, here is some

| information about the population you just sampled From
i mathematical considerations, the mean of that population

is p = 499.5, the variance is a2 = 83,166.75, and the
'

;

standard deviation is a = 288.39. ' Your own sample !

statistics ought not to be too far from these parameter
values. - - - - - - - -- -

. _ - . . - _ . . . . . _ _ . . . . . . . . _ _ _ .

I

1
=

'

-- --, ..

.- -_ _ _- - - . . _ . . _ . _ . . _ _ _ _ _ , _ _ _ _ . , . ., , .

!

+- ..u . _

g2-Wo6 m pegms e,
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If you did this sampling as a part of a class exercise, give j

your results to your instructor. This will enable you and x
your colleagues to give credence to the statements that N |

the average of serves f, is p ~ ~T7 ~'
u

- - - - - - - - - - - - -
2 2the average of S is aa

the variance of f, is a/Jna

E, is distributed normally.a

.. - _ _ _ - _ . . _ _

For discussion: -

\C In performing the sampling exercise, we collect several means, each
of which is based on 10 observations from a " flat" distribution-
usually called a umfonn distribution because each of the possible
responses (000 through 999) is equally likely to be selected In the
following bulleted items, you will investigate the behavior of these
means and attempt to see if they support the Central Limit Theorem
and if they agreement with the Empirical Rule introduced in
Chapter 5. For the purpose of discussion, we denote the number of

* - - - - - - - - ~ - -

participants in this exercise by k,
,

o Examine the k sample means generated in the sampling experiment.
Whereas individual observations can be very small (say, less than 100) k
or very large (say, more than 900), you should be surprised if a mean
of 10 observations is less than 100 or larger than 900. Are such
means possible? - - - ---

Denote the average of the individual means by Y. Since each mean is0

constructed for the same number of observations, that average equals
the mean of all the 10k observations collected in class and is called the
grand mean. (Does that imply that the mean of means is the meanest
of them all?). The grand mean may not necessarily be closer to p
than any one of the individual sample means, but you may be

~ '~ ~

surprised at how close it gets. In fact, the Central Limit Theorem,
coupled with other statistical tools, can give you a reasonable

~ ~ ~ ~ ' - ~ ~ - ^ - "* ' - -

.- . _ j
. . .. - _ - . . - . - - - - _ - - _ . - - . -

;

i s

!

_ _. _ _
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|

assurance that the grand mean will not differ from p by more than

| 179/Vk, where k is the number of participants in the class. Thus,

| with 25 students in the class, we are " reasonably assured" that the
l samples' grand mean does not differ from p by more than 36.

- - , . . , -_ . ,.

! O What is meant by the term " reasonably assured" in the previous - - - - --

bullet? .

0 . Note how close the standard deviation for each sunple is to
|

| o = 288.39. Average those standard deviation values, and determine

| how close this average is to 288.39.

O Sketch a histogram of the k sample means. You are likely to get a - - - - - - -

graph that would remind you of the normal distribution. The degree .

of similarity to the normal distribution would increase if sample size
were larger,

|

The histogram thus constructed gives you an empirical distribution of! O

the mean of a sample of size 10 from a specified distribution. You
can now estimate measures of location and dispersion for this

I distribution. This sampling approach to estimation of population _, , , . . . , , _ _ . , , _

parameters is one-an extremely simple one-application of the Monte ~ ~ ~ ~ ~ ~ '

Carlo Method. As the name suggests, Monte Carlo methodology was
developed in connection with gambling, where the distribution of

t

possible outcomes was determined by multiple runs of a roulette

|
wheel. The method gained wide currency during World War 11 when
it was applied to such important problems as bomb-sight accuracy and
nuclear fission control. Suggested references are Hammersly and

Hanscomb (1964) and Shreider (1966). . . _ . . . - - - - . _ - .i

l
. ._ .

| Using Table T-1: The cumulative standardized
normal distribution and selected quantiles

!
l

The purpose of any normal distribution table is to support j'

| and simplify the calculations of probabilities associated - - - -- - -. |

! with a random variable Y which is distributed normally - - -- - _ . . . . _ . . _

i

|

l

!
- - - -- - -_ __ _ . . _ ,_ _ _, ,

_ _ _ - _ . . . . _ _ _ . _ . _ . _ _ _ . . _ _ _ _ _ _ __ _,_

-. ... . - _ . . .. + .. . . - .

|

|
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with mean p and a endard deviation o. Since there are
infinite combinations of values that and a may assume, j

you could, in principle, have an inf' mite number of tables
to consider.

.. . - - . - .m.,

Alternatively, and much less dauntingly, you can
,

a *' j
'- - - - - -- - - - --- '

standardize Yby subtracting p from Y-yielding (Y- p)
which is a variable with zero mean-and then dividing
(Y- ) by a-yielding (Y- )/a, which is a variable with
unit variance. As a result, you produce a variable with

mean 0 (zero) and standard deviation 1 (one). The
variable Z = (Y- p)/o is called a standardized normal
variable. Using the convention introduced earlier, you - - - - - - - - - - -- -- --

can write Z ~ N(0,1). . . _ . _ _ _ . . __

Remember: In this convention, the second number
denotes the variance, not the standard deviation. Of

| course, apart from the units of measurement, the variance

| and the standard deviation of the standardized normal are
-

I numerically the same, i.e., o = a2 , i,
. . . . _ _. ._ . ._ ., _

The standardized normal distribution, displayed in , , , , _ _

Figure 7-1, is a probability distribution. As such, it has
several properties:

|
|

e The area under the density function is 1.

The probability that Z is less than or equal to am

specified value, say z. Pr{} $ z} is the total area
under the curve for t ' reg. ,n where -m < Z < z. [ - ' ~~ ~ ~ ~ ~ ~ ~ ~h

This " cumulative en ibihty" is denoted by

F(z) = Pr{Z s z}.

- -

*NY - ' eM W .O#= sh4 b% '. ahe6m

I

n .s.a,.. u.

* -i- *,www ee. --. .-n ,, ,,%. ,%,., ,, _ __

t



. . .- . . . . . . . . - - - - . .

i .l. b.a 1 a l a LLI L d. U . M
-i

Th2 normzldistributior: 7-25

I

e You may also write

F(z) = Pr{2 < z)

m. . -- . - . .- ..

t~ . . . - . _ . . . _ . _ . _ . _

Mz) = Pr{Z s z} ='Pr{Z < z} + Pr{Z = z}

and Pr{Z = z} is identically _0 for continuous ~j
distributions.

JThe probability that Z is between two specified values,s
say a and b, where a < b, is

.
~~'~~~'",,7 |

' ' -

: 1

Pr{a < Z < b) = Mb)- Ma) = Pr{a s Z s b).
'

l

To make these ideas even more concrete, turn now to !

|
Table T-1: The cumulative standardized normal
distribution and selected quantiles. ' Notice that, although .j

[ a standardized normal extends from -m to + m, only |

. positive values of z are available in the table. .However, -. -.- e,..- . -. ,-
,

| this is not a problem because the normal density function _ _ . . ___

is symmetric around its mean; i.e., the area to the left of
the mean is " mirrored" in the area to the right of the !

mean. Symbolically, for the standardized normal
distribution, F(z) = 1 - M-z). The use of the Table T-1
for calculating probabilities is illustrated with three .

,

' examples:
.- --- . ---- -._.- ._ .

- .. .,
-

,

Example 7-2: :

1 Find the probability that a random variable Y from a normal
distribution with mean p = 75 and standant deviation a = 8 will. |

nzt be larger than 91

You will find it valuable to sketch a rough drawing of the
problem as stated and the corresponding standardized , _ __ , _ _ _ _ , ,, ._,

normal distribution. You don't have to be an '~~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ - ~ ~'

artist-indeed, as you see from our drawirs,s, we're not

.. - ,. .-. ... . . _ .-

d'M '" h I vts'.6* e- ..em eg. . .g4 4 4 , ,

- - - - w - - . .... . .. . .. . . . . - . _ . . _

!
_ _ - _ _ _ ._
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,

|
\

|
artists either. Your sole purpose in making such a sketch
is to emphasize the area, or probability, of interest (as
indicated in Figure 7-5).

\

| Figure 7-5: ,

I
'' ;'. ' |I

,
,

" ~ ' ' ~ ~ " ~ " '

| Sketch for Example 7-2
|
|

Y - N(y; 76,64) N"

/
\ Pr{Y < 91) . . _ _ , _ _ _ _ , _ _

_ |'
/ '

\
le the/

p = 76 y = 91

" same asZ ~ N(z; 0,1) g ,

/

\
j Pr{Z < 2)

- - - - - - - - - - - - -

:..-.-.__...._.__..___._
,

-

p=0 x=2

i

|
t

! y _ - . . _ . _ . _ _.. _ _. _ _

6
.w-

Now you can transform the problem mathematically:

! Pr{Y s 91} = Pr(Y < 91}

Pr{ Y - p < 91 - 75 }=
Ja 8

Pr(Z < 2}.= , , _ _ . - .

- - - - - . _ - - - - . . . . . . - .

i
1

-. .

#" ***r r'*-9 h e e ap e m . ..aw,. . . , , _ ,

, _ . .
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|
|

Next, consult Table T-1. ' The left margin lists values of z
from 0.0 to 3.4 in increments of 0.1, whereas the column
headings list numbers from 0.00 to 0.09. For z = 2.00,
find the intersection of the row beginning with 2.0 and the - - - . - . , . -. ',, ,__.
column headed by 0.00, where the table entry is 0.9772. - r

' -
,

This means that the probability of Z being less than or ")
"^ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~-

! equal to 2.0 is 0.9772. Therefore, in answer to the posed
problem, Pr{Y $ 91) = 0.9772.

1

i

i

Example 7-3:
If Y ~ N(100,16), find Pr(Y > 105)

. .- . _ . . - .. . - -. - ..-.

L
| Start with a sketch of the problem, similar to that

*

| displayed in Figure 7-6.
i
!

. e,,.-- . - . . . - ,. - i m . ., .-

e . , . . - . *.e me .

|

.--- . - - _. __. . _ . . _ . . '

, .e. -

!

!

, _ _

| v .a n - e . e m an - es s .ess - m ,oe .

.

_ _ _ _ ._

a' , *b ..e- e,a -.mm.a 44 .esmae.- as h e . --msip-a 4- gn m.e e ,z s Me s.p e g - ,h em,a e w., e. .s.g, ,.gpi..aq%, m- .ao.- , he, a

|

i
,

.- ,.

:
t
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_

Figure 7 6:
Sketch for Example 7 3

i

. . - - - - . , . . _ . ,. m ._,

. . . . - . . .~, . - .. -. . . . --

'
Y - N(y; 100,16) N

! Pr{Y > 106)

N / '
"

/ = 1 Pr{Y < 106)

is thef \
- '

p = 100 106 same as - - - - - - --- ---

'

Pr(Z > 1.26}
~ ^ ~ ~

"
Z - N(r; 0,1) g

! = 1 - Pr{Z < 1.26}

/

' %
,

p=0 1.26
.-, .--_. . - .. - _ _ ._,, _

. ._. _ ,__. . . _ . _ . _ . . _

i

| The mathematical transformation from Y to 2 is:

Pr{Y > 105} = Pr{ Y - p > 105-100}I
;

a 4'

Pr{z > 1.25}. {~~_-".,--'~~~~~"---~.=

,

1

Consult Table T-1. At the intersection of the row
|ill findbeginning with 1.2 and the column of 0.05, y.. v

the table entry of 0.8944. This number is the pauv oility
|

; that Z is less than or equal to 1.25. . Hence the probability
that Z is larger than 1.25 is 1.0000 - 0,8944 = 0.1056.

|Hence Pr{Y > 105} is also 0.1056. _ ,, _ ,

~ - - . . ~ .. . . . . . .

|!

-

i

-. ..

*'- =***A h ma wa--- ,..mpe .heg.y 4 -mi eg, . g, g , p, ,,, , q, , p g_
.

_ ,__

,

. . .- . . . _ _ . _ . . .

t

i

l. , - , . , , - - - ,
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t

} Example 7-4:
Lct Y be the mean of S observations from Ni.96.8,1.21). Findi

the probabWty that 9 willbe less than or eqcal to 86.0
,

Start your analysis with a sketch of the desired probability , , _ _ |_ _ _ _ i ,
.n . .. -- . . _.

:

as shown in Figure 7-7.
,
,

1
a

; Figure 7-7:
Sketch for Example 7-4 |

|<

1
. . - . . . - - . . . . - - , . . . .

! , * -

i
i- N(y; e6.8,1.2116) .

N'

fN(y; 96.8,0.242) /: =

:

Prff < 06.0}
/,

i f- s_
' '

i= ***-

,

01,.0 p=1B6.8 same as .-r- - .- .. . - , . --
,

Pr(Z < -1.626}
'~ ~' ~ ' ~~

f Z - N(z; 0,1)
__ g

'"

/
~

,/,/
'

~-
- _

i -1. 12 6 p=0
. - . - - - - . . - . - - . - . - -

. . . _ _ . .
- i

:
e

i. .
.

..
3

The standard deviation of Yis 1.10. The standard j
,

-
,

c
deviation of Y is 1.10/45. The requested probability is j

,

i

therefore written as'

}
. - ,

,

. . _ _ _ - - - _ _ . _. . _ ..__ .

.

A

!
'

!
!

)
J

4

e* e . --~.s 4.. ,.e+ _. m._. %. --. ... _..%._, _ , , ,, , , , , ,, . , ,

4

4

_j . .a. .w-

. ._ ~ _ . . _ - . . ._.. .< 1
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,

Pr(E s 86.0} = Pr{E < 86.0} x
;

--
'N

i

Pr{ I - F% } < 86.0 - 86.8)=

1.1/4
~~ ~ ~ ~ ~ ~ ~ ~ ' - ~a -,

. _. _-. ___ __

,,7,

|
There are no negative values for 2 in Table T-1. You

j resort to the symmetry of the normal distribution and soon

| realize that Pr(Z < -1.626} = Pr(Z > 1.626}
= 1 - Pr(Z s 1.626}.

But Table T-1 does not give you {(Z s 1.626} directly, - - - - - - - -- - ~

so some table interpolation is required. From the . _. . . . _ _ .. . . _ . _ .

| Table T-1 you find Pr{Z s 1.62} = 0.9474 and
,

| Pr{Z s 1.63} = 0.9484. Consequently, Pr(Z s 1.626}
must lie somewhere between 0.9474 and 0.9484, and a
httle closer to 0.9484 than to 0.9574. Interpolating
linearly between these two numbers yields
Pr(Z s 1.626} = 0.9480. Putting it all together, you

_

have: Pr{ Y s 86.0} = Pr{ Y < 86.0}
~ -- -- - - - - - - - - -

= Pr{2 < -1.626} = Pr{Z > 1.626)
- -- - . - - - _ _

= 1 - Pr(Z s 1.626} = 1 - 0.9480 = 0.0520.

The selected quantiles. Several specific quantiles of the
standardized normal distribution are common in statistical
investigations. You offm will encounter two of them, the
0.95 and the 0.975 quantiles, in this text; they are
included at the bottom of Table T-1 as 1.645 and 1.960, ; - _. _ _

respectively. ! __ _ . _ , _ .

_.

*' "* M- ' es m. k M4 . #m e. .. ,

e

h .wus=** - 49 -4 We - -.* . ul Wd e s 4@m.,# -ga - We n . am e --e-m++ ** e e <a n=w4M-
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What to. remember about Chapter 7
;

.. .

J"

Chapter 7 explored the single most important concept in
; modern statistics-the normal distribution. Specific topics _ _ ,.. _ . ,, , ;

;- included: . _1 _1 _ _ _[ i
,

a the normal distribution and densityfunctions
a the standardized normal distribution

' a testing datafor normality ,

'

a the standard error of the mean,

a the CentralLimit Theorem.^

- __.._.-_____._..__,.___._i
!

The chapter concluded with a demonstration of a . .

:. remarkable feature of the normal distribution: a single-
~ ~~ ~ ~~

page tabulation (Table T-1) can be used to quantify nearly

{ everything you need to know about the normal
~ i

distribution.;
r
<

J
. ; ., . ,. 4... . -., . _.

;
,.c-

.,. .. . _ . . . _ . __ _

:

.

j . _ _ . . _ . _ _ . _ _ . . _ _ ,

t . . - . - ..

.

!
.

4

. _ _ _ ,

.

, -
. . . . . - - .

,.

!

!

- - _ .- -- . - - - . . - -. . _ - - _ ._ _ _. . .. _ .-. . _ _ _ . . - . ,

. . _ .

ud:-

-. . - - .-. ,
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Statistical estimation
1

1

What to look for in Chapter 8

Chapter 8 examines the general process of statistical '' ~'

.--..._-(estimation; that is, it examines the question: "How do you - -

put a number on it?" Among the special terms employed
here, you will find:

a parameter
a estimator
a estimate
a unbiased estimators - - - - - - - - - - - - - -

a minimum variance - - -

a point estimators
a intenal estimators.

The chapter concludes with discussions of :
.

a conpdence intervalsfor a mean
a tolerance limits for a normal distribution , , _ _ _ . _ _ _ _ ,

a conpdence intervalsfor a variance _ _ _ _ _ _ _ , _

- . . .- - . .

.,-w h me- deme p-eg=g w e m. e.eweams.,. Atw ,e. .made,.,auh ash.& & .W w& . m-1h 4 M e ums.-,e- a.-er+N.4' .m . ,w.,_ ,w . -
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;

and illustrates simple cases of sample size determination
. for normally distributed data,

|

On the concepts.of statistical estimation and i~. ~~_~. . T ,
- ~ '
, ;_ ._ __ _._

, ferencein

The principal objectives of statistics are often
*

,

'

characterized as estimation and inference.1 These two
objectives are strongly interrelated, a condition that often ' ,

leads to their being confused. In their practical aspects, =
they both involve the| collection, analysis, and 7__._.___.___.!
interpretation of data; in their theoretical bases, they both

'

stem from mathematical formulations of statistical issues.
~ ~

-

Eut they must be distinguished to bring cut their special .
Individual powers, ,

Consider these two statements: i,

:

.
.

. - !

Estimation Estimation involves the processes brought to bear on a .

problem of quantification; i.e., "How do you put a !
" " " * " " * " * ~~ *^

'
number on it?"

' - - - - - " - m-

i

Inference Inference involves the processes brought to bear on a_~-
problem of decision; i.e., " Based upon these data, should
you or shouldn't you take a particular action?" '

,

This chapter is devoted to estimation processes;-inferential
processes are described in Chapter 9 Once established, - - - ~ - - - - -

x'both concepts are explored in a variety of application areas s- - ._.

in the remainder of the book. !

l
|

:

' The more you work with statistical concepts, the more you will find that two distinct approaches to
statistical estimation and inference dominate the literature: classicalstatistics and Bayesian statistics.
Because the distinction is so basic and because, at the time of this writing, no fully satisfactory
ecumenical bridges exist between these two schools of statistical thought, we choose to focus this book - -- - *

on classical statistical processes. .You will find presentations of Bayesian processes, for example, in

Press (1988).

.

+ + - + . - - . _. . . . . _ _ _,. ..

* A . . .-asems. . ., emmet , .m._,,..,e ,,-,ww,,,,, . " , , , . , . ,aw,,,,._, ,w., ,,,,%,,,, _,. _4 ., ,, , , _ ,,,

. ._ -
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Getting started with statistical estimation
"

Statistical estimation is based upon three principal
- " L

elements: ,

u-- .. .. .. _ , . . . . , _

A parameter is a quantity you wish to estimate.
An example of a parameter is a population mean,
denoted in many formulations by the symbol p.
(This book designates parameters by Greek letters
wherever possible.)

An estimator is a rule (usually expressed as a formula) for obtaining a
' - - ' - - - - - - - -

numerical value to estimate a parameter of interest.
' - - - - . - - -

An example of an estimator is the sample mean,

? = ({ Y)/n, which may be used to estimate the
parameter p. (This book designates estimators by
upper-case English letters wherever possible.)

An estimate is the numerical value obtained by applying the estimator to
" ' ' " * ~ ~ ~ ~ ~ ' ~ ' ~ ~

>

the sample data.
- - --

An example of an estimate is the calculated
sample mean. Thus, for the three sample values
{3,7,2}, the estimate of the parameter p is

(3 + 7 + 2)/3 = 4. (This book Nf = ({y)/n y=

designates estimates by lower-case English letters N
wherever possible.) X

~\ --~ ~ ~' - ~ |
)An estimator is a tool used in an inference about a

- !population parameter. An estimator is a random variable
- ^ - -

because it is a function of random variables. Thus, an
'

inference about the parameter is not absolute. However,
from statistical theory, you may know something about the
behavior of estimators like the one you are using. It is ;

only in the context of the estimator's distribution (i.e.,
how the estimator behaves when it is used over and over
again) that you can make any proper statistical inference.

- - - - - -

. - - _ . _ . _ _ . . . . . . . . _ .

$

* ~~ ' - * * * . .e- . . ... ., _ , , ,

,

' *" ' * ' = ' 4 4peame.. ae ,r.mm.,r,,4 ,, _ ,_

- en
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i

There are two major categories of classical statistical )
estimators: point estimators and interval estimators.

.

Point estimators - ' ' v+ , -

_ _. ...__ _ _g
a

; A point estimator is a rule that produces a single number to be used as
~

; an estimate of a population parameter. Consider these -

: examples.
1
<

4 'l
A sample mean is a point estimator of a population ;e

|
,

: mean.
- _ m. __~._.,_____s

i1*
'

A sample standard deviation is a point estimator of a-
~ ~ - " -

1 e

population standard deviation.

The sample proportion of defects is a point estimatore

|
of the population proportion of defects.

Statistical researchers have developed a number of
desirable properties of estimators and use these properties

-'-~~--~*-'-'ito decide among several candidate estimators. This -' . - - - - - -- -

discussion is restricted to two important properties and
their combination: unbiased, minimum variance, and
unbiased minimum variance,"

| unbiased A point estimator is said to be unbiased if, on the average,
j it equals the parameter which it estimates. ;

.Ji -__. __

minimum A point estimator is said to have minimum variance if it _ ..

variance has a smaller variance (or, equivalently, a smaller
standard deviation) than other estimators of the same,

3 class.

minimum A point estimator is said to be minimum variance unbiased.

variance if it has both properties; that is, it is both unbiased and3

i unbiased has minimum variance. . . _ . . _ . . . . . . . , . ....

. . ----. .. .... .. _ .

d

-.- -. . - - . . . _ . . . _ . .

'" -" P-.m h-* e.e-- wsn. - u>p. 4.m-+, _m.% ,p%. gy , , , , , , _ ,

'$

m
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For discussion:

The properties of unbiasedness and minimum variance are applied toO - -.-- , - - ~ _ , ,. ,
'; '

|
an estimator, not to an estimate. Why? a__ .

_. __ _ , _ _ . . , _

|
2

| C The statistic S can be shown to be an unbiased estimator of a
2

i population's variance o . What, therefore, can you say about the
2

| long-run average of S 7

|

| c The statistic S can be shown to be a biased estimator of a population's

!. standard deviation a. What, therefore, can you say about the long-run _. _. _ _ _ _,,_e __

| average of S7 m__ _ _ _ _ _ .

a is an unbiased estimator accurate? Is it precise?

a A tricky issue: Is a minimum variance unbiased estimator accurate?
Is it precise?

C in technical discussions of varying degrees of seriousness, you may ~ ' " ' ' " ' ~ ~ ~ ' " * ~ " "

| hear someone make a statement something like this: "This is the best
estimate of so-and-so." What do you suppose the speaker means by

~ ~ ~~ " ' - ~ ~ ' ' '- ~ ~~-'

this phrase? Kendall and Stuart (1971, pp.13-14) give this advice:

The estimation of population parameters from information provided
by the sample raises the question whether there is a "best" estimator.
The answer depends mainly on the criteria which are laid down as to

+

\1the " goodness" of the estimator, if there is a criterion which
' idistinguishes one of two estimators as better than the other and if . -- _----- e_-._- .

Ithere exists an estimator which is better than any other, it is said to ,_ . .

be the best.

Various criteria [for 'best estimator *] have been suggested.. .. It is
not always true that a "best* estimator exists.

I

, .-_ ._ _ _
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Interval estimators

An interval estimator is a rule that produces numerical bounds on a
population parameter (or on a function of the population 7~" ~'~
parameters). These bounds usually are reported as an '~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - - ~

interval determined by two numbers, neither of which is
necessarily finite. Two such intervals are discussed:

confidence intervals and tolerance inten'als.

Confidence intervals are perhaps the most widely used type of interval |
I

estimators. They are formed according to a set of basic
statistical principles so that they focus on a parameter of

~ ' ' ' - ~~ ~~- |'

interest and a probabilistic statement that conveys a
' - !

measure of assurance that the interval contains that

confidence parameter of interest. This probabilistic measure of

coefficient assurance is called the confidence coeficient.

Note that synonyms for the term " confidence coefficient"

confidence abound in statistical literature, including confidence

level level and level of confidence. Confidence coefficient and
confidence level are used interchangeably in this book.

- - - - - .- - - - -

. . _..

Note further that various writers, and we are no
exception, use a variety of notations and expressions in
quantifying the confidence coefficient. For instance, you
sometimes will see the phrase "95% confidence" and
so.metimes the phrase "0.95 confidence." Sometimes you
will see tests of signn;cance (introduced in Chapter 9)
conducted at some level of confidence. r- - - - - - - - - - - - - - -

L--- __ _.. _ _ _ _

Confidence intervals support the following types of
statements:

We are 95% confident that the population mean is
between 8.4 and 10.1 kilograms.

- . , . . .. ,

.- .- - ... .. .-

!

. .- - -. - . . _
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- We are 75% confident that the mean-time-before-failure
(MTBF) of a population of elect'.ic motors is at least
8,000 hours.

We are 99.99% confident that the percentage of ~~-- - ,- - - m,

plutonium, by weight, in a batch of PuO (plutonium ,____i_.____.2

oxide) is between 87.16 and 88.02.

We are 91% confident that the proponion of cables
traced to control unit A is between 7% and 11.5%.

St:tistical tolerance intervals serve an entirely different purpose than
confidence limits. Statistical tolerance intervals are
constructed when you'wish to place a bound (or bounds)

- - - - - --

' - - -- 1on a specified portion of a population. Such bounds have
important application, as, for example, when you want to
find limits within which the " bulk" of the population lies

~ and you need assurance that only a small fraction of the
population falls outside those limits.

Look at it this way: If you have the entire population at.
your disposal, your problem is trivial; for limits that ,- ---- -- ~ . - , -

contain the middle 90% of the population, sort the -. .. - .~

population in ascending order and find the 0.05 and 0.95
quantiles (5* and 95* percentile, respectively). The q

quantiles thus found contain the middle 90% of the
population with 100% confidence.

But you rarely have the entire population, and you settle
for a sample. From that sa:nple you calculate the sample _ . _ .. _ _ _ _ _.. _ _ . _ .

mean and the standard deviation, and then proceed to ,

calculate statistical tolerance limits that you believe are
_ _ _

likely to contain the stated proportion of the population.
Armed with these limits, you will be able to make
statements with the following flavors:

We are 95% confident that 80% of the population lies
between 3.52 cm and 3.84 cm.

. _ _ . . _ , _ . . . ._

" - - - - " - * - - + ~ ~ -We are 90% confident that 99% of our employees earn
between $39,014 and $57,755 per annum.

l

- - - _ _ . -

''M= -+<s'# e, 4 .=en. . .m , ,. ,,,7 , . ,.,4 ,

<

. ._ ~
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.

We are 99% confident that the annual per-house savings
from residential energy conservation work is between
156 and 1,942 kilowatt-hours.

These examples are clearly two-sided statistical tolerance - -- . - ,, m-

limits. One-sided statistical tolerance limits have a similar ...---.L.--__._..._
flavor. Although many two- and one-sided statistical
tolerance limits are built around a mean and a standard
deviation calculated from a sample, you may have
occasion to use nonparametric tolerance limits. Here is an
all-encompassing definition given by Kendall and
Buckland (1971, p.145):

. . . _ . . - _ _ _ _ . _ . _

Statistical Tolerance Limit An upper, and lower, _ '

value of a [ random variable] following a given
distribution form between which, it is asserted with
confidence S, a proportion y will lie.

j

| For discussion: , . . . . . . - - . . _ _ . , . _.

-
- . .. - . - . _

O in technical discussions of varying degrees of seriousness, you may
hear someone say something like this: "I'm 99% confident that so-
and-so is true." What do you suppose is intended by this assertion?

O Hahn and Meeker (1991) use the generic term statistical intervals to
cover interval estimation processes. To confidence intervals and

; statistical olerance intervals, they add a third category: prediction ._ _ . . _ . _ _ _ _ _ _ _

intervals. All three categories are important. When you face interval-
--

; related problems, be sure you use the correct type. Hahn and Meeker
(1991) will make your task easier. To help keep these intervals'

straight, compare these (slightly modified for consistency) definitions ,

by Kendall and Buckland (1971, p.30, p.145, and p.117):

Confidence Interval if it is possible to define two statistics ti
and12 (functions of sample values only) such that,6 being a

- - -

parameter under estimate, Pr(tg s e s (2) = 1 - a, where a is
2 s called asome fixed probability, the interval between tg and 1 i - - ~ _ _ . .. ._. .

confidence interval. The assertion that 0 lies in this interval will

-_- .- . ._ .._ - ._ _ - _._ _ ___ _ _ _ _ _ _ _ __. __

w *

+ 4
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be true, on the average, in a proponion (1 - a) of the cases ;
i

|
i when the assertion is made. |

|
\

Statistical Tolerance Limit An upper, and lower, value of a
[ random variable) following a given distribution form between F- - 7 - .|c

which, it is assened with confidence #, a proportion y will lie. ~----_._--.._._.|
Prediction Interval The interval between the upper and lower
limits attached to a predicted value to show, on a probability
basis, its range of error.

-
.

1

. .- . . . . , - . . - , .

| Confidence intervals for a mean . -

|
,

| An Easy Case (with Strong Assumptions)

A confidence interval about the mean of a normal
population is developed under the following three

;

assumptions:
. . . , , . - . . . . .n

e The confidence coefficient is 0.95. ._ _ . . _ . -

A two-sided confidence interval about the populationa
mean, p, is desired.

2The population variance, a , s known.m

Consult the standardized normal table, Table T-1.

Observe from the table that 95% of the standardized
| normal distribution lies between -1.96 and + 1.96. _ _ _ _ , _ _ _ _ _ _ _ . . _ _ . _ _

Alternatively, the number +1.96 cuts off 2.5% of the area|

'- *-~

under the curve to the right and the number -1.96 cuts off g
'

2.5% of the area to the left. This means that .x
'

Pr{-1.96 < Z < l.96} = 0.95,
\

s

, . - . _ . .. j

i . _._ _. _ _ . . _ . _

i

,

-. . +,. . . . . . - - -. . . - - . w.

. - _. ..-- . . . _.. . - . _ _ - - - . - . . . - -- . . _ .

l

. . . _ . . ... .. . .. . .
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where Z is a starxiardized variable; i.e.,2 = (Y- p)/a.
For a sample of size n = 1, this yields:

Pr{-1.% < Y - # < 1.%} = 0.95a ,

. ,, ,_ _ _ , , _ , , _ _ _,

_.
,

, '

|
|

while, for a sample of size n, the following expression -
holds: .

_

Pr{-1.% < Y - p < 1.%} = 0.95.
a/[n . -.- -- .---...- .-- - _

.

. - . - . - .

Now manipulate the inequality in the brackets to obtain
this sequence:

-1.%/% < P p < 1.96a/%

" ~ ~ ~ ~ '

|
1.%/% > p - E > -1.%/6'

m .-_. . . - . . . _ . _. _ _ .

t

,

f + 1.%/O > p > E - 1.%/% . ,

,

! One more reversal of the inequalities yields the
conventional form of a confidence interval (i.e., with the
smaller end at the left and the larger end at the right): I _. __ __ __ _ _ _

,__

, _ _

i - 1.%/M < p < E + 1.%/% . -

Hence, a 95% confidence interval for the mean of a :

normal distribution, y, based upon a sample of size n
when the standard deviation, o, is the interval

- - - .

. 84-46 - e-. edbe6..s p. .6.e ....34.,,_ ,ggg ,g,, g

h

- - .- .. . . .. .._,

- --- - - - _ , . . _ - _ . _ . _ . . , _ _ _ _ _ , , _ _ , ,_ _

'* 4-3 .a ,,
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(? - 1.96a/%, f + 1.96a/[n), which sometimes is

written as P i 1.96a/[n .

Example 8-1: -; -- - m-- "~ '

Beam momentum measurements from Frodesen, et al. (1979, - - -- - -~~ ~ -- -- - --

p.141)

Measurements on the momentum of monoenergetic beam
tracks on bubble chamber pictures have led to the
following sequence of 10 readings in units of GeV/c:
18.87, 19.55, 19.32, 18.70, 19.41, 19.37, 18.84, 19.40,
18.78, and 18.76. Assume that this sample originated - - - - - , _ ._

from a normal distribution with a known standard __.

deviation of a = 0.3 GeV/c. Find a 95% confidence
interval for the beam momentum, p.

From the sample values, you calculate the mean
y = 19.100. Since a is given, there is no need (nor
license) to calculate and use the samph standard deviation.
The 97.5* percentile of the normal distribution (from . . . . . . , . , . . . , _ . . _

Table T-1) is 1.960. The lower and upper 95%
confidence limits for p, respectively, are therefore x
calculated as:

19.100 - 1.960(0.300/[15) = 18.914
19.100 + 1.960(0.300/M) = 19.286.

Notice especially that the resulting interval,
~~ ~ ~~ ~ ~~~~~~'

i

'|(18.914,19.286), has a fixed length, no matter what the
'- - - --

sample values are. Only the center of the interval changes
from sample to sample. |

|

|

r - .

O M 8'8 ' o eM4 u= McDn-4 -.de 4 o g, ,4,, ,,m,, _
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The next easy :ases-relaxing the assumptions

Selecting the confidence coefficient. The first assumption calls for a 95%
confidence coefficient. As mentioned earlier, your
confidence coefficient can be any value between, and --"~~---m- u

including,0% and 100%. Thus, if your confidence
- - -- -- - - - -

coefficient is 100(1 - a)%, consult a standard normal table.

to find zi.,a and then compute E i z(i.on)a/6 to get
the endpoints of the corresponding interval for the mean
of the population. For example, for a confidence
coefficient of 0.99, z(i .oin) = z0.995 = 2.576; this
results in a 99% confidence interval for the mean, p, _. _, __ _ _,

being constructed from E 2.576a/% . Similarly, for a 1

0.90 confidence coefficient, use zi .o. ion = z .95o
= 1.645, resulting in a 90% confidence interval for the

mean, p, being constructed from E i 1.645a/M .

Selecting a one-sided confidence interval. The second assumption calls
for a two-sided confidence interval. To construct a one-

^ * -' ' ' ' * ~ ~ ' ~ ~ ~ ~ ~ "*

sided confidence interval, use z(i . ), the value from
Table T-1 to determine the 100(1-a) quantile of the

- - - -

distribution. Note the switch here from z(i .on) to
z(i . o). Thus, you use z(i ,,) if an upper one-sided
confidence bound is sought and -z(1 - a) if a lower one-
sided confidence bound is desired. For example,
z = 1.645 is the multiplier of a/Vn for a 95% uppero
one-sided confidence limit about the mean, and

z, = -1.645 is the multiplier of a/Jn for a 95% lower
- - - - - - - - - - - - - -

one-sided confidence limit about the mean. Accordingly, - --- .

a one-sided upper 95% confidence limit is

E + 1.645a/% , and a one-sided lower 95% confidence ,

limit is ? - 1.645a/O .

Selecting the value of the standard deviation. The third assumption states
that the value for a is known. Lacking that knowledge, , _

you use the sample standard deviation, S, which is based . _ _ _ _ . . _. ___ .

on df = (n - 1) degrees of freedom. However, instead of

. - - - - - -. .- -- -. .- .. . .-- - .. -

9
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on df = (n - 1) degrees of freedom. However, instead of
'

using the standard normal table's quantiles, you now use a
Student's T table of Student's T distribution,2 whose quantiles are

*

distribution given in Table T-3. Look in Table T-3 for the cell at the
intersection of the row corresponding to df, associated [ r-, - ; -

,

'^"-~~---"m
with S and the column with the desired confidence
coefficient, (1 - a), to find the required value, t(i . )(@.

'

Thus, for a one-sided upper 95% confidence interval on p
i

when n = 12 (df = 11), find to.95(11) = 1.806 and

compute f + 1.80s/% . For a two-sided 80% confidence
interval for p when n = 15 (df = 14), use f(t - a/2)(d

= 1,9o(14) = 1.35 and compute P + 1.35s/6
-- --- - ~- -- - -- r<r

0 L.____. ._ __. ._ J, ,,

Example 8 2:
Reconsidering Example 81: The beam momentum measurements
example from Frodesen, et al. (1979, p.141), this time when o'is \

not known and must be estimated .

Calculate the sample standard deviation and obtain -~-----,._._-i
js = 0.335. From Table T-3, obtain the associated 97.Sth , , _ _ . _ . ,. , , _ , ,

1,973(9) = 2.26.percentile for 9 degrees of freedom: 9
The respective lower and upper confidence limits for p are

19.100 - 2.26 (0.335//IO ) = 18.861

and ,
__ _ _ . . _ _ _ . _

L __ _ _

19.100 + 2.26 (0.335//II'0 ) = 19.339.

In contrast to the case in which the standard deviation is
known, intervals constructed by this process have lengths
that depend upon the data.

.- - _ -

7

. _ - _ - _ - _ _ _ . _ , . . . . _ , _ _ . .

2 Developed by W. S. Gossett (1876-1937). an English experimenter /brewmeister with ouinness in
Dublin. who published under the pen name " student.*

- -- - -- - . ._. _ _ . . ._ _ _ _ _ __.
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Interpreting confidence intervals

Suppose you collect a sample of size n and construct a
50% two-sided confidence interval about the mean. If a is _ .--. __ _ ,

._ _... _i. _ __.
.jknown, then the desired interval is constructed by .

!? 0.674a/[n' . Since E is the only term that can
change from sample to sample in this expression, the'

constructed confidence interval is necessarily a random
interval of fixed length, ~namely (2)(0.674)a/Jn.- But any
given interval may or may not contain p. What, then, are'

.

:

you to make of the behavior of such random intervals? -

- - -.

b.. tFrom theoretical considerations, we know that if we were - --

to repeat the experiment many times under identical
conditions,'each time constructing another confidence -

interval, we'would expect 50% of those intervals to :
contain p. This is shown schematically in Figure 8-1 for - i

100 samples, each of which is produced as a 50%
confidence interval on the unknown mean. ,

. . . . . -c .. ; ., . , - -.
;

!
. . . . . - . . . . - .- - _ _ _ . ,,

'

#~ ---. -. .- . ,

s .
-

t

I

i

. .. -. . .. . - ..-
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| Figure 8-1:

| Schematic display of 100 individual 50% confidence intervals
! c:vering y when er is known ,

_ .,
. _. , _ . _ _ . , , .

,
.

,.

._-.....-.m .. . ...

|

| .-

[
.. . . . . . . . _ . _ . . _ . . - _ - .

. -. - _ . _._

mean -- - - - . --- -- - - - - - , -

. , . _ . . . __ . _. _- . . . . .

.

'
If a is not known, then the 50% confidence interval is s

j
- \-' given by Y + IS/% , where t = to 3o(df) is obtained from

i - - - - - - - - - - -

Table T-3 with df = n - 1 degrees of freedom. Now both --- -

I' and S are random variables, yielding confidence
intervals of different lengths. A typical replication of such
intervals may look like Figure 8-2.

. . - - .

4. , .o me w wome w.~-e m .* .w.. ,,. 4 ~ .m...

- s .. .. a, i.w .- , ,. ... .. , , ,,, _,,

. - . - _ - - -.._ -- __ __ - - - . _._

i

%...

--- .. . ,. . . _ . . _ _ . _ _ . . _ .. . . . . . .m . . . .. .,
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k

Figure 8 2:'

j Sthematic display of 100 individual 50% confidence intervals
c:vering p when a is unknown

;

-7 - . . . , . ,.
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:
One more time: theoretical considerations dictate that, in

)
i the long run,50% of similarly constructed intervals

,[
_

,

contain the true mean, p.
,

,

!

1

|

I

i
,

p . - * , * ** . .. _ . . . . . . .

j . . _ . _ _ _ . . . . _ __ . . . . _ _ _ .

;

.,

1

_ ,..._ . . . _ _

[
" * *= *e.s -- . w - h e aism--wg _ - eg . _wq . pp. ,_4%,, _ ,, , , , g _ _ _

d

4

1

* - ss. e ,

4

w ie~ ' ,.- _ , , q_ ,



- . . ~ - -

.L 1.U .b L L Lu c l. h.:d M
Stztistic:/ cstim: tion 8-17 .

_

i
4

For discussion:

a Once you construct a confidence interval, you must articulate your -._,..-._,m,..,,,..

conclusions correctly. The following statements, made with respect to . . . . . . . 2 _ __ . _ _ . _

the mean momentum measurements, y, may sound alike. But which
statements are correct, which are not, and which are trivial? Assume
o = 0.300 GeV/c.

'

!
,

We are very sure that the interval (18.914 GeV/c,i

4 19.286 GeV/c) contains p.
'

. ~ _. . _ _ , . . . _ _ _ _ _ _ _

'
The true mean lies between 18.914 GeV/c and

j 19.286 GeV/c with 95% confidence.
' ' ~' ' '

The probability that the interval (18.914 GeV/c,

,
19.286 GeV/c) does not contain the true measurement

4 mean is 0.05.

95% of future measurements will be between 19.286
* - ^, '' " ' ' "

GeV/c and 18.914 GeV/c. ~ " . ' . . ' * . _ ' ' . _ _ _ .
We are 95% sure that 95% of future measurements will be
between 18.914 GeV/c and 19.286 GeV/c.

.

d

The sample mean lies between 18.914 GeV/c and
19.286 GeV/c with 95% confidence..

1

We are 95% confident that if a similar sample were drawn - -- - - - - - - - - - - -

-- .. |tomorrow, under identical conditions, and a confidence
interval were constructed, the confidence interval would'

include p. ,

I
,

We are willing to bet 19 to I that p is somewhere between'

18.914 GeV/c and 19.286 GeV/c.

|

a Consider Figure 8-1. How many of the 100 intervals contain ? . _

How many intervals do you expect to contain p? Is there a , _ , , . ._ _ . . _ , .... ._.. .

em. k we ,.+e

' ' ' " ""6 'h- e.--4+. ---% ,_, man . 9 ,, .,g, .. _
_

R

i

~ . . - . , . _ , . ,
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difference? If so, how do you explain it? Does it throw doubt on the
efficacy of confidence intervals?

, ,. g ,.
; ,

Statistical tolerance limits for a normal population
1

Given a sample of size n from the normal distribution with
,

'

a mean E and a standard deviation S, the construction of

two-sided statistical tolerance limits is much like the,

construction of a two-sided confidence interval about the

mean. The form of the tolerance limits is h * kS where
~ -- - - - - - -

- - . . - -. Z.
the factor k-a function of y, the level of confidence; r, '

|
the proportion of the population you wish to bound; and

4

n, the sample size-is obtained from Table T-11a. Note3

that, unlike the confidence interval for the mean, the
standard deviation is not divided by ,/n.,

L

Statistical tolerance limits are sometimes written in a
shorthand notation as y/r. Thus, limits constructed to - - --. - - -_. . _ _-

include, with 90% confidence,95% of the population may u __ _. _ . _ _ _

be written as 90/95 tolerance limits.

As an example, suppose that a sample of n = 10 from a

normal population yields the statistics y = 120.5 and
'

j s = 8.4. For 95% confidence that these limits include
90% of the population, consult Table T-11a, under
y = 0.95, x = 0.90, and n = 10 to find k = 2.856. The -- _ _ _ _ _ _ _

,

# r

desired tolerance limits are therefore given by L __ _

120.5 i (2.856)(8.8), or (95.4,145,6).
i

One-sided tolerance limits have the structure of either*

E + kS or E - kS. IIowever, now you must obtain the
factor k from Table T-lib, constructed specifically for
one-sided tolerance limits. Thus, in the last example, a
one-sided 95% upper confidence upper tolerance limit for . - - -- -- - -

4 90% of the population is 120.5 + (2355)(8.8) = 141.2. .

N

'

N
;

.. . -.

_ -. . _ . _ _ _ _ . . _ . _ . . _ _ _ _ _ . _ _ _ . , ,_ _ . _ , _

|

. . . . . . . - . . .. .. . . . . . . . .
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For discussion:

a Why would you want tolerance limits when you can have a confidence .-,.-,.--m.,_

interval for the mean? .. . . _ . . _ _ _ _ . _ _ . _ _ _ . _ _ . .

O Compare the fann of the tolerance limits to that of the confidence
interval for the mean. The latter has a square root of n in the
formula, while the former does not. Any explanation?

o it is suggested that tolerance limits are nothing but confidence ;

intervals on quantiles. Do you agree? _. - _ _ _ ._ . _ . . _ _ _

-_ . . . _ . __

.

Confidence interval for a variance

2 2As stated earlier, the ratio (n - 1)S fy is distributed as a
chi-squared statistic with (n - 1) degrees of freedom. You
thus have the following relation that occurs with , - - . - - , - . . - ~ ~ ~ - . . -

probability of 1-a: . . _ . . .. . __

!

X*.n(n - 1) < I" ~ I)< x t, p(y _3),2

O,
2From this relation, solve for o to obtain two limits that

2bound a

2 g2
- - -- - - - - - - -- - ---- -

~

x ,,p(n-1)' x ,n(n-1)'2 2

These two limits provide a 100(1-a)% confidence interval
for o . If a one-sided confidence interval for a2j32

required (say an upper limit) you need calculate

2 2(n - 1)S fy _ )(n - 1) .
- - -.

. - - . . - - . . - . . -- . . . . ~ . |
|
|

I

* . --=a* ==== -- e.- e,. , ...r- . -. . + . . .e, ,,,m, ,w,,, , _ , . _ , . . . . , _ , , , , , , .

t

.

-- ____-_.
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As an example, suppose a sample of size 10 yields a
standard deviation of 1.47, and we wish a 95% upper .

2confidence limit for a and for a. First, from Table T-2
we find the 0.05 quantile for the chi-square distribution-

! with 9 degrees of freedom to be 3.33. Next the desired - - - - . -
. -m ,

limit is calculated as (9)(1.47)/3.33 = 3.972. The upper 2.__..__.__._...~- _. ..

limit for a is typically calculated as 4973-1.993.

The interpretation of the confidence interval follows the
.

same reasoning we used in the construction of confidence
intervals for the mean. Thus, if we were to repeat the
experiment many times, each time calculating a 95% one-'

2or two-sided (as needed) confidence interval for a , then
-- - - - - - - - - - - - -

95% of those confidence intervals would include the
- ._ _ _.

.
2true a ,-

d

9

For discussion:
. . . . - . . _ . _ - . _ . , _

2
C Using simple algebra derive the confidence limits for a , , _ _

c Construct a diagram similar to Figure 8-1 to aid in the interpretation
2of the confidence interval for a ,

.

9

$

A note on the determination of sample size - ._ _ _ . _ . . . _ _ . _ _

.

._ _ . _

Perhaps the most common question asked of a statistician ;

is: "How large a sample do I need?" (Irrespective of its |
,

!frequency, it certainly is the most poignant.)

Put simply, the answer is not simple. It depends on'

numerous factors and assumptions. This section considers
a situation in which your problem is the estimation of the _. _ _ _

mean of a variable measured on an interval scale. ' ~ ~ ~ ' "' " ~ ~ " ~ '

Furthermore, you seek " reasonable assurance" that the .

. . . . - . - _ .. . - - . -. ._.

@ -e- Te.u. we w aeam me- w == ear- uu= + e Wsm e weu- 4eume A .e-y 6 m, e -ame e m . g e.a

+ 4 4 et u. pe DSu e. PO 4 $ @M. 48A dm4. a . he M & +& 'N- .

+--
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l

I
resulting estimate of the mean does not deviate from the
true mean by more than a specified amount.

' To make the problem a bit more specific, suppose you
wish to estimate the mean p of a population of interest and --.,.- - ,, ,, m. i

f require 100(1 a)% assurance that the estimate will be __ ._ _... l _ ___ __. .. . _ _ l i,

J

]
within d units of p. Your protocol now follows one of

|' two cases:
i .)

Case I: the population standard deviation a is known. -|
'

;

Case II: the population standard deviation o !s unknown.
. . . . - . _ . _ - _ _ _ . _ _ _ . _

! Each case is pursued separately. ;.

Case I: You know the standard deviation a and seek a sample size such'

|
that you are at least 100(1 - a)% confident that the sample

I estimate, i', will not differ from p by more than a fixed -
distance d. This requirement can be expressed;

mathematically as
. . . . . . . - . . _ . _ , _ . , . . _ .,

j _

Pr(|Y pl s d) d 1 - a. ._ . . . .. .

.

After some manipulation, the sample size is determinedj _
from

,

*

!
;

j n = (t(1-a/2)o/d)2,
,

To derive the expression for n with 95% assurance, recall ' ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~

that a 95% two-sided confidence interval for the mean is

i- constructed from f i 1.W//n. You set the quantity
_ ..- - . - . - .

| 1.W//n equal to d and solve for n (remember: ois
known). Thus, the sample size is derived from' ,

i

! n =[(1.%o)/dj2, l
, - _ _ ._ _

_.__.___-..___.,l
* .- _ . . .

i

j '

- --_ ._- . . _ . .__ _ . . , ,_

''"'*""'du'*** . 39h..h ..p4 , , ,_-

d

d
*

* *^' -n,

d

w- .- + - , - .
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.-- . . . .

Example 8 3:
E timating the average _ use of residentialelectricity

A review of the September 1991 statements sent to all \
.

residential customers 'of the Salem (Oregon) Electric r r~; - u-
* u"

'LCooperative showed that the average use of electricity per - a .,_

household in the month was 818.18 kilowatt-hours (kWh),-
with an associated standard deviation of 567.11 kWh.
How do you use this information to determine the sample
size to estimate the average monthly residential electricity
use a year later to within a 95% " error bound" of .

100 kWh?-
.- _.m.___._._.. _

. i'Assuming that the standard deviation of 567.11 kWh still d-
.

is applicable a year later, you have g;

, , g(1.%)(567.11)j2 = 123.55.i

(100)

Rounding up the last number yields the sample size:
n = 124. Note that, if you wish this estimate to have a ~~ ~ ~ '-

95% error bound of 100 kWh, the sample size would be ' r.
considerably larger, namely,12,356.

~ ~ - ~ ~ ~ ~

Case II: You do not know the standard deviation a, but you have the
same goals as in Case I. You discover a two-stage
method called Stein's procedure, discussed and slightly

| modified by Desu and Raghavarao (1990, pp. 4-5). As
before, d is the error bound and 100(1 - a)% is the

~~~~~~~~Pconfidence coefficient. The sample size determination is j
' ]made in four steps:

!

(1) Take an initial sample of size ni of at least 3
observations. Calculate the initial sample's
variance, S}.

l
l
|. . . . . - - . . . . - - - . . .

. . - - ~ - - . . . . . . . . . . . .

s

-

; ;

- - - . . - . _ ... -

* * * "Wels- '*'*'0'' pe - 9 eiu .e '-w. vo g.ur w sG-' 7 eh , . e . 9 6. a , ,, ,. ,, g, , ,, ,_ , _m

8 ' * * * * . 8. . - $ e d 4A .s,ge _Q. g 4g_, g 4 g , _g _

e-pei. *,,g e. .. -f - .>w. . . -g , - m e
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(2) Use Table T-3 to find t(1 a/2)(ng - 1). Determine no ,

from the expression;

o = [sg t(1-a/2)(ng - 1)/d]2,n
- ; q. _

_ ,, .

If n2 = n - ng > 0, take n2 additional observations.
- - - - ~ - - -

(3) o

j If n2 :s; 0, no additional observations are required.
.

(4) Let ? be the mean of all ng + n2 observations. Then ?
satisfies the stated requirement.

,

,

.. - _ . _ _ _ _ _ , . _ _ _ _

,

j litustrating Stein's procedure with the problem of estimating the
~ '

| un of residential electricity
4

Begin with the supposition that a is not known and you
want d = 100 kWh. Then the four-step process provides'

that:
.

(1) You take an initial sample of size, say, nj = 15 * - ~ - - .- - - - - -
4

observations. Suppose the sample yields . ._,

2y = 745.53 and s = 176,526.0225 (i.e.,
si = 420.15),

i

(2) Use Table T-3 to find that the 0.975 quantile for 14*

degrees of freedom is to.975(14) = 2.14. Determine

o = (2.14 x 420.15/100)2n , _ , , _ _ . _ , , _ _ _ , , , , _ , _ , , _ , , .
_

- - -- - .

= 80.98.
,

,

Since n2 = n - ng = 80.98 - 15 = 65.98 is positive,(3) o
you take 66 additional observations which yields, say,

,

y2 = 811.12.-

J

i
(4) You compute y, the mean of all ni + n2 - - - -- -

observations, from _ _ . _ _ . . . . _ , . _ , ,

1

- _. ._. _ _ . _ _ . ._ . .._ .. _ . . _ . . _ _ , . , , , _ . _ _ _ , . _ . _ . _ _ _ _ , ._

t

..a

1'
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y = [(15)(745.53) + (66)(811.12]/(15 + 66)
= 789.23,

.,
which satisfies the stated requirement that the length
of the 95% conf'idence inte: val be less than I 7 -~,"~'7 ~ ~''' 7'

" ~ ~~^~ ~~~ - - -
d = 100 kWh.

See Desu and Raghavarao (1990) for an extended
treatment of sample-size determination.

!
!

.

.. - ..- . - _ . - - . - .-

For discussion: .. _ . . _ . .. _. _. :
1

s

- o In determining sample size, why do you round up the sample size?
-Why not round to the nearest integer?

!
.

' |

I

|

j- , . . - - . . , . - . . . . - . _ _ . , - . _ . .

.. . . . . . - . . j
! 1

i

|

|

l

1

.

|
t i

; - _ . _ . ,_ .

l. __ ___ .

,

no. m e

44Aes - d e6.. .* 43,s . 44 Gb 46 B' s .e m e.w

d

4

. .- ..,

" W && de- .M -eg -d. es . #swe p... .og.,e4,,,4%m, . ,, ,, , , , , , , ,.,6, , g, y __ , , , _ _

a

,

.. . - . - . ... .. . - _. . . - . . . . +
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What to remember about Chapter 8
i

Chapter 8 examined the general process of statistical
estimation; that is, it looks at the question: "How do you ---,.

7
_ ,.

"

put a number on it?" Among the special terms employed
here, you will find:

-
.- - - - _ . - . - _ . .

.

!

r

| e parameter
| a estimator
| a estimate,
I

!

,

A' distinction is made between:-

, ._ _ .,_ _.. , , . _ _ . _ _ _ _

|

a point estimators
_ .:.

,

1 e interval estimators.

The chapter concluded with discussions of : ;
;

a confidence intervalsfor a mean
a tolerance limitsfor a normal distnbution - " -* * ~ ' ~ ~~ -~ ~~ ~ - - ~

a confidence intervalsfor a variance
- .- - .. .. . . - .-

and illustrated simple cases of sample size determination -
for normally distributed data.

:
1

. _ . . . _ _ _ _ . , _ . _ _ .

b.

-\s
!

s

. . ..-.e. ,. . . ..

~ - _ - - , _ . . . _

* ' * * =* =='= *e+ -** * .,, . . . ,, ,

**N" '"* MM ,Wei4 -I +-% e6..w .M.,si ,_ , ,,,gg,, ,,we,,, , _ , , _
_

me

w 4 4 .tuem' .#4 $4.'i , e A W e .4m' 4
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Testing statistical hypotheses:
one mean .

.

.

.N.
'~s~~~~~~~ ~ ~~~

What to look for in Chapter 9
. . . .. . . . . ... _ .. .. . .

Chapter 9 formalizes the process of statisticalinference .,

about the mean of a population of interest. The

|
presentation identifies the circumstancer when such

' inference is valid and points out conditions that invalidate g

the inference. The chapter thus lays a foundation for -
specific material developed in Chapters 10,11, and 12.

' - ~ ~ ' ~'

Among the special terms employed in the discussion of
-" - - -

statistical inference are:

a null hypothesis
n alternative hypothesis
a test statistic
a critical region
a non-critical region
a critical value (criticalpoint) ~ - - -

power of a test. ~ ~~--~ ---- -- -- - ---a

|
i

!

|
,

_

t

!
-- _ . - _ . -. - . __ . _ _ _ . . _. . _ _ ,,__ _ , , _ . , , __, ____ _,_, ., _ ,

e

e. - <a . a ..n . * -- - so. .se ..n. .a en. ~~~s. e .m e . , . .. .- m.

.
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You will encounter two types of errors in hypothesis-
testing: 7)pe I and Type II. The consequences of each
type must be considered in any hypothesis-testing.

The chapter concludes with a formal protocol for testmg a
- n- 7 I+ .- ,

" ~ ~ ~ ----- - - -
hypothesis about a single mean, whether or not you know

<

the variance of the underlying random variable.

Testing statistical hypotheses: Setting the stage {

The logic of testing statistical hypotheses is motivated and " ~ ~

' ~ ~ ~~7 iexplained by two seemingly unrelated examples. The first
involves traffic violations, while the second examines

~ ~ ~

n|
'

j
| response times to security violations.
' )

; Example 91
| A traffic-violation example (innocent until found guilty?)
!

k

You are in your car on your way to your statistics class'- ''" " " ~~**~ ~' - - |

- when a nice police officer pulls you over and suggests that
- - - - - - -

you just ran a stop sign. Adamantly, but gently, you
.

explain that you did no such thing Just as adamantly, but
- somewhat less gently, the officer holds an alternate

-

,

+

opinion and invites you to traffic court to resolve the

| maner. ,

i

. How do you deal with this problem? Indeed, what is the
.

.

problem? Is there a hypothesis to be examined? What L .- ~

does it have to do with statistics anyhow? ,

Example 9-2:
A response-time example (When is quick quick enough?)

The Director of Security at a power station claims that the . . . _ . _ _ _ _ _ _ . , . _ _

station's electronic surveillance system can pinpoint the _, , __ j
i _ . _ _ _ .

| location of an intrusion with an average response time that

|

|

|

. - . ~ _ _ .__ __ _ . _ . .

'

"N" *e- e% A m *e..p.g _.-e.m,q., 4gm,,. . ,,

I

- . . - . .

* '**N''% 84 M 4 .,e , g4 . , _ , ,.

|-
L

. - . .
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.

.,
,

_

is no longer than 8.1 seconds, give or take a standard
- deviation cf 2.2 seconds. The system is tested by
numerous daily random provocations.. At each such
provocation, the system's response time is recorded. A .
random sample of 100 response times is collected, and the

- ,,- --- --- -
,

"* ' ~ ~ --

average response time,7 is made available for your
statistical analysis.

t
'' How do you deal with this problem?. Indeed, what is the

problem? What do you think * ... give or take a standard
deviation of 2.2. seconds ... ~ means? And what do you:

think Examples 9-1 and 9-2 have in common?
_ _ __ ;c . . . . . _ - . . _ . _ _ .

s. - .

| Some basic hypothesis-testing concepts: .Two ,

examples compared .

Consider the following parallel elements that are designed
to compare traf'ic court processes with those of statistical |

|. hypothesis-testing:
,

, . . ~ . ~ , . _ . . ,, _ . , _ . , , , _ .

. --. _ _ _ , . . _ . . _ .

!Traffic courts in the United Statistical hypothesis-testing .
States work under a process is a process by which a set of

I. by which evidence is exam- data is examined to see

| ined to see whether it - whether the ' data contradict '
! contradicts the accused's claim some idea or perception about
I of innocence.... What process the population from which the ,

do youface as you attempt to data were drawn.... What -----------;
defend yourself against the . manipulations willyou apply

' icharge of running the stop to the 100 response times in L_. _

sign in Erample 9-17 Example 9-27 j
|

The claim of innocence is a The idea or perception is a ;

hypothesis about the hypothesis about the - |

i accused.... You are innocent population.... The contention
untilyou are proved guilty to that the average response time
a high degree of certainty; is 8.1 seconds is maintained
f.e., 'licyond a reasonable until data fall to support it. , - . . . .

doubt.' _ ._ _ _ _ __ _,_ _

i

!

|
.- - . ._ -. _. _

* 'kM*" * *-e.DMD=- - -- m, ,.gygmsm. y_,,,,,,,,ggy, , , , , , , ,,

,

~ ~ - -+ , ,,, , ,,

-yt j a- - - ,- 1.-.---- .---r,,
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_

i

The mechanies of examining The mechanics of statistical
evidence in traffic couds are ~ hypothesis-testing are well |

*

well defined; if applied defined; if applied properly, ]
'

properly, they set out an they set out an orderly
orderly sequence of rational . sequence of rational and - 7 - ~ --

.
. t

!and defensible steps leading to defensible, steps leading to a w ... - __ . m. .

|a finding of guilty or not- rejection of the hypothesis or
guilty.... You are assured ' to no rejection.... Data must .

that you can face your be selected according to }
accuser, can question - certain rules to avoid bias,

evidence, and can present they must be analyzed accord.
counter-evidence during your ing to a prescribed protocol,
hearing. and the results must be

"~~~~~~ ~''~ ~ ~ ~

|
properly interpreted.

-

.- . . . . - .. . _ .
'

|

This parallel structure reveals our motivation. You will
encounter numerous similarities between traffic-court
procedures in which material is examined as evidence of
violation and the process of hypothesis-testing in which
data are examined as evidence of the falseness of some
idea about a population. ..x.__ ,_ .. . _ . .

= . , . . . - - w. .m. . _ , ,_.

.

Some terminology and processes

! - Statistical hypothesis-testing is a procedure by which inference about a
'

| population is made. The procedure requires that the idea

i or ideas about the population be articulated succinctly and :

l carefully.
.__ _____.

A statistical hypothesis is a statement about a population. Once you-
~ -

have data, you are in a position to ask whether the data !

| contain information that contradicts a stated hypothesis,
a

The null hypothesis (symbolized by H l is a hypothesis about a
_

;o
population's parameters, a function'of those parameters, |

]and/or the structure of the population. In Example 9-2
- - - --

'

(response-time), the null hypothesis conventionally is
"- -"- --- - - - - - -

written as Ho: p = 8.1.

|

- - - . - . _ . _ . . . _ . __ __ _ __ __ _ . _ _ _

-==e'o + . - - -- . , - .. , _ , , . , _ , , _ , , , , , , _ , , ,

|

l
r i

;. ..

'

|. . - -- -. . . < . . . _.. -._ _ _ _ _ ,

,

l
, .- _



~ - . -. .-- . _ _ .-

S hIikNaid h_b.

|Tssting st:tisticzlhypothzs s: ons mssn 9-5
.

~ ~ = ~^= % h = - -i

l

The null hypothesis usually is written without explicitly
stating the units of measurement in order to focus on the
essence of the statistical process. But you must never
forget that data carry units with them, and those units ~

~7t 4
' '

must be restored when you conclude and report your .

.- m_,... ._ _ .__ ,_ _,

Note: There is a class of null hypotheses that focuses on
a range of values. However, this book follows the
practice _of stating each null hypothesis as an equality.
Thus, although the claim is that response time is equal to - -

.]
or less than 8.1 seconds, you need only to write -
Ho: p = 8.1 because, if a mean of 8.1 seconds is "~-- ~~~~ ~T {"

acceptable, so would be any value of less than 8.1 - ' " - - ' - - - - --1

seconds.

The subscript 0 (read and pronounced "zero,";"not," or'
" naught") in Ho implies "no difference," "no change," or ,

*

~ " status quo." Indeed, the statistical hypothesis assumes j

neutrality and retains such neutrality unless the data prove
otherwise. - - - - - - - - - - -

,

:

The alternative hypothesis (symbolized by H;) is the hypothesis you .
| accept (the conclusion you draw) about the population if'

''

| you have sufficient evidence to reject the null hypothesis. .

.N is usually stated as an interval; e.g., if the null ' (. .
"

j i
hypothesis is Ho: p = 8.1, then the alternative hypothesis

18.1 or H : p V 8.1.is H : p > 8.1 or H : < 33 3

|
a.,. -. .. . . - _ . _

| Some writers denote the alternative hypothesis by H 'A - - -- - -
4

An alternative hypothesis written with the inequality ,

right-sided, symbol > (e.g., p > 8.1) is called a right-sided
left-sided, hypothesis. An alternative hypothesis written with the |
and inequality symbol < (e.g., p < 8.1) is a left-sided '
one-sided hypothesis. Left-sided and right-sided hypotheses are both .
hypotheses one-sided. . . _ _ _ .

|
. . _ . _ . _ . . _ . _ _ . . _ . . . . . _ _ . .

N

- |

.. _ s . . . _

, - - . - - - - _ . _ . _ . . _ _ . . . _ _ . .._...m_ .,..m.__,._. . . , . . _ . . _ , , _ . . , _ , . .._m_.___
-

.

= +. , 4. <-4 - m.4 -.-__..,4 . + _ , s . w_.. 4m# ...u._ . . . . . ,, . . . . , _ ,

,
- - - y
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m

two-sided An alternative hypothesis written with the not-equal
hypothesis symbol 4 (e.g., p 4 8.1) is called a two-sided

'

Irjpothesis.

- - , . . . _ _ ,.

~ ~ ~ ~ - - - - - ~ ~ ~ ~ ~

The test statistic is a function of the data and the null hypothesis; it is'

used as an indicator of whether or not to reject the null
g.

hypothesis. In Example 9-2, the test statistic is the
standardized normal variable z = (y o)/(a/dn), where

,

yo is the value of p specified by Ho.

The level of significance (symbolized by a) is an expression of the risk,
-

quantified as a probability, that you are willing to take m ~ ~ ~ - -

rejecting the null hypothesis if the null hypothesis is
correct. In various contexts, you will find the level of

;

significance called the probability of lype i error, thefalse
alarm rate, thefalse-positive rate, the producer's risk, and

,_

;

i others.

I

The critical region is the set of values such that realization of any one#

~ ' ' ' ' ' "-' **~ " ~~' ' "" -

1 of them by the test statistic leads to the rejection of the
null hypothesis, Ho. The critical region is sometimes

- - - - - -- -

called the rejection region.

The non-critical region is the set of values such that realization of
any one of them does not lead to the rejection of Ho; i.e.,

!
it is the complement of the critical region.

,

Some writers call this the " acceptance region." However,
- -- - - - - - - -

there is a bit of a problem with this terminology, so be -- =

careful about using it. Here is the cmx of the issue: If'

you reject Ho, you do so because the evidence is against -
its being true and you know a, the probability of your.
being in error; on the other hand, if you " accept Ho", you i#

I

rarely know the probability that you made the wrong
decision because you don't know the true value of the
alternative hypothesis. . - - - - - - -

1 - - . _ _ _ - _ _ _ ._. . _ . _.

i
1

,

b * - m e

4

' * * - ~~ ~ - ~ , . - _ , . . . , _ _ _ , , . _ _ , , . _ , ,

4

0

-

* &he .p s-re a . . , . 4 g _
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|
A critical value (also called a criticalpoint) is any value (point) that

; separates the critical region from the non-critical region.

|
A test of a hypothesis may involve more than one critical
point. Thus, neither the critical region nor the non-critical ,

|
region is necessarily contiguous. ~ ~ -". - ~|' ~~~ . ___ ___. _ _ _3.

J
-

.:. . . _ ~

A Type I error is an error committed when you reject the null hypothesis
as false when, in fact, it is true. j

!

; The probability of a Type I error, denoted by a, is the probability of
l committing a Type I error.

A Type II error is an erer committed when you do not reject the null
- - - - - - - = --~

hypothesis is false when, in fact, it is false. - - - - - .. - . _ . _ . .

The probability of a Type II error, denoted by 6, is the probability of
committing a Type II error.

The power of a test is the probability that the null hypothesis will be
,

| rejected. - The power of the test depends upon
. . , , . , _ _ _ . _ . . . . , _ . _

m the choice of a . .._ _. _ . . _ _ .

the sample size!
a

above all, how far the null hypothesis is from thei e
" truth."

You want your statistical test to be especially effective in
telling you when your null hypothesis, Ho, is not true.
Thus, you want the test to be " powerful" (i.e., sensitive) , _ _ . _ , _ _ . _ _ _ _

to the falseness of the null hypothesis.
~

For discussion:

| With respect to the response-time example at the beginning of thisc
| chapter: _ _. -

r
>

What is the null hypothesis? How is it expressed in symbols?'

-

* ' 6 d em W**. a.tammea --qq. #.p,_g4,, , , , _ . _

.

' - -- - -- --. .. . . ._ . . _ _ . . . . . _ _ , _ . . . . , ,,
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What is the alternative hypothesis? How is it expressed in symbols?

What test statistic do you propose to use? How is it expressed in
symbols?

-- - - - . g ,

,

What level of significance do you propose to use? How is it "- + -- -- ---

expressed in symbols?

| What is the rejection region? What is the non-rejection region?
' Produce a sketch that shows both of them on one chart.

If you were to test only the hypothesis that the standard deviation of g
- -- - - - - - - - 1-

the response time is indeed 2.2 seconds, as claimed by the Director of
Security, how would you write the null hypothesis? - - -. _- _ ._ -

C Try responding to the questions above with respect to the traffic-court
example,

i

'

Examining hypothesis-testing with a " truth table" - " ~~--- - -

. _ _ _ .

A null hypothesis is either correct or it is incorrect. You
collect data, conduct an analysis, and draw a conclusion
about that null hypothesis. However, even when you use
objective statistical procedures, you may or you may not N
reject the null hypothesis, irrespective of its " truth." No
matter how much you hope that your decision is correct, m ' --- - - ---

l-you may never know,

To organize your thinking about this decision-making
process, consider the " truth table" displayed in Table 9-1.

,- . . _ _ . . _

t~ .._-4 . ._ . . . . .

%

- - - --, . , _ .

-++-----s- a,.ma . , ens.ieep .m.. - gg,% w ,p mf , , ,

&

s -e e-o. * a. ee -w e .w w - m.e m . -..ee, e ,me -...e sw me.
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'

i

Table 91:
A truth table for statistical hypothesis-testing

,

ReaIity - - ,--- , - - _ y ,. _

' ' ~ ~ ' ~

Statistical Null hypothesis Null hypothesis
' ^ ^ ~ ~ ~ ' - ~

decision is true is false*

Do not reject Wrong decision

null hypothesis Correct decision (7)pe Il error)
.

)

Reject the Wrong decision

null hypothesis (7)pe I error) Correct decision
. -- - - . .. _ _ _

. .

The truth table sets out the possibilities inherent in a

j hypothesis-testing situation. Your hypothesis-testing
mechanism may coincide with reality; that is, (1) you do"

not reject the null hypothesis when it is true or (2) you
reject the null hypothesis when it is false. In either of

*

these cases, your decision is correct.
. . . . . .. . .- , , , _ , _ . . . . , .

On the other hand, if you reject the null hypothesis when - _ . _. _ _.

it is true, you commit an error. Similarly, if you do not
reject the null hypothesis when it is false, you commit an
error. At least, they are two different kinds of errors.
But how are they characterized, and what are their>

consequences?
J

.- - . . .- .- .. ._ _ _ _

. _ _ . . ._ _

For discussion:>

i
;

c What is the genesis of the term " truth table"?
'

Set out the truth table specific to the response-time example; i.e,0
i remove all the general notations from Table 9.1 and replace them with

. - -.

.* Be 4 +44 e. . .m m .- .n . , , . ,,

!,

|

1

-- - - - -- _ _ . _ . . . _ _ _ _ _ _ _ _ _ _ _ , , _ _ _ _ _ _ ,_ __ _

'
'

,

:
!
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|

| terminology and numerical values that are directly related to the -
response-time question.

1
s

'''_

|
- r ; ;. u

,

* 9 i

.

Consider the consequences: What happens after ;

the hypothesis is tested? |

It is not too early in the presentation of these matters to
reflect on some of the basic notions, principles, and ,

!

concepts of testing statistical hypotheses. Although some
'

of these principles repeat ideas already encountered, you - . - - - - -

need not fear overexposure. _ .__ . ._ , _. _ . , .

The following display compares and contrasts the
implications and consequences of statistical hypothesis-

-

,

testing. The first column focuses on rejecting the null
;

s

hypothesis, while the second column examines not \,.

'

rejecting it.
-.- - _ . __

,a .e .. + who -,h-.w.. .s . , , , an ,e

r- - --. -_ ..- . ._

"- -

I

l
i

e e -- m . , . , . .

A.e ene mashad aw, , de a me go, ,g,,_,.

|

~- - - - -- - . .. . __ ._ . _ ._ _ _. , ,_, _

*' # ^*e' -MW m- -w. g.ee .w, ,4,.,, , _ _

e es a ei se * 6 * 4A M + 4 9 e em- e4m.E +4. 4 , .M i 6 ee 4 -gh.- 4
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|
After the hypotheels is tested ...

... If the test statistic falls into the ... If the test statistic does not fall

|- critical region, you reject the null into the critical region, you do not - -- - - - , - .

I hypothesis #,. reject the null hypothesis Ho. . _ ._._ J. . . . _ . _ _. .._ .

| The ' story told by the data" is not Tha * story told by the data" is not

| consistent with Ho. Inconsistent with Ho.

! You may have made an error in rejectmg You may have made an error in not

| Ho. rejecting No.

If the null hypothesis is true, you If the null hypothesis is false, you j

committed a Type i error, committed a 1)rpe H error. ~---------~~j
. .

The probability of committing a Type i The probability of committing a Type H
error is denoted by a (the lower. case error is denoted by # (the lower-case

j Greek letter alpha). You were free to Greek letter beta). It's a fact of
select the value of a to suit yourself; statistical life that # usually is a

conventionally, its value is 'small.* complicated function of the null
hypothesis (Ho), the sample size (usually .

n), the level of significance (a), and the
variability of the test statistic.

, . . . . , . . . . -- . ., , _

In rejecting Ho, one of the following In not rejecting Ho, one of the following -= -- - - . --

eventualities must have happened: eventualities must have happened:

(1) Ho is incorrect and rejected. (1) Ho is correct and not rejected.
(2) Ho is correct but rejected. (2) Ho is incorrect but not rejected.

To protect yourself from telling lies (and Your first impulse simply to accept Ho is
from lawsuits), you qualify your understandable. Be aware that you must
statement of rejection. This qualification learn to control this impulse,
places a bound on the probability of your . _ _. _._ _ _.____ _ . .

being wrong. Your qualification is You do not know the truth nr falseness
- ~~" ^

usually written in parenthesis like of the null hypothesis. (If you did, you
'(p < . 05)." wouldn't bother to perform a statistical

test, would you?) Therefore, you don't
Consult the Truth Table and note that know S. So, if you claim that Ho is .

when you reject Ho the only inferential correct, you cannot augment your
error you could have made is Type I, for statement with an error qualification.
which the associated probability is
known. Ilowever, you can-and should-

examine the size of # for a range of - - - -

'
possible alternative hypotheses. .___._..-_m.. . _ _ . .

I

i
.- .. .. . - .

. _ _ _. __ _. _ _ _.__ ___ __ _. ._ _ _

\

.

.- |

I



. . . - . .- - . - _ . - . - . - - . .- . - . . _ . . _ - - - - _ . . - _-, .

] a! aL2Lu.L. M S.

9-12 . Applying Statistics c =
. . _ . ,

,

|

'

Another look at Example 9-1-(traffic-court justice)~

To repeat: Testing a statistical hypothesis is analogous to ' ;

trying a case in an American traffic court where the ;
. . . _ _ . .

,,
,jjdefendant is accused of, say, running a stop sign. The null ,_ n _

hypothesis presumes the defendant is innocent. The
alternative hypothesis states that the, defendant is guilty.
The test statistic is the presentation of evidence.

If the evidence is strong enough to suggest guilt, the null
hypothesis is rejected (i.e., the defendant is declared ' ,

;
guilty). On the other hand, if the evidence is not - " ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

convincing, the null hypothesis is not rejected (i.e., the-
' ~- -- - - - -

:defendant is declared not guilty), and the case is
dismissed. Notice a subtlety here: Not guilty is not the
same as innocent.

You may be bothered by the fact that falseness / guilt'can * '

be demonstrated (by rejecting Ho) whereas truth / innocence -
cannot. You may further surmise that there is no

-

,

symmetry of " justice" between the two types of decisions.
' " - . - - . . - .1.--

" - " - - - - - -

Well, you are right; no symmetry is intended!
.

,

: -

..

- A closer look at Example 9-2 (response time) k
t-

.A' schematic display of the test of a hypothesis always is
-

.

.

'
-

~~r!instructive. Let's return to the response-time example, E -
' ~

'

. where the null hypothesis Ho: p = 8.1 is tested against the .
-

alternative hypothesis H : p > 8.1, and where o = 2.2,
3

n = 100, and or = 0.05. This clearly is a one-sided (and .
right-sided at that) test; you would expect that only a.

,

sample mean larger than 8.1-in a sense yet to be
determined-would lead to the rejection of Ho.

i

Two basic, but equivalent, schematic representations for : - - - - - -

testing Ho can be displayed:
- - - - - - .- - - . -

.

l

[

!

.

**~ =me* ..- - - , . . ,

- ~ - -- -. -- - .... ,._ _ _. .

_ . . _ _ _ _ _ , _ _ _

!-
1

,-

+-e - + - * - s. 4,. . . . . , , . , , . ,, , , , , ,

.-

,. , ~ ~ , -- -, s --. ,
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a The nrst schematic repeweentation directly indicates j
,

the critical value (and, hence, the critical region) in ;

the units of the given problem: this yields - !
13

_ . _ , .-. _ . _ ,. -

8.462,- . -. ~._ i- a48.1 + (1.645)(2.2)//100 = - . _ .___,

so that No is rejected when the sample mean, f, is-

larger than 8.462.,

} In this representation,~ you leave the hypothesized mean
and the sample mean intact and determine the critical' '|
region (afunction of Ho, n, and a); i.e., those values ;,

~r |i which result in the rejection of the null hypothesis if ~ ~ ^ ~~ ~ ~" ~^~~~~~

the sample mean equals any of them;
- - --: '

.

a 'Ihe second schematic representation employs the
i transformation to the standardized normal statistic, z,'-
I - where

;
.

.

'

y - 8.1
,

--'-i2.2//100
- ' - - '" - -' - ** ~ ' - ^ *

so that No is rejected when z is larger than 1.645.

In this representation, you leave the standardized |.

critical region intact and calculate the test statistic (a : i
function of Ho, n, and a), i.e., the value which is

~

.

compared to those in critical region and which results.

: in the rejection of the null hypothesis ifit equals any -- .--.-- .-- -. - - .

'
ofthem. .

.

The equivalence of these two expressions is sketched in '
y.

' ' N '-

Figure .9-1. '\r 1

i

i
-

._... . _ .._ _ .. _. . ...

1
... -.- .. . . -.- ... . . . .

:

:
:
i
A

&

- . . . - . - . - . _- . . -.-- - - ... . - .

e=4ae e e .*m.simmih+ m444 - .-.rg Ms -.. .g eum.shmee r .-sequi.sm.emarv ..h y. ..gdeM4A 4 %.a %6 e Ne, s.h +. . Min e. MM e.we_ +6

5

4

1
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',

Figure 9-1:
.

Two schematic representations for the testing of the response-
time hypothesis No: p = 8.1 against the attemative hypothesis
H : p > 8.1

- -.i
;

- - ~ ~ - ,,

-- ...- - .- ~ .. . _

i

l
V - N(y; 8.1,4.84/100) N'

: /

] / Pr(9 > 8.642}

;
._ _ - - . . . - _ _ - . . _

- _ .. '
,

i p = 8.1 M2 same as
,

Pr(Z > 1.646) ]
"

Z- N(z; 0,1) g.

i / L
.

\t /
~

/ ,. . . . . . , - - . . , . .

,

p=o 1.646_ ._ _ . , , _ _

;.

|
1

f

. 1

|
'

.

With few exceptions, we prefer the second schematic
representation to conceptualize any test of a statistical"

. . - .- - - - - . -- - ._ - ,

hypothes.is; some test statistics simply are hard to deal ~ ~ ^

with unless a transformation is made, as you will see in
Chapters 11,12, and 14. However, the first schematic

; representation is especially useful in discussing the power -

|
of a test, an idea that's given more attention later in this l

|chapter.
|

h Note especially the compounding of " falseness" and
' ' ~~ ~~ - '

" guilt" and of ' truth" and " innocence" in the discussion ofi

Example 9-1. The analogy between trapic-courtjustice
- ~ ~ ~ - --~ ~-- --' - ~ -

'

i
3

1

,
- - -.

-- -.m - . . , ~ . , , , _ . _ , , , _ . , _ _ _ _ _ , , _ ,, , ,_ _ , ,

1

:

i

. . . . . . .

j

, - ,
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and statistical hypothesis-testing is imperfect; see Large ,

and Michie (1981)forfurther discussion. \

-, , .-
,

e- e . e .. m... m m.I[ -.* a m . 4.4 .e 4 .d

For discussion:

c In Example 9 2, the response-time example, you saw that z > 1.645
if and only if y > 8.462. What does this tell you? \

c If you can determine that the hypothesis is correct without using the
standardized statistic, why standardize? . . ._ . . . . . _ __ ..__

' . - - - __..

c Why was the test in the response-time example characterized as
" clearly a one-sided (and right-sided at that) test"?

c if, in the response-time example, the standard deviation were larger
than 2.2, the critical value (now at 8.462) would change. In which

direction would it change? Would you need a larger y or a smaller y
to reject Ilo? What do you think are the implications? .. . . . , . , ~ . . . - , . _ _ , . , . _

' . . _ _ . .

o If, in the response-time example, the sample size were smaller than
100, the critical point (now at 8.462) would change. In which

direction would it change? Would you need a larger y or a smaller y
to reject flo? What do you think are the implications?

L . ....._ ...- .- .. _,

A view from the other side: What's left of the --- - -

response-time example?

Example 9-2 can be restated to show how the same
situation can yield a left-sided test of hypothesis. Recall
the claim by the Director of Security that their system's
average response time is "no longer than 8.1 seconds, give

'
' ~ ~ '

or take a standard deviation of 2.2 seconds." As
' -~ - ^ ~ ~ ~~ -- - -

originally given, we stated the test in such a manner that it

. , . _.

* * * - * * * * =he-.. e..e r-,-.- . . , , . , . _ - , , , _ , . , , ,, ,, , _ , , , ,, _,

'UD

e m 4d. -+ 4 4m.am.---4 e._.e +.4 -+4- +-e*-- + = * * -
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tolerates (i.e., does not reject) a y of 8.1 seconds; even

some y values greater than 8.1 are tolerated. As
suggested in the last For discussion: section, a smaller
sample size and/or a larger standard deviation would cause - .-

7. ~ -_ y.
,

-

the test to tolerate a larger y without declaring it - - - - - - - - - - - -

statistically significant.

Let's modify the problem by suggesting that 8.1 seconds
response time is not acceptable and ask the Director of
Security to demonstrate that the response time is
significantly shorter than 8.1 seconds. As you may have
already sensed, if the Director's claim is valid, it would - - - - - . - _ _ _

be to the company's advantage to have a standard <

deviation as small as possible and a sample as large as
practical.

Suppose that you are told that of the 100 trials,36 were
" rehearsed" and cannot be considered random. You
therefore disregard the 36 suspect observations and
calculate the mean of the remaining 64 observations as _ _ _ . ,. ., , . . . . ,

f = 7.6. You still believe that o = 2.2. In the new _ __. _ _ _

framework, you set the hypothesis-testing into motion as
follows:

Ilo: p = 8.1
H : p < 8.1i
o = 2.2
n = 64 _ _ _ _ . . _ _ _ _ _ . _ . . _ . _ _ .

cr = 0.05. ..__ ,

Your strategy is to construct the Z statistic and to reject
Ilo if the calculated z is less than -1.645. Schematically, ,

as shown in Figure 9-2, you reject No f z is to the lefti

of -1.645.

. _ .. .

- . _ . _ . . . . . . . _ _ . _

,

- _ . ,

*' ' * * * * * "- M me- -, ,,m44 g g 4, ., , ,. _ . _

e

- _
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1-

Figure 9-2: s ;

!

Schematics for the z statistic for a left sided test of H : = 8.1o
cgainst the alternative # : y < 8.13

s

..-_L_ . _ _ _ . .
.

" . _.~ . - _ . . - .._. __

1

i- N(y; 8.1,4.8424) N"

/

Pr{ < 7.648)

is the/ - _. . _ , _ _ , _ _ _ . . _ _ _ ,_

7.648 p = 8.1 same as .
. _ _ .!

|

j Z ~ N(z; 0,1) q Pr{Z < .1.646}
'

/ -
:

1

\ |
-

. 1%
- b--- |- - - --- -~

1.(46 p=0
.._ . _ .__ _._

1
b

|

|

.

Suppose you find that the mean of the 64 valid

observations is J = 7.6. Your calculations now yield j

\

i

y - 8.1 , 7.6 - 8.1 = -1.82.*

g,
i

2.2/[5i 2.2/[5ii

.

Because z < - 1.645, you have statistical evidence that the |'

|Director of Security is credible, assuming the standard
deviation is correct, a problem which you will address at a-

later time. . _ _ ._ ._ ,

. . . _. _. _.. . . . _ . _ . . .

:

.

1
. . _ _ _ . .

_ _ ._ _ . ._ _ .. _
_

i
... . - . - - -. . - . .-. . . . . . . - - . _ . - . - - - - . . . -. .. . . . - . . . .

__ _ .. _ - . _ _ . . . . - .. ._ ..
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For discussion:

a Consider the "left-sided" version of Example 9-2. In terms of the _ _ _ , . . _ , . . _ , ,
'* ' -

first schematic representation, rejecting the hypothesis if z < -1.645
i

E'8'I < 1.645 or the equivalent y < 7.648,translates into
2.2/ [64

Since y = 7.6 < 7.648, the null hypothesis is rejected, a result l

consistent with that given in the text and in Figure 9-2. Show

I analytically the equivalence of these results for this problem.

' .-. - - - _. .

- - . _ . . .

| Summary of hypothesis-testing

Testing a hypothesis calls for the following steps:
i

State the null and the alternative hypotheses, paying Ia
special attention to the direction of the inequality of |
the alternative hypothesis. _ ' ' ' ' ' . _ ' " . ' . " ~ . _ . . _ . _ . _ .. ' . _ . '

~ ~ * * ~ ~ ~~ ~

Select the level of significance which is acceptable tom

| you.

State the " givens," such as the sample size and the| e
value of the known standard deviation. ;

State explicitly other assumptions, such as data model
- - - - - - - - - - - . - -

a
and structure and independence of data points. --.

\
SState the proposed statistical test and sketch the| u

problem in terms of the test statistic and the associated
critical region. s

| Only when you have fully expressed these matters do you
! examine the data, construct the test statistic, and determine , . _ . _ _

l the question of the test statistic's significance. _ . . _ . _ _ _ . . . . _ _

|
|

1

- - _. _ _ _ . _ _ . _ . _ . . _ . _ . . _ _ _ .

|
|

I -
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For discussion:

0 - In the last presentation of the response-time problem, sketched in . . _ _ , . . . . _ _ _ _ ' , ' ..

|'
Figure 9-2, you reject Ho, What are your conclusions? Could you be

-;, _. _
|wrong? What's the chance of that?
l

Suppose f = 8.1 exactly. Would you reject the Division ofa *

Security's claim? Could you be wrong? What is the chance of that?
|

c Consider the entire problem described in Example 9-2, including the
<

design of the study, and relate it to OSDAR (Chapter 1). Are all of
OSDAR's elements addressed? . . ,

Look at your own experience with your organization. Describe "real"o
examples in which the test of a hypothesis about a mean may be
addressed and analyzed.

}{ere is an example from another walk of life that shows the wideo
applicability of hypothesis-testing. A manufacturer of a pain reliever '~ " ' ' ' ~ ' ' " " ' '

claims that its product relieves bee sting pain (measured in minutes
~' ~ ~- -'' ~ ~ ~ -

after its application) with a mean p = 6.33 minutes, and a standard
deviation a = 1.10. A sample of n = 12 is collected, giving a mean

of y = 7.12, and standard deviation s = 1.20. Do the data support
the manufacturer's claim about the mean? Use a one-sided test with
a = 0.05.

_ . _ . . _ _ _ . _ _ _ _ _

&_ _ .

Power curves for Example 9-2

You have encountered numerous suggestions in this text
that acceptance of a null hypothesis usually is ill-advised,
isn't acceptance the other side of rejection? What's going
on here?

|

To fix these ideas, recall Example 9-2, the response-time .. ._. _ . _ .. . . . . _ . _

example, in which a = 2.2, Ho: p = 8.1, Hg: y > 8.1,

,

i
_ _

|

-. - _ - _ _ _. . -- . - _ _ .__ _ _ . _ .. __ ___. .,_ ._ , ._ _ _ _ _

|

| , 1

|

,

# " " " - * '*'- '*e8" 44 4 g , ,

|
,
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i-
|

N - ]and the critical region is set at J. > 8.462. If
1

y > 8.462, you reject Ho, feeling relatively comfortable N 1

because you set the probability of wrongly rejecting the i
null hypothesis at a reasonably small value, namely 0.05.

'

- --- . . - , - - . , , ,;.

'
But there is another nagging question lurking here: What i

'
, _ _ . __ . .- _a _

is the probability, denoted by S, that you will commit a
Type 11 error and fail to reject No when Ho is incorrect?

Because you don't know the tnie value of , you do the j
next best thing: you calculate # for several different - !

candidate values of .

t

|
To see how this is accomplished, let = 9.0. Calculate

. _

z=(8.46-9.0)/(2.2//fdD)=-2.455 1Then # (the probability _
of Type 11 error) is obtained from the standard normal
table as the area to the left of-2.455, or, equivalently, as .
the area to the right of +2.455,' which is about 0.007.
Hence, the probability of failing to reject the hypothesis

|
that p = 8.1 when in fact p = 9/> is # = 0.007. If, in

| the same manner, you set p = 8.8, you find that- . .-.... . . . , _,_..__.a__._

| z = -1.545 and that #.= 0.061. . , __ _ _.__g _

;
. -

You continue to calculate # for other candidate values of
p. The process gains credibility when you think of it as a
way of examining an ensemble of alternative values of p,
not just a single g. You can then build a table like
Table 9-2.

_.__. _ -_ . _ . , _ , ,

;. - - ..

,

q pe-. w - o. - - -- e+ . . '

#5 W6# '.Ddl.d>.ted.PM$ d W.e a a,.A S 4 ea e . mag p. . -

:

i

| - |
.. .- - .- -.- - .. - . - .. .. . __ _ __.

'

i,-ime - e-e-. ...w .- . gm . *wae*, - - - - - spp. ,,,4w .m__4 ,%,, ,. , ,,,gt_ %. _ , , , ,,

T

* O' E' '4 . -' MO - - 4 eens p, e gaw,h,:, ,4 ,M.-,, 9,, g,,g,,,p ,,. ,." g,,_,,4

_ . _ _ _ _ _ . _ _ _ _ _ _ _ _ . _ _ _ _ .- . ,, --er aw-- - --e =-

'



._ .. . . . _. _ _ __ _ . __ . _

..10.b i.m .u d.LdM :
Tcsting stztistics/ hypoth:sss; ons mscn 9-21

Table 9 2:
Probability (#)-and its complement (1 -#)-of failing to reject the
null hypothesis for a selection of alternative candidate values of

--1 . - - . -. . ,

# . 1 - # = Power '- -- ~ - - - - - - - - - . - _

8.00 0.98 0.02

8.10 0.95 0.05'

8.20 0.88 0.12

8.30 0.77 0.23

8.40 0.57 0.431

| 8.462 0.50 0.50 . - - -. - - - --

8.50 0.43 0.57

8.60 0.26 0.74

8.70 0.14 0.86

j 8.80 0.06 0.94

8.90 0.02 0.98

9.00 0.01 0.99

' - . . . .. - . . .. . - -- ., -

.. _ _ .

The power of the test-i.e., the value of (1 - #) for a
candidate alternative-is the probability that the null
hypothesis will be rejected. Therefore, the power when -a

p = 8.1 is exactly 0.05, the prescribed level of
significance.

If you now plot Power = (1 - #) against p, you get a - -- - - - .- _ . . - -

curve that relates p to # for the statistical test used in the __ _. .
.

power curve response-time example. This curve is called the power
curve for the test. In addition to being a function of p,
the power curve is a function of Ilo, n, a, and o. For the .

:

|
example worked out in Table 9-2, the power curve is
displayed in Figure 9-3.

The main feature of the power curve is that it gives-for _ _.

each candidate value of p-the probability of rejecting flo , , _ _ _ , , , , , , , ,, , , , _

if that candidate were the correct mean. These
4

)
n

4
*

'' - -e - ~ ~w- . . .=w , . _ _ . . . . , _ _ _ ,

a

]

a

.
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probabilities are plotted to display the test's power curve
in Figure 9-3. Thus, if Ho claims that p = 8,1 when in
reality = 8.5, the probability that No would be rejected
is about 0.57; similarly, if p = 8.9, the probability of
rejection of Ho is 0.98. This pattern makes sense: The '"'~'"~~~~~~"~~~'t-

further p is from Ho , the greater is the probability that
"- -- - -~ --------

the test will " sense" that Ho is incorrect. For this reason, |

the power of the test is sometimes referred to as the I
'

sensitivity af the test.

iFigure 9 3:
!~ ~~

~ ~ ~ - - - - - .- ~ 7 1Power curve for the test in Table 9-2
.. __

?
i 1.0

{ 0.9 N.................. ................... ......................

$0.8 '_ ................. ............................................ s
s x
c 0.7 - .............. ...............................................

.- ~ ' ' ~ " * ~ ' . * . * ' . - . ~ . " _ ~ . ~ . ~ . .
" ~ ' '~

0.6 - ..~ ~............ ........... . . . . . . . . . . . ~ ~ - . . ~ . . . . . . . ~ .

- , .

7 .6 -0 ...-..-~ . -..-- ~ ~ ....... ~ ...... .. ~...~...... ~.......

6-
L. 0.4 -

. . . . . . . . . . . . . . - . ~ ......~ ....~-..............~..........

T*

a 03 - - - ~ ~ . - ~ ~ - ~ - - - - . - ~ ~ - - ~ ~ - - - - ~ ~ ~ ~ ~ ~ ~ ~ ~

g Null hypothesis:
1

* 02 - . ..- . .... ... .--..- ..-.-.-- .-..........-.... ... .

|C p = 8.1
e 0.3 .................. . ........................................

I0.0 J - . . . ~ - . . . . - . - . . -

, , , , , , , .

b---.- -"
7.6 7.7 7.9 8.1 8.3 8.6 8.7 8.9 9.1 9.3 9.6 -

Candidato values of p

. _. . . .

. _ . _ _ _ . . .. .-._..-i

1

1

|
,

- - -- - - - - . . . . . . .

I
. - .- -- - ~.. -.- . . - - . . - . . . . . - - . . - . . - . . . . . . . .

>
!
i

;

1. . .. . . . ..- . . . .. . . . .. . _ . . .

!

.

I
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!

l

i For discussion:
| . I

How will you, from now on, deal with situations in which you are . _ _ . _ _ , ._. , . :| 0 _

tempted to accept the null hypothesis? .. .. _ :. _ - L J

Does the term power of the test convey useful concepts abouta
hypothesis-testing 7

|

|
.More power to you - - - - - - - --- !

If you are concerned that you may fail to reject a null
hypothesis that is false, you must address the power of the
test and see where that power can be improved.
Reconsider example 9-2 and its associated power curve

|- depicted in Figure 9-3.

What you really want is a test whose power curve is very - , ,. .. . .. . .. .. m .- !

steep and as close as possible to the vertical line drawn at . __ _ ,_ _

= 8.1. If you could find such a test, you would have !

no problem deciding whether p = 8.1 is true or not. But |
icurve balls are pad of life-you only know you've been

fooled by one after the opportunity has passed.

The power reflects the sensitivity of the test to departures ]
1

from the null hypothesis. The question, then, is what can
|

you do to make the curve steeper and closer to the vertical .,_ __

line at = 8.1. Three options are considered here:
(1) change the probability of Type I error, (2) change the
sample size, and (3) change the standard deviation. :.

Option 1: Change the probability of Type I error. As a
increases, # necessarily decreases. It should be
obvious-but is it?-that as you increase a, you

~ ~~

increase the size of the critical region, giving the
~ ~~- ~ ^~~~~ ~ ~ ~ ~ ~~~

test statistic greater opportunity of falling into the

._ _ _ ..

* +. aw p w,,,,.,, ,, _ 4 ,,_ ,w,_, ,g.,,, , , , ,3,, , ,,w ,_,g,, , , _

e

e-

___.m_-_m-_ _ _ _ _ _ - - _ _ . _ _ _
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= m

4

|

critical region and thereby rejecting the null4

hypothesis. This is shown in Figure 9 4, where4

power curves are plotted for three values of the

|
level of signifinnce: or = 0,10, 0.05, and 0.01,

3 . , , -,

..

"-"'--
i Figure 9-4:
1 Pcwor curves for three different levels of significance
.

4

21.0 |
i'
; 02- ~ ~ ~ - ~ - ~ ~ ~ ~ - - - ~ ~ - - - - - -~ - . - . - ~ ~ - - ~ ~ ~ ~

1 alpha = 0.10
f 03- ~...~ n ~ ~..... ..... ~..... . . . ~ ~ . ~ . . ~ ~ . . . . ~ . - . . . . , _ _ - _ . , . _ . , . _ __ _

8
-

; L---~~----~~----*
| 10.7- ......~... ....~ .......~..- .- ... ...~.......~.~.......

C alpha = 0.06
0.6 - ~ - --- -- ---~~ ------- "- ~ ~----- ~--.- ---~ ~--~

j 303 .................. ........ . .... ............................

%a. &
'

.................. ...... . .... ..................... ........

LO.s . .................. .... . .... ................................
"' Null hypothesis:
e .02 - . ---.-.--.- -- -- -- --- - -- - ~ ~ ~ ~ ~ --- --- ~ ~ -- ~ ~ , . . _ _ . _ , . _ . , , _ . .

e p = 8.1 alpha = 0.01 ?

C_____m.__.~.__.___
'k 0,1 ..~....~. M~.~

... ~~~.~~~.....-~~...~...~.~i
:

a. 0.0
~

;i , , , , , ,

,

7.6 7.7 72 8.1 8.3 85 8.7 83 9.1 9.3 95-
'

Candidate values of p
,

;
s

i
;

. . - ~ ~ - .. . .,

|
,

:

4 Option 2: Change the sample size. As the sample size, .
'

t
n, increases, the standard error of I' decreases,'

and the power of the test increases. This principle
,

.

is demonstrated in Figure 9-5, where the power of !
,

| the test is compared for n = 400,100, and 25. i

i The change in power from n = 100 to n = 400 is i

quite pronounced, although not as pronounced as
*

,. _ _. _

the loss of power when you go from n = 100 toi
. , _ _ _ _ _ _ .

f' n = 25. N
. ._

.

. x

4

%

\

! ,

!

. _ . ~ ._. . j
i

- - - - . .., m... . - . . _ _ , . _ . . _ _ . _ _ , . _ _ . , , , , , , _ . . , _ , _ , . _ _
i

|

1

J

!

$

!

J ,

.
- - ~ * - .~ ~ . . . .. . . . ,, . . . . . , , . . . . . . . _, ,,

- . , -- ,-
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. v- ,

i

Rgura 9-5:
Pawcr curves for three different sample sizes

,,
. - - , . ~ - ,. _. . ,- ,~'

;

|
-

.

,
.

w.. .. .. - . . _: ,

09- - -----~ .- ~ ~--- - - - - - - - ~ ~ ~ - - ~ ~ - - - - ~ - - ~ - - --

sample size = 400
,

; 02
1 t

- ] 0.7 -! eample size = 100
0.6 - - - - . . - ~ ~ ~ ~ ~ - - - - -~ -- .----- - --------- -- --

.|.0h - . ~ ~ ~ ~ - ~ ~ ~ - . - ~ - - - - - - . - - - - - ~ ~ - - - - - - - ~ ~ ~ ~ ~ ~- - - ~- -- - - ~ ~ - - -

. . . . . . . . . . . . . . . . . . . . .... .... ......... .........................
- =

| f02
- - -

10.3 ................... ... ... ....... ............................-

T Null hypothesis:
:,0.2 - - - ~ ~ . . . . . . . . . . - .- .--- ....---.....--.....---.-~ -- --

8 p = 8.1 eample size = 26
0.1 - ~ ~ ~ ~ - - - . - - - - - .~ ~ - -.- .. --... ~ .- ~ .~ .- -- - ---

JA 04 ;, , , , , , ,
,

i

i 7.6 7.7 73 8.1 8.3 8.6 8.7 83 9.1 9.3 9.6
. . . . . . . _ - . . , _ , . . , _ _ .

.

Candidate values of p[
. .. . -. . . - --

i

Option 3: Change the standard deviation. The effect of
changes in a is apparent in Figure 9-6. Notice
especially how much you gain in power by halving . _ _ _ . _ . _ _ . _

the size of a from 2.2 to 1.1.
.

t

-. -

I

I

e + . . . m . n +. .

a a-.. .e.....m.A.- , . ....m.o

|

l

!
!

|

.- - ._. . . . . . _ _
l

- -Wd Nw * h -.he --vme - ow y.e ww, ,.-m . , _,,,,p , , , _

|

l

1

.

. . j

...

I i
I |

| |
-

i
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i

i

Figure 9-6:
Power curves for three different values of the standard deviation
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a. o.o T ; , ,

, , , ,

7.6 7.7 7A 8.1 8.3 8.6 8.7 83 9.1 9.3 9.6
Candidate values of p

,-. . . - - . . .. m.._

. . . . . . -

Of course, you may employ more than one of these
options and perhaps generate a power curve for some
combination of two or more of them. But you need first
to determine which of the stated options are viable. And,

~' ' ~~ ~ ~ ~ ~ ~ - --'

of course, you need to determine if adopting one or more
"- - -

of these options is warranted, giving due consideration to
budget, time, and resource constraints. ,

!

This section illustrates a " sensitivity study" conducted with
respect to the effects of sample size, level of significance,

|and variability on a power curve for a particular '

hypothesis. testing situation. Note especially that, in
- - - -

general, although you and your management may be able
-

to select n and a, you will have no direct control over the
- - - - - - ... . . _ . _

!

. - _

* ~ ' N * *h w , , , ,

,

- * ' * '" ** * . -. . , , , , , , ,
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actual magnitude of a. Thus, many studies of this type
will require determination of a minimum and maximum
value for the standard deviation.

, . . .__._. j- - ,.~ -.._. -_,

~ - - - . - _ ._.

For discussion:

a Consult Figures 9-3,9-4,9-5, and 9-6, which are used in testing
Ilo = 8.1 versus Ho > 8.1, and attempt to answer the following
questions. Rough answers and approximations are cheerfully ,

|
accepted.

.- _. __ _ . _ _ _._ _ _

O Given that a = 2.2, and n= 100, what is the probability that Ho
- .

would be rejected if p = 8.57 If g = 8.37 What would be your
answer if a = 0.107 If a = 0.507

C

O Since the power is greater for a = 0.50 than for a = 0.10, why
don't you always select a large a?

O For a fixed a, show the power is the same when o = 2.2 and ,.c . . - . . . . . .. ._m.-

n = 100 as when o = 1.1 and n = 25. .

What to do when a is unknown

Rarely will you be fortunate enough to know the true
~~ ~ ~ ~ ~ ~ - - - - - - -

standard deviation, o, associated with a population that
you examine. The steps necessary to test a hypothesis

- - - -- -- -

about a population mean, however, are natural extensions
of the case where the population variance is known. As

*

you might expect, the population standard deviation is
estimated by the sample standard deviation, S, which is
based on n observation: and (n - 1) degrees of freedom.

- - - !Now, reconsider the Z statistic used in the known-variance
|situation. Your intuition tells you that the o in the - . _ _ _ . . . . . ... _ _ _

| 1'

I
i

_ .

'" **"'9* hW6 m=- .h a agap..- m e, _ , , ,, ,, ,

! i

I

1
_ . l

i
!
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denominator of the Z statistic ought to be replaced by S.
The statistic tSus constructed, however, is not normally |

distributed; it is a Student's T statistic with (n - 1) degrees ;

of freedom. It looks like this:

T= ~" ~~~~i
'

- ~ ~ ~ ' - ~ ~

Sl{n

Once the sample data are collected, the values of y, s, and i

n and the value of p under the null hypothesis are (
substituted in the expression for Student's T statistic. The l
calculated t is now compared to the appwpriate quantile in j

a Student's T table (Table T-3) for the associated degrees -----~-----i
of freedom and the a you have selected for the test. That -.-. . -.- _ _. .-..... _ 1. |
value is denoted by t .,(n -1).i

;

Example 9-3:
Fuelpellets and solid lubricant additive \

!

The percent of solid lubricants added to fuel composition ~ - - - - - - - - -

before compaction into pellets are recorded for a random u - .---.-- ..-. _.. _ -

sample of size 7 as 1.13,0.93,1.06,1.08,1.11,1.19,
and 0.97. Does this sarnple support a claim that the mean
percent of solid lubricant does not exceed 1.007

As the problem is read, this is a one-sided test, where
Ilo: p = 1.00, Hg: > 1.00. Use a = .05, n = 7,
df = 6, and to.95(6) = 1.94. . - . _ . . _ . . . . . _ . - _ _

-- .

Calculate: J = 1.067, s = 0.091, s//n = 0.034, and
t = (1.067 - 1.00)I 0.0343 = 1.953.

Since the calculated t statistic is larger than 1,93(6), the0
null hypothesis that p = 1.00 is rejected with the claim
that p is larger than 1.00.

, , -- .

!
. - ---- _. ... .__

%

'N

- . . . .. - -- _

'* **"" ' * * - erie- +.we = .es w w . m e, _mp , , , , , _ ,

.

. . . . . . . . . . . . . . . . . - - . . .. . . . - . . . . . . -..



Tcsting st:tistic:I hypoth:s:s: on2 mt:n 9 29 - - _, . _. . _ _

,

~4

For discussion:
I
'

Is a one-tailed alternative hypothesis appropriate for Example 9-3?s _ _. , - - . , , ., .,

.,
1 .

' " ~ ~ - ~ ~ ~

a Construct a one-sided 95% confidence interval about p.,

,

Hypotheses with two-sided alternatives

On certain occasions, you will find that the alternative . - _ _ -_ . . _ . . _ _ _ _ . _ _ _

hypothesis is best written as a two-sided alternative. In
-

m , .. .

that case, you have a critical region composed of disjoint -
parts. Such a critical region guards against a mean that is

i too large or too small, as compared with the mean
specified by No. A test that uses a two-sided alternative
hypothesis is illustrated by the shipper-receiver example of -
Chapter 2 (Table 2-4), the data from which are -
reproduced in Table 9-3. For the purpose of this -. . . . .. . . - - - .__, ._

example, assume that the 10 shipments were collected at
"~ ~ ~ ^ ^ ~ - ~ ^ ~ ~ ~~ ~ ' ' - ~ - -
...

random.

4

9

i e-*---a-*==,% ~p* ,- -p .

NN.,.

e

a

.

, .

b **-D-- ---Me . ..m.* .he a . .e w

6

4

-- - - .- _-. ..- .

**W- ' im * .dia.4e e # % . .,m,a g. , , , ,

d

W

.
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Tcble 9-3:
Shipper-receiver differences ;

s\
|

'

| Month Shipper, S, Receiver, R Differenee, d J.L , . ,. .i i . _ . - , . _ _ . _

~~~ - - - -~' -' -
I 1471.22 1468.12 3.10

2 1470.98 1469.52 1.46

3 1470.82 1469.22 1.60
.

4 1470.46 1469.26 1.20 i

5 1469.42 1465.96 3.46
. _ _ . . _ . _ . .. ._- .

| 6 1468.98 1470.80 -1.82 . _ _ .

!
7 14(4.10 1467.89 1.21

8 1470.22 1472.28 -2.06

| 9 1470.86 1469.02 1.84
!

10 1470.38 1470.16 0.22

Mean 1.021
- .. - . _ , - _ . . _ . _ , _ . _ . _

! . _ - . . - _ . _ - . . _ _ _

Std. dev. 1.818

In this example, you need to deal only with shipper-
receiver differences, denoted in the last column of
Table 9-3 by d. To maintain the mnemonic, denote thej

| average difference by If and the standard deviation of the
- ' - " - ~ - ~ ~ - ~ ~ ~ - - ~

d s based on nd = 10ii differences by 3 . Since34

| differences, it has 9 associated degrees of freedom. - -- -

The problem is now stated mathematically:

Ho: Fd = 0
H,: pg + 0
a = 0.05,

and the test statistic and the basic calculations are given by .- - - - - - - - .- . - - - - -

,

I
l

*
.

|

| |
. - - ._ -. - - .. _ - -- -

- -- _ __ . . . - . . . _. - . _ _ . _ _ _ ,,_ _

| ..

. . ___ ._ . . _ . _ _ ..
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'

_

d Fd , 1.021 - 0.00 = 1.76.,,

sd [ri 1.818/ [l'0/|

|
- - - -, ,. .

1 - _ - - . ._..

From Table T-3, you find 1.975(9) = 2.26. Because0
-2.26 < t < 2.26, you do not reject Ho.

For discussion: _ . - _ _ _ . _ _ . __ __

:
C What is the physical interpretation of Ho: Fd = 07-
c Consider again the shipper-receiver example. Since you do not reject

Ho, can you say that you have statistical evidence that no real loss
occurred? What can you say? What would you like to do in future
testing?

I

! O If you know that there is a real loss and that F4 s different from zero, -i , , , _ , ., , ,_ . , , ,_ _ . . , ,__

what would you do? (Yes, this is a loaded question.)
_ . __ . .. . _ _ _ _

c In this problem, you really have two columns of data, one for the

| shipper and one for the receiver, each with its own mean (as well as
| its own standard deviation). Why, then, is this topic discussed in this

chapter which tests hypothesis about a single mean?

| c In the shipper-receiver problem, you found that -2.26 < t < 2.26.
~ ~~~ ~ - ~ '- ~ ~~~~~ -~

,

!
I Which of the following two statement is correct?

._. ._ _ j

(1) | t | < 2.26
(2) t < | 2.26 |

l. |

. - - .

Ow..uB M - -W--# . .d hry ..M4 4-- - 64 .e . A nom

Y

S. _ _

* * - -- -- .e .-- . - ... .. - - ~ + ,s._,.., , , _ ,, , , . , , , , , , , , , , , , . _ ,,

,

* * * * -- * * *- -.+. ..+ + . 4 ,% ,,,, 4 ,m . . , , , ,
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=

|-
Getting formal: Testing a hypothesis about a single'

mean

Here is a set of 11 steps to follow when you test a - , ~ ._ ,,
L. - ~.~. - -- - _-__.>hypothesis about the mean of a single group. The

formalism serves as a checklist and drives home the point

that certain conditions must be met and dealt with in the
process of conducting any test of any hypothesis.

,

1

Step li Write the model as Y = p + E.
Better yet, write it as Yg = p + E , i = 1, 2, ..., n.j

The expression of a variable as a function of its ( .. ._ , , _

~

model components is called a model. In this case, each
observation, Y or Yj, is the sum of a constant, p, and a
deviation from that mean, E or E,. Although we do not
dwell on modelling in this chapter, it is, nevertheless, an
important ingredient of statistical thinking and
development. Indeed, whether we say so or not, carefully
formulated models underlie all of the estimation and ,, . _ _. _._ _ ,

inferential procedures herein. , __ _ _ __

Step 2: Wdte the assumptions:
'

,

2 2(Al') a is known, or (Al") a is unknown.
l (A2) p is a fixed but unknown constant.

2(A3) E is distributed as N(0,e ). (In some cases, you
2may choose to refine this as E ~ NID(0, a )i

where NID is read as "nonnally independently . .

~~~~P
distributed.") | _. .

Step 3: Write the null hypothesis:
Ho: p = po.

Step 4: Write the alternative hypothesis (i.e., the hypothesis
you will adopt if Ho is rejected):

!o, or H : p < po, or H : > po.
_ _ ;

H: # i it i -
;

s--..-..-..a -- ... . ..

~ n- - . . . . _ _ , _ _ . .

'''' f"*' - *M-~' - h1 ..,,em4e,. ,m,. ,, ,, ,
_

|

!

!

!

.

# ''* '+ * * e eh-,.- ww, % %..-, , p, , . _,_ ,

._ , - .m.. ., . _ , - . . .. - -. _ m
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I . Step 5: Select and record the level of significance, a, (i.e., the
chance you are willing to take that you will reject He
even though No is correct).

- .- - ,.. - .. _ , . _ . , ..

~ St;p 6: Write the test statistic. When a is known, use
. u_ _,_ j. , f

Z= #;
al[n

when a is not known, use
.. - _ . - _ ._ .. .__. ._ 7

< ~

_.

T=Y~P
sd

Step 7: Detennine, from the appropriate table, which values of
z or t will lead to the rejection of Ho; (i.e., determine
the critical region). - ' - - - -- - ~ -- - - - - -

. .. -

Step 8: Collect the data.

Step 9: If a is known, calculate y and z. Otherwise, calculate

3, s, and t.

Step 10: If z (or t) falls into the critical region, reject the null
hypothesis No. Otherwise, do not reject the null i ~~ ' ~~~ ~ ~~ ~ ~ ~ ~ ~ ~ ~~ P

-- - - -

hypothesis No.

!
|
1

, - - --

M-W 6 a -.M d@-g.g._ .-66 - Me .sghm

_ ..._ _

#** - - - * - em-- --se.+m %sem, - eye - 9%. .es. 44w .,g ,,g. .. g_ ,g , ,,, _ , ,. _ _ , , ,,

i

-- . ..

-N--1 r g w -* m .--r
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. ,

M

What to remember about Chapter 9

i Chapter 9 formalized the process of statisticalinference;
that is, it examined the question: Based upon this set of"

-. _ _ , . . . . _ _ . _ _ . . . _ _ . , ,
,

data, can you draw conclusions on which to base ,
. _. . _ . _ . . _ . _ _ _ _ _

particular actions?" It thus established a foundation for

| specific material developed in Chapters 10,11, and 12.

|
Among the special terms employed in the discussion of j

!
statistical inference are:

|e null hypothesis
\a alternative hypothesis . . . _ . - _ _ . __

,

n test statistic ~ ~ ~
,

\j u critical region
! a non-critical region

1

i a critical value (criticalpoint).
i

i You encountered two types of errors in hypothesis-testing:
'

I)pe I and Type II. The consequences of each type must
be considered in any hypothesis-testing. One special
concept needed for the analyses of hypothesis-testing ~' '~ ~~ ~ ~'' ~' "'~~' "- )*

|
| procedures, the power of a test, was discussed and

- - - - - --

[ demonstrated for various scenarios; it provides measures

|
of a statistical test's sensitivity to the truth of alternative

| hypotheses.

!

The chapter concluded with a formal protocol for testing a
hypothesis about a single mean, whether or not you know

- - -- -the variance of the underlying random variable. r
-

L ___. _ __ _

|
'

. -

D 4.* . .,.64 - .e.. . . . me> m.

I N
1 ,

x

* ~ ~ '" "* -~ -'-- . _ , . ._ .

~ +"#' 'N hw- <* ewe er -see e h.un.,. ,,g .. ., ., ,,_ g ,

,

.. .. . - ._ .. . . _. .. .. . .

!
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. - , .,_, ._. _ ._ ._ . .. _ _

> -

Testing statistical hypotheses:
variances

,

1
|

What to look for in Chapter 10 - . - . . - -- -. - - . -. . --

. .. - .-

Chapter 10 extends the general hypothesis-testing ideas of'
Chapter 9 to the problem of dispersion as measured by the
variance. The discussion begins with an exploration of
hypothesis-testing about a single variance, then moves on
to the problem of compcsing two variances, and concludes 1

with a convenient method for dealing with several
variances. Among special terms to look for are-

_ . _ _ .

the chi-squared statisticfor testing a single variancea
the F statisticfor testing the equality of two vanances 1a

the F, statisticfor testing the equality of severala
[

variances.
|

. _. .

|

.--.. .- - ._. .. ... . .. ...

g. g . ee ,m.aa. e -h .. .-ep my * +et.eum.m.e .*.@ r e.6 e rgi iah.meem . . .wt$+we i re-*.W $ u.up.m e- .- me -"'

.

| . . . _. .. . . . . . . .- - . . . . .. . .. . ., , . ._ . ..

|
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i

Why worry about variances? |

Any production line that lays claim to quality output must
maintain control over the variability of its product as well

! as its " average" value. -It simply is not enough merely to [~~-~ ~i i TP" '
~ --

have a good average. It is equally important for thel

variability to be consistent; indeed, in some situations
consistency is even more important than averages
themselves. Variances measure that consistency.

But there is even more to it than thati Many statistica! ,

- techniques / applications / methodologies make specific
assumptions about the variance of a group or about- "[- --- "

' ' ~ ~ - - y
' '

relationships among variances of several groups. These
assumptions often are tested by using techniques described
in this chapter.

You will become acquainted with three distinct scenarios
;

in which variances are subjected to statistical hypothesis-
testing. These tests are used to determine whether:

7. - ,. _- _
__,_m

a population variance equals a given value - em . . . - _ ._ - .

,

a two groups have equal variances
. .

the variances of several groups are equal.a

:

Testing the hypothesis that a population variance
b - >

- _ _ .

equals a given value
'

Suppose that a manufacturing firm claims that the standard
deviation of its product is a = 10 (or, equivalently, ,

2 = 100). Note that nothing is.said specifically about a =L a

claimed or hypothesized value for the mean. .,

i
--- - - - - 1In a statistical framework, the firm's claim leads to a null

t

L - hypothesis that is stated as Ho: a2 = 100.
- --- - - - - -----

|-

l
i

_ . . . . . . . _ _ . . _ _

- . _ _ . . _ . .._- . - . _. - - _ , . _ _ _ . . - . _ _ _ _ _ . a._,.._.__..-

E
i

I

_ . .

I

l. :

'
i

. 1
-
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_

i

~

- Formally, the null hypothesis about a specified '
2

value of a variance, say a , is written aso ,

' Ho: ,2 , ,2 ,

r -.. . ,..

This null hypothesis is matched against an alternative 1
~ ~~~'

;

|. hypothesis which must take one (and only one) of the
*

H:a2 > 100 or H : a2 < 100 or| forms: 3 i
H:a2 # 100.3 .

Formally, the alternative hypothesis takes one (and j
.

- .'only one) of the forms: H ': o2>ajor .- _._ . _ _ ._ _ __ _ .
3

Hia2 < a$ or H i a g ,0,
- - - - - - - - - - -2 -

3 3

|
'

.

And, as usual, let the level of significance be a = .05.
'

Suppose.that the alternative hypothesis is # : o2 '> 100.3

You therefore expect to reject No only if the data indicate i
""'""~~~~~~'~ ~ m "~that the variance is much larger than 100.~

'
. .. . - . . . . . . . . . ~ . .

As you might expect, the hypothesis is tested by- +

.

2
| comparing the sample variance, denoted by S , to the

'

-
,

hypothesized variance o . This time the test statistic is a|
,

o

function of the ratio S j,2; it is not a function of the! 2
,

|difference (S , ,2),2
, . _ _,- __
. ,

1

L._ ;,)

Formally, the test statistic is written as. ;

i

2 I)8
X (n - 1) = (" ~ 2 .<

!

i00

, . . . _ . _ _ _ . _ :Recall that the upper-case X in the expression on the left
i

denotes the upper-case Greek letter chi; its appearance is
identical to the English letter ex. The test statistic is 1

|
'

i- .

! z j

-;

$
i ,

- - - = = - - . .-- . ._ . _ . . . ._ ,_. ._, .,, , _

---- .. _ _ . _ . _ . . . _ . . _ . _ .__ . _ . _ _ _ . _ , _ _ _ _ , _ , _ . ,_

i

I
l

I

i

- -- - . _ . . . , . . _ . . . . . . . . . . , , . ,

,a -. - - . .n. a , 4 , _ -
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distributed as a chi-squared statistic with (n - 1) degrees of
freedom. Thus, critical values for this test can be read
from Table T-2 as quantiles of the chi-square distribution;
e.g., for a = 0.05 and n = 11, the critical value is

- .. ,. -_ . ,,.

20.95(10) = 18.3 (This specific quantile appears on the <

opening page of Table T-2, where the use of the chi- N
squared table is illustrated.) \ |

Example 10-1:
|

Tcsting a hypothesis about a single variance ~kI ~~ '~~ ~ ' ' ~ ~ ~

7To illustrate the process of testing a single variance, you
~ ^ ^ ^ ~ ~ - -

are interested in testing the manufacturing firm's claim.
2You set Ho: a = 100 against the alternative

II : a2 > 100. From Table T-2, you find
| 2
j ^ 0.95(19) = 30.1. Suppose your data yield s = 177.13

from a sample of size n = 20. The degrees of freedom is

df = (20 - 1) = 19. The test statistic is
- , . .- . - - - .. _. . _ _ ,. _

x , (19)(177.13) = 33.65. _. -_ _2
|-
! 100
|

2 2
Because x = 33.65 is larger than X .95(19) = 30.1, you0

reject the null hypothesis Ho: a2 = 100, citing statistical
! evidence that a2 > 100.

. _ . . . _ . _ _ , . - . . _

_ ._

For discussion:

0 With reference to the conclusion drawn in Example 10-1, could you
| *

be wrong? What is the chance of that?
.

A- -- - - .--c Suppose that the sample variance had been 96.64. What would your .-

conclusions be? . ~ . - -- - - - - - - . ... .. . _ -

|

|

|
: .. -

!

|

|

- . -- . . ._ _ .

" * "" h M 1e8" a h A=e-pe- uhe-.-- emw.i ,4mmo n,weg , ., ,, , _

i

i
I
1

|

|
.

!

_ _ _ - - _ - _ - _ _ - _ _ _ .
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.-. - - _ - . . .. .

.

L I
| 0 Under what circumstances would it be reasonable to take the

| alternative hypothesis as H : a2 < 1007 What would your
3

l conclusions be if s = 177.137 What would they be if 32 = 96.672

. , - .; - -_ ,_ ,
,

' .w----..-- - - - - .

Testing the hypothesis that two groups have equal
variances i

t

I 2Let oA designate the variance of a product made by
Manufacturer A, and let oj designate the variance of a
"similar" product made by Manufacturer B. The question -- - - - ~ - - - - _ _ _ _

of the equality of the variances of the two manufacturers - _ __ _ _ _ _ . . _ _ . .

|
is addressed by setting up a null hypothesis as

,

i

Ho: 8 = 8.4 3

Because you have no instructions to the contrary, you
! formulate the alternative hypothesis as

- . . . . . , . , . . . - - , -

Hg: aA g ,2; _ - . _ - - . -__ -
2

3
|

! that is, you want to protect yourself against either
inequality between the variances.

| As usual, you set a = .05.

From the first population, you draw a sample of ng ~ ~ ~ ~ ~ ~ '

observations. You then calculate the sample variance Si

with dfg = nA - I'

From the second population, you draw a sample of ng $observations. You then calculate the sample variance S
i with dfg = n - I-o

2 2 2
| Let S and S denote the larger and smaller of SA and

- ~~ "- - ~~ ~ ~~inin
2S , respectively. Likewise, let df, and df,,j, denote3 ---- - --= - - ---

their corresponding degrees of freedom.
i

.

| ._. __.

'

- - - - .- - .- - . . . _ _ - - , -_ -. -

,
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_

l

Formally, the test statistic is written as

-|
S =27 .

w-n. ~ ~ -_ _ _ . __ _.g \M 2
S L....'._.__'__-...___*,m~ )
nn -

!

F ratio This test statistic is called the F ratio and is related to
!

Snedecor's F distribution whose quantiles spear in
'

Table T-4. In some contexts, the F ratio is called the
,

variance ratio. 1

If No is correct, the F ratio should not be much larger
than 1 (unity). The question is, as always, how large is ; [---

- ----- - !~

large? In statistical language, you are looking for a
- - -'

" critical value" to help you make your decision.

You now need the 0.975* quantile (any idea why?),..
denoted byfo,975(d/me / min). ' In terms of Table T-4,d

| df, is the " degrees of freedom of the numerator" and

i dfg, is the " degrees of freedom of the denominator."
-. . -., , , _

|
Thus, for instance, if df, = 5 and dfg, = 7, the critical ' . . - -

value is fo.ws(5,7) = 5.29. , , , , , ,,, ,_ ._
l-

Example 10-2:
Testing the equality of two variances ,!

Suppose you were given these statistics, calculated from
two samples, A and B: , _. _ ... _. . _ _ . . _

I,_ - . _ _ . .

Sample Mean Variance n df

A 18.5- 207 16 15

B 21.6 317 25 24

The test statistic isf = 317/ 207 = 1.531. From Table ~

T-4, you find [0.975(24,15) = 2.70. Because
. . - ' . . .. . . . . . ...

l

.

' ~~ ~ ~ . . .

**' ' 'N *$*WD*-e e. em.. .% , . 4_ ,, , _

,

.

# '* 9 .N= m..a e ,. .ame ,,_ 4 4,_ , , , ,

I

- , . e, y e. y .+, ~,,-,,.--,rn,, < . , . . . , . - - ~ -
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. _ _ . . _

1.531 < 2.70, you do not have sufficient evidence to
reject the null hypothesis. .

.

_ _ - - _ . , . _ _ _ _
. . .

' ~~ ' ~ " - ~ ~ - " ~ ~ - -

! For discussion:

What would you say if the calculated value of the statisticfina
Example 10-2 had been less than 17

,

:

,.-,n- ,- . . n - - . _

Testing the hypothesis that the variances of several . _ _ _ _ .

groups are equal

One of statisticians' all-time favorite words is
homo- homoscedasticity. No, it's not a disease. It is, rather, a
scedasticity convenient term to say that two or more groups have

equal variances. The case for two groups was illustrated
in the previous section; the focus of this section is on -. . . - .-.- - , - - , _ . .

testing the homoscedasticity of more than two groups. . . . _ . . _ _

Statistical literature is replete with procedures.that are

! based on the assumption of homoscedasticity, so it is

| imperative to have tools for examining data to see if they

!
are consistent with that assumption. One of the more

! venerable techniques is called Bartlett's testfor

! homogeneity of variances; a good reference is Dixon and .. _ .__. . ____ , _ _ _ , _ _ _ _ _

l Massey (1983, pp. 358-360). Many computer packages __

include Bartlett's test as a standard routine. Although N
Bartlett's test is a fully rigorous method for examining the \
homoscedasticity question, it also is a moderately
complicated calculational process.

\
A considerably less-complicated test statistic, called F ,

is found in Beyer (1974, pp. 328-329), among others; you _ _ _ , _,

apply it in the following fashion:
; , _ _ , _

_ . _ .

** * * * " ' - """"WI"" *@mm .- -w-a.. -m. . _gg,,, ,g .4 ,_ , , ,

-

I
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,; -= - .

(1) Start with k groups of observations (The formal -
requirement is that the numbers'of observations in
each of the k groups be equal; i.e., ni = n2." '''
= ni = n. For many experimental designs, this

- - - "-~~

requirement is easily met. For others, "approximately . F'" ' - , ,

. equal" sizes are sufficient and do not seriously impair
" - -- - - ---

. the test.)
'~

l

I
(2) State the null hypothesis Ho: o} = a3 = ... = aj and

'

the alternate hypothesis # : af # of for at least one .

1

pair of indices i andj, where i,j = 1,2, ..., k. |
i

{

r - - - - - - , '(3) Set the level of significance at a = 0.05.
,

1

L (4) Calculate the variance for each of the k groups.

(5) Identify the largest and the smallest of the k variances;

call them S andSh.
2

(6) Calculate the test statistic from the ratio of the largest 5.. . ..- . - . . . .-.

. . . _ _ _ _ _ . _

- S"2F =
*mar 2

Sm
.

(7) Find the 0.95 quantile, namely thefmar,0.95(k, df), of -
the statistic associated with k groups and df = n - 1 in

. Table T-5. 1 --'7!
| L_. .

i
(8) If F ,, exceedsfmar,0.95(k, df), you have statisticalL

hetero- evidence of heteroscedasticity. - Otherwise, you have
- scedasticity insufficient evidence against homoscedasticity. :

- ..

.

= deedWD w-4 h44. .., deu .,.w_., , ,, gg g ,g, ,,gg,.

,

,

-

.

** 'w ' e*- - % * . .. , _, ._, , , , _

.~ ._ ~., - _._-. __. . _ _ _ _ . _ . . _ _ _ _ _ _ _ _ _ . _ _ , _ _ _ . _ . _ _ , , _ . _ _ . __ ,

,

a

" F es6 a ,

! . '

, , . .: . . . -.. - ..- .. , , . .. . . .
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\Example 10-3:
T= ting equality of variances for severalgroups

A study was conducted to see if materials supplied by six
~ ---rdifferent uranium oxide suppliers were homoscedastic with 7 -~~ T

" - - - - - - ~ - - - ~ - -
respect to the percentage of uranium. Eight samples were
collected from each of the UO suppliers, giving the2

following data summary:

Supplier Mean Variance n df

I 86.2 0.40 8 7
. _ . .,. . . . , . . . _

2 88.1 1.49 8 7 . _ , , , , __

3 87.3 3.20 8 7

4 89.9 1.93 8 7

5 86.2 2.35 8 7

6 89.2 1.58 8 7

- , . . . . . - , - , _ _

The critical value for the test is the 0.95 quantile of F,,, . . . _ . ._.

(for k = 6 and df = 7); i.e.,fmar,(0.95)(6,7) = 10.8.
Sincef, = 3.20/0.40 = 8.00 is smaller than 10.8, you
have insufficient statistical evidence to claim
heteroscedasticity.j

|

._ . _ . _ . _ _ _ . . _ . _ _ _ _ _ .

For discussion: - - - .

O Heteroscedasticity? What's that?

O You may run into a problem with F, and other techniques dealing
with the testing of equality of variances if one (or more) of the groups
has a variance equal to zero. What do you think you should do in this
case?

- - -

-- - . . ~. ... . - -

U

- . _ _ ,

' " ' ''' '" * * " == - .w.. , , ,

4

|
--
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!

! What to remember about Chapter 10
1

| Chapter 10 extended Chapter 9's general hypothesis-

| testing ideas regarding the mean to the problem of ~~ i
|

~ ~ " ' '
dispersion as measured by the variance. The discussion ; +'

'
~ - ^ ~ ~ " " ' ^ ^ - ' - - -

began with an exploration of hypothesis-testing about a
single variance. It then moved on to the problem of ,

|
| comparing two variances and concludes with a convenient

method for dealing with several variances. Among the' ,

|

|
specific techniques introduced in this chapter were:

|
l

the chi-squared statisticfor testing a single variance
'

u
the F statisticfor testing the equality of two variances .a

the F,, statisticfor testing the equality of several
- -~

1 a

variances.

You will find reference to these variance-testing

! techniques in Chapters 11 and 12 which address the testing
of hypotheser involving two or more groups.

!
., ,. ... . . . .. _ ., ._.., _.

_

. .- -._. - . -. ._ _ , ._

_ _. _ .

$
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Testing statistical hypotheses:
two. means

.

What to look for in Chapter 11 --- - - - - -- -- ------

. . ~ . . .- - - . .

Chapter 11 builds on the foundations laid in Chapters 9
and 10. You will be introduced to some of the
hypothesis. stating forms that may be taken when you ask
questions about the means of two groups. In the process
of building tools for comparing two means you will be
introduced to two special concepts:

.. . . _--. _ . - - - . . - ._

the standard deviation of a diferencea - - --- ~

a pooling the wriances of two groups.

Then you will see four cases in which basic assumptions
determine the course of the analysis:

a paired observations
a variances known . - -

wriances unknown but assumed equal . .. - . ., .. ... .__ .
a

a variances unknown but not assumed equal.

_ -_ ._ _ __ _ ._ . . _ _ _ ._ ._.. .._..

s.- e- ew < enh--e ,. 4m+o-- .eme.-- .weame44. N,, - wine +misww. +yW hes . we >-.- M = nerv, se ce- 6.
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How might you look at the problem? .

1

Whereas the tests of Chapter 10 for equality of variances
ignore group means, the various tests of equality of

.

_,_ ,

means-and their subsequent interpretation-are strongly ' ' ~ ^ ~ ' ' " ~ ^ ^ ~ ~ ~ ~ ~

tied to the variances of the associated groups. You will

therefore find that the nature of the variances dictates |

which test statistic is appropriate to your problem.

Often, you will be faced with the task of comparing the \
means of two or more groups. These comparisons of

|
means are not restricted to the question of whether the'

means are equal; the comparisons may be made just to see ~~'~~~~~~'~7
if the means bear some relationship to each other.

- - -- -- --

Hypotheses of interest for such comparisons may take
several forms. For two groups,1 here are three such
forms, each given in two equivalent expressions:

Form 1: The means of two populations are equal.

~ ' ' " ' " " ' ~ ~ ~ ' ' ' ' ' - ' " ~ ~ " " ~

HS #2 = F1
- - -- - - -

or Ho: F2 - #1 = 0.

Form 2: The mean of one population differs from the
mean of a second population by a constant value, C.

Ho: #2 = F1 + C
or Ho: #2 - #1 = C-

. _ . _ . . . _ _ _ . _ _ . _ _ . . . _ _ .

Form 3: The mean of one population is a constant _ _ _ _

multiple, K, of the mean of a second population.

Ilo: #2 F1 " K/

or Ho: #2 - KF1 = 0. ,

N .

's
\- - . . _ .

. - . . . - . - . . . . . . . ..

TMore than two groups are discussed in Chapter 12.

|

. .. - .- - .. ._ - .- . _ _ _

| - - -- - _ . ~ . . . _ . _ _ _ _ . . _ _ _ _ _ _ _ _ , . _ _ _ _ , _ , _
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_ __

_

.

The alternative hypothesis to any of these hypotheses can
be written either as a one-sided or as a two-sided
hypothesis. For example, the alternative to the null
hypothesis in Form 2 can be written as any of the

-"~ ' - u-- -oF -~ :following: ,
L. ._ _ _ __ _ ;

Form 2a - H : #2 # Pt + C (a two-sided alternative)3

Form 2b - H : #2 > F1 + C (a one-sided alternative)i

Form 2c - H : #2 < F1 + C (another one-sidedi-

alternative)
,. _ _ . _.. _ _...._ _.. _ _ _ _ .

where C is the constant specified in No. - 1.
'

;

'

.

Four specific cases regarding two-group means are

.
developed in this chapter. Before describing them,
however, two pertinent ideas must be introduced and
discussed.

,

. . . . . . .- - -. . . .. ... . _ , _ _

1

. .. . -. .- ._-

For discussion:

O Examine and verify that the two expressions in each of the null
;

hypotheses Forms 1, 2, and 3 are equivalent.#

4 0 Show that Form 2 is equivalent to Form 1 when C = 0.
)._

__ . . . _ .__.. . _ ._ _

,

1- - - .- _ _ -C Show that Form 3 is equivalent to Form 1 when K = 1.;

C Decide which of the three null-hypothesis forms you would use to
state that:

O The average cost of home oil heating did not change between 1991'

'

and 1992.
. - -. . .

4

O The time needed to refuel is 20% shorter if refueling begins at . _ _ . _ . . _ _ _ . . _ ,,. . _ . _ . ,

sunrise than if refueling begins at noon.

.

1

. ,

~ " "* * * ' ' ' ' ' "E"*" wh N i. w.- . ,, . , _ ,,,g4g , g g __
_

' ' "'' '** * * _ . - - - _ . - ,. - 4 .. . , , . ,, ,,

- +-
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.

O The life expectancy of a motor built by Manufacturer A is the
same as that built by Manufacturer B.

| 0 Buffered pain relievers work twice as fast as plain aspirin.
- _ , - __-, ,.

O Now that a new intrusion-detection system is installed, the - - - - ~. - -- - - - ._..i

response time is two minutes shorter than it was when the old
system was in operation.

;

.

|
0 Employee expenses in moving from Region X to Headquarters are

30% more than in moving from Headquarters to Region X. j

I
. . - .- - . - _

'
- - , . _ ___

On the variance of a difference

This chapter focuses on the idea of a difference of two
'

sample means. The null hypothesis is stated
conventionally as Ho: #2 = Ft, although from a'

mathematical perspective it is more convenient to state it
,

as Ho: #2 - Ft = 0. If the difference between two sample
" '' - -- -- - - - - -

means is "small" (i.e., close to zero), there is insufficient - -

evidence to reject the hypothesis. On the other hand, if
the difference is sufficiently large, doubt is cast on the
correctness of the null hypothesis.

.

To investigate whether the two populations have the same '

{ mean, select a sample from each population in such a ;---- . ' \- - -- _ . _ . - ..fashion that the samples are independent of each other.
~ Examine the sample means and compare them with each L __ _

,

.

| other. To be able to provide a statistical test of whether
the difference between the means is significant, the'

distribution of the sample mean difference (or some'

appropriate function of that difference) must be:
determined..

- _ . _ _ . _

==- - - . . . . . . . __.

,

4

1

* ~ -- ~ - _

"' - - ' ' - - ' ' h .e- ._, , , , , , , _ _

.

a
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. De range of a difference

Later in this section, you will learn that the variance of a
difference between two independent random variables
equals the variance of the sum of those two independent -~r ~"- .c 1

-

'- - :- <random variables. Because this may be_ counter intuitive, ---

we take care examine first the range of the difference of - |
two independent random variables from a discrete uniform- ,

distribution associated with dice throwing. |
4

I

Consider all possible outcomes of the throw of a die
{1, 2, 3, 4, 5, 6}. . The range of these values is 5 (largest

! - minus the smallest; i.e., 6 - 1). - - - - - -- -

- ..

Consider next a throw of two distinguishable dice and list
all possible differences between the_ outcomes of the first ,

die and the second die, taken in that order.. These
differences may be as high as +5 and as low as -5. The -

range of these diferences is 10, twice the range of single
die.

. . . . . . . . . . - a,,,,,-

The purpose of this dice-throwing example is to show that
. the variability of the difference between two independent

_ , _. . ,, _ ,_

random variables is larger than that of the individual
variables, in that example, the observations are discrete

| and the measure of variability selected is the range.

The standard deviation of a difference in means - . . _ - - , _ . _ _ _ . _ _ . . _ _ .

In the remaining sections of this chapter, you will deal ;
'

with continuous data and use the standard deviation (the
square root of the variance), rather than range, as a
measure of variability.

,

in parallel with previous tests of significance of a single
standardized mean, we use a standardized statistic, which has the

statistic following general form: '. ~
~

,'__.- .. . ._ -.
.

I

l

_ . . _

** 4- *- 4=%i.er e- 4 ..wsus.m,, m, ,, , ,
_

>

e *

* * ' ** * "* e* ** *e . . . nae- 44 , . , g , , , ,, ,,

6

a - --s-m y- . - , , - . , , , .--r, ,- 9 w a , y--, - g .- +r -- - - -f
.
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. . _ ,

1

'dgerence' 'dgerence' ;

between between ;
~

- - - , ,.,m . |sample hypothesized 7- 7
*

', '

standardized means u - . - - .. .-.. ._. -. _ .,y meau , e ,

" statistic ' standard deviation
'

>

of dgerence'
.

between sample means,
u

|

,

So we need either to know or to estimate the standard
deviation (i.e, the square root of the variance) of the r--.----.-~_-__._"

difference between two sample means. This is . L_ . _ _
_ . . _. __;;

t

accomplished by calling on the following theorem:-

$ The variance of the di(ference between two independent

| random variables is the sum of their variances.

The fact that the variance of the difference is larger than'

I the individual components is consistent with the dice- . . . . , _ , , _ _ _ . , _ _ . _ . _

throwing discussicn. .

, _ . . _ . . . . ~ . _ . . . . . . . . . - . . _ .

Symbolically,}the theorem declares that, ifY . P(pi, a ) and Y - I(#2. ,2) and Y and Y arei 2 2 i 2

independent, then Z == (Y - Y ) ~ I(#1 - #2 8! + d)-i 2;

(Recall from Chapter 4 that this particular use of the
question mark, 7, indicates an unspecified distribution.)

{ The extension of this theorem to the difference to two [ ~ ~~ ' '' ~^ ~ ~ ~ ~
~ ' ~~

>

_
,.

_ _

independent means, Y, and Y , yields:2
3

; If Y - ?(pi, a}/ng) and E ~ I(#2 o2 n2)./
i 2

] then
*

Y + Y, - 7(gi - g2 oi/ni + o'2 n2).
_ _

/
i

- - - - .

e44elle an=, ....gbad M.s.em,en,1. . m,, oge ., ,mm...

Y

e

.

J

'

-'*- -'d ** - iase r- *- .. , , .. . , , ,

-- .* -- - , . . - . - . . . so .m , , _ _ _ ,, ,, , ,_ ,,

,

J

g
- - - + ~.. . - . . . . . , _ .

$

_ _ - - . . . , ,
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|

|

|
As a direct consequence, the standard deviation of the |

diference of two means is fo jyx,22
/82. This is known|

! also as the standard deviation of the mean diference.
-

\- - - . .,. . , ,
i

+---.s - - -a - . . ~ . , . . _. ai

:

I

For discussion: |
1

C You must have noticed that, to use the formula for the difference of |
i

two means, the means must be independent. This independence is
very important. What is meant by the samples being independent? ~ ~ ~ - ~'

Give an example in which two samples are independent. Give an
-

example in which two samples are not independent.

|

!

On pooling the variances of two groups

Suppose you have sample data from each of two groups. . ,,, , , , _, ,, _ , ,

if the two groups' variances are not known, you must ask
whether the variances are equal because the answer to this

|

|
question determines which of the several analytical tools

| should be employed in testing for equality of the groups'

| means. If you have no theoretical or previous knowledge

| of the variances' equality, then you may wish to resort to

|
the two-group methodology in Chapter 10. If you decide

| pooling that the variances are indeed equal, then you go through a

j variances step called pooling the variances. } } ~ ~~~ ~ ~ ~
IIere is the setup: You have two populations with

2variances o} and o2 Your two samples, based on ng and
n2 observations, yield variance estimates S} and S}, with
degrees of freedom (ni - 1) and (n2 - 1), respectively. If

the pop}ulation variances are equal, then it is appropriate to
- ~

2write o = oj = a (no need for subscript). Furthermore,
2

you have two independent estimates (S} and S ) of the
'

| 2
2common variance o . So you use both pieces of

-- -- - --- - -

i~

|

|
t

|
1

-- - - - ~ . . - - _ . . . . _ _., .__ _ _ , _ _ _

* * 4

;

e
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2information, S} and S}, to produce a single estimate of a
that is "better" than either one alone.

Pooling variances is akin to averaging the variances. To
.

- ' ~
weighted be more exact, you build a weighted average of the two ;

' ~~^^ - ~ -' ' ~ ~ ~ ~' ~ - ~ ~

average variances, (but not of the two standard deviations!) where
the weights are the degrees of freedom. This implies that

2the pooled variance-denoted by S -w 11 be somewhere
between S} and S}, but closer to the sample variance with
the larger number of degrees of freedom. Symbolically,
the pooled variance is computed according to the formula

, - .- - .- - - -- . . .

(n, - 1)S2 + (8 - 1)S2 ' -

i 2
S,2 = .

n + n -2i 2

The pooled variance (and its square root, the pooled
standard deviation, which is denoted by S ) has"

p
(ni + n2 - 2) degrees of freedom.

. . . .~. ... . . ~ .. ..

This variance-pooling procedure can be extended to k . . . . __

groups, as described in Chapter 12 wherein the calculation
of a special quantity (called the "Within-groups Sum of
squares") is described. The main idea remains the same:
You calculate a " weighted average" of the k sample
variances using their degrees of freedom for the weights.

The mechanics of pooling two sample variances are
[__

. __ _ _ _ _. _ _ . . _ _. __

illustrated by Example 11-1.

Example 11-1:
Pooling variances: An illustration

Consider the Ectitious statistics derived from fictitious i

surveys conducted for two fictitious utilities, as given in _ _

Table 11-1. The values are kilowatt-hours used on a
. _. _ . . . .. . _ . . .

. . -

** "" N h 4** Ww. + w +4 .e e 4ees p.,., en .,e s_ ,,y, w .. , ,

h

- 4 u . . .. - - e . . _ . . .

- - -
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-

.

specific day in specially metered residences to assess the
electricity used for electric dish-washers.

_ _ _ _ . _ " . _ _ 'I I ~- &
Table 11-1: L._..- _e ,

Pooling variances

c

Sample Utility I Utility 2
4

Mean not required not required

Variance 106 120

Size 15 18 f .. _ _ . _ _ _ _ _ _ __ __t-

df 14 17

1

;

The sample pooled variance, is calculated as.

.

2 , (14)(106) + (17)(120) = 113.68. b' ~~~~~ ~ ~ ~'" " ~ ~ ~ ~ ~3
P (15 + 18 - 2)

2
As advertised. ,p is between the two sample variances,

!
106 and 120, and is closer to the variance of the second
sample (S = 120) than the first (S} = 106) because the2'

2
second sample has more degrees of freedom.

._ _ _ _ . _ _ . . . _ _ .

;
-

.

N'N
For discussion:;

When you talk about the equality of group variances, do you refer to
s

4 m

the population variances or to the sample variances? \ ,

a \
How do you determine if two variances are equal? i __ ,m

. - _ _ _ _ _ _ _ _ _ _ - _ _ _ . . _ . . _ .

4

e

* * ''* ~~ ~~~ ~~ a, _, . _ _ , . _ , _ _ , , , , _ _ _ _ _ _,

*" 'w' maing.= - . - ,.ag.g,e. , , , , , , , , _ , . , , ,w m __ _

;

4

e
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|

0 The question about equality of variances may be posed differently: Is
there is any reasonfor you to believe that the group wriances are not
equal? If the answer is "no," you may proceed to pool the sample
variances. If the answer is "yes," you may test formally for the
equality of the variances. { ~[ ~{ _ ]']

0 If you have two groups with the same sample sizes, do you expect the
|
! pooled variance to be the average of the individual variances? Can

you confirm it in your examples? Can you prove it algebraically?
'

O If the two sample sizes are the same, would you expect the pooled
standard deviation (the square root of the pooled variance) to be the

~ - ~ ~ ~ ~ ~ - - - - -

average of the individual standard deviations? Can you confirm it in
-

-

your examples? Can you prove it algebraically?i
-

Case 1: Paired observations
i

| Paired observations are like twins who are expected to , , , , _ , , . , ,. , ,. ,.

grow and behave alike, unless they are treated differently
or are exposed to different environments. If one of the

-~

twins receives-or is deprived of-a specific food and
grows faster than his/her sibling, the diet difference is
usually implicated because we are not likely to attribute
the growth difference to " stock," or genetic difference.
Of course, there may be other factors-genetics or
environment-that affect growth; but, in this chapter's
narrowly focused presentation, those other factors are y ~ ~ ~~ ~ ~ ~ -- ~
dismissed as irrelevant, unlikely, or uncontrolled. The --- - -

;

,
combination of all these other factors is termed " error."

!
'

To cite two examples:

People can be their "own twins" by being treated

(at different times) with two medications.
. - .

A single bucket of water may be tested for ~ - - -. - - - -- .

;

| impurities by two different laboratories. )

|

_ _ _ . _ . _

"W ^&W +6-e.e e**' wem++-e _g w. . . _ _ , , . ,. . _

i
|

|
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a

'Any data-collection effort should include consideration of
whether the observations can be collected meaningfully in
pairs. Apart from the greater sensitivity to population

.

mean difference, the statistical methodology is simpler
than its counterpart that deals with unmatched q--" - - ~ ~- 2

observations. -- - - - -- - -

In preparation for the analysis of paired observation
studies in which the number of pairs is denoted by n, you
write each observation as Y , where the first subscript, I,p
denotes the pair number, i = 1,2, ..., n, and the second
subscriptf,j = 1,2, denotes the member of the pair.

_

Thus, the first reading of the first pair is Y p the second - ---"- = - - - - -
i

reading of the 5* pair is Y , and the second reading of . t._. _ _ _. _
--;

52
dthe 222 pair is Y2222. (When your experimental

situation calls for it, you may choose to separate the -
subscripts and write that observation as Y222,2.) . To
complete our data notation, we use D, = Y - Y tot2 il

denote the difference between the two readings of the : -

same pair and the symbol o to denote the true, but N

unknown, mean of the populatica from which the values . 1.w- _ . ._ .. __, . _

Dj come. (The decision to subtract the first reading from ~ ~ ' ~ ' ~ ~ ~ ~ ~ ~

the second, rather that the second from the first, is
arbitrary.)

1-
Our strategy is to construct a mean, D, of these observed
' differences and then standardize it. From Chapter 9, we
know that

_ .- - -- -- -

~" =T= ~ ~ ' ~

So

b_
is distributed as Student's T statistic with (n - 1) degrees
of freedom. Thus, we write our null hypothesis as
Ho pp = K (in which K is an arbitrary constant; often,
K = 0). Then we pick the level of significance, . . _ ,

determine the critical values, and calculate the test
, _ _ _ _ _ _ _ , _ __

. - -. -.

-P ige- tz.mmw- yM-mu==-+ *aen- + -hh** .hmal.-. m aaliphe .el*h .e 6m r#9 eM.- +-M-i im+e.e, s,,w --

. e b^ M

.m - a e

_ _ _ - _ _ - - -
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statistic. If the test statistic falls into the critical region,
the null hypothesis, IIo: pp = K , is rejected.

Example 11-2: ' ~ - = - m
,

Paired differences "-' ==- -- -----

To illustrate the paired-observations analysis, suppose that
your problem is one of verifying the equivalence of two
scales used to weigh containers of UO . Your plan is to N2

weigh each of n containers once on each of the two scales.
You will not be concerned about the scales' equivalence
unless the average difference is significantly different from . _. _ _ h. _ _

zero. Thus, you establish the null hypothesis IIo: pp = 0 . _ . _ __,,

and the alternative hypothesis Il : pp # 0. As usual, youi
set a = 0.05. You have 10 containers of UO to work2

with, so you know you have (n - 1) = 9 de2rees of
freedom From Table T-3, you find the critical value
to.975(9) = 2.26; i.e., you will reject the h ,,othesis if the3

calculated t is less than -2.26 or larger than +2.26.

' ~ ~ ' ~~ " ^ ~ ~ ~ ~ ~

Evjpose the data you collect are displayed in Table 11-2,
- ~

where the readings are given in kilograms, along with the
relevant statistic.

- - - - . _ . _ . _ . - . . _ -

- _ - _ _ .

N
N

s

. . ~

5 *W "'*$ &% - %b q.p s ,agam

N

''' "* .-*w u- *ei.-w- ,. - ,4 ., , _

_ - _ _ _ _ _
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|
.

| Tcble 11-2:
| 'U02 container weights,in kg, as reported by two scales i

|
,

Container Scale 1 Scale 2 Difference . - -.,.- - . _ . . , .

' ' ~
'

I yn Ya di .
+

1 25.6. 25.4 0.2 ,

2 21.3 21.1 0.2
!

| 3 21.3 21.7 -0.4

i
l 4 28.4 28.4 0.0

' . . ~ . . ~ ~ ~ ~ . ~ ~ ~ ~ ~ ~ ~ . ~ . ~ ~ . ~ ' ,| 5 24.9 30.0. -0.1
-. ..

6 .30.0 29.9 0.1

| 7 23.4 23.1 0.3
:

8 29.5 29.6 -0.1

9 27.7 27.5 0.2

10 21.3 21.1 0.2 -. , --,-- -- .- ~ ~ - , - -

n = 10
*- ' ~ ~ ~ ' ^ " * - - ' ~ ~ ~ "

df = 9

21 = 0.06

sd = 0.21.
i

s |{d = 0.07 . _ . ' _ - -

* ~ ~ ~ ~ ~ ~ ~ ~ ~ ' ^ ' ' ~ ^ ~ r
s

|
'

You calculate the test statistic
4
~

t=d-0 0.06 - 0 = 0.86.=
j

Sg hl
_..;. - ..

. . _ ._ ___ _ _ _ ,,
jSince the critical value for to.975(9) is 2.26, your test

i

statistic does not fall into the critical region. Hence, you |
!

,

Ir

!

i
,

i

- - - . .~ . . . , . . - . . . _ .

.. . .- - - . _ . - - . - . . - .-. .- ___ . _ - _ . - - . - . . . . -

I

(- !
,

e

i

s. *

. .. . . . . .- . . ..

|

| ._
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: :-.

!

have no reason to claim that the two different scales have
different means. .

|
'

! -- , . - , . _ . _ .__ , _

!

For discussion:
~ ---- - g-~

Consider the conclusions of Example 11-2. Can you be wrong?c
What is the chance of that?

Could you have used a constant other than zero in the statement of theO

null hypothesis Ho: pp = 07 Would it have made sense?
- - - - - - . ,_

a Suppose you are now handed a reading on container #11 from ecale 1.
- -- - _. _

without a matching reading from scale 2. What would be your most
obvious option in analyzing the data? Would it be the right thing to
do?

|

|

Case 2: Variances known " ' " . ' ~ ~ - " - - . - _ -.

This may seem to be an optimistic scenario. If you know
|

the variance of each of the independent variables involved,'

the test statistic is constmeted with the help of the
standard deviation of a difference in means, discussed
earlier in this chapter. The test for comparing the mean
of Population A to that of Population B is formally

.- .-.. --._..._-._.

| presented by
-_

Ho: p, - pg = 0,

H;: p, - pg # 0,

)|a=a. o

. . - . - . . . _ . _

' " * " 9M- MM- -he,,,& Wh 4e bgggg

l

-. . .

' " ' ' **' *w * sae.,,aw,. wm m,a y _, __

.

I l

l
i

]

4

_. -

| l
i l
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The corresponding test statistic is given by ,

1

_

Y~Y |
A B 1Z. =

'

' |a*In, + oging ~_ _r Q ~ ~ - - v 'T -.

. . _ _ _

r u

and the critical region by | Z | ' > z - a/2pu

| Thus, if ao =.0.05, then the null hypothesis is rejected if

| - | Z | > ' 1.%. If | Z | does not exceed 1.%, then Ho -
cannot be rejected.-"

.___;_..___a__._.______.I
- |

. . . - . . . . _ .. - . . -- .- . 1

Example 11-3:
. niean percent uranium in UOg pedlets .

~ To illustrate the process of comparing two groups with .
| known variances, consider the manager of a facility .

|
|

producing uranium oxide (UO ) Pellets who wishes to2 _

| compare the mean percent uranium produced under two ,,..,___._ _, ,

|
different operating processes. Assume that it has been ~ ~ ~ ~ ' ' ~ ~ ~ ~ ~ ' - --~

! established from experience that the percent uranium of -
pellets in each process is normally distributed with

2unknown mean and with variance a = 0.0055 regardless
of the specific process.

:
'

In keeping with the general discussion, you wate the
;

hypotheses and the test statistic as: . . - . _. . _ __

Ho: p, - pg = 0,
~ ' ~

^-

,

H : p, - pg # 0, ,

1

a = 0.05, and ,j.
>

,

i

. - . - - -

A*****--.*mme...mame.m+._m..,,. w.,

''' * * " hw--* .-w_ - r o w ,. .,

**76.h'.*'**_=e- r.4 . ga -A .,,s ,,,,,g,,,.; _

.

L u
|.

--- -- - ~ ..... . . _ ..

t

.- . . . _ - . _ __
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. .

_ _

^~ #Z=

0.0055 . 0.0055 ,

n, ny _

_ , - ,.
v

,

_
___.._....-..._._.my

^~ #= .

0.0742 1 + _1
-

'

n, ng

Thus, the null hypothesis _ is rejected if | Z | - > 1.%; if - '

| Z l does not exceed 1.%, then no conclusion is drawn. -. - - - - - -_ - - . . - , . _ _ . . _

- _ _ _ _ __ .

Suppose a random sample of n, = 8 pellets is taken from
a batch of pellets made under Process A and a random
sample of ng = 12 pellets is taken from the batch made
under Process B. Consider the data shown in Table 11-3. j

- , . . . - - - , , , , _ . , _ . _ . , _

b

. -. . m. - ~ . . u,., a .m.. ., f

a

f

. _ __. . _ . _ . _ . ,

w .m..

>

a -** -=e w , . w.- . . . , .

O MM '9'' --M'-Mh' 6 -6O -@ & 4 4 4 M ys w.

.m- m -,--,-

" ' " ' " * * " * MS- 48.r m es.eeuse r* -*waa _,n.# awa.. ,wm ,4,g, ,, ,,, g,, _ _ , _

- - _ .._.
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Tcble 11-3:
Comparing percent of uranium in UO Pellets for two processes

,

-

2
with known variances 1

i

---3 ;_ . -- ,.

Process A Process B .. . _ .. _ _. '. _ ... _ _ .. _ _,

i

88.056 87.939 i

88.088 87.883 1'

!

88.044 88.005. -

|
88.015 88.064 |

-. . . . . - . . . _ _ . - . . _ ,

87.897 88.001 - - - . . .

I

88.039 87.977

87.950 87.881

88.113 87.946 -'

88.107 |
-._.;._.__.,_,._ ,

_...

87.970 i

\ !

87.923 !
i

88.119 si
|

Sample size 8 12

Sample mean 88.0253 87.9846
.-- - - . - _ . _ . _ . _ . _ , _ .

Sample variance 0.0050 0.0063
,_ _

s
Sample standard ''

deviation 0.0711 0.0790 \
s

'

The calculated statistic is z = 1.20. Hence, we do not
N

have sufficient evidence to claim that the two processes 'k-- - - -

have different means. Note that, because a2 = 0.0055 is
-- -

given, the sample variance is not used in this test.
- - - - - -- - - . . - - - . -

-- - -- - - . - - _ __ __

'' ##8 h+ +- - pee.mma _ w. , . ,,m, , ,,

+- ase
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|
.

For discussion:

c This treatment of Case 2 is a direct consequence of the Central Limit _._ , . '_

Theorem discussed in Chapter 7. What must be demonstrated to ~ ~ ~ ~ ~ ~ ' ~ ~ ~ - ~ ~ ~ ~ ~

' - -

.

connect the theorem to Case 27 ,

a Show that the test statistic is indeed z = 1.20.

o Be honest now. Which of the two processes, A and B, would you
-

prefer? Would you pay a premium to obtain pellets from that
process?

. _.. _. -... _ _ _ . _ __..

o You just realized that you have sample variances available to you.
- -

What will you do with those?

Case 3: Variances unknown but assumed equal
. . . . . . . . . - .. . _.,..e

Case 3 is perhaps the most common situation involving the ' ~~" ~ ~ ~

test of a tiypothesis about two means. The two groups,
designated by A and B, are assumed to have equal
variances, so that pooling the variances is an important
part of the process. The samples sizes from the two
groups are n and ny, respectively.a

Start by writing the null hypothesis that the group means . -. - - - - - - - - . . -

. . _ . _ _ . _ . _ _ _ _

*

Ho: p, - pg = 0.

Next, write the alternative hypothesis as

Hg: pg - pg # 0, for a two-sided alternative,

or as either
' ' ~ ~

|

|

w.m

""' "'"""" 6'^ W4* adm emme ,,,w,_ .,g, , , ,,, , ,

m.

i

& ' *4 Ge & -4 4 M 4- 14 -4 4 MM .a 9 4 De a wsh 6 Si,3 3 6 . , g& Os .4
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1

Hg: pa 3 > 0 or H : pa - p3 < 0 for the appropriate .j~

| i
!

.one-sided alternative.

Finally, set a = 0.05, say.
.-- y

; p ,
,

,

' ~ ~ ~ ~ ~ ~ ~~ - j
! . As indicated, the test statistic uses the pooled variance of

2
the two samples, S , as described earlier in this clutpter.p .

'

The appropriate test is Student's T, given by the formula
.

.__

~YYA #T=
!| -

, " ~T2' 1S(1 + -) .;, ,

p n, ng

The calculated T statistic is'then compared to appropriate 7

quantiles of Student's Tdistribution.
F

' For a two-sided alternative hypothesis, reject. No if
T > to,975(nj + ng - 2). If the alternative hypothesis is . , . . , . . , . . , , , _ , , , , , , , , _ . .

H : p3 - p3 > 0, reject No if T > to.95(na + n3 - 2). : If .i , ._, _ , _ , , , , _ .

the alternative hypothesis is H : pa - p3 < 0, reject No if -

i
T < to,95(nj + ng - 2).

The procedure is illustrated in Example 11-4. .

1

Example 11-4:

|^ hinasunng radiological contamination
~ ~

As a follow-up of the decommissioning and cleaning of a
*

"
nuclear reactor, measurements of radiological'

| contamination were taken by two teams. Suppose you .
-

| wish to test whether the two teams yield similar averages.

| To that end, the floor of a specific building was sampled .
*

! independently by the two teams. The data are summarized
in Table 11-4, where radiological contamination is

' ' ~~ ~- - --

measured in disintegrations per minute (dpm) per * - - - - - - - - - - - - -

!

l

.

- - - . . . . -

. - . . . . . , . . . . . . _ . . . . _ _ _ . _ . . _ _ . . . _ . , , . _ _ _ _ _ . _ _ . _ _ ,_ , _ _ , , , , _ _, _. _ , . ,,,

i
'

|
t-
I

_ _ . _ _. . . . . _ _ . . . _ . . . .. . _ , . _ , _ , _ . , _ . , , ._ , _ , , _

L
i

|
.~ _ . , ,
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; ,_ _

2100 cm . Assume that the variances of the two teams are
equal.'

- :

7 ,''N~~~

- . _ ' ~ . _ _ - _ _ - _ '- . _ - _ ..|- Ttble 11-4: 2 ._

L Measurements of radiological contamination, in dpm/100cm

Sample Team A ~ Team B

Mean 1,988 2,008

Variance 2,051 2,447
,,__.______..__;

Size 36 39-
.. . _ . .s

;

i= g 35- 38

Because the population variances are considered equal,
you begin by pooling the sample variances. The pooled
variance is calculated as . . , , . _ , . . . .-..,,,a_.

2 , (36)(2051) + (39)(2447)- = 2257.14.
~ ~ ~ ~ ~ ~ ~ ^ ~ ~

'

# <

P 36 + 39 - 2
l

The standard error for the mean difference is j
!

2217.14(1 + 1) = 10.98, F" ~ ~ ~ - - - - - -

se =
36 -39 L_ . .

.

| from which the sampled-based Student's t with
36 + 39 - 2 = 73 degrees of freedom is calculated as

t = 20.0/10.98 = 1.82.

. - -_ _ _ _ iSince t falls short of t .95(73) = 1.99, you do not have0
sufficient evidence to claim that the two teams differ in <_ .. .._ _.__ .._ _ . . . _ . _ ,

N
their means.

s

%4

' '' - . , - . .

* # #* - ' ' " ' " * * e.%- 4 wm-%h,. 4,,,. .,'

'4

,

" ~ ** '* *-* -=e a w s n. ,_ ,.. . _ . , , , . , _ ..,
_

-

;

. - _ -- _ _ ._. .
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For discussion:
- - . _ . __ _

a Some authors (e.g., Mendenhall sad Ott, 1980,197-198) observe that . __l__-._.-__
when both n3 and n2 are at least as large as 30, you may assume that
a3 = si and that a2 " 32 and continue with the analysis given for
Case 2. What are the consequences of this procedure?

|

|

Case 4: Variances unknown and not equal - -- - - - --

Case 4 treats the following situation: You have two
independent samples from normal distributions with means

2
p3 and pg and variances a and a3 Your interest is in

Although thisl testing the null hypothesis Ho: 3= 3
sounds like the proverbial piece of cake, this problem has

,

provoked controversy since the early decades of the 20thI
,,, , . , , , , __

| century. Known as the Behrens-Fisher problem, it
- ~~ ^-

| continues to be an irritation in statistical theory and
! practice.

Brownlee (1965, pp. 299-303) gives a succinct account of
i the controversy-and explains and illustrates a pleasing

: solution in terms of Welch's approximation (1937,1947).2

! The robustness of the t test and the approximation's
~ - ' ~ - ' ' ~ ~ - ~ ~ - - ~

practicality make it an important tool for dealing with an
otherwise impossible situation.

-- -

The scenario is simple. As stated, two independent groups
are to be tested for equality of means. The variances of
the two groups are believed to be different and the sizes of

. _ . _

. . . - - _ _ _ _ . . . _ . . . . _ . . , ,

3Another name associated with this process is that of satterthwaite (1946), who extended Welch's

ideas from 2 to k groups.

I
!

!

- -. _. - _ . ,_ ,_ _ _ _ . .__._. . ___ . . _ _ _ _ . , _ _ . . _ . _ _ _ . . . . . _ .__

I

|

. . - . _ _ .. _ - . . . . . . . . . . . . . .- - ..

i
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, _ _

,

,

Y

the collected samples are small, say less than 30. This
case clearly is not included in Cases 1,2, or 3.

;

You write the hypotheses and the test statistic as follows:
- - , . . -. _ . g,

: -
,

1 - --- - - -

Ho: p,-pg = 0,

H i pj - pg # 0,j i

j a = a ,and 1n 1

4

3
_

i T = (Yj - Y,) - 0 , - . . . _ . . . ._ . _. _ . _ _ _ . . _ _

;
<

. . .

-

i.
S,- Sy
_._
n,. ny.

'. where the approximate degrees of freedom, df, are given
by the expression

a

7 . . ._ . ;22 - ,..m.....- . - ..!-
-

S,2 S
: _ .y

n, ng
;n df= - 2- 2 .22

S, Sg'

n, ng
,

_ . _

n,-1 ny-1''

d

| This formula for the de'grees of freedom is unusual: itis - . .

[ one of the few instances in hypothesis-testing in which you .[

_- ._- . __ .~._ ..._ _ _ , ..

.
_

i must determine the degrees of freedom from the sample
~ '

' data themselves.

> ,

4

t

C

I,
, _ _ , . . _ . - . .- .._

l
i

1

E

1 :
l'

i

!

[ ~ . _. . . . . . . . . ._ _- . _. ... ._

-
. . . . - - - . . . - - - . . _ . ~ . . - - . - . . _ - - . - . - . - - . - . . _ - - - - . -. . - .

,

)
1 .

a

?

b' |
1
.

.. .- 4, e. >.*-.m. .sr.nes . see .ee.-v---A w-- w y - wa come w e e 4ew . ..- . 4 - ,e -- .- 4. .e

I

. -~y . _ _ -
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.

i
.

' ' Exampse.115:
' . Yleid stress of stainless steelpipes
'

!

I The average yield stress of stainless steel pipes, measured ;

- .|:. in kilopounds per square inch (ksi), of two manufacturers 7 r T' - -m'
' --- ""--

are to be compared for quality using a statistical;
|

hypothesis-testing procedure. You are informed that the .i

i variances of the two manufacturers are definitely not- ]
equal. So you use the procedure outlined in Case 4. Data ;!

i. - from an experiment conducted at 100 F are summarized in |

i- Table 11-5. .

!
; -

,

..-____,..__.m__._;.

- Table 11-5:
- -- ..

Data for comparing yield stress (in ksil for two manufacturers ofj_

j cteel pipes (test conducted at 100'F)

{ i

(' Sample . Manufacturer A '- Manufacturer B
>

I Samplesize -5- 8.
; - . , ... . -, -. ..-- ,. . .. ..

| Degrees of freedom 4 .7 :
- _. _ , . . ... . .. - . . - __ ..

i Mean 82.3 -71.4 ,

Variance' 108.16 7.84

Standard deflation 10.4 ' 2.8
:

!'
l- .

f~ ~ ~
-

f:
..

"-

i As indicated, you write the hypotheses and the test statistic
I as follows.
:

[ Ho: p3 - p, = 0, .
L

'

! Hn: p,-pg # 0,
(.

i cr = 0.05,

{
- , . - _ _ _

< - _ . . - - - . . . -. - - -

!
!
1

!

j

! |
d .

|

1

- ,.

J

* - * " - - . = = - -- .= . . - . , , , ..,%, . _,, , , . , ,, , ,

.

4

N

-

; .

1
. * **' . 4 o.o.- me,wa. ,, +44, k 4,m 4 y_ ', ,

;

- ,, , . - , . . , . , ,- - . ,,. .
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*

,

f

and evaluate the test statistic

, , (82.3 - 71.4) - 0 = 2.29,
108.16 . 7.84 y _

- -
.

,

L - ~ ,-
5 8 ~ - - - - - - -

|

where the degrees of freedom, df, are given by the
approximating expression

|

'108.16 . 7.84
2

_ _ _

-

5 8 ;= 4.37.df =
_ 108.16

._ _ ._ _ __._,

22 .7.84

f _ .5 8

4 7

Table T-3 provides quantiles for integer degrees of y -

freedom, so some interpolation is needed. You find N
1.975(4) = 2.78 and to.975(5) = 2.57. The problem .. ..% . __ ._._._ _ , _ _ .

0
becomes one of finding to.975(4.37). Since 4.37 is 37/100 _ , _ _ , _ _ _ _ _ _ , _

of the distance between 4 and 5, you find that 37/100 of-

the distance between 1.975(4) = 2.78 and to.975(5) = 2.570
is 37/100(2.78 - 2.57) = 0.065. Thus, the critical value
for this test and these data is to 9,5(4.37) = 2.78 - 0.065
= 2.715. Finally, because the test statistic
t = 2.29 < 2.715, you have insufficient statistical
evidence from this experiment that the two manufacturer's

! stainless steel pipes are different with respect to yield [
~ ~ ~ ~ ~

stress.

I

,

For discussion:
|

Using two different techniques given in Chapter 10. show that the -| m . ... _ __ _

!- variances in Example 11-5 are indeed different-and hence the . _ . _ _ _ , , _ , .,. __ ,,_.,

variances should not be pooled.
|

-- -~ . ._ __ ..

|
-. - - . - - - _ . . _ . . _ . _ _ _ . . . _ . . . _ . _ _ . _ _ , _ _ . , , . _ . . _ _ _ , _ _ , ,_ ,

|
t

1

!-
|

-

| . - - .

1
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_

o Reconsider Example 11-5, this time with the hypothesis tested as if
Case 3 applies. What happens to your decision if you go ahead and
pool the vasiances?;

h
; O Three forms of statements about two-mean hypotheses were given at : ''' N~

,

the beginning of this chapter. Work either Form 2 or Form 3 all the '--"Y--~~~'-
way through Cases 1,2,3, and 4. What are the specific up-side and \

'
down-side features of each of the four cases with respect to the type

you picked?

o You've been guided through four cases for testing equality of two \
.Nmeans. But these four cases are not exhaustive. Can you think of at

- - - - k-
least one other? (Hint: Examine the assumptions of any one of the
four cases and consider what happens when you violate one of them.) -- - -- - - --

|

What to remember about Chapter'11
,

|
l Chapter 11 built on'the foundations laid in Chapters 9 and " ~ * " ~ ~ ~ ~ ~ ~ ~

10. You were introduced to some of the forms that may
be taken when you ask questions about the means of two

' ~ ~~ ^ ~~ '"-' ~

groups. You saw how the processes are linked to
understanding the ideas of two special concepts:

a the standard deviation of a dgerence
pooling the variances of two groups.a

!

Then you saw four different cases in which basic [
^ - - - - - - - - ~ ' 1

assumptions deterndned the details of the analysis: |
'- -

paired observationsa

a variances known |

t a variances unknown but assumed equal
' a variances unknown but not assumed equal.

.- _ . . . _ _ .

.**84 .- M...--Man. e ,o .k, . .,mm. m

|
!

I

|

!
,

_ _ ___ _ . . _ _ . _ _ _ _ _ _ . . _ _ _. __ ..._ ._ _ ...

|

,

|
-

I

!
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Testing statistical hypotheses:
several means |

1

L
!

7"- 7 7 |What to look for in Chapter 12 ; -- ~ -
'

|

Chapter 12 extends the two-group comparisons of
Chapter 11 to several groups. The general technique
employed here is called analysis of variance (often
shortened to the acronym ANOVA), a name given to a
vast, venerable-and-still-developing body of statistical
inferential procedures aimed at comparing the means of

- - - -- = -
several populations. Both the vastness and the
venerability of ANOVA preclude a full-blown treatment in -- -- - - -

this book; however, this chapter does introduce and
I explore the simplest of all ANOVA applications: the one.

| way classification ANOVA -in which observations are |I

| classified according to at least two levels of a single l

criterion. You will be shown the tools and the procedures |

|
| . _ .

| . - ._ . . ... . . . .

We choose to use the simpler term one-way ANoVA in the rest of the chapter.3

1
I

' - - -~ -- -- . = * -.#. - , ,, _ .. _,

ee som e 4. e memi,- .- - -her ee en- sM9gs W.a h, e % -wwweq 4 s e+us and. .e-a-pee %- pae g. W si . g..e

|

\
! . . . _ _ . . _. . . _ .
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_

.

:

. to handle the calculations and to interpret the resultant
~

analysis.2 Thus, Chapter 12 will show you how to:

a write a simple data model
- -- v -- '" -

recognize the assumptions requiredfor running an (a
- - - - - - - - - ~

analysis of wriance -
m interpret the analysis

,.

identify direct extensions of the simple analysisI e
appreciate the equimlence of Student's T test, as -' e
presented in Chapter 11, and the analysis of variance
for testing equality of two group means.

Most important of all, you will learn to recognize when ' - .- *-- - -r
'

the scope of your problem exceeds the scope of this book.'
,

~ ..

|
|

Setting up a;one-way analysis of variance ;

Because sufficient complexities arise in this chapter
regarding analysis-of-variance processes, it seems

,~ . A.
reasonable to begin with a set of data and to build the -- -~.-

ensuing discussion on it. To that end, then, consider the - . . . -_ . . . . . . . _ _ .

situation posed by Example 12-1 and the related
. illustrative data in Table 12-1.

,

l
:Example 12-1: .

Comparing mean percent uranium from four producdon Mnes
. . _ . _ . - _ ....._. ,.

Suppose your manager asks you to investigate whether _,-

+ i

|
four production lines yield the same mean percent .

uranium. Your manager hands you the numbers displayed

I in Table 12-1, wishes you good luck, suggests that the -

[ weather will be nice at the beach this weekend. and leaves
you to your own devices. ' Oh, yes, one more thing: it's
Friday afternoon at 3 o' clock, and the answers are needed

, , - - . _ _ _ . . .._

| . ~ _- _ - . _ . . . _ . _ . _

One useful start-up reference to more involved analyses is Neter. et al. (1990).3

|
|

'" " - * *-* *6 i he a _em _

#"' * '*-"P'4'-b 6% =Wsa mm -4 ,, , , ,__ _

!

l

- e - . ... - . . + . . . ,,_ ,_

.- -.-, . , , . - , -.%., a.--
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f

for a 9 o' clock meeting with the manager's managers on
|
; the following Monday morning. Oh, yes, there's another

*
,

one more thing: you are not invited to Monday's j

meeting-your manager will carry the message.
- - _ - - - -. . .. _ . ,_

:.-............._.m._...,...,

| Table 12-1:
| A data layout for comparing the mean percent uranium from four
| production lines

Production Production Production Production

Data Layout Line1 Line 2 Line 3 Line 4
. . . . - - . _ . . _ . _ _ . _ _ _ _ .

87.2 87.7 88.5 87.5 - - -. . . - .

87.4 87.7 88.9 87.3

87.5 88.0 88.5 87.2

87.8 88.6 87.6

88.2 88.7 87.4

87.7 88.7 87.9
87.6 88.9
88.3 88.3

~ ' " ' ' "''~~ " ' ~ ~ ^ ' ~ ~ ~ ' " ~

,

88.0 88.8
87.8 88.4

- - - --

' 87.6 88.8
! 88.5

88.2
88.3
88.4

. . - . _ _ . - _ _ . . . . _ _ . . _ _ . . _ _ .

| data layout Table 12-1 is called a data layout because it lays out the __ _ _

data in a fashion that allows you to look at them in a Nl-

useful way, irrespective of their original formatting or the \.
sequence in which they were acquired. At least, your '

manager didn't leave a pile of laboratory notes for you to
Nsift.

A good first thing to do with any new data is to sit down ~ ~ ~ ~ ~ ~ ~ ~~'

j and take a good hard look at it. That means you calculate
' ~~ ~ ~ ~ ~ ~ " ' ' - - - ~ ~

some basic descriptive statistics and, even more
.

'

- .-. -

" " " " * " * ' * " ' 66-.' 1 - i.-.. -g... , , , , , , _, ,

i
1

i
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-

3_
l
!

importantly, build a graphical display so you can."see"

|-
what the data are trying to tell you. Table 12-la adds a - *

,

|few rows to the bottom of Table 12-1, each new row
"

containing corresponding descriptive statistics.such as the - |
-

mean and the standard deviation for each of the four .
-

7- '

\_||
u'|~ -:

'~--------A-'-4production lines Figure 12-1 shows the values of the'
individual data with each production line's mean indicatedf

,

j

. l

.|
|. 1

_ . , . . _ _ . , _ , _ - . . _. . , .
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-

Tcble 12-1a:
The data layout from Table 12-1 with some descriptive statistics

.
cdded

t

( - - , - - - ~ . , , , ,

i ,

Data layout with Production Production Production Production L. _ i _ _ _ . _ _ .

descriptive statistics line 1 line 2 line 3 line 4

87.2 87.4 87.7 87.7 88.5 88.9 87.5 87.3
87.5 88.0 87.8 88.5 88.6 87.2 87.6

| 88.2 87.7 88.7 88.7 87.4 87.9
'

|
87.6 88.3 88.9 88.3

| 88.0 87.8 88.8 88.4
| 87.6 88.8 88.5

| 88.2 88.3 '' ~ - - - ~~ e-- -

i 88.4 3. . _ . .

|
3 11 15 6

Sample size: nj

" " ' # 262.1 % 6.4 1328.5 524.9
I

i

| Sum of
2 22,898.25 . 84,903.20 117,661.53 46,920.31| * * * * ~ ' ~ ~ ' " ' ~ ~ * ~ ' ~ ' ' ~ ~ ' '[yysquares:

a.._..__...... _. . . . _. . _ .j

87.37 87.85 88.57 87.48
g,,,

Correction
22,898.8033 84,902.6327 117,660.8167 45,920.0017! ([y )2g /nfterm:

|
J

Sum of squared ' ~ ~ ~ ~ ~ ~

0.0467 0.5673 0.7133 0.3083
deviations: SSdj

Degrees of
2 10 14 5

freedom: dff

2 0.0233 0.0567 0.0510 0.0617f

y

Standard
0.15 0.24 0.23 0.25

_ . _ _ _ ,_ _

| deviation: Sg ,

. . . . _ _ _ . ._ ... ._ . ,

!

i

- --- -- - - .. - . .-.. .-.- _. _ _, ._

'd'" -r-P+ wi w, 4e % em.** gww y gma., .g%m,, ,,,,% , , , ,

,

Aa e4 y

i

!
- - _ . - .
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Figure 12-1:
Graphic display of Table 12.1a's four production lines' data values

-
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.
'
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*
87.0

Line 1 Line 2 L ine 3 Line 4

Produetion une
4

-m...,.,_._..,._.__,,_

. * - - - =$.- e. - .a.. de . . , a. e.'

L

As you can see from Tables 12-1 and 12-la and
i Figure 12-1, you are dealing here with data from four
; samples, with sample sizes ni = 3, n2 = 11, n3 = 15,

and n4 = 6. You might be tempted to apply repeatedly3 - - - -.- - -.. _ -- .

the T-test-based methods of Chapter 11. That is, you 3
^";

compare all possible pairs of means, six in all, and try to*

reach a conclusion. Don't do it. It's just not the right
thing."

The underlying principle of the analysis of variance lies in
its very name: you will analyze the variance of all of the;

; data by dividing it into two or more meaningful parts and
' ~ ~ '~ ~ '' ' ~ ~~

determine how those parts relate to each other. This-

: eliminates the probabilistic and interpretive mistakes that
-- ---~ - - ---- -

,

J

=- -.,

"" * * ' " ' ' *h e--=u.* am.. %,mu_. ,p _,, ,

* 6,-- .

-
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would occur if you applied the T rest to all possible pairs
of means,

,

t
r

| Modern communication theory offers a vocabulary that
-

- r ujyou may find useful. Any set of data may be said to ( . ,
' ,

include two components: signal and noise. ANOVA .|

provide a methodology by which, if the conditions of the , |
'

data-collection activity are appropriate, you may separate
the signal from the noise. _

:. ~. C
. .p.y
"

To elaborate on the last point: Suppose you'were to '

administer the same English (or algebra or arithmetic) test
to 30 children from the same school,10 pupils from each
of the first, second, and third grades. - As you examine the -L

test scores, you observe a pronounced variability among-'
the 30 scores. You ought not to be surprised at this

. finding. Shouldn't the third-graders perform better than '

the first- and second-graders? As a matter of fact, you
ought not to be surprised that you can tell with relative
ease which test score came from which grade; that is, if -

| the scores cluster into three groups, you expect that the 10 .. -... .. .,, _.. , ~ , s. . . -

(- lowest scores belong to the first-graders and the 10 highest
,

scores to the third-graders, with the 10 scores for the -
. _ ,,__, , . . . ,

second-graders falling between those two. You conclude ,

that the signal (the differences among the grades) rises
above the noise (the differences within the grades).

In the ANOVA spirit, the three grades are distinct to the
point where you can separate the " total variation" of the ,, _ _ _ . _ . _ ,

scores into two components: _

L
(1) variation reflecting different grades, which might be; f

|. called "among-grades variation,' and
L

(2) variation reflecting the usual fluctuations you might ~ .l
'

!- expect among children in the same class, or "within-
grades variation." . -. . .- . . . - ..

' * - = - - ,e m ve a. . w. .. m%

i

~ ~ ~' - - . - - - - - + - - ,- . _ , . _ n. , _ . _ , __ _, _

** O -M'%*+ * W@mu .o ..ggmsbepma...-%>.9 . . , , , ,,
_

,

..

(
;.
[

!

_.

" " " b i* = . er u,.m.

. . _ -4 - . - _ -- _
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,

'As demonstrated in Chapter 5, variation (dispersion) is '
measured in a number of ways, among them the range, the
variance, and the standard deviation.- The measure of
variation that lends itself most conveniently to ANOVA's <

"* T - - u- e
quantitative partition is the sum of squares, which was ,

' ~^r-------introduced in Chapter 5. Reminder: the sum of squares
for any univariate dataset is the product of the variance
and its degrees of freedom.

'

The example involving the testing of primary-school:
|

children is, perhaps, trivial because you do not expect to
need any fancy statistical theory to tell you that there are:

r-^------skill differences among the three grades. So now consider; ;

.a perhaps less trivial example with essentially the same u 3m . . . . , _ _ _ _ _ _

l data structure.

Suppose that you are reviewing the percent-of-uranium -
readings from 35 randomly selected UO2 Pellets from four
production lines, as shown in Table 12-1. Your innate -
curiosity surely prompts you to ask if the means of the

'

four production lines are alike. What do you do? - ., ,, ,. _ - ,, _ , ._.,, _

. _ _ . _ . - . - . _ . . __

You first form some sort of hypothesis. In words, it
.

might read: 1he null hypothesis is that the means of the
four production lines are all the same.

To examine this hypothesis, you employ the ANOVA;

total sum of prescription that partitions the total sum of sqaares (SS ) iT
. . . isquares (SS ) -which measures the variation among all 35 pellets,

.{ _

T .

regardless of their batch affiliation-into two independent
sums of squares:

;

among-groups The first sum of squares, called the among-groups sum of

sum of squares (SSc), measures the variation among the batch
,

i squares (SSa) means; i.e., among the four values E , E 3, and P ,-i 2 4

| The among-groups sum of squares is also called the group

| sum of squares or the among sum of squares. ,. - - . , ..

I ua.-- - ~ ..a .. . . . . ., . _ _

t

^' ' ' ~ _ _ . ,

" " * * * ^-w-e *-* w d ,w,. , , , ,. wg,.g ,

94. ,,

.e---M

- - . .y--- -. . r n - . , , # w. , - . . -. ,c , ,w v . ,.
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|

within-groups The second sum of squares, called the within-groups sum j

sum of of squares (SSw), measures the joint variation within the I

squares (SSw) groups. The within-groups sum of squares is also called
the within sum of squares and, somewhat more commonly,
the error sum ofsquares. The within-groups sum of ;

~ '7"~ "~

'" - ~ ~ '' ~ - - -

squares is directly associated with the pooled sum of
squares obtained from the individual batches, as you will
see later in this chapter.

Algebraically, the three sums of squares are related by:

SS = SSa + SSw- . . . .- - - . . . -_. ._7

This relationship is an identity; i.e., it holds for any set of - .-

numbers arrayed in terms of the data layout exemplified
,

| by Table 12-1.

For discussion: . . . . . . . . . . . .. ., ...

O Examine Figure 12-1 carefully. Without using any particular
' - - --

analytical tools, speculate whether:

- the four production lines are alike?
- some of the four production lines are alike?
- none of the four production lines are alike?

Indeed, what is meant by saying that two or more of the production -------r--

lines are alike? -- -.. - .

! O If the dataset in Table 12-1 represents a one-way classification, what

| condition (s) that would render this dataset a two-way classification?

i

| . . -

. . - -. - - - - . ~ . ....~ _ .

!

|
' _ _. ._

- -~ . . , - n-. ~.- -~~ a o-~ ..e -.. . .. . .- . . . . .. ..-,

I

.. . .. - . . - - ._ .. .. . . . . . . . . . . . . - . . .. .. . . . . , . .
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Formulating the generic one-way analysis of
variance

| Now consider a generic data layout for the simplest .- - , - - - . . . , _ . .

ANOVA problem. A data layout for this general case, _.. ._f. ____ _ _ i
one-way such as the one given in Table 12-2, is called a one-way-
classtycation classification because each observation is classified

according to a single criterion-its group affiliation. The
data layout shows k groups, each being a sample from one

'

of k populations under study.

- - . . , - . -. _.

Table 12-2: .

A data layout for a generic one-way analysis of variance

Data layout Group 1 Group 2 Group i Group k... ...

YYY .Y21
'

k1
'

i111

YYY Y *" k2 - , ,e ,.-,...-,a;, ,-i212 22

yl, y,3 y,, y,, - - - - - - --
. . -

1 1 1 1 I !

2 y YrjY, YY,,
- - '

i i ! 1 1 1

Y, .- - - . . _ . - - - _ - . - _ .YY, Y *

kntn % ing

._. _ _ . . .,

Table 12-2a extends Table 12-2 by adding some specific
descriptive statistics to the data layout.!

l
I

: '

, . _ _ |

- - _ _ . _. . . _ _ . ;

!
i

.- --. . ,.

- - *'*'4 =44.- -me. m . _%,e. .w . .%-w. . , -%, , p 4 ,,, , ,

|

l

i

-- - -- -- - - . -- - .. .. . . .-. ... .. . .. . , _ ,

- e n - n
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Tcsting statistical hypotheses: sevstalmatns 12-11 - . =
,

Tcble 12-2a:
DIscriptive statistics associated with the data layout for a generic \
one-way analysis of variance in Table 12-2 '

,

. - - , .
- , . Q.

Descriptive Group 1 Group 2 Group i Group k L._._. _ _ _ . - _.
'

... ...

statistics

Sample
Size: ni n2 "i ni.

5"'";
[ Yg, [ Y, [Yy [Ygj '

* "

2

1 J J J

Sum of 2 2{j Ej Y {Y)
-- -- - - - - - - - - - - - - -

.

y ksquares:
J J J J

* ***
Y, Y Y; Yg- '

2

( 1/} ( 2) ( #} Al}Correction
tem: 1 1 I J

.

M AkN2 iM1 ;

- , . . - , . . _ _ _ , _ -

g_

| squared ssp, ssp 2 880 880*
k \i

j deviations:
; ,

Degrees of dfg df; df, d/3
*

freedom:

.
'\~Variance: 2 2 2

S S S'2 S
, - - . _ _ _ _ . . . _ _ .

Standard
'

^

deviation: 8 \S, S 8 '

k2 i
N ,

\

If your study is designed to collect the same number of
\observations from each of the k groups, it is said to

balanced have a balanced design. If the experiment follows the <
'

. - - .- . S. . - .design design (that is, if no unplanned forces intervene), then the
data layout also is said to be balanced. This distinction . _ _ _ . _ . . _ . . . . . . _ . .

between balanced and unbalanced designs is critical to the

. - . - . . . . - -

- -- . _ . - . _ - -. . . - - _ - . . . - . _ . . . _ . . _ . . .__|

i

i

a
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~

_

data analysis, especially for multi-way classifications; i.e...
those designs in which the observations are classified by
more than one criterion. Unbalanced designs are
inherently more difficult to analyze than balanced designs;-
worse, even when they yield to the analytical process, they [- r-T - - s 1,

f
,

' - - - - -" -" "tend to be difficult to interpret and understand.
.

.

1

Examine the symbolic data entries in Tables 12-2 and . j
12-2a. Each observation has two subscripts: the first '|

'J
denotes group affiliation and the second denotes'a '
sequence number within the group. Should there be some
ambiguity'(such as the 27* observation in the 54* group =
versus the 427* observation in the 5* group), the two - - - - - - - - _

" - -isubscripts may be separated by a comma'(e.g., Ys4.27 .
;

* - ~
,

versm Y .427) Note also in Tables 12-2 and 12-2a that5
Group i has nj observations. ' Thus, the information in the -
body of the table does not form a rectangle; rather, it .
forms a set of columns.of varying lengths. In some ,

..

representations of the balanced layout, n needs no
- subscript because it is constant for each' group. ;

. . r c ,~ ,_ _ ; ,s -- 4 ,__ ,, _ ;

- For each of the k groups, you calculate and record 'several | ,
.

descriptive statistics, including the group's size and its 1

sum, mean, variance, and sum of squares.' Let SSD L
~

- j
denote the sample sum of squared deviations of the i* - |

group for which you have (nf .1) degrees of freedom. ,

o
Formally, SSDj is given by

!

"I . g_

ng .. ng
.

-

' SSDj = { (Y -Yj)2 , { y,2.( y)2j,,
. ,

~

[-- -
- - - _-

y y
j=1 f=1 f=1

'

*

Recall that the summation sign (i.e., the Greek upper-case .
sigma, E) with an underscriptf and overscript ng means to -
sum the expression immediately to the right of E whenf
assumes the values of 1 through nj, starting withf.= 1
and ending with nj.

. - _ _ _ . _.. .. ,

%*M M *Jw*S W * N enM h O*+ h e -444 ew g .edp ,.

.- _.

**' +****aum he Wa4 - im e- - e..gy,..,,%,,, ,, g, ,, _ , _

,

. _

# - "O 4 - d .-au-3- .- -h ,, 9, . g ,, __ g ,
_-

a Y' 4
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Recall also that the variance of the values in the i'h group;

is obtained from

SSD;
S;2 -~~ --- m-n-=

(ng - 1) . ._ _ _, j , ,_ _._ _ .J
.

For discussion:

a,

c If { Y, is the sum of all observations in Group i, what meaning do .. _ _ __.. _._ ,

j=1
. . __ _._ - _ . . _ .

a a,

you give to { { Y ?g
talf=1

0 Describe a situation where observations have a two-way classification.
What would you expect the subscript of Y to look like? q -

x

If your intuition suggests that drawing the same number of ....L.___-.___,_.0
observations from each group is a good idea, your intuition guides ,

you well. A balanced design is usually desirable, unless your
resources dictate otherwise.

O A balanced design, i.e., one in which the intention is to collect equal
numbers of observations from each group, does not always meet its
intention. Departure from balance may be the result of an incomplete
experiment or of missing observations: __ . _ _ _ _ _ _ _ . _ _ ,.

An incomplete experiment occurs when conditions make it ir assible
- ^'

to measure everything that was intended in the
experimental design. For example, if measurements on
some signal-carrying cables are unavailable because those
cables are buried inside concrete walls, you have to be ,

sure that the inference of the experiment is not

, _. __ _ . _ .
|extrapolated to include the buried cables.
,

. - - - - - - . . - _.__ ... .._.

|

=

* -* ~ -~ -~ ~ - . ~. _ _ _ _ __

ww- mesw- mme== - Mh =4fMmm-. -wem-s Mw'- W e@ en e<- eeasem-ab*- emW4mp. dud .' **M es m --**-ea -M * - - -
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Missing observations arise when observations that were properly
collected subsequently become lost, folded, spindled, or
mutilated. As a user of the data, you will want to ask
whether there is any pattern to the missing portions that
may impact your conclusions. ~ ~ '". ~ .~.~. --. . . - ._. _

--

. - - . . .

The data analysis for the one-way classification, be it a balanceda
layout or not, is straightforward. When you graduate from the
restrictions of the one-way classification, the analysis of datasets with
missing observations becomes complicated. So always keep balanced
design on your list of data desiderata.

c Still another issue that may come up as you approach your data - - -- - -- - - -

;

analysit is that of outlying observations. As you review the collected
-

data, you may come across an observation-or several observations-
that is atypical for the dataset. if the unusual observation is obviously
the result of, say, a faulty instrument, then, quite generally, the
observation should not be a part of the analysis. An observation
which is plausible, yet "unlikely," is called an outlier or un outlying
observation. The question then is how to determine that unlikeliness.
The treatment of outliers is beyond the scope of this text. For simple . , . . . . - . . . . _

- ._ , _..

databases, you will find Dixon's Criterion, given by Dixon and . _ . _.._._

Massey (1983, pp. 377-380), useful. But do watch out! Sometimes
it's the outliers that are the most informative observations in the
study. How can that be?

A model for one-way classification - --- -----r-
L__. _ _ _

The data structure for the layout shown in Tables 12-2 and

model 12-2a can be described by a model. This model shows
that every observation Y (i.e, the/h observation in the i*g
group) can be written compactly as:

Y = y; + E ; i = 1, ..., k; ) = 1, . ., n;;q y
_

where _. . . . _ . . . _. .. . __ ._

. . _. - .

* * * ' * " -**ar' 4-e,w. gg . ,.

Gk e 4 Se 4 =6 .6+ 6 -$ $ 4 $ 49 h 9 & . a$i t O
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pg = mean of the population from which the i* group was
selected,

E = error assoc'ated with thej* observation of the i* \
p

gro \
E - N(0,g, and pr,

- _ , _ _

- <r
y c).

i_. _ -

It is instructive and analytically useful to write the model .
in an equivalent form:

Y = p . + r, + E ; i = 1, . .., k; J = 1, ... . ng;y y .

where
|

. - . .- _. -__

'
- = the overall mean of all populations considered 4.. . . _ . -.. . , . . _ _ . .

- p = the contribution of the i* group that causes .l
|ri = i

a ' shift" away from the overall mean, and
2E - N(0,a ),g

I\.

If all the means are alike, t e contribution rg of every N- ]
.

h

group is zero.. Thus, in tct spirit of statistical hypothesis . ;\
\testing, asking if all the pj are the same is equivalent to : _ . _ _ , _ _

asking whether all r, are zero. , _ _ . . . _

;

!
'

Assumptions for the one-way ANOVA

Let's make in mistake: we must be crystal clear about the i

assumptions that underlie the one-way ANOVA. When
you perform a one-way ANOVA, you make four ~ - - . .___..__.._7

(:. . important assumptions about the data structure that lead . _ _ . _ _.

i you to the statistical test you perform. If those
assumptions are incorrect, so may be your conclusions.

\
N

'Ihe first assumption is that the data classification-

|
scheme, as given by the model, is correct.- If, for. \ ,

example, the English-test scores for the 30 children are N.
classified only according to their grade in school, you may ._ L _ _ . |, . . _ . .,_

:
| Very well be ignoring some relevant factors. Is gender a ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ' ' ~ ~ * "

L factor? Is the teacher a factor? Is it possible that boys-
i i

i
'

,

! '-

I

.-- - _ --.. .1 . _ _ . . _. . . _ ...,__. .. _
,

l

. - - - - ... . . _ .. . . _ . _ _ _ _ _ . . _ _ _ _ _ _ _ , _ _ _ , , , _ _ ,_

|.-

- - - - - - - . . . - . -

m v s. m. e s - - , v - -w,- - - - r y-, - - e erv v -, , ,-- - , -
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taught by Mrs. Lurie in the second grade do better than
*

- girls tauf by Mrs. Moore in the third grade?i
|

The second assumption is that the variation within a
''' u~ '

igroup is the same as that within any other group. As
" -~ ~ - -* -----

you've already seen, you have a way of testing the
'

,

I appropriateness of this assumption in Chapter 10, using

| the F, statistic. Whereas this assumption is often
plausible and reasonable, you must be aware that'

homoscedasticity is a basic assumption in many ANOVA

,

analyses.
i

The third assumption is that the observations are drawn - - - - ~~- - - =
,

randomly and independently. It is unfair and statistically -.- - - - - . - -

unacceptable to demand that the teacher's daughter be a
part of the sample, or to insist that,'if Jimmy is a part of
the sample, Jimmy's brother must be excluded. Selective

,

| sampling is always inappropriate to an unbiased statistical

|- analysis.
i

The fourth assumption is that the data are distributed . - . - . - _ _ _ . , _ _ ,

normally. With experience, you learn to recognize when .. r . __ . _ _ - . . . .. _ . . _ _

|
the normality assumption is 1.ot satisfied and then to m** ;

'

fully justified adjustments in your analysis. However,'

until you gain that experience-or when everything else
fails-you can resort to methods reported in Chapter 7,
where testing data for normality is discussed.

i

-_.-_.-___.!
l
'

J,

For discussion:
i

The discussion about the four underlying ANL+ A assumptions is tiedO

to the data model discussed earlier. Show where and how each of the !

discussed assumptions can be keyed to the model.

O To get off our soap box for a moment, we note that we have just . .- . - _ .. _ - . . _ . .. .

| prescribed a recipe for a futile exercise: We seldom can be sure that ,__. _ __ . . _ . . _ . . , _ , _

all of our assumptions are correct and proper. Then we have to

-

., _e- was - -6r +=,w mr e e4ei.sh =N s ie9semmes. .- h-m w p gmi 6 e 'gneisemme - e w su pgn== -wwa ,@-- . epnee ,. wwa ss

!
i

. . . . -. . . -. . .- .- . ..-- ~. ,.: - . .- ..~ 4

|
!
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, -

wonder about the multitude of statistical analyses conducted dailyj

| where many investigators, if not most, live in varying degrees of
statistical sin. The important point to remember, however, is that we
all must be fully aware of underlying assumptions and be equally

~~ '

aware of the consequences of making an incorrect assumption. ~" 7 - = ' -

Salvation lies, once again, in the robistness of the ANOVA.
' - * - ' '' ~ ~ ~ - ~ - - - - ~

|
,

1

Stating hypotheses for the one-way ANOVA

Coupled with well-stated assumptions, you must have . . . _ _ _. _ . __

well-stated hypotheses. If you cannot state your test ' ~ ~ ~~ ~ ~~ '

objectives properly, as reflected in the null and the
,

| alternative hypotheses, and/or you cannot follow through
on them, you may still get an answer-but will it be to the
question you set out to answer?

The null hypothesis for the one-way classification with k
groups is stated as

, , , , . , , . , , ,,

Ho: pi = p2 = p3 = ... = pg
~ ^ ' ~

or, equivalently, as

j Ho: ri = r2 " 73 = ... = 74 = 0.

The alternative hypothesis can be written in several ways,
two of which are.

i
..__ _ . _ _ _ _

H: pj 4 p , for some i,f,i j

and

H: 7, 4 0, for some i.i

. _ ..

4 45 m..=m.=-- am-em. en e see va = sit en ,s. .

l

. . - - . -

"8 W ==*.h . em ask .ipm 4 rw .a . mm.>- m. 'w.+ ,, 4.% w w.,,,,,,,g ,, . _ ,, , ,

1

_ . .. - . . . _ . . . . .. . . .. _. ... .. . .. . . . ... .. . .
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,

_

1

1

1

'

For discussion:

c Why is it incorrect to write the alternative hypothesis as*
_ _ , _ . _ _, _ _

. .
_

,; .

' . - - - .. . . _.

H: F1 # F2 # F3 # # FA7i

Suggest other ways of writing the alternative hypothesis.o
I

o The analysis of more than two groups is always considered a two-
j
'

sided hypothesis. Why? (Hint: Try writing a one-sided alternative )
hypothesis for, say, three groups).i .. -. -, - . . - _ ...- _

Emphasizing the importance of a proper articulation of the hypothesis
" - 2 l

a.

and the selection of appropriate analytical tools, we are reminded of a
statement we've heard mentioned many times but whose source we

have been unable to trace:

It is better to have#

: an approximate solution to an exactproblem
- . -.. .

. . . . . , . .

gna,
an exact solution to an approximate problem. - .- '- - -. . - -

4

s

Calculations for the one-way ANOVA

|
The calculations associated with even the simplest
ANOVA can be lengthy, so be sure your calculator [ ~ ~ ~~ ~ ~~ ~ ~ P-

batteries are charged before you start. Once you
understand the steps involved in the ANOVA construction
and have graduated from these studies with bonafide;

certification, your setting up and running an ANOVA ;

computer program would be permissible.

|
|

The results of an analysis of variance are displayed
- -

; ANOVA table traditionally in an ANOVA table, a generic version of
- - -- -- -. --.

' which is shown as Table 12-3. When you use this 3

'
4

4

W

.

-- - .. , , .. . ,

* '*"" .'+.r- ehe.* _.m _, ,

d

4

. . - - ~. .aw --- .+. - .. s ,w
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display, you see all the detail needed for drawing your
conclusions-and for showing them to others.

Tcble 12-3:
~

._.'7'.~~.___'-._.'~_'A generic ANOVA table for a one-way layout
_ _ . .

Source of Sum of Degrees of
viriation squares freedom Mean squares F

| Among MS Fac
" MS/MSwgroups SS dfc = SSa/dfa ac

Within MSw - - - - - - -- - - - - - - -

groups SSw dfw = SSw dfw -
l

Total SS df77

|

|

j The main body of a one-way ANOVA table shows three

| rows, each reflecting one of three sources i variation:
Among Groups, Within Groups, and Total. But, before - - -. -~-c .- . - - -

you can calculate the entries for the ANOVA table, you . _ . , . ._

need to make three intermediate calculations.

What follows is a side-by-side description of the formal
calculating steps shown on the left with the corresponding
numerical calculations derived from the problem laid out

| in Example 12-1 (with its data contained in Table 12-1)
i shown on the right. . . _ _

|
!

n - .-
|

.- . . , . ._ . . . . . . . . . . .

9

|

!
-. . . - .1 -

-- -- - - - ~ - . - - - - ~ ~ . - - . - - - .-c ..-.-- - - -- ._ ,--

i
f

I

|
'

.
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i
n

Procedure Example 12-1
4

| Experiment size: Experiment size:

A .. _- - , ... __ ,,.
~' ~

'
N= ni N = 3 + 11 + 15 + 6 = 35 - . - . - --. ._. .- ,-

i=1

Grand mean: Grand mean:
'

x ni
-

y , (87.2 + 87.4 + ... + 87.9)| {{yy
35; y ,1-lj-1

N , 3,081.9
' ' ~~ ~ - ~~ ~ - - ~ ~ ~

f:
35

= 88.05
- - - ..

I' Correction term: Correction term:
+

g ng - 2

([ [Y) ct = (3081.9)2g<

CT = i"ll"1 35
271,374.5031 . ' '*._. ~ ^" ** '' ' ' ~ ~ ' ' * ~i N =

Note that the Correction Term displayed

here is identical to the correction term
-- r- - - -- - a- ..

you used in the " working formula * for
1,

the variance (Chapter 5), if you regard+

all of the observations in the experiment
as if they belong to a single group.

;

' . Now you are ready to calculate the required entries for Table 12-3.
. --- __ - ._ _The table is built in pieces, starting with the column labeled .

Sum of squares. - ,
_

a

:
i
;

,

a

8 - * . #

O-UO"**EM=M+-Mbee.m MW6 -- 44& w

4

(
,

4

. - . ._.

* * - * * M*e=u-- -*'**m.-6.w w.,,_gm%.,. ,. _

4

a'
<

' .

* 4 .a

1
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i

Procedure Example 12-1
s

! The first calculation is for the

j bottom row of Table 12-3, in
,.- _ _ , _ , _ , .

. .-.. -.-. -- _ _.' _ -
' " '

which the Source of variation is ,

identified as Total to indicate the.

I unpartitioned source of variation.
The Total Sum of squares is,

: denoted SSr. It is calculated by 1
1

: the formula .|

2 2 |
| 357= 87.2 + 87,4 + ,,,k ni 2
i SST " [ [ (Y -Y')2

+ 87.9 - 271,374.5031
y = 271,383.8900 " '-- - - - - - 7i g.:j.n.

| A ng - - 271,374.5031 - - --a

= { { ( - CT , = 9.3869
,

i=1]=1*

4

; Note that SS is written here in twoT

| mathematically equivalent formulas. The
i first formula is the " definition formula,"

and the second is the " working formula.''

For the most part, you use the second ~ * " * ' ' ' . _ * _ ~ ' - * " . _ _* * * . , , _ _ .
-

-

expression because it generally is the .4

I casier to calculate.

The Total Sum of squares has

dfr = N - 1 dfr = 35 - 1 = 34,

i associated degrees of freedom.

i Note that, if you were to divide SS byT . . _ , . _ . . _ _ , _ _ , _ _ , _

dfr, you would obtain a value that might, ""~~ ~' ~ ~ ' -

be called "the variance of the entire data
.set." But there is no point in doing that:

you're dealing with a model and a
procedure that are much more

? complicated than those connected with a

; single-sample dataset.

i

e - _ . ._ ,

.MM.'.4 '.M ,ses ,46 di. m h& , . _4$6 .g. .hg.

<

|

i .|; .

4

4

--.- ,% -. .%<- - - . , _ _ , _ . , _ , . , _ , , , , , , ,, ,. _

I

j.

*

:
1

.

#
- - - - . . . . . _ .. . . _.. . ... . _ . ..,

i

- ,. .
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*

Procedure Example 12-1

The second calculation fills in the,

second row from the top. The _._ ,
_ _ '_

',

t Among-groups Sum of squares " ~~ ~~ ~

'

| is denoted by SS ; it is calculatedG
.

by the formula expressed in two j
2 forms: the " definition formula"

4

and the " working formula."
* (262.1)2 (966.4)2

SSG = { n g - T)2 JJa |3 11
#~'

. (1,328.5)2 . (524.9)2i . . _ . _ _ . . _ _ _ _ _ _ _ _

ng

* ({ y )2 15 6 - - - 1

- 271,374.5031 .

ib = 271,382.2544
~ " ~

' . 4=1 n1
- 271,374.5031

,

The " working formula * is used in this = 7.7513
i presentation.

'
<

5- = 4 s .4 - % e , v. s*~ s..,se ~~ , e ~3 e--

! The degrees of freedom
' ~ - ~- ' ~ ~ ~ ' - -

associated with SSg is

; dfa = (k - 1); dfa * (4-1) " 3
i.e., d/o quals one less than thee

,

; number of groups,
i

The third calculation yields the4

; Within-groups Sum of squares,
denoted by SSw, which may be . . _ ._ _ _ _ . _ . _ _ _

]- calculated using either of two _

approaches: ,

,

i
,

!

!
t

4

I
. . . _ __ _ . . , __ ,

. - - _ . . . _ _ . _ . . . . . . _ _ . _ .
;

!
4

1

k

j ,

j.- _ .- - .._ .. .__ - _. __ . . . _ . _ ._, __.-

.-- . . . _ . _ _ _ _ . . _ . . . _ . . . _ __ . . _ _ . _ _ . _ _ _ . _ , . _

1

e

i
4

.ea

,
- .

.
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Procedure Example 12-1

A direct approach-albeit
tedious- pools the sum of _ _ , _ , . _ _ , _ _ _ . , _ , . , . _ .

squared deviations for each group <..._.i_______
the same way you pooled the sum
of squares for two groups in
Chapter 11. Formally, for the i*
group, you calculate

n, ssdg = 0.0467

SSDj = { (Y - Ej)2 sd = 0.56732q
sd = 0.7133j1 3 . . . _ . _ _ _ . _ _ _ _ _ _ . _ . ,

n sd = 0.3083ni
2_(i y)2/nj ^ ^l4

={Yp
j*l j"I i

i

| and then form ssw = 0.0467 + 0.5673
'

| 'A + 0.7133 + 0.3083 i

| SSw = { SSDj = 1.6356 j
i iwI l

| to yleid the desired result. The
.

81ven by + (15 - 1) + (6 1) . . . ' ._ ._- !
j associated degrees of freedom is dfw = (3 - 1) + (11 -1)

"> > -- -

- . |
A = 35 - 4 = 31

df, = { {nj - 1) = N -k .
i=1

_

l

| An indirect approach-certainly
| less tedious-simply computes
i
I

SSw = SS -SS - 35W = 9.3869 - 7.7513 - - - . - - - - - - - -

| T G
| = 1.6356 . . _ _ _ _

Like the sums of squares, the

j degrees of freedom are additive,
'

so that

! dfw = d/T - dfa, dfw = 34 - 3 = 31
| - - .-

|
.- .. .. .. .. . ..-

i

:

- - ~ .. ... , _ . . . . .

!

| - . .-- . . --- -- . - . . . . . . . . . .-

1

|
!

-

i

,



dL .I. a_ht AAL;id_M

12-24 Applying Statistics -

|

Consider now Table 12-3a, which is the generic one-way
ANOVA table, Table 12-3, with the numerical results ;

filled in the Sum of squares and the Degrees of freedom \ !

'

columns for the data in Example 12-1. _W.. - - - - .

' 'c_ - - __. __

Table 12 3a:
The generic ANOVA table for a balanced one way layout with the j

'

second and third columns completed

Degrees ,

. ,_ . ___
1

Source of Sum of of
i

Variation squares freedom Mean squares F
. -q

'

Among- ssa=
groups 7.7513 dfa = 3 m3a " 33dd/a f = msgmsy

Within- ssw=
groups 1.6356 dfw = 31 msw = ssgdfw \|

s3r " .

Total 9.3869 dfr=34 -.~. - - . .. _ _ _ . _ _ _

. . ~ _. ._ _ .. ... .. q . . _ __

The Total Sum of squares captures the variation that
exists in the entire dataset, no matter what the source (or

"cause") of the variation.

The Among-groups Sum of squares captures the
variation that is caused by differences among the means of __ ___ , _ . _ ,

the groups, if these means were identical, then this sum i - ~ ~'

of squares also v ould be zero. If the means were not
identical, then this sum of squares increases directly as the
means become more unalike.

The Within-groups Smn of squares captures the variation
inherent within the groups, irrespective of where the
groups are located with respect to each other.

,_ , _ ._ _ , _

. . ~ . . . . . . . _ . . .

|

|

|

|

- - - - - . , . . _ . . _ _ _ . _ _ . .__ ._ _ ._ __ ,

.-m.o .e

- - _ _ _ - - - -
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! Thus, by comparing the sum of squares for Among-
groups with the sum of squares for Within-groups, you
expect to have a test statistic for addressing the basic null
hypothesis, namely,

- - , . - . . _. . ,
' '
" ~ ~ ~ ~ ~ ~~~ ~~

Ho: p1 = p2 = p3 = ... = pg.

But these two sums of squares are not directly
comparable. In order to attain comparability, you must
form the penultimate column in Table 12-3a, labeled
Mean squares.

Entries under Mean squares are formed by dividing the
- - ~ - --- -- - --- '

Among-groups Sum of squares and the Within-groups - - |
Sum of squares by their respective Degrees of freedom.
As mentioned earlier in this chapter, there is no need to
form an entry corresponding to the Total Sum of squares.

Once you have calculated the Mean squares, the final step
requires formation of the test statistic F = MSa/MS -W
The decision occurs when you compare the calculated F ,.. .. - . .. . - . .-

with a critical value obtained from Table T 4 for your . . . . . _. __ ,

choice of the level of significance and the appropriate
degrees of freedom.

You are now ready to complete the ANOVA table, here
| displayed in Table 12-3b.

l
.. .- . - . - . - - - -

-- M9h$ - 6 M

, ._ _

4 M eiS .MJ - * . .eh g. .e -h .gg 4 e Ag es. m .

'
|

'

i

\ 9

1

.- - . ._ .._ ._

= * aP.D. 4 ses -h h--. -N,a hp-. _..g .p.m. ,me ,,gg gw,,, g, , _
, g, . , , .

, 1

. . ~ - .. . ... . .. . . . . .

1
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Tcble 12 3b:
' The generic ANOVA table for a balanced one-way layout with all .
-columns completed using data from Example 12-1

=== 7 - -
_ , _

, _

,s . .m ,,n . .J .W ~~-"*--n -

- ._un .

Source of Sum of of
Variation squares freedom Mean squares F

Among- 7.7513/3 2.5838/0.0528
48.94groups 7.7513- 3 = 2.5838 =

i

Within- 1.6356/31

groups 1.6356 31 = 0.0528 , . _ _._ ._
.

. .. . - _ ..

Total 9.3869 34 ,

The critical value used as a rejection criterion for this test.t

f. isfo,93(dfo, dfy), found in Table T-4,' assuming that
a = 0.05. Entries in that table are functions of a, dfo . ,

.

'(referred to as degrees offreedom in the numerator and v......,..-... . . _ . _ . , . . .

denoted in Table T-4 as dfi), and dfg (referred to as ,_. , _ , _ , , ,

degrees offreedom in the denominator and denoted in .

'

Table T-4 as df2). If the calculated ratio.f, exceeds the
.

y

critical value, the means of the groups are declared
' '

.

significantly different.

Consistent with earlier stated philosophy / policy / practice, if

f < fo.95(dfa, dfw), you state that you have insufficient ~

evidence to make the claim that the population means are [ _. __ . , _~,
~' '

. ,

different.

Interpolating in Table T-4, you find that the critical value

| for a = 0.05, dfa = 3, and dfw = 31 is, approximately, ,

l fo.95(3,31) = 2.91. Because the calculatedf = 48.97 is -
larger than 2.91, you reject No and conclude that the four
group averages are not equal. --- - .. -

0 I'E M" ' * 4M' %-.ii MW u. _M e6 4gg, g ,g

i

- . ._ _ _ . . ._,

"N' N- ,m -e ...e. .,,,w,, . ,,
,

g.

.+s - e.- p, , . -r,.g.- c.-*,,+ g.a ...-..g-+, m - ,. .er e-. - - . . -- ..e. e- W % .. m u= =
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For discussion:

C The number of significant figures in the final statistics (such as mean
and standard deviation), is usually one more than that reported in the L.,,,_',_

_ , .,_ _ , . . _

_ _

original data. Intermediate calculations should use more significant N
figures than that. There is no harm done, nor additional effort
involved, in letting the calculator / computer carry as many significant
figures it can carry.

lt is important to recognize the additive nature of the sum of squaresO

and of the degrees of freedom in the ANOVA table. Note the ' ' ~ ~' ' ~ ~ ~~ ~

parallelism between the model and the ANOVA. Just like the model,
' ~ ~ - -~ ~

where the response Y is regarded as the sum of a group effect (ri)g
and a random error (Ej), so is the Total Sum of squares the sum of
the Among-groups Sum of squares and Within-groups Stun of
squares. This additivity is precisely what renders ANOVA a
powerful systematic methodology for comparing group performance,

o Verify thatfo.95(3,31) = 2.91.
. . . _ - _ - . _ _ . . _ . . _ _ , , _

o The Within-groups Mean square can be calculated by summing the
- - - - - - - - - '

SSD (i = 1,2, ..., k) and dividing the total by (N - kI). Show how-j .

this " direct approach" is a direct extension of the variance-pooling
procedure described in Chapter 11.

O Consider the general one-way ANOVA and its hypothesis-testing
process. If you cannot state that the population means are not equal,
can you at least claim that the sample means are different? What r-~----------
would you accomplish by such a claim? L- - --- - .

.

Multiple-range tests
|

If the value of the test statisticf. calculated from the -

ANOVA, falls short of the critical value found in the
F table, you generally say that you have insufficient

- ~ ' -' " ~ ~ -

l

|
|

- - -

N ''* om- =eewoup -em * w , up es w .-mm. a ,,

& *- Am e' e4 - b w49 -9 G S9 4 ease e4 .6 e . ew p a es - 6 -M . A e, - 44. 4

-na.
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evidence to claim that the population means are not equal;
essentially, you are no longer concerned with the
hypothesis that the means are equal.

rvSuppose you have statistical evidence to reject the [~ ~
,

- - - -

hypothesis of equal means. If you have more than two
means, you may (and, indeed, you should) be curious as
to which of those means are different and to what degree

they are different. Is just one of the means very much
different from the others? Do they form several clusters
of means? Are they such that each mean is different from
each of the other means?

;
_ . _ . _ . , , _ _ _

Thus, when you study the alternative hypotheses in a one- --

way ANOVA applied to three groups, you soon recognize
, 4 p , for some i,j)that the alternative hypothesis (H : ji

may not be very informative. For example, letting the
three groups be denoted by A, B, and C, you may not
know what triggered the statistical significance: It may be
because p3 4 p3 or because pj 4 pc or because
pg & pc, or, perhaps, because no two of the three means ,. .. .. . _ , ._

are alike. , , _ .

You may be tempted to test the groups pair-wise
separately; that is, Group A vs. Group B, Group A vs.
Group C, and Group B vs. Group C. Unfortunately, for k
groups with k > 2, this direct approach is incorrect
because the probability of finding at least one significant

3difference among the k(k - 1)/2 possible differences
increases as k increases. In other words, the probability [ __ _ . .

._ _ _ __ _ _ _ _

of Type 1 error, that you carefully set at 0.05, will be
much larger than 0.05 as you increase the number of
comparisons. For example, if four groups are tested in a
pair-wise fashion, the probability that at least one pair of ,

the six possible means will be identified as different can j

- 1

" ~

^Y'Although no proof of this statement is given here, you may satisfy your curiosity by trying the3

formula on, say, & = 2. 3. 4. 5.

- - - -- - -- - _ _ . _ . . __

' ' * * ' * * ** **'=e= -me --m, a44., ,, g , , _

,

- ..._ . ,

|
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be as high as 0.26, an error rate which may be too high
for your taste.

A widely used solution to this problem employs one of the

1
multiple-range many techniques that are classifled as multiple-range tests. ~~ ~~~ C T ' ' '~ ' ' u'

" ~ ~ " - " -- -- " -
| tests Also known as multiple comparisons, these techniques are

( designed to help you identify which means are different,

! while still essentially preserving the probability of Type I
error. The numerous multiple-range tests may leave you
apprehensive because, if you apply two or more of them
to the same set of multi-group data, you will not
necessarily obtain identical results. Each multiple-range
test is constructed to meet somewhat different assumptions

- - ' - - - - - -- --

;
'- - - - - - - - - Land offer differing degrees of conservatism. A full menu

showing the variety and techniques of multiple-range

| testing is beyond the scope of this text; see Toothaker
(1991), for example, for an extended discussion of this'

! knotty and often perplexing and sometimes controversial
l problem.

However, despite these drawbacks, multiple-range tests - . . . - - . - - , - - - . , , - . . . , -

provide an important decision-making tool. One of the . . . _ . _ . . . . _ . ..._._ _

most venerable-and, at the same time, most useful and
Duncan 's intuitive-is Duncan's multiple-range test (Duncan,1955).

| multiple-range See Steel and Torrie (1980, Chapter 8) for a thorough
test discussion. Another exposition of Duncan's multiple-

range test is offered by Bowen and Bennett (1988,

| pp. 256-261); the essence of their approach is laid out in
| Example 12-la. _. .___.._ _ __ .

L._. _

Example 12 la:
Duncan's multiple-range test applied to data in Example 121

Recall from the ANOVA table, Table 12-3b, that the size
of the calculated statistic.f led to the rejection of the

,

| hypothesis of equal means. To apply Duncan's multiple-
' '~ ~ ~ '~ ~ ^ ~

range test, you assemble and record several " building-
'" ~ ~~~ - ~~^~ ~ ~ ^^~

block" values from the preceding analyses.

!

I
l

- . - -- - - - - -- .- .. ... . _

e ,m.- e wea . m-4- - + .' @- e w+_e.e.e e . e.+ -ome. -ei-_ a

i

,
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., _.

i
5

The experiment size:
4-

: N =-35;
. . .

! the k = 4 sample sizes:
- --- - -- ;.-- ,

. -

;
- ._. . . . . ~ . _ _ _ . _ . _ _ _

1
i

|. n, = 3, n2 = 11, n3 = 15, n4 = 6;
i
<

the k = 4 means:
i . l
,

| yi = 87.37, y2 = 87.85, y3 = 88.57, y4 = 87.48;
.

t

and the Within-groups Mean square (from Table 12-3b):
~~ ~ m m '- ;"

'
__,.-.._ _ . ,- - .,

,

| MSw = 0.0528.'
:

You proceed with these calculations and comparisons:1 .-.
:-

;

I harmonic e Calculate the harmonic mean of the k sample sizes:

1 mean
* ' - ' ~ ~ ~ ~ ~ - - - - - - - - - - -

n3 .= k/(1/ni + 1/n2+ .. 1/ng)
- - - - - -

= 4/(1/3 +1/11 +1/15 + 1/6) 1----'

! . = 6.0829.
.

[ Note that, if the sample sizes are all the same (i.e...

n = n2 = ... = ng = n), then E = n, say, and no3
*

special calculation is required.]'

: - .

,.

Calculate a pseudo standard deviation for each sample
*- - -- - - - ---- - -- --

| u
-- - - -- '

i mean:
) >

1
,

i MSw 0.0528-
S 0.0932.= = =;

6.0829; 14 nh
!

.

, y e .* m + - . - e .+ + . .

. - - - - . - . . . . - .

|

r ,

.

. . . . __ .. .._ . ._.. .

4 -a,,se e . + . -. w,. . mes. ,-g-- we...,es s -'wme+ %e-. 4-...w g e . .. .%++ -e.e'.e.=i e,.w..' .. -e. .e-

i;

k
;

. . . _ .-. .. .. . . . _ . . .. . ... . . . .. . . . . . . .. . . . . . ..c i...

I

. _ . . _ _ _ . _ . |
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_ |

! From Table T-7 with a = 0.05 and N- k .

| = 35 - 4 = 31, record the values of gn 93(p, N - A)

| for eachp = 2,3, , k; for this example, after some |
_._ _ ,. , _ ,, _ __

j1 interpolating, these are:

|
~ ~ ~~ ' ^ ^ ~ ~ ~

qo.95(2, 31) = 2.89
90.95(3, 31) = 3.04
go.95(4, 31) = 3.12.

Calculate R * " 40.95(P. N - A)S * for eachm p y,

| p = 2,3, . ., k. These are the critical values against
' -- - - - - - ~ -

| which differences in means are compared; for this
example, these are:

-

| R = 2.89(0.0932) = 0.26932

R * = 3.04(0.0932) = 0.28323

R * = 3.12(0.0932) = 0.2907.4
,

!

. . 4-- -. . . .. - - . -

Arrange the sample means in ascending order; for this . . . . .._! e

.

example:
|

Jg = 87.37
y4 = 87.48
y2 = 87.85

33 = 88.57.
- - . . . - -- -

a Denote the rank of the smallest mean by 1, the next
W Ms M,s A

=

smallest by 2, , and the largest by k. Next, for
any two means, let p denote the difference between the
corresponding ranks plus 1. Thus, for comparing the
largest and the smallest means among k means,
p = (k - 1) + 1 = k.

. _ _

m aM + -..a-4 e.- .43> %g gah 3 ,g, ,4 .

|

. - . - --. . ->.

* * = - - +erwe > g>-e -----..e g_.wm.,mm, m, ,, _ ,,

1

|

I
|

|
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Calculate the diferences between the largest mean anda
each of the other means, compare them to the values

of the corresponding R * , beginning with the i
p \- ., . |smallest, and determine which of the differences are - -

; ;.-
,

|statistically significant; for this example: --- - _ . _ .

|

l

y3 - Ji = 1.20 > R * = 0.2907 |
4

y3 - f4 = 1.09 > R * = 0.28323

y3 - y2 = 0.72 > R * = 0.2693.2

_ ,_ ._ _ _ _ _ ._

e Here, all three differences are significantly different. '' ' ~ ~ ~ ~ ~ '
.j

You conclude that Line 3's mean is larger than any of
the means of Line 1, Line 2, and Line 4.

Next, compare the second largest mean with each of .\
;e

the smaller means, beginning with the smallest, and .N
._

determine which of the differences are statistically

significant; for this example:
~

- ,- .--- , - - _ ,.__
_

N-
y2 - 71 = 0.48 > R .
_ _

= 0.2832
3

y2 - y4 = 0.37 > R2 = 0.2693.

Here, both differences are significantly different. Youm

conclude that Line 2's mean is larger than either
. .-___ _ ._.._,

Line l's or Line 4's.
. - - - _.

a Continue in this fashion until the two smallest means
are compared; for this example, compare the third

,

e- '**'t . = = = m amm .,e, - .. . , . . , . . ,w..,

....__.1. _ . _ _ _ . . _ _

|
,

'

:

I
!

. _.

. _ _ ._. . _ _ _ . _ . . _ . _ _ _ . _ . . _ _ . . . _ _ _ . . _ _ _ , , _ _ _ _ __ _,

- -- - - - - . - -- . . . ._ . _ . . . , _ , _,_ _ , _ _ . . _ , _ . ._ _

i _
, . . -
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'

largest mean with the smallest mean and determine if
the difference is statistically significant:

_yi - y4 = 0. I 1 < R . = 0.2693.
1 _

2 . . _ . , . _ _ , . . _ _ _ __

-,
-

3 L - .*-s~. . = ~ . . ,_m. m _ _ _ .

Here, the difference is not significantly different. Youm

conclude that Line l's mean is not larger than that of
,
' Line 4.

A graphical display, described by Duncan (1986,-

p. 757-760), among others, is useful for describing
- ----ymultiple-range test results. Write the means in an -

increasing sequence, left-to-right, and underline those ..

collections of means that are not declared to be sigmficant
.

by the multiple-range test; for this example, the display;

,'

Group: Line 1 Line 4 Line 2 Line 3
Mean: 87.37 87.48 87.85 88.57

indicates that only the means of Line 4 and Line 1 are not . , , . . _. .,_ ,,, _ , __, ...

,

statistically sigmficantly diferent; i.e., they form a group, ' ' ' ~ ^ ~~
,

as do each of Line 2 and Line 3 individually.
,

- ..

;

| For discussion:

; O Suggest other ways to present the results of Duncan's multiple-range - -- - -- - - _-. - - .__ _

test. . . . _ . __ __._ _ __

! Compare the results of Duncan's multiple-range test to the plotted dataO

in Figure 12-6. Any surprises?

:
!

. . _ . _ __ _.

I . . - _ . . - . . - . . .... . . _ _

j
!

'
;

- - - -- - .- - - - __ __ ._ .. ., . . _ . . _ _ _, _

* **' *- 'e-- eemm. .,.mswm,,, .g , _ , , _ _

4

%

e

g 4 -- #

= ,
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Toward a more generalized ANOVA
. 1

As mentioned at the beginning of this chapter, the vastness
of the analysis of variance literature and the scope of this . ._

text preclude a detailed treatment of the subject. Still, it is
_ __

' -' '' .

important to l' heate some of the types of generalizations
'

!

you may (ws nter as you explore ANOVA further.

The first generalization may seem'like only a small step |
i '

toward a more complex design and analysis, but it leads to
two-way the important two-way classification layout. Here, you

-

.

classification have two factors. Either, both, or none of them may.
'

._~ ~ ~ ~ ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ' ;affect the experimental results, and you need ways to ask .
'-- - - -~~

questions about those factors.
,

To illustrate, consider an example in which the subject is'
the performance of thermoluminescent dosimeters (TLDs).
Suppose each of three TLD producers makes two types: ,

Type 1 is worn on the shirt pocket and Type 2 is worn at
the waist on a belt. With a proper ANOVA design and

~;~"------
corresponding _ experimental data, you can answer two -
basic ouestions with a single experiment: - - -- a- -

(1) Are the three producers' products equally sensitive;
that is, if their TLDs are exposed to the same sources -
of radioactivity, will they yield the same readings?

(2) Are the two types of TLDs equally sensitive; that is,
does it make any difference if you wear the shirt-- ----- _ - - -._ g ,

pocket or the wrist-band device? 2

X
Suppose that five TLDs are now available for each of the \

: I
two types from each of the three producers and that they- \'

'

are simultaneously exposed to the same high-energy ,

gamma field for a fixed amount of time. At the end of the \
period of exposure, all 30 TLDs are read by the same N
technician using the same technique. A model describing ._ 3 ; ,,. _ _ . _ _ . , _

these 30 readings can be written as ;
,

!

j

i

I .-..;

:
-- - . _- _.,_.___-.___.m. _ . _ _ _ , _ _ _ . . _ . . _ , _ _ . _ , , .

4

* ~*~ ~ e A - ..mn. . . . . . . . . . , . , , . . , ,

_~ -- -, ~ ~ - -, ,
- -,- .r,. . ~ , , . ,,_, , . --
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Yp = p + dj + fj + E ; i = 1, 2, 3;p
j = 1, 2; ;

k = 1, 2, 3, 4, 5; ;
1

where
- ..

[U,Lb ' '

p = the reading of the k* TLD of the jth type from theY

i* producer,

p = the overall mean,
4 = the efect of the i'^ producer,

f

rj = the efect of the/^ type of TLD, and

Ep = the error associated with Y , such thatp 7-..--~_____..____ ,

2 , ,

Ep ~ N(0,a ), [ -*; -- .-4 . . . . _..% ,

Since the same number of TLDs is used for each
combination of producer and type, the layout is
" balanced." The model assumes that the efects of each
producer and each type are strictly additive. In the
ANOVA table, the total sum of squares is broken down
into three separate sums of squares: one corresponding to , , , , _ _ , , _ _ _ _ _ , _ _

| producer, one to type, and one to error. 9 _ _ _ _ .

|

The second generalization builds on the first, this time
with a model that extends the first by inserting an odd-
looking term:

|

| Yp = p + 4j + r) + (dr)y+ E ; i = 1,2, 3;p
i j = 1, 2;

k = 1, 2, 3, 4, 5. {~~~~~~~~~~~"~-~'|
|

interaction This odd-looking term, (dr)p, is called interaction. It is
i designed to detect situations in which, for example, the

difference between Type 1 and Type 2 TLDs are not the
same for all three producers; here, a more specific label is
producer-type interaction.

- -

|The third generalization also builds on the first, this time
with a subtle change in the model:

- - - - - - - - - --

l

!

i
..

" " ' * " *W* h**np. wbaoL.. .m%, ,,,g,4, , ,_

I
'

|

,

!

- - -- . . . . . . . . . _ .._. _ _, ,

W - e
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,

g = p + P + rj + E ;- / = l', 2, 3;Y f p
J = 1, 2;
k = 1, 2, 3, 4, 5.

Instead of the term dj, originally designed to capture the r r ~ ~~* " - , - * w
effects of the three producers, the model now contains Pj. L---'-----
If it suggests a random variable to you, then you've got it,;
by George! The idea arises if the three producers are
selected as a random sample of all possible producers.

_

For this situation, estimation and/or hypothesis-testing on.
the P is not feasible-but what is feasible is the estimationg

of the variance of the population of producers from _which
these three were selected. - - - - - - - - - - - - - - - -

.
. . .

On the equivalence'of the T test and the ANOVA
for two groups

Example 12-2 shows the equivalence of the T test and the
ANOVA when the means of two groups are compared
against a'two-sided alternative. '

' ". ~ .~ ~ '. ".' ' .*. ' '.~...~_ '.~ _~~. .

Example 12 2:
Number of trials to-faHum of relays-the one-way ANOVA applied
to two gmups

The number of times a relay was exercised before failure
was measured on 10 relays, four of Type 1 and six of. : --

- - - - -- -

Type 2, with results shown in Table 12-4. Is the average . l-- -- - - -
.

number of trials-to-failure the same for both types?

. - . - .

bMMw Weeimpa a d-Sm i .M -& 44 ,sw e.M.,,44

,- - v. - . , , . .,

e+ - * * -e -.w. . . _ , , .m.,us . . _ _ , _ _ , , , _ , , ,,
_ _ .

,
_

%r

*
h 's 4- -

, q. ,

_ _ _ _ _ _ - -.-u._.
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Table 12-4:
Tritis to-failure for two types of relays

-

Type 1 Type 2 -- ~~ 7 - m--

. -... - . ..- -. ,

1,031 993 I
1,249 1,011

1,332 805
966 |

|
633

Sample size: 4 6

Sum: 4,586 5,186 - - -

Mean: 1146.5 864.3

Variance: 29,337.67 22,578.27

Standard
deviation: 171.3 150.26

|' Sum of . , , , _ . . . . . . .. , . . ., ._

j squares of
~ ~ ~

! deviations: 88,013.00 112,891.35
!

Try working through the ANOVA calculations. Note that
if you use the working formulas, the grand mean is not
needed,

et = (974 + 1031 + . . + 633)2/10 = 9549198.40 ,_.__,____,____i
~ ~ ~ ~ ~ ~

2 + ... + 633 - ct = 391987.602
ss7 = 9742 + 1031

2 2
.

0 = 4586 /4 + 5186 /6 - ct = 191083.2733

f

| The remaining calculations for the ANOVA are given in
Table 12-5.

. - - -

6. && 44++ Ma =. AA - -&G .4- - 34a m.as 4 e .

f

i
:

I

!~
\

. . .

- .- - .-. . _ . _ . -n. . _ , . _ . , . . . . . _ _ , , , . _ _ .. ..._ . . , . .

|

| ,

- . . -- . .. .. --. ... . .- . .

|(
,

_ _ _ . .



3 . b L L u .A L a . h d W.

12-38 Applying St2tistics -.

Table 12-5:
Analysis of relay trials-before-failure for two types

Degrees - - . - - - - _
, _ .

Source of Sum of of . _ _ _i __ _ _<

variation squares freedom Mean squares f<

Between
relay types 191,083.27 1 191,083.27 7.61

Within
relay type 200,904.33 8 25,113.04

. - - _.. .. - . --

Total 391,987.60 9 - .

The critical value for the F statistic is obtained from Table*

T-4; it is fl95(1, 8) = 5.32. Because the calculated
f = 7.61 > f0.95(1, 8) = 5.32, you have evidence to
claim that the mean times-to-failure for the two typer of

relays are different. .. . - .c .. . -, . -

. -. .. . - - ..

Since two groups are involved in this problem, you could
have used the methodology introduced in Chapter 11 to

test whether pi = 2. The pooled variance is calculated
as (88013.00 + 112891.35)/(3 + 5) = 25113.04, which
is the same as the Within-groups Mean square obtained

from the ANOVA table. Student's t statistic is calculated
as ._ _ . _ _ . _ _ . . _ _ . _ _ _ _ _

,

' L _ . - _ ..
.

1146.50 - 864.33,, = 2.76.

/25113.04(1/4+1/6)

From Table T-3, the critical value for Student's t is

to 973(8) = 2.306. The calculated t statistic exceeds this
value, and the hypothesis of equality of means is rejected. _ _ _ _

,

.. . _ _ . . . . . _ . . . . . __

,

' ' ~ '~ ~* ** ** = = = * - 4 - _. ., ,, ,_ _

-- -m- e -w e4==s.e -m** h e*=|.m4e.ai. 4,w .emarg-e. --r -- e =r we e'
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i

1

As you might expect, the two tests are indeed equivalent.
Note that a unique relationship exists between a one-way
classification ANOVA for two groups and a two-sided
Student's t test with assumed homoscedasticity; i.e.,,

! t2 = f, as you can verify from the sample calculation. { "~ ~7 ~ " "

| The critical values are similarly related; i.e., g
[0.95(1, 8) = 5.32 = [t .975(8)]2 = [2.31]2,

s

0

! *
t

ss

! For discussion
. .. - .. . - . _ _

o Why do you consult Student's Ttable at the 0.975 quantile whereas ,. . , _ _ . _ _ _

you consult the F table at the 0.950 qv stile?

For a number of degrees of freedom of you, choice-call it dfye-| c
verify that [t .975(d[yc)) "[0.95(I' d[yc) II L. 'c is not included in the| 0

table, select a dfy, mat is accommodated there.
'

O Choose an a level (for which you have table values) and verify that
,,,, ,,__ ____ .

[t . ,)(df)]2 "[ - a)(1, df).
, _

g

C Ponder the vicissitudes of technical language in this chapter:
1 Although you analyze the data for equality of means, you do it
I through an analysis of variance.
I

!
. _ _ _ _ _ _ _ _ _ ~ . _ _ . . _ _

beh '

i

!

. . __ _

,

! .. __.___._m _ _ . . . . _ . _ l
1

!

. . . -.

* * * - w4 6- e-mm.- -- ee- . ee.,e.mm..> -me a Wsee.-m.% __,, ,_ , , , , , , , ,, ,

I

. . . - . . . --- -, . - . . . ..- . _ . . ..
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What to remember about Chapter 12

Chapter 12 introduced the analysis of variance (ANOVA), ~~~"~ ~T ~ ~ ~
-

one of the major analysis tools available for the purpose of ~ ~ ~ ~ ~ ~ ~ ~ ~~ - ---

comparing multi-group data. You participated in the
coastruction of an A. NOVA for the one-way classification
(where observations are classified by group using a single
classification criterion) and were pointed toward even
more complex data structures. You also encountered the
following concepts:

the virtue of a balanced design and layout
* ~ - - ~ ~ -- - ---

a

total sum of squaresa

among-groups sum of squares and mean square=

within-groups sum of squares and mean squarea

F statisticsfor ANOVA=

the modelfor one-way classipcation ANOVA=

assumptions in applying ANOVA=

multiple-range tests
- - - -- -- - . - .

=

modelling the two-way layout
-- -

a

equivalence of Student's t and ANOVA's Ffor two . .. . _. . . - . _=

groups.

When next faced with a problem involving multi-group
comparisons, you should be able to:

review an ANOVA tablefor a simple design and=

interpret the results . - - . _ . . ..._ _- . - __ _,

recognize when the assumptions requiredfor data ._ _ __a

analysis using ANOVA methods are reasonable
construct an ANOVA tablefor a simple investigation=

recognize when the scope ofyourproblem exceeds thea

scope of this book.

1

.-- - . . .

\
.- - .. .. ._.

- - - - - - -- - . .- .- . ._ _ _ .- _ _.

pe .., ..w ee ..o+.s -w. ems..ew e.,_ _.ycwe .-,se. - ,.m., ... ,,- m . y,e
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; An overview of regression
.

v.

What to look for in Chapter 13 s

" ~ ~ ~ ~ ~ ~ ~ ~ ~

Chapter 13 eases you into the topic of regression,I a set of
statistical techniques designed to support the investigation

~ ^ ~ ^ ~ ~ ~

of relationships among two or more variables. The4

discussion begins with a reminder of some algebraic and
geometric ideas you used when you plotted given.

functions by locating points on a coordinate system undera

the watchful eye of your algebra teacher.

This time, however, your task is reversed-you are given -

a set of points and are told to " fit a curve" to these points,
; that is, you are to determine a function that can be
j associated with that set of points _"in a reasonable j
'

manner " This new task opens the path to an exploration 4

of the processes called regression. !

.

i
e

. - . - . -

. .

. ..

3 Accordmg to Kendall and Buckland (1971, p.127), the term regression * . was originally used by - -.. - - -. . ... . - . . -

Galton [ Sir Francis Galton, 1822-1911, an English biostatistician and cousin of Charles Darwin] to
indicate certain relationships in the theory of heredity but it has come to mean the statistical method
developed to investigate those relationships.* We opt for this second meaning in this book.,

i

|
|
|

_ _. . . , . ._ _ _ j

i _ .. _ __ . _ . _ . _ _._ _ _ _ . _ _ _ _ _ _. _. _. ___

|
,

1

1

8 +- == ++ e. * 4- g 4 *e .* e.e .a a w. . ,.wu n. _e g e 4 , , a

A

r
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1

As the exploration unfolds, you will be reacquainted with
tenns you learned in algebra and geometry:

-

independent variable j
'

n

dependent variable
~ ~' M' '" ~ ~ "

u
1

~^^~~^~~~~~~~

a function
a orderedpairs

ia slope
a intercept
a parameter,

you will be reminded of terms from the analysis of i

--- Ir - -- - - - -- -

variance (Chapter 12):
~ - - . - .-. . . _ .

a model |

m error,
1

and you will encounter the ideas of:

a curve-fitting
simple linear regression.a . - . ~ . , - . - --, - - , -

. _ __

Recalling some algebra and geometry

At some time in your mathematics training, you learned to
plot functiors, both linear and non-linear. You learned

independent, that you usually start with an independent variable, almost
dependent always called x. You learned that x was linked to a i

- - - - - - - - - -

variables dependent variable, almost always called y. The values of L- .-

y depended on x in some straightforward fashion; i.e., the ,

function, dependent variable y was afunction of the independent
orderedpairs variable x You learned to build a table of ordered pairs

of values, designated by (x, y), and then to plot those pairs
of values on a coordinate system and connect them.

To illustrate, suppose you are given the function _

y = 3x + 2 and are asked to plot it. You pick some _._ .._ . ., ,, . _ ,

convenient values for the independent variable x and
calculate the corresponding values of the dependent

- - -. - -- - -. -. . _ _ _ . - _ _ . ._ _ _ .- _ , - _ _ _

*h- **w& =4 .g 4,
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_.- . : . - ._ ..

~

variable y. Some selected (x, y) pairs are displayed in
Table 13-1.

'

.

Tcble 13-1:,-
,

_ , _ . . . . . _ . _

-| Selected values of x and corresponding calculated values of y for ;..-~.-.,...~_.,..-
,

. -th] function y = 3x + 2'

x -2 -1 0 1 2 3 4 5

i y. -4 -1 2 5 8 11 14 ' 17

,, ..__ _ _ .._ _ _ _ _ . _

The (x, y) pairs then are used to produce a two-
dimensional graph of the given function, as shown in

... . .- . . ._. - . . .

Figure 13-1.

.

F F .K g '* ** *'s W "8P"*W . p g**- me q *e ney ,pe g -p -

* . n+ .+ + - ,-- m _wm

|
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|

|
i

l-
,
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b "- 'N'-*'** =dh+= $e 4 . ,4 h e -4 ++6#w
I
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-e
_
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t
-
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Figure 13-1:
A graph of the points in Table 13-1 and the function y = 3x + 2

i
l

|
.

,4
' " v

20 _-
_

.

~.

16 -

10 -

7 " 3' + 2 | .6-

!
x0 .._,_-._.______,_._____:

| . - - :4-
|

10 -
'

16 -

40 ; ; ; ; ; ; ; ; ;
, , , , , , , , ,

1098-744-4-3210 1 2 3 4 66 7 8 9 10
,

| x _m. . . , , . - , . . . , . . .

_: . - . . . _ . . _ . _ _ _ . . . _ _ _ _

slope, Figure 13-1 shows a straight line. It has a slope of 3 and
i intercept and an intercept of 2. The slope is the coefficient of the
,

independent variable x; it shows that, for every unit of
increase (decrease) in x, you have 3 units of increase -
(decrease) in y. The intercept is the value of y for which [ ~ ~ ~~ ~

~" ~ -

i x = 0. Notice especially that the line "goes through" each
,

of the points corresponding to the ordered pairs.

You may recall that "two points determine a straight line"

| and may wonder why eight points appear in Table 13-1

|
and Figure 13-1. Operationally, it's simply good practice
to plot a few extra points to be certain that you set up the

~ ~ ~ ~ - - - -; *

graph correctly. As it turns out, of course, any two of the
points in Table 13-1 are indeed sufficient to draw the line
that links them in Figure 13-1. Moreover, given any pair

| - _ .. . _ . . . _ . . ._ ._, _.

-- - ._ ._ _. __ _. _ _ . . . _ . _ _ _ _ _ _ _ _ . _ . _ . . _ _ __

t

..

g e- h * *9
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:

of points, you can determine the slope and the intercept of'

the straight-line function that links them.

The line in Figure 13-1 is a specific straight line; it is the
r~ ~ - 4'- wline with slope 3 and intercept 2. You may recall a '---~;---------;

widely used notation for a generic straight line:'

| y = mx + b. In thisform, the slope is m and the
intercept is b. The symbols m and b are the

parameters parameters of the general straight line.

|

| Once you prove something is true for the parametric form
of the line, y = mr + b, you can apply your findings to

- - - - - -

any straight line, both algebraically and graphically. For
-- -

example, if a general ordered pair (x , yo) is known to lie - - - -. _ __.

o

on the generic line y = mr + b, then you can conclude
immediately that the slope is m = (yo - b)/x .o

For discussion;
""'~~~- ~ ~~~'- -

o Use the pairs of points (-2, -4) and (3,11) in Table 13-1 to confirm
- - -- --

that the line's slope is 3 and its intercept is 2.

For the generic straight line y = mr + b and the two symbolic points0

(xi, yi) and (X 72), find the expressions for the slope m and the2

intercept b that are functions of the two points.
'

o In the expression y = mx + b, m represents the slope and b
represents the intercept of the line. In statistics and in other

- - ~ - - - - - - - - -

'

disciplines, you will encounter other symbols used to express a' -- ---

straight line. Examine the four expressions below; in each case,
indicate which symbol denotes the slope and which denotes the
intercept:

; i

(1) y = bx + a |
,

| (2) y = So + #ix
(3) y = a + Ex - - --

;

! (4) y; = a + Srg. - - - - - - - - - -- - - -

!
t

*
>

!

!
(

. - -- - .

. . _ _ _ . _ . _ _ . . . _ _ . . . _ . _ _ _ . _ _ . . _ _ _ . _ _ _ .._ . . . . _ . . .

I
!

|

|.

i
. _ .. . - - - -n ..- . - . . . .. - - . . . . . . _ . . . . . .
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| This list is far from exhaustive. But you need not worry about the
variety of expressions because you now know how to identify the line, I

| and its intercept and slope, by just looking at the expression for that j
line.

-- ; - :.
,

i a Suppose you come across an expression like y = p + qx + rz.
- - - - - - - -'

| What do you suppose this expression describes?

2O Guess what y = a + bx +cx describes.

| 0 What does the expressiony = cx describe?

|
- - - -"c if y '= 5 - 2x, win does the negative sign tell you? - -r
. . _ . _ _ . _ . _ _ _ .

I C Consider the expression y = 4.5. Is this a straight line? Does it
satisfy the conditions of the generic line given by y = mr + b7 . If it
is a line, what are its slope and its intercept?

!
O What would you make of Table 13-1 if the pair (3,12) had been

included? How would that affect the line in Figure 13.17
- , . . _ _ . , , . _ ,. _

T
- . - , . . . ~ __

|

On the role of regression

Now consider Table 13-2. It has much the same
appearance as Table 13-1. It holds eight pairs of what can

|- be taken as (x, y) values. But what is the function that

| links the y values to the x values? - - - - - - - - - - -

.. . _ . . . .

Tcble 13-2:
Eight pairs of values of x and y

x -2 -1 0 1 2 3 4 5

y -3 -2 4 1 11 12 12 18 ~ ~'

.-- . . _ _ _ . _ . .. . . . _ . _ . .

- -- . _ __ _
_

- -' **''H'G* m- ..m, , , ,,

i

I

|
- -- - - . - . . . - . . - .. _ . ..

..

;
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Try plotting the pairs shown in Table 13-2. You should .

get something like Figure 13-2. )
i

, ~ ~ ~ ' ' ' -'Figure 13-2: !
'

<

"~ -~ ~ ~ ~ "
A graph of the points in Table 13-2 "

|

20
.,

Oh,oh Theline
16 -

from Figure 13-1 7* *
doestft do the job -.

10 - ' ' - ~ ~ ~ - ~ - ~ - " ~ ~ - -
here Regressionto
* * ' " * ' 3x+2|

~'

6- i=
,

! - -

0
.,

,

4-

10 -

16 - -

' ' . - * * . * ~ " . _ '. - - . . . .

* - - ~ ~

. .

20 ;7 ; ; ; ; ; ;
. . , , . . . . . .

108874443210 1 2 3 4 66 7 8 9 10
|

- x

| \
! \
!
t

. . . . ._ _ _.- ._ ..

The points in Figure 13-2 tend to " move" from the lower ,

left to the upper right. But they certainly do not lie on a

| straight line. What might you wish to do in this case?

The differences between Figures 13-1 and 13-2 contain the
essence of the problem that regression is designed to
tackle. In a fully mathematical setting, you know the
function that links the values of y to the values of x, and

~ ~ ~ ^*

your analysis is predicated on that knowledge. By
'"~-- - ~^ - - - - -

contrast, in a statistical setting, you are given the (x, y)
pairs, and your task is to find a link among the pairs.

|

- .. - - - -- .- . . - .. .. _.

- M1 . .ew- m.- pm.e ,.-m... .4. ,.-,%2 g-,6 , , , , , , , , ,, , _ ,
_

,

i

l
1

*

.

- -
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- -

If you have exactly two (x, y) pairs, the task in either
setting is easy. Two points determine a straight line, and ~ )

'
little more remains to be determined. However, when you
have more than two (x, y) pairs and an inadequate
scenario for linking them, then regression comes into play .

. _n v
.,

,

' " - - - - - - - - -

and shows its worth.-
o

At the risk of stating the obvious: 1 statistical concepts and
tools cannot and do not create miracles. You cannot
produce a straight line that goes through every one of an :
arbitrary set of points if the points are not already on a
straight line. Rather, statistical methode:ogy produces a ,

- compromise line which meets some desirable criteria. The ----~"~-_.q-

L . . .
.;nature of that line and of those criteria are explored in ;

Chapter 14. ,

The process of fitting a model (an equation, a curve) '

curve-ftting ; to a set of points often is called curve-ftting. .This
presentation focuses on the case in which there is oner

i
independent variable, say x, associated with the dependent
variable, say y.

~

..7 ..~.-s,_,._,._..

- . . .. . . __

|
A model with a single independent variable is said to be '

simple, simple. If, in addition, the model is in the form
linear y = a + bx, then the model is also said to be linear. The

<

technique for constructing and analyzing such a model is
called simple linear regression. If a model has more than ,

;
#

j- one independent variable (e.g., y = a+ bx + cz), the '
i procedure for constructing the associated curve is called ; _ . _ ___ ,

; multiple linear regression. L _
,

i

'

Modeling an imperfect line: Dealing with error

A straight line like y = a + 4x is at best an imperfect .
representation of data such as those in Table 13-2. No
matter what values you pick for the parameters a and S, . . _ . _ _ _ . . . . _ _

the resulting line will "miss" one or more of the points. . _ _ _ _ _ _ j
Thus, for this problem, the model

1

|

. - _ _ _ _ _ _ . ... _ _ . . .. _ ._

d'"# *. -*-**rw f .,6-a==hrnN,a -ew w_ c,emm,_ ,

"" +* ** . .. , ,

. _ _ ._ .. _ .__ _ . . _ _
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;

!
!

| Y = a + 6x \
l

I
,

|_
is at best incomplete for this situation. One way of

- Icompleting ,he model is to add an " error" term, denoted
~ ' ''

~ |by Ej, yieldmg i . . _ __._ ___

-

,

y; = a + 6x; + Eg, i = 1, 2, ..., n.

This revised model forms the basis for Chapter 14's |
.

extended discussion of simple linear regression. 1-

,
- . - . ....--, -. - .

For discussion
. .

D How does the model with an error term accommodate data like those .

in Table 13-2? Does it work equally well for Table 13-1?

e Do you see a similarity between the error term for simple linear
regression and the error term in the model for one-way analysis of ^~"'' ' ^ ** * ~ ~ *

variance (Chapter 12)? Do they serve the same purpose?
. . - . ,. . _____..

o ~ The basic simple linear regression model developed in this chapter has

j this appearance:

y; = a + 6x; + E;, i = 1, 2, .., n.

Suppose you encounter a model that looks like this:
r---------------

y, = y - 6x, + Eg, i = 1, 2, . ., n. - -

What do you suppose is intended in the second model? Do you think
that the appearance of the term -6x makes any difference in your |
analysis? !

l

|
As you may have guessed by now, there are non-linear (simple and '

multiple) regression processes as well as those designed for linear _ -

processes. Although they are not discussed in this book, these non- . _ . _ _ _ _ . _ _ _. . . __.._

linear models have been studied extensively and used extensively in j

. -- - -- ... .- ... . .-- ..e - - - - .... -

, . e -M -.ehem.. .semeu. ,. .we - .m..- sw =M.*Sa e- + 4-e+ wesa 4e w .e n 6-.w . 4-4. 6 4p- mhe4 e e.-ey

^ 9
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I

scientific and technical work. These models are non-linear in their'

parameters. An example is
I

7: = ae + E,. _ _ _ , . . _ _ ___ _
_

- . . . . .-.. . - _ .

j. You will find introductory discussions of non-linear models in Draper

! and Smith (1981) and Weisberg (1985). A fuller discussion, including
multiresponse parameter estimation and models defined by systems of
differential equations appears in Bates and Watts (1988).

-

I - - . -. .--_ _ _ _ ,

What to remember about Chapter 13 . .

; 1
1

i

Chapter 13 introduced the concepts of simple imear
regression. You observed the similarities and the j

'

differences among data points and lines constructed from
1

|
and equation and an equation constructed from data points.

|
You reviewed the fundamental straight-line ideas of:

.. . . -.. . , . .. - . _., --

independent variable . . . _ -.- . - . - -a
dependent variablea

a function
a orderedpairs
a slope
a intercept
a parameter,

.- . ___. ._ _ _ . _..___ _ _ __ _ .

you were reminded of terms from the analysis of variance _ _ _
_

(Chapter 12):

a model
a error,

,

and you encountered the ideas of:
;

. _ _ . _ .. .

a curve-fitting ' ~~ ~~~ ~~ ~ ' ~ ~ ' ~ '

simple linear regression.a

.- . . - - .. - .. ..-. _

' """ 4"-' em - - em- -aume. une _w.m ..e 44p _ ,,__,.,,_go. ,,9,, # % , , ,,p, _, , , _ , _

# e "# ** *. m .4. m. amen _ e e . , , 4 g,m q_49
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Simple linear regression and,

correlation

What to look for in Chapter 14 - - - - - - - - -

;

( Chapter 14 provides tools to construct a regression line to
| fit a set of data points. Following a short discourse on

regression' principles, you will be given explicit formulas
| and directions to manipulate a set of data and to calculate

i
such statistics as.

.

1

the estimate of the slope - - ~~ - ~~~~' ~~ ~ ~=

the estimate of the intercept=
- - - -

the estimates of several regression-related variances.=

l
You will learn how to test the hypotheses that- '

1
i

the slope of th.= regression line is zero=

the slope equais a prescribed constanta

the intercept equals a prescribed constant. . - -

=

. _. __ _ . _ _ _ ._. . . . - __ _ . _

.+ -

, g a sw, g w. ,y em _ +w u -he- g=m- > g enw em 4 w w .msm e. .assimage .. wwee g mie , m whei a-.m * .sw F w

. . . . . . . . .. .-
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14-2 Applying Statistics .

|
l You will be shown how to construct:

a regression analysis table=

a confidence intervalfor the slope.
- ,- .

=
|

i( = a confidence intervalfor the intercept. g_
.., ,

t_ _ . _ _ . _ . - _. - .._ ,
.

You will encounter a distinction between two important
statistical ideas: regression and correlation.' -Attention
will be given to:

.

estimating the correlation coeficient=

testing the hypothesis that the correlation coeficient
- ~ - - - -

=

equals a prescribed constant (including zero) - -

-

constructing a confidence intervalfor the correlation . . . .
;

=

coepicient.

A model for simple linear regression

Effective discussion of simple linear regression begins -
- - --with a model. Recall from Chapter 12 that a model is a +-c - m--- - - - -

symbolic expression for the data under study; in this case, . . _ . _ . . _ . . ... . _ . . _ _

the model is a mathematical expression that relates a
dependent variable, designated by an upper-case Y, to an
independent variable, designated by a lower-case x.

Continuing from the material in Chapter 13, consider this
. model for a set of data consisting of n ordered pairs .

l (xf, Yj): ' r-
- .

! ,

Yg = a + 4x, + Eg, i = 1, 2, . . . , n ,

|
where

n = number of (xj, Y,) ordered pairs (points),
xj = the value of the independent variable for the i*

I Point, , . _ . _ _ _ _ _ , , __

d
Yj = the value of the dependent variable for the i point,! ~ ~ ~ ~ ' - ' ' ~ " ~ ~ ~

| a = an unknown constant (the intercept), :

,

'~'*' ~''~ *" -- mm ~ a.._ ,n ,_ ,_ _, __

'-*'" 'N* + + e. W . w.- en s.hes-, ,,w,# ., , ,

.

-- . - - -. .. ._ .- . . _

,

_ _ _ _ -- __-- -- s_ , y ._. .. ,m , y y
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# = an unknown constant (the slope), and
d

| - E = the " error" associated with the i point.j

!

- -,.-_,_ - _ - ,.. , ,

For discussion: - _..-. ..-- _ _ _ _

-
-

a In a perfect world, all n points would lie on a straight line, sayL

- Y = a + Sx , as suggested by the model; in that perfect world, you!

|
would also know the intercept and the slope, a and 4, exactly. But

; there's little doubt that we live in an imperfect world: data points that
| should lie on a straight line simply refuse to toe the line. The failure -

of a point to coincide with the value described by the model is ~ ^~ ~ ~ ~ ~ ~ ' ~ ~ ~ ~,

i classified in statistical parlance as an error, written in the model with
" ~ ~ '- '

an upper-case E. This error may be attributed to experimental error,
to experimenter error, to modeling error, or to a combination of these

| and other errors.
!

I

a We are especially careful with our choices of the symbols employed in
describing and working with the data and the model. A lower-case
letter x indicates a fixed value that is measured without error. This x
contrasts with the associated upper-case Y which indicates a random

~ * ~ ' ~ * " - - - - ^ -

variable. Thus, supposing that your process is the measurement of the - -- - - - - - -

| cumulative drop in air pressure inside a containrent vessel as a
-

! function of time, you can fix x at will (say, every half hour from the

| sealing of the vessel) and measure or calculate the associated pressure

! at each of these times. Whereas x is treated as if it is known exactly, (.

|
Yis treated as if it is subject to random fluctuations and sensibly
modeled as a random variable. (This very setup appears and is!

! explored in more detail in Example 14-1.) - - - . - _ _.

O The intercept and the slope are constants; they are written with Greek
letters, a and 4, to denote parameters that are to be estimated from -

the data because, as a rule, they are unknown.1 ,

1

!
|

. - - - -

|
' ' ' " - - - - - - - - - - ~ - - - ~ ~ -

| 3 'Dicy do look Greek to you, don't they?

.. . _ _ _ _ _ _

es a ama., serpe+- ,mmmmm- .am v. h ++ d iema m-4 n++6em--r-s-w h me = ps Mammpe - ee. wem m.e wa age-- es .g -m-e r

!

I _ w

. . .- , .- -

b
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1t
>"Looking" at the data
.

I

| Suppose you are given the set of n = 5 data points N
~| displayed in Table 14-1.- y)-; ' o'

yi ,

__

Tcble 1'4-1: |

i Some simple data for starting the study of simple linear regression :

I .)
|

x .1 2 3 5 7. )

y 4 3 4 8 9'
i | .

._ - _ __ _.

. -.

;

.

> s -- .. . . . . . . ._-

! '

| You are trying to identify a line that relates the dependent
-

variable y to the independent variable x. Before you do
anything else, it's simply good practice to take a "look" at
the data. You drasy an x-y grid and place the points on -

scatter the grid, thus creating a scatter diagram for the data, as.
,

\diagram shown in Figure 14-1. r -

.! .<_. . _ _ . . . _ _ . . . . _ . . _ _

_

l

_ . _

.

!

, , _ . .. . . .

b-^ ^

W hb - ..se . 3. .w.e, .

1

. - -- . . . - -. ._ -, _. .-

* ^ " ' . -m ..gh .wg h mp_. . _ , , . _ _ _

|

i

i.

!

- ..- - - . . __ _ . _ . . _ . _ , _ _ , . _ , . , _ _ _

c- .

!
,
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t

i| Figure 14-1:
.

'

Scatter diagram for the data in Table 14-1

|

|
- - , . - _. _.,

10 ,. _. - . .- _ _ . . . _ _ . _

9- e

8- e

| $ 7- ,

4 l

1 J6-

. ,_ _ _ ._ ~ _ . _ . _ )'
>

]5-
. . . .

_._. . _; ;
| 14-
| k 3- e

| 2-

1-

0 ; ; ;, , , , , ,

O 1 2 3 4 6 6 7 8 9 10
Independent variable x -, . . - . _, . . -. 4 m.-,. . - -

,
. . . .. . . . . _ . . . _

|
t

.
'

But just how do you go about selecting a line that will
summarize these data? As with most analyses, it pays to
start with some simple ideas and then build upon their , _ _ . ___ __ ___ _ _ _ .

results. Why not call on the average value of the
~~ '

observed y values? The mean is a well-established
measure of location. The mean value of the five values of

y in. Table 14-1 is y = 5.6. The corresponding line is
written y = 5.6; it is displayed with the label Line 1 in
Figure 14-2, along with two other candidate lines, Line 2 |

and Line 3, more about which is developed later in this
chapter. , _ .

-._
,
i %

!

- - . - - - - - _ _ _.

i
- - __ _ _ _ . __._. _ _ . _ . _ . _ _ _ _ _ . . _ _ _ _ ._ ._ . _ _ _ . .

|

|-

,

I

- 4

,

. . _ . ._ . . _ . . .
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l
i
! On representing (x, y) data j

I. empiricalline Your task is to find an empirical line that captures the
nature of the (x, y) pairs of data and provides an intercept _ _ _

and a slope that estimate the simple linear regression [' ~ ~ ~ ~. _
_ _ _ , '' _

,
~ ~ -

model's parameters. - Although you might scan (" eyeball")
the data and arrive at a decent representation of the data,

,

such a line seldom is acceptable. For one thing, yourj
- repeated scans could yield different lines, as might ' single ,

j
or repeated scans made by a' trusted and capable colleague.

| Only in the very most time-constrained circumstance -
should you settle for this scanning procedure and, even , _ _ . _ _ . - _ _ _ _

then, for only the crudest purposes.
, _

Any empirical line, no matter how it is derived, can be ;

expressed in a form that provides estimates of each of the
n values Yg:

i, - = A + Bx, , i = 1, ... , n,
... .. ,w .. ~ , .--

where,
- .. . _. ._ _ . . . . _ _ _

|

f

| A is an estimator of the model's intercept er,

j B is an estimator of the model's slope S, and
'

f, is an estimator of the model's Yj for the fixed value xj.

No matter how you arrive at the values of A and B, you
are performing an act of estimation in a statistical sense;. . _ - . . _ _ _ . _ _.

that is, you are using the data at hand to determine L __. _

something about the parameters of an underlying model.

| The term 9,, pronounced Y-hat-sub-s, is an estimator of

! the true-but-unobserved random variable Yj and thus
carries a " hat" (caret) to distinguish it from the observed

yj. This notation follows the well-established and widely
- - - ,used practice of " hatting" a symbol for a parameter to -

distinguish an estimate from the parameter itself. For. - - - - - - - - - - - . - - . - -

example, an estimator of a mean with the symbol p is
,

4

8

- - . . . - ,

" " ''N * N4.D.. .e..w ,,wa ,,.. ,,,q ,, _

..

|

| . ..
-

- - - - . -. -

- -- +- , ,----- . , . . , - , - . _ ,
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,

|

indicated by writing $. Just remember that f, and J are .

'

both' impostors-they wear hats and masquerade as the real
things.

'

-

.. _ , _ ,. _ . ,, ,.

The estimators of the intercept and the slope, A and B, are L __.. _ i ,_ i j ,
functions of the sample you happen to collect-and of- .

'

. your method of estimation. Because the Yf are random .
variables, it follows that A and B are to be treated as
random variables.~ Thus, they are written using upper-case
English letters.

!

You will find that the simple linear regression procedure , _ _ _ _ _ _ _ . _ _

helps you with a number of different objectives in the : u
' " - ~ ~ " ~ ~ '

analysis of datasets containing two variables. But, first,

I you must decide if your process and'the data it yields meet
i

the assumptions required for simple linear regression.

Assumptions for simple linear regression.' ,

' Any statistical treatment of a set of data is founded on a c ._ , ,____ _

collection of assumptions about the dataset and its -
structure. Regression analysis is no exception, so here are
the assumptions critical to simple linear regression. These
assumptions are of two classes: .

\s basic assumptions which must be met for the
construction of the regression coefficients

_ _ \. '
l' .

. | ~ -"

e extended assumptions which must be met for theL
!

construction of statistical tests of significance and
! confidence intervals.

;

!

l The basic assumptions required for the construction of |
| simple linear regression coefficients are: i

The model is appropriate; it is both simple and linear.
~ ~ ' - - - '-~

a
The intercept and the slope, a and #, are unknown. - - - - - - - - - - - -m

constants to be estimated from the data. )
i
!

- ~ .- - _ _ -.. _. _.

W # '* Nw m'.- e. + 6 , .+ h,9#,.,, , ,_ .,, ,.

1:
| -

-- .. -. . _ . . _.. . ._.. _ ... . . , _ . . _ _ _ _ , , .._,,,._ , _

'

, . . . _ _ . . , ., _. , _ . . _ , . .
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:
.

j u . Each xj is measured without error.
-

m - The variance of Yis constant for all x values. That
,

;. means that, if you were to imagine all possible Y-
'

; observations for a selected value of x, thc ut,0 cia.t:d
|u[ ~ .. .~ _ _ a _ __ _ _

- - - - ;- u2 r-,population variance, a , would be the same, regardless:

i- of which value of x is selected.2

|
The one extended assumption used in this book to perform

j,

.

,' hypothesis-testing and' confidence-interval construction in a
simple linear regression analysis is:<

,

The error Ej associated with Y is distributed normally
,

j- a f
2 r - - +- -. c ;with mean 0 and variance a ; symbolically, -- - -

I
Ej ~. N(0, a ) which is consistent with Chapter 72 .

.--. . ._ . . . ._ )2
~

. - -

}
t

| These assumptions are displayed graphically in

i Figure 14-la which is oriented specifically to reflect the
five points of Table 14-1 and Figure 14-1. A wider-angle q;:.

i view of the same data and the assumptions appears in . .,
,

Figure 14-lb.-

J ,,,.-.m-_,.__, .. . j

4

} . . ..3 _. . _

'

i
b

|

|
|
.

1

1 .. - . . _ . - . . _ . _ _ . . _ _

i L -- ;-. .

i '

:

i
r

h
!
i

2 f this assumption cannot be met, then construction of the regression equation requires " weighted! I
regression * techniques that are beyond the see,pe of this book. see Draper and smith (1981) or Neter. _ _ _

,

er al. (1990) for details. . ~ ~ - . - - ~ ~ . , . ... . . _ _ .

3 Regression analysis with nonwormal errors is beyond the scope of this book,

i

: -

.

:

: -

- . . _ . . . . _ _ . . . . _ . _ _ . . . _ , _ _ _ _ _ ___. _ _ _ _ , . _ . _ . _,

4-
)
.

1

j ..
:

.

I-

S hw ,., g,g,q,g.,, ,,p,gg,,,, _ p 1 _ _

.

._. _ . _ .- . - - - - .. , ,
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Figure 141a:
lilustrating the assumptions of simple linear regression with the
dita in Table 14-1

L

.y . -,-_-.._. _ ,

i,

L. . -..s . - - - - - - - - - e

10 f

9- <>

8- 4>
,

g 7-
]6-
,

} 6- / -

I [ ' ''

4 < , ,

h.
a3- / >

.

f
I. -

0 ; ; ; ; i ;,

O 1- 2 3 4 6 6 7 8 9 10 ., . . _ .. . . . . . ._ .. --. , , , _ . , . _,

independent variable
. . - . . . --. - . - . -

!
1 .

- 4

| |

|

| . . . . . - - . - . - . - . ---;

\i -
5

4

!

l

. . - - . . . _ - - .. . . .--

=4== .*.-w , . w e.- .. <. 4es . --am..

4

i

1
- . _ _ . - - . - . . . - _. _ _ . ., . . . . . _ _ . . . .,,,__._ _ , _.. . . _ _ . _ _ _ _ , . _ , , , . , . , . . _ __ , _ _ _

h '' d *-@ == 4b 4 Be- $ h&+- A &$ er .qq Ms- M M. $ .) . $MA .-Ap@aa g ._ g g gg_ g.. ,g,y 9 , g,

- -- -r



. _ . . _ . . . _ . . . . _ . _ . - - - .

}h Iu k ij Li_L.31d b..

14-10 Applying St9tistics ; -- :.= ==.:.=- a

!

| Figure 14-1b: l

| A wider-angle view of Figure 14-1b ;

1
!

| 1

- ~~~~T - - - - ' *''~'~''' T |,
,

26 -
! 20 - |

1
16 -

le

;
-

,

' #1: 0
_ _ _ _ _ . _ . _ _ . . _ _ _ - _ _ _ _ _ .

,
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! ,

1 0
-16 -

1

20 - ;

I 26 -

( a ; ; ;-
.. . . , .

O 1 2 3 .4 6 6 7 8 9 10 I

Independent variable
- ~ - - - -t------- i

i
; :

| l
:

i

Estimating the intercept and the slope !
l

Given a set of n (xj, yj) points, you have many choices to
designate a line that summarizes these points. For
instance, you could " estimate a line" merely by inspecting [-

-- - -- - - .

. _ l
| the data and guessing at numeric values for A and B to j

!substitute for a and # in the model. But you wouldn't do
|

| that, or would you?

If you are unaware of any particular methodology for
estimating the required line, or if you are seeking a
somewhat more objective approach than guessing, you . . _ _ .. __ .

|
may even want to consider an earlier suggestion of first . , _ _ . _ _ , _ _ . , _ , _ , ,

| " fitting" the data with a horizontal line that goes through
;

!
1'

. .. - . _ _ - . .

!
. - - . .-. - . - _ . _ - - . _ . . . _ . _ - . _ _ , - _ . . _ _ . . _ _ __t

** * * e- e . ~ ~ . aa=,, 4 .. .. % . .
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!

y, the mean of the sample observations. In particular, if l

your observed x and y are unrelated, this line makes |
sense. For example, if the model's Y represents the |

yearly energy consumption by a rental household and x
represents the landlord's body weight, you might as well i' --" ~ ~'~~'"~ - " '

L->-----------
ignore the landlord's weight and estimate the energy

_ s

consumption of the l'h household by 9, = Y. However, \
even when x and Yare declared to be related for k

| theoretical or practical reasons, it often is useful to employ
that horizon *al line as a baJe!!re or frandard against which s

other lines are compared.

' ~' ' ~ ~ ~

I Let's apply this principle to the data in Table 14-1 and
'

displayed in Figure 14-1. Recall the mean of the yf is y
'~ ~ ' ~ ~~

;

= (4 + 3 + 4 + 8 + 9)/5 = 28/5 = 5.6. This provides
the line y = 5.6 as our first " candidate" to summarize the
data in Table 14-1. It is shown in Figure 14-2 with the

| label Line 1.

Figure 14-2 contains two other lines for consideration. " " ' " " ~~"~~~~~~ ~

Line 2 has the equation y = 22 - 2. Line 3 has the
equation y = (8/9)x + 2.

' ~ ---

|

. . . _ . . _ . . . _ _ _ _ _ . _ _ .

L_ _ . _ . _

!

|
, _

|. - - - . . . . . .

;

- .

1

-- - _, ._. . - . . . . . . . . - - - . - - . - - . . . . . , . . . . - - . . . . . . , . . . - .-, ,.

'

e

- . . ~ . .. ,
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i
j

|

| Figure 14-2-
Three candidate lines for the data in Table 14-1 i

!

-

-7- . , , x,

10
' '- - = - '

s- e

8-

7- Ime3
y = (8/9)x + 2 -

_

6- .- - , - , - . - - - . - - + - . - _ _ -

Ime1 6. m . ,- . ._ -.. L
4 ,

y = 5.6

2- Ime2

1
y=h 2

' ' ' ' '

0 ;

O 1 2 3 4 - 6 6 7 - 8 9 10

Independent variable x ' -

4 - 4 ---- - -: --

. . . . -.-......-~ -..- ._.

But, with the horizontal line in hand, what will you do
next? The problem is that there are many ways to guess
at a line, so you have many " candidate" lines to fit the

~

_ _ _ , _ _ , _. . . _ _

data. Some candidates are "better" than others and some ~~

are " worse"; some are clearly different and some are
nearly indistinguishable from each other, ~ As a means of
illustrating the problem, recall Figure 14-2. It shows the
data points given in Table 14-1 and Figure 14-1 along
with three candidate, albeit arbitrary-and, yes, even
exaggerated-lines for your consideration.

. _ _ _ ._ _

pt de emm ev e.eemme. -e-ee emJ. . s .wo-,e. obs e e .w _

-@ e6m -,wg

** * * * menus- - w -.sumammesqm -=..-eemusemea._ og, M t..emme,an.,% e , , _ , . ,j_ , , , , _ ,,, ,

!

j
__

j. . ._

. - _ . - . - -
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.

For discussion:
.

O Which of the three candidate lines in Figure 14 2 appear acceptable? ,. - ~ - - m - -- --

Why? Which lines don't you like? Why? Which line do you like the . - 2 ._.._. _ .. _. _.

"best"? Why? Could there be still another line you would like even.j

! better? How do you know?
'

|

Regression and the least squares criterion
- -. . . . - -_ _ _ - --

Consider Line 3 in Figure 14-2. Pick any of the five
- - - -

points in the figure and draw a vertical line connecting
that point to Line 3; the length of this line represents the

|
vertical distance between the point and Line 3. Repeat
this process for all the other points as shown in

'

Figure 1-3.

' -, . , , _ _ . , - , , , , . _ , . _ .

- -, - a s ee,. ~..e

- . - . - . . _ - . ,

._ _ ,

'

,

E

|

s

};
.- .-. .- . - .

j
.. - . . _ . . . . .. . . . . . _

:
!

.- __

* -m + r-ep. . w . -- . ueh - -.me..i+ %4 4 ge., _m=% ,, , , _ , , , _

b

. .. . . . . . . . . . . ._. _ _ _ . . . . _ . . .. . .
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Figure 14 3:
Displaying the distances between the points in Table 141 and
Line 3

1
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:

|
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j4~ Ir.e 1
T y = 5.6.

[3- e
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1
y=h-2 j

!' ' ' '

0- : : :,,

0 1 2 3 4 5 6 7 8 9 10 -
,,. ,_ , _ _ , _ _ , _ _ _

independent variable x >

c..--..-... - . ~ . - . . .

,

,

2

Next, square each distance and add those squares to obtain ~|

a " sum of squares of vertical deviations of the points from:

Line 3" and call it SS . Repeat the process for Line 13 ._. _ _ _ , _ _ .

and Line 2 to form SSg and SS , respectively. Finally, [2
compare the three sums of squares and select the line with

*

the smallest sum of squares. Table 14-2 gives the results
of these calculations.

. . -. - - . ;

.-- . - . . . - . . . . - . . . . .

.

!

.

" " * * ' " ''"-8^ **e e e s.4 -,w--. m.,,.me e, . ,- , _ __ _

4

1

1
}

- - . - . . . . . . . . ._ _. ,

i

. , . _.
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| Tcble 14-2:
C:lculations used to select from among the three lines in
Figure 14-3

| --.- , .- - , , . _ __ . _ _ , -

. - _ i . ._ _ _x 1 2 3 5 7 Sum ot - - . . _

y 4 3 4 8 9

Line 1
SS =i

fj 5.6 5.6 5.6 5.6 5.6 35.40

'yf-fj -1.6 -3.6 -1.6 2.4 3.4

|

2.56 12.96 2.56 5.76 11.56
- -

|

| (y,-fj)2
!

Line 2
SS "2

0 2 4 8 12 26p,

4 1 0 0 -3
y,_fj

" "*' ' * ~ ' " '' ' " " ' ~ ~ ' * ~

16 1 0 0 9|
WI ~ Si)2 . . -. --

t
|

! Line 3

|
SS "3

p, 2.89 3.78 4.67 6.44 8.22 5.3384'

yj_fj 1.11 -0.78 -0.67 1.56 0.78

1.2321 0.6084 0.4489 2.4336 0.6084
(y,. - fg)2 . __ . . _ _ . . _ _ _ _ _ _ . _ . _ _ . - _ _'

'

- _ _ . . .

From this set of three lines, you select Line 3 because it
has the smallest sum of squares. You should wonder,
however, if there is a "better" line which has a still
smaller sum of squares. Indeed, is there a "best" line,
such that no other line can have a smaller sum of squares
for the given set of data? Using regression methodology, . - - -

you can readily construct such a line; i.e., you can find ~-_ _ - - - . - - . _ .. ._.

-- .- -- - .- - - ... . _ _ __ _.

* * * * *- N m*W. . emme . s .ame Am' a gh...p.mq , , ,

w &

/
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and express the unique line with the smallest sum of |

. squares of deviations. !
i
i

The theoretical development of this approach, often called
;- ' = ~n

method of the method ofleast squares will be found in Neter, et al. ' ~
,

--- -

least squares (1990, Chapter 2), Draper and Smith (1981, Chapter 2),
and many others. (The term least squares summarizes a
" mouthful" of methodology; it is a shorthand way of
saying "the smallest sum of squares of deviations between
a set of points and a fitted function when those deviations

_

,

are measured along the vertical axis.")

" -- - --~~7The essence of the method of least squares can be stated *

as follows:
- - --

For a set of n orderedpairs, (xi, Y ), i = 1, 2, ..., n, asi
long as at least two of the x values are diferent, the least
squares line is unique and the estimators ofits slope, B,
and its intercept, A, are given by two equations:

n _. :. . ... .. - .. - .--, -

[(xg - i)(Yg - Y) , . _ , ,, _

B = '*' '

n

[(xj - i)2
'

i=1

n n n

[xg Yg - ([xy ([ Yg)ln
, i=1 i=1 i=1

. - _ _ . _ _ _ _ . ,

.

;--
'

[xf2_( y;)2/n
. i=1 i=1-

A = 5 - 2.

The second expression for B is called the " working
formula."

The calculations can be simplified by using notation
' ~ ~ ~ ~ ~ ' ~~

~ ~ ' ~ - ~ ~ ~ " - - ' ~ ~ ~ ---

similar-but not identical-to that used in Chapter 12,

* *- -- - ;- -, ._e

" * " " 8"8* '_m -r=-==..em-mm=.i m.pf, _,, _ _

..

^ w.m p

" " e--w---... _. ,..y,,,. ,,y_,e ,,
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_- ,.
_

.

where the summation sign (E) indicates summing over the
index i from 1 to n. Let

Ex , (gg)2/n2S =
,u

(.- .
. -. , , . _

,

Syy = Ela ,(gy)2/n and
' - - - - - - - - -

,

'

S,y = ExY- (Er)(EY)/n,

from which the formula for the slope becomes

B=S,fS,
, .. -. . _--

and the formula for the intercept remains unchanged as - - _ .-__

A = E - Bi.

As these expressions are applied to sets of observations,
the upper-case-indicated random variables are replaced by
lower-case-indicated numerical values.

. . . _ . . _ . - - . _ _ _ _

- - - - . . - . . _

e ., ,. .

I For discussion:

c Examine the expression for Syy given above. Does it remind you of
anythira you eaconntered earlier in this book?

~ ~ ~ ' ~

o Note that, although the term S y s not " sed in the construction of A ;iy
- -

or B, it comes into play at later stages, when the quality of the
regression line is examined and when correlation methods are used.

o The tenns least squares and regression are unfortunately often used
interchangeably. The inethod ofleast squares is simply one of many
methods for determining the parameters of the model of interest;
another is the method ofleast obsolute values. Nothing inherent in

_ _ _,

. - - - - . . . . . .

|

.- _-

O' ' - " * 4 * =**-a r-4.e ~ iw ,m w ,,m.,,, , , , _,

,

- <. ,

w , ,
.

. . .

. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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__

the method of least squares carries such requirements as equal
variance and normally distributed errors; those are specific
requirements of reBre33 ion.

-.-n, . . .. ,_ .--
,

'

.

L .e ,w m m .. m.- e . m . .m em

Example 14-1:
Pressure stabilization

Table 14-3 contains a fully v orked example in which a
regression line is fitted to 10 data points. Here, the
independent variable x represents the time, in hours, since

~~ ~ ~~ ~~ - - - ~ ~ ~ -
the beginning of an experiment designed to measure the
change in pressure in a pressurized system. The

- - - -

dependent variable Ymeasures the cumulative drop in
pressure since the beginning of the test (i.e.,-x = 0), in
hundredths of pounds-per-square-inch (psi /100) in the
system. The analysis assumes that, at least for the time
under study, the cumulative drop in containment pressure
is linear.

., . ..-. _. ... , .. . . - . _ _ _., __._

. . . - . . , m -
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Ttble 14-3:
C:lculations for simple linear regression applied to Example 14-1

Data setup, initial calculations, estimated line, and deviations: p - '- - - - ~e-~
,

u .-- . - ... ... _......m _.

Pressure Predicted \
Time drop. pressure Deviation

index (hrs) (psi /100) Initial calculations drop (residual)

i so y; k k x;y; fg yg fg

1 0.5 1.00 0.25 1.00 0.50 1.19 -0.19 *

2 1.0 2.00 1.00 4.00 2.00 2.03 4.03
~

3 1.5 4.00 2.25 16.00 5.00 2.86 +1.14
. .. - - . . _ . . _ . , .

4 2.6 3.00 6.76 9.00 7.80 4.69 -1.69

5 3.4 6.00 11.56 36.00 20.40 6.02 -0.02

6 4.6 8.00 21.16 64.00 36.80 8.01 -0.01

7 5.5 11.00 30.25 121.00 60.50 9.51 +1.49

8 6.6 11SO 43.56 121.00 72.60 11.34 -0.34
, , . . , _ . . . . . . _ , _ , , _ . .

9 6.7 1*.00 44.89 144.00 80.40 11.51 +0.49

10 7.5 12.00 56.25 144.00 90.00 12.84 -0.84

2 2Sums Er = Ey = Ex , gy g,y , gf , g(y_j) ,

39.9 70.00 217.93 660.00 377.00 70.00 0.00

Intermediate calculations:

2= L . (3 ,)2/n = 217.93 - (39.9)2/10 = 58.7290Sy
2= Ey .(g )2y /n = 660.00 - (70.0)2/10 = 170.0000

(S :_._-.~-..-----_-= Exy -(Er)(Ey)/n = 377.00 -(39.9)(70.0)/10 = 97.7000 L _

I = (Ex)/n = 39.9/10 = 3.99
y = (Ey)/n = 70.0/10 = 7.00

,

!

Regression equation calculations: I

b = S,y/S = 97.7000/M.7290 = 1.6636y

a = y - bi = 7.00 - (1.6636)(3.99) = 0.3622
!

The estimated equation is f = 0.362 + 1.664x. For each x, the . _ _ .

corresponding f, is shown above, as is the difference (yf - f,).
. . . . _

I

_..
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. _

The precept that one good look is worth a thousand
guesses is as valid in statistics as it is in poker and bridge.
Accordingly, Figure 14-4 displays the 10 data points from
Example 14-1 (Table 14-3).

- - ,- , __ _ _ . _ , , _ , , , _

v___.__. - - . . _ _ _ _ _ , .

Figure 14-4:
Data from Example 14-1 and the regression line calculated in
Table 14-3
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Examination of Figure 14-4 reveals a general lower-left to
upper-right trend in the plotted points. No particularly
striking curving trend is apparent. Thus, the linear model
appears to be a good start in characterizing Table 14-2's
data.

. - -
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One feature of Table 14-3 is worth pointing out:
Following the calculations of b and a, you may wish to
calculate the value of y as determined by the regression
line. This means that, for each x value of interest, you

predicted calculate a + bx to yield an associated f, a predicted
'

I
~ ~''~

:
' ' ' ~ ~ ' ' ~ ~ ~ ~ ~ ~ ~ ^

value value. The f values for Example 14-1 are given in the
next to the last column of Table 14-3. The deviation (or
difference) between the observed y and the predicted f
values are given in the very last column of Table 14-3. A

residuals Clearly, if those deviations-called residuals-are small, \
the regression equation fits the data well. \

\ . _ .. _

.- -- - ..

For discussion:

0 The formal definition for the regression line requires that at least two
of the x values be different. Why is this necessary?

Show that the regression line goes through the point 6, y). This bito
of informa' ion is particularly valuable when you draw the regression

~~~

line throupt a set of points. To that end, calculate the point 6, y)
and consider only lines that pass through that point to expedite your
selection

c Examine the data in Figure 14-4 and try to guess the pressure drop at
5.0 houts from the graph and from the regression equation. Are the
two results in reasonable agreement? What about 10 hours? What
about 20 hoursi

_ _ . _ .

O The prediction equation is a special application of the regression
equation. It is called the prediction equation because it is used to
predict a " future" y value for any fixed value of x, not necessarily
limited to values in your dataset. For example, you may wish to use
the prediction equation to estimate the cumulative drop in pressure at
8 hours after the beginning of the experiment. Of course, you muat
be very careful in extrapolating beyond the values collected during the - -

experiment. To emphasize the point, consider this: What would you --- -- - - ... . _ .

_ _

M- " ' 8 e -'eq=si .gib''*W '6 " - 48'N m-h = '%A- - utuma.. 4 B<eg .-.m%% .wm,_ ,m , , ,, ,. ,,

,

.
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-

be willing to guess is the drop in pressure 2,000 hours after the
beginning of the experiment?

,- - -t,- c7 , ,

~ - ~ ~

Sources of variation in simple linear regression

The model for a simple linear regression and the
prediction equation are given by two expressions:

Model: Y, = a + 4xj + E , i = 1, . . . , n

Regression equation: f, = A + Bxj. f
-._,.____.e_,. -_

, . _ _ , _ _ _ ,, . _ g

Consider now a mathematical identity for any point (xg, Yj)
in the dataset:

(Yg - 5) = (Y - f,) + (f E).f f

The three components described in td: mathematical
identity have both geometric (as shown in Figure 14-5) I''''~~~~~"~~~"'~~~

' - - - - - - - " - - - -
and statistical interpretations (as explained in the following

text).

. - - . ._ --.-- - ._

- _

" 9' *"*8 y aeum. 6 4. .w ,op ,

*M"''-NWshe.ua em a,- .. ann.,s.4a. ma a ,. . . , ,

*- " * ' ** e - + - pas g,, _ ,

" -' *'W"'8- hw- .ror-- . , , _ , ,

b

n
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Figure 14-5:
Graphicalinterpretation of error components

Using Line 3 from_ Figure 14-3 to interpret the three components of
the identity (Y - Y) = (Y - 9 ) + (9 - Y) for a selected pointf f f f

~~ ~~~~"(x,, y,) = (5, 8) 7 -- - e t
. ._ -.._ __ ._. - _:

10

9- |m o
_

Ime3
8- '

y = (8/9)x + 2- ,

"> .. Due to.x
'N - _. -- . - _ .. .%

6-

4- O '

Imel
3- y = 5.6

/2

1
. , - . . .. . .. ,, -.-., , _ _., ,,

0 ; ; ; ;, , , , ,

O 1 2 3 4 6 6 7 8 9 10
' ' ' ' ''' ~ ~ ~ ' '''

independent variable x

|
\

The tenn (Yg - i') is represented in Figure 14-5 by the distance between .
the 4* observed point, i.e., (x,, y,) = (5, 8), and a point -

~ ~ ~ ~ ~ ' ~ ~

~

on the horizonal line, y = 5.6, that represents y, the .
mean of all five observations, so that the term has the
value (8 - 5.6) = 2.4. This particular distance represents
the basic element used_in the calculation of the sample

2 /variance S = g(y . y)2 (n - 1). The term (Y,- F) ist ;

total deviation called the total deviation.
'

- - - -. - - - . .

h ..e g 4 m. %Aw %, em , _gg,g,, ,g, g ,_g, ,,

I

i

- - ' ' ' * ' " *= + ., .. . . -, . ..

* * '' .N- 6 - ' useu m i estW-. ,em.,. ,%mg & 4 . . 46a. ,wh % gm , , ,%, _ _ p

-. -- -- -- .. - . . . .. . . . . . . ._ , , _ .. , . , , . . ,,, , _. , ..
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The term (Y,- f,) is represented in Figure 14-5 by the distance between
,

the observed point (xg, Y,) and the " fitted point" (xj, Y,).
For the data in Figure 14-5, the fitted point is (5,6.44),
this term has the value (8 - 6.44) = 1.56. A small value )s

'

for this term indicates that the estimated line provides a {--~~i
' t' .yr .

" reasonable" fit through, or near to, the point (xj, Yg). A
!arge salue for this term indicates that the estimated line ,

does not fit well, at least in the neighborhood of the point j
d

(xg, Yg). The term (Y - f,) usually is called the if _

residual residual. (Two other commonly used expressions for this
term are departurefrom thefitted line and error). Indeed,
this term estimates the error E used in the model tof
accommodate departures from strict linearity. F ~ ~ ~~~ -- 7

L- -.. _ . - - - . :

'Ihe term (f f) is represented in Figure 14-5 by the distance betweenf ,

dthe predicted value of Y at the i point and the mean Y.
For the data in Figure 14-5, this term has the value
(6.4 - 5.6) = 0.8. If fg and Yare near each other, this
means that the estimated line does little to im_ prove the fit
beyond that offered by horizontal line f = Y, at least forf
the id :iata point. If fg and Yare far apart, this indicates - --_ _

that the estimated line assigns a predicated value for the i'h a - - _ _ - -

point that appears to be an improvement over the sample
mean. As suggested in this context, the term (fg - Y) is

due to said to be due to regression because it assesses the
regression " improvement" made by the estimation procedure over the

simple use of the mean value.

The residuals from Example 14-1 are calculated and listed -. _ _.-._. _
,

in the right-most cohmm of Table 14-3. L.____ ___ _

For discussion:

The relation (Y f) = (Y,- f ) + (fg f) is said to be aC f f
mathematical identity. What is a mathematical identity? How is a - - - - --

mathematical identity different from a mathematical equation? - . - - - - - - - - . . _ . _ . . . _

- . _ - - .-.

*h . NN am.er.+.p., , ._s w w w. ,. ,,, _ ,,,g ,,, ,
_

# &=seR>' etr am e 4 9 ,,

' '- " '

_ _ - _ _ _ _ _ _ -__
'
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a Consider the residuals from Table 14-3. Note that, apart from
rounding error, they sum to zero. This property suggests that,
although sometimes your predicted value exceeds the observed Y and
at other times falls short of the observed Y, the residuals of a
regression-derived line sum to zero for the values of x used in the 7"7 ~ ' " ' -

"- ~ ~ ~ ~ ~ ~ - -
regression.

0 In this regression equation, Yis written as a linear function of x. At
times, you may be tempted to use the regression equation and predict
x from Yby solving for x as a function of Y. For example, if
Y = 3 + 2x, a simple algebraic manipulation may entice you to use
an inverse-prediction equation of x = (Y- 3)/2. In the strongest
terms, our advice is to resist such temptation. If you realize later in ~ - -

the game that x should be treated as the dependent variable (and the - - - -

variability of y is sufficiently smaller than that of x), your best bet is
to start the experiment and the analysis over and construct the
appropriate regression with the roles of the dependent and independent
variables properly defined. Failing that, spend some time with the
literature of inverse-prediction equations and in the presence of people
who have ventured therein. While you are in the waiting room,
for example, you will benefit from a visit with Brownlee (1965, ~ar~-- -- - .- - - -. -

pp. 346-349). -_ ___ . ._ ____

Simple linear regression analysis

A sensible question you may ask at this point is whether
the effort involved in fitting a line to your data is
. warranted. Put another way: Is the dependent variable -

-~

really a linear function of the independe at variable, or can
you do just as well by using the sample mean Y as a
predictor regardless of the value of x? To answer this and
other questions, you must delve deeper into regression
analysis. From this point on, the assumption of normal
distribution of error should be deemed valid, because it
forms the basis for all of the hypothesis-testing procedures - - - -- -

discussed here. . - - - - - - - . -- . - --

-- - - - - - - - - .- - - .. ._ ._ _ .__

* " " 4 ** bh' N em- . .ammenwer Jr n.emmis,g.- m4-,, ,, , , , ,
__

*" o

'-' ' - ''
'

'
- ' - . , ___ _ - _ _ _ - - - _ - . - _ - - _
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:
!

trend One natural question: Is there evidence of a trend in the"

data?" Thus, in Example 14-1, the question is whether
there is evidence for a constant drop in pressure over the

j

). time interval for which measurements are available. For a
straight line, a trend is captured by the slope. So you set I-~T 7 - ' ' "' T :

'

'- - -- "-
out to test the hypothesis Ho: S = 0. The alternative

! hypothesis is usually in the form of H : # # 0. Of3

course, you could write the alternative hypothesis as a
one-sided hypothesis, either as H : $ > 0 or ast
# : $ < 0,

3

|The regression analysis is based on some mathematical
- - - -~ - - - - --- |and statistical facts, the most important being the ability to r

partition the variability of observations around the sample
- 4'

mean into meaningful components. To gain appreciation
;

|
for the partition, recall the mathematical identity discussed

| earlier in this chapter:

! - . . -

(Yj - Y) = (Yj - Yj ) + (Yj - F).'

|

i Using this identity, the following expression also can be ,,. . . . - .- . - . _ , _ , ,,,_

|
shown (cf. Neter, et al.,1990, p. 90) to be an identity: , .. _, . , , _ , , _ _

! _ _

E(Yj - F)2 = g(y , p)2 + g(p y)2,

| The first identity offers a geometric interpretation of the
variation associated with an individual observation. The

| second identity extends the first by expressing the joint
variation of all the points in the sample. This identity
partitions the variation of all of the sample observations [- ~_ _ _ .

_. _ _ _

'

about the sample mean into meaningful components as
discussed below. As in Chapter 12, the measure of
variation that lends itself to meaningful partition is the
sum of squares.

. - -

* * ' *' M m* A- enn e ...we.. a q, . e,m,,,,,

# "" *'* e e .e

'* ^** +** e.m-pree aw.w. _, , , , , , , _

em.

~ he@'e gpe ap4D.. m ,
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Total The term E(Y 5)2 is called the Total Sum of Squares.f
Denote it as SS ,. For the n points (xj, Yj), SS , has

-

Sum of 3 3
Squares, SS , (n - 1) associated degrees of freedom. The formula for3 *

SS , is denoted by Syy. It is applied to the data in Table3
14-3 where it is written as SS .

' - ~ - ~ ' "~7 '~

,
y

Residual The term E(Y;- 9,)2 is called the Residual Sum of

Sum of Squares. This sum of squares, designated by SS ,,, hasp
Squares, SS ,, (n - 2) associated degrees of freedom. Although you can3

calculate the Residual Sum of Squares by creating all the
residuals, squaring them, and summing the squares, a
simpler prccedure is given in the second paragraph below.

j. ._ _ -~,.- - _ . _ _ _ _ _

Regression The term E( i Y)2 s called the Regression Sum of ' -- -- .-- - - ._- - 2

Sum of Squares and is denoted by SSg,g. For a simple linear
Squares, SSg,g regression, the associated number of degrees of freedom is

always 1. You calculate the Regression Sum of Squares
|

by this formula:

SSg,, = S,QS . ,, ,, , _ _ _ , , - , , _,___ __ ____, _ _ _ _ _ , __n

With SS , and SSg,g in hand, you now can calculate the
" ^ ~"~ ~ ~ " ~~ ~ ~~ ^~~~--

3
Residual Sum of Squares by this formula:

SSpa, = SS , - SSpeg.3

To summarize: The total variation among the
observations in the sample is separated into two

* - ~ - - ~ ~ ~ ~ ~ --- ~ '

independent components: SSg,g attempts to explain the
data behavior through a regression model, while SSg,,

'- - - -

measures the " unexplained" variation.

These three different sources of variation are now entered i

into a regression analysis table, as shown generically in
Table 14-4. !

l

, - .

* M9'O e - WM = e@ @s ew. m eg, n. m,

1

1

- - - ._ . _ _ __

~ *#* " " * *- 'e= d m. e e-e.em4 .w-4 -. . . . , . ___ , _

|

.
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Tchie 14-4:
| A generic regression analysis table
i
!

Souste of Sum of Degrees of~ Mean square p - ~ ~ 7 -- .____t
v

variation squares freedom F L .._

I msg F
Regression SSa,, dfa,, = 1 = SSg,,bfge,

_

MSpe,lMSg,,=

MSpa,

Kesidual SSnes dfy,, = n - 2 = SSg,,ldfy,,

* ' ~ ~' ~ ' - ~ - ~ --~
Total . SSro, dfr, = n - 1

. _

!

|
Return now to Example 14-1 and retrieve the necessary

I calculations as needed from Table 14-2. They are:

170.00SS =g
SSg,, = (97.70)2/ 58.729 = 162.5311

" ' - * ~ ' - -- " - ^ ~
SS ,, = SSm - SSg,, = 170.00 - 162.5311g

7.4689. - - - - -~ - -- - ----= .

,

1

The rest is easy. Just as in the analysis of variance tables
'

,
,

'

of Chapter 12, the Regression and the Residual Mean

j squares are obtained by dividing their Sums of squares by (
their corresponding Degrees of freedom. Thus, the
Regression Mean square is calculated as

/dfg, and the Residual Mean square as ; .- - - - . - - . -

msg,, = SSg,g/dfg,,,. The appropriate statistic for testing
..

msg,, = SSg,, L_ _ _

the significance of the slope is F = msg,g/ msg,,.
Construction of these Mean squares and the test statistic F
should be familiar; you went through the same steps in the
construction of the analy' sis of variance tables in
Chapter 12.

The regression analysis table for Example 14-1 is . - - _ _ . . .. __

displayed in Table 14-5, where the calculated value of the ..__ _ _ _ _ _ , , _ _ _ _ _ _

test statisticfis 174.07.

|
| .- ., .-_. . . . __ ._ . . _ . .. ._. .,_. , _ . , _ . __,

- - . - __ _. _ __... _ _ . _ _ _ __ . . , . _ . , . .. _ . . _ _ _ . . . . . . _ _ . _ _ . _ _ _ _ . . _ . _ .__

# 4"-' #- "- M h .b4 --4 M. eg e.hs M ,g.g p. gg, g ggg, g g_, 4 , _,_

|
, . _.. . , ,_-.
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|

|

|

Tcble 14 5:
|. The regression analysis table for Example 14-1.

!

|
- , - - - . , . . ,

I Source of Sum of Degrees of Mean L - . .'. . _ _ _ _

vtriation squares freedom square f. \
Regression 162.53 1 162.53 174.07

\Residuals 7.47 8 0.93j
\'

Total 170.00 9

\
Recall that this study was conducted to ask and answer a ' .;

question like this: Is the pressure drop constant over the
~ ' '

j
'

time of the experiment? If the regression is found to be :

"significant," then you reject the hypothesis of constant ;

!
! pressure drop; if it is found "not significant," then you

have insufficient evidence against the hypothesis of
constant pressure drop.

" " ~ ~ * " ~ ~ ~ ~ ~ ~ ~ ~ ' * - * ~ - '

To determine the significance, you compare the statistic

f = 174.07 to the critical value offo.9g(1, 8) = 5.32.
- - -'

The calculated statistic exceeds the 95 percentile of the F -
,

| distribution with corresponding degrees of freedom, so
that the null hypothesis of S = 0 is rejected-a conclusion
you might have reached by merely looking at the data,

,

i

Note that the analysis of regression table and the
associated F-distributed test statistic are constructed to test --"-------1

1only a two-sided hypothesis. If you need a one-sided o- -

alternative hypothesis, you compare your statistic to a
tables value offo go(1,8) and examine the direction of the
slope. You may find it useful to sketch the F distribution

| in order to visualize this.

One more thing: Earlier in the chapter we stated that a
requirement for the construction and the analysis of the _ _

2regression line is that the variance, a , of the observed __ _ . _ . - . ,.

value Yis constant for all values of x. Now that the '

.

s

- - - . _ . .

* * '4'M v *N WM m-.6h e. m.su. , y 9, , . p.p., ,
, _ _ _ , __

I

.

'

I.
I

- .
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,

2regression analysis is complete, the estimator of a is '

obtained from the Residual Mean square of the regression
analysis table. Consistent with previous notation, you

2

|
denote this estimator by S ,

,- - v 1L_...,. ,

. _ _ _ _
,

For discussion: i

0 Using the analysis of Table 14-5, you reject the null hypothesis,
claiming significant time trend. Could you have been wrong? What |

!

1
is the chance of that? What would have been your conclusions if the
calculatedf had been 1.86? Could you be wrong? What would you [. '~~~'~~~7

|
~~ ~~ '

have concluded if the calculatedf had been -1.8672

Examine the Table 12-2, the generic ANOVA from Chapter 12 and| 0

compare it to the generic regression analysis table, Table 14-3. What
are the similarities between the two tables? Where do they differ?

:

}

The analysis in Tables 14-2 and 14-3 tests an hypothesis about theO

slope of the regression line. Note, however, that no test for the j'''~" * ~ ~ ' ' ' -' ~ ' - -

' - - -

intercept is given in the table we constructed.
- - - -

; a Note the strong resemblance between the Mean square for Error
(msg) of the ANOVA in Table 12-2 and the Mean square for
Residuals (msg,,) in the regression analysis in Table 14-2. Could
they both be estimating the same thing? If so, what might it be?

k

c The similarity between the ANOVA table and the regression analysis ;- - - - - - - - - - - - -

I-table of this chapter is no coincidence. Both tables are based on the .
-

same types of assumptions and tests of hypotheses that can'be written ;

in mathematically equivalent forms. For this reason, many authors l

; call the regression analysis table an analysis of variance table.
,

; I

k
- -

<
.- . - - - .- ... . . . .

i

- - . -. _ ,_

'*'' **"* = " - emis+eism , is,sm.n 4,, . , ,_ ,g, ,

4

.- - . . . . . .. . +
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|.
T

Student's T statistic in regression applications.

A statistical analysis based solely on a regression analysis
table is limited for three reasons:- _,_ _ , , . . _ _ , __ _ _ _ .v

:
-

,
_ .

' i

(1) ~ The regression analysis table tests only whether the
'

regression line is horizontal. Thus, a test,

I investigating whether the regression slope equals a
t constant other than zero cannot be executed directly.
I through that table.

*

4

- (2) The test based upon the regression analysis table is . .

~ ~ ' - ~ ~ ~ ~ " ~ -'
_

.

formally a two-sided test (# : # # 0). If a one-3;
-sided test is required, additional, although minor,

- -'

i
steps need be taken, as suggested earlier in this'

chapter.
3

>
.

(3) The regression analysis table does not provide a tool ,

; ;

; for constructing confidence intervals for the slope, for

j the intercept, or for a predicted value of Y for a given
+ ^ ' - - - -%, 4value of x, say x , p--

o
. ., ._. . _ _ .__. ,

| What the regression analysis table does give you,
2

; however, are systematic steps to calculate S -the estimate
2

j of the common variance o -a quantity pivotal to many
statistical tests associated with regression.-

,

.,

i Before discussing these statistical tests, let's gather our

j. thoughts and recall several relevant properties about .. -.---____...__-_y .

regression and introduce a few new ones, basing these . . . _ _ , . . _ _ _ _ _*

remarks on Neter, et al. (1990,' pp. 69-71).
j

). B, the estimator of the slope S, is a random variable.m
c.

;
j e B is an unbiased estimator of $ (if the model is
a correct).
t

e If the observations Y are distributed normally, thenf . . , , _ _ , _ . _ _. _ , _

the estimator B is also distributed normally.:

!.

3

i |
4

1
1 - -4 -- -- . e __ ._. ._ _ _ _ _ _

q' - * * - - < = - ..- -m e . .m. . _ . . _ . . . _ , . _ .,, ,, ,

'

_

i

1,

7

$
.

.-
_

-: _;._,_.._ , .;
, , , _ . , . _- -. - ., - . -- . _ ._ _ ._

'
.. - - . - - . - , - - - ,, --.
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- .

-

2 !s The ve.riance of B is a /S -u

2
m The estimator of the variance of B is S /S -u

1

m The estimator of the standard deviation of B is ['_-. - -- _ . _ _ _ . _ _ . _ _ _._ ,~;~~ -~ - m
j-

..

/S/Su . You will often find this estimator called
2

"the standard error of B."
i

Similar properties apply to A, the estimator of the !e

.intercepta. |

Using these properties, you can readily construct a number . - - ._- ~ _ _- ___ . _ _ _

of useful statistics. For example, consider the statistic in . _

the formulation:

B-6T,
,

}S /S,2

which is distributed as Student's T with (n - 2) degrees of

freedom. , , , , , , . , , , , _ , ,_.,

You can use this statistic to test the hypothesis that #
' ' ~ - ~ ~^ ' -~~ ^ ~-~

equals a given constant, say So (i.e., Ho: S = So). All
| you have to do is to substitute #o for # in the formulation

given above. For example, if the alternative hypothesis is
set as H : # # So, with level of significance a = 0.05,i i

| you reject Ho if the absolute value of Texceeds
1.975(n - 2). For H : #> #o, you reject No if T exceeds|- 0 t
1.95(n - 2). Similarly, for H : # < So, you reject Ho if T { - - - ~ ~~ ~ ~-| 0 i
is negative and T < to.05(n - 2) or, equivalently.

|T| > to.95(n - 2).

;

I

For discussion:
i .. . . . - . ..
t

In testing for significant trend, regardless of the directim of the trenda ~ ~ ~ ~~ ~ ~ ~ ~~~ ~

(i.e. H : # # So), you may run both the F test (in the regression| i

l

i l
I i

|

* - . . - _ _

g -_ +n_% mm- - - - - -u4 ..am-.,, -m>w. e ere . -daw.e* -.me-- _w ,m- .* N- .ey.- e-e e -ame

|

|

|
,

* *- ha' + * * * - . - n., .e ., . ,% ,, j

,

-
. .-
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Example 14 2:
! Coefficient of expansion of a inanufacturer's metal rods

Suppose you wish to test a manufacturer's claim that the
expansion coefficient of a metal rod is at most 0.0012. -77 . ,- c

Suppose, further, that from data from a sample of size
--- - - - -- - - _

n = 20 readings, you calculate b = 0.0014,
mS ,, = 0.00033, and S = 312.25.R y

1

-.

You start with the null and alternative hypotheses:

Ilo: # = 0.0012, H : 0 > 0.0012, and a = 0.05.i
. - - - .-- \

Continue with the test statistic and its calculated value, - _ .
; .

!

|

| T = B - 0.0012
'

} SISn

and
.. . . - . . . . . , . _ .., ._.

I t = .0.0014 - 0.0012 = 0.1945, - - - --- --- --

y'0.00033/312.25

so that t = 0.1945 < to.95(18) = 1.734. You do not '

' reject Ho , stating that there is insufficient evidence against
the manufacturer's claim that the coefficient of expansion

;

is at most 0.0012.

.|- -.. _ , _ _ _ _ . _ . _

- -

1

For discussion: |
|

in Example 14-2, regarding the expansion coefficient, you obtained aEl

| sample of 20 readings. Does it make a difference if the 20 readings
were made on one rod, on a single reading on each of 20 rods, or on
some combination of the two? _. . _._ _ . _ _

. - _ _ _ . . . .. . . _ _ _ . .

U

- - -

~~ '-' - = * " * * *'N =.m .,.,,,,w, , , , , , _ ,

_OM'*- W a.e4. t e_. 4...g .g ,,g ,
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I

o Are you comfortable seeing that the sample expansion coefficient is

! higher than claimed, and yet Ho is not rejected? What can you do
| about it?

i
1

If you wish a test with greater sensitivity to departure from the r - ,- ,

0 r

k~E _.-..,
! manufacturer's claim, you may elect to use a larger sample size. \

What would you expect a larger sample to do to S and to T1 Are \y

these consequences of a larger sample desirable? \
,

i

N
\ |

Constructing a confidence interval for the slope N|
!

_

' ~ ~ ~ " --

A point estimate for the slope, given by B, is often
unsatisfying; it leaves you wondering about how far off l

J

you might be in your estimation of S. Your level of
anxiety may be reduced by the use of a confidence

.

'

interval. The advantage of the confidence imerval over a
point estimate is that it provides a " margin of play," ,

'

giving you measurable assurance that the interval includes
~~---------|* * - " *

the true, yet unknown, slope.
. ~ . . .. _ _ _

The confidence interval for the slope is written in one of
the following forms:

For the endpoints of a (1 - a)100% two-sideda
confidence int erval, you calculate

|

B i t(1 - ar2)V T /8 - [ ~ ~ ~~ ~ ~ ~[n

For the endpoint of an upper (1-a)100% confidencem

I interval, you calcula*e

B + t g . ,y}S ISz n.

. . - . .

>

L--_---_ . ___ I

1

. ]
l

|

l
i

i . " '" * -- .= .-

I

-~ - - - - --- _ _ . ._, , , , . , _ , _ , ,

- - . _ .

'i
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_

; a . For the endpoint of an lower (1-a)l00% confidence
i interval, you calculate

B - t)S /S
2

n.
- - . _ .- - - _.,.;
._ _.,_ _ _ -__. _ . _

Example 14-1b:,

Pressure stabilization (continued again)
|

| Construct a one-sided 95% confidence interval for the rate .

'

of drop in the system's pressure with respect to time.
Undoubtedly, you are interested in an upper confidence
interval to see whether the pressure drop is excessive. .

(
I The required endpoint of the interval is given by - . _

calculating:

1.664 + 1.86/0.934/58.729 = 1.899.

:

. . . . . . . . -. .. .. --- . _,.-

| For discussion: - - - - - - -- --

!
c What is meant by "a 95% confidence interval for the rate of drop; in

the system's pressure with respect to time"? Specifically, it's 95% of
what?

O Calculate a 95% confidence interval for the coefficient of expansion
given by Example 14 -2. -- -- - - - ---- ---. -_ --

____ . . _ _ . _

Hypothesis-testing and confidence-interval
construction for the intercept

Hypothesis-testing and confidence-interval construction for
_ _

the intercept are built on the following properties (based
~ ~~ ~ ~ ~ ~ ^ ~ " ~~'~

on Neter, et al.,1990, pp. 71-73):

. - . ._.

*-- -N- 4- ,i+%.. . , , . . - .,,gp,... ,_, , 4 . ,, , ,, , , _ _,

-

4 -* - a.. am -& e. esse - m.-4h +-
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m A,' the estimator of the intercept a, is a random -
variable,

;

s. 'A is an unbiased estimator of a.
, . --v t.

; , ,

"~~
~

m ' If the observations Y, are distributed normally, so is -
-

the estimator A.

2 2m- The variance of A is'o (1/n + 2 fg ),u

2 2The estimate of the variance of A is S (1/n + 1 fg ),-a u
. _ _ . _ . _ _ . , _ _ . . _ __ _

' e The estimator of the standard deviation of A (often . . . _ _ __ . _ . . . . _ , . _ .

called the standard error of the intercept) is

1- 7 2
Sa = S -+-.

n Sn
,

From these properties, you construct the standardized , , , , , , . . _ , _ . . _ _ , , , _

statistic of the estimator A: . b,_,__ i. _ . . ,
_

T, . A-a
,

S/1/n + 12/Su

This statistic is distributed as Student's T with (n .- 2)_ 'N
degrees of freedom. _{

[-
Now you may test whether a equals ~a given constant,
say Ho: a = a , by substituting n for a in theo o
expression.

iIf the alternative hypothesis is set as H : a # a , you_
)i o

reject No t the 0.05 level of significance if the absolutea

value of the calculated t exceeds (0.975(n - 2). For
- - - -

H : a > "O, you reject Ho if i exceeds to.95(n - 2). For
'-

t
H : a < a , you reject No if t is less than to.05(n - 2), or

- - - - - -

3 o
equivalently, if -t is larger than '0.95(n - 2).

. - . -. ~. . . . . . .. _ _ _. . -

**"^* * * Wie . Mi gw p% m.,..m e ..m,..w,gg, , , , 9,4,.. , , , , _,

' "" O +# # P &4 ''N.e ,gp M ge- 4 ., 4g, ,4 4 p. 'g g. 4 ,, _
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d

Endpoints for a (1 - a)l00% two-sided confidence interval
for the line's intercept are given by

Aitg . g)(n -2) x S3
7 . _.__ _ ,. _ . ,

k -- - 1- -"
where tg o)(n - 2) is from Students' T table value for

--

a = 0.05 and df = n - 2.

One-sided tests and confidence intervals foi the intercept4

are similarly constructed.
C

y- g - .- . .e,s e -9 ,-m- p,..%-p,,..

' - ~ - - - -

For discussion-

C Construct a 95% confidence interval for the intercept of the pressure
stabilization problem, Example 14-1.

O What interpretation will you give to that intercept?'

.. . - . . . . . _ _ _ , - _ _

* 5 + . - . -% es -

Prediction with simple linear regression

Consider the use of the estimated equation,
Y = 0.3623 + 1.6636r as a " prediction equation"
associated with the data given in Table 14-1. For each
value of x that you place in that equation, you get a

__{ ~~'~ _ _,
, _ , . __

corresponding value of Y. To keep things straight, let Ylx '

(read: "Y given x") designate the " predicted value" for x.
Thus, for x = 5, Y|5 = 8.68 is the value that's

i " predicted." Similarly, Y|5.5 = 9.51 and Y|20 = 33.63
are " predicted" for x = 5.5 and x = 20, respectively.

Be very careful here. Since the x values in the original-
dataset are between 1 and 10, the prediction of y for

~ ~ ~ '

x = 20 is considered an " extrapolation." Extrapolations
'- ~ ~ ' ^^ "' -- -

must be accompanied by caution. If you are not cautious,

.

%

.
,1

. _ _ _ . . _ _ _ . _ _ - , . . _ . _ _ . . _ ,_. ._ , , . . . __
- .-- .- - -- . . .. .

,

.

. - - . - ._ _ _.
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'
you risk violating at least one of the fundamental
assumptions of linear regression methodology: . that the
model is linear over the entire set of independent values |

|for which it is applied.
- - -- v u

,
' ( ' !3 ,

The prediction equation offers a single predicted value
' \

-

from a single predictor x. But you should not be willing4 ,

ito bet heavily on this predicted value being correct, even
~ ~- '

if is it the best you have. Only a few, if any, of the j
,

original data rest on the prediction line. At best, you>

! would expect the value you wish to predict to be near the
prediction line.

. _ . _ _ _
,

' - - -r -- - -

Since the prediction may be in error, you hedge it. You
do that by obtaining bounds which you are pretty

{ sure-say, with probability (1.- a)-tc contain the true-
; but-unknown value Y|x. Endpoints for a two-sided (1 - a) .

confidence interval for Y|x is given (see, for example,
,

;- Neter, et al.,1980, pp. 79-85) by:
.

'

7.-.---,-
- - - _ , _

A + Bx i f(1 a/2)(n - 2) x S X 1 + .I + (* ~ ) U '

n S, ,

where S is the square root of the Residual Mean Square4

j error in the regression analysis table.

If you plot these endpoints for a series of values of x, you
will see two curves, one lying entirely above and the other _ _ . _ _ . _ _ . _ . .<

j lying entirely below the regression line. Together, these [. _ m'
curves form a confdence belt which is narrowest when
x= ~, as seen in Figure 14-6.

1
1

!
1

4

9- .sma =is.- +

=4+.*...m.=e.,... 4. .... . . ..

,

J-
.

- -- -.- -- - - -- -- .-._ - . _ _ , . _ . _ _

*** N" N -'h@edd + .-hw ,Wm+ _e.w.4-. 5me us .,.w.me., , .,, i .-eh . ge e.,e.ii. . & pg n@M m4 m .-,ng.

'

'
,

e

) * " *+ . - -

;
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Example 14-1c: .

Pmssum stabWzation (continued one mom time) |

Your boss wants to know what you think will be the

| cumulative pressure d:op when you are 8 hours into the [~ 7" ~ ~ =' u
" ~ ~ ~ - - - " -

| test. What do you give as an answer?

Of course, you use the regression equation

Yg = 0.3623 + 1.6636(8) = .13.67
-

and report accordingly. ,

_1, .- . _ _ _ . _ _ _

But then your boss says, "I may not know statistics, but I
-- .I-

'

know what I like. And I like confidence in my answers.
Just how confident are you that the pressure drop will be
13.67?"

Your personal confidence exceeds all bounds as you
evaluate these endpoints for a 95% confidence interval:

.. c . . . - . . . - . .., , , . -

. . . . . . . _ __

1+1 (8 - 3.99)2
0.3623 + 1.6636 x 8 * 2.31 x 0.966 x $

+
10 58.7290

which yields 11.06 and 16.29 as the lower and upper

_

endpoints of the 95% confidence interval.4

I

| The locus of the endpoints of two-sided 95% confidance . _ _ _ . _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _

intervals on predicted values of x are shown in Figure [_ _. _

! 14-6, which is based on the data in Example 14-2.
,

'

i

. - _

| *Although the dialog between you and your boss could continue inderinitely-or at least until . _ . . _ _ . . . . . . . , , , _ _

z = 8,01-and it could be both entertaining and enlightening to continue to observe the process. we
think it discreet to draw the curtain on that little drarna right here.

t

!

I
i

( - -. - - -_ ._ . _ __ _ _.

1
- .. . . _ . _ . . . _ _ . _ . . _ _ . . . . _ , _ . _ . . _ _ _ _ _ . . _ _ _ _ . , _ ,.._,, _ _ ___

i

. . -

'* " *"'d f N * * * 44 m 4 mw2 p _ 4,, ,, ,
. ,

!

. . . , . . . . - -
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i

if I

I Figure 14-6:
| Endpoints of two-sided 95% prediction intervals for Example 14-1

<

|
|

f 7..,----- .. _ . , . . .

20 .i.._.. ._ _ _ __. ____ .._ __ a'
.

18 - j

!16 - <E
E 14 -

1w=
l

4 12 - = = '
E =

E10 -
t . - . _ _ _ . _ _ , ~ . - . _ _ _ . . . . _ . .

38- . . _ _. _ _ . _ . _ _ _ . _ . .
.

<

g
a 6-
E

4- =
e

,

'
2-

0 ; ;, , , , , ,

0 1 2 3 4 ? 6 7 8 9 10

Time t rs) , , , , _ _ _ , . _ _ , _ _ , , _ _ , _ _ , , _ _

.- . . . . . - -

For discussion:
|
r

| 0 Verify that the confidence belt for predicted values is narrowest r- -- - - - - - - - - - - - -
;

for x = i and that the belt " flares out" away fromI, What does it !- - - - -. - i

tell you about the nature of prediction? !
!

O A one-sided confidence interval may be more meaningful to your -

application. What two changes must you make to make the
confidence belt one-sided?

- . 1

- - . . _ - . - _ . |

!

|

|
._ . . _ . . . _ .

- -- - ._- . _ - . . . - . - . - . _ _ , . . . ._ ,. ._ . _ . . . . -_

J. e
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The correlation coefficient

The previous sections of this chapter concentrated on how
to "best" fit a line to a set of points and culminated in the . . . _ , _ _ _

procedures grouped under the topic of regression. Now [ ~ ~ ~ ~' ~~'~ ~ "~ ~ ~~ ~ I'

it's time to add another device to your toolkit: the
correlation correlation coeficient, a device designed to assist your |

i
coeficient investigation of the strength of a linear relation between

|two random variables. |

I

Consider a sample of size n of a two-dimensional random
variables, i ay (X , Yj), i = 1, 2, n. This simply |j ,,

means that, in contrast to the one-dimensional random
-

variables that appear in the bulk of this book, you observe
' - --i'

two values at a time-and you do so a total of n times.

sample linear The sample linear correlation coeficient for the two
correlation variables X and Y, is given by

coeficient
' - ~ ~ - - - - - - - - - - - - -

Ryy =
!S S$ n yy

- - - - -

where Sn, Syy, and Syy are the indicated sums of squares
and cross-products, the computing formulas for which are

,

|
.

Sn = EX . (gy)2/n,2

Syy = EY _ (gy)2/n, and r-2 - - - - - - - - ~ - - - - - .

L -- . -

Syy = EXY-(EX)(EY)/n,

as given earlier in this chapter.

In the remainder of this chapter, we omit the adjective
linear although, as you will see, linearity will always be

|
there implicitly. Also, when there is no ambiguity, we _ _

l

I omit the descriptive word sample. . _ _ _ _ _ . ,, _.

1

'

l

|

|

. - . _ . - .

' ' '*# * ON >+*4-m- e eg gm . , , , , ,

|
!

.

.
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Before illustrating the use of the correlation coefficient,
it's good practice to make sure that you do not perform
the right operation on the wrong patient. To that end,
here are three underlying assumptions and requirements

~ ~

that validate the use of the correlation coefficient: ;
~ " ~ '--

.

The two random variables X and Y are linearly related.=

In the next For discussion section, you will find an
example in which the correlation coefficient is
calculated for a set of points that are not linearly
related.

There is no designation of independent and dependent
~ - ~ ' - - - - - - ==
- - - - - -- - - - 2roles to be played by X and Y. This is in marked

contrast to regression methods, where x and Y are
classified-even defined-as independent and
dependent variables, respectively. Correlation treats
each variable with equal respect, just as you and I and

*

Rodney Dangerfield desire. Indeed, notice especially
that the lower-case x, used in regression to indicate a -

fixed value, appears as an upper-case X to indicate a - b - - -- - _ -

random variable when correlation is the topic. ._ _ __ _ _ _

Statistical tests about the correlation coefficient require=

that X and Y have a bivariate normal distribution, but
they do not necessarily have equal means or standard
deviations.

The sample correlation coefficient Rxrhas several . _ . . _ _ _. _ _ . .__.

properties, five of which are listed below: _ _
_

*

Ryy s symmetric in X and Y; that is, if you reversei=

the roles of X and Y, you find that Ryy = Ryy.

Ryy is a random variable; it is expected to be different=

from one sample to the next. This is the reason that
the sample correlation coefficient is desig lated with an

, , _ _ , _

'

upper-case symbol.
_

_ ._

_ h i e.w- -+ w.ume-- -- mw- -.gism.ouseee-* swm- - Awwe +.,we um - m.,e ,e-pe 'W- --a==-W- e =mw*=s--

4
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.

' _ 1

~

. .

!

A mathematical truth is that Rg cannot be larger than !=*

|
+1 nor smaller than -1; i.e., you always have
-1 s Rn s + 1, no matter what the individual valucs .

'
'

of the (X, Y) pairs.
- ~ . .- . _ _ ,.

'- -

Consistent with your intuition, there also is a
--- - --

=
,

| population correlation coefficient. This parameter,
denoted by the lower-case Greek letter pg(read:'

" rho-sub-XY"), also is symmetric in X and Y; i.e.',;
g = pyy. It also is bounded between -1 and +1;' p

i.e., you always have -1 s Rn s +1, no matterg
what the values of the individual (X, Y) pairs.

1
. _ _ _ _ _ . _ _ _i

I Heads up! Be careful not to interpret the correlation 'c."- .-- . ._ _ .__.=

| coefficient as an indication of cause-and-effect. To
reinforce the point, take an extreme case: Suppose

i that a study shows a strong correlation (i.e., "close

to +1") between the annual number of children born ,

i in a certain country and the annual number of storks' \.
-

reported migrating into that country's bird sanctuaries. \
Does that suggest that storks deliver babies or that - ..- L -. ..._. . , _ _

,

babies deliver storks or neither or both? ~' . . . _ .

!
,

!
Example 14-3:.

Correlating the cost of crude oil and the cost of premium gasoline

: Table 14-6 gives the average prices of a barrel of crude -
oil and the retail price of a gallon of gasoline in a __ _ _ _ _ _ _ _ _ , , _ _

;

fictitious location over eight consecutive years. Calculate .-
| the correlation coefficient for the two prices.

.

(
:
i

l" . . - -- . .

--8'D*$ e -M ip-Me. . m g em 9 gg94

I

.

1

<
.

*" - + . -wes .. ...

-- . . . - - - - -.- ---- - - - , - _ _ _ _

1

4

4

4

1

, .- .- -

A

n ., v w -- , , .
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Tcble 14-6: |
Calculations for Example 14-3 of the correlation coefficient l

, - IData setup and calculations {
" ~

,

-Crude Premium |

|
oil, gasoline,

; Index $/ barrel $/ gallon Initial calculations - j

2i x y x* y xy

1 19.00 0.82 361.00 0.6724 15.58

| 2 24.00 0.97 576.00 0.9409 23.28 t - -- - ' ~ -- -

| . .- .. -

'

3 31.00 1.15 %1.00 1.3225 35.65

4 32.00 1.33 1024.00 1,7689 42.56

5 33.00 1.30 1089.00 1.6900 42.90

| 6 28.00 1.15 784.00 1.3225 32.20
t

7 30.00 1.35 000.00 1.8225 40.50 . , , , _ , . . . . , _ , , _ . , _ _ . , . ,

t

8 23.00 1.29 529.00 1.6641 29.67 - - - - - - - - - ---'

|
g2, gy ,2

-

L,
.

Sums Er = Ey = y

( 220.00 9.36 6224.00 11.2038 262.34

Intermediate calculations:

= L , (g)2/n = 6224.00 - (220.0)2/8 = 174.00002
! Su

2 y /n = 11.2038 -(9.36)2/8 = 0.2526 7- . - ---- --- - - . -_!
[,,=Ey.(g)2
S '=

Ly -(L)(Ey)/n = 262.3400 - (220.00)(9.36)/8 = 4.9400.. l. - _

Correlation coefficient calculation:
S 4,9400y

= 0.7451

r,y = /(S )(S )
=

/(174.0000)(0.2526)
,

{y y

.- - - e - .. -

b 4 eD -*--M ww . d en go.4 . 43 a e = map,,.e..

.

-. .- . -.

N -e es -emps- hemi vi ee sun-m. 3% .gm,..., . .. ,,cq, _,_ . , . , , ,

a h 4 as .e .=ee 4e e 4 - 4h.- 4e eee g e 4w
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How do you interpret the calculated correlation coefficient
r = 0.74517 Notice that r, is positive, indicating thaty
the costs of crude oil and pre'mium gasoline generally
move in the same direction. If you had, rightly or
wrongly, modeled these data as a regression problem, the [~~" ,"~~ - '" t

'--~~' ----

slope of the regression equation also would be positive,
thus telling you the same general story.

When you report a study involving correlation, the
magnitude of the correlation coefficient may or may not
be meaningful to your readers, in a discipline such as
physics or chemistry, a correlation coefficient lower than,

- - - - --- -

say,0.95, may suggest sloppy experimentation and/or
'

irreproducible results. In other disciplines, such as
* .

psychology or medical clinical trials, a correlation
coefficient larger than, say,0.5 may be a real finding and
cause for celebration.

As always, it's a good idea to plot your data to examine
the nature of the relationship between X and Y. In
Example 14-3, the price of one commodity rises with the . . . - . . . .. .

price of another, although there are some " glitches" that . . _ _ _ , _ _ _ _ _

may or may not be explainable. With such a picture at
hand, a value of R = 0.75 appears to be telling.

Example 14-3 encourages a repeat of our earlier warning
against using a "high" correlation coefficient to suggest
causality. Here, for instance, it may appear that the cost
of crude oil drives the cost of gasoline. It is conceivable, _ . _ _ _ _ _ _ . . _ _

;however, that the cost of(and the demand for) gasoline ~ - ^

drives up the cost of the oil. Indeed, it's even conceivable N
that both of these costs are driven by still a third factv.. \

And still another warning: The numerical interpretation of I
'

a correlation coefficient appears easy. But it's an inviting x
trap, so you must be on the lookout. For example, you
cannot conclude that a correlation coefficient of 0.80, say,

.- - ... .

is twice as good as that of 0.40. ,

. - - . - . - - . . . . . . . _

%

- - . - - . _ - - _ . . - . . . . _ _ _ _ _ __ _ _ _ .__

- - - -. - . .
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_. - _ _

On the calculational similarities between regression
and correlation

Although regression and correlation methods are based on 7-, - ' --- - ; ,- ...

considerably different sets of assumptions, the two l
\

methods have much in common in terms of the
calculations involved. If you ignore for the moment the _ .

independent-dependent relation between the two variables
X and Y, the correlation coefficient can, and often does,

i seem to apply to regression-type data. Clearly, if it
appears that a linear trend relates Yto X, you would
expect that the regression slope and the correlation ,. ._ ._ _ _ _ ._ . _

coefficient would both be statistically significant. [._ _ _

_ . _ j_.
..

The mathematical connections between correlation and
regression are straightforward. If the Regression Sum of
squares, SS , is divided by the Total Sum of squares, SSTg

,

| (c.f., Table 14-2), then the resultant ratio is the square of
2

| the correlation coefficient. Formally, R * SS /SS , isR T_ ,

coeficient of called the coeficient of determination. For example, the . , , , . , _

determination coefficient of determination in Example 14-1 (Table 14-3)
_ _

is 162.53/170.00 = 0.956, from which r = 0.98. Notice
2

! that R gives the fraction of the data variability, as
I measured by the Total Sum of squares, that is " explained"

by the Regression Sum of squares. For this reason, many ,

'

writers prefer the use of the coefficient of determination,
2R , to the correlation coefficient as a measure of the

quality of the fit.
- ._-- -- _ ---. - .

For discussion:

O Give examples where a very large correlation coefficient, say R = 1 i

for a population or r = 1 for a sample, is not meaningful. I
!

._ . _ _ _ _ _ _ j

. . ~ .- - . _ . _.. .. . ._.. I
|
l

.e- - -- - -- - . - .. .. .. . _ ._. ._.

w. *g- cy.me- - e- --e,y-i.e *aw.seems.e. -i-eul=unime 6%--+6e e mywg- =em. me -w== - a sio.--a um 4,, - wa.a

, sem -
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C Some writers denote the sample correlation coefficient by p (read:
" rho-hat"). Is this symbology consistent with your statistical
upbringing?

o Consider the five points (xg, yj) given in this table: { -"r ,

x, 1 2 3 4 5

y, 1 4 9 4 1

If you plot these points, you obtain a fully predictable pattern, at least
within the range of the x . Proceed to calculate the correlation , - _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

g

0. How would you explain this [ _. _._ _ ncoefficient, and you will obtain r =
y

correlation? Does the term linear seem appropriate here?

o What is the coefficient of determination in Example 14-2.

Testing the correlation coefficient . . . , - . - _ _ - , , . -

. _ - - - _ _ _ _ _ . - _ - - ._ _

If you wish to test whether X and Y are uncorrelated (that
is, you wish to test the null hypothesis Ho: p = 0), you
use the following test statistic which is distributed as
Student's T statistic with (n - 2) degrees of freedom:

" ~ ' ~ - ~ - ~ ~ -

T=R .

$ 1-R ;2 ,

Formally, you write Ho: p = 0, H : p # 0, or = 0.05i
(two-sided). If the calculated t value exceeds to.975(n - 2)
or falls short of to.025(n - 2) = -to.975(n - 2), you reject
the null hypothesis Ho.

If the alternative hypothesis is one-sided, you select the . _. _ , _ _ _ _ __

l critical value from Table T-3 accordingly.
, _ , , _ _ _ _ , , _

|

|

!

- -- . _ _ _ ,_ ,,

we9' '-=*+W .-we* -s om.p, .. , ,,g,,., , _ _

|
|

I

| . .-- . _ . . . . . . - . -. '.
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_.;
_

; . ,

in Example 14-1, r = 0.9778, so that4

.;
-

2 10 - 2 '
. t = .9778 = 13.199. v;>

1 - (0.9778)2
7 - - :-

- ..
,.

L .---... ._ _ _ _ _., _. ._ _ ;*

;
- ,
.

The numerical result of this test is in exact agreement with i

i
that of the regression analysis (or its equivalent two-sided '

:|T test). In the regression analysis of Example 14-1-
(displayed in Table 14-5),'f = 174.04,.which-apart from . |

'

,

: !

rounding error -is identical to r (13.199)2 Because2

1 w th (n - 2) degrees of freedom equalsf with I and ;2 - - - - - - - - - . -

t_. 2 ... 7. o
J. (n - 2) degrees of freedom, the equivalence of the two . __ , _ . . . . _ .

statistics is verified for this example.
-

. . .

If you wish to test whether the correlation coefficient
.

'

'-

i. differs from a non-zero constant, you use another
~

*

technique, called Fisher's 2-transformation. The reason4 ,

- for the transformation is that the sample correlation

{' '
coefficient, R,' is not distributed normally, unless p = 0.- . . . _ _ _ _ _ _ . _ _ _ , _ , _

Fisher's Z statistic, given by the expression ---:.,.-._____.n.

'
? I 1+R

Z=2 Ins 1 - R,4

1
.

however, does follow the normal distribution. The mean
and the variance of the random variable Z are given .;'

j respectively by {-
. . . - - - - - - ._ .,-.

w--. - =

W

mean[Z] = 1 In
1+p'

!
2 1p ;'

a- |

and

1
i var [Z] = 7 -

- - . - - -
.

1 n-3 i...... . . . . . - . _ _ .

,

i

4

1 |
4 i

1
*

. . _ _

!
- - - . . . . . . . . - . _ _ _ _ . - . . . _ _ . . _, . _ . . . . _ _. . _ _ . . _ _

$,
4

e

[ i
,

.

,
. .. .

3

a . , - -, , , . . .
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Y,

To use Fisher's Z statistic effectively, you need to bring ita

into a standardized form. This is achieved by dividing the
,

difference (Z - mean[Z]) by the square root of var [Zj.
Consistent with conventions established earlier in this

|
,

book, the standardized normal should be called Z-but this ~-r-, - a w
b- '

|
! designation is pre-empted by Fisher's use of 2. So, for - -- - - -

'

i this section alone, we designate the standard normal by J

(Justfor this section). The constructed standard normal
|

statistic is

1 1+p: 'l
1+R - 7In in

J=2
b _-

._ _ . _ _.

j 1 _. .. _ _ _ _ _ _ _ _

n-3

To illustrate the use of the statistic J, consider again'

i - Example 14 -2, where you wish to test Ho: p = 0.80
against H : p # 0.80, and the sample correlation[ 3 '

j- coefficient, based on 8 observations, yields r' = 0.75.

j You complete the calculations as follows: n.. i. - - .- - ._

'e,-.a...-.--.-...<...._.

Step 1: Under Ho: p = 0.80, mean[Zj is calculated as

1 + 0*80
j mean[Z|p = 0.80] = 1 In 1.0986.=

2 1 - 0.80
:

Step 2: For a sample of size n = 8, the standard
.' deviation associated with Fisher's 2 is - . _ - _ . _ -

! 1
S[Z] = = 0.4472.-

V8-3;

>
|

.

l
*

. , - - - . . .. .

b GS M e D M- w ,W. ..i44.h, a& 4- e e6 6 rw .

1 'l
-

I
,i

:

2

W s -e - eeue ,

* * * ''**.* -wen.pd eh-- r me. ew- we h.. w.,w.g . a.y mq.. g_ , _, ,,, _ _ , , ,, ,

4

4

j
!

- .

4 --' ^* de +* 4ei e e* .gp .e- , g 4 , 4 , ,

i
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__

-

Step 3: The sample z transformation of r = 0.75 is
calculated as

1 1 + 0*979 -

z(r = 0.75) = 2 In
= 0.%I8. - - . - - - _ -_. -

1 - 0.979 1 --...-.".:- - " '

u-

Step 4: Putting the pieces together, you calculate the
observed standardized normal variable (once again, note
that the random variable J changes to an observed valuej

:when it is replenished with data)
,

j , 0.%18 - 1.0986
~ ' ~ ~ ~ ~ ~

= -0.3059. E~ .

0.4472
- -'-

9

Step 5: Since -1.96 < j < .1.%, you do _not reject Ho.
You state that you hav' insufficient statistical evidence;

(: against the claim that p = 0.80
|

,

Confidence interval for the ' correlation coefficient . . . - - - - = - ,-

>4 .; u .1 . - ,

Using procedures learned earlier, you can employ' Fisher's
Z transformation to construct one- or two-sided confidence -|

intervals for the correlation coefficient p. This procedure
is conducted in two stages:

First stage: Construct confidence limit (s) for the mean of. .

Fisher's Z transformation; i.e., mean[Z). - - ~ , - - - , __ . - _ .

. _
_

Second stage: Invert the confidence limit (s) to capture
the correlation coefficient; i.e., p.

Assume that a 100(1 - a)% two-sided interval is desired.
Then the details of the two stages are these: .

| First stage: To construct a confidence interval on mean[Z]
*

.. _ . . _ _ . ._ , _ ,

l when the variance is known to be 1/(n - 3), you construct
~ ~ ~ ~ ~ ~ ~ ~ " ~ ~ ~ ~ ~ ~ ' ~ ~ ~ ~ ~ ~

l- the intem1't endpoints by calculating
;

i

+ ._.s ., '

t
-- ._ . . _ _ . _ _ _ _ . . . . _ . . . _ . , . . _ . _ _ . , . _ _ _ _ _ _ _ , _ _ _ .

'i

|

,
- .. . . . ._. . . . _ -. . . . . . _ . . m.

-, . .. ,. - -. - . , , , - . .
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,

.

,

I
1 In:1 + R i Z(1-a/2) n-3'3 i_g -- - _ _. . ., ,

[~~~" - ,-- ~ ~ ~
-

Designating these 95% confidence limits by L and L23

leads to the statement that you are 100(1 - a)% confident
that

.

L < 1 in #'<L-*

3 2
2 1-p

, . . _ . . _ . _ _ . . . _ _ _ _ _ _ _ . . _

Second stage: You manipulate this double inequality to . . _ ...

capture p by treating each side as an equality and solving - ;

for the unknown parameter p in terms of the endpoints L3 '

and L . Solving for p in terms of L (Lj _=.L or.
2 f 3 '

L = L ,) you obtain the respective lower and upper -f 2
confidence limits on p as

'

,

R ' = ,24 _ ;
. . . . - ~ . . . . . .- . ._s.....

3
- , . _ . - _ . .. . . . . _

l
'eq-1

| and

b-1R"e2 -

,24 _ 1
~~ ~

For Example 14-2, you calculate a 95% two-sided j..
.

T
* ~ ~ ~ ^

confidence interval for the correlation coefficient between

| the costs of crude oil and premium gasoline as follows:

! You have these statistics with which to worki

| r = 0.7451, n = 8, and Fisher's z = 0.%18.

" ' ~ ~ ~ - ~~-

First stage: To construct a 95% two-sided confidence
. interval on the mean, mean[Zj, when the variance is ~

'-- - - - - - - - - -- -

|-
.

'* ' 4++ . wage + .,m. ., p.,, , ,_

* - - - -.- ~, . . . . . . . , _ , , , , _ _ ,, , _ _

- - . . - . .,. -- ..

.

i

g- -s . - , , , - - - - - - -
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c
| -

,

|

|. known to be 1/(n - 3)|= 1/(8 - 3) = 1/5 = 0.2, you ;
1

construct the interval's endpoints by calculating

1
0. % 18 i 1.960 - = 0.%18 0.8765,.

L .____.7 ._._. _

* -- - w- u
5 . _ _ .

from which you obtain the limits for the mean of Fisher's
Z as L = 0.0853 and L = 1.8383. Thus,' you arei 2

100(1 - a)% confident that
-

0.0853 <.1 In I * #'< 1.8383.
*

+

2 .l.-p ._ ._ __.. _ . _ . .. _____ .
. _

,.

Second stage: You manipulate this double inequality to ~ *'

capture p by treating each side as an equality and solving .
for the unknown parameter p in terms of the ndpoints ,

L = 0.0853 and L = 1.8383. Solving fo. p, you obtaini 2 .

the respective lower and upper confidence limits on p as
:

-I ~ ' " ~ 'R=# = 0.0851 M*'~"*~~~~ ~,' -

i
e (0.0853) i . _., _ ._, __ . , _ _2

.

and- ,

g 2(1.8383) _ g ,

R2= = 0.9506.
g 2(1.8383) , g

i

| The considerable length of this 95% confidence interval
(0.0851,0.9506) doesn't seem very informative. _ Notice,
however, that it is derived from the endpoints of.the i_. _ ._ .. __ . . _ _ . _ _. . . _ _

l interval on mean(2), itself of considerable length. This
_

i
_. '

,

| condition, therefore, is directly attributable to the small ; \
4

i sample size, despite the seemingly " strong" value of the-
sample correlation coefficient itself. ,

,

, . ..-. -_ _ . _..;

i. - - - _..._ .. .= _.., . __

i-

.-

|
. - . .. . - . -. .- . , . - . -. . _- - . -

i
_... _ . _ _ _ . . . . . _ . -. .. _ _ . . . . , _ .. _ _ . . _ . . _. , , , _ . , __ . . _ . . ._. . . .

!

L

|
t

|

|

. - . m -. .m . . . . _ . . .. . . .. _.. . . . _ . ..

e e v .s -- + ---r-e , -4 .- y e -e
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For discussion:

0 What conclusions from Example 14-3 do you draw about the , _ - - _ __ '.

correlation between the price of crude oil and the cost of premium ....._.i _ j .I' -

_

gasoline, as analyzed and displayed in Table 14-67

Examine the data in Example 14-3 (and Table 14-6) regarding the cost0

| of gasoline Are you satisfied with the data? How would you have
-

collected and recorded the data? Is something missing? Is something

misleading?
.. -.--_-.n..

be 4s% e M -

1

!

l

i na,r . ., .- . ~ . -, .-

. . . . . . .. ., .... . . - 4 . . . a.-

|

|

. _._ __.. . - - - . _ _.

--.' M

i

i

1 . . - ..

. .- .- _ .. .. .. . .., . _.. -

!
i

.- .- - .- . ~. - . . . _ _ . ~~.- _ . .. . _ . ~ , - . - - - ..

|
r

|

I

|

f
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s

To wrap things up, this one's just for fun ... .\
\

... unless you really are in the movie-making business. A
. -. .-

. ., . L,scenariot You are the data-whiz for a movie mogul. He
swings into your office, hands you this Ume (August 23, L _.._. _ ' _ __._ _ _ l i
1993, p. 61) table, and tells you to plan next year's
production for the studio. You sit back and consider:
(1) The mogul owns the studio. (2) You have a mortgage.
(3) You have a nice car. (4) You have these data.

1993 Summer Movies . . .- . ,. . _ _ _ _

Earnings in millions Projected
' ' '

Title Rating as of 8/13/93 earnings *
' ' ' ''

Jurassic Park PG-13 $297 $320

The Firm R $137 $160 s

Sleepless in Seattle PG $100 $120

in the Line of Fire R $80 $125

Clifhanger R $80 $85

Free Willy PG $51 $80

Last Action Hero PG-13 $48 $50 _, ,._- _ _ _ ,,, _ , _ _

Dennis the Menace PG $47 $50
' ~ ~ ' ~ - ~ ~

The Fugitive PG-13 $45 $150

Rookie of the Year PG $44 $50
* From industry analysts

How do these data stand up to Huff's criteria (Chapter 1)?.
You also know OSDAR (also Chapter 1); does this
database hold up under OSDAR's spotlight? /The car.J
Can you use these data to win an Oscar for the mogul's

" - - - - - ~ - - ~ ~ - -

L-~~company? Or, at least, to make a pile of money? /The -

house.] Or, are they even worth spending any time on?

Have you ever encountered problems parallel to these in
your daily work? How do you characterize those
problems? What did/can you do to deal with them? Do
you think other people might encounter similar problems.
How would you counsel them? - - --

.. __ _._ _ _._ ... . . _ .

- - .- .- - . .- - . . _ _, . . _ , .

- - - - _ .-. - - - - - . - _ - .. - ._ ._ -

'

|
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'

,

What to remember about Chapter 14 .
s

! \
| Chapter 14 laid out and sharpened the tools needed to s

- -- - z.. 4! construct a regression line to fit a set of data points. You
'

were given explicit formulas and directions to manipulate
a set of data and to calculate such statist'es as:

the estimate of the slopea

the estimate of the intercepta

the estimate of the wriance.a

. You were shown how to test the hypotheses that: . . . . _ _ . . . . . _ _,_. __

_ . _ _ . ._ _

=. the slope of the regression line is zero
the slope equals a prescribed constant . ,a

the intercept equals a prescribed constant.a

You were shown how to construct:

a regression analysis tablea
~ ~ ' ' ' ~ ~ ~ ~ ~ ~ ~ ~ ' ~ ~ ~

a conpdence interm!for the slope
^ ~~ ^ ~ ~ ~ ~ '~ ~

e

a conpdence interm!for the intercept.e
r

You compared and contrasted two important statistical .
ideas: regression and correlation. . Special attention was
given to:

,

estimating the correlation coeficienta

testing the hypothesis that the correlation coeficient
~~ '~ ~ ~ ~ ~~~~ ~ ~

e
.

' equals a prescribed constant (including zero)i
-

-

constructing a confidence intervalfor the correlationa

coeficient.
1
L

|

.

O eo < 4~ o e.

O 04 C 'M 'M OO M - hse .4M O a, ag4gg,

f

1
I

~ ~ - - - - +- - -- -~ . . . . _ _ . . __ _ , ,,_ .. , , , __ ,i

-* '-- :--.--. .. s%,. _%..., .. , %g __

$

~

l

t

.. . . , _ _ . . . . , -- -
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More on probability

What to look for in Chapter 15

Chapter 15 revi:ws ti.e elements of probability, some of
- " ' * " ~ ~~ ~~ ~ ~ ^~'~ ~ ~ ~ ~ ~ ~

which were introduced in Chapter 3 where probability and
- - ' - - - -

statistics were compared and contrasted. it also introduces
a few new elements that are essential in the development
of Chapters 16 through 21. Here you will meet, again or
for the very first time, the concepts of:

experiment, outcome, and eventa

probability
.

- ^ - - - - -- - -- --a

marginal andjointprobabilities ;- aa -

complementary eventse

mutuelly exclusive eventsa

cumuletiveprobabilities=

conditio,v:| probabilitya

independent events.a

You will also find rules 'or carrying out probability . - --

calculations under a variety of conditions, such as: . __ _ . . . - .. . .. . ____

,

e -- ~ -~ --~ - ~ . ._ . ... ._ . _ __. ;_,

'9 4 "-*me ,mm. - ,y*4si- ---a.p-- -..- ,has -.mm - - -e,. % ,sume-e. m .e e< . p we p .m ang ,en..w- .n.,q, , , ,g, , , _,

|

.. . .. . .- . . .

-



.. . . = .. . . _ . . - .. -

.I LU._O Uhl d.'s:id &
5 '15-2 Applying Statistics ' e == - - i

b when events are independent=

when events are mutually exclusive; a

when events are not mutually exclusivea
,

a when events are cumulative.
- . -,. _ . m. ,

P

. - . - - . . - - .

1
t

Down to basics
. -

Even though the topic called probability is generally
*

considered to have originated in gambling games in 16th. ,

j and 17th-centur y Europe, it remains a continuously

i, expanding complex human endeavor. Kendall and . -. -. . . . . _ , . - _ . - _

- Buckland (1971, p.118) have this to say: j
,

--

s

Probability A basic concept which may be taken either
as undefinable, expressing in some way a ' degree of

;
belief', [ sic] or as the limiting frequency in an infinite

.

random series. Both approaches have their difficulties .:
i

| and the most convenient axiomization of probability
i theory h a matter of personal taste. Fortunately both

lead to much the same calculus of probabilities. , , . . . . . . _ . . . . . ,, _ , _ ., _
3

(
~ '' " ~ ~' ~ ~ ~ ~

# With that thought thoroughly digested, let's get started.

4

In our pursuit of knowledge, we often conduct

j experiments experiments. ' From these experiments, we obtain data that
may help us confirm or refute some stated hypothesis or;

i hypotheses. Indeed, many experiments are designed and
conducted with the direct intention of examining a

. _ . _ _ . _ _ . . _ _ _ .,

hypothesis.

In Chapter 3, we offered this definition:

j An experiment is a planned inquiry to obtain new -
facts or to confirm or deny the results of previous ,

experiments, where such inquiry will cid in;

3 decision-making.
_ , , , , , ,_

i. . - - -... _ . .. . . . . _ _ .

:
:

4

i

i'
'

l

. - - _ _ . - _ . . . _ ~ . . . . . , . _ _ _ . _ _ _ _ , _ _ _ . . , _ _ _ _ , _ . _ , _ , , _ , . _ _ , ,_. _ _ _ _,

-

.

i

'

I

i

'
- - . . . - . . . . _ _ _ _ _ . _ .. . . ... ._ .

2

- - . . . . . . . , ..
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l
l

i observations, The experimental facts and results are called observations,
univariate, which are categorized further as being either univariate
multivariate or multivariate. Examples of univariate observations

include a head or a tail in the toss of a single coin, the
~ " ~

number of pumps (out of 20) that do not start on demand, [ - ~ ~,
- ~ - - -

the number of automobile accidents at the corner of Fifth
| and Main in Yourtown, USA, during the year 1966, ano

! the average weight of 100 fuel rods selected from a

| specified manufacturing process. Examples of .

| multivariate observations are the height, age, and weight
l of first-grade students at the end of their first semester;

the make, model, color, age, and tail-pipe emissions of
~ ~ ~ ~ - ' - - - -

automobiles passing a certain point on a certain highway
-

'

on a certain day; and the type of business, its floor area,
-

and its use of energy for heating and air-conditioning in a
specific building in a certain city in a certain year.

An observation derived from an experiment is called an

outcome outcome. An outcome of an experiment involving a

| quantity on an interval scale can be any one of a

|
nondenumerable (i.e., uncountable) infinity of values. An .-. - ~ ~ - - .-

outcome involving a discrete variable is a denumerable . . _.i

(i.e., countable) infinity of values.

The set of all possible outcomes of any experiment is
sample space, called the sample space of the experiment. The elements;

sample points of a sample space are called samplepoints. Here are'

some examples:

When you toss a coin one time, the sample space has b___...__._..____._._..__m _ ,

two sample points: {H,T}.
.

I

|When you attempt to start 20 pumps and count thea
number that do not start, the sample space has 21
sample points: {0, 1, 2, . .. , 20} .

When you count the accidents at Fifth and Main, the
-

m

sample space has an unknown number of sample
' " ~ ~ ' - - " ~ ' - " - - - -

points, all of which are integers: {0, 1, 2, 3, . . . }.

1

|

. - . _. - . ._. .- . , . . - . . - . . - . . . . .
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When you weigh and then average the weights of 100e;

fuel rods, the sample space for that average weight has
a nondenumerable infinity of sample points: it is the
set of all values, say x, that lie above some lower

P, - -' ~ ' ~ ' ~~'~ '"

bound, say L, and below some upper bound, say H. '
In set theory notation, you might find this idea

~ - ~ --- - - "" - -

expressed as {x | L < x < H} where L and H are
determined by the specified manufacturing process.

i

event An event is a collection of outcomes; i.e., an event is a

| subset of the sample space. i

i
| .

,

For example, for the single throw of a six-sided die, the
' - - - - - - - - - -

1sample space can be indicated by {1,2,3,4,5,6}. An - - - - - - - -

event called "Even" occurs when the outcome is 2 or 4
| or 6. An event called " Odd" occurs when the outcome is
! l or 3 or 5.

As indicated by the Kendall-Buckland quotation, .
probability appears for most of us to be a matter of I

|
personal choice For example, in everyday discourse, we ... . ---. ~ ~ -- . - -. - , - , - {-

|
use such phrases as "It'll prob'ly rain tomorrow" or "The . . . _

[ favorite team] probably will win." It's when we try to
perform quantitative analyses in support of decision-
making that these " degrees of belief" let us down.i

!

I

Instead, let us proceed to a few basic ideas derived from
Brownlee (1%5, pp. 6-24). The approach taken by
Brownlee and the one adopted in this text is axiomatic. . . _, ._ . _ _ _ . . _ _ , _ _ . . _ _

'

| We start with the axiom (i.e., a basic, self-evident truth; a
~~ '- ~

| basic proposition stipulated to be true) that it is possible to
associate with every point A in the sample space a special -; f
kind of non-negative number, called the probability of Af'

and denoted by the symbol Pr{Aj}. These probabilities - ;
|satisfy the condition that they sum to 1.

:

!~ . . _ ._ ,_

( . - . _ _ . . . ... . .

'

i
N

'

_ - -- .
- m .,_....

U %. W h.E.= 6 m - g9e , .he q . dogs. .-_hw.. ,,,,w g. m u,W. game.. aga4 N@ W @ l. -M@ * WM , .. t w w e wW m..

6

..,-

!-
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These conditions are summarized in two important j

expressions: I
)

(1) 0 s Pr{Ag} s 1
. - -t

,

'!
f (2)

~" -'' ~~~ ~ ~ ' ~

Pr{A } + Pr(A } + " I-f 2

For discussion:,

1

0 What do the terms "denumerable" and "nondenumerable" mean to , _ _ _ _ _ _ ,

YO*1 . . . ..

I

o . Drawing a single card from a well-shuffied standard deck of 52 cards
(composed of four suits of 13 cards each) provides homely but easily
described illustrations of these ideas. Because there are exactly 52 ;

'

| cards which might be drawn, we conclude that there are 52 points in
l the sample space. Moreover, they are easily enumerated: A4, K4,

06, Jo, 104, 24; they are fully displayed in an array..., .. .~.. ,....__.._, ~.,

. . _ _ . ... . _ _.

A4 K4 04 Je 104 9484746454443424
;

A+ K+ 0+ J+ 10+ 9+ 8+ 7+ 6+ 5+ 4+ 3+ 2+

Av KV 09 JV 109 99 89 79 69 59 49 39 29

AA KA OA JA 10e 9A 8A 7A 6A 54 4A 3A 2A
b _ _ ~_'~, . _ _ _ __ _ ,_ _ _ _ _ ;'

~

Because it is difficult to argue a priori that any one of the 52 cards is i

favored over the others, we conclude that the probability of bemg
drawn is the same for each card; i.e., ,

1

Pr{A4} = Pr{Ke} = ... = Pr(2 A}.

These probabilities must sum to one. It follows that each probability
' ~ ~ ~ ' ~

is exactly 1152.
- ... - .- _... .. . . ._

"" " ~' + m O .ms .,,,me,

* "*" -""* Mem eDe.a m-= +aus.m.-, ,.w w ,,, g ,, q, , , _

hM, e p4 4 h 4,g , 4,, _ , , , g, g
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!
t

E Does this analysis of the 52-card deck probabilities depend upon the
way you display the cards; that is, wculd you get a different answer
(i.e., different probabilities for the cards) if, say, you displayed the
cards in the sequence {24 34 ... KA A 4 }? _ _ _ _ _ _ _ __ _

,
. _

h. ,.-+....-.....m.. . . .

Probabilities associated with equally likely outcomes

Consider a sample space containing exactly N outcomes,
each of which has the same probability of occurring; i.e.,

equally likely the outcomes are equally likely. Now define an event E, . - - - -- - - -- -. . ---

and let N be the number of outcomes in the event E. . _E
Then the probability of the event E is expressed as

Pr{E} = (1/N) + (1/N) + ... + (1/N) = N /N-E
L . . . . . . . . . Ng terms . . . . . . . . J

For example, consider a group of 1,000 cables, with 900
functional ones and 100 defective ones. Let E be the , , , , _, ., . , , _ , _ _ , .

event of finding a defective cable when a single cable is
t

j selected. The probability of inspecting a single cable and
' ' ~ ~ ~ ~~

finding it defective is'

f Pr{E} = Pr{ cable is defective}
= 1/1,000 + 1/1,000 + ... + 1/1,000 \.

.

[ . . . . . . . . . . 100 terms . . . . . . . . . . . J \,

~"\"..--"~~~'~~
!

= 100/1,000 = 0.10.'

._.._
,

Starting with 0 s Ng and N s N, you have confirmedE ,

the non-negativity of the probabilities and can write, for
'

any event E,

0 s Pr{E} s 1.
. _ _

b ite 46 .-. 4 M4 w ae ssa , - ,w.m . . .em o _ .4mp . .

.4 m--.
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_

For discussion: )

c How would you define and/or interpret probability? _ . .-,.- __ _ , . . ,

;
. .._ _ . _ . . . _ _ . _ ___ ._

o The expression of Pr(E} = N /N for equally likely events is'

E
sometimes referred to as the classical definition ofprobability and j

sometimes called the frequentist's definition. Some authors, e.g., Ott |
and Mendenhall (1985, Chapter 11), call it the classical interpretation ;

of probability to avoid the word " definition." Note that we did not - I

call this expression a definition, either, principally to avoid a
malpractice action brought by picky-picky probabilists and/or .._ _ .._ _ ._._._______l-

superscrupulous statisticians. In fact, this expression is a theorem , _ |
which follows from the axiomatic approach adopted in this book.

c How would you define equally likely outcomes now?
1

O What would you expect the term equally likely events to mean? Are
the events " odd" and "even" equally likely?

' ' ' " ' ' ~ ' " " ~ ~ ' ~~ ~~
c In the audit process of travel vouchers, you may select 10% of the

- - -- - - '
vouchers submitted during the month for extensive review. Suggest a:

i way for random sampling of 10% of the vouchers. Are all the
vouchers equally likely to be selected? Do you really want all

;
'

vouchers to be selected with equal probability? Why, do you suppose,
this wide-spread, nearly ubiquitous, "10% sample" was called for?

\
0 How would you select an agency's employees for random drug- " "( * - ~ - -- - -- -

j
|

testing?

|
. - . ~ _ _ . .

0 Every evening, a restaurant polls its customers and offers a free j
dinner to customers celebrating their birthday on that day. Describe |

this promotion in terms of an experiment, equally likely outcomes, !
*

and the probability that a customer randomly coming in will be treated j
to a free dinner.

o What does Pr(E} = 0 mean to you? - - - |

. _ _ _ _ . _ . _ . . .... . ___

o What does Pr{E} = 1 mean to you?

!

- ... - . - _. . . . . _ . . . _ . . _ . . . _ _ , . _ _ _ _ . . ._ _ _ . . . ....

er e- c- m- -T e Tr- w
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|Your good friend states that the probability of a tornado hitting yours
community in the next five years is Pr{ tornado} = -1. What do you

think your friend meant to say? Ilow would you have stated it? j

l
. . _ _ ____ _ ; ..,

e--~__

4

More terminology and mo.e rules of probability-
,

!
;

The probability of a single event E, Pr{E}, is often called
marginal the marginalprobability of E. The usefulness of this

i
probability special terminology becomes apparent when you need to

._ !contrast marginal probability with the probability of .. ,_ . _. _ . _ . _ _ . .
~

several events occurring simultaneously. , , , , _ , _ .

complementary If an event E does not occur, then the complementary
gent, denoted by F, must occur.I Some authors use the :

event
E (read E-bar) notation to denote the complement of E.

In light of this definition and because E and E' account for |

Iall of the points in the sample space, it follows that . . . . - . . . . _ . _ . , _ . . . .

_

|Pr{E} + Pr{F} = 1.
~ ~ - - - -

This simple-appearing statement is extremely powerful
when it comes to solving certain types of probability
problems. For numerous situations, finding Pr{E} is too

|complex a task-but finding Pr{F} may be the proverbial
" piece of cake." When that happens, you take advantage
of the fact that Pr{E} = 1 - Pr{F}, and you're done, j~- ~ ~ --~" - ~~~ -~ -

a-_ _. .

I

The probability that two events, call them E and E . !t 2
!joint happen simultaneously is called the joint probability of E i

and E . This joint probability is denoted by Pr{EandE }probability 2 i 2

and is read as "the probability of E and E 'i 2

. - _

.--.. -- .-. . . .. ... . .. . _ _ .

I 'Ihis complementary event is sometunes called the E-complement.

- - -- - - -- -. ._ . _- _ ___. .._,

** -*- -we -- mygi. .w., . , . , _ _ ,
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Two events, E and E , are said to be mutually exclusivemutually i 2

exclusive if the occurrence of either one of the two events precludes
events the occurrence of the other event. That is, no sample

point lies in E and E simultaneously, so that the jointi 2

| probability is zero.- This is expressed as {]~l . ]]'7
!

Pr{EgandE } = 0.
_2

,

To illustrate the property of mutual exclusivity, if a switch .
can be set in only one of two positions (i.e., open or .
closed), then the two possible outcomes of the switch's

- inspection are mutually exclusive. ..

m.-,._, _-m __
. - rb. - - - - - - - - - - -If two events are mutually exclusive, then the probability'

of either one occurring is the sum of the probabilities of
each one occurring. This yields

,
_

Pr{EgorE } = Pr{E } +-Pr{E }-2 i 2

If the k events E , E , ... E, are mutually exclusive, there -
~

i 2

|
are no sample points that belong simultaneously to any "1. - - - -- , -:.

pair, E and E for any combination ofi andf, of these w . .__ - m - -

i j
events. Then the probability of any one of the events ' ,

occurring is the sum of the probabilities associated with
the individual events; i.e.,

Pr{En E or ... orEg}or 2
= Pr(E } + Pr{E } + ... + Pr{E } .i 2 4

_ __. _[= E Pr{Eg}. ,
-. L .

Suppose that your organization receives a shipment of
batteries. You test the quality of the entire shipment by.
examining 100 batteries from the lot. Suppose further that
the entire lot is acceptable if no more than two of the 100
examined batteries fail to hold their charges. Obviously,
you accept the lot if 0 or 1 or 2 batteries in the sample
fail. - These outcomes are mutually exclusive, so that

_ _ _ _ _, ,

' - ~ ~ ~ ' ~ ~ ~ ~ ~ ~ ~ " ' '~~

Pr{ shipment is accepted} = Pr{0} + Pr{1} + Pr{2}.

. . - - -. -

> w-4 --S e .4 m- emem Mw e eh . a -ea ePerW ee % i ege@mismmri,ea mi 4e wp,MW ,h4eM a > . w.m -ua mi #

.
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1

Compared with probabilities associated with individual
'

|
events, the battery-inspection example illustrates the

cumulative concept of cumulative probability, an idea applied

probability primarily to mutually exclusive events. As the name
-' ~~- =-m- e
s

suggests, a cumulative probability gives you the

|
probability of more than one event occurring, begt;.ning

-- - - - - - - ~ - - - -

with a reasonable starting event and proceeding through a
reasonable sequence and ending with an equally reasonable
event, as shown in the example above.

If two events are not mutually exclusive, then the
probability of either one occurring is the sum of the'

|
probabilities of each one occurring minus the probability

- - - - - - - - _ - _ _ _ _ _ _

of both occurring. This is written as . . _ ._

Pr{EgorE } = Pr{E } + Pr{E } - Pr{EandE }.2 i 2 n 2

|
If it is known that an event E has occurred, then the s'2

probability that a different event E has occurred is calledi
| \

conditional the conditionalprobability of E , given E . Thisi 2
-A.-_-,-_

probability probability is denoted by Pr{E |E }- - -- -i 2
.. - - - .

To illustrate, if a component fails a test the first time, the
|

conditional probability that the same component will pass
the test at the next inspection is Pr{PjF}. If one
defective cable is found in the sampling of a bundle of
cables, the conditional probability of finding no defective
cables in the next inspected bundle is written as Pr{0|l}.

'~ ~ ~ ~ ~ ~ ~ ' ~

independent Two events E and E are said to be independent if and
~ ~ ~'~ ~~ ^i 2

only if Pr{E |E } = Pr{E }. As you see, if E and Ei 2 i i 2events
are independent, then knowledge of the probability of E2
is irrelevant in the calculation of the probability of E .i

For example, in many human genetic studies, the
assumption is made that the sex of a forthcoming child is
independent of the sexes of the children already in the

-

family. Thus, in a family with five children, all of them
- - - - - - -- - - -

girls, the probability that the next baby will be a girl may
be written as Pr{G | GGGGG} = Pr{G}, where GGGGG

-- - . - - . - - -- - -.. _ __ _ __

em sme. . -e e-mm-. p -- m,e a eee.a e -wy- -=* meme p +- =4me- e-m-- - m 4
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represents the event that there are already five girls in the
family.

'As another example, let the V denote the event that
Valve 1 is open and F that it is closed. Similarly, let W 7"-77 - - e .,

.

' " - ' - - - - ---

- denote the event that Valve 2 is open and F that it is' 1

closed. If the status of Valve 1 and the status of Valve 2
are independent, then all of the following probability

i

statements are correct: ,

[ 1

'l
.

Pr{W|V} = Pr{W)
Pr{W|Y} = Pr{W} ~ ~ ~ ' ~ ~ ^ ~ ~ ~ - - ~

|- Pr{V|W} = Pr{V}
Pr{V|W} = Pr{V}.

- - L-

An important probability law for thejoint probability of
the two events E and E is given by the expressioni 2

Pr{E andE } = Pr{E |E }Pr{E } = Pr{E |Eg}Pr{E }.t 2 i 2 2 2 ii

If the two events E and E are independent, this equation , . - . . ~ , - . . _ . . _
i 2;

|
simplifies to .. ._ _ __ _. _._ _

Pr{E andE } = Pr{Eg}Pr{E }.i 2 2

|

| Conversely, if the probability expression

Pr{E andE } = Pr{E }Pr{E }i 2 i 1:

_._ ..__________ ._. .__,

holds for the two events E and E , then the events are _ ,i 2 , _ ,

independent.

To illustrate, consider a commuting problem involving two ,

bridges. Suppose that the probability of a traffic delay on
Bridge 1 is not independent of a traffic delay on a parallel

i Bridge 2; i.e., the overflow from either bridge burdens the
other, in this case,

. _ _ . .

|
' " - - ~ - - - - - -

Pr{ delay on both}
Pr{ delay on 1| delay on 2}Pr{ delay on 2}.=

j

. . .~ . -.

w umm e *% 4.mdMa- 4eb an- --6 .*A estmuge-.se 4we-w e' es 4 % -.M4 4 .P @ e.aserm.-menaslBy me e- p.-m....4 hom gm ,w e <a -M - W - 4 me+=-e
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If the bridges' traffic delays are independent of each other,4

- then
: N ,

_. .-.\. .- ,.j Pr{ delay on both} = Pr{ delay on 1}Pr{ delay on 2}..

L _ z..__ .____ _ _ _, 1
.. -

;
.

] Summarizing some useful rules of probability
t

] Here, in one place, is a restatement of each of the
probabilistic rules enccuntered so far. Although a number;

of other rules could be added, this list contains the ideas
that will be called upon in Chapters 16 through 21.

. _ _
i

' -- - - - --

The probability of an event E cannot be less than zeroe
or greater than 1; that is,

,
~

O s Pr{E} s 1.. y
e An event E either occurs or it does not occur; that is,

|
1 Pr{E} + Pr{EC} = 1.

~ - - - - - - - - -

{ The probability of two events, E and E , bothe f 2
'

occurring is

! Pr{EgandE } = Pr{E |E }Pr{E } '

2 i 2 2
*

= Pr{E |E }Pr(E }.2 i ij
|

and E are mutually exclusive,
| 1f the two events En

- --- -- - - - - - - .a 2

; then the probability of either event occurring is the . .. _. _ _ _ _ _ . . _

}
sum of their marginal probabilities; that is,

Pr{En E } = Pr{En} + Pr{E }.or 2 2

1

and E are not mutually exclusive,I( the two events Ena 2;
then probability of either event occurring is the sum of

,

'
. . _ _. _ _ ,

- _ - . .._._ ;
;

i-

1
i

. . . .- . . . . - . - -- . . .- - . - . . - .
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|

their marginal probabilities less their joint probability;
that is,

'

[ Pr{EgorE } = Pr(E } + Pr{E } - Pr{E E }-2 i 2 i2
;n; .,

y -v;
'' ""

If the two events E and E are independent, their. .
l

e
3 2 ,

. joint probability equals the product of their marginal'
- '- --

probabilities; that is,

Pr{E E } " Pr{Eg}Pr{E }-
~ '

i 2 . 2

u - If the k events E , E ; ... Eg, are mutually exclusive;.i 2
then the probability of at least one of them occurring - r r" m --- - ,'

L~ - n . - -- . - . .Lis the sum of their marginal probabilities; that is,.

Pr{EgorE or ...'or Eg,}^ = EPr{E;}.2

Example '15-1: ,

Gender andhidng practice
r...,.- ~. r _..-,,.4

Table 15-1 contains the fictional probabilities of selecting - .
. _

*

male and female applicants for a position in'a certain -
agency. The three selection options are: (1) do not hire, . |

. ',

[ (2) select on a trial basis, and (3) select for a permanent .
'

-i
i- position.
I

! -|
L.

-

| - -e .

= ..

|

|
. - - - . _ _ _ _ . - ._ - . . .__

[
u-._._.._.....___._.

|

t

f

'

+- - - . . . . - . - .- . _ _ . _ s , , , . e,_',. ,,

" - -- ir*** 'g.es.- M..so-e...me.- ae. eqe,.,mh. ,,.a , , ,_

F

'r

!

|
+ - ._1. .- ._ .
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Tcble 15-1: |

Example showing independent events |

Gender Marginal - - - ,- -- - - - - , --

Selection probability L._.._.__.._._.-.. - _

option Male Female of hiring

Do not hire 0.24 0.36 0.60

Trial basis 0.12 0.18 0.30

Permanent 0.04 0.06 0.10

Marginal , - . - - -. - _ - - . _
,

l probability 0.56 0.44 1.00
, , _.

of gender

Examine Table 15-1 to recognize that the probability ofj
! each joint event shown in the shaded area equals the .

product of the corresponding marginal probabilities. This
assures probabilistic independence of gender and hiring.

, , , , , , _ _ _. ,, , , _.

There are a few other features to this table you will
~ ~

recognize:

The events "Do not hire," " Trial basis," and " Permanent"
are mutually exclusive. An applicant must fall into one of
the three categories, and into only one. Thus, the
probabilities of these events are additive. Since these

~ ~ - ' ---- - - ~ ~ ' -~~

events exhaust all possibilities, their probabilities sum to
1.00. Similarly, the " male" and " female" events in the -- - - - -

gender category also are additive. Note that the
probabilities within a row or a column also sum to their
marginal probabilities. For example, for the line labeled
" Trial basis," you have Pr(Male and Trial basis} = 0.12
and Pr(Female and Trial basis} = 0.18; these two
probabilities sum to Pr(Trial basis} = 0.30.

..

Studying the layout of Table 15-1 will reinforce the idea . - - - - - - .. - -. -

behind the term marginalprobability.

.. - . - . . .- _ __

m w e m a 3..e..- a e 4 m -.mm. ,.emme w-e e .e.
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You may wonder how such a table might look when the
probabilities are not independent. Table 15-2 is a
modification of Table 15-1, designed to illustrate such
dependence.

,_
1 1-- u

L. . .

,
,.

,

Table 15-2:
Example showing dependent events

~ '

Gender Marginal
Selection probability
option Male Female of hiring

I..._
__ _... . . . .__. _ . . _ _ . .

L

Do not hire .0.40 0.20 ' O.60' '-- -- - - - - * -

Trial basis :0.12 0.18 0.30

Pennanent -0.04 0.06 0.10

Marginal
probability 0.40 0.60 1.00
of gender

,, _.____

c. __ . p.-._. ... -. ._ __

That Selection op 4n and Gender are not independent is
shown in at least une cell in which the product of the
marginal probabilities does not equal the joint probability.
Can you find such a cell?

Example 15-2: | ~ ~ ~ ~~~ ~ ~ ~ ~ ~ ~ ~ ~^
Earthquakes and tornados - ~

The probability of a severe earthquake in a specific
location in the year 2010, call it event E, is calculated as
0.03. The probability of a severe tornado during the same
year at the same location, call it event T, is 0.06. The
two events are considered independent. What is the
probability of both events occurring in the year 20107 ' ~ ~ ~ '-

t

. _ . . . - ._

- %+-+ ,wAmes- a ede== mas imme en. a@<, p , pe w e e w.m,e,. . ,m%, a ,. , , , , , , ,
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l

Pr{QandU = Pr{Q}Pr{U
= (0.03)(0.06) = 0.0018.

Are these two events (the earthquake and the tornado)
mutually exclusive? Are they independent? Are they ~~" ~ ~ T ~"'

- - '

" - -- - - - - - - - -
equally likely?

Example 15-3:
Elevator failure -

| Suppose the probabilities of failure-to-operate for elevators j
-- - - - ~ - - -- - ;A, B, and C in a given moment of time are Pr{A} = 0.01,

--

Pr(B} = 0.02, and Pr(C} = 0.10; suppose also that these . | |-

three events are independent. What is the probability that . ',

'

both elevators A and B will be out of service tomorrow at
10:00 a.m.? What is the probability that all three will be
out of service tomorrow morning at 10 a.m.?

Pr{AandB} = Pr{A}Pr{B} = (0.01)(0.02) = 0.0002. ..= ,. ., . . - , . _

. . . . ... --

Pr{AandBandC} = Pr{A}Pr{B}Pr{C}
l = (0.01)(0.02)(0.10) = 0.00002.
|

Example 15-4:
; Telephone callrouting
!-

Assume that a telephone call from Washington to Seattle is
~ ~' ~ ~ ~'

~ ~~" ~ ~ ^

routed through Chicago or Denver with 0.4 and 0.3
probability, respectively. What is the probability that the
next call will be routed through neither of these cities?

The routings through Chicago or Denver are mutually , ,

exclusive. Therefore, Pr(ChicagoorDenver}
~ . -,\

~ ~ '~ ^ ~ ' - '
= Pr(Chicago} + Pr{ Denver} = 0.4 + 0.3 = 0.7.

'

Thus, Pr{neither Chicago nor Denver} = 1.0 - 0.7
'~ ~ ~ -- - '" - - -

= 0.3.

- _. _. __ .. __ _ _ . , _ _ _ . _ ,, , , _ _ _
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\
| For discussion: N

O Describe events associated with your work which are (i) clearly - - . \ - .. - ..- . . - _m

independent, (ii) clearly not independent, (iii) clearly mutually _i .

_ _ _f ,m._ .

exclusive, (iv) clearly not mutually exclusive, and (v) not clearly any
I of the above,

o Reconsider Tables 15-1 and 15-2. What similarities do you note
between these tables and the contingency tables in Chapter 47

0 Referring to Example 15-3, is it ever reasonable to assume that the . _ . _ . . _ . _ _ _ _ _ . _ ,

1failure events of the three elevators are mutually exclusive?
, , , _ _,

A group exercise ,
.

This exercise begins with a partial set of probabilities that are intended to \
.- A .-.., _ ,help you review some of the concepts learned in this chapter. Table 15-3 - . . . - - . _ .

gives the probabilities of failure of new motors (no repairs allowed) _ _
__ ;

during the first, second, third, fourth, and fifth years after installation.
Complete the table and then answer a few questions. (The empty cells
contain lower-case letter indicators in parenthesis to simplify identification ;

| of the table's cells.) !

l

|
! . . . - - - . . . . - - - . - - . - . . - .

, . . .. g,

!
i

:

, -
,

. . . . - - - . - - . . . - . . .

|

| - -- .- .- - -- .-. .. .- .. . . _ -. . . _ .

I
_ _ . . __ _ . . _ __ . . _ . . . _ . . _ _ . . _ .. . . , . . . . .

!

,
_ . . . .. . . . _. . . . . . .
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Tchte 15-3:
Table for group exercise

Marginal Cumulative --,~-.-1 -_ _ . ~ _

probability probability . _ . _ _ . l_ _ _ _ _

Failure time of failure of failure

First year 0.25 (b)

Second year 0.20 (c)

Third year 0.10 (d)

Fourth year 0.15 (e) . - ,. _.. ._ ._

Fifth year 0.20 (f)

Beyond fifth year (a) (g)

(1) The six rows in the body of Table 15-3 describe different events.,

Are these events mutually exclusive? Why?

(2) Calculate the probability that a motor will fail after five years of , . . . - . . . . , , . _ ..

service. Enter your answer in (a). _ _ _.

(3) Calculate the probability that a motor will fail before the beginning
of the second year. Enter your answer in (b).

(4) Calculate the probability that a motor will fail before the end of the
second, third, fourth, fifth, and beyond the fifth years. Enter your
answers in (c), (d), (e), and (f), respectively. , __ _ _ _ . __

(5) Now go back and calculate item (g). What does this probabihty
represent?

(6) Calculate the probability that a motor will not fail in the first year?
In the second year? Before the end of the second year?

(7) Using the constructed table, show two ways to calculate the
- -

probability that the motor will be in service for at least three years.
. -- - - . . .

1
,

-. _. \
,

-- -- - - - - - - - . - - - _ . . _ _. ___ _ ,_ ,

i

|

|
1

- - . . . . . .. _. . |

|
.
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-- ~
_

(8) Calculate the probability that a motor will fail during the third year
or the fourth year or the fifth year after installation.

,

What to remember about Chapter '15 ' ~77 ~ ~ ' = ' ~ ^-
m._ _. . _ _ _ _ - . _ . . _

Chapter 15 identifies and explains several concepts,
specifically:

= ^ probability
marginal andjointprobabilitiesn

mutually exclusive events
.

a .

* ~ ' ' ~ ~~" ~ ~ ~ ^ ' ~ ~ ~ ~
cumulativeprobabilities .'a

' ' -

conditionalprobability.a
|independent events=

complementary events.=

You examined some examples and participated in some
exercises to learn to calculate these probabilities in real-
life situations. The understanding of these concepts and
the ability to calculate selected probabilities are essential ef'' - ~ *~~ -- - - -

to grasping and interacting with the rest of this book. - - - - - - - - - - . - -

|
|
1

P

!
'

. --_ _ _._ ._
,

b asseau.. m < _ ,.

.

, . . - _ . _ . ;

, ..,m.. - ~ . . _ _ . . . -

|
1

- .- - . - .

" ' " W N 6 6.mh e.,.h.- .%.e e.g .gw,_ . , , , , _ ,
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Hypergeometric experiments

What to look for in Chapter 16
M" ~ " "~~~~ ~ ~

Chapter 16 is the first of a series of three chapters, each
dealing with a specific discrete distribution. Of these

" ~ ~ - - -----

three chapters, only this one is dedicated to sampling from
a strictly finite population.

Among the special terms in this chapter are:

a attributes
sampling without replacement

~ ~ ~ ~~~ -~---- -na

a factorialfunction
-- - ~.

a binomial coeficient
hypergeometric distribution function.a

In your encounter with Chapter 16, you will gain
tolerance for-if not achieve comfort with-the
hypergeometric distribution and learn to:

, _ _ . _ _ _ __

recognize experiments related to the hypergeometric - -- .- --- -. .. ..---.a

distribution

- -- ---- - ..- - .. ... . . _ __ ..

**="""*M ># m*4-- , ee-se -g m,,,egisym.asinge.-,,,, ,, --. ,, , ,, ,

3

. . ,.
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__--



_ ._. - - - . -

.

3_b.b h,M d.ksib

16-2 . Applying St:tistics ,

l

calculate probabilities associated with hypergeometrica

distribution .
a calculate the mean and standard deviationfor

hypergeometric variables
- ' =

recognize the d#culties in hypergeometric probability
- ~~~

a ,

calculations and how to avoid some of them .
test hypotheses about the hypergeometric distribution.^

.

a

|-

Sampling for attributes in finite populations

Inferences derived from many types of data, primarily
_

_ _ _ _ _ _ _

measured on interval or ratio scales, typically concentrate
~ '

.

'

on such measures as the mean and the variance. On the;

| other hand, inferences derived from discrete data typically
focus on the composition of a population, e.g., the-

attribute proportion of the population having a specific attribute

| '(characteristic). In a deck of bridge cards, the attribute
may be " heart" for a given card. - In an urn containing'

marbles of different colors, the attribute may be " size" (or
~ ' - * ~ ' ' ~ ~

" color" or " condition") for a given marble, in a jar of .
cookies, an attribute of considerable interest may be'

-

;

" broken" for a given cookie. ,

Sampling for attributes typically requires that every
element in the population can be classified unambiguously ,

into one of two groups. Such classification labels the ;

dichotomous outcome as being a dichotomous' (i.e., a binary) response,

(binary) and the associated event is, similarly, dichotomous - - -- - - - - ~ - r

! (binary). _ _ . _ _ . .

Examples of dichotomous outcomes (events) are
{yes, no}, {on, off}, { defective, not-defective}, -

{ male, female}, and { employed, unemployed}. If an
outcome of an experiment lands in a grey area (e.g.,

:
maybe, or almost, or undetermined), then you must look

|
'

, - ..

.~ ._.~._ m . _ . . . . .. . . _ _ . _

i

3 From the Greek word dichotomy: division into two parts.|

I
i

_ . __ __

# ""'' - - - " *e.munu 6 .mg. p ,.pp , ,_ ,. g, _ _ _ _

|

- -
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for another approach (perhaps using the multinomial
2

|
distribution ) to analyze your data. Alternatively, you

,

| may agree to classify a grey area response like "slightly
l pregnant" consistently and unambiguously as one event or

~~ 7 ~ ~ " -- - ~ 'T ithe other. However, it is imperative that the disposition
" - - - - - - - - -

of the "close-call" outcomes be determined before data
collection; certainly, you must make such decisions before
you have an opportunity to interject either your own or ,

|
your management's bias into the experiment's analysis.

|

A reminder: The test of hypothesis about a population
usually is made by first examining a sample from that

-- - - - - - --

population and determining a summary (i.e., a statistic
like the mean) of the sample. Then you ask whether the

- - .

sample's summary contradicts (in a statistical sense) the
hypothesis you have formulated according to a set of rules ;

called the test statistic. You answer this question by
calculating the probability of obtaining the specific sample

|
composition given the hypothesis, rejecting that hypothesisI

if the sample results are too "unlikely."
.. . . . . . .. .--

. - __

Sampling without replacement: An introduction to
the hypergeometric distribution

Consider a population of N items M of which have an
attribute of interest. If you draw a sample of n items from
that population, you observe H items with that attribute.

' ' - -~ ' ~ ~ - - - - -

The number H is a random variable because you don't
know its value before you draw the sample. However,

- - - -

you do know that H is a non-negative integer and that it
can neither be larger than n (the sample size) nor larger

than M (the number of items with the attribute in the
entire population). Mathematically, you write
H = 0,1, ... , min (M, n).

. - -

- - - _ - . . . _ . . . . _

2 see. for example. the discussion in Brownlee (1%5. pp. 206-210).

_ . . . _

'' *"* "- h ease p . _m.,,, . , _ _ _ , _

J

_ _ _ __ _ . . . . . ._ _ .
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.

| Your problem is to determine whether the number of ..

items in the sample with the attribute of interest (the value
lof H) is reasonable relative to a given hypothesis. To that

end, you need to calculate the probability of finding H
~~

|
items in a sample of size n. 7 - ~ ,

-' m- - . .
,

. . . - _ _ . _ _ . _

In performing these calculations, you recognize that the ,

probability of obtaining an item with the attribute affects |

the probability that the next item in the sample will have
that attribute. This is illustrated in a simple example.
Suppose an urn holds exactly two white and two red
marbles. The probability of drawing a white marble from
the urn in the first draw is clearly 1/2. The probability of .

- --

drawing a white marble in the second draw depends on
-'-

what is drawn (and not replaced) in the first draw: That
probability is 1/3 if a white marble is drawn in the first
try, but it is 2/3 if the first marble drawn is red.

The sampling scenario alluded to in the preceding
|

| paragraph is called sampling without replacementfrom a
finitepopulation. Such a sampling plan's characteristics' ..c. . ,.. . . . _ . - . . , -

| are fully described by the hypergeometric distribution. On - . _ .--__ _ _ _

| the other hand, if your plan insists that drawn marbles be
i returned to the urn immediately after each is inspected,

then your scheme is called sampling with replacement
from afinite population. The binomial distribution
(discussed in detail in Chapter 17) is then the appropriate
distribution to consider as a model.

- .,. _ _

L_.__ _
_

|
For discussion:

|

0 If an urn contains two white and three red marbles, how would you
show that ...

|
... in a draw of a single marble, the probability of
drawing red is 3/57 . - - - -. _ ._ _ . . . . ._ _.

- - .. .-. - - . . - |
_ __ _ . _ _ _ _ _ . _ _ _ . . _ _ _ _ . . _ _ _ __ .

l

- - .- . - _
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- . . -

... if you draw (and keep) a red marble on a first trial, the
probability of drawing a red marble on a second trial is

-

1G7
|

| ... if you draw (and keep) a white marble on a first trial,
i the probability of drawing a red marble on a second trial

- - - - - - -
.

-

,
i----~---i--..

is 3/4?
.. if each drawn marble is returned to the urn after its

drawing, the probability of drawing a red marble on the
next draw is always 3/57

~ ~ ~ -- ~ - - ---

Two relevant mathematical notations
. - ._ _. _ _

You are almost ready to calculate some probabilities
associated with hypergeometric experiments. First,
however, there's no escaping the need to become
acquainted (or, perhaps, re-acquainted) with a couple of
useful mathematical notations.

~'"~~-~ ~ -' - - ~

factorial The first notation is that of thfaciorialfunction
function (sometimes called thefactorial operator):

- - - - - - -- - --

Fer any positive integer k, the expression k! (read:
"k factorial") is the product of all positive integers from
1 to k. Thus, you have the following values for the
factorial function:

I! = 1 - - - - - - - - - - - - -

21 = 12 = 2 . . _ _

3! = 12 3 = 6
4! = l 2 34 = 24
5! = 12 34 5 = 120

.

kl = 12 34 5 -(k - 1)(k) _ _ _ __

|= k(k - 1)! = k(k - 1)(k - 2)! = ... . ._ __. __. _ , ,, . _ _.

1

-

'"*' h* * Nw. = m--w i ---. me y, , , , , ,

%.
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The definition of the factorial function is extended to
include zero-factorial (01) with its value defined to be 1;
i.e., O! = 1. At first glance, this extension may appear
inconsistent with the main definition-even counter-
intuitive. You will see the rationale in setting O! = 1 in ~~ ~ ~ 7 - -

- w

the ensuing discussion.3 - - - - - - - - - - - -

If you have a scientific calculator, this is a good time to
try its factorial function, usually invoked with a key
labeled with an exclamation mark (!). What do you get
when you try 0!, !!,2.51, and -3f? Try some larger
numbers, say 10!,50!,70!, and 100!. But watch out: the
factorial you ask for may be larger than any value the .

calculator's memory can carry. For example, .

10! = 3,628,800 and 70! is larger than 10100 (the integer
1 written with 100 trailing zeroes).

binomial The second notation is that of the binomial coefficient
coefficient which is written as two non-negative integers, one above

the other, in parenthesis. It is evaluated using factorial
functions according to the expression . , . . . . . . _ , .. . . , , . ., _.

. , . . . . .

'a' a!
,

b b!(a-b)! '

which is read "a things taken b at a time" because it
represents the number of ways that you may select b items
out of a collection of a distinct items.4 For example:
Suppose you have 50 movies in your VCR collection.

~ ~~ ~ ^ ~ ' ~ ~ ~~ "

The number of double-feature evenings available to you is
. _ _

3 Because negative and fractional arguments for the factorial function are not needed in this ,

discussion, we choose nor to define it here for those values.

_ . _. _. . ..

* The reason this expression is c 'kd the " binomial coefficient" will become apparent during the study , , , , , _ _ , _ ,

of the bmomial distnbution in Chapter 17.

I

|

1

i

|
'

_-

- - -- - - . _ . , . .. _ .., ... _ , _ _ ,,, , _. ,

* d''B9P' .e.-,,e 4 ., 4 ,
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'

| |
1

'50' 50! (50)(49)(48!) . |
= = |.

2, 21(50 - 2)! (2)(1)x(48!) 1l s
,

I
(50)(49) = (25)(49) . _ _ _. _ . , .

.- '!
=

(2)
-

,

1,225.=

,

For discussion:
|

| 0 The following argument provides plausibility to the definition 0! = 1. - - - - - - _ . - .

Starting arbitrarily with 4! and working var way down, we find: .. . . .. . . _ . . _

-

41 = (3!)(4)
3! = (21)(3)
21 = (11)(2)

I 11 = (0!)(1). .

1
i

If you agree with the last relation, then O! cannot be anything but 1. .. . __, _ _ _ _ _ _ .,, _ _ _.

If you don't agree, we all have some pondering to do.
. ... .. . -.

O What will you do to calculate, or to approximate, a large factorial
(such as 70!) when your calculator cannot hold numbers larger than

i

101007
'

i
l

| 0 In practice, you rarely have to calculate large factorials, because the

| binomial coefficient involves many terms that either cancel out or
nearly cancel out. For example, '.. ~ ~_~~~. ~ ~~~ ~" ~ ~~.

'70' 70! (70)(69)68! , (70)(69) = 2,415., ,

2 2!68! 2! 68! 2

| .

|
. - -

. . . . . . . -. . . .....

1

.1

1

_ _ _ . ... _. .. _ . . _ __. ___

e . a 9w . = . +es- mumi.pr ,h .*he--%..si wer.- eelump++es.-& --hem.+=.mim 4.merSur-+ te hea.-a. m -6. 4.i=4+.- w. + .ep- . gag e W-- a aduehe *ue

|

|

_ .. . ~. . . . . . . _ . . . . ... . _ . _ _ .-. . .. _. _ .. _..

|
!
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At last! The hypergeometric distribution stands up! q

I Finallyl ' Armed with the factorial function and the'

binomial coefficient, you are ready to express and i
~ 7 7 '' ' icalculate simple probabilities associated with sampling

-
.

from a finite population. . Specifically, the probability of; ^ ~ ~~'" ^ ' ( -~~~'' " !
N |obtaining exactly h items with a specific attribute out of a ~ '

!sample of size n, given that the associated population has '

N items, exactly M of which have the attribute of interest,
is

- - w_y, y_y- _ _ _

h n-h
~ ' ~ ~ ~ ~ ~~ ~~ '

Pr{h} = , h = 0, 1, ... , min (M, n).
N

,

n
|

Examme Pr{h} carefully. The denominator gives the
number of ways a sample of n items can be selected from ,

a population of size N. The numerator gives the number-
of ways of selecting a sample of size n that contains

~ - - - - - --

exactly h out of the M items with a given attribute and .
- - 2 - -- . --x- . -

.

containing exactly (n - h) out of the (N - M) items in the
population without the given attribute.-

| The expression for Pr{h} can be rewritten by replacing

| each term by its factorial equivalence, resulting in a
longer, yet possibly more practical, expression:

- - - - _ - . _ _ _ _
,

#I I ~#)I "'I -")I ~- ^

Pr{h} = .

ht(M-h)! (n-h)l(N-M-n +h)! N1

Limited tables of the hypergeometric distribution can be
found in the literature. For example, Owen (1%2,
pp. 458-479), provides probabilities associated with

-

various configurations of N, M, n, and h, up to N = 21.
Beyer (1974, pp. 246-249) provides similar tables up to . _ _.

N = 10. . .._ _ . _ _ _ _ ,_ ._.. . . . _ .__

|

- - -- .- - _ _ _ _ _ _ __ _, _ _ . _. __
i

- ~ - . --- --._- _. -. . _ _ _ _ . , _ _ _ _ _ _ _ _ _ _ _

,

4

1

W

** * ' + * * ~ w . -,. .,,,e,h .m., m 4.. ,4 %. . .

4

m- e vr,a a



.. . . - - . ..-. -. .. . . . . . - . . _ - . ..

U.blI _all.LdLd.kil M,

-

(- .

! . Hyp:rgeomstric experim:nts ' 16-9 L. r . : , _ _

i

! The mean of the hypergeometric distribution (that is, the

3 average value of the random variable H in "the long run")
. is given by -

|Mean(H) = nMIN. - - - , - -

.. . ..

This expression, Mean(H) for the mean value of H, is not g
' - " - - * -

;. surprising because M/N is the proportion of items with the
'

attribute of interest in the population, and you would
expect a similar proportion to apply to the sample.i

The variance of the hypergeometric distribution is given \'

j by
___..;.__.__.__,

Var (H) = nM N - M N - n
^ ~ ~ ~ ~ ~ ~ ~- -

.

N- - N N-1

Development of the mean' and variance of H is given in <

Mood, Graybill, and Boes (1974, p. 91). The standard
j deviation for H is obtained, of course, as the square root

|~

of Var (H).

|
i . Probability calculations associated with the hypergeometric , . _ _ , .. _ _ .,

distribution are involved and lengthy. In many-

applications, however, the hypergeometric distribution'can-
,

be approximated by other distributions if certain >

,

; conditions are met. For example, if the ratio n/N is small,
say n/N < 0.10, the effect of non-replacement diminishes, |

4
and the binomial distribution of Chapter 17 can be used to'

approximate the hypergeometric distribution with relative- -'
. . _ _ . _ _ _ _ _ _ _ _ _ _

j- impunity. Hald (1952, p. 691) goes further, pointing out - ,;
_

that the normal approximation can be used if the variance''

'

of H is larger than 9.

5
4

-

.

5

4 e er se

; + ._ .._ _ . . . ..... ... . . . . . .

l
,

~
.

4

. .- . - .- -- - - . -- . . _ .. _. , _ ,_
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|

- =
-

Applications

This section contains three applications of hypergeometric
experiments: Example 16-1 demonstrates the calculation _ __ , __ ~

i ' '
of probabilities, Example 16-2 describes hypothesis-testing - ' ..

" ~~~^ ~ ~ ~ ' ~

and the effects of the distribution's being discrete, and
Example 16-3 illustrates the normal approximation to the
distribution.

.

1 Example 16-1: !

An inventory audit _, _ _ _

'

In an inventory of 25 items, five (i.e.,20%) are claimed
- - -

| to be defective. Owing to the cost of inspection, you are

|
faced with verifying the inventory with a sample of size

i n = 10.' What is the probability that, if you randomly
select 10 items, none will be defective? one? two? more

.

than two?|

i You have N = 25, M = (0.2)(25) = 5, n = 10,' and -- -r' - - ^ - - - ' ~ ~ - " - -'

h = 0,1, and 2, with the following probabilities -- - - - - - - . -- - --

calculated:

5! (25 -5)! 10!(25 - 10)! 0.0565 1Pr(0} =
=

0!(5 -0)! (10 -0)!(25 -5 - 10 + 0)! 251 .(
t

5! (25 -5)! 10!(25 - 10)! . = 0.2569 4

77g3) ,
1!(5 - 1)! (10 - 1)!(25 -5 - 10 + 1)! 251 --

__ 1_;
5! (25 -5)! 10!(25 -10)! = 0.3854.Pr{2} =

2!(5 -2)! (10 -2)!(25 -5 - 10 + 2)! 25t

| Thus, the probabilities that the sample of size n = 10 will
contain 0,1, or 2 defective items are 0.0565, 0.2569, and ]
0.3854, respectively. It follows that the probability of

'

more than 2 defective items in the sample is
'

|... .._ _ _ . . . , __

1
- - . ~ . . . . . . . _ _

1.0000 - 0.0565 - 0. 0.2569 - 0.3854 = 0.3012.

.

I

* *- ~ -w -- . _. . ., ,

* m- --mr -.sm.i.r- ' . we e age e ym,, ,,,_ , , , , , , _

1

-
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The results of the probabilistic calculation are summarized
and completed for h = 3,4, and 5 in Table 16-1. Also
given in this table is the cumulative probability for each
value of h, Pr{H s h}, as well as its complement.

Pr{H > h} = 1 - Pr(H s h}. ]]] ] _ }} ']
Ttble 161:
Summary of calculations for Example 16-1 -

Hypergeometric probabilitics for N = 25, M = 5, and n = 10
- - - - - - ---. __

Cumulative: Complement:
h Pr{H = h} Pr{H s h} Pr{H > h}

~

0 0.0565 0.0565 0.9435

1 0.2569 0.3134 0.6866

2 0.3854 0.6988 0.3012

3 0.2372 0.9360 0.0640
-- . . -- , . , , .. . ..

4 0.0593 0.9953 0.0047 _ . -

5 0.0047 1.0000 0.0(X)0

Example 16-2:
Tasting hypothesis for the inventory audit of Example 16-1

You can construct a test of a hypothesis about the number
~ ~ ~ ~ - ~ ~ ~ ' ~

of items in a finite population with an attribute of interest
'- - ^

using the hypothesis-testing processes introduced in
Chapter 9. Although the focus here is on a one-sided test,
the extensicn to two-sided alternative can be similarly
developed. However, since the hypergeometric
distribution deals with discrete events, the critical region is
comprised of discrete points, rather than an interval.

. -

Suppose that the claim is made that a population of size N -- - -- -- - -- - -

contains at most Mo items with a specific attribute. You i

.

.-. _

e a w Was wh um - &-e ern- m- M,&-- #4e . -m- a==e+-en -g i-e es- m

,

4
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'

- wish to test whether that claim is correct, allowing a;
'

Type I error of size a . You seto

~

Ho: M ~= 'M o, _. ~ ~

No: M > Mo, and .
.. {, ,n+ -

a=a. o

The critical region is selected so that so that, if H (the
number of items with the attribute in the sample) is
" excessively large," the hypothesis is rejected. Formally,
the critical region is made of values of h, such that

.

,
. - - _ . . . . . , _ _ . . . - - . _ _ _ _ _

E Pr(h|M } s a , - ~ _ . _ . _ .- , . . . - _ _ _ _ _ _ . .
o n

A =Q t

where Pr{h|Mo}is the probability of obtaining exactly h 4

| ' items with the specific attribute when the number of items
with that attribute in the population is Mo. In a
straightforward approach, a table such as Table 16-1 is

constructed and the value of ho that bounds the critical " " * ~ ~ ' ' ' ' ~ ~ ~ ~ ~ ~ ~ ~ - " ~ ~

region is found from the last column (the complement
- -i '

probability).
- - --- - --

To illustrate, suppose you are promised that no more than-' ?

'

five items of the 25-piece inventory are defective. You1
; plan to collect a random sample of size n = 10 to test that ,

:! claim with a = 0.05.~ The critical region is determined
from Table 16-1 by considering the last column and =

- ' - - - - - ~ " - - - -finding the largest probability that is smaller than
.

i a - 0.05. In this case, that probability is 0.0047. The -

value of h -associated with this probability is h = 4.
'

Hence, you take ho = 4 as the critical value and reject the
hypothesis if the number of defective items in the 10-item

_

sample is four or larger.

Here is the rationale for selecting ho = 4 as the
"beginning" (i.e., the critical value) of the critical region: - - _ .- ._

You are seeking a value of ho such that exactly a = 0.05 . . , _ _ _ . _ , , . _ , , , . , _

of the time you will observe ho or more defective items

,

l
.- - .- . .. .- -. ._ _. . _ _ .

. =.. . . ... - . - _ . . . . . _ . . . -_ .__ _ _ _ _ . _ __ __ _ _ _ __ ,

l

|
|

I
l

- ..

' . # 8 - N - Sataeh.d.pp-.Mp,g , 4., .g,,, , ,
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1

when the hypothesis Ho: M = 5 is true. - But an exact
solution is not possible in this particular case. Instead, - !

*

you note that ho = 3 is not adequate because it and all ~|,

larger values occur with probability 0.0640. You then try , , _ . _ _ ~' ', '
ho = 4 and find it and all larger values occur with - i

~ ~ ~ ~ ~ ~ ' ^ ~ ~ '

probability 0.0047; thus,0.0047 s a = 0.05 s 0.0640
and decide ho =.4 is the critical value that will assure
your not exceeding 0.05 level of significance. Note
especially that you would determine an identical protocol,
with the same critical value, for any a between 0.0047 .

and 0.0640.

.. -.-- -_\. ,.
,

Ex:mple 16-3:
'~ ~ "~ ~ -~ ~ ~

U Ing the normalapNoximation to the hypergeometric distribution

Examples 16-1 and 16-2 should be sufficiently convincing
|- that working with hypergeometric probabilities can be

tedious, even if they can be calculated in a straightforward ;

fashion. Relief is only a normal approximation away-as
long as Hald's (1952, p. 691) criterion is met; that is, as '~~~--~~-"-

long as you can determine that Var (H) > .9. If this . . . - - -

|
condition is met, then the standardized statistic

Z , H - Mean(H)
SD(H)

is distributed approximately as a standardized normal

| variable. A test of an hypothesis can be' exercised by. -

- _ _ . - - _ . . - _ - . _ . - - _ _ - _ . . . _ _ _
,

L placing an hypothesized value for M/N and comparing the _. . _ , _ .

resulting statistic to normal quantiles. This approximation
is demonstrated with a cable-inspection example:

|

A collection of 360 cables is audited for proper shielding.
The manufacturer claims that no more than 20% of the
cables are improperly shielded. A cable-installing
contractor wins the job by, among other things, echoing .. _ , _ _ , ,

the manufacturer's claim. Suppose you have the resources ^^

to examine a sample of size n = 100. You find that 30 of :
;

j the cables in the sample are improperly shielded. Do you . -

!

_ _ ~ _ . . , . _ .

8' "'ru +=' .e-e- s6 -egene. , ,, 6 4 . w .- Mg3, ,,wg,, ,m a .. gg,,,,,,4,, ,, , , , _ , , , _ , _ _ _ ,

I

L l
;

.

. .. . . - . . - . . . . .- ..

|-
. - - . , ,
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:

have enough evidence to challenge the 20% limit claimed
: by the cable-installing contractor?

In this example, you have N = 360 and n' = 100. The ''~~ u.,null and the alternative hypotheses, translated to integers,
' m

,

~- - - - --

are written as Ho: M =72, # : M > 72, and a = 0.053

'is chosen. To see if Hald's criterion for the use of the .
normal distribution is met, you compute the value of-

,

'

Var (H) under the null hypothesis and obtain:
.

var (H) = nM N-M N-n.N N N-1

, (100)(72) 360 -72 360 -100 ' ~~ ~''
.

~

360 360 360 -1

= 11.59.

Because 11.59 is larger than 9, you can exploit Hald's
criterion to complete your analysis with the normal
approximation to the hypergeometric.

. . . , . , . ._.

The mean and the standard deviation of H are calculated ._ _ . _ _
,

by
i.

! Mean(H) = nM/N = (100)(72)/360 = 20
,

and

SD(H) = / Var (H) = /11.59 = 3.40.
'

. . _ . . _ . _ _ .__ _ ,
,

1_ _ _ . .

! The corresponding Z statistic is then calculated as
. ,

| 2 = 30-20 =2M. i

3.40

Because Z is larger than 1.645 (the one-sided critical value
' - ~ ~ ~ ;

for a = 0.05), you reject the hypothesis that the
------ - --~- -----

proportion of improperly shielded cables is at most 20%.

:

l

__. j

- . . _ - . _ . _ . __ __ _ . _ _ . _ _ _ . _ ._ _ . _ . _ _ _ _ _ i

.

's.

!

,

* *

i
.

.--.
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For discussion:
-

- .. ' '_ '''

o Reconsider Example 16-3 What would you conclude !f 15 cables
'

with improper shielding were found in the sample? ~ ~ $ ~ ~ ~ ~ ~ ~~ ~ ~

What to remember about Chapter 16
. . . , . - . _ - _

Chapter 16 displayed and discussed the followinr; concepts - - _ _ . . __ . . _ . _ . .

connected with the hypergeometric distribution:

a binary attributes
sampling wah and without replacementa

a factorialfunction
a binomial coe.ficient

hypergeometric distributionfunction. . , , , _ _ . _ _ _ . , . _a
- . . . . . . . . . . . - . .

In addition, you were given the means to:

calculate specific hypergeometric probabilities fora
given population size, sample size, and number of \

}items with a given attribute
estimate the mean and variancefor the number ofm

attributes in the sample
determine when the hypergeometric distribution can be

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ,
a

approximated by the normal distribution.
" ~ ~

!

. . - -

. . - - _ . . . . ... .. .

- - - - - - - - _ . . _ ._ _,_ ,

" ^"" W ' edr p age.m.-. ,em. m.mm p , , ,, _ __

b.

m . + a *- h h* ema h 40 4 ' 4 - -ense. -4
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...
j

t
'

B. nomial experiments
.

i

What to look for in Chapter 17
~ '~ ~^~~" ~ ~ ~ ~ ~ ~

Chapter 17 is devoted to binomial experiments. These
~ ' ~ - ~ ~~ ~~ ~'- ^ -

experiments involve a special, but not uncommon, type of
discrete events. Among other things, this chapter shows
how to calculate the probability of occurrence of such
events.

Binomial and hypergeometic experiments have some
,

| similarities and often are confused with each other.
Follow this chapter and you will be able to:

'- - ~ ~ ~ ~ ~ ~ ~ ' ~ ~ ~ ~

. _ . . . _ .

recognize sampling scenarios that can be treated asa -

binomial experiments
distinguish between and recognize hypergeometric and |; a

binomial sampling scenarios 1

calculate the population mean and variancefor them

proportion ofitems ofinterest in binomial experiments
estimate a population's proportion ofitems ofinterest --a
when the binomial distribution is appropriate ..---.--|.-- - - - -- --

1

. . . _ -

"'M dw h e esse +4e a w es.m. . we, ,, , ,, ____ ,, ,, , _

l

| -

. . .
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.

l
l

recognize when the binomial distribution can be |a

| approximated by the normal distribution |
1

i a know when the binomial distribution cannot be
approximated by the normal distribution

u'\recognize when you can construct confidence intervals ~ ~ " ~ ~ T ~' ~ ~~ - ='a

for proportions using the normal approximation
~ ~ ~ ~ ~~ - - - - "

know what to do to construct confidence intervalsfor |a

| proportions when the normal approximation is not up \

to the task. |

|

|

Four requirements for a binomial experiment
;

_ __.._._ _ __ _____

!
~ ~ ~~ ~

As its name suggests, binomial experiments-like the

|
hypergeometric experiments in Chapter 16-deal with

! outcomes that are binary. Examples of binary outcomes

| are { good, bad}, { satisfactory, unsatisfactory}, and
i (OK, not-OK}. The knowledge and understanding of

when an experiment is qualified as a binomial experiment
|

are essential to its meaningful and defensible statistical and!

probabilistic analysis. Just as with hypergeomtric ;
~'"' ' -~'' '~ - ^ -

experiments, if an outcome of a binomial experiment lands -- - - --- ;

in a grey area (e.g., maybe or almost), then you must look
for another approach (perhaps the imdtinomial) to analyze
your data. Alternatively, you may agree to classify a
" gray-area" response, like "slightly pregnant," consistently
and unambiguously as one or another. However, you
must be sure that the disposition of such ambiguous
outcomes be determined before data are collected; - - - - - - - - - - -

certainly, you must make a such decision before you have -- _-_ _ ..i

an opportunity to interject either your or your |
management's bias into the experiment's analysis.

1

If the preceding paragraph seems familiar, it ought to.
You saw much the same discussion in Chapter 16.
Because many features of binomial and hypergeometric
experiments are similar, certain of these ideas bear _ ..

repeating. . _ _ ._ .. . _ . ,

- -- -_ .- -. -- _ . . ._ ._ . . - _. . _ _ _. . . _ _

. _ . ~ _ _ _ _ _ __ __ _ _ . . _ _. .._

_ . .. . . .. ._ _ .. .. .. . _ _ . . _ _ _ . _ . _ . . . ._. _
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= =
_

1

j An experiment qualifies as a binomial experiment if the
j
1 _

following four requirements are met:

7

: . ,- -. . - .. ,
4 ;. 4 .

3 Requirement 1: Requirement I says that the experiment is
~ '- - -

~ - -

] The experiment is made up of exactly n trials and that all n

j conducted in n trials, trials are conducted under the same set of - -

all of which are . circumstances. This requirement for-

conducted under identical conditions does not have to be taken -

; identical conditions.1 literally In flipping a coin, for instance, you
need not insist that the coin be flipped at the,

,
same time of the day and only on Monday. ; ,

For that matter, you may even permit' ' -- - - -- - - - +
;- another coin to be flipped. The important

; principle to remember is that events that may
j affect the experiment's results must be the

same.
,

i Example: Ifyou wish to assess the

| probability that pipejoints are welded
1 properly, you must be sure that all thejoints

, . , . "._ _. .
.. ~ , . -.

| in your sample are welded by the same a..._ . . . . , _ _ _ _ _

' welder, or at least, by welders of similar
,' training and certification.
4

,

.! t

i
j- _

i

e

i
1 1

k
'

,

i

i
j . _ . -._ - . . _ . _ - . . . ._ . . .

) 3 A single trial is often called a Bemoulli tnal, named after the swiss theologian-cum-mathematician - - - - . . - ~ - - - . - - . . . . - . . - - . -

; James (a.k.a. Jakob or Jaques) Bemoulli, (1654-1705). one of several generations of a distinguished

j family of mathematicians and physical scientists, he is credited with coining the term integral,

d
,

,

$

1
1

. .. ., , ,. _. . . + _ . . - . . - - - . ~ - - - - . - - ~ . - . . , . - - . .~ - - - -

4

!

.

_

6

J

$

_ _ _ . . _ , _ -- . ,- y -.,c _
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l

1

Requirement 2: Requirement 2 insists that the response must
|The i'^ trial, i = 1, be binary (dichotomous, if it suits you).'

... , n, results in Whether you toss a coin or inspect a valve |

either a success for compliance, the experiment must lead to, --- ,--- . ~ -- , ,

(recorded as Y = 1) a success or a failure. And, of course, when .. .. _i _ __ __ _ J
' j
- or afailure (recorded you define a success, you must have a frame

as Y, = 0). of reference clearly in mind, since success to
one player may be a failure to another. To

Note also that success handle the results of a binomial experiment

$ in this chapter is akin mathematically, you denote the result of the
i'^ trial by Y and assign Y = 1 if the trialto attribute in f f

; Chapter 16. yields a success; otherwise, you assign _ _ _ _ _ _ _ . _ _ , _

Y = 0. '

i

Example: A properly welded pipejoint is
;

scored as 1, while an improperly weldedjoint
.

is scored as 0.
,

| Requirement 3: Requirement 3 states that the probability of

The probability of a success, r, is constant from trial to trial. If,
4

i success, denoted by x for example, your experiment is the throw of

(lower-case Greek a six-faced die, the probability of getting a 6
** - - --- - - - - ---- -- -

letter pi), is constant is presumed to be unchanged from one throw - - - - - -- .._

from trial to trial. As to the next. Indeed, a starting model for

! with all probabilities, such an experiment could specify

the condition Pr(6} = 1/6.4

0 s r s 1 must be Example: If the quality of the welding
3

! met. improves over time (perhaps owing to
experience or to improved equipment), then,

}.
this assumption of constant probability is .-- - - - .-- ..- ,..

i violated. Similarly, if the quality of welding _ _ _ _ _

deteriorates over time (perhaps owing to
fatigue, over-conjidence, or mere stoppiness),
then the binomial experiment is not

i

applicable.

i

. _

. .- . . ... .. . .. .. .

.

.- - - . . - - - . . - . _ . . -

*" 'N * * * * ON. =mpe= m em e e a .- . . ..e p4 ,% g,4, ,.

,

'' ~ ~~ * =- em. . . . .. ., __

,., .-
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!

Requirement 4: Requirement 4 states that the trials are ,

l

The n trials are independent of each other; that is, that the
independent. system has no " memory." If you win eight \ '

times in a row in a coin-tossing contest, 1
~ g- u--

,

| Requirement 4 means that your chance of
,

! winning on the ninth trial is not different

|
from that of any other toss.

i Example: Each pipe-foint weld is performed ,

! independently of the others; i.e., whatever |

happens during any weld is neither influenced j

by nor has influence on what happens during. \

|
the other weta; |

m._.. _. _ _ _ . _ __ _

Your focus in binomial experiments is on either or both of
two statistics:

|

(1) B = EY,, the number of successes in n tri-t
|

| and - . _ . _ _- _- _ _ _ _

(2) P = B/n, the sample proportion of successes.

| To repeat: it is extremely important to recognize whether
|. your study meets the binomial experiment's requirements.
| And yet, when certain conditions prevail, some departure

from some of these assumptions may be acceptable.

| Don't hesitate to ask your friendly statistician'

- .

For discussion:

C Why shouldn't you simply look at the " grey-area" responses and then
decide how to classify them? (Hint: How would you like " grey-area" )
responses to be classified?) . - - - - . . - ;

.. _ _-_. _ _ - . . . . _ _ . _ l
!
i

l

i
- -

_ _ _ _ _ _ _- .. _ _ _ _ _ . _._. _.. _ _ _ . _ . . _ -

.

.. . . . -_ . _ . _ . _ . .. _ ._ .

!
,
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Give an example from your own experience in which the binomial
1

0
experiment is applicable. Show that, when one requirement is
violated, other requirements may be violated, too.

-
,

Whenever Team A plays basketball against Team B, the probability of ~~ - 7 -~ ~m T |c
, --- - - - - -- -- - - -

|
| Team A winning is 0.60. The two teams play n games and the

I number of winnings by each team is recorded. Would you consider |
|

j this a binomial experiment?
i

4
!G Describe a scenario and conditions where an inspection of special

i purpose pipes qualifies as a binomial experiment. Which of the four
requirements is the most questionable?

, - -- - . --
r

i - - -. . . . . - . .

4
.

Binomial probabilities'

You are now ready to calculate some probabilities
';

associated with binomial experiments. In the conduct of a
binomial experiment involving n trials, the number of " * * ~ ' " ~ ' " ~ ~ ~ ' " ' ~ ' "

successes is one of the integers in the set {0,1,2, ..., n}.
- - - -j

Before the experiment, you don't know which of these
values will be obtained. But, if you know the binomial'

j parameter 1, you can calculate the probability that the
random variable B will attain any of the (n + 1) possible'

|

values in the set.
1

binomial The binomial densityfunction gives the probability that
- -- - - - -- - - - - - - - - - -

density B = b, where b = 0 or 1 or 2 or ... or n successes in n'

i function trials, when the probability of a success in a single trial is
- - -

r. The binomial probability function is written and
i

calculated as

;
. - - . .

~- ~4 - . . . . . . .

|

!

!

- --- - - - . . . , . , _ _ . _ , _ _ , _ _ . _ _ __ , _

4

-
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.

.

1I
1. .

r (3 _ ,)n-b !" bPr{B = b; n, r} =
b

n! ,b _
,, .y

- '

b!(n - b)1 , ,. . . r- u._
,.

,

~-- - - - - - . - - - . . . _ . . _ _ _ .

| where 0 s r s 1 and b = 0,1, . n. The binomial
|

,

parameters are n and r, as indicated in the expression for!

its probability function.' When there is little opportunity to
be misunderstood, you may find it convenient to write
Pr{b} in place of the longer expression Pr{B = b; n, r}.' ;

|
. . - - - - . . - - . . - - _ _ _ _

- .

For discussion: ,

i

c Note that, in (what may be) the majority of textbooks on statistics, the
population parameter which describes the proportion of characteristics
of interest often is denoted by the English letter p. To maintain

;
consistency in usage across this book, we elect to employ the lower-

- 4 c . . . . . . _ . , - .case Greek letter r to indicate the binomial parameter. Note further |

f that we use the upper-case letter B to designate a random variable . . _ .._ _ .|,

'

|
from a binomial experiment, whereas some other books denote it by X
or Y. Once the outcome of the binomial experiment is known (no'

|
longer a random variable), it is denoted by the lower-case English

! letter b.
1

;
To meet the binomial distribution's requirement for sampling with aC

constant probability 1, you may treat the experiment as sampling with . . _ ._...__ __ ___._ _ ._ _

replacement. Discuss the pros and cons of sampling with replacement _ . _ , ~,

in each of the following four experiments:
1

,

(1) Tossing the same coin repeatedly to establish whether heads and
tails appear with equal frequency.

(2) Rolling the same die repeatedly to investigate whether the die is
fair. . _ _

i . -- . ._. . . . . . . . ._.._.

s

. __. _.

~^ '" " ' ' *h #*De .e.m.. es%,. ,, , , , , ,

g

.- + e- .a a +e ,. a . .- e
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(3) Sampling suburban residents to see how many would be willing to-
have their home's electricity generated by nuclear energy.

(4) Sampling employees for drug use.
.. . . .m. - .- e .

_. . - _.._._ _ ._.

Example 17-1:
A tequence of heads in a series of coin tosses

What is the probability of throwing 6 heads in a row with
a fair coin?

.

You have b = 6, n = 6, and r = 0.5, from which you ~- - - - - - - -

calculate

6!

Pr{6} = 6!01(0.5)6(0.5)0 = 0.015625.

Example 17-2.
Acceptance sampling oflaser printer cartridges - - - - - - -

In the testing of laser printer cartridges for length of
service, a cartridge is defective if it fails to deliver at least -
3,000 printed pages. Given that 20% of a typical line of
reconditioned cartridges are defective, you can address the
following kinds of questions:

- -- - - - . - - - . - . - . . - -

(a) What is the probability of obtaining exactly two __ _ _ . . .

defective cartridges in a random sample of 50
cartridges?

! You have b = 2, n = 50, and r = 0.2, from which

50!
Pr{2}= 21481(0.2)2(0.80)48 = 0.001093. ~ ~ ~~

. .. . .. . . . . . . . - - . .

.

|

|

|
-. .. .. . .- ... - - .

. - . . - - .. - - . . - - . - . . - - .- _

!
!

!
|

_ _

. . .-- . . . . - . . . . . ..
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,,

(b) What is the probability of obtaining at most two
defective cartridges in a random' sample of n = 50?

i To meet the "at most" requirement, the sample must _.

~ ~'~F'~;*
- ~

m' 7 .|. yield exactly 0 or exactly 1 or exactly 2 defective . _* ~~~ -~'
,

cartridges. Since those events are mutually exclusive,
~ - -

' the probabilities associated with these events are.. 1

additive. You've already calculated Pr{2}. Now you
need to calculate Pr(1} and Pr{0}:i.

i

f Pr{1} = !!491(0.2)k0.80)# = 0.000178!

. , _ _ . . _ . - . . , _ _ . . . . _ . _ _g
- ..

E
Pr{0}= - 0150!(0.2)0(0.80)50 = 0.000014. ,

i .

! Putting the pieces together, the probability of
; obtaining at most 2 defective cartridges is: ,

| Pr{B.3 2} =.Pr{0} .+ Pr{1}: + Pr{2} ' ' ' ' ' " ~ ~ ' ' ~ ' " * * * ^ " ~ ~
|. ,0.001285.

|
. --- . -.a...

.

; (c) Does this investigation qualify as a binomial
~

V
( experiment? If not, which requirements of the

'

| binomial experiment are violated?

i .
.

.

| (d) How would you sample cartridges from a production ,

| line? Or can you? Or: is that even the right % ,

| question? . - h ._ , _ ._ ,__

.. _ . . _ _ _ .

4

*

Example 17-3:
Drug-teshing

Each designated employee in a government agency is a .
candidate for drug-testing. The tests are administered on |

|
each of 10 randomly selected days in any given calendar

~~ ~ ~"

| year. For each of those 10 days,10% of those employees
' ~ ~ ~ ~~" ~ ~ ' - ~ -

| are selected at random from the pool of eligible
!

- L _ _. _

* " ' " - ' ' - "* - c-- e-... .w w. , sp ,u , _ , _, _

^n

i
.,

- *

.

_-, . . .... _ _ . . ._ - .- .
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employees. The sample is selected independently of any 1

jprevious sample. Hence, some employees may be selected
more than once in a year, while others may not be \ |

_ |selected at all. \
- ,. ,- - - . . .

" - - -What is the probability that an employee will not be
- - - - -

selected during the year? What is the probability that an
employee will be selected once, twice, or more than twice
during the year?

The probability of being selected at a given test is
x = 0.1. The number of trials is n = 10. From which
you get

' ~ ~~~~ ~ ~ ~ ~ ~

-.. .. . .- -.

101

Pr{0}= O! 10!(0.1)0(0.9)l0 = 0.3487
101

Pr{1}= !! 91(0.1)l(0.9)9 = 0.3874 s
.,

\10!!

Pr{2}= 2! 8!(0.1)2(0.9)8 = 0.1937.
N
-~N----,--- . - . . - - . -

Thus, the probabilities that an individual employee will be . _ _ , ., _

tested 0,1, or 2 times during the year are 0.3487,0.3487,
and 0.1937, respectively. The probability that an
individual will be tested more than twice is

1.0000 - 0.3487 -0.3874 - 0.1937 = 0.0702.

.. - ._ ... - -- _ . . .

-. . _.

For discussion:

a The sampling scheme described in Example 17-3 is labeled a "100%
sampling rate," a common but unfortunate term because it has the
potential to mislead. The label is meant to describe a plan by which'

,

the total number of individual drug tests conducted in a specific year j
is equal to the number of employees in the pool. Discuss reasons why _ .__ . . .

the label, "100% sampling rate," is potentially misleading. What _ ,,,, _ |, , , , , _ . _ . _

impression does this label convey?
'

|

- _ _
_ _

| .. . - - . - -- - -.._. - - - _ . . . . . - . . . . . -- -- . _

i

|

I

.s

' 4 =d a- -e e. .gme mp ..e+ae.-- 4.we. 4 -e-.. .>.a ,ee a.4 p ...ne

;
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| C Consider now a "50% sampling rate" scheme, in which the total |

|
number of individual drug tests administered during a year's testing is |

I

equal to one-half of the total number of employees in the pool. Thei

tests are conducted ten times a year, so that the probability of being

|
selected at each test is 0.05. Show that the probability of an

- ~~ - ' " ~ -"'
> .

' ~ - " ~ ~ ~ '~ - --' -

employee's being tested zero, one, two, or more than two times in
one year is Pr{0} = 0.5987, Pr{1} = 0.3151, Pr{2} = 0.0746, and

I

| Pr{more than 2} = 0.0116.

!
! o How would you test employees for drug use and make sure that every j

employee is tested at least once each year? |
|

.

. , . .
- . . . . _ . . _ . . _ . _. -.

I
. .

.

|

j A special exercise

| Suppose that approximately 10% of the routine production runs of
(computer memory chips are defective. In order for your computer to run

a new batch of software properly, you must endow it with eight additional |
|memory chips. Your computer dealer carries those chips in a large bin.

*" " ^ ~ ~ ' ' '~ " ~'" '~ i
What is the probability that, if you randomly select 8 chips, all of them

- ~ ~ ~ ~' ~~ ~~ --
|will work? l

Assuming that the chips are randomly selected from the bin, the

| probability that all eight chips will function properly (i.e., that zero chips |

will fail) is given by (using n = 8 and r = 0.1) the expression

81 )!

Pr{0}= O!8!(0.1)0(0.9)8 = 0.4305. ._.__.._.._.___.___..__|

1This probability, slightly larger than 0.43, reflects a uncomfortable
--- - - - -

"likeliness" that your computer will be operational tonight. Thus, you!

might decide to buy nine chips to improve your " chances" of winding up
with eight working chips. All you have to do is to calculate the . !

' !

probability that the number of bad chips in a sample of n = 9 is either
zero or one, because either outcome is acceptable to the task of getting

your computer to operate your new software.
- - _ . .

.-. -. - .. . -

-m .e.e . ge
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4

'

But:- How many memory chips should you buy 7 Even if you buy 50
!chips, there still is a non-zero probability that at most 7 of them will work -

properly. This worrisome state is exactly where the probabilistic rubber
meets the practical road.

-n _

. . , . ;
----~~ -- - - - -

For one thing, you can set your own criterion. Thus, suppose you decide
to buy (nough chips to provide some reasonable assurance, say 95%, that
you will not have to return to the store for more chips that day. All
you're faced with is a little calculating.-

If you buy exactly nine randomly selected chips, the 1 the probability that -
at least 8 of them will function is the probability than either zero or one

~ - - - - " - - -

of the chips will fail. The two outcomes are mutually exclusive, so you
set out to calculate the probability that no failures appear in the 9 chips . - - -- .-

and the probability that exactly one failure appears in the 9 chips. Then 1
'

all you do is add the two probabilities, and you have your result.'
l

Your calculations should look something like these two expressions: j

i

Pr{0}= (0.1)o(0.9)E = 0.3874 . , , _ ,,, _ ,

j
- and ;

I

Pr{1} = 1!8!(0.1)l(0.9)8 = 0.3874.
:
j

a,

(Oh, my! What happened? Did you anticipate the result that i
1Pr{0} = Pr{1}? What explanation can you come up with?). .. ,__.____:.__.__. ;

Your assurance of not having to return to the store is now measured by
~ ~ ~~

;

the sum of these probabilities; that is, 0.3874 + 0.3874 = 0.7748.
Although this is nearly twice the assurance given by trying to get by with
the purchase of eight chips, it still doesn't reach the level of 95% that you

| promised yourself. So you consider the purchase of 10 chips. You find
that the probability of obtaining at least eight good chips in a random
sample of 10 chips is Pr{0} + Pr{1} + Pr{2} = 0.3487 + 3874

' ~ ~

+ 0.1937 = 0.9298, still not enough to meet your self-established 95%
, .

. . . . _ . - . . . . . . .. _ _ _
!criterion.
l

!

!

!

- |

. - - -- - ._ .- - __ _ .._ . ._ . - , _ : _ _ _ . _; _,

j
. - .. . - _- .. . - . _ . . _ ..___... . _ . _..____ _ .- _ _ , _ .._ _

8 i

'

- - . - - ~ . -. .. . . . . . . . _ . . _ , .._ . . , , ., . . _ . . , . , , , , . , ,, , , , .

< as s . , , = . , s. o ,, .-wr, - e e e e- -.r + - - - -
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One thing you could do: Simply lower your standard from 95% to, say,
90%. Now you're in business with n = 10 because 0.90 is less than

,

| 0.9298. But a small twinge of conscience may be lurking close by.
You're not sticking to your original criterion. You're letting the numbers

' -

~7 - - ~ umodify your intention. What to do?
. _ . . . _ _ _ _ . ..___ _ ._

Well, you could continne the search for the sample size that. satisfies the

j 95% criterion. And that's just what this special exercise is all a50 tit.

Consider next a sample of 11 chips. Will it be large enough? You find

| cut by calculating the following terms for n = 11:

Pr{0} =
- - - ~ - - - -

( .. :
,

Pr{1} = Pr{0} + Pr{1} = |

|

. Pr{2} = Pr{0} + Pr{0} + Pr{2} =
;

Pr{3}= Pr{0} + Pr{1} + Pr{2} + Pr{3} =

Do you now have the required assurance? If yes, congratulations! If no, - - < . . - - . - .. . ,.-

| double check your calculations- 3r repeat the process with n = 12 and c.._.___ __. . _ _ . _ _ _

! n = 13 and ... and so on.

Ifyou did your calculations correctly, youfound that the probability of
obtaining at least eightfunctioning chips when n = 11 is 0.9814;

'

approximately 0.98.

-- . .._. - - .-.- - .- . . - -
_

._ _ _ . . -

For discussion:

| 0 Reconsider the special exercise involving the purchase of computer
-

lchips. Was the analysis based on a binomial experiment? Why do
|you think so? If you think it wasn't, what conditions would have

rendered it a binomial experiment? i
. _. .

| 0 in the special exercise, your assurance criterion of 95% was set . _ . . . _ . . . - _ . . ... ._

arbitrarily. You may also argue that, in forcing the purchase of an
i

- - - . . -- . -._ . - - . . - . , - . - - . . . _ . ._ _ . . . . - . . _ . .

I

{

|
|

__. _ _ _ .
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Il'h chip, the arbitrary selection of 95% was not justified in light of
,

the very little extra assurance (98% versus 93%) you bought for the2

price of the last chip. That's certainly one way of looking at the
problem. But look at it from the other direction. The probability of

~7 -- ~ u-
having to return to the store when you buy 11 chips is ,

,

" ' ~ ' -
'

1.0000 - 0.9814 = 0.0186, while for 10 chips the probability is
l.0000 - 0.9298 = 0.0702, nearly four times as high as the
probability of drawing at least eight good chips in a sample of size 11.

To repeat: The decision of selecting the sample size ultimately rests
with the user. Financial, time, and other considerations certainly<

enter into your considerations. Here's a thought:
_ - . _ . _ . - _ _ _ _ _ _ _ _ _ _ ,

i

- - --L)Do recognize and articulate ennstraints and limitations early in
your considerations. Once your planned long-range goals and;

processes are decided, stick to them. As a rule, adhering to your4

guideline (s) and to your established decision criteria will keep you'

out of the trouble that's waiting whenever you fall back upon ad
hoc, spur-of-the-moment, short-term processes. Successful
investors and professional gamblers seem to have an innate

;
understanding of this principle. -.. ,.,,..-. _. .-,__

- . . . . _ _ . _ . . _ _ . . _ _ _

Measures of statistics derived from the binomial
i probability function
1

If you find B defective switches when ym inspect a-

random sample of size n from a shipmerit of switches, ~ - ~ ~ ~ ~ ~ ~ ~ ',

i
then the sample proportion of defective switches is F/n.

~ ~ ~ ~ - -

This sample proportion is a prime candidate as an4

estimator of the population proportion, namely x-in this
,

case, denoting the probability of a switch being defective.'

Naturally, both B (the count of items of interest) and B/n
;

(the sample proportion of items of interest) are statistics of
interest. Whereas many statistics books concentrate on the

!
statistic B for mathematical reasons, we prefer to

- - -

i emphasize the statl 'e B/n for practical reasons. For
- - - - - - - - -- - -

notational and mnemo.lic convenience, we set P = B/n.

- -- - - - - - - . ._ . . _ _ _ .

* * - - * =*e---uume .,.. w. _, ,,, _, ,_ _

. _ . .- . . . . . . - . . . . . .- .-
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| Because they are statistics, B and P = B/n each has a
' mean, a variance, and a standard deviation. These three

performance measures are displayed in Table 17-1.
!

~- . ., .
_;,

~' ~ ~ ~ ~~-~ ~ '' ~ ~~" ' n
| Tcble 171:
' M:asures of statistles derived from the binomial' probability

function

==:--

Statistic when binomial parameterj 2r
Measure

B P = Bir.
_ . . . _ _ _ _ _ _ _ _

,

Mean nr -r - - - - - --

Variance nr(1 - r) x(1 r)/n
i

Standard deviation
j /nr(1-r) /r(1 -1)/n
<

i

On the calculation of binomial probabilities - - - - --

|

|
Although the formula for calculating a binomial
probability, namely

"I bPr{B = b; n, r} = x (; _ y)n-b
b!(n-b)! '

is not especially intimidating or difficult to evaluate, -- - - - - - - - - - . _

repeated evaluations for many different sets of the three . _ . _ _ . ._ _

arguments can be boring and tedious. Fortunately, you
have several " outs."

First, you have Table T-7 It gives, to four decimal
'

| places, the binomial probabilities involving combinations
| of r = 0.01,0.05, 0.10, 0.25, and 0.50 and b = 0,1,

. ., 9 for n = 1, 2, . . . , 40. . . _ .. _

. _ _ _ _ . . _ _ _ . . _ _ _ _

!

|
- .- - .-- - -- - - .- . . . . - .. ._ _. _ _ ,

|
t

|

|
,

| - - |

;
- ~ _. . __. .- . . . r ,. _ . _ ..

,!

!
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_ _
...q . .

Second, you may have access to a variety of published
binomial tables. Among them are: a pamphlet issued by :

'

the Ordnance Corps (1952), a book by Romig (1953), a
compilation by the staff of Harvard University's "' - -' - -v vComputation Laboratory (1955), and Beyer (1974, , - ,

' - " - - - - " "
pp.182 1.93).

Third, you may have a hand-held calculator with the
binomial functions built in. Then it's a matter of pressing i

.

buttons and reading displays.

Fourth, you may have a spreadsheet program in your " " - - ~ - - - - ,
desktop computer. Some spreadsheets have the binomial
function built in. For others, you can set up a spreadsheet - .- .-:~. ;

that makes use of a binomial recursion formula such as
,

r n b
Pr{b .+ 1} = Pr{b} 1 - r b + 1, ,r

! .

L a ., _1
|

in which the parameters x and n are fixed and the c . c= - ... .

recursion begins with the evaluation of Pr{0} and . . _ _____. __1'

'

progresses through Pr{1}, Pr{2}, and so on until Pr{n} is
*

evaluated.
|

Fifth, if certain conditions pertain to the binomial's !

parameters, you can use the normal approximation, which '

is discussed in the following section.
. .- . . ~ -.- ._, . .

Sixth, if certain conditions pertain the binomial ;

"' ''- ~~~

parameters, you can use the Poisson approximation, which
is discussed in Chapter 18.

i
.

. O .N Gr- ,

a es s-M Sta k .de .S 4~ ,$3 g , a . ,gg y'*''OM 16 m
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I
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|
|

.
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| The normal approximation to the binomial
'

|
,

distribution
<

'

t

! Although B always is an integer in binomial experiments, -,-7 -- _. . .

| certain conditions allow you to approximate the
distribution of B and, consequently, the distribution of j

P = Bin by the ubiquitous normal distribution. This |
!

,
approximation simplifies the term-by-term calculations

|l inherent in the binomial by employing the easy-to-use

| standard normal table (such as Table T-1) and allowing

| you to solve many problems without having to dive into an
extensive enumeration exercise. The conditions usually are __ _ _ _ _. _

'

stated, by such writers as Dixon and Massey (1983, __ _ __

p.170) as:

nr > 5 and n(1 - r) > 5.

Some writers suggest that, if the binomial parameter r is
unknown, you use P = B/n to approximate r, yielding the'

following modified conditions: ,. . - . _ _ . , _ . _ _ . , . _ .

n(B/n) > 5 and n(1 - B/n) > 5,
~ ~ ~ ~ ~ ~

l
|

which in turn sirrplify to:

.

B > 5 and (n - B) > 5.

When these con < itions are satisfied, you can call on all the
I procedures invnved in normal estimation and hypothesis-

~~ ~ - - - - - - -

| testing procesres. Thus, you may test whether x is equal
-- - - - -

to a given value (using either a one- or a two-sided test),
or you can produce a confidence interval on the binomial ,

|parameter.

'

Thus, a general null hypothesis for the binomial parameter
may be stated as Ho: 7 = r . You write the test statistico

as:
- - -

. . . ._. . .. ..

|
!

!

|
!

. - - - . - -. . . . . . . . _ . . . .. .. . _.-

I

!

l

I

|
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,

I

Bin - r . )o2= .

to (I - 7 )0
n - .-- . .. .. __ ,

, . .

\
"' ~ * ~~ ~~ ~

Example 17-4:
. !

Binomialhypothesis-testing using the normalapproximation

In a random sample of 63 buckets of water from a lake
|near a manufacturing facility,16 were found to be

contaminated. The plant manager claims that no more . ;
.

than 10% of the water is contaminated. The estimate of . i

the contamination rate is p = b/n = 16/63 = 0.254. -

- - '-- - - - --- ~ ~ -

Would you reject the manager's claim?
- . . -

You have No: r = 0.1, H : r > 0.1, and a = 0.05. .

i

|

i First note that nr == 63(0.1) = 6.3 > 5 and that

| n(1 - r) = 63(0.9) = 65.7 > 5, so that the normal .
approximation to the binomial is appropriate. You -
proceed by' constructing a standard normalized test statistic . .- ..- ~ . . -- w ..

!

| and reject the null hypothesis, Ho: r = 0.1, if the . _ _ : . . _ _ . . . ___ . . _ . _ _ . .

calculated statistic is larger than z0.950 = 1.645. For this
.

example, the value of the statistic is

l' 16/63 - 0.1 :
<

4.07.=z=
.i

L 0.1 (1.0-0.1)

f 63 -4-.- - . -- . - . . - .

,

,

\
-. . .

Because the test statistic z = 4.07 is larger than 1.645, |
;

|you reject Ho, claiming statistical evidence that the level'

!of contamination is larger than 10%.

We s.'l are grateful for the normal approximation to the-

|
binoria.i distribution. If it hadn't been for this (or some

- _ . . _

w h4 49 - .s 4 u A er_, . .he . 46 e a_ .shue-

-

. _ ._
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. _

other) approximation,2 we would have had to shift into a
full enumeration mode and find, separately, the probability
of obtaining 0,1,2, ... contaminated buckets of water out
of 63 drawn.

;,. ..-- ~ ~ >

m_.-., . . . . . . . ~ _ _ .

Confidence intervals for the binomial parameter:
When the normal approximation suffices-

When the normal approximation to the binomial
distribution suffices, the construction of a confidence
interval about the binomial parameter x is simple. If the _. _ __ _._ A__

'

normal approximation is not applicable, the section ' ~ ~ ~ ~ ~~ ~ ' - ~

~

following gives you some hints. In such cases,
construction of the confidence interval is tedious and often
is best left to a. professional statistician while you go about
other business.

When the normal approximation applies, the constr,2ction
of the confidence interval follows the procedure used for

~' ' ' ~ ' ~ ~ " ~ ~ ~ ~ ~ ~ ~ ~ ~ '

the population mean in Chapter 8, with a small diK.rence,
~ ~ ~ - --

you decide what it is.

Remember that, when a is known and you have a r.armal
distribution, a 95% two-sided confidenc- interval about
the population mean p is given by

f (sample mean) 1.960 (standard error of the mean).
- . _ . - ._._ ._._. . . _ _ _ _

;

If a one-sided confidence interval is desired, you substitute - - - - -t

1.645 for 1.960 and use either end according to your

needs.

By analogy, the 95% two-sided confidence interval for x
is given by

+ , _ . _ _

. - . . . - ~ . _ . _ _ .. . .. . . . , _ .

; Generally is credited to J. Bernoulli who was mentioned in the first footnote in this chapter.

.
. _ . . _ _ .

" ' ' ~ ' ** * m m w* .-em ., e, .,,emn, ._ , , _
_
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i

B/n t 1.960 x (estimated standard deviation of B/n)

B/n(1 - B/n)= B/n i 1.960
n

~ ;- - . m ,- u
-

'

III ~ #) ' ~ ~ ' ~- '

= P i 1.960 .

n

Example 17-5: , ,

Do computer cables meet standant speclHcations?
-

If seven of 100 computer cables are found not to meet
" - "

standard specifications, then a 95% upper confidence
- - ---

,

'~--- - - - -- --: -- ' . .

f
interval on the fraction of out-of-specification cables is

'

given by:

7 93

(100)(100)7 + 1.645 = 0.07 + 0.042
100 100

.

"'-'~'~~~~-'e-= 0.112. -

._u...-__. _. _ _____ _ _ .,

This sets the 95% upper limit for the fraction of cables not '

meeting standard specifications at slightly more than 11%. ,

Confidence intervals for the binomial parameter:
When the normal approximation does not suffice ;

L -

Recall that the normal approximation to the binomial can
be used when these conditions are met:

B > 5 and (n - B) > 5. -

However, failure to meet these conditions does not mean

| that you cannot find confidence limits for the measure
you're interested in. This problem arises in numerous - - - - - - - - --- -- - - - .

situations, primarily those in which the event of interest is - - - - . _ - - . _ . . . . - . _ _ . _

" rare," such as those involving extremely high-quality :
1

|.
- . - -. --

- .- - _ - - - .-. - _ . . - - - - _ _ . . .

!
. -

9 .m. .i en..- r a g
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.
-

_

products or the occurrence of disasters like floods and
earthquakes and collapsing highway bridges.

Note that there is aflip-side to ' rare" events: Because the ]

binomial parameter r and its complement (1 - r) play . - - ,-- , - ,x
*

symmetric roles in these considerations, what is saidfor -- - - ..

" rare" events applies equally to " common * events.

The following discussion is adapted from Mood and
.

Graybill (1%3, pp. 260-262). Their notation is modified _ ,

to conform to this text.

To state the problem: You have a sample of size n with - - . - - _ . _ _ , _ _ _ . _ '~

an observed number of successes', say B. . You wish to

place a 95% confidence interval on the b'momial
.

parameter 1.

The 95% two-sided confidence upper limit for r, call it . k
'U, is the value of r for which- y .

N.

B . . - , , , , - , _ , , _ _ _ - _ _ _ _ _ _ _ _ __

| [ x*(1 - r)"-* = 0.025,_
' ' ' ' ' ' ^ ^ ' ~ ~ ~ ~

"

k =0 , N

.
.

|-

and the 95% two-sided confidence lower limit for r, call .

it rt, is the value of r for which ~

n
- "-

{ r*(1 - r)"-* = 0.025.
k .. _ _ - -

- =--m
g.g

1-

! If you have B = n, set ru = 1; similarly, if you have ,

B = 0, set rt = 0. ,

|. s

Solving either of these equations can be daunting. No ,

| matter what values of n and B you have, you must solve a
>,

|:

polynomial in the parameter r, Fortunately, as shown by -
Bowker and Lieberman (1972, pp. 466-467), values of ry .~- " _=m--

-- -j
- ,_.. . . . . _ _ _

,'

* ~- - -m -.m . ,_. . . _.

'''" N' iM MP+ 4M s- -i.-.we ,.w,._ ., ,,,

-

i
!

~

- - - . -- - - - . , . _ ... .. ._ ,.-

|'
.. ; .. . - _ . .,. , .. . _ . . . . _ . _ _ _ _ . _ . . . _ . ~ , . . . _ . . . . _- .- |
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,

and rt can be expressed in terms of quantiles of the F
1

| distribution.

Let n be the number of trials and b be the number of
occurrences of the event of interest. Then upper and -- n- - - -

--- -

lower 100(1 - a) confidence limits are given by - - - - - - - - - - - - -

(b + 1)fg _,n)(2(b + 1), 2(n -b))

Pu = (n -b) + (b + 1]fg _,n)(2(b + 1), 2(n -b))

b

PL * b + (n -b + 1)/g _,n)(2(n -b + 1), 2b)-
_ _ - _- . _ _.. _ ._.

Bowker and Lieberman (1972, p. 467) illustrate with this .
_ ;

calculation (which here reflects this book's notation):

For example, suppose that 4 defects are observed
in sample of 25. The ... estimate [of r] is
p = 0.16. To find a 95% confidence interval for
r with a = 0.05, n = 25, b = 4,

I
. , , . . . _ . . . . . . . _ . _ _ , _ . ..

fo.0975(10,42) = 2.37 , _ , , _ _

fo.0975(44, 8) = 3.82.

The interval is then given by

i

0.361
Pu = 21 + 5(2.37)

=

4 ~ ~ ~ ~ ~ ~ ~

0.045., =p
4 + 22(3.82) -

Because the case of observing b = 0 in a binomial sample
of size n occurs often enough to warrant explication, we
work through the details for a specific n = 25. First, the
lower limit is rt = 0. Because the observed b = 0, the
equation for ry reduces to finding the value of r for

- ~ '- ~ ~ ~

which
.. - . .. ... . ...

- .- --

m m,- we. rwa- -mm *ww-e es -A- mmm a *e , ewe e - 4-> -m w
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- I

25 ' ,0(i _ ,)25 -o , (3 _ y)25 = 0.025.
O;

|
l m- ~~p - . _ . p n ~~ .
,

1

|
' ' ~ ~ ~~~ ~---- -~ - ~ ~

To solve this equation, you resort to logarithms (here we
use natural logarithm) and obtain |

|

| 25 xin(1 - n) = In(0.025) = -3.68888, ,

l

from which
I

In(1 - x) = -3.68888/25 = -0.1475552. 2--------------

. - . - . - . . . . . .. . -. .

Taking exponentials to the base e of both sides of this
equation yields a simple linear equation in r; i.e.,

(1 - x) = e-0.1475552 = 0.86281481

whose solution is the desired upper limit
u = 1 - 0.8628 = 0.1372. Thus, when n = 25 andz - . . . - - - . - - - - . . - - - , - , _

b = 0, you can state that the true value of the binomial _ _ _ . _ , . _ __

parameter r lies in the interval (0, 0.1372) with 95%
confidence.

For discussion:
- - - - - - - .-. - - -

0 Does the water contamination problem in Example 17-4 describe a - -- -

binomial experiment?
i

c How would you measure water contamination if faced with a similar ,

situation?

3 Give your own interpretation of the results of Example 17-4.
. .. _ _ _ .. _ __ . _ . .

O What do you call the plant manager? Unlucky? ._.-. , . . __m

1
. ..._ - . _.

e 'w e-.. +w *- . wei- t-um-escus.-- -ism.ww.. de.mp 4m.q,,p.m, , ,. , a w, , ,. _w,_ _ ,

&

* * ''' . * 4-4 endgem- e e m e.. 4, -w ,g 4, _p ,,4

-
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o Suppose that in reality the level of contamination is not higher than
10%, but because of the random nature of the problem you drew 16
contaminated buckets in a sample of 63. Your sample indirectly leads

-

to the firing of the plant manager. Are you sorry? Have you suffered
- 7- -- ,- --

4

a loss of credibility? What can you say to restore your credibility?
Indeed, what is the nature of one's credibility in matters that involve

- ~ - - . - - . . - - - - - - -

hypothesis testing?<

O How would you draw a random sample of 63 buckets from a body of
water?

o Suppose eight out of eighty buckets were contaminated? What would
- -- , . _ . _ . _ _ _ _ . . . . . _ _

you calculate, and what would you conclude?
'~ ~

,

O Does the number 63 in Example 17-4 sound strange to you? Who
would propose such a sample size? Why not a nice round number like
10 or 50 or 100?

How is it possible to obtain a positive confidence limit when you' O
observe no successes in a binomial experiment? Is 0 data? Is 0

different from no data? _ , , , _ , . , _ . , , _ ._'

. . . ~ . . - -

4

Now for a somewhat different discussion:
Considerations on political polling

This topic definitely is not energy-related, but it's of broad interest to

'\~~
'- ' -' - - - --~ ~ ' ~

a> - -

all of us, at least in the period before Election Day. Beyond that
general interest, however, it helps us tie together two powerful \
concepts: that of sample size determination and that of the normal
approximation to the binomial distribution. Let's begin by simplifying
the polling problem. \

Suppose we need to estimate the sample size required to predict a
- -- A - ..4

forthcoming gubernatorial election. We assume that two
candidates are running neck-and-neck. (if one candidate were

- - - - - ~ ~ . . . . .,

- . - - . -- - . _ .

,

" ~ - ' -- - - ._-s., . _ _ _ , , _ _ _. , _ _ _

$

- - _.
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,

clearly ahead of the other, you wouldn't have to sample. Or
- would you?)

- The assumptions in sampling the population are stated below: _ _ _ ,

~ ~ ~ ~ ~ ~ ~

There are only two candidates, say, A and B.

The sample is selected at random.

Every person in the sample will be voting.

Every person interviewed is cooperative and honest.
. ._ _ _ _ _

The opinions expressed today are not going to change
-' -- - L-

between today and Election Day.

We may simplify the problem and ask each interviewee whether
he/she will' vote for Candidate A; Candidate B's tally is obtained
by subtraction. The number of expressions of support, n ,-a
recorded for Candidate A, div_ ded by sample size, n, provides ani

"a~ -- -- - - h1- estimate of r, the proportion of the population's votes that will go -
to Candidate A on Election Day. - _ - - . ._ -

In determining the sample size required to obtain a meaningful
(i.e., defensible from a polling standpoint) estimate of x, we place
a bound on the magnitude of the error of our estimate. You may
rightly ask: What do you mean, error? The answer lies in
recalling that, in statistical discussion, at, error is the difference
between an observation and "the truth." ._ . __.- _ . . _ -

._ _

i Typically, we see r converted to a percentage, so that we'll couch
some of this discussion in terms of a number that looks like
100r%; i.e., we will report a statistic that looks like 100p%.
Suppose, further, that we wish our estimate to be "within 3%"

! of the true, yet unknown, value 100r%. And suppose, even
further, that we wish to have "95% confidence" to that effect.
(How large a sample would we need to provide "100% ,. _ _

confidence"? After all,100% is only a little bit larger than 95%,
, , , _ _ _ _, , _ _

isn't it?)

.

- . -- .. + . + + , . . _ _ .

. . _ . _ . - _ . _ . _ _ _ _ . . _ . _ _ _ _ _ _ . _ . . . _ _ _ . . . _ . _ . _ . . _ . .

|
1

- * * .e- - -m- +. -e- w. . . . , a. 4,. 4 m.. . . . . . , ..

|

- - - _ - _ _ _ . _ _ . . _ _ . _ _.
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Using the methodology for sample-size determination given in
Chapter 8, we set the largest possible half-width of the confidence
interval about r to .03, yielding:

:u
,

1.96- 0.5)(0.5) = 0.03. .x
n

|

| Solving this equation for n yields n = 1,067.11, which is rounded
up to 1,068 to obtain the next largest integer that satisfies the \
conditions. N

N

| You may have noticed that, when you view a pre-clection report
-- - -- - -- 1

that includes a statement about a 3% " margin of error," you may - - . -- _

also be told that the results are based on a sample size of
n = 1,100. What you may not be told directly is that the pollster
and the client have a specific confidence level in mind when

! designing and reporting the study; often, it indeed is 95%-but,
unless you are given concomitant information about the poll, you
may never know for certain. From a different viewpoint, if you
can tolerate results reported with a larger " margin of error," say, _ , _ , . , . . _ . _ _ _ _ , _ _ _ , _

5%, then a sample size of less than 400 is sufficient-assuming, of ~ ~ ~ "' '^~

course, that you hold at 95% confidence.

;

|
i

| For even further discussion:
.- . - . . . _ _ _ _ . . . . _ _ _ _

If you were a candidate for office, and therefore a candidate to be a
-- -

pollster's client, how might you evaluate the pollster's ideas?

O What sample size would satisfy your "need to know"?

o Now suppose each interview costs $5.00 to conduct. Does that fact
affect your acceptable sample size?

. .. . . . ,

Does it matter to you if the poll is carried out by standing at thea . _ _. . , , , , , , _ _ , , _ .

legendary corner of 5th and Main and stopping " random" pedestrians

:

-- . _ _ . __. . . _ . _ _ . . _ . , . _ ,_ ___ __. __,,, ,_ _ , _ _

.-
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... or if it's conducted by telephone ... or if it collects its data by
knocking on doors ... or if it is performed by placing an ad in a
newspaper and asking for write-in indications . . or if it is .. ?

|

0 Try to fill in those final ellipses with some other polling procedures.
" 7 '' ~"" *
"

| Don't worry about their being plausible.
,

i

C Discuss. Or is there anything to discuss?

|
J

The binomial approximation to the hypergeometric . _ . _ _ _ _ _ . . _

I
| distribution m . - - - .

!
,

j- Binomial probabilities can be used to approximate
hypergeometric probabilities.-under certain conditions thati

are relatively easy to meet. Brownlee (1965, p.167) says:
"A rough criterion for the validity of the approximation is
that n/N < 0.1; i.e., for the sample size to be less than 10
per cent of the population size." The principal advantages ..,-...-.,...m.._., ..

.to the binomial over the hypergeometric are that binomial a ,_. _ ___ _ ,_ _ _ _

probabilities are easier to calculate and that there are more

j tables available for this task.
!

| In the following demonstration, you compare probabilities
I calculated for the two distributions for a sample. size ,

n = 5 from a population of size N = 60 with the number
of items with a specific attribute M = 25. Table 17-2 , _ _ , _ , _ _ _ _ , _

contains the probabilities for h = 0,1,2,3,4,5 for both
~ ~ ~ ~

distributions. Recall that h is the number of items in the
-

!

sample with the attribute of interest, in parallel with the b
successes for the binomial distribution.

I
:

, . - _ .

4 44 e.--..6uwk . e e, - .qw.c.-. een 6 ..<m.. j

.

N ,

1

\

- . _. __. . . . _ . .

* m = -h- =m.e. m . e== . eew . g, e . .,, , . . . . . .,,,__,,,% , ,, .., ,, _, _, , . , , , ,

l

|
,

1

. . . .. . - . . - . - . . . . . . . . . .~. . - . .
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Tcble 17-2:
An example comparinD hypergeometric and binomial probabilities

Number of
- -~ -- - - ---m, 7

attributes /
- - - - - . . . . . - - _ . _ _ _ . _ .

successes
in sample Distribution

of size
IlyPergeometric: Binomial: Differencen=3

Pr{H = h; Pr{B = b; (relative
N = 60, n = 5, difference)(h or b) M = 25, n = 5} r = 25/60}

- . --. - - - . - . _ _

0 0.0594 0.0675 -0.0081

(-13.6%)
- - - - - - - - -

1 0.2397 0.2412 -0.0015
(-0.6 %)

2 0.3595 0.3446 0.0149
(4.1 %)

3 0.2506 0.2462 0.0044 , , , _ . _ , , _ _ _ , , , , . _ . , , . . _

(1.8%)
. . . . _ _

4 0.0811 0.0879 -0.0068
(-8.4 %)

5 0.0097 0.0126 .0029

(-29.9 %)

Thus, for this example, the two sets of probabilities agree
- '~ ~ ~ - ~ ~ - ~ ~ ~ ' '

to within one or two digits in the second digit. But their
relative agreements may be deceiving, depending upon
their application. You will find generally that the
agreement improves as N gets larger and/or the sampling

I

fraction n/N gets smaller.

You also may wish to compare the mean and variance of
-' ~~ ~ -

the hypergeometric and the binomial distributions to see
- - ~ -- - ---

how close they are when the binomial parameter x is set
equal to M/N and when the sampling fraction n/N is small.

. _ . _. __

"" *- auf.. w. __,.4. m,, _

l

de

. . _ .._. _. .. . .. . . . . .

1
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)

. What'to 'rememb' er about Chapter.17 -

Chapter 17 discussed and expanded upon binomial

L . experiments; i.e., those experiments to whose outcomes -- - - . -. - _ , ,- -_-. '
| the binomial distribution can be applied. It addressed a . _ . . _ _ - - ._.. _ _ _ . . . .

| . special, but very common, type of discrete event and ;

( - showed you how to calculate the probability of occurrence .j

l -of such events. |
y!.

'
;

| By following the ideas in this chapter, you will be able to: ;

i

;
recognize sampling scenarios that can be treated asa , - - . . . _ .-. _.. . _ . . ,

binomial experiments
. . _ _ _ _ _

_, _ . _ a

distinguish between recognize hypergeometric anda
j binomial sampling scenarios'

'

calculate thepopulation mean and variancefor the|. a

\ proportion ofitems ofinterest
a estimate a population's proportion ofitems ofinterest'

recognize when the binomial distribution can bea
approximated by the normal distribution

~ ' ~ " ~ ' ' " ~ ~ ~
approximate the binomial distribution by the normala

\ distribution
- - - - - - - - ~~

*
I a construct confidence intervals for proportions using the'

'

normal approximation..

I

|
. . .. _ _ .. . _ . ..

-

.

__ .

v
1

, . . . , . . - . , . . . . . . . .

. ~ _ . - . ... ;. . . . . ~ J-

|

-1
1

l

1

i
. ._. . . .. _. .. .. . ..

ep. d .m. -..eas9 464 edhad-- N - 4p:+. .wm eme.e * edmiam. , hew (.- w eh 4.Am.-h*- -s-4 e s e+,+p ,m., s *.m-- -h .- ;,3-.,_a
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,

i

mr . .. _-. .,. - , .. . . - . . . . . . . _ ,: -
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i Poisson experiments
.

!

| What to look for in Chapter 18
i
6

- , . . . _ . . . . . . . . _ . . . _ _ , _ . .

j Chapter 18 introduces the Poisson distribution! which is
. , , _ , , _

| often used as a model for calculating probabilities of
| events associated with time and space For example, with
j the help of the Poisson distribution function, you will be
| able to calculate the probabilities of 0 or 1 or 2 or more '

; failures of a component with a known constant failure

| rate, provided you can satisfy certain assumptions akin to -
| the requirements for the binomial experiment in

~~ ""~~ - ~ ' ~ ~ ~ ~
Chapter 17. Chapter 18 shows you how to:

_ .

a recognize sampling scenarios that can be treated as
; Poisson experiments

,

a recognize when the binomial distribution can be \.

approximated by the Poisson distribution 1

|
l

i
,

, . _ . - . _ _ _ . - . . _

. ~ - - - _ . . . = . . . . . . . . . .

3 After Sindon Denis Poisson (1781 1840), a French mathematician,

i

_ . _ . _ . . _ _ . . . _ . , , . . _ _ . . . _ . . . - .__ .. . _ _ _ _ . . _ _ . _ _

;

- .
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a comnare selected binomialprobabilities to their
Poisson counterparts
estimate the population mean, variance, and standard! a

I. deviationfor the number of rare events in afixed tims
'|interval ~~~~~v'~~" - a'

|construct a confidence intervalfor the mean of the
-- - --- -- - -

; . a

| number of rare events in afixed unit of time.
(
.

.

:

L _Why the Poisson distribution?
i

|

Two major areas in statistics and probability bring the
Poisson distribution into play: ~~~~ ~ ~~ ~'~~''~ ~~ 7 |

- m .

2(1) the calculation of probabilities of rare events and

(2) the approximation of certain binomial probabilities
(where the binomial calculations can be lengthy and
cumbersome and tedious).

These two areas are examined in the following sections. ~ ' ~ * ' - - - - - ' + - - -

- . . . . . a. . , . . _ . . . __

'

Probabilities of rare events
,

,

''

| The Poisson distribution often is used as a model for \
| calculating probabilities associated with the occurrence of .

| rare events in a fixed time interval or in a fixed unit of -
; space. Indeed, every study with non-negative countable

- - ~ ~ - -- - - - r
-- - > 2- -- <

responses is a legitimate candidate for modelling by the!

Poisson distribution. Some examples of data that can be'j '

['
modelled by the Poisson distribution are the count of:

|

|
- _ ._ . . ., _ 1

|* Rart events refer to hs;penings that are uncommon (in either time or space) in a particular domain _ _ . , _ _ ,, ,, ,

of discourse. SVhat is a " rare * event in one situation may not be unusual in another, even though the
essence of the event 'self remains uncharged.

- - _ _ -. __

'"' '6" " M8 - --W. M eigy- ,,w -N=6re-<W.w-.4 m , yi,mm e w . ,, , , g _
,

b c

* = 4 5 %

wr---'y- i-*- -t w e r-wa - w= b y3r - -.-e w
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e trucks overturned on Washington, DC's Beltway in a
given month -

a babies born in a cab on the way to the hospital in a
specific week

.

,

a flaws in 100 continuous yards of fabric ~ ~ '~~T ' " " !
" s 1

- - '

~' ~ ~ -

m kinks in 1,000 yards of stretched copper wire
lightning hits within a one-kilometer circle around ae

particular power station during a particular year. ,

e - ducks hit by motorists in Montgomery Village, MD, f
I

on May~ 7,1993
a . birds sitting on your TV antenna next Thursday at -

;

2 p.m.
, . .

alpha particles emitted from a specific source in a' . - - --e
15-second time interval.

- - - . i

i

| Often, in statistical literature, the Poisson distribution is
developed as a limiting form of the binomial. ' However, .
as indicated by the examples above, there are numerous
situations in which the Poisson distribution is valuable in .

!

I its own right. ' In either case, a fully rigorous
mathematical discourse on the subject is beyond our -,'.,,e-.~ . - ..-. .-

,

intentions here. Instead, we spin off a plausibility ~|
.

. . . . _ , ._ ___ ,

| argument-borrowing freely from Rosner (1989,
pp. 88-90), given here with some modification to match
this book's notation. The gist of the argument lies in two .

;

|. assumptions and a direct consequence. Although the
! development is given in terms of events in time,
j application to events in space is straightforward.

- -- . - - - - - - _ . - . . __.. . _ -

f Consider any small subinterval of a time period t and
.,_

denote it by At.

Assumption 1: Assume that ,

i -|
!

(a) The probability of observing i event is approximately
directly proportional to the length of the subinterval
At. That is, Pr{1 event in At} is approximately equal , , , _ _ . , _ _ ,

to sat for some constant 6.
- -_.-_._._._._.m -

| .I
l'
i

t

1

- -. -. .

"' *N *Ws --4mme.b1 m+- .m, , , , ,w, , , , ., _

!

'

* + - - . ,..n.. .- , . . . .. , , , _ , .,

. nr - "+* -- -- ar"m-:<=cm y e- wm
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| (b) The probability of observing 0 events over the
subinterval At is approximately 1 - gat. ,

<

,

(c) The probability of observing more than one event in
~' 'R~

the subinterval At is negligible. ;~.
- - - - . .- - - a ;

L
(d) The approximations in (a), (b), and (c) improve as the ..

length of the subinterval At approaches zero.
,

'

Assumption 2: If an event occurs in one subinterval At, it has no bearing
L on the probability of an event in any other subinterval.
|

| Consequence. The expected number of events per unit time is the -- ~ '-~~ ~ ' ~ - - 7
-;-- "- - - -

same throughout the entire time interval t. Thus, an
_

increase-or a decrease-or any other type of change-in
the anticipated incidence of the event as time goes on-
within the time period t would violate this assumption. ,

- Note that t should not be overly long, since this -
assumption is less likely to hold as t increases.

The random variable of interest is P (after Poisson) which -- - ~~ -q--r -

is the total number of occurrences of the event in a total -.; .. ... . - _ . . .

time interval t. If the stated assumptions are met, P is a
Poisson variable. The probability that the Poisson
variable P = p (where p = 0,1,2, ...) is given by.

!

. -8t($t)PPr{P = p} = .: p = 0, 1, 2, . . . . -
,

PI
,

_

|
. - - . - - . - . -, .

When there is no ambiguity, you may choose to write the
simpler expression Pr{P = p} = Pr{p}.

It can be shown (cf. Mood, Graybill, and Boes,1974,
pp. 93-94) that the mean of the random variable P is 6t, b.

.

itself often denoted by the lower-case Greek letter -N
lambda, X; that is, you write X = 6t. This result ought _. i. -. _. . . _ _ . . .

not to be surprising, because P is the simple summation of - j_. _ _ . _ , , , ,,, ,

events, each of which occurs with probability Gat. ~ What |

1

|

_. . . ,_ ._. .. . _

--. _ _ . . . _ . _ _ . ._. . . _ . . . . . _ _ _ . _ _ _ _ _ _ _ _ , _ , _ _ , _ , _

I
1

l.

, , . ..

I-
- , - . . - . .. - - , - - . -. ..
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_

-- - - ,

|.
I -

|.
probabilities of zero, one, or two errors can be obtained..
from Table T-9. However, they are calculated here for' ;

| |
L edification purposes. Verify these calculations, as well as

|- the equivalent table entries, and be edified.- .

,

-~~ _ m, ,_ . ,

; ,

/0! = (0 9048)(01) / 0! = 0 9048 o
' -- --- --i '

.

0
l- Pr{0} = (e* 1)(0.1)0

-- - ~ - -'

. ,

:I
l

Pr{1} = (0.9048)(0.1)l/1! = 0.0905,:

,
'

Pr{2} '= (0.9048)(0.1)2/2! = O.0045, ando

;
Pr{more than 2} = 1 - Pr{0} - Pr{1} - Pr{2}. - ~ -~~ -- - -- - - ~ ~

= 1 - 0.9048 - 0.0905 - 0.0045 i
= 0.0002.

- .

;.

' Thus, the probability of two or more errors in a 10-hour.
segment is 0.0045 + 0.0002 = 0.0047.

.

. Although you can find the values for this example in '
Table T-9, you ought not expect tabled values for every .
combination of A and p. -You may have to interpolate in L .- , ., c , .-. - , _ . ._., , s .

Table T-9-or do the calculations yourself.
. _- .. ._ , ._ _ ;. . , _ _. ;

Example 18-2:
FaHuns of urethane conting adhesions

;

The adhesion of urethane coating to concrete surfaces may
'

be tested by a " scratch test" applied to a " block" of .

material that is_one square foot in surface area. The
manufacturer of a urethane coating claims a 95% adhesion .

' ' [~~~

rate (meaning that 95% of the scratch tests will be
" successful" in that none of the coating is affected by the
test). If 12 one-square-foot blocks of concrete are selected
at random,what is the probability that at least 11 out .of the
12 will pass?

The probability of failing the test is 1.00 - 0.95 = 0.05,
" ' ~ ~ ~ ~ - - -

^ ~ ~ ~ ~ - - ' - - --

which is " reasonably small" and thus meets Poisson

|
1

- .. . ~._ _ _ _ _ _ ._ . _ _ _ . _ _ _ _ . _ . _ _ _

' '* e MM - JeMineh . % ,, ,,4q ,, _

9

|
* * -* ** - . .. . ..-- .. . . . .. , , ,

I

. .

.

--e, - , , -- - _ , , , - r . . . - -v- - -
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|

assumptions. You reword the question to ask: What is:

the probability of failing none or one of the scratch tests?

From 6 = 0.05 and n = 12, you have A = (0.05)(12) . _ , . , -

= 0.60; you may obtain the required Poisson probabilities _ _ , ' _ _ _ _ _ _ , , _
from Table T-9 or calculate the answers directly as:

Pr{0} = (e* * )(0.60 )/0! = 0.5488,0

Pr{1} = (e#")(0.60 )/1! = 0.3293, and3

1 - Pr{0} - Pr{1} = 1 - 0.5488 - 0.3293 = 0.1219. , _ _ _._ _. __.

Thus, the probability of at least 11 acceptable blocks is
~ ~ ~ '' ~ ~ ~ '~

about 0.12.

!

For discussion:
.... . . - . . . - . . - , -

c Are all the assumptions required for a Poisson experiment met in
, , _ _ __

Examples 18-1 and 18-27

0 Example 18-1 considered a set of 10 uninterrupted 60-minute time
periods for the purpose of counting transmission errors, in reality and
in theorv. Jie 10 time segments do not have to be consecutive. As a

| matter of fact, non-consecutive time segments may be considered

| desirable. Why?
_ _ , _ _ _ _ _ _ _ _ _ _

o in Example 18-2, the 12 concrete blocks were selected at random. Is
- - ^

there any advantage to selecting contiguous blocks? Any
disadvantage?

o Which of the following examples qualifies as a Poisson variable?

(a) the number of failures of an instructor to come to class
(b) the number of births of 10-pound babies in a given hospital during

~ ~ ~ ~ ~ '

-- - ~ - - - - - - -- - !a given month'

l
i

_ _ . . _ _. _ _ _ _ . _ _ _ . _ _ . _ . . .__ __ ____._ _ - _ _ . . _

e e
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I

(c) the number of times the word " statistics" is mispronounced in l

class
;

(d) the number of grammatic and/or spelling errors in this book. |
,

o Now it's your turn Describe a Poisson experiment that is applicable
--

,

- -
..

'

- - - - - - - - - - "
to your work environment. I

If the probability of an elevator failure is said to be 0.014 in anO

arbitrary 24-hour period, what is the average number of elevator |

failures and the standard deviation for a 5-day work week? For a r

,

random set of 20 days in the summer? For a random set of 20 days
in th* winter 7 <

<

>
- - . . ~ ____._._______j

!

Reconsider Example 18-1. If you were told that the probability of a
. _ |

O

single error in a one-hour interval is 0.40, too large for the Poisson
experiment, what would you do to force the problem into the
framework of a Poisson experiment? Is such forcing justified?

a

| Using the Poisson distri'oution as an approximation
~ * ~ ' - - - - - --

- - - - --

| to the binomial distribution

|
The second major area where the Poisson distribution is

~

|

|
used as an approximation of the binomial distribution. '

' Recall from Chapter 17 that if nr is larger than 5, then
the normal distribution provides a good approximation to
the binomial. This is good news. More good news is

' - ~ ' ~ ~ - - - - - -

that, if nr is smaller than 5, a good approximation to the
| - - - -

binomial distribution is provided by the Poisson
|

distribution. A mathematical proof of the approximation'

may be found in Hoel (1971, pp. 64-65).
|

Example 18-3 illustrates the agreement between the|

binomial and the Poisson distributions. And remember,
the approximation improves as nr decreases.

_

-- .. . . . . - . _ . . . .

|

!

|

|

i

I ._ . _

- -. - _ . . _ _ _ _. _ _ . _ . _ _ . . _ _ _ ,, _ _ _

L . . .

>

_ - - _ _ _ _ _ . _ _ - - _ _ - - . _ _ - - _ - - . - - - .
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Example 18 3:
Errors in a printed document

A large official publication has misprint errors on 5% of
its pages. If a random sample of 40 pages is examined,

~ ~~" ; ' ~ ~ ~ --

'

what is the probability that no pages in error will be
- - - --- ---- --

found? Exactly one page with at least one error be found?
Exactly two pages with at least one error be found?

Although the calculation of these probabilities can be
easily done on a hand-held calculator, let's use Tables T.8

(for n = 40 and r = 0.05) and T-9 (for A = nr
= 40 x 0.05 = 2.0) to obtain the corresponding binomial - - - - - - - - - - - - - - - '

and Poisson probabilities. These are summarized in ' - .

Table 18-1. In the ranges of the values of interest, the
two distributions agree to wit .a U.01 of each other. In .

; general, the approximation improves as n increases and/or
,

as r decreases.'

Tcble 18-1: ... - . - .- . - - -

C mparing binomial and Poisson probabilities for n = 40, . __
,

| n = 0.05, and A = nn = 2.0

'

Exact binomial Corresponding

| probabilities Poisson probabilities
Required probabilities (n = 40, x = 0.05) (A = nr = 2.0) N

s
_

Pr{0} 0.1285 0.1353 __.h__._____._._..__
Pr{1} 0.2706 0.2707 - - - '

.-

Pr(2} 0.2777 0.2707

( .

'

|

- _ . .

. . . - . . . - , . . . ... .-\
\ I

i
- 1

I

t

- - - . . - . - . , _ . .

' * N ""llBI'B * -he NW h N . me e . dm -w, , , . , ,, ,, ,

(

-- - . . . . - . . . . . _ , . .. ., , , , ., , , , , , , , , _ , , , __ ,

i
'

_
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.

Constructing a confidence interval for a Poissonl

( parameter

Once a Poisson experiment is conducted, it's reasonable to -. __, ,.

make an inference about the "long-run average number of a _. i _ i __*__ . ._ , j

successes" produced in a similar setting, denoted here by A.
A popular approach to making this inference is the ,

construction of a confidence interval for A. Of course, if a
test of hypothesis is desired, you can determine whether the
confidence interval contains ho (the hypothesized value
of K), and, if not, reject that hypothesis.

, , _ _ . __ . _ . _ _ .__
;

As shown by Brownlee (1%5, pp.172-174), you can form ' ~ ~ ~ ' ~ ~~~~ ~ ~ " ~ - ~ ~

,

such confidence intervals with the use of the chi-squared
distribution, pertinent values of which appear in this book's i

i

Table T-2. Here are the steps required to form a

100(1 - a)% confidence interval on X:
4

(1) You observe P events in a total time interval of
length t. - . . . - _ _ . . . . _ _ _ . _ _ _ _ , , _ .

(2) Set two different degrees of freedom: DF = 2P and
~ ~ ~ ~ ~ ~~' "- -- --

t

DFy = 2(P + 1).
|

(3) The lower confidence limit is given by |
i

AL* Xfa/2)(UF ).
_ _ __ _ _ . . _ _ _._. _

L
. ~

_.

and the upper confidence limit is given by

12
U * 3 (1-a/2)(DF )-( A X U

Note that, if P = 0, you immediately set At = 0. - - - -

. . . _ - - . - - . . . . .. , ..

* " "*- * ' * 6 * -* - g4 . , , ,

"' '# ~*' e' ~ ~ ,M*Az m+m, mmqe ,_, _, _

d-49+v m eA g ,

- .

- - - . . . .- . _ - _ _ _
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(4) . You are then 100(1 - a)% confident that the true value
veen A and Au.of K lies , t

1

(4') Given that X = 16, you can use the results of step (4)- q

to create a 100(1 ; a)% confidence interval on 6. w'i~ ~ ' " ' ~""
.

Writing 6 = A/t, you have ot = X /t and 6u = Au l- ^~^~~~~~~~~~~~!lt

By way of illustration, here are the steps required to form a
95% confidence interval on X:

(1) You observe p = 0 events in a total time interval of
1

length t = 60.
. . -. -- - __- -._ |,

~ I
(2) Set the degrees of freedom dft = 0 and

- -- --- -

I

dfu = 2(0 + 1) = 2.

(3) The lower confidence limit is given by ;
!
,

At = 0,.
-..-.-.-_,_._.,_i

and the upper confidence limit is given by .. . - - -

;

1

Ag = Xf.975)(2) = (7.38) = 3.69.
F

(4) You are then 95% confident that the true value of X
lies between At = 0 and Ku = 3.69. ...._,._...________.,!

..?

(4') Given that X = to, you can use the results of step (4)'
to create a 95% confidence interval on 6. Recall that
t = 60. Writing 6 = A/t, you have et = h /tt

= 0/60 = 0 and 6u = Au/t = 3.69/60 = 0.0615. |

).

Note that, in keeping with the convention adopted in
Chapter 17 for binomial experiments, observing a value of (_ _ _ _

'

zero in a Poisson experiment also leads to the immediate
.. - _ _.._ . . . ... . . _

i

. - .. .. _ .

" '''8"*'d 848- * ,.m.< 8mmi .w-#a.- .w.m_ . _ a,,, ,,g ,, ,
_

!
i.

. _

?v - w
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- m

conclusion that the lower end of a two-sided confidence 3

interval is zero.

Table T-10 removes much of your computational angst; it j

w|gives the confidence limits for the Poisson parameter X for - - w,
,

,

selected values of p from 0 to 50 and for several choices of
- - !" " -

'

the level of significance. The table is easy to use, as
Example 18-4 illustrates. The only information you need is
the count, p, of occurrence of the events of interest. Of |

course, you must decide the confidence level and whether a
one- or a two-sided confidence interval will be used.

!

)-

w .. ._ - , . . ._- . . _ _ .

u - - .- ~ ,~. .i i
Example 18-4:

| On the failure of motors to start - i

|

I ' Assume that the number of failures of a motor to start on
! demand during ~a one-month period is treated as a Poisson - ;

random variable. Suppose that, in a specific month, a ;

particular motor fails twice in 100 trials. Based on these |
data, you seek a one-sided upper 95% limit for the average ;. . . . .. r . _ m. -

'

number of monthly failures per 100 trials for this motor. -

~
~

| 'Using Table T-10 with p = 2 and (1 - a) = 0.95, you find
i the upper limit to be 6.30. Thus, given these data, any

hypothesized value for A larger than 6.30 is rejected.'

|
! ____. _ _ _ . _ .

s.- -

I
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,

What to remember about Chapter 18

Chapter 18 introduced the Poisson distribution which is 3

:often used as a model for calculating probabilities of events .. ,. _ . _ ._ ,,_ , _ .

associated with time and space. With the help of the .
_.. _.2. _ u_ ;i ,_ j ,

'

Poisson distribution function, you learned how to calculate
the probabilities of 0 or 1 or 2 or more failures of a
component with a known constant failure rate, provided
certain assumptions are met. Chapter 18 showed you how
to:

recognize sampling scenarios that can be treated asa _ _ . _ _ _ _ _ _ _ '

Poisson experiments
~ ' ^ ^^

recognize when the binomial distribution can be ;a
approximated by the Poisson distribution
compare selected binomialprobabilities to theira

| Poisson counterparts .

estimate the population mean, variance, and standard .! a

deviationfor the numbu of rare events in afixed time
interval' _

_

.

~ ' " ' ~ ' * ~ " ' ~ ~

| a construct a confidence intervalfor the mean of the
number of rare events in afixed unit of time.

- -- - - - ----
(

!.
|

,

t
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-- . . .
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|
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Quality assurance
.

What to look for in Chapter 19 ;

Chapter 19 focuses on those concepts that result in
- , , _ . , _ . _ . . . _,._ . . . . - , , _

procedures designed and constructed to further thepursuit - ' ~ ~ " ~ ~~

and the achievement of quality. Perhaps those procedures
alert a manufacturer that a particular product may not be
meeting the product's specifications. Or they may call a
service provider's attention to a mis-operating servicing
cystem. Whatever the specific application, the
concepts-and the procedures that spin from them-are
collected under a general rubric called quality assurance. ' ~ ~ ~ - ~~ ~~ ~ ~ ~ ~~

In connection with these quality-driven procedures, you - --
-

g
will encounter a number of specialized terms and N
concepts:

N
n quality control

$'a process control
acceptance sampling by variables and by attributes.a

Chapter 19 is deliberately short; it sets the scene, gives - -- -- -- - - --

some rationale and insight into quality assurance
processes, and serves to introduce process control and

. . _ . .. --

- _ _ y -p _mensaa m . .-m mmwe .me===ew -== gehp grmaimun e m 4e6 e-glut ===ngw' me uh - s.-w., eg_q,,. , .egn, m.. -eaim

$
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. ..

- ,. . ..*
-

3,
d' acceptance campling, which are discussed in Chapters 20

and 21, respectively.>

1 .

- - - ~ - 1
! What is quality assurance? . = _ ''7 - - ._. _ ._ _

-

y
1

i
i.

! quality In its broadest terms, quality assurance encompasses all -
. the things that you and your organization do to make sure

~ ;
'

assurance
- that your products / services provide the value and the

,

,

j
; - performance expected of them by their recipients, your . .
,

customers.' Quality assurance efforts tend to be associated'

j_ with products, from sampling a day's production of . ..

-" ~ " ~ ~ ~ ~ ~ ~ ~
. automobiles for fuel efficiency to proofreading responses -

- -j "
to customer complaints to funding research into advanced

J
technology. But the basics of quality assurance are
. equally applicable to the treatment of patients in a hospital

.

i. or to plumbing service in your home.
-

) Part 50, Appendix B, Title 10 (Energy) of the U.S. Code .
1

,

of Federal Regulations,- 1993, states: ;4 .,..-,.e , _ - , , ,
,

" Quality Assurance" comprises all those planned and . . ,, _. __ __ __

systematic actions necessary to provide adequate
[
-

confidence that a structure, system, or component will-

i perform satisfactorily in service. Quality assurance

j_ quality includes quality control (italics added) which comprises

j control those quality assurance actions related to the physical
characteristics'of a material, structure, component, or

4 ,!

: system which provides a means to control the quality of :
- " - - - - - - - -o

the material, structure, component, or system toi, a- ' _ .

predetermined requirements,'
t
,

| To augment this definition of quality assurance, here is :
Kendall and Buckland's (1971, p.121) definition of'

i, a
" quality control:

*

Quality control The statistical analysis of process
j

inspection data for the purpose of controlling the quality ._ _ . _ _

of a manufactured product which is produced in mass. ' ' ' ' ~~ ~ ' ' " ' ~ ~

It aims at tracing and eliminating systematic variations
in quality, or reducing them to an acceptable level,-

1
J

,
"' ~ ~ .on ,a _ , , _ ,

.

9
~* ~' ~- ~ ~ - ~~~- - - . .- n. , ,_ . _ , _ _ _ _ , _

:y.
:

$

3
,4

)
:

I

. . . ~ * +m- +.-:.,, ..o . .. g, . ., J

.|-

_. _ _
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leaving the remaining variation to chance. The process
is said then to be statistically under control.

Quality assurance is a two-way street-all products and
- --

t.
~

services have both producers (senders) and customers
- --- '

:
,

(receivers). At times, the producer and the customer are
- - -

one and the same. Quality assurance criteria are
constructed for specific purposes. Some criteria are
designed to protect the consumer from a " raw deal * or
from a health risk or from shoddy merchandise. Others
are designed to protect the producer from excessive waste
of time and material and overcrowded inventory. Still
others are designed with both the consumer and the
producer in mind, although sampling designs with such a -- -- .- ._..- . ___ ._.. . _

balanced intention usually require great effort and
. resources and cooperation among the affected parties.

Do these criteria sound contradictory? They are not if
both consumer and producer have the same quality

-

assurance objectives in mind. Consider the impacts of
Japanese products on the American economy in the 1970s . _ , . _ , _ _ _ . _ . _ , _ _ , , , , , _

and 1980s. Quality was a major driving force: , ____ _ ,_ _

consumers wanted high-quality autos and electronics, and
producers found ways to assure that quality. Japanese
industrialists understand quality assurance quite clearly.
The enduring irony is that they learned it from
W. Edwards Deming, a well-known American statistician,
who explained this philosophy to American industry
during the 1940s and 1950s, with his message falling on __ _ _ _ . _ _ _ . _ _

proverbial deaf ears. _ _

Quality assurance procedures need data: in its name you,

apply a variety of statistical techniques to a variety of
types of data. The two main data types you are likely to
encounter are continuous (such as weights and diameters)
and discrete binary data (such as yes/no and
in-compliance /out-of-compliance). You have met both

'

- _ ~ _ _... .. _ ._ .

~

types in the preceding chapters.
- - _

As you might expect, however, the practice of quality
assurance has it own vocabulary. The treatment of

- - -.. - - - . . . ._ . _. . .

-. .,e.a. - c.--.e e+ - ** .hn,- -<---e ee n_ w .-4%=.a.dence-' -wee rw 4 *i,,a m ,m.m., . -.o

--
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sanpling continuous variables often is called sampling by w:riables,
by variubles, ' while the treatment of discrete binary data often is called
by attributes sampling by attributes.

-- . _. - ;...,.
,

Process control: Building quality in-'
^ ~ ~ ~ ' " - - ~ ~ ~ ~ ' '

. The claim that a product meets its promised specifications \
can be investigated during production, during post-

L production, or during both. The testing of product quality
process during production is called process control.~ Process .
control control means that items are routinely sampled and _ ,_ ._ _ . __ _

' checked to determine whether the production specifications
~ ~ ~ ~ ~ ~

>

are maintained during the product's manufacture. .If the ;

specifications are not met, then production is said to be
-

out of control, and corrective actions are called for.
These corrective actions can include an intensive search
for an assignable cause, an adjustment to the production

! process, and a thorough retesting of the process before it

!
is restarted. However, even though corrective actions are
taken to tighten (or adjust) the quality of the ongomg :

-
-

production, these actions do not necessarily include
- - -

discarding all or part of the sampled product.- ,

Although process control is designed to' guard against the .

L production of poor quality, it may also serve to indicate

| when the actual product is superior to that which is .
| claimed by the manufacturer. : This sometimes provides'

- - -- -- - - - - - - - -

the manufacturer an opportunity to restate the product's
specifications and to improve its competitive edge. At . ,

\
other times, the' manufacturer may choose to relax some x
too-tight process controls, resulting in time and material % >

|
' savings, while still maintaining the claimed product ' \

specification.

'NSome aspects of process control are discussed in .

-- - - - - - A.;
Chapter 20.

- -. - - . . . . . . . . . . , -

l
1

|

-- - -- ._ ._. ._.. _ . _ _ . _ _ _ __
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Acceptance sampling: Verifying quality

Statistical quality assurance activities conducted after items s

are out of produe:'on (indeed, often after delivery is made 3- - . _,._.,_
'

acceptance to the consumer) fall into the domain of acceptance , _ _ _ _ . . ..__ _ _ _

sampling, sampling. The basic idea of acceptance sampling is
lot simple: A collection of items, usually called a lot, is

examined, and the decision then is made to either accept
or reject the entire collection-the lot-on the basis of that
examination. It is the practice of acceptance sampling
that's difficult: Convincing a group of managers that a lot
of material must be rejected often requires the sharpest _ _ .___ _._ __ _ __., _ _ _

kind of diplomatic skills. Acceptance sampling follows an
~ ~ ~ '' ' ~~ ~^

explicit and strict protocol that culminates in the
acceptance or the rejection of an entire lot of items.

Some aspects of acceptance sampling are discussed in ,

NChapter 21. ,

\
..,-...__.A____.__,__.

. . .- . - - - _ . _

For discussion
a Discuss the sentence used earlier in the chapter: At times, the"

producer and the customer are one and the same."

a What are the main differences between process control and acceptance
sampling?

._ . _ .. _ _ _ _ . __.

4seN 6- N
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What to remember about Chapter 19
|
|

| Chapter 19 focused on the rationale and the philosophy of
quality assurance, a collection of procedures primarily - . - _

~ |
'

.
- i'

designed to warn producers when the quality of their
products has deteriorated to a point where corrective - {
actions are necessary or might be necessary soon.. The j

[ discussion centered on two main topics ,

'

!

| 'a an appreciationfor the needs and purposes of the |
quality assurance discipline

.
_ . .

go = - -* e w e - e e-- % .-w -.p _ . i

a recognition of the diferences in intent and
~~ ~' ~ ~ ~~" ~~~~~ ~

;

procedures associated with process control (the
subject of Chapter 20) and acceptance sampling
(the subject of Chapter 21).

4
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Quality assurance through
process control

What to look for in Chapter 20 '''~"'~~~-" "". -'

. - . - ..- .. .

Chapter 20 builds on Chapter 19's discourse on quality
assurance, emphasizing the specific topic ofprocess .
control. It looks particularly at the construction and use
of control charts, one of the most firmly established of all
quality assurance techniques. Three types of charts are
discussed and illustrated:

. . _ _ . . _ . _ _ . . . . . _ _

a control chartsfor means - -~ - ~

n control chartsfor standard deviations
control chartsforproportions. 1

a

Process control and control charts for means j
!!

Control of a production process is often monitored " ~ ~

I
control charts through control charts, graphic constructs that are ~ ~~~~~ ~ - - -- "" - ~~~

designed to alert a quality control manager when a process
i

!

l
:

l
|

- - .. . . - . . . - .

* mu .We. -m.g.ier , _% .s -g ,,, ,, ,en, , g _ , _ _

i

.

. .)

1- ,



. _ .. _ . .. . _ . _ . _ _ _ _ _ . .

id_bibkNLd.UM
20-2, Applying Ststistics .;._.- ~

is out of control-or, at least, appears to be heading in.
that direction. Duncan (1986, p, 417) summarizes the

- purposes and the consequences of using control charts:

-"

A control chart is a statistical device principally used .
- ~ ' -: '' L

.

- - - ~-- " - -
' for the study and control of repetitive processes. Dr, -
-Walter A. Shewhart, its originator, suggests that the '
control chart may serve, first, to define the goal or
standard for a process that the management might strive

>

to attain; second, it may be used as an instrument for'
attaining that' goal; and, third, it may serve as means of:
judging whether the goal has been reached. it is thus

|an instrument to be used in specification, production, . _ _ . . _ _ _ _

and inspection and, when so used, brings these three ,

3
-

phases of industry into an interdspendent whole.
~ "~-

Each control chart focuses on one target quantity
' '

| Shewhart's " goal or standard"-such as the claimed mean,-
the advertised standard deviation or range, or the ' ['

- promised maximum proportion of defective items. - A
control chart for the mean, for instance, is constructed

~*-C'"'~ - e4 -- --
around the target quantity, which we designate by p,,,,,,.- ,

The sample means of consecutivelyproduced samples are -- - - - -~ = =- ;
plotted on the control chart with control limits constructed '
above and below target value. These ideas are illustrated '
in Example 20-1.

Example 20-1:
Control chart forpercentage of uranium in UO powder . - -- --- ---g

_ _ . .

Jaech (1973, pp. 68-69) gives an example involving the
construction of a control chart for the average percent

uranium in batches of UO2 Powder for means of 19
; batches, reproduced here in Table 20-1. Jaech assumes

that the standard factor (i.e., the target mean, p,,7,,,) is .'
:

l- 87.60% and uses a = 0.06% (absolute percent).
>

e' one

9" O-WW.--W 4M m-F- ee p- 5 ge.gp am. _ag . e , ,g gya,6

i

- . - - . . .. .. . . ._ ... __.

# *m-# 'W- . . - . min- ,wa4 wy, ., , , , _, _

,

I

:
- - - , - . . . . _ , .. . . ... . _ . ...

f 'h
'
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. Tcble 201:
Average percent uranium in batcher of UO powder2

x

__ . b . .Batch 1 2 3 4 5 6 7 .

Mean 87.54 87.56 . 87.50 87.47 87.64 87.56 87.71
- -'~ ~

Batch 8 9 10 11 12 13 14

Mean 87.61 87.60 87.60 87.47 87.60 87.69 87.78

Batch 15- 16 17 18 19

Mean 87.69 87.72 87.77 87.79 87.78
_. _ - . . . ____.___ .

__

, ;.

- ... . -. , . . . .. . _ _ .

The associated control chart is given in Figure 20-1. The
'

heavy horizontal center line is plotted at the target value, ,

= 87.60%. The upper controllimit (UCL) isupper, lower
p,aq,,d at p,,,,,, + 3a = 87.60 + 3(0.06) = 87.78 and N,control limits plotte
the lower control limit (LCL) at y,o,ge, - 3a \,'
= 87.60 - 3(0.06) = 87.42. -- ,-, - . ._ . - _ _ __

The individual means of the 19 batches of UO Powder .
- - -- -- - - -----

2

are plotted from left-to-right, in the order in which they
are produced. The importance of ordering, usually in
time, in control charts cannot be over-emphasized. As
you will see, evidence of malcontrol is revealed by that
ordering.

_ _ . . _ _ _ _ _ - _ _ _ _ _ _

M.

. _ . _ _ . _ _. . . ..

WMO''*M M . Mh 4--hh.# i. Ah J. g, &g g ,p

|

!
!

- - ~- ..~ . . . -. _ . . . . _ . . . . _ , , . _ . . , ,_ , . , , , _ . . . ., ,,, _

t .
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l Figure 20-1:
i A control chart for batches of UO2 powder recorded in Table 20-1

-

.

87.80 no _ ~ ~~"i
- '7~ ~"

e
W #

~ ' ~ - * - - - - - - - - - - * ~
Upper Control Limit (UCL) = 87.r8

87.76

*
87.70 , ,

5 .66
* *'

87 control.e

87E = = =
Tart e'* 87 ED

, ,
_ _ _ _ _ - _ _ _ _ _

;
, 87.66

i e
_. _ . . , . _ . . . _ _n. e

!~ 87.60 e

L . .
! 87.46

Lower Control Limit (LCL)- 87 A287A
1 2 3 4-6 6 7 8 9 10111213141616171819

Sequence Number-

l . , ,,-- .__ -_. _ , ._. _

__- . .. _. . . ~ _ . _ _

lt is important to note that, if the data values in
Table 20-1 were based on multiple readings (i.e., on
sample size n > 1), the control limits would be written as
87.60 i 3a//n, where a designates the standard

_ , _ _ _ __

deviation associated with individual readings.
- _ _ _ , .

l

l The selection of the value 3 as the coefficient of a is
! consistent with long-standing practice in the field of
| quality control. Indeed, control charts were introduced as
! "3-sigma control charts" in Shewhart's (1931) pioneering

work on quality control; consequently, you may encounter
references to 3-sigma control charts as Shewhart charts.

action limits Sometimes you will find "3-sigma limits" called action
~~ ~

limits, a term designed to convey the urgency implied
"' ~ ~ '~ ~' ~ ' - - -

when observations fall beyond them=!

-.

* * we 'h 'em we,rw- 46>= w. --enw. . , . -%,, ,, , , _ _
_

|

- . - .-

|
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. _ _

As control chart practice developed in the United States,
especially during and immediately after World War II, a
seemingly endless procession of modified control limits

warning limits appeared. For instance, warning limits (sometimes called
alarm limits or "2-sigma limits") may be set at ~T ~T~ =" '

-

' ~ ~ ~ - --~~~ ~ -

i 2a/Vn, with the implication of " heads up"-but
pYt3,s,omewhat less urgency than action limits. Thew
generic terminology, of course, refers to "k-sigma limits"
w'nich are set a p,,,,,, t ko/Vn.

"Run"-ning with control charts
_ ___ _ __ _

'

When you see a point lying outside the control limits-that
~

is, the 3-sigma limits (the action limits)-the time has
come to take action. But how should you react to a point
lying outside the 2-sigma limits, the " warning limits"? Do
you take " warning"? What do you do next? Do you call
in the boss? Do you have a committee meeting? The
answer, depending on the production process, may be all

* ~ - * * ~
or none or some of the above. ~ ' ' ' ' _ ' * " _ _ " .. _ _ " _ _ ___

The most important thing to do is to watch what happens
,

( on the chart as successive points are plotted. Do they fall

.

between the warning limits, or do they continue to fall

! outside? If the latter, how do you react to points falling
between the warning and the action limits?g

Particularly powerful guidance, validated by decades of - - - - - - - - -

practice, can be found in a special area of statistics: .._ - -

run theory run theory. Run theory finds application in many
quantitative problems. Early references include Stevens
(1939), Wald and Wolfowitz (1940), and Swed and
Eisenhart (1943) Attention here, however, is paid to its
application to control charts. Brownlee (1965, pp. 224-
232) and Duncan (1986, pp. 417-435) make the necessary

| connections and guide the following discussion. - .

i . . . . - - - . . . . ... . . . .

run Duncan (1986, p. 328) says: "A run (italics added] is a
succession of items of the same class." Thus, suppose

-. . - - - - .

,

_ _ _ ._ . . _ _ _ . _ . _ _ _ _ . _ . _ . . _ . . .. _.

.

i

|

. - ... .. . .. . .. -
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- - -
.

you have a collection of nine items: three of class A, two -
of class B, and four of class C. If you draw them at
random, one at a time, without replacement, you might
get the sequence {BAACCCABC}, thus providing two runs
of A (one of length 2 and one of length 1), two runs of B

~

7 ,

~ - ,-- u.

(each of length 1), and two runs of C (one of length 3 and
-- - - - - -

one of length 1).

,

With respect to control charts, you may look for several
types of runs, such as outside certain k-sigma limits or!

above and/or below the target line. Indeed, in some
situations, you might be on guard against "too many
runs," a situation that can develop when an inspector is

--

helping you make " things average out." .a - . - - - . . - _ _ _:

Here is a paraphrase of Duncan's (1986, pp. 434-345)
criteria for suggesting an out-of-control condition in your ,

process:
.

1. One or more points outside the control limits.
-... _ - ,,- _ _-.

2. One or more points in the vicinity of a warning limit. , ._ _ , ,_ _

A recommended step is the immediate taking and
,

analysis of additional data to determine the actual level
! of production.-

3. A run of 7 or more points. . Such a run may simply be
above or below the target line. Or it may be a "run
up" (a succession of increases in value) or a "run .._. ._.__ _,_

down" (a succession decreases in value).- _ . . _ _ . . ..

4. Cycles or other non-random patterns. Because of their
infinite variety, such cycles or patterns are difficult to

|' specify. Watch your charts-you'll know them when
you see them.

| S. A run of 2 or 3 points outside the 2-sigma limits.
- - -. . . .

6. A run of 4 or 5 points outside the 1-sigma limits.
- - - - - - - - - - - - - -

- _ _ . _ .

h

* ---~ --w - - - - _ _ .~_ .__ , , , . . , , , , , _ , , , __

!
i

h

t

.

E _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ .- . , -



_ ~. _ _ . _ ___ ..__ _ _ - .

1;l.b1_ $ ' lhd Ldid.b iL
- Qu:lity essur:ncs through procsss control 20-7' _- .

p 2 -.-:
-

To make these matters explicit, consider Figure 20-2
which is a re-rendering of the control chart in

!Figure 20-1.

-
_. ,

- . _ . _ . , ._

~~ ~ ~~~ -~ ^' ~

Figure 20 2:
Control chart reproduced from Figure 20-2 with 1-sigma and
2-sigma limits added

87.80- . . (e) _
Upper Centrol Limit (UCL) = 87.73 - -

*
_ .. _. _, , ..__ ..,,,_

g7,70 Upper 2aigma limit = 87A -

, ,

..I
87.66 Upper 141gme limit = 87Ji6 centrol"

*
87.60 :

j Target = s7.so

* *
| 87.66-
A ' Lower laigme limk - 37.54

, , . . , , , . . . , , , . . , , . , , _ , , , , , , _ , ,

87.60 *
*Lower 2algSe limit = 87.48

87.40 Lower Centrol Limit (LCL) = 57.42
1 2 3 4 6 6 7 8 9 10 11 12 13 14 16 16 17 18 19

Batch number

.- - _ __ _ _

~ ~

Starting with' Batch 1, you have an "run up" of length 1,
-' - ~ ~

| immediately followed by a "run down" of length 2. Only
'

short runs occur until Batch 11, after which you see a ,

"run up" of length 3. Indeed, Batch 14 is right on the
upper control limit. . Moreover, Batches 13 through 16 or ,

17 provide the alerting 4 or 5 points outside the 1-sigma
limits. So you can see that, irrispective of Batch 14's i

being on the UCL, beginning with Batch 13, an out-of-
~ ~ ~

~ ' ]
.

;control story is being told.
- ~~ - ' ~ - - - - --- ---

.

--==m u -wm-e. .ew- - #6 mew -- muissesmy-+$ .Wenese*'- P= W @c4 hettwtea,+,'g,h' = w 4+ e ,wg, ,4 4%g ,,,4-_g
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- -- ema , - 4 w- ,-e e.
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This type of application of run theory applies to all types
of control charts, not just the means charts, one of which
is used here for illustration.

7 _ , ,,
_

-

_ . . _ _ . _ . . - . _ _ _ _ . _ _ _ _

For discussion:

a Some c wtol chart practitioners, particularly those in Great Britain,
use multipliers of 3.09 for action limits and 1.96 for warning limits.
The numbers 1.96,2,3, and 3.09 are closely associated with
probabilities associated with the normal distribution. What are the _ . . _ _ _ _._ _ _ _. ,__

pros and cons of, say, choosing 3.09 instead of 3 when you determine ~ '

action limits for a production process?

|

|
Process control and control charts for dispersion

|

| As indicated, most points plotted on a control chart are - < . . . - . . - . , . -

l
| statistics derived from a sample of size n > 1. Each .. _. _ _

| sample can therefore yield a measure (indeed, measures)
ofits own dispersion. Among these measures are the
usual suspects: the sample variance, the sample standard
deviation, and the sample range. Each of these is used by

|
various quality assurance practitioners according to the
particular needs of the process being monitored.

- - ._- _ - . ..-.._ .

To claim that one has achieved " good production quality" ._ , , , _ _

requires not only a good average performance but also
good consistency, or small variability, among the items

-

being produced. To this end, some measure of within-
sample dispersion variability of the samples is subjected to

. _ -

' According to Duncan (1986. p. 427): it is important to note that the samples on a control chart
- - - - - -- -. --. - . - - . . .

should represent subgroups of output that are as homogeneous as possible.. Nothing is more;

important in the setting up of a control chart than the careful determination of subgroups. (Dunenn's

italics)

!
. _ _ _ - _ _ . _ _ . . _ . . _ _ . . . _ . _ _ . . . __ _ __ _. ._ _ _

,

- ' ' * * + - *+ . w.. . . . . . ,m , .. . .

__ - _ _ _ _
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control charts and examined for its being "in control" or
"out of control," just as means are.-

\
Suppose you decide to apply control chart procedures to'. k~~

the standard deviations of the samples you're using for -
~ - ' ' ~

1-.-

- ~~- - - -

controlling the mean. Suppose further that you have
chosen a target measure of variability, denoted a,,,,,.

.

' You then construct a control chart for the sample
variances that is ." centered" on the target standard .

deviation, a,,,,,.

~ Your next task is the quantification of the upper and lower - i
.

control limits. Because you're dealing with variances of . .

-

samples and because decades of practice have shown its
efficacy, those control limits are based on the fact that the
statistic (n - 1)S f,2 s distributed as a chi-squared random .2

variable with (n - 1) degrees of freedom (see Chapter 10),
NThus, if youLwant upper and lower control limits _ that will .

sound a false alarm with probability a, you do the
following:

_. _ g

(1) From Table T-2, which provides quantiles for the chi-
" " ~ ~ ~ ~-"--

| squared distribution, you obtain the value
2-

X(1 -a/2)(8 ~ I)- ,

..

(2) You equate this quantile - to (n-1)S /ah,,, and solve -2

2 2 2
for S in terms 'of a ,,,,, where a,,,, is the square - "----- ---- --

of the target measure of variability; this yields the -
-

=

upper control limit, say o},ct, for variances.
'

(3) To obtain the lower control limit, say a[ct, you find

the quantile Xh/2)(n-1) and solve the resulting -

equation for o}ct. - -- -- - -- - -_-

!

- - - -

* #' he**u**'4. -6 u,41e*-ewinum-- e--s w..,a .w. ea6. ,,,,, _
,

_

>

+ *

~ ** * -% - a . * , i. .#... .,.m.

._____________--._n_. y v-.,. w.-s y 1--
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' (4) You then tocye from working with variances to
I working with standard ' deviations by taking the square -

roots 'of o'va and o'a.
v- - - . _ , ,

'

These four steps are illustrated in Example 20-2. .. - _ ._ _ . _
,

Examphr 20-2:
Control Almits for o"

. !

Suppose yuu wish to monitor the claim that the standard
deviatio'n of the process, declared in Example 20-1 to be .._. _ . _ _ _ _ _

0.06%, is still in effect. Construct a 99.5% upper control , __ _ _ i
e

~ limit, assuming that daily samples of size n = 10 are
available for the calculation of S.

'(1) From Table T-2, which provides quantiles for the chi- s

squared distribution, you obtain xh,993)(9) = 23.6.
,

1.

~ ' ' ' " ' ' ~ ~ ' " " + - - - - - . ' -2 2 .

(2) You equate this quantile to (n-1)S j,m . ' --~"- "~ - - - - -

9S /(0.06)2; i.e,23.6 = 9S /(0.06)2. Solv ng for S ,
.

2 2 2

2
'

you obtain S = (23.6)(0.0036)/9 = 0.0094. . This is

f. L the upper control limit for o ; that is, o*ya = 0.0094.2-
.

(3) To obtain the lower control limit, say o*u4, you find

the quantile xh)(n-1) and solve the resulting'-
--- -- - ---

~

-

" ' ' '

equation for o'a. In the best academic tradition, this
last calculation is an exercise left to the reader.

|

! (4) You then move from working with variances to
| working with standard deviations by taking square

2
| roots of the upper and lower control limits for a ,

For example, auct=/0.0094 = 0.097. - - - -

. . . . . . . . . - .

On occasion, you may find it considerably easier to

| calculate the sample range than the sample standard

,

. . .. ..
. .

. pr h = -wem a -w # e amm. mime. Sw+-* -4w.r. =-wmme-- er--h-*'4peh.. er e am.i. ,+W,. er

!

|
. . . .. .. .-- .. . . . . . . - . . . . . . . . . _ . . _ . .. . . ..

I

u - ,, . - .. ._. .. -- _
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deviation, especially with small samples.1The process
control of variability can be accomplished by comparing
the sample ranges to established control limits for the

; range. Although the comparative calculational advantage '

of the range over the standard deviation has faded in the ~~7 ~ ' ' %-
'~ ~~ ~ ' ~ " ~ ~ ~ ~~~ ~ ~ -

! later part of the 20th century with increasingly available
microcomputers, control charts for ranges remain:

,

. ubiquitous in production facilities. Control limits for the;

range are functions of a, the standard deviation, and n, the ;
,

i sample size. When the population specification for the j

j standard deviation a is given, Bowen and Bennett (1988, |

pp. 218-223) provide multipliers of a to obtain 3-standard- |
*

~ " - - - ~ ~ ~ ~

deviation upper and lower control limits for the range for .
samples of size 10 or smaller. For samples of size up to

- - - - - - - --

;

25, the appropriate limits may be obtained through a.

simple manipulation of tabled values given in Beyer j

]
(1974, Section XI).

i

3 :I
i !

; Control charts for attributes-
. . . . ~ . . _ _ . , _ , _ . _ . .

! Consider next a process control where the specification of :
- * -- - "- - -

i proportion of defective items in the lot / population is set at - ' j

nr and nkn. If the sample size is large enough that both )
r = r, I;

'

i - r) are larger than' 5, then a normal-

approximation to the distribution of the sample proportion
"

is reasonable, as discussed in Chapter 17. The control
j chart is then constructed with a center line at r and upper -

and lower control limits set at x i 3/r(1 - r)/n , where
~

'

i x(1 - r)/n is the variance of fr = B/n, the sample'
- ^

} proportion of attributes of interest, as used in Chapter 17.
<

$ As an example, if the target value of x is 0.278 and

|. n = 100, then control limits for r are

:

(0.278)(0.722)
| 0.278 i 3

. . ._ .

100 ; _ __ _z_ _ _ _ _ .
,
.

;
;

| =

|
:
$

1

. .. 3...

. - . . . - - . - - . - - - . . -. . . _ _ . - - . . _ . _-_ _ _ _ _ . _

+

$

1

1
;

,
.

.m. . , .a ,

4
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e _ _ _

from which the UCL = 0.278 + 0.134 = 0.412 and the
-

LCL = 0.278 - 0.134 = 0.144.
!
|

"

Further reading about process control in general, and on .

T
control charts in particular, may be found in Burr (1976,

- ' ~'
,

~ ~ ^ ~ ' ~ ~ ~ ~ ~ ~ - - - - - -

1979) and Duncan (1986).

- For discussion

a Consult Table T-1 to show that, when z = 3, the probability
;

! associated with either UCL and LCL is 0.0013. _ -._ _. - a ._. . __
..

|
- - .

Why, when a is known, do we use z = 1.96 (z = 2, approximately)
|

C

|
as a multiplier of a for hypothesis-testing, whereas in constructing
control limits the multiplier of a is 37 Can you say that hypothesis- .

testing is more (or less) demanding than process control?

O What are the similarities between control limits and confidence
; intervals? In what ways are they different?

- , , . . . . . _ , . . . . . . . . _ . , , , , _ _ _ , , _ , _ _

i

c Why are alarm limits used in addition to control limits?
^ - - - - - - - -- - --

'

C As presented in Figure 20-1, the two control limits (and the two alarm

,

limits, if used, as in Figure 20-2) are equi-distant from p,,,,,, Are ;

| there situations when the limits should not be equally distanced from \
| Flarget?

!

D Why is it easier to calculate the sample's range than its standard
* - - - - -

-- - -
deviation?

C As described in Example 20-1, the control chart for the mean is built
with a known a. What can you do if a is not known?

*

- .
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What to remember about Chapter 20

Chapter 20 built on Chapter 19's discussion of quality
assurance and focused on the topic of process control. It _

looked particularly at the construction and use of control
, _ _ ~ ' '_. '' -

i

~ " " ^ ~

charts, one of the most powerful of all quality assurance N
N

|
techniques. Three types of charts were discussed and
illustrated:

1

a control chartsfor means '

control charts for standard deviationsa

a control chartsforproportions.
.- __ _ . _ .

y. .
. ..____

,

.
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Quality assurance through the
'

| 95/95 acceptance criterion

What to look for in Chapter 21 7 _- - ~~ 7 - 7
~ ' ~

Chapter 21 concludes the three-chapter overview of
quality assurance. It is devoted to acceptance sampling, a
collection of processes by which a lot of production items
is judged by its attributes after it is produced. Special
attention is paid to the 95/9S acceptance criterion,

| primarily because of its common use in the Nuclear ,

| Regulatory Commission's inspection programs. This
- -- --- ---- --I

A-|chapter develops this methodology, presents some of the ~ --- --

alternative sampling plans within a 95/95 acceptance

|
criterion, and shows how easy it is to misuse the criterion. i

| In the course of constructing 95/95 sampling plans, you |

| will be reminded of such concepts and procedures as: I

calculation of binomialprobabilities |a
n individual and cumulative probabilities - -. - -

. . '1mutually exclusive and independent events. - -- -. . . . -. ... . ...a

i

!

- p .-. ...w.

- * * * * " '* m- - aasumm.. m>.mm - - - ,. %_ .%,, ,,g,,,, , ,., , , ,
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'You will be also shown .

a how to construct 95/95 sampling plans ,

a - how the methodology can be extended to construction
of other sampling plans, such as 90/95 or 90/80 ' u<. . .

why it is easy to misuse and misinterpret the 95/95 - - ^' - " ~ ~ " ~ ^ ;a
acceptance criterion.

.

.

*

Acceptance sampling interpreted
p
-

. .

acceptance Acceptance sampling covers those procedures that
sampling determine a course of action after a lot . of items has been ~~ ~ ~~~ ~ ~~~~ 7!

produced. As its name implies, acceptance sampling is a
.

'
sampling procedure with explicit criteria for the .
determination of whether a lot (i.e., a population) of items ' ;

_

is acceptable. If a lot is not acceptable, it is rejected. ,

,

The consequences of such rejection-scrapping thej .

| product, reworking the product to improve it, bankruptcy
;1 - .of the manufacturer-are too multifarious to explore here. .

|Suffice to say, rejection of any. manufactured product is
" " ~ ~ ~ ~ - -

seldom taken lightly. - - - - - - -- .

The value of acceptance sampling to the entire production' -
- process is captured in these phrases from Duncan (1986,

| pp.161-162): ;

i

It is to be emphasized that the purpose of acceptance
sampling is to determine a course of action,' not to ----------.----%

i estimate lot quality.... . _

\ .i
-

. . . s
It is also to be emphasized that acceptance sampling is N
not an attempt to ' control' quality. The latter is the N

'

purpose of control charts....

|

* ' ~ ~ ~ '~ ~ ~ ~ ~ '~

8 In most acceptance-sampling literature. a lot is defined in terms similar to those used by Kendall and
Buckland (1975, p. BS) as: . . a group of units of a product produced under similar conditions and" ------ - --. . - - -

therefore, in a sense. of homogeneous ongin; e.g.. a set of screws produced by a lathe or a set of

f light bulbs produced by a number of similar machines. It is sometimes imphcit that a lot is for

|. inspection.' Thus lot fits the meaning of population as used in this book.

i

|

.- - - -- - .. . - . - -

v -6 * S . *'di, # -M . -e .w_ am% , ..w,ee. .meamt.i. ... * uses .ameun- 'emp 3ge gen. -.rwgg amm, . _ , _
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.

The indirect effects of acceptance sampling on quality
are likely to be much more important that the direct
effects.... Acceptance sampling . indirectly improves
quality ... through its encouragement of good quality by
a high rate of acceptance and its discouragement of - -- - - --- - - - , ,--- --

'

poor quality by a high rate of rejection. - - - - - - - - . _ - - . _ - .

Furthermore, if acceptance sampling is used ... at
various stages of production, it may have beneficial
effects in general on the quality of production....

-

Production personnel will ... become quality conscious
and there will be an interest in quality on the part of

|both inspection and production [ personnel]. The rule
~ "-' ' ~ ' * - - -- --

will be: Make it right the first time." These
: |psychological aspects of acceptance sampling are of

major importance.

Duncan concludes his discourse by indicating the
conditions under which acceptance sampling is likely to be
used:

1. When the cost of inspection is high and the loss . , , , , . , , , . , _, ,, ,

from the passing of a defective item is not great. It;

is possible in some cases that no inspection at all
- ~ ~ '~-

will be the cheapest plan.

2. When 100 percent inspection is fatiguing and a
carefully worked-out samplirg plan will produce as
good or better results. [Because] 100 percent..

inspection may not mean 100 percent perfect
quality, ... the percentage of defective items passed _ ._. _ _., ___ _... _,_

may be higher than under a scientifically designed
. . _ . _ . . .

sampling plan.

3. When inspection is destructive. In this case ,

sampling must be employed. |

Just as process control (cf. Chapter 20) differentiates I
between sampling by attributes and sampling by variables. |

so does acceptance sampling. But, in either kind of -- - - - I

sampling, acceptance sampling applied to a single lot is - - - - - --- .. . -

essentially a test of a hypothesis, in which a sample
statistic is compared against a claimed product's

. - - - .- -- -- . - - _. . _ __ -

# "O ** W M4 h w-=.e.-- .,.s.4 .e em f 4 gg,, ., %,_ _4,, , ,,

.

*- . . . _. . . . _ . . . .. . 4
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characteristic (such as a mean or a standard deviation). ,

The important driving feature of acceptance sampling,- 1
. however, is that there is a greater concern about 1

!protecting the consumer by maintaining the consumer's -
- '' '

|
risk below' a given level. The concern with consumer's ~~7

_

;

!
''~"~ ~ ~ ~~- -

~ isk, typically, translates into'a small probability.of ai r
. Type 11 error. That is, you wish to make sure that the ' 1

| probability of accepting poor quality material is kept )
J

|
small. In this context, the Type II error is made if you'

| don't reject a " bad" lot. For further reading on sampling

| for variables in the framework of acceptance sangling,
refer to Duncan (1974) or Burr (1976) or Schilling (1982).

-, _ ._. _ _ _ __ _ _ _

This chapter concentrates on acceptance sampling by -- -- '- -. - -

attributes; that is, on procedures used when the items in
the lot are inspected for the presence of an attribute of
interest. To focus the discussion, assume that the attribute.
is undesirable, such as an item's being defective, broken,
' scratched, or not in compliance for some reason.

;
Suppose funher that the product's specification claims the ,

proponion of items in the lot with the attribute is not - .~-.---...--_.a_=

larger than r .__ _ _, . . _ . _p.

Clearly, to be absolutely certain sure that the fraction of
the lot with the attribute of concern does not exceed rp,
you need to examine every item in the jot. But auch an

.

effort, mounted for every shipment of every kind of
_ '

material is an unacceptable burden.. For some products,
like sealed systems or single-use items, such inspection is . _ _ , _,____ _ _ ..

impossible because the item's integrity is destroyed by the *

|
very act of mspection.

.

,

j

| A statistical sampling, however, might ease your burden, -
'

| requiring you to inspect only a fraction of each submitted +

'

lot, while providing some assurance-in lieu of an 4

absolute guarantee-that the proportion of items with the
attribute is in accord with the stated tot specification.

_ _ __

.- - - . . . . -.

1

|. u
|

---- - -_ -_ - - . . _ . . . . _ _ . _ ..,_ _ __ _ _ _ __ _ __

i-

i
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.

<
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More specifically, statements based the 95/95 acceptance
criterion about a lot sampled for attributes convey a sense
similar to these: .

We are 95% assured that at least 95% of the items
' ' '~ ~

,

in the lot are in compliance.
~ ~ ^ ~ ~ ~ ~ ~ ~ ^ ~ ~ ~ ~ ~

We are 95% conpdent that at least 95% of the
cables in a bundle are traceable to their source.

Although the chapter concentrates on 95% assurance of
95% quality, you can easily extend the methodology and

- ~ ~ ~ ~ '~ ~ - -

lay a foundation for statements like the following:
.. -_|

We are 99% confident that at least 99% of the
pipe supports are properly welded.

We are 90% certain that at least 80% of the
invoices werepaid within 30 days of their receipt,

But beware! The last statement is not equivalent to: - - -- ' - ~ - - - - ' -

. _ _ _

We are 80% sure that at least 90% of the invoices
were paid within 30 days of their receipt.

\'
The assurance-to-quality criterion

Suppose you are given a lot of reinforcing bars (rebars)
- - ~ ~

which was subjected to statistical sampling for meeting - -- - -

strength specifications. The quality statement issued for
your review says:

.

We are 95% conpdent that at least 90% of the
rebars in the lot are acceptable.

This means that, based on the inspectors' data, no more - -

than 10% of the rebars are unacceptable and that the _. ._ .. . . . . _

inspectors are willing to back that statement with no less
than a 19-to-1 bet.

1~

I

i

.

- - - .. - __ . .-. _. -. - . .._

# . . @m pi gg 44 g g.., ,4
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This specific criterion is often given the shortL.nd notation
of 95/90. You read this as meaning that you are 95%
confident that at least 00% of theproduct is satisfactory
for thepurpose it was intended. Thus, the first number

~~ -~T ;
~ ~ ' ' - ~ ~ ~

(95) designates the assurance and the second number (90)
~ ~~~ ~ ~ ~ ~ - - -

designates the quality.

As a mnemonic for keeping track of these two values,
consider this as being an assurance-to-quality statement
and denote it by the symbol A/Q. In many inspection
progr.ms in general, and in NRC programs in particular,
the A/G statement is set at 95/95. Thus, the focus her- 4

- '-- ~ ~ - - - - - ---

on the 95/95 criterion to illustrate the technique wi''
criterion, and to include "the 95/95 criterion" in the -

chapter's title.

The rules of the game

The general A/G criterion is accompanied by a strict set of
' * ' - ~ ~ '- ' ~ ~ ' ~

rules. Stick to the rules and stay out of distracting debate.
Changes to the rules should be considered only on the

- - - - - - -

,

| conservative side and by compelling arguments. These
rules (some of which reiterate the previous discussion)
are-

|

The A/O criterion is a design criterion. Youm

! determine the sample size in advance and agree in
advance that a one-time decision will be made to either

- - - - - - - - - - - - -

accept the entire lot or to reject the entire lot, - _ _ . ,

depending on the results of the collected sample,

The lot must be unequivocally defined in the samplinga

plan. It is inappropriate to redefine the lot once the |

inspection begins. Note, however, that the lot size
| does not necessarily have to be finite or known.

The lot is made up of similar items that are treated _ . _ _ . . __ . ... . __a

alike; i.e., they are interchangeable in terms of their
intended use.

!

!
.-- -. - --.. .-

.s m ee-e, ----e -e =we+ --w-- -w.e rei ,m e. w w -an-p eye.iw me w.-e-e see-e ie ,

,

i
|

!

. . __ _ _
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=
s

a If the lot about which an assurance statement is
desired is made up of several sub-lots, you must x

\address cach sub-lot separately. Avoid mixing apples
'

and oranges or you'll wind up making a quality s'
. -. - - - -. _' ' -'

'
statement about " fruit salad." ,

,

m The statistical assurance is expressed as two numbers
(e.g., 95/95, 90/95, 95/99). The first number (A) is
the assurance that the acceptable proportion is met.
The second number (Q) is the acceptable percentage of

" good" items. :
1

The assurance level (A) gives you a " comfort index "
- -- - - - - - --- '

m .

This index is the probability (expressed as percentage) - - . _ __ . |

that the lot will not be accepted when the lot's quality

is less than Q.
.

The A/O provides assurance to the consumer-but ite s
does not, in and of itself, provide assurance to the \

,

producer. Thus, at this point, you do not necessarily
know the probability that the lot will be rejected when -- .....--.,. _ . _._ . _ i .

in reality the quality of the lot is at least as good as , , ,, __

,

the product specification, Q. To examine this issue,
you turn to the operating characteristics (OCs) of the
plans under consideration. These OCs provide
information similar to the operating characteristic
curves for hypothesis-testing that were discussed in
Chapter 9. See, for example, Duncan (1986,
pp.163-368) or Schilling (1982). _ _. __ , . _ . _ _ _ . _ _ _

Once you select a sampling plan and begin sampling,
. - . - _ -. _ .

m

do not switch plans. You will be shown, by way of s
example at the end of this chapter, how changing
horses in the middle of the stream is likely to cause a
deterioration of the promised assurance. N ,

. L_

.- .- .. .. ._

.

- . ..

,. .u- - en -+4- u ---.in.- - m.en -.gimes---o---,- -a+ee e e ,gg e a.

|

|

|
1

l
I

I

|
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The calculation of probabilities associated with the A/O
process is based on the binomial distribution, the
requirements of which are detailed in chapter 17 and are
repeated below:

. _ - . - _ , . _ , . . , , _ _ .
1

'--~~---- - - - - -

Requirement 1: The experiment is conducted in n trials,
or items, all of which are conducted under identical
conditions.

Requirement 2: The i* trial (i = 1, .. , n) results either
in a success (i.e., the attribute of interest is identified in

dthe i item) and recorded as a success with Y, = 1 or in a
failure with Y; = 0.

~ ~ ~ -- ~ ~ ~ -- ^ ~~ ~

Requirement 3: The probability of success, denoted by
the parameter ir, is constant from trial to trial.

Requirement 4: The n trials are independent.

If the listed requirements cannot be met, or at least,
accounted for, other approaches need to be considered. . , - . . . .. - . -. , .-

For example, if the lot size is small, the hypergeometric . _ ._ . _ . _ _ _ _ _ _ _

distribution (Chapter 16) may be the appropriate vehicle
for the probability calculation. In this case, you may wish
to consult Sherr (1973) for the required sampling plan.

Clearly, since a lot comprises a finite number of
individual items, you do not have a constant probability of
drawing an item with an attribute. However, if the lot is .._ __.~.___ _ __ .__

large compared to the sample size (say, n < N/10), then, _ _ , _ _ _ ,

for most applications, there is very little difference
*

between basing the probabilistic considerations on the |
binomial distribution or on the hypergeometric distribution |
(that adjusts for the lot's finiteness). Moreover, operating i

'

under the binomial assumptions makes the sample larger
than need be for a f~ mite lot; hence, the assurance actually

is higher than claimed.
. _

. . . . . .. _ . . .. _

. .-. . -.

e a re- mie m -. . en.s . , - . e g. %.s_.s , 4p., .,w.., 4 ,, 4 . .,

t

,

. ._ _ . . _ . . .
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!

l

| The sampling plan determines the sample size, denoted.by

f n, and the maximum number of items with the attributes

!
of interest that can be tolerated in the sample. The last

acceptance number is called the acceptance number, denoted by c.
number, c If the sample yields more than c defective items, the entire ~~~~T ~ ~

-

~~~~~'~~~---

lot is rejected.

! In the single-sampling context, there is no "second
chance." The lot is either accepted or rejected. However,i

sampling schemes may be designed (usually at the expense

| of a larger initial sample) to go through double- or
multiple-sampling plans. You may read about those
special plans in Duncan (1986, pp.184-213) and Schilling

-

(1982, pp.127-153).
- - - - --

The A/O is best illustrated by an example. So, armed
with the understanding of probability, independent events,

|

| mutually exclusive events, and individual and cumulative
'

! probabilities, you move gently-or is it gingerly?- into
the next section for a detailed example.

- . . . . . ~ . . - . . _ , . _ _ , _

_ . __

Calculating probabilities associated with the
A/O = 95/95 criterion

Focus here is on the A/O = 95/95 criterion for quality
assurance; used routinely by the U.S. Nuclear Regulatory

iCommission, it has a special role throughout the nuclear
~- - ~-~~ ~ ~~~ ~ - -!

power industry.
. . _ _ _ _ . _ _ ..

A 95/95 assurance-to-quality plan for attribute sampling is
not unique. In fact, you are about to encounter three ,

different acceptance sampling plans (these, by the way, |

are by no means exhaustive), each of which meets the
desired 95/95 criteria. For ease of comparison, the three
plans are displayed side-by-side in Table 21-1, cleverly
labeled as Plan A, Plan B, and Plan C, followed by a - - --

discussion of their respective features. -- - -- .. . . . .

- - _ _ _ __ __ _
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e

Table 21-1:
Three different sampling plans that meet the 95/95 assurance
criterion

- -- - ,- -- - .. ,.
4

*

Plan A Plan B Plan C . - . . .. _. . . . . _.. ..

V
Select ng = 59 items Select ng = 93 items at Select nc = 124 items
at random from the lot. random from the lot, at random from the lot.

,

!

If 0 items fail, accept if 0 or 1 item fails, If 0,1, or 2 items fail,
' ~

the lot. accept the lot, accept the lot.

; If even 1 unacceptable if 2 or more If 3 or more -- -- -- ._- .. . _ __._. . . _

item is found, reject unacceptable items are unacceptable items are . ._ _ _ _ ..
'

the lot. found, reject the lot found, reject the lot.

For this plan, the For this plan, the For this plan, the

acceptance number is acceptance number is acceptance number is

e = 0. c = 1. c = 2.

~ ' " ~ * ~ ~ ~ '' ~ ~ ~ ~ ~ ~ ~'
To show that each of the three candidate plans provides

j the desired A/Q= 95/95 criterion, you will need to
- - - ~- - --

perform some calculations of binomial probabilities for
x=x = 0.05. Because Table T-8 is restricted to
probabbes for n s 40, Table 21-2 was constructed to
give the selected probabilities needed for your immediate
task. You may easily verify Table 21-2's values with the
methodology developed in Chapter 17.

- - . .. . - . . - - ..

-#h+. ..M., 6
-

|

- . ..

* $ - N = Ob.->. .b bhL 6 eQe,...sm

j "-
. i

| - _ ._ ._. ... . . - . ..- .... . . - . .. . . .. -

'

i
|

!

.

{ I
'

i

I !
-. ..- . . . . - . . . .. . -- . . . . . .. . . .

.
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Tchle 212:
S:lected binomial probabilities, rr = 0.05

Individual probabilities Cumulative pawbabilities - - -- -~ r ,' %'
,

a b=0 ~ b=1 b=2 bs0 bst bs2
'

58 0.0510: 0.1558 0.2337 0.0510 0.2069 0.4406

| 59 0.0485 ' O.1506 - 0.2298 0.0485 0.1991 0.4289
- ~

92 0.0089 0.0432 . 0.1035 0.0089 'O.0521 0.1556 ._ . _ _ _ _ _ . _ _ _ , _

93 0.0085 0.0415 0.1005 0.0085 0.0500 0.1504 .i-

| 123 0.0018 0.0118 0.0378 0.0018 0.0136- '0.0514

124 0.0017 0.0113 0.0365 0.0017 0.0130- 0.0495
|
!
!

L . . . . . . ...m . , -
.

. - . .- . . - . . . _ _

To show that each of the three plans meets the 95/95
- criterion, consider: !

,

!

The quality aspect that 95% of the items are in
compliance is conveniently translated to the
complementary aspect that the proportion of items
out of compliance is no larger than 0.05; hence, ___ . ._.. _ _ _ _ . _ _ . '
the associated probabilities are calculated for

_ _ _

r = 0.05.

The 95% assurance aspect means that, if the

| promised quality is not present in the lot (i.e., that
r > 0.05), the procedure would lead to rejection!

i of the lot with at least 0.95 probability. (This
| . translates to a probability of less than 0.05 that a
! " bad" lot will be accepted. ]] .[ ]_

| Now examine Plan A, where the acceptance number is

| . c = 0. Look at Table 21-2 under b s 0 under
|

I
|~

,

. . .- ... . . . .%. . .. - . . ,,, ., . . , _ , , _ .

.mm. .%. . .e .-- .e...-v i wm %,..-w.. . m- . . . 4,-_...wme.. . %%s , ,o _, y,,wp, ,i, g ,, ,_ g , , , , , ,

!-

, _ -

* *

, - . - - -a- - .. , , ,,. , . . ~.
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,

Cumulative probabilities (even though for c = 0, the .

?

Individual and the cumulative probabilities 'are identical).
You find that, if sample size is n = 58, the probability of
accepting a lot with 5% defective items is 0.0510. This is >

slightly larger than the promised value of 0.05. When ~ '"~T ' ' '" '
,

'
* ~~ -~ ~~- - - ~ - --

n = 59, the probability of acceptance of the lot is smaller
than 0.05, which does satisfy the 95/95 criterion.

Plan B allows 0 or 1 items out of compliance. For

!- b :s; 1, Table 21-2 shows that n = 93 gives you exactly a
value of 0.05 for the probability of accepting the lot when .l-

ir = 0.05. Hence, the 95/95 criterion is satisfied for '
' ~ ' - ' ' ~ - - - -

n = 93 and c = .1.
a. :-.. - - .-. . .

Following a similar argument, you find that Plan C, for
which n = 124 and c = 2, satisfies the 95/95 criterion. .

i
.As already indicated, there are numerous other sampling-
plans that are capable of meeting the 95/95 criterion. To'
limit the discussion, focus now on Plans A, B, and C. ,

Which of the three plans do you like best? And, of. - - - - - - , - , . - -

course, why? - .. . ..;___ _ . _ _ . _ 3
,

As a consumer, you don't really care, since all three p' lans
give.you the same assurance. As a producer, however,
you believe that you deserve a' fair shake from the ;

consumer's quality agents. If only these three plans are
offered to you, you must make the choice based on how

'

i

.
good your product really is and on a number of economic-

~

! considerations as well. .

|

| As the producer, you prefer as small a sample as possible,
and you opt for Plan A. However, if Plan A is chosen,
then how will you react to the fact that the entire lot is

.|rejected if even a single item out of 59 (that's less than
2% of the sample!) is found out of compliance? If you ;

'

- are very confident that the quality of your manufactured
_

.

product is very high, you may choose to stay with -
~ ~ ~ ~ ' * " ' ~ ' ' '" ~ ^ ~ ' " |

Plan A. On the other hand, to safeguard against what

| you surely view as an unlikely event, you may prefer '
l.

=

~ _.

* * ' ' * " ' ' " 'M^ 'em.WEa- N . m+. .,,a.gg.. .gp,, , , ,,

1
~ . . m

, ~w< s ..'W. e ,...-s .- .
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( Plan C, with its larger sample size, because, as your
intuition and analysis tell you, it is " easier to pass" a test
with 2 defective items out of 124 than 1 out of 93, and

s\certainly easier than 0 out of 59.
. . . u,

e.-.m..- .m . me

..

| For discussion:
!
| a Refresh your memory of Duncan's list of conditions under which

acceptance sampling "is likely to be used." Which of them apply to
your work?

,

L
" ~' ~~ ~~ ~

-

( a What is the difference between a 95/90 and a 90/95 sampling plan?

u Suppose your friend needs to confirm that a shipment of bolts contains
no more than 5% defective bolts. To that end, he collects a sample of
size 20 and finds no defective bolts. The sample percentage of
defective bolts is less than 5% defective, and your friend concludes
that the shipment is acceptable. Is anything wrong with your friend's s
logic? Discuss.

-. -. .. ..~ .. -... . - _

c if you were a producer and were given a choice between a 95/90 plan
and a 90/95 plan, which would you choose? What data and

; calculations do you need to help you make that decision?

c Why do you use Table 21-2 with r = 0.05 when you are worried
r > 0.057

0 Show an example of a finite lot where it does not make sense to use - \
-

either Plan A, Plan B, or Plan C.

o Suppose you wish to construct a 90/80 sampling plan with acceptance
'

number c = 0. Describe what probabilities you need and how you \
would go about calculating the sample size required to meet the stated

,\criterion. ,

'

_ __ _.._\. ..

- - . - . . . - - . _ . . . . . . .

. _

" ' * " ' " + " -~ -e2+ - m_,m ,_, . ,
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|
'

| What's wrong with this picture?
|

As emphasized earlier, once you select a plan, you must
stick with it. This section discusses the common mistake -_, _ , . _ _ _ ,_

|

of plan-switching and recalculates the assurance for the ._ _ i _.1, __ _ _ _
sampling effort to show that the assurance is smaller than |

believed. For this illustration, consider a hypothetical l
|

iproducer who agrees at the outset that each of the three

l sampling plans described earlier meets the required 95/95

| criterion. The three sampling plans are sununarized in

| Table 21-3.
- . . . -. . . . . . , . - :

~~ I
| Tcble 21-3:

Three 95/95 sampling plans summarized from Table 21-1

i Plan A: Plan B: Plan C: I

; Take a sample of 59 Take a sample of 93 Take a sample of
i items. items. 124 items. . . . . - , . . - . . .. . . -

If 0 defective items If 0 or I defective If 0,1, or 2
~ ~~ ~~' ~ ~

are found, accept the items are found, defective items are
lot, accept the lot. found, accept the lot.

Otherwise, reject the Otherwise, reject the Otherwise, reject the
lot. lot, lot.

1

- - . - . . - . - _ ..

The producer, not necessarily a villain, mind you, sees - - -- ~

multiple- nothing wrong with the following multiple-sampling plan ,

sampling which he believes still meets the 95/95 assurance criterion.
plan This plan would lead to the acceptance of the lot if any of

the following four events occurs: i

Event 1: Use the approved Plan A. Collect 59 items. If
zero defective items are found, stop the sampling - ._ ..

and accept the lot. ._ . .. _. .. .

s

N

^ ~ ~ ~ -
. . ,. . . _ . .

** "O**'' M* W-e e Ae m. a., e ,.y,,.. ,,, _

,

* * - ~. ..-. .. , , ,_ ,,
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-

- -

Event 2: Use the approved Plan A. Collect 59 items. If
exactly one defective item is found, collect 34
additional items. This brings the total number of
inspected items to 93, as required for the approved

i

| Plan B. If no defective items are found among ~~77~T ~

' '7 ,
the additional 34 items, stop the sampling and ' -- |~ ~ ~ ^ ^ ~ ~ ' ' - -

accept the lot, i

Event 3:' Use the approved Plan A. Collect 59 items. If
exactly two defective items are found, collect 65
additional items. This brings the total number of

~ -|inspected items to 124, as required by the _

approved Plan C. ~ If no defective items are found ;
among the additional 65 additional items, stop the

- -

sampling and accept the lot.

f Event 4: Use the approved Plan A. Collect 59 items, if
j exactly one defective item is found, collect 34

additional items, bringing the total number of
items inspected to 93, as required for the approved i

- Plan B. If exactly one defective item is found + 1 -- --- s ---4 . . - --

among the 34 items, collect 31 additional items, -_ _ .- _ -. _ _ .

bringing the total number of items inspected to
124, as required for the approved Plan C. If no
additional defective items are found, stop the ,

sampling and accept the lot. ;

At first glance, the producer's multiple-sampling strategy - |
appears reasonable and acceptable since each event - , _ _ _ .

satisfies one of the approved plans. But it always pays to i. __

! revisit first principles and calculate the assurance
| associated with this sampling plan. To calculate that -

t assurance, you start with some intermediate probability
calculations. And, although you could obtain at least
some of those probabilities from a table, it is instructive to
calculate them and present all the necessary calculations:

| together. Using Chapter 17 methodology, recall that - _ _. _ , , _ .

... - . - . _.. . -. . . . .. _ _ _ _

|

|
i

!

.!4 ., .. . ,- . -_ . _ _ _

, _ '
=e 4.~ ww- .,o - wyme - .,_,,,_g., , , ,% , , _ , , ___, ,_ ,_ _

!
y

i

4 . ..
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' "I
Pr{B,n j r =0.05} =Bl(n-B)!(0.05)8 (0.95)"-8,- .N

.
~~ ' -" ' ' ' ~

where Pr{B, n|x = 0.05} denotes the probability that B -
, .

, " - - - ~ ~ ' - - - - - - - '
! defective items will be found in a sample of size n, given .

that the proportion of defective items in the lot is -
r = 0.05. Because the binomial. parameter x = 0.05
throughout this discourse, the shorthand notation is used in ,

. the following evaluations of individual binomial-
probabilities:

._ _ __ _ . _ _ _ . _ . _ . ,

II '

Pr{0,31} = 01311(0.05)0(0.95)31 = 0.2039
- -- m - --

'

_\
Pr{0,34} ' = '0134I(0.05)o(0.95)M = 0.1748

-

-

*

Pr(0,59} = - .5W (0.05)0(0.95)59 = 0.0485 ~.

01591 ;

Pr{0,65} = ' 651 (0.05)0(0.95)65 = 0.0356 ~
Ot65! . . .

~

310
~

Pr{1,31} = I!30!(0.05)l(0.95)30 = 0.3327 - ' ~' ~ "-' - --- -

Pr{1,34} = '34I (0.05)l(0.95)33 '= 0.3128 -
1!33!
591

Pr{1,59} = - !!58!(0.05)l(0.95)58 = 0.1506
59!'

Pr{2,59} = 2157!(0.05)2(0.95)57 = 0.2298.
*

-

. _ . . _ , _ . . _ . . _ - _ ..

Next, calculate the probability of occurrence of each of 'l
~

the four events listed earlier: |
i
i

,

i

| Pr{ Event l} = Pr{b = 0, n = 59}
= Pr(0,59} = 0.0485

'

Pr{ Event 2}. = P{(b = 1, n = 59 and b = 0, n = 34} _ . . . _ .

|-
= Pr{1, 59) X Pr{0,34}

''

_, _ , , , _ , , _

' ' ' ~ ~ ' ~ ~ ~ ~ ~ ~ " " ' ~ ' ~ ~'~~~- '
i = (0.1506)(0.1748)

= 0.0263

eg

!

. _ _ . -_ _m_. ._.

a . 4 + . . . - . -w A w. .r. .- w s.~. --w... w n w. . - - - - e .-w. . -.-

!

L
|

l
. . . . . . . , . . .. . __ . . ~ ,.. . . -,-

, - - - . . .- . . ..
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,

Pr{ Event 3} = Pr{b = 2, n = 59 and b = 0, n = 65}
= Pr{2,59) x Pr{0,65)
= (0.2298)(0.0356) = 0.0082

Pr{ Event 4) = Pr{b = 1, n = 59 and b = 1, n = 34, .
~~ ~

!'~'" ~'' j'' "

|and b = 0, n = 31)
~ ~ - ----- - - -

= Pr{1,59) x Pr{1,34) x Pr{0,31) |
= (0.1506)(0.3128)(0.2039)
= 0.0096.

l

|Finally, put the pieces together. These four events are '
,

|
mutually exclusive; therefore, the probability of accepting

- ~ ' ' ~ - - - - - -

the lot is the sum of the four probabilities. This is'

.

calculated as:

Pr{ lot accepted}
= 0.0485 + 0.0263 + 0.00829 + 0.0096 |
= 0.0926.-

Hence, with 5% of the items being defective, the
probability of accepting the lot is 0.0926-almost twice as . - . - . . . -- - . - |.

,

| large as the 0.05 that was intended. The probability of _ . _ _ _ _.

| rejecting the lot is 1.0000 - 0.0096 = 0.9074.

THE ASSURANCE IS ONLY 90.7%
NOT THE CLAIMED SSE

_ _ _ _ _ . - _ _ .._ _ .._ _

- . _ - . - _.

If the sampling scheme permits additional sampling
(e.g., continue sampling and, if necessary, switch to a
plan which allows 3 defective items out of 153), the
composite assurance deteriorates even further.

Of course, legitimate multiple-sampling plans can be
~"

constructed so that the plan assurance will be 95/95-but,
' ' " ~ ~ ~ ~ - "' ~ - -- -

of course, such plans are by no means unique. You will
i
!

!
!

! - . ..

- -- - -- -. ._. _ _ _ . _ _ . _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ , _ ._ __ .

!

+ .

e e
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._ _ .

find a discussion of multiple-sampling plans in, for
example, Duncan (1986, pp. 204-213).

Finally, keep in mind that this chapter's acceptance
'~ '~ '

sampling plans are based on infinite, or at least, "large," ~~T '

~ ~ ~ - ~ - - ~ -

lots where the binomial distribution is used as the
theoretical base. Small lots, however, are better served by
sampling plans that are based on the hypergeometric
distribution (see Chapter 16). The design of sampling
plans for lots governed by the hypergeometric distribution
is far from trivial. For more details, consider

Sherr (1972).
_ ,_ . ._ .__.. _ . _ _ _ _ _ _ .-

.Mug-- d. i 54 eGu . dug 'Nn @

For discussion

C The last section illustrated that a particular multiple-sampling scheme
gives 91/95, rather than 95/95, assurance. But, then, what's wrong s\

,

^
! with a 91/95 assurance? .. . . A ._. . _ _ _. _ ,, , _

c Why do you expect the sample size to be smaller if a plan is based on
- - - - - -

the hypergeometric rather than on the binomial distribution?

c Many sampling tasks require the sample size to be a percentage of the
lot of interest. Is this type of requirement justified? Is a minimum
sampling percentage ever justified?

. - - - . . - - . - - . - . .

.- -

Sampling plans to meet other quality-to-assurance s
specifications N.

You can specify any pair of numbers-with each member N .
,

of the pair bounded by 0 and 100, of course-to fann an N |
assurance-to-quality (A/Q) criterion. Conversely, any . _ _ .% . . . _ .

I

acceptance sampling plan can be assigned an A/Q. ,,_, _ _ _ _ ,, _._

|

I I

|

! . . - . - - . . .- - -- .- .- . .. . _ _.

_ . . - _. _. .__ - ._. . _ _ . _ . . . . . _ . . . . . _ . . _ . . . . . _ . _.._ . _ .

:

.

t.



.
- __ . - _ . _ _ _ _ __

| D ? i i aLd$$:1N.

Qu:lity assurzncs through ths 95/95 ccc:pt:ncs critztlon 21-19 \

!

For any given situation A/O criterion, you have two
principal courses of action: j

(1) Search the quality control literature for sampling plans ~ ~ ~ ~ ' ~ ~ ~ ~ ~ ' " ~ ~ ~ ~ ~
that satisfy your particular A/O criterion. Suggested

~ ~ ~ ~ - - - ~ ~ - - - -

sources include Duncan (1986), Burr (1979), and
Schilling (1982).

| (2) Make your own calculations. Follow the general
i process laid out in this chapter. Although tables and

hand-held calculators are better tools than pencil and

! paper, it's best to work with an interactive computer.
program that lets you tweak the parameters (primarily ~~~~-----------';

I

|| the sample size n and the acceptance number c) as you
- - - - ---- -- -

| explore possible solutions.

l

- . . . . . . _ - _ _ _ _ .

A 6 . s Me w me.

l

i

> - - ~ . e..- c.*,, . . .. ,, . w. p

-. .

:

|

_ . _. . . . .
,

****-s -44-- .e e +, , s. +- . . . . .

l'
- - _ __ _. _ . _ . . . _ _ _ _ . . _ _ _ . _ _ . _ _ , . - _ _ ._ ___ ,_
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- What to remember about Chapter 21 ,

Chapter 21 discussed features of quality assurance that are
associated with acceptance sampling of a lot, or . ,.

, , j_.]_
_

'

population, which is judged by its attributes. More .- -

'

particularly, special attention was paid to the 95/95
)

acceptance criterion, primarily because of its common use .

in the Nuclear Regulatory Commission's inspection
programs. The chapter showed how this methodology is *

developed, presented some of the alternatives within a
95/95. acceptance criterion, and showed how easy it is to
misuse the criterion. - In the course of constructing 95/95
sampling plans, you.were reminded of such ideas as: [[~[ {{{].

,

calculation of binomial probabilitiesa
a individual and cumulativeprobabilities . -

mutually exclusive and independent events.a

i You were also shown:

^ ' ' ' " ~ ~ ' ~ " " " ~ ' " ~ ~
a how to construct 95/95 sampling plans

how the methodology can be extended to construction
- - - - - - - - - - -

m

of other sampling plans, such as 90/95 or 90/80
why it is easy to misuse and misinterpret the 95/95a
acceptance criterion,

in the course of this chapter you learned to:

appreciate the needfor quality assurance inspection -a ,

before a lot is accepted -- - a

a calculate the assurance associated with a sampling
plan for a "large" lot

a calculate the assurance associated with simple cases of .

[ multiple sampling
recognize when a sampling plan's assurance is not asa

;

| good as it seems and when professional statistical
i suppon is helpful, perhaps even imperative. . . .. .

| . . . - - . - . . - . _ . . . . _ . -

7

i

. _ _ _ ._ _ _ . _ ._ . _ . . _ _ . _ _ .

" " "M- 46 -d -.m e m .e-g g 4..w 4 g.,. , ,, ,, _ _
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Afterword:.
Know what thou art missin _ . __. _ _ _____ _

_

. ._ .__ _. ._ __.

This book's scope provxles neither tie depth nor the bremkh to
contam an exhaustive treatment of any specific topic, Nilunwe,

,

| many speciaky felds in staustxs-or offshoots of statistxs-do not
- i

recesve so nurh as an lua.d/ie meonon in the text. As part of
an atonemert process for both of these types of shortfalls, this

,

Afemordlists a number of these im*n Each is described in . . .. .. ..-. _. _ ,, _
|

a short phrase and given at least one refermee to enmurage your
. . ._. ._. ___

g

Bon wyage! \

l

!

|
,

. . _ . _, . _ - . _ _ . _ . _ . - -

|
.- ~

|

|

l

! ' ~ ' ' ~ ~ ~ ~ ~ " ~
l

| 8 As statisticians carrying the torch of our profession, we were gomg to list these topics at
j random. Bowing to both extemal and internal pressures, we compromised on alphabetical listing. = ' - ---- - - - ~ - --- - ------

The descriptions themselves are drawn from many sours s, principal among them are Kendall and
Buckland (1971) and Kruskal and Tanur (1978), as wel! as out own experiences and viewpoints.

'

.

._ ._ ._
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Tope Descdphon Refestnx(s)

|Bayedan stathlics Inference based on subp:ove probaixiny. Press (1988) _,, . __ ,

)

i
|Junnathnics kneral procedures applied to bdogical Annitage (1971) - -- -- - - --- -

and nedical sciences. Daniel (1974)

n inulti- Agresti(1990)Categadat data Methods of reportng ard Lie s
unslyds &>-,- wl cross 4abulated data Upton (1978)

i

Gunputation Researdt irso and etlicient use of axnptaing Kenrrdy and Gende

and algodthms methods specific to mswr21 apnt'enn- (1980)
- _ . _ _ . _ _ . . , . _ . , _ . _ _ _ .

analph
- - -

Deddon theory Sady of se::egies for selecting one actxxi Chemoff and Macs
fror,i a set of available acuans. (1959)

Ferguson (1967)

Demography Quantnauve study of human p= den- Barclay (1958)

Dbtdminard Sumiltaneous study of diff' rences among Klecka (1980) _ . . . . . - . . - . _ , . _ .e

analyds two or more groups with respea to several
.- . .. - - _ _

Desrixtkadite See Nonpanenetdc ennaies

metixxk

Dpuunic Technxps and appbmuons useful in Sandefur (1993)

mathmunical studying systemic changes owr time,

modding
_. _- . _. __ _ _ - . _ . . . . _

F.-- _. W e Fmrminn of canomics in J-,d I GoldberEcr (1964)
^

,

~~

anxi catarn1 terms. Johnston U984)

Epidemiology bchli=1 canerni-modehng, dataamlyuc, lilienfeld and
ard inferennal methods appbed to lilienfekt (1980)
epdermes

Experknental Theory and pracuce of ef5cient Davies (1978)

e ,M - Mason, et al. (1989)design w
, .

_ .. . .. .. .. ..- - ._ .

._ _ ._ __ .__ ._ . ~. _ _ . - . _. _ . _ _ .- _ . ___. .. .
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Topic Description Reference (s)
.
.

Explankuy data Marupulatxn, summantauon, arxl display of floaglin, Masteller,

analys data to impnne their compretmability arxl and Tbkey (1983, . _ . . . . . , _ _ . . _ , , _ , . , , . _ . ,

to user unledying stnaure and to detect 1985) ,_,_;_,_4 _ , _

'
impcutant depamnes from that stnaure,

,

,
Gestairecs Stansucal study of esents that fluctuate in Isaaks and

! space and time. Srimstava (1990)
>

j IJnear nvaleh Application and analysis oflinear Gmytill(1%1)

j relationships among vanable, tah random Neter, et al. (1990)

and l u naum..
-. .-- _. ,. _ . _

Multnsride Study of multidunensnial disuibunons and Mammi(1976) _ , , , _. , _

.;

j analys samples fnxn those distritulons. Tatechruck and

Fidell(1989)
! Tatstria (1971)

Nonparametric Methods which do not depend upon the Gibbons and

statrecs form of an urxlerlying distributxxi. Chakraborti(1992)'

llollandtv and'

k Wolfe (1973) _., _, ,, _ _ , __ _ ._.,_ _ _ _

<

Outhers An aalier is one of a set of values that lies Bamett axi Lewis - - -

taqdy distant fmm most of the odier (19M)
l members of the set. Beckman and Cook

(1983)*

i
; Itsteption of Sekcong among many carvM* graphical Cleveland (1985,

graphscs displays to axney conecdy the informatxx1 1993)

contuned in a set of data. Tufte (1983,1990)
- . . . - - - -_. - . . --

.

Probahibty See Chapters 3 and 15 in this txiok. Feller (1957) _ . _ _ _ ,

1 Parzen (1960)

I
1%ychometrus Measurement of psychological variables and Ghiselli(19M).

j zelated research methodologies. Guilford (1954)
|

!
| Regrwaan See IJnmr Modeh

|: anal +
_ _

3
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1
<

1
1

1

l
, ._ .
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!
1
i

Topic Description Reference (s) |

Robud staddics Medxxh of esumarxxi designed to nxhxm. Huber (1981)

taiwanuxi effects of imprupa ,.- _ , c .

'
neannnevrm

.- ~, ... . ~ _ ...

Sumple sine Fnuling effriers sanple sizes to meet Desu and

ddmnhadon wubusa and resource requnemeras. Raghavarao, (1990)

Oddi and Fox

(1975)

Sarnple surveys Design and prxnce of anwys. Cochran (1977)
levy and

- ~ ~ ~ ' - - - - ~

I.eurshow (1991)
_ __ __.

5knaW Study of sysk:rns too -- r A: for Kerredy and Ger11e

methods exphen analytical solunan (e.g., political, (1980)

physcal, - ' 194. ecxxxxnic) through Whicker and-

empner modehng Sigelman (1991)

Theory of The " dynamic * part of probabday deary, in Parzen (1962)

stadindic which a milstrui of random vanables ,

proceans (called a nydam process) with respect to - , , , _ , , - . . _ . - . _ . , . , . _ _ , _ . .

deir :.- +/- and hmeng beham
_ , ,, _ _ . , _ _ _ , _ , , , _ , _ , _ _

lime series A sequence of rumerical data in whidi cach Nelsen (1973)
item is asaccialed with a partxxdar instant in Panlaatz (190)
time,

,

"Old stanmcians never die ... they just get broken down by age and sex."
s. s%=d h Mahdy 0988, p. 255

_ _ - - - . _ . _ . _ _ _ _ _ _ _ , _ _ _ . ,

.. .

.

1

- . - |
1

-. - - .. , . - - .. ...

N
%.

\

|

-- - -- - .. - - .- -._ ___ ,. _ _ .. __ _ _. ,_
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| Statistical tables
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Table T-1: The cumulative standardized normal distribution (with _ . ._ ._ . ._ :
selected quantiles) ST-2

2Tcble T-2: Quantiles, x,(d/), for the chi-squared distribution with
d/ degrees of freedom ST-4

Table T-3: Quantiles, t,(d/), for Student's T 6stribution with d/
degrees of freedom ST-6

;
Table T-4: Quantiles, / (d/ , d/ ), for the F distribution with d/3

3 2
degrees of freedom in,the numerator and d/ degrees of freedom . , . , a_ ,_ _ . _ . , _ , s2
in the denominator ST-B

Tcble T-5: Quantiles, / max, g(k, d/), for the F
~ ' ~

mex
distribution ST-16

Table T-6a: Coefficients {a,.f 3} for the Wtest for
i
'

normality - ST-1B
Tcble T-6b: Quantiles, w (n), for the Wtest fory

normality ST-24
Tcble T-7: Significant ranges,40.95(P, N- k), for Duncan's

_ . _ , _ _ , _ , _ _ , _

multiple-range test ST-26
' '

Ttble T-8: Selected binomial probabilities ST-30 x7
'

| Tsble T-9: Selected Poisson probabilities ST-36 s
I Table T-10: Confidence limits for the Poisson N*parameter A ST-44

Table T-11a: Two-sided tolerance limit factors for a normal N
distribution ST-46

'
t . Table T-11b: One-sided tolerance limit factors for a normal
'

distribution ST-48
~ ~ ~~ ' ~ ~ ~

Table T-12: Two thousand random digits ST-50 - -- -~~-- - -- --- - -- -

. - . - - - -
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sT-2; : Applying Statistics' _.r: d = = + = = M y .= w _
'

- Table T-1: The cumulative standardized normal-
,

. distribution (with selected quantiles)
.

. A random normal variable has a density function given by -" r - q - v w-

,

L1 .. -| - - a w '
*

2, (y - M
I 2# ;n(y; , a) = e

c50
'

~

$-m < y < m; -m < p < m, O < a.

Its two parameters are p'(the mean) and a (the standard deviation). :When p = 0

' .'and a = 1, the normal variable is said to be standardized.' ' A normal variable Y-
~ ~ r- - - - ,--

becomes a standardized normal variable,' Z, by the transformation Z = (Y- p)/a. --:------1 - .

Table T-1 gives values of the standardized normal distribution, N(z; 0,1), often ,

written as N(z), for selected values of z (0 s z s 3.49). For z < 0, set z* = -z
,

and use N(z) = 1 - N(z'). To use Table T-1:'

j_ o Find the two-decimal-place value of z = a.bc by locating the row containing
|. a.b in the first column and the column containing 0.0c in the first . row.

.. . _ _ _. - , , _ _ _ .

o Read N(z) at the intersection of that row and that column. ----i--

i

Example 1: To find N(1.45), locate the intersection of the 15th row and the 6th'
column in the body of Table T 1 and read the value N(1.45) = 0.9265. This is ;

displayed on the graph of the standardized normal density function. i

. .

! Example 2: To find om
N(-1,45), write N(-1.45) . .

|'

.

.

= 1 - N(1.45) om

;is . . ' 8"4 * N * *|
~ ~

; = 1 - 0.9265 b | emu .J-

= 0.0735. ,em j*

.5 (% ||
"
Y f!hh;F( |om

k Nhth$6 |
''

1wgo.4.

om - - - .-- . - _

4 4 3 2 1 e 1 2 3 4 .5
~.-.- .. . .. _ ~ ... .n..s

|

I

-. - - - - ..- ..- - - - ._ _ - - . _._,. . . _

*^W ' * ' -b 4 'W. h -m.irgg. v.,M .m , .,,g,, pg,,,,9% g , ,, , _ , , .
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Table T-1: The cumulative standardized normal distribution (with
sict0d quantiles)*

|

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 _ . , . _

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 . _ __i _ . __ . _ _ _ |
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.55 % 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0,68C8 0.6844 0.6879 i

|

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7%7 0.7995 0.8023 0.8051 0.8078 0.81 % 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 - . . . - - . _ - _ . - - . - - . . _ - . _

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 . - . . . _ _ . . _ _ ._ ._

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8 % 2 0.8980 0.8997 0,9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0. % 25 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0 % 71 0 % 78 0.9686 0.9693 0. % 99 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9144 0.9750 0.9756 0.9761 0.9767 - -.- ~ ,- - . - , - - , . '

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 . .. _. . . . _ .

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.98 % 0.9898 0.9901 0.9904 0.9906 0,9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0 9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 - - - - - - - - - - - ~ -

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 -- - -

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0 9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.0997 0.9997 0.9997 0.9997 0.9997 0.9998 ;

Selected g: 0.5 0.75 0.9 0.95 0.975 0.98 0.99 0.995 0.999

quantile 9: 0 (XX) 0.674 1.282 1.645 1.960 2.054 2.326 2.576 3.090 l

|

* Prepared by the authors.
-- -- -- --
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,

!
1

. Tcble T-2: Quantiles, X (df), for the chi-squared i2

. distribution with df degr,ees of freedom
'

-

A chi-squared random variable has a density function given by -.. - , _ . _ . ,. ..

. .

... _ -_ _ _ a

7(4f - 2)/2 , y/2
f(y) = -:

252 [(df - 2)/2]! .- |

y > 0, df = 1, 2, . . . . j

-|

Its one parameter is df(called degrees offreedom); it is a positive integer.
... .-

. . - -. _

Table T-2 gives quantiles, d(df), for selected values of q (where 0 < q < 1) - . _ . . . . . ._. _ .____ . _
-

and df. To use Table T-2:

0- Find the row corresponding to the degrees of freedom, df.

3 Find the column corresponding to the value of q. .

O Find the desired quantile at the intersection of that row and that column.
,..,.-... .- _,_,_,._.;

Example: The 0.95 quantile of the chi-squared distribution with 10 degrees of _ ....__._._.;..._..._

freedom is d,93(10) = 18.3. This is displayed on the graph of the chi-squared
density function for df = 10. j
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2Table T-2: Quantiles, X,(d/), for the chi-squared distribution with
j d/ degrees of freedom *
|

| 9

(/ 0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990 0.995 f" ~""'*
- ,- s.

+ .

' " - " - ---

1 0.000039 0.000157 0.000982 0.00393 0.0158 2.71 3.84 5.02 6.63 7.88

| 2 0.0100 0.0201 0.0506 0.103 0.211 4.61 5.99 7.38 - 9.21 10.6

| 3 0.072 0.115 0.216 0.352 0.584 6.25 7.81 9.35 11.3 12.8

| 4 0.207 0.297 0.484 0.711 1.064 7.78 9.49 11.1 13.3 14.9

5 0.412 0.554 0.831 1.145 1.61 9.24 11.1 12.8 15.1 16.7

6 0.676 0.872 1.24 1.64 2.20 10.6 12.6 14.4 16.8 18.5

7 0.989 1.24 1.69 2.17 2.83 12.0 14.1 16.0 18.5 20.3

8 1.34 1.65 2.18 2.73 3.49 13.4 15.5 17.5 20.1 22.0

. 9 1,73 2.09 2.70 3.33 4.17 14.7 16.9 19.0 21.7 23.6
~ "''~~~~~"~7

! 10 2.16 2.56 3.25 3.94 4.87 16.0 18.3 20.5 23.2 25.2

11 2.60 3.05 3.82 4.57 5.58 17.3 19.7 21.9 24.7 26.8
^' '' '

12 3.07 3.57 4.40 5.23 6.30 18.5 21.0 23.3 26.2 28.3 ;

13 3.57 4.11 5.01 5.89 7.04 19.8 22.4 24.7 27.7 29.8

14 4.07 4.66 5.63 6.57 7.79 21.1 23.7 26.1 29.1 31.3

15 4.00 5.23 6.26 7.26 8.55 22.3 25.0 27.5' 30.6 32.8

16 5.14 5.81 6.91 7.% 9.31 23.5 26.3 28.8 32.0 34.3

17 5.70 6.41 7.56 8.67 10.1 24.8 27.6 30.2 33.4 35.7

18 6.26 7.01 8.23 9.39 ' 10.9 26.0 28.9 31.5 34.8 37.2

19 6.84 7.63 8.91 10.1 11.7 27.2 30.1 32.9 36.2 38.6 . . , , , , , _ . , , , _ , , . _ , , _ _

20 7.43 8.26 9.59 10.9 12.4 28.4 31.4 34.2 37.6 40.0

21 8.03 8.90 10.3 11.6 13.2 29.6 32.7 35.5 38.9 41.4
" " ' - ~ ~ ~ ~ ~ ' ' ' ^ ~~~

22 8.64 9.54 11.0 12.3 14.0 30.8 33.9 36.8 40.3 42.8

23 9.26 10.2 11.7 13.1 14.8 32.0 35.2 38.1 41.6 44.2

24 9.89 10.9 12.4 13.8 15.7 33.2 36.4 39.4 43.0 45.6 _

25 10.5 11.5 13.1 14.6 16.5 34.4 37.7 40.6 44.3 46.9

26 11.2 12.2 13.8 15.4 17.3 35.6 38.9 41.9 45.6 48.3

27 11.8 12.9 14.6 16.2 18.1 36.7 40.1 43.2 47.0 49.6 r

28 12.5 13.6 15.3 16.9 18.9 37.9 41.3 44.5 48.3 $1.0

29 13.1 14.3 16.0 17.7 19.8 39.1 42.6 45.7 49.6 52.3 - _ _ _ _ . . _ _ . . _ _ .
,

| 30 13.8 15.0 16.8 18.5 20.6 40.3 43.8 47.0 50.9 53.7
-

40 20.7 22.2 24.4 26.5 29.1 51.8 55.8 59.3 63.7 66.8

50 28.0 29.7 32.4 34.8 37.7 63.2 67.5 71.4 76.2 79.5

60 35.5 37.5 40.5 43.2 46.5 74.4 79.1 83.3 88.4 92.0

70 43.3 45.4 48.8 51.7 55.3 85.5 90.5 95.0 100 104

80 $1.2 53.5 57.2 60.4 64.3 96 6 102 107 112 116 I

I
90 59.2 61.8 65.6 69.1 73.3 108 !!3 118 124 128

1

100 67.3 70.1 74.2 77.9 82.4 !!8 124 130 136 140 |

* Prepared by the authors.
" ' * ' ' ' " " ' ' ~ ^
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Table T-3: Quantiles, t (d/), for Student's Tq
distribution with df degrees of freedom

A Student's T random variable has a density function given by _.. _.,
_

_..

~ ~ ~ ~ ^ ~ ^

[(df - 1)/2]! [g . 9 /dM~(# * UU2f(y) ,
(rdf)!d(df/2 - 1)!

y > 0, df = 1, 2. .. . .

Its one parameter is df(called degrees of freedom;; it is a positive integer.

Table T-3 gives quantiles, t (df), for selected values of q (where 0 < q < 1) and __ _ _. _ _ . _ ____ _ . .
y

df. To use Table T-3: .

Find the row corresponding to the degrees of freedom, df.a

C Find the column corresponding to the value of q.

Find the desired quantile at the intersection of that row and that column.j 0

Example: The 0.95 quantile of Student's Tdistribution with 2 degrees of - , . - . , . . - .. . ... ._ . . ..

freedom is 1.95(2) = 2.92. This is displayed on the graph of Student's T density _ _ __, ,0

function for df = 2.
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TEble T 3: - Quantiles, t (df), for Student's T distribution with dfq
dsgrees of freedom'

,

#

( 0.50 0.60 0.70 0.75- 0.80 0.90 0.95 0.975 0.99 0.995 ,
" ,, g ..,-m-,. .. -

-

-. -

.. . n . ~. _~~ _ .

.2 0.000 - 0.289 0.617 0.816 1.06 1.89 2.92 4.30 6.% ~ 63.7
1.38 '3.08 6.31- 12.7 31.81 0.000 0.325 0.727 1.00 :

9.92

3 0.000 0.277 0.584 0.765 0.978 1,64 2.35 - 3,18 4.54 5.84

4 0.000 . 0.271 0.569 0.741 0.941 1.53 2.13 2.78 3.75 4.60 1

5 0.000 0.267 0.559 0.727 0.920 1.48 2.02 2.57 3.36 4.03 f
.I

6 'O.000 0.265 - 0.553 z 0.7I8- 0.906 1.44 1.94 2.45 3.14 ' 3.71
7 0.000 ' O.263 0.549 0.711 ' O.8% 1.41 1.89 '2.36 . 3.00 3.50

8 0.000 0.262 0.546 0.706 0.889 1.40 1.86 2.31 2.90 3.36 _ , _ _ . _ . . _ _ _ , _ . ,

9 0.000 0.261 ~ 0.543 0.703 0.883' l.38 1.83 . '2.26 2.82- 3.25

10 0.000 0.260 0.542 0.700 0.879 1.37 1.81 - 2.23 2.76 3.17
-

11 0.000 0.260 0.540 - 0.697 ' O.876 1.36 1.80 2.20 2.72 3.11 3

12 0.000 0.259 0.539 0.695 0.873 1.36 'l.78 2.18 2.68 3.05

13 0.000- 0.259 0.538 0.694 - 0.870 1.35 1.77 2.16 2.65 3.01

14 0.000 0.258 0.537 0.692 0.868 1.35 1.76 2.14 2.62 2.98
t

15 0.000 0.258 0.536 0.691 0.866 1.34 1.75 2.13 2.60 2.95

16 0.000 0.258 0.535 - 0.690 0.865 1.34 1.75 '2.12 2.58 2.92

17 0.000 0.257 0.534 P.689 0.863 1.33 1.74- 2.11 2.57 2.90 -

~* ~ '*~
,

'' ' " * * " * " * '

18 0.000- 0.257 ' O.534 0.688 a.862 L 1.33 1.73 2.10 2.55 2.88
. -- - ' - .

19 0.000 0.257- 0.533 0.688 (.861 1.33 1.73 2.09 . 2.54 '2.86

! 20 - 0.000 0.257 0.533 0.687 4.860 1.33 1.72 2.09 ' 2.53. 2.85

21 0.000 0.257 ~ 0.532 0.686 0.859 1.32 1.72: 2.08' 2.52 2.83

22 0.000 0.256 0.532 0.686 0.858 ' !.32 1.72 2.07 2.51' 2.82

23 0.000 0.256 0.532 -0.685 0.858 1.32 1.71 - 2,07 ' 2.50 ' . 2.81
24 0.000 0.256 0.531 0.685 0.857 ~ 1.32 1.71 2.06 '- . 2.49 . 2.80

'

25 0.000 0.256 0.531 0.684 0.856 1.32 1.71 ' 2.06 2.49 2.79
,

26 0.000 0.256 0.531 . 0.684 0.856 1.31 1.71 -2.06 2.48 2.78
"~ ~~~~~'~~~---~'t-**

27 0.000 0.256 0.531 0.684.. 0.855 1.31 1.70 . 2.05 2.47 2.77
'

28 0.000 0.256 0.530 0.683 0.855 1.31 1.70 2.05 2.47 - 2.76 ,. _. -

19 0.000 0.256 0.530 0.683 . 0.854 1.31 1.70 2.05- 2.46 2.76 ,

30 0.000 0.256 0.530 - 0.683 0.854 .1.31 1.70 2.04 2.46 2.75 ,

,

40 0.000 0.255 0.529 0.681 0.851 1.30 1.68 2.02 2.42 ' 2.70
60 0.000 0.254 0.527 0.679 0.848 1.30 1.67 2.00 ' 2.39 2.66

e. 0.000 0.253 0.524 0.674 0.842 1.28 1.645 1.% 2.33 2.58
e

* Prepared by the authors. . ,_ ...
j

*
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|= Table T-4: Quantiles, f (df , df ), for the Fq 3 2
' distribution with df degrees of freedom in the

3 !

numerator and df degrees of freedom in the2 ~ ~ ~ " ydsnominator , ,

An F variable has a density function given by

| 8

!

i .

2$ [(dfi + df2 - 2)/2]! y#3 W -2W
dfi df2

fy) = x
[(dfi-2)/2]t [(d/2-2)/2]l (d/2+d/17)#''#

.y > 0, dfi, d/2 * I 2. *** -
. - . .. _ -

Its two parameters are dfi (the numerator degrees offreedom) and df2 (the
denominator degrees offreedom); they both are positive integers.

Table T-4 gives quantiles, f,(dft, df2), for selected values of q (whereI

0 < q < 1) and dfi and d/2. To use Table T-4: .
.

Q Find the row corresponding to the denominator degrees of freedom, dfi. - - . . . - - . - - - - . ~ , _ _ . _ . . .

j
. ., . .. . . .. ., ._._

| G Find the sub-row corresponding to the value of q. .

; o The desired quantile is at the intersection of that sub-row and the column
corresponding to the numerator degrees of freedom, 4/2-

A particular identity is useful when you need smaller quantiles for the F

| distribution and you have the larger quantiles at hand (as in Table T-4):
j

-- . -. ..- . . .. - .~ .. .,

I ~ ~ ~ ~ '

fa . yfdfi, df2)
/,(d/2. d/i)-

.

1

- .

4444 ..$P J ,4 dw de mis et _,gm

.

.

. . - :_. ..

- - -. - - . . . . _ . - ._ . _ . . _ _ __. . _. ._ . . _

! l

I

|

'|,

! ;

!
.

1

_ _ ._ - _ _.I
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~St:tisticii t;bles ST-9

| Table T-4: Quantiles, f (d/ , d/ ), for the Fq 3 2
distribution with d/ degrees of freedom in the

3

[ numerator and d/ degrees of freedom in the2
! - d: nominator (continued) -- -- - - - - - ,_

. . ~ . -. .~...- . . -

Example 1: ' The 0.90 quantile of the F distribution with 6 degrees of freedom in
the numerator and 4 degrees of freedom in the denominator isf0.90(6,4) = 4.01.
This is displayed on the graph of the F density function for dfi = 6 and df2 " 4-

Example 2: The 0.10 quantile of the F distribution with 6 numerator degrees of

| freedom and 4 denominator degrees of freedom is
- - - . . . . - _ _._ , . . _

*

1 1 0.249.fo.go(6, 4) = = =

| fo.90(4. 6) 4.01

i

I
|

- . , . - . . . .- ., . .

- -. a- ..+4 .. % ,-

!

0.10

0.00 . _ _ ._., .. _ _ . . _ ,_., , , , , , _.

4,W
--- - - -

0.50

0.. :
5,, . I r sos |-

0,
u.

Q.40 ,;h.
t n ,.

0.00 - - - ...-.

F . ~ _- .. _ . - . , . .. .., , . _ . ,

- - . . - -- - , . _ . -. _. _ . __ .__. , , _ ,

* * " - * * ' W.P *e-me = *- ,ee,e - N m eme .#mme ,a.,#em , m w-a _s_g, , , ,

*' em.
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ST-10 Applying St:tistics ,
_

Quantiles, f,(d/ , d/ ), for the F distribution with d/Table T-4: 3 2 3

d3grees of freedom in the numerator and d/ degrees of freedom2
in the denominator *

- .,- , ~ . ~ , _ . .. p_

d/2 9 1 2 3 4 5 6 7 8 9
~' ~ ~ ~ ' ' ' ~ ~~ ' ~ ~ - ~ ~ ~ ~

l 0.90 39.9 49.5 $3.6 35.8 57.2 58.2 58.9 59.4 59.9

0.95 161 199 216 225 230 234 237 239 241

0.975 648 799 864 900 922 937 948 957 963

0.99 4050 5000 5400 5620 5760 5860 5930 $980 6020 -

0.995 16200 20000 21600 22500 23100 23400 23700 23900 24100

2 0.90 B.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38

0.95 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4

0.975 38.5 39.0 39.2 39.2 39.3 39.3 39.4 39.4 39.4
~ ~~ ' ~ ~~ ~ ' ~ - ~

0.99 98.5 99.0 99.2 99.3 99.3 99.3 99.4 99.4 99.4

0.995 199 199 199 199 199 199 199 199 199

3 0.90 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24

0.95 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81

0.975 17.4 16.0 15.4 15.1 14.9 14.7 14 6 14.5 14.5

0.99 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3

0.995 55.6 49.8 47.5 46.2 45.4 44.8 44.4 44.1 43.9

4 0.90 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94

0.95 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
, , . . . ,, , , . .. , , , ,

0.975 12.2 10.6 9.98 9.60 9.36 9.20 9.07 8.98 8.90 - -- -- --

0.99 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7

0.995 31.3 26.3 24.3 23.2 22.5 22.0 21.6 21.4 21.1

5 0.90 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32

0.95 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77

0.975 10.0 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68

0.99 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2

0.995 22.8 18.3 16.5 15.6 14.9 14.5 14.2 14.0 13.8
- .-. ___ - . _ . _ _ . . _ _ . _ ,

6 0.90 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.%
- ' - |

0.95 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
-

!

0.975 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52

0.99 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 ,

0.995 18.6 14.5 12.9 12.0 11.5 11.1 10.8 10.6 10.4 1

7 0.90 3.59 3.26 3.07 2.% 2.88 2.83 2.78 2.75 2.72

|0.95 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 -

0.975 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82

0.99 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72

0.995 16.2 12.4 10.9 10.1 9.52 9.16 8.89 8.68 8.51
- - - - -

- . . .. .- .. .. ...

* Prepared by the authors.
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d/ ), for the F distribution with df3Table T-4:- Quantiles, /,(d/p 2
dtgrees of freedom in the numerator and d/ degrees of freedom q,2

-

in the denominator (continued)- ~|
|

~ ~y-- . . . ,3

.... _ _ _. _ . _ ._

#2 f 10 12 15 20 ~ 24 - 30 60 - 120- en

1- 0.90 60.2 60.7 61.2 61.7- 62.0 62.3 62.8 63.1 63.3

0.95 242- 244 246 248 249 250 252 '253 .254

'0.975 M9 977 985 -593 997 1000 1010 1010' 1020
0.99 -6060 6110 6160 6210 - 6230 6260 6310 6340 6370

0.995 24200 . 24400 ,24600 24800 24900 25000 25300 25400 25500

2 0.90 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.48 -9.49 )
,.

| 0.95 19.4 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5
~ "~'~~~'~'~~7'

0.975 39.4 39.4 39.4 39.4 ' 39.5 29.5 39.5 39.5 39.5

-0.99 99.4 99.4 99.4 99.4 ' 99.5 99.5 99.5 99.5 99.5 . .- . d ..
0.995 199 199 199 ~199 199 199- 199 199- 200

3 0.90 5.23 5.22 5.20 5.18 5.18 5.17 - 5.15 . 5.14 5.13 -

0.95 8.79 8.74 8.70- 8.66 8.64 8.62 8.57 8.55 8.53
I

0.975 ' 14.4 14.3 14.3 14.2 14.1 14.1 14.0 13 9 13.9
'

0.99 - 27.2 27.1 26.9 26.7 26.6 26.5 26.3 ' 26.2 26.1

;. 0.995 43.7 43.4 -43.1 42.8 42.6 42.5 42.1 42.0 41.8

I
| 4 0.90 3.92 3.90 3.87 3.84 3.83 3.82 3.79 .' 3.78 3.76 _,,,.:,g....,,_ , , . . , , . _ . . , ,

I 0.95 5.96 5.91 . 5.86 5.80 5.77 5.75 5.69 5.66 - 5.63 1

|0.975 8.84 8.75 8.66 8.56 8.51 8.46 8.36 8.31 - -8.26 - * -- - - - - - - - -

'

0.99 14.5 14.4 - 14.2 14.0 13.9 13.8 13 7 . -~ 13.6 . 13.5

O.995 21.0 20.7 20.4 20.2 -20.0 19.9 -19.6 19.5 19.3

5- ' t.90 3.30 3.27 3.24 ' 3.21 3.19 3.17 3.14' 3.12 -3.11 .

'

0.95 4.74 4.68 4.62 ' 4.56 4.53 4.50 ^ 4.43 4,40 . 4.37

O.975 6.62 6.52 6.43 6.33 6.28 6.23 6.12 - . 6.07 - 6.02
0.99 10.1 9.89 9.72 9 55 9.47 9.38 9.20 9.11: 9.02 -;

0.995 13.6 13.41 13.1 12.9 12.8 12.7 . '12.4 12.3 ; 12.1

. . _ . _ . ,.. . ..,. _ ._

6 0.90 2.94 2.90 2.87 2.84 2.82 2.80 2.76 . 2.74 ' 2.72
~ " ' ' ~ ~ *

0.95 4.06' 4.00 3.94 3.87 3.84 3.81 3.74 3.70 ~ 3.67
8.975 5.46 5.37 5.27 5.17 5.12 5.07 4.% 4.90 4.85

0.99 7.87 7.72 7.56 7.40 7.31 7.23 7.06 6.97 6.88
,

O.995 10.3 10.0 9.81 9.59 9.47 9.36 9.12 9.00 ' 8.88'

7 0.90 2.70 2.67 2.63 2.59 2.58 2.56 2.51 2.49 .2.47

0.95 3.64 3.57 3.51 3.44 3.41 3.38 3.30 3.27 3.23

|0.975 4.76 4.67 4.57 4.47 4.41 4.36 4.25 4.20 4.14

0.99 6.62 6.47 6.31 6.16 6.07 5.99 5.82 5.74 5.65 i

0.995 8.38 8.18 7.97 7.75 7.64 7.53 7.31 7.19 7.08 -- - I

. - . - - . . - . . . . . . . . . . . . . . .

- - -. .-
,

]. _ -. .. _ ._. . _ _ . . . . _ _ _ .___ _ . . . . . , . _ _ ,,_ _ .. _ . _ . .,,.; _ _
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Quantiles, f,(d/ , d/ ), for the F distribution with d/Table T-4: 3 2 3

d:grees of freedom in the numerator and d/ degrees of freedom -2

in the denominator (continued)

- - - , - . . - - ,,-g,
* ~~~ ~"" ~ ~ " " ^ "

#3 'e~ l 2 3 4 .5 6 7 8 9
1

s c.90 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56

0.95 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39

0.975 7.57 6.06 5.42 5.05 4.82 4.65 4.33 4.43 4.36

0.99 11.3 8.65 7.59 7.01 6.63 . 6.37 6.18 6.03 5.91

0.995 14.7 11.0 9.60 8.81 8.30 7.95 7.69 7.50 7.34

9 0.90 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44

0.95 5.12 -4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

0.975 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03
- '~ '~~~' ~ '- - - -

0.99 10.6 8.02 6.99 6.42 6.% 5.80 5.61 5.47 5.35 . . ..

0.995 13.6 10.11 8.72 7.% 7.47 7.13 6.88 6.69 6.54

10 0.90 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35

0.95 4.% 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02

0.975 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78

0.99 10.04 7.56 6.55 5.99 5.64 5.39 ~ 5.20 5.06 4.94 !

0.995 12.8 9.43 8.08 7.34 6.87 6.54 6.30 6.12' 5.97 |

|
12 0.90 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 , , , _ , , _ , .,.; _.,

0.95 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80
|

,
0.975 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 .. - . - - - . ---. --- i

]! 0.99 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39

0.995 11.8 8.51 7.23 6.52 6 07 5.76 5.52 5.35 5.20 a

15 0.90 3.07 2.70 2.49 - 2.36 2.27 2.21 2.16 2.12 2.09 1

, .0.95 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59
'

I 0.975 6.20 4.77 4.15 3.80 3.53 3.41 3.29 3.20 3.12

0.99 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89

0.995 10.8 7.70 6.48 5.80 5.37 5.07 4.85 4.67 4.54
. . ~ . ._ . . . _ _ _ . . , _ _ _ _ _ _ _ _

20 0.90 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96

0.95 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39

0.975 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 . 2.84 3

0.99 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 \
0.995 9.9 6.99 5.82 5.17 4.76 4.47 4.26 4.09 3.% 's

s

24 0.90 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91
\

0.95 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30

0.975 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70

0.99 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26

0.995 9.6 6.66 5.52 4.89 4.49 4.20 3.99 3.83 3.69 - -- - -- - .\ - ~ .

-. . -- . . . . .._

- - - - ._ _ . _ _ ._ _.
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St:tistics/ t:bl:s ST-13 - s

Quantiles, /,(d/ , d/ ), for the F distribution with d/Table T-4: 3 2 3

dsgrees of freedom in the numerator and d/ degrees of freedom2

in the denominator (continued) <

-r--,,. -- . - ._. ,.

6 =* . 4 e. .4 .m% e. . .

4/2 g 10 12 15 20 24 30 - 60 120 ==

9 0.90 2.42 2.38 2.34 2.30 2.28 2.25 2.21 2.18 2.10

0.95 3.14 3.07 3.01 2.94 2.M 2.86 2.79 2.75 2.71

0.975 3.% 3.87 - 3.77 3.67 3.61 3.56 3.45 3.39 3.33

0.99 5.3 5.11 4.96 4.81 4.73 4.65 4.48 4.40 4.31

0.995 6.4 6.2 6.03 5.83 5.73 5.62 5.41 5.30 5.19

10 0.90 2.32 2.28 2.24 2.20 2.18 2.16 2.11 2.08 2.06

0.95 2.98 2.91 2.85 2.77 2.74 2.70 2.62 2.58 2.54 - - . - - . _ _ .. . _. ._

0.975 3.72 3.62 3.52 3.42 3.37 3.31 3.20 3,14 3.08
'' ~>

O.99 4.8 4.71 4.56 4.41 4.33 4.25 4.08 4.00 3.91'

0.995 5.8 5.66 5.47 - 5.27 5.17 5.07 4.86 4.75 4.64

i

| 12 0.90 2.19 2.15 2,10 2.06 2.04 2.01 1.% 1.93 1.90

| 0.95 2.75- 2.69 2.62 2.54 2.51 2.47 2.38 2.34 2.30

0.975 3.37 3.28 3.18 3.07 3.02 2.% 2.85 2.79 2.73

0.99 4.30 4.16 4.01 3.86 - 3.78 3.70 3.54 3.45 3.36

| 0.995 5.1 4.91 4.72 4.53 4.43 4.33 4.12 4.01 3.90
,.

15 030 2.06 2.02 1.97 1.92 1.90 1.87 1.82 1.79 1.76 ' + + * < a% ~ - -- m-

0.95 2.54 2.48 2.40 2.33 2.29 2.25 2.16 2.11 2.07

0.975 3.06 2.% 2.86 2.76 2.70 2.64 2.52 2.46 2.40
~ ~ ~ ' ' ~

0.99 3.80 3.67 3.52 3.37 3.29 3.21 3.05 2.% 2.87

0.995 4.4 4.25 4.07 3.88 3.79 3.69 3.48 3.37 3.26

20 0.90 1.94 1.89 1.84 1.79 1.77 1.74 1.68 1.64' l.61
i
' O.95 2.35 2.28 2.20 2.12 2.08 2.04 1.95 1.90 1.84

| 0.975 2.77 2.68 '2.57 2.46 2.41 2.35- 2.22 2.16 2.09

|- 0.99 3.37 3.23 3.09 2.94 2.86 2.78 2.61 2.52 - 2.42 |

| 0.995 3.8 3.68 3.50 3.32 3.22 3.12 2.92 2.81 2.69
,

j
_

24 0.90 1.88 1.83 1.78 1.73 1.70 1.67 1.61 1.57 1.53 -- . . _

0.95 2.25 2.18 2.11 2.03 1.98 1.94 1.84 1.79 1.73

0.975 2.64 2.54 2.44 2.33 2.27 2.21 2.08 2.01 1.94 ,

0.99 3.17 3.03 2.89 2.74 2.66 2.58 2.40 2.31 2.21 |

0.995 3.6 3.42 3.25 3.06 2.97 2.87 2.66 2.55 2.43

24 0.90 1.88 1.83 1.78 1.73 1.70 1.67 3.61 1.57 1.53 !

0.95 2.25 2.18 2.11 2.03 1.98 1.94 1.84 1.79 1.73

0.975 2.64 2.54 2.44 2.33 2.27 2.21 2.08 2.01 1.94

0.99 3.17 3.03 2.89 2.74 2.66 2.58 2.40 2.31 2.21 . .

0.995 3.6 3.42 3.25 3.06 2.97 2.87 2.66 2.55 2.43
_ __ . _. _ _.

-- . -~ _ _ . _ .. ... . .__

'' -* * * . * .- = m .a . . _ _ , _ _
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| ST-14 Applying St tistics '

Quantiles, /,(d/ , d/ ), for the F distribution with d/Table T-4: 3 2 3,

( degrees of freedom in the numerator and d/ degrees of freedom2
! in the denominator (continued)
!

. , . - . - - , . - . _ . . - , . ,

# .. . - . . . . . ... - -. - _

df2 e 1 2 3 4 5 6 7 8 9

| 30 0.90 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1,85

0.95 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21

0.975 5.57 4.15 3.59 3.25 3.03 2.87 2.75 2.65 2.57

0.99 7.6 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07

0.995 9.2 6.4 5.24 4.62 4.23 3.95 3.74 3.58 3.45

60 0.90 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74

0.95 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 - . - - . - - - . _ _ . - _ _ _ , - _ _

0.975 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33

0.99 7.1 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72
- ^ - "

0.995 8.5 5.8 4.73 4.14 3.76 3.49 3.29 3.13 3.01

120 0.90 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68

l 0.95 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.%

0.975 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2 22

l 0.99 6.9 4.79 3.95 3.48 3.17 2.% 2.79 2.66 2.56

0.995 8.2 5.54 4.50 3.92 3.55 3.28 3.09 2.93 2.81

ce 0.90 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 - + - * e----- - - - - , -
,

O.95 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88'

0.975 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11
~ ~ ~ ~ ~ ~ ~~

0.99 6.64 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41

0.995 7.9 5.30 4.28 3.72 3.35 3.09 2.90 2.74 2.62

- - . - - . . . . _ . . . _ _

'6s -h.s M,

m+ por - e w a

"'- M4 ' M '" M& M Eli 4g - .M.**,

.= . . . . -.

**- *** i-.'=m-. meha e.. - g, ,, , , _ , ,,,
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Quantiles, f,(d/ , d/ ), for the F distribution with d/.-Table T-4: 3 2 3

and d/ degrees of freedom 'd2grees of freedom in the numeratt.: 2
in the denominator (continued)

*

df,
- ,, -,_ _ . , .... . _ ._

7 ..
,

--. ~.- _ .. .

(f g 10 ' 12 15 20 24 30 60 - 120 m

30 0.90 1.82 1.77 1,72 1.67 1.64 1.61 1.54 1.50 1.46

0.95 2.16 2.09 2.01 1.93 1.89 1.84 1.74 - 1.68 1,62

' O.975 2.51 2.41 2.31 2.20 2.14 2.07 1.94 1.87 1,79

0.99 2.98 2.84 2.70 .2.55 -' 2.47 2.39 2.21 2.11 2.01

0.995 3.34 3.18 3.01 2.82 2.73 2.63 2.42 2.30 2.18

60 0.90 - 1.71 1.66 1.60 1,54 .1.51 1,48 1.40 1.35- 1.29

0.95 1.99 't.92 1.84 - ' t .75 ' 1.70 1.65 1.53 1.47 1.39

0.975 2.27 2.17 2.06 1.94 1.88 1.82 1.67 1.58 1.48
__ _. _ _. _ ,._ _

.___[-

,
'

0.99 2.63 2.50 2.35 2.20 2.12 2.03 1.84 1.73 - 1.60 - -- -

O.995 2.90 2.74 2.57 2.39 2.29 2.19 1.% 1.83 1.69

120 0.90 1.65 -1.60 1.55 1.48 1.45 1.41 1.32 1.26 1.19

0.95 1.91 1.83 1.75 1.66 1.61 1.55 1.43 1.35 1.25

0.975 2.16 2.05 1.94 1.82 1.76 1.69 1.53 1,43 1.31

0.99 2.47 2.34 2.19 2.03 1.95 1.86 1.66 1.53 - 1.38
0.995 2.71 '2.54 2.37 2.19 2.09 1.98 1.75 1.61 1.43 .

d

= . 0.90 ' t .60 1.55 . 1.49 1.42 1.38 1.34 1.24 . 1.17 ' l.00 ...,,.s.-,. ,,. - , , ,, ...

0.95 1.83 1.75 1.67 1.57 1.52 1.46 1.32 1.22 1.00

0.975 2.05 ' .l.94 1.83 1.71 1.64 1.57 ' l.39' 1.27 1.00
~'' '' "~~ ~ '--- ' =

0.99 2.32 2.18 2.04 1.88 1.79 1.70 1.47 1.32 1.00

0.995 2.52 2.36 2.19 2.00 1.90 1.79 1.53 1.36 1.00

|
|

l . . ._. _ - __._. _.

. . ,.~ -~- - .. _.; ._

. - .

. ~ . .. . . ..

i

!

I

,
.

. .. . .---
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;-

Table T-5: Quantiles, f,,,, q(k, d/), for the F,,,|

- distribution
'

The F, statistic is designed to test the hypothesis that the variances of several ~ " ', 7 ', _ . . ~ '
<

groups are equal. _ . . . - _ . __..._ __.

(1) Start with n observations from each of A groups.

I

| (2) State the null hypothesis No: d = o} = ... = o} and the alternative
hypothesis H : . a # of for at least one pair of indices i andj, where2

i, f = 1, 2, ..., k.

I (3) Set the level of significance at a and the quantile at q = (1 - a). u. - . - --._~ ._. - . -.. - ._. _ __ _

__ :.

|
(4) Calculate the variance for each of the k groups.

(5) Identify the largest, S , and the smallest, Sh, of the k variances.2

1

| (6) Calculate the test statistic as the ratio of the largest variance to the smallest:
2 fg2' F =S ,

| (7) Find the q quantile,f , (k, df), of the test statistic associated with k groups ......,.7.--,..~
*

| and df = n 1 in Table T-5. . _ _ _ , , , . , _ _ .

!

(8) If F, exceeds f ,,(k. df), reject the hypothesis that the variances are ;

| equal.
i

! A Revisit to Example 10-3: Given a set of six sample variances, {0.40,1.49,

| 3.20, 1.93, 2.35, 1.58}, each with 7 degrees of freedom SL = 3.20 and
~

i S = 0.40.' Set a = 0.05. The value of the test statistic isf = 3.20/0.40 -- - - - - - - - - - - - - -2

= 8.00. Table T-5 provides the critical valuefm.0.95(6,7) = 10.8. Since _. _ .

f, = 8.00 is smaller than 10.8, the hypothesis of homoscedasticity is not
rejected.

!

i

- - - _. _

< d4 See - 44 4 ree p .,ge ,.4 , |O'' M4. -

.

l

|
- - - . .-

_. . _ . . . _ . . _ . . . _ . . _ . _ _ . . _ _ . _ _ _ _ _ . , _ _ _ _ _

,

- - .

,
- .
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Table T-5: Quantiles, /,,,, q(k, d/), for the F distribution *max

,

q = 1 - a = 0.95
& = numtwr of groups

-.. m.-.... _ - ..
. , _ . , =

4f 2 3 4 5 6 7 8 9 10 11 12

2 39.0 87.5 142 202 266 333 403 475 550 626 704 \
\

3 15.4 27.8 39.2 50.7 62.0 72.9 83.5 93.9 104 114 124

4 9.60 15.5 20.6 25.2 29.5 33.6 37.5 41.1 44.6 48.0 $1.4
5 7.15 10.8 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9

6 5.82 8.38 10.4 12.1 13.7 15.0 16.3 17.5 18.6 19.7 20.7 .

7 4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8

8 4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11.7 12.2 12.7 (
9 4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7 - ~N' ~'~'

10 3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34
~ ~ ~

12 3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48
~ ^ ~ ~ ~ ' ~

15 2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93
20 2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59
30 2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39
60 1.67 1.85 1.% 2.04 2.11 2.17 2.22 2.26 2.30 2.33 2.36
es 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

_. . . . . _ . _ . . . . , , . . - . _ _ _ . .

g = 1 - a = 0.99
-' ~ - -- - - ~

& = number of groups

4f 2 3 4 5 6 7 8 9 10 11 12

2 199 448 729 1.036 1,362 1,705 2.063 2,432 2,813 3.204 3,605
3 47.5 85 120 151 184 216 249 281 310 337 361
4 23.2 37 49 59 69 79 89 97 106 113 120 g

5 14.9 22 28 33 38 42 46 50 54 57 60

6 11.1 15.5 19.1 22 25 27 30 32 34 36 37

7 8.89 12.1 14.5 16.5 18.4 20 22 23 24 26 27 . _ . _.. _

8 7.50 9.9 11.7 13.2 14.5 15.8 16.9 17.9 18.9 19.8 21
9 6.54 8.5 9.9 11.1 12.1 13.1 13.9 14.7 15.3 16.0 16.6

~ ~ ~ ~ - - ^

10 5.85 7.4 8.6 9.6 10.4 11.1 11.8 12.4 12.9 13.4 13.9 e

12 4.91 6.1 6.9 7.6 8.2 8.7 9.1 9.5 9.9 10.2 10.6
15 4.07 4.9 5.5 6.0 6.4 6.7 7.1 7.3 7.5 7.8 8.0

20 3.32 3.8 4.3 4.6 4.9 5.1 5.3 5.5 5.6 5.8 5.9

30 2.63 3.0 3.3 3.4 3.6 3.7 3.8 3.9 4.0 4.1 4.2

60 1.% 2.2 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.7

a. 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

. - -

* Adapted from Davii, H. A.,1952 Upper 5 and 1% Points of the Muimum F-Ratio, Bionierrika,
~~ '' ~ ' * -'

39, pp. 422-424. wuh permission of the Biometrika Trustees and IIerbert A. David.

.- _ . _ _ _

" #4 N es e- ..e- m ,. ,6 .% -eq .hp _. % , , , , . . ,
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Table T-6a: Coefficients {a .f,3} for the W test forn
normality

~

The W test for normality is based upon the ratio of two estimates of the variance - --. . , _ , .
'

i

of a population: one being the square of a linear combination of the ordered ' w .
-

sample values and the other being the conventional sum-of-squared-deviations
estimate. The test statistic, W, can range from 0 to 1. It is designed so that
small values reflect evidence of non-normality; thus, the W test's critical values
are the smaller quantiles of the statistic's distribution. The test can be applied to

'

sample sizes as small as 3 and as large as 50 in terms of Tables T-6a and T-6b.

A Revisit to Exampic 7-1: The following data are the percent uranium value for
17 cans of ammonium diuranate (ADU) scrap: - - - - - ------ - - - - - - -

.

b w -* - m d48=.. w i - > .E *=-e -4,.sh+.

35.5 79.4 35.2 40.1 25.0 '78.5 78.2 37.1 48.4 28.6 75.5 34.3
29.4 29.8 28.4 23.4 77.0.

.

The W test is detailed here as an Il-step procedure.

Step 1. Arrange the n sample observations in ascending order. Using
established convention, for a sample {yi, y2. * Ji In} of size n, let y i) heg

- .e,.-
denote the smallest observation, y(2) the second smallest observation, ..., ygg) t -<w-- - -

i* ordered observation, ... and y(,) the largest observation. The ordered __ .._ _ . . . _ _ _ .._.. .

observations are given in the second column of the table headed A Table for a
Revisit to Example 7-1 on Page ST-19. In that table, the rank of an observation
refers to its numeric-order assignment.

_ . .. __ . _ . , . __.__

%= M

l
- . _ - _. . . . . . . _ ..

)
|

- . ... , . . . . , . . ... + .....
.

' |
|

1

- -- ~ . - - .. ._ __ _..~. . . . _. .. .

*- .-e. h . ..,-# m-w.we.. .,, w . _ , , , eg en % % g g,,, g

|



.. .. - . -

| LLL11 al.a.d u.lu..W :.
!

Stztistics/ t;blzs ^ST-19 w== -=: . ~-.=-- - p
_

A Table for a Revisit to Example 7-1

Ascending Descending Table T 6a
' ' ' ~ ~ r -*' - - u-- pordered order coefficients for ,

", '- - - -- - ---

| Rank data data Difference k=8

i 8M'(n4+ 1) " hi)(O J(0 J(n4+ 1) J(n4+1) - J(0 d

i
r

~

1 23.4 79.4 56.0 0.4 % 8 27.8208

2 25.0' 78.5 53.5 0.3273 17.5106
_ . . ..n..,-. - ... , . . . . - -

3 28.4 78.2 49.8 0.2540 12.6492 m. _._ _ _. _.._:_

4 28.6 77.0 48.4 0.1988 9.6219

5 29.4 75.5 46.1 0.1524 7.0256

6 29.8 48.4 18.6 0.1109 2.0627

7 34.3 40.1 5.8 0.0725 0.4205'
- . .. .- , . . - . . ~ . . . . , _ _ _ . , , , , . -.

8 35.2 37.1 1.9 0.0359 0.0682' _: .. _ . _ . _ _ . -_. _ . . _ - . . . _ _ . . _ _-

9 35.5

10 37.1

|

| 11 40.1

I 12 48.4
- ..__ _ - . . .

13 75.5 -- 1

14 77.0

15 78.2

16 78.5

17 79.4
- - - - - - - --

b = 77.1796 ~ ~ ~ ~ " ~ ~ ~ ~ ' " ~' ~ ^ ~~ ''

,

-- . .., .- .- , - .- -

pm. .-a, me m.y 6<ee,m-m+ -se+e( w.+--Dwee.-" ee96 +&- em -4.I d.wome.- e.enmuseh e 48 - wm.-h .-ee.=se --

4.

e- 4

e we er ==>--L - y 1p



ild II E l !a nl .N
ST-20 Applying Stttistics p _3

-

)
Step 2. If n is even, set k = n/2; if n is odd, set k = (n- 1)/2. For this j
example, in which n = 17, set k = 8. ;

1

Step 3. Rearrange the observations in descending order of magnitude, and enter
<- ,- |the first k of them as shown in the third column of A Table for a Revisit to - ,- - - - - - -

' '

Example 7-1. . . . _ . - ._____ _ _ _

Step 4. Calculate the differences between the corresponding entries of the third ,

and the second columns of A Table for a Revisit to Example 7-1 and enter those , i

|
differences in the fourth column. -

Step 5. From Table T-6a, copy the k coefficients {aj, a2, ..., af, ... , a4}
associated with sample size n into the fifth column of A Table for a Revisit to -

~ ~ ~'- ~ ~-

Exampie 7-1. -7
. .. ..

Step 6. Multiply the associated elements of the fourth and the fifth columns of A
Ttble for a Revisit to Example 7-1. Enter the corresponding products in the
sixth column of the table.

Step 7. Sum the last column of A Table for a Revisit to Example 7-1. Denote
the sum by B. In Table T-6a Eumple, b = 77.1796.

~ ' ~ ' ~ ' * ~ ' * ~ ~ " " " ~ " ~ ' * ~2Step 8. Calculate S , the sample variance of the n observations. For the data in
2Table T-6a Example, s = 476.5%8. - -~ - - - - -

Step 9. Calculate the test statistic, W, where

B2W= 2,
(n - 1)S

In A Table for a Revisit to Example 7-1,

(77.17 % )2 . _ . _ . _ _ . _ _ _ _ _ . _ _ .

.w= _ = 0.7811.
(16)(476.5 % 8) - .

Turn to Page ST-24 for the final two steps of this example.

.
,

l
l

. . . - . . - . .. .

- _ . . _ . _ . . - . . . _ . _ . . .

|

!

- - .-- - -- , . . . .. .. - - . - . _

~ .w. w- - . . - . ..m., , - _ . -.4 w% w . . . , . .% . . . . . . , , , ,_ , y , , , . ,

|

|

| - . . . . -. . _. .. .. . . _ _ . _ . . . . _ . . . . . _ .

!

| |
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Table T-6a: Coefficients (a,,m} for the Wtest for normality *

M 3 4 5 6 7 8 9 10
- - .- - , y .y .

'
i

'
1 0.7071 0.6872 0.6646 0.6431 0.6233 0.6052 0.5888 0.5739 |

~~~ ~~ ^ - ~ ~

2 0.1677 0.2413 0.2806 0.3031 0.3164 0.3244 0.3291 |
3 0.0875 0.1401 0.1743 0.1976 0.2141 I

0.0561 0.0947 0.12244
0.0399

5

M 11 12 13 14 15 16 17 18 19 20

|
1 0.5601 0.5475 0.5359 0.5251 0.5150 0.5056 0.4968 0.4886 0.4808 0.4734 |
2 0.3315 0.3325 0.3325 0.3318 0.3306 0.3290 0.3273 0.3253 0.3232 0.3211

|
| 3 0.2260 0.2347 0.2412 0.2460 0.2495 0.2521 0.2540 0.2553 0.2561 0.2565

-
---

|

_ _.. _. _ _ _. :
4 0.1429 0.1586 0.1707 0.1802 0.1878 0.1939 0.1988 0.2027 0.2059 0.2085 ,

5 0.0695 0.0922 0.1099 0.1240 0.1353 0.1447 0.1524 0.1587- 0.1641 0.1686 j
l

6 0.0303 0.0539 0.0727 0.0880 0.1005 0.1109 0.1197 0.1271 0.1334

| 7 0.0240 0.0433 0.0593 0.0725 0.0837 0.0932 0.1013
<

'

8 0.01 % 0.0359 0.04 % 0.0612 0.0711
00163 0.0303 0.0422 N

9 *

0.0140
| 10

M 21 22 23 24 25 26 27 28 29 30 -- . .L _ _ _ _ _ . , _ . - ,

; I 0.4643 0.4590 0.4542 0.4493 0.4450 0.4407 0.4366 0.4328 0.4291 0.4254
- - . - - . - . - - . . . - - ~ _

| 2 0.3185 0.3156 0.3126 0.3098 0.3069 0.3043 0.3018 0.2992 0.2968 0.2944
3 0.2578 0.2571 0.2563 0.2554 0.2543 0.2533 0.2522 0.2510 0.2499 0.2487
4 0.2119 0.2131 0.2139 0.2145 0.2148 0.2151 0.2152 0.2151 0.2150 0.2148
5 0.1736 0.1764 0.1787 0.1807 0.1822 0.1836 0.1848 0.1857 0.1864 0.1870

I

6 0.1399 0.1443 0.1480 0.1512 0.1539 0.1563 0.1584 0.1601 0.1616 0.1630
.

7 0.1092 0.1150 0.1201 0.1245 0.1283 0.1316 0.1346 0.1372 0.1395 0.1415,

I 8 0.0804 0.0878 0.0941 0.0997 0.1046 0.1089 0.1128 0.1162 0.1192 0.1219
9 0.0530 0.0618 0.06 % 0.0764 0.0823 0.0876 0.0923 0.0965 0.1002 0.1036 -- _ _ ._. _ . _ _ . _ _ . _ _ _

'

10 0.0263 0.0368 0.0459 0.0539 0.0610 0.0672 0.0728 0.0778 0.0822 0.0862 . .-. . .

11 0.0122 0.0228 0.0321 0.0403 0.0476 0.0540 0.059S 0.0650 0.0697
12 0.0107 0.0200 0.0284 0.0358 0.0424 0.0483 0.0537
13 0.0094 0.0178 0.0253 0.0320 0.0381
14 0.0084 0.0159 0.0227

0.0076
15

| m=r

* Adapted from Shapiro, S. S., and M. B. Wilk,1965, An Analysis of Vanance Test for Normality ~

(Complete Samples), Biomerrika,52, pp. 591611, with permission of the Biometrika Trustees and
-- - -- .

Samuel Shapiro.

!

|
|

_

~ "' " '48r. 4 wen m-m. , . ,

1

| |

|
|
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Table T-6a: Coefficients {a,q j) for the W test for normality -
_ (continued)

i
'

; Am 31 32 33 34 35 36 37 38 39 40 - ~ P '~~";*-~'
- m<'7

. - - :-- , _. -_

'11 0.4220 0.4188 ' O.4156 0.4127 . 0.4096 0.4068 0.4040 0.4015 0.3989 0.3964
2 0.2921 ' O.2898 0.2876 0.2854 0.2834 0.2813 0.2794 0.2774 0.2755 0.2737
3 0.2475 0.2463 0.2451 0.2439' O.2427 0.2415 0.2403 0.2391 0.2380- 0.2368 -

4 0.2145 0.2141 0.2137 0.2132 0.2127 0.2121 0.2116 0.2110 0.2104 0.2098
- I

5 0.1874 0.1878 0.1880 0.1882 0.1883 0.1883 0.1883 0.1881 0.1880 0.1878
-

6 0.1641 0.1651 0.1660 0.1667 0.1673 0.1678 0.1683 0.1686 0.1689 0.1691
7- 0.1433. 0.1449 0.1463 0.1475 0.1487 0.14 % 0.1505 0.1513 0.1520 0.1526
8 0.1243- 0.1265 0.1284 0.1301 0.1317 0.1331 0.1344 0.1356 0,1366 0.1376 _. _ _- _ , _ , _ _ .__, .. .

9' O.1066 0.1093 0.1118 0.1140 0.!!60 0.1179 0.1196 0.1211 0.1225 0.1237
10 0.0899. 0.0931 0.0961 0.0988 0.1013 0.1036' O.1056 0.1075 . 0.1092 0.1108

~ ~ - - -- -

-

f- ' 11 0.0739 0.0777 0.0812 ' O.0844 0.0873 0.0900 0.0924 0.0947. 0.0967 0.0986
j 12 0.0585 0.0629 0.0669 0.0706 0.0739 ' O.0770 0.0798 0.0824 0.0848 0.0870
| 13 0.0435 0.0485 0.0530 0.0572 0.0610 0.0645 0.0677 - 0.0706 0.0733 0.0759
| 14 0.0289 0.0344 0.0395 0.0441 'O.0484 0.0523 0.0559 . 0.0592 0.0622 0.0651
; 15 0.0144 0.0206 0.0262 0.0314 0.0361 0.0404 0.0444 0.0481 0.0515 .0.0546
i

|
16 0.0068 0.0131 0.0187 0.0239 0.0287 ' O.0331 0.0372 0.0409' O.0444

!: 17 0.0062 0.0119. 0.0172 0.0220 0.0264 0.0305 0.0343 , 3, , .. -_... ...__r., ..

18 ' O.0057 0.0110 0.0158 0.0203 0.0244

|
19 0.0053 0.0101 0.0146

- - ~^ '- e '

| 20 0.0049

,

. es,e... 4- = we , - . m ..w .. - .e

4,e N . 6s
"

.

= w + e. . e 4,. .+ a

... . .. . . . . .. .

.

b

% + m= ~ == s < _ - _ . . s..e . _ . ,, ,, _, |

., +- m.- . _ . - 1.a- e. .a.,- .. 4.., , , , .%%, , ,.,. ,
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| Table T-6a: Coefficients {a .f 3} for the Wtest for normality.n
| (continued)
|

I . )

{
. 48 49 50 - <

- - e,
i

. As 41 42 43 '44 45 46 47 - -
.-

t , ,

1 0.3940 0.3817 0.3'894 0 .3872 0.3850 0.3830 0.3808 0.3789 0.3770 0.3751
~

'

2- 0.2719 0.2701 0.2684 0.2667. 0.2651 0.2635 0.2620 0.2604 0.2589 0.2574
3 0.2357 0.2345 0.2334 0.2323 0.2313 0 2302 0.2291 0.2281 0.2271 0.2260 ,

4 0.2091 0.2085 0.2078 0.2072' O.2065 0.2058 0.2052 0.2045 0.2038 0.2032 - |
5 0.1876 0.1874 0.1871 0.1868 0.1865 0.1862 0.1859 0.1855 0.1851 0.1847

'

6 0.1693 0.1694 0.1695 0.1695 0.1695 0.1695 0.1693 0.1693 0.1692 0.1691 .

7 0.1531 0.1535 0.1539 0.1542 0.1545 0.1548 0.1550 0.1551 0.1553 0.1554
8 0.1384 0.1392 0.1398 0.1405 - 0.1410 0.1415 0.1420 0.1423 0.1427 0.1430 .

~'''~~~.~;~-~~~.~~~._~_~_"_-~_?|
9 0.1249 0.1259 0.1269 0.1278 0.1286 0.1293 0.1300 0.13 % 0.1312 0.1317
10 0.1123 0.1136 0.1149 '0.1160 0.1170 0.1180 0.1189 0.1197 0.1205 0.1212

11- 0.1004 0.1020 0.1035 0.1049 0.1 % 2 0.1073 0.1085 0.1095 0.!!05 0.1113
12 0.0891 0.0909 0.0927 0.0943 0.0959 0.0972 0.0986 0.0998 0.1010 0.1020 |

13-' O.0782 0.0804 0.0824 0.0842 0.0860 0.0876 0 0892 0.0906 0.0919 0.0932
14 0.0677 0.0701 0.0724 0.0745 0.0765 0.0783 0.0801 0.0817 0.0832 0.0846
15- 0.0575 0.0602 0.0628 ' O.0651 0.0673 0.0694 0.0713- 0.0731' O.0748 0.0764

16 0.0476 0.0506 0.0534 0.0560 0.0584 0.0607 , 0.0628 0.0648 ' O.0667 0.0685
17 0.0379 0.0411 0.0442 0.0471 0.0497 0.0522 0.0546 0.0568 0.0588 0.0608 ,_, , , __ ,, .., ._ , ,_.

18 0.0283 0.0318 0.0352 0.0383. 0.0412 0.0439 0.0465 0.0489 0.0511 0.0532
19 0.0188 0.0227 0.0263 0.02 % 0.0328 0.0357 0.0385 0.0411 0.0436 0.0459 . - - - - , ---

20 0.0094 0.0136 0.0175 0.0211 0.0245 0.0277 0.0307 . 0.0335 0.0361 0.0386

21 0.0045 0.0087 0.0126 0.0163 0.0197 0.0229 0.0259 0.0288 0.0314
22 0.0042 0.0081 0.0118 0.0153 0.0185 0.0215 0.0244

'

23 0.0039 0.0076 0.0111 0.0143' O.0174
24 0.0037 0.0071 0.0104
25 0.0035

._ .__ . _ _ . _ . ____ . __. _ _ . _

.' din. &

|
|

|
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- Table T-6b: Quantiles, w (n), for the W test forq

L
normality

i

Table T-6b contains the quantiles, w,(n), which provide the critical values for the
--

~ ~ ~ ~ ~

Wtest for normality. Because small values of the test statistic indicate non-
| ~ ~ ~ ~ ~ ~ ~ ' ' ' ~ ~ ' ' ' ^ '

| normality, values of the test statistic that are less than the critical values indicate
significance for the particular choice of the level of significance a.

!
Steps 10 and 11 complete the illustrative example started in the description of
Table T-6a.

Step 10. From Table T-6b, obtain the critical point w (n) for the correspondingo _.__.,_._____|sample size sad the appropriate level of significance. For n = 17 and a = 0.05, _ _ . . . . .. __

Wo.o3(17) = 0.892. - , . _ . . .. ._ ,
,

Step 11. Compare w from Step 9 to w in Step 10. If w is smaller than wo.o3,o

the hypothesis about normality is rejected, in A Revidt to Example 7-1,
! w = 0.7811 is less than wo.95(17) = 0.892; thus, the.,e data yield sufficient

evidence to reject normality for a = 0.05,
i
1

- ..-.--,.. .- ...-, ._., ,_., _ i

- . . . . .. . . , . . .. _ !

,

i
f -. - .. . -
'

-w,. . . . , . ,
-

9

-

i
|
.

i

- - _ ~ -

'
.. - - ... . . . .. .-

i 1

-- - --- - ~_ __ .__ _ . ._ ._ _ _ _ _ _ _. _ _. . _
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Ts:ble T-6b: Quantiles, w,(n), for the Wtest for normality
1

|

|

n g = 0.01 g = 0.02 g = 0.65 g = 0.10 g = 0.50
_

, |

3 0.753 0.756 0.767 0.789 0.959 ;

4 0.687 0.707 0.748 0.792 0.935 |
5 0.686 0.715 0.762 0.806 0.927 1

6 0.713 0.743 0.788 0.826 0.927 i

7 0.730 0.760 0.803 0.838 0.928 !
8 0.749 0.778 0.818 0.851 0.932 l

9 0.764 0.791 0.829 0.859 0.935 l
10 0.781 0.806 0.842 0.869 0.938 , 1

!
l

11 0.792 0.817 0.850 0.876 0.940
"~ |~ ~ ~ - ~ ~

12 0.805 0.828 0.859 0.883 0.943
13 0.814 0.837 0.866 0.889 0.945

,14 0.825 0.846 0.874 0.895 0.947
15 0.835 0.855 0.881 0.901 0.950 l

16 0.844 0.863 0.887 0.906 0.952
17 0.851 0.869 0.892 0.910 0.954
18 0.858 0.874 0.897 0.914 0.956
19 0.863 0.879 0.901 0.917 0.957 |
20 0.868 0.884 0.905 0.920 0.959

21 0.873 0.888 0.908 0.923 0.960 ~~ - - - - _ . - - - -

22 0.878 0.892 0.911 0.926 0.%1
. _j

*i 0.881 0.895 0.914 0.928 0.962
24 0.884 0.898 0.916 0.930 0.%3
25 0.888 0.901 0.918 0.931 0.964
26 0.891 0.904 0.920 0.933 0.%5
27 0.894 0.906 0.923 0.935 0.965
28 0.8% 0.908 0.924 0.936 0.966
29 0.898 0.910 0.926 0.937 0.966
30 0.900 0.912 0.927 0.939 0.%7

32 0.904 0.915 J.930 0.941 0.%8
' ' '' ~ ~

34 0.908 0.919 0.933 0.943 0.%9
36 0.912 0.922 0.933 0.945 0.970
38 0.916 0.925 0.938 0.947 0.971
40 0.919 0.928 0.940 0.949 0.972

42 0.922 0.930 0.942 0.951 0.972 1

44 0.924 0.933 0.944 0.952 0.973 ;

l 46 0.927 0.935 0.945 0.953 0.974 )
48 0.929 0.937 0.947 0.954 0.974
50 0.930 0.938 0.947 0.955 0.974

,, ,, , ,

* Adapted fmm Shapiro, S. S., and M. B. Wilk,1%5, An Analysis of Variance Test for Normality
. _.

(Complete Samples), Biometrika,52, pp. 591-611, with permission of the Biometrika Trustees and
Samuel Shapim.

I
i

- . . - .. _ ._ _
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'

Table T-7: Significant ranges, go.95(p, N- k), for
Duncan's multiple-range test

|

Duncan's multiple range test (Duncan,1955) is one of a class of procedures
- -

|

designed to determine which of a set of k means are different from the others-
once an analysis of variance declares significance among those means.

|

A Revisit to Example 12-le: This discussion gives both the symbolic algorithm
*

for the procedure and an illustration using the analysis of variance results in
Table 12-lb in which four production lines (called Line 1, Line 2, Line 3, and
Line 4) are compared. To apply Duncan's multiple-range test, assemble and
record several ' building- block" values.

; . . . _ . . . __ _ _ _ ._

The experiment size: N = 35;
-

,

| the k = 4 sample sizes: n = 3, n2 = 11, n3 = 15 n4 = 6;

the k = 4 means: yi = 87.37, y2 = 87.85, y3 = 88.57, y4 = 87.48;

and the Within groups Mean square (from Table 12-3b): MSw = 0.0528.
. __ _ . - . . _ _ . _. _

Calculate the harmonic mean of the k sample sizes: , _

nh = k/(1/ni + 1/n2+ .. 1/ng)
= 4/(1/3 +1/11 +1/15 + 1/6)
= 6.0829.

[ Note that, if the sample sizes are all the .ame (i.e., ni = n2 = ... = n, = n),
then E = n, say, and no special calcula' ion is required.] _ , , _h

Calculate apseudo standard deviation of each sample mean:
-

#5W 0.0528Sf = = 0.0932.=

h sh 6.0829

From Table T-7 with a = 0.05 and N- k = 35 - 4 = 31, record the values of _ , , _ _ , , ,

go,95(P. N - k) for each p = 2, 3, ..., k; for this example, after some _ _ ,

interpolating, these are:

_ _

_ _ _

N

s

,_ n ~ . - . . , - -. .- ~ e - . . ~
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90.93(2, 31) = 2.89
90.93(3, 31) = 3.04
go.93(4, 31) = 3.12.

_.

Calculate R * = q0.95(P, N - k)S * for each p = 2, 3, . ., k. These are thep y

critical values against which differences in means are compared; for this example,
these are:

R = 2.89(0.0932) = 0.26932

R * = 3.04(0.0932) = 0.28323

R * = 3.12(0.0932) = 0.2907.
~ ~~~ ~~ ~~ ~

'

4 _

Arrange the sample means in ascending order; for this example:

yi = 87.37
y4 = 87.48;

i y2 = 87.85 .

;

E3 = 88.57.
;

__ _ _ _ _ _ _

. . . .

Denote the rank of the smallest mean by 1, the next smallest by 2, , and

the largest by k. Next, for any two means, let p denote the difference between
the corresponding ranks plus 1. Thus, for comparing the largest and the smallest
means among k means, p = (k - 1) + 1 = k.

|
,

Compare the diference between the largest mean and each of the other means to

the value of the corresponding g * , beginning with the smallest, and determine
- . . - -. .

l
p

which of the differences are statistically significant; for this example:
,l

I- y3 - yi = 1.20 > R * = 0.29074

J3 - y4 = 1.09 > R * = 0.28323

J3 - y2 = 0.72 > R2 = 0.2693.

Here, all three differences are significantly different. Conclude that Line 3's
mean is larger than any of the means of Line 1, Line 2, and Line 4. ._ , _ . _

_ _ . . _ _ _ .

!

| ~

- [ . -- - - . . . . . .

i

. _ _ . _ _ _ _ _ _ _ _ . _

;
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i

|Next, compare the second largest mean with each of the smaller means,
ibeginning with the smallest, and determine which of the differences are

|
statistically significant; for this example: |

'

|
-. -

y2 - yi = 0.48 > R * = 0.28323

y2 ~ E4 = 0.37 > R * = 0.2693.2
.

Here, both differences are significantly different. Conclude that Line 2's mean is
larger than either Line l's or Line d's.

!

! Continue in this fashion until the two smallest means are compared; for this
example, compare the third largest mean with the smallest mean and determine if -

the difference is statistically significant:
I

Jg - y4 = 0.11 < R * = 0.2693.2

I Here, the difference is not significantly different. Conclude that Line l's mean is
not larger than that of Line 4.

A graphical display, described by Duncan (1974, p. 704), among others, is useful
, _ _ .._ _. ,__

,

i for describing multiple-range test results. Write the means in an increasing
sequence, left-to-right, and underline those collections of means that are not

_ _ ,

declared to be signifcant by the multiple-range test; for this example, the display

Group: Line 1 Line 4 Line 2 Line 3
Mean: 87.37 87.4R 87.85 $$J7

|
'

indicates that only the means of Line 4 and Line 1 are not statistically |
'

signipcantly diferent; i.e., they form a group, as do each of Line 2 and Line 3 - .- -- - - - -

individually.

. _ . . . . . - _ . _ _ .,

- . -- . . ,.. . . . . . . . . . .. .

,
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| Teble T 7: Significant ranges, no g5(p, N- k), for Duncan's
| multiple-range test
1

p - -

NA 2 3 4 5 6 7 8 9 10 20 50 100

i 1 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0

2 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09

3 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50
4 3.93 4.01 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02
5 3.64 3.74 3.79 3.83 3.83 3.83 3.83 3.83 3.83 3.83 3.83 3.83
6 3.46 3.58 3.64 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68

. .- -. . -.

| 7 3.35 3.47 3.54 3.58 3.60 3.61 3.61 3.61 3.61 3.61 3.61 3.61

8 3.26 3.39 3.47 3.52 3.55 3.56 3.56 3.56 3.56 3.56 3.56 3.56
9 3.20 3.34 3.41 3.47 3.50 3.52 3.52 3.52 3.52 3.52 3.52 3.52
10 3.15 3.30 3.37 3.43 3.46 3.47 3.47 3.47 3.47 3.48 3.48 3.48

11 3.11 3.27 3.35 3.39 3.43 3.44 3.45 3.46 3.46 3.48 3.48 3.48

12 3.08 3.23 3.33 3.36 3.40 3.42 3.44 3.44 3.46 3.48 3.48 3.48
13 3.M 3.21 3.30 3.35 3.38 3.41 3.42 3.44 3.45 3.47 3.47 3.47 - - - - - - - - -

14 3.03 3.18 3.27 3.33 3.37 3.39 3.41 3.42 3.44 3.47 3.47 3.47 -

15 3.01 3.16 3.25 3.31 3.36 3.38 3.40 3.42 3.43 3.47 3.47 3.47
16 3.00 3.15 3.23 3.30 3.34 3.37 3.39 3.41 3.43 3.47 3.47 3.47

17 2.98 3.13 3.22 3.28 3.33 3.36 3.38 3.40 3.42 3.47 3.47 3.47

18 2.97 3.12 3.21 3.27 3.32 3.35 3.37 3.39 3.41 3.47 3.47 3.47

19 2% 3.11 3.19 3.26 3.31 3.35 3.37 3.39 3.41 3.47 3.47 3.47

20 2.9$ 3.10 3.18 3.25 3.30 3.34 3.36 3.38 3.40 3.47 3.47 3.47 _ . _ _. _

30 2.89 3.04 3.12 3.20 3.25 3.29 3.32 3.35 3.37 3.47 3.47 3.47

40 2.86 3.01 3.10 3.17 3.22 3.27 3.30 3.33 3.35 3.47 3.47 3.47

60 2.83 2.98 3.08 3.14 3.20 3.24 3.28 3.31 3.33 3.47 3.48 3.48

100 2.80 2.95 3.05 3.12 3.18 3.22 3.26 3.29 3.32 3.47 3.53 3.53
= 2.77 2.92 3.02 3.09 3.15 3.19 3.23 3.26 3.29 3.47 3.61 3.67 ,

i
1

* Reproduced from: D.B. Duncan " Multiple Range and Multiple F Tests." BIOMETRICS 11: |
1 42. 1955. With permission from 'Ihe Biometric Society. ** - -- - -

- .
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Table T-8: Selected binomial probabilities -

A binomial variable, B, has a density function given by -

-

h "' b
w (1 - r)" ~6 = b!(n-b)!w (g . ,)n-b

"Pr{B = b; n, r} =
b

b = 1, 2, , n; n = 1, 2, 3, ; 0 s r s 1.

Its two parameters are n and r.

Table T-8 gives values of the bmomial density function for b = 0,1, ...,9 when . . _ _ _ _ _ _ _ _ _

n = 1, 2, ..., 30, 32, 34, 36, 38, 40 and r = 0.01, 0.05, 0.10, 0.25, and 0.50. ,

.

Exampic 1: The probability that B = 3 when n = 7 and 1 = 0.25 is found on
page ST-34 at the intersection of the row labeled 7 and the column labeled 3.
The entry there is 0.1730. Formally: Pr{B = 3; 7,0.25} = 0.1730.

Example 2: The probability that B s 2 when n = 14 and r = 0.25 can be
found by summing three values from page ST-34. In terms of Chapter 17's
notational shorthand, Pr{B s 2} = Pr{B = 0} + Pr(B = l} + Pr{B = 2} - ----_- -= 0.0178 + 0.0832 + 0.1802 = 0.2812.

Exanple 1: The probability that B 2 2 when n = 14 and r = 0.25 can be
found by recalling the identity that Pr{B 2 b; n, r} = 1 - Pr{B < b; n, r}. In
terms of Chapter 17's notational shorthand, Pr{B h 2} = 1 - Pr{B < 2}
= 1 - [Pr{B = 0} + Pr{B = l}] = 1 - [0.0178 + 0.0832]
= 1 - 0.1010 = 0.8990.

_ . . . , . .. -
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|

| Table T 8: Selected binomial probabilities *

i

|
b = nurnber of items of interest in a binomial sample of size a with ir = 0.01

_. _

'
a 0 1 2 3 4 5 6 7 8 9

1 0.9900 0.0100
2 0.9801 0.0198 0.0001
3 0.9703 0.0294 0.0003 0.0000
4 0.9606 0.0388 0.0006 0.0000 0.0000
5 0.9510 0.0480 0.0010 0.0000 0.0000 0.0000

6 0.9415 0.0571 0.0014 0.0000 0.0000 0.0000 0 0000 .

7 0.9321 0.0659 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9227 0.0746 0.0026 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.9135 0.0830 0.0034 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 _ . . _ _ . . , __

10 0.9044 0.0914 0.0042 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
.

11 0.8953 0.0995 0.0050 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
12 0.8864 0.1074 0.0060 0.0002 0.0000 0.0000 0.0000 0.0000 . 0.0000 0.0000
13 0.8775 0.1152 0.0070 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
14 0.8687 0.1229 0.0081 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

| 15 0.8601 0.1303 0.0092 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

16 0.8515 0.1376 0.0104 0.0005 0.0000 0.0000 ' O.0000 0.0000 0.0000 0.0000
17 0.8429 0.1447 0.0117 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
18 0.8345 0.1517 0.0130 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - .- - - - - -

19 0.8262 0.1586 0.0144 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
20 0.8179 0.1652 0.0159 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 \

_ j

j

i

21 0.8097 0.1718 0.0173 0.0011 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
22 0.8016 0.1781 0.0189 0.0013 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 s i

23 0.7936 0.1844 0.0205 0.0014 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 \ |
f 24 0.7857 0.1905 0.0221 0.0016 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 \'

|

i

25 0.7778 0.1964 0.0238 0.0018 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
|

| \ i

' '26 0.7700 0.2022 0.0255 0.0021 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
_ , ,

27 0.7623 0.2079 0.0273 0.0023 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
28 0.7547 0.2135 0.0291 0.0025 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000
29 0.7472 0.2189 0.0310 0.0028 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000
30 0.7397 0.2242 0.0328 0.0031 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

32 0.7250 0.2343 0.0367 0.0037 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
34 0.7106 0.2440 0.0407 0.0044 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
36 0.6964 0.2532 0.0448 0.0051 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000
38 0.6826 0.2620 0.0490 0.0059 0.0005 0.0W0 0.0000 0.0000 0.0000 0.0000
40 0.6690 0.2703 0.0532 0.0068 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000

| __ . - .

. .

* Prepared by the authors,

i
,

l
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Table T-8: Selected binomial probabilities (continued)

6 = number of items of interest in a binomial sample of size a with r = 0.05

n 0 1 2 3 4 5 6 7 8 9
~ ~

l 1 0.9500 0.0500
2 0.9025 0.0950 0.0025
3 0.8574 0.1354 0.0071 0.0001

,
4 0.8145 0.1715 0.0135 0.0005 0.0000

I 5 0.7738 0.2036 0.0214 0.0011 0.0000 0.0000

| 6 0.7351 0.2321 0.0305 0.0021 0.0001 0.0000 0.0000
i 7 0.6983 0.2573 0.0406 0.0036 0.0002 0.0000 0.0000 0.0000

| 8 0.6634 0.2793 0.0515 0.0054 0.0004 0.0000 0.0000 0.0000 0.0000

| 9 0.6302 0.2985 0.0629 0.0077 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 _ _ _ _ _ _ ,, _ _

| 10 0.5987 0.3151 0.0746 0.0105 0.0010 0.0001 0.0000 0.0000 0.0000 0.0000
.

| 11 0.5688 0.3293 0.0867 0.0137 0.0014 0.0001 0.0000 0.0000 0.0000 0.0000
! 12 0.5404 0.3413 0.0988 0.0173 0.0021 0.0002 0.0000 0.0000 0.0000 0.0000
| 13 0.5133 0.3512 0.1109 0.0214 0.0028 0.0003 0.0000 0.0000 0.0000 0.0000
| 14 0.4877 0.3593 0.1229 0.0259 0.0037 0.0004 0.0000 0.0000 0.0000 0.0000

-15 0.4633 0.3658 0.1348 0.0307 0.0049 0.0006 0.0000 0.0000 0.0000 0.0000

16 0.4401 0.37 % 0.1463 0.0359 C.0061 0.0008 0.0001 0.0000 0.0000 0.0000
17 0.4181 0.3741 0.1575 0.0415 0.0076 0.0010 0.0001 0.0000 0.0000 0.0000
18 0.3972 0.3763 0.1683 0.0473 0.0093 0.0014 0.0002 0.0000 0.0000 0.0000 _ - -. . -.. _

19 0.3774 0.3774 0.1787 0.0533 0.0112 0.0018 0.0002 0.0000 0.0000 0.0000 ,

20 0.3585 0.3774 0.1887 0.05 % 0.0133 0.0022 0.0003 0.0000 0.0000 0.0000

21 0.3406 0.3764 0.1981 0.0660 0.0156 0.0028 0.0004 0.0000 0.0000 0.0000
22 0.3235 0.3746 0.2070 0.0726 0.0182 0.0034 0.0005 0.0001 0.0000 0.0000
23 0.3074 0.3721 0.2154 0.0794 0.0209 0.0042 0.0007 0.0001 0.0000 0.0000
24 0.2920 0.3688 0.2232 0.0862 0.0238 0.00$0 0.0008 0.0001 0.0000 0.0000
25 0.2774 0.3650 0.2305 0.0930 0.0269 0.0060 0.0010 0.0001 0.0000 0.0000

26 0.2635 0.3606 0.2372 0.0999 0.0302 0.0070 0.0013 0.0002 0.0000 0.0000 ~ ~ ~ ^

27 0.2503 0.3558 0.2434 0.1068 0.0337 0.0082 0.0016 0.0002 0.0000 0.0000
28 0.2378 0.3505 0.2490 0.1136 0.0374 0.0094 0.0019 0.0003 0.0000 0.0000 ,

29 0.2259 0.3448 0.2541 0.1204 0.0412 0.0108 0.0023 0.0004 0.0001 0.0000
30 0.2146 0.3389 0.2586 0.1270 0.0451 0.0124 0.0027 0.0005 0.0001 0.0000

32 0.1937 0.3263 0.2662 0.1401 0.0535 0.0158 0.0037 0.0007 0.0001 0.0000
34 0.1748 0.3128 0.2717 0.1525 0.0622 0.01 % 0.0050 0.0011 0.0002 0.0000
36 0.1578 0.2990 0.2753 0.1642 0.0713 0.0240 0.0065 0.0015 0.0003 0.0000
38 0.1424 0.2848 0.2773 0.1751 0.0807 0.0289 0.0084 0.0020 0.0004 0.0001
40 0.1285 0.2706 0.2777 0.1851 0.0901 0.0342 0.0105 0.0027 0.0006 0.0001

. . . _ _
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Tabla T 8: . Selected binomial probabilities (continued)
I

|
6 = number of koms of laterest in a binomial sample of size a wkh ir = 0.10

a 0 1 2 3 4 5 6 7 8 9
'

, 1 0.9000 0.1000 i

'

! 2 0.8100 0.1800 0.0100
3 0.7290 0.2430 0.0270 0.0010

; 4 0.6561 0.2916 0.0486 0.0036 0.0001
I 5 0.5905 0.3281 0.0729 0.0081 0.0005 0.0000

6 0.5314 0.3543 0.0984 0.0146 0.0012 0.0001 0.0000
7 0.4783 0.3720 0.1240 0.0230 0.0026 0.0002 0.0000 0.0000

| 8 0.4305 0.3826 0.1488 0.0331 0.0046 0.0004 0.0000. 0.0000 0.0000
9 0.3874 0.3874 0.1722 0.0446 0.0074 0.0008 0.0001 0.0000 0.0000 0.0000

10 0.3487 0.3874 0.1937. 0.0574 0.0112 0.0015 0.0001 0.0000 0.0000 0.0000
' " ~ ~ ~ ~ ~ ~~ "~

.

~

! 11 0.3138 0.3835 0.2131 0.0710 0.0158 0.0025 0.0003 0.0000 0.0000 0.0000
l 12 0.2824 0.3766 0.2301 0.0852 0.0213 0.0038 0.0005 0.0000 0.0000 0.0000 ,

13 0.2542 0.3672 0.2448 0.0997 0.0277 0.0055 0.0008 0.0001 0.0000 0.0000
14 0.2288 0.3559 0.2570 0.1142 0.0349 0.0078 0.0013 0.0002 0.0000 0.0000 ,

15 0.2059 0.3432 0.2669 0.1285 . 0.0428 0.0105 0.0019 0.0003 0.0000 'O.0000
'

; 16 0.1853 0.3294 0.2745 ' O.1423 0.0514 0.0137. 0.0028 - 0.0004 0.0001 0.0000
17 0.1668 0.3150 0.2800 0.1556 0.0605 0.0175 0.0039 0.0007 0.0001 0.0000
18 0.1501 0.3002 0.2835 0.1680 0.0700 0.0218 0.0052 0.0010 0.0002 0.0000 .. _ . . . . ._.m . - _ . . . _ _ .

19 0.1351 0.2852 0.2852 0.17 % 0.0798 0.0266 0.0069 0.0014 0.0002' O.0000
20 0.1216 0.2702 0.2852 0.1901 0.0898 0.0319 0.0089 0.0020 0.0004 0.0001

, , _, ,

21 0.1094 0.2553 0.2837 0.1996 0.0998 0.0377 0.0112 0.0027 0.0005 0.0001
22 0.0985 0.2407 0.2808 0.2080 0.1098 0.0439 0.0138 0.0035 0.0007 0.0001
23 0.0886 0.2265 0.2768 0.2153 0.11 % 0.0505 0.0168 0.0045 0.0010 0.0002

i 24 0.0798 0.2127 0.2718 0.2215 0.1292 0.0574 0.0202 0.0058 0 0014 0.0003
25 0.0718 0.1994 0.2659 0.2265 0.1384 0.0646 0.0239 0.0072 0.0018 0.0004'

26 0.0646 0.1867 0.2592 0.2304 0.1472 0.0720 0.0280 0.0089 0.0023 0.0005
" ' ' * * * - - ~|27 0.0581 0.1744 0.2520 0.2333 0.1555 0.0795 0.0324 0.0108 0.0030 0.0007

28 . 0.0523 0.1628 0.2442 0.2352 0.1633 0.0871 0.0371 0.0130 0.0038 0.0009
| 29 0.0471 0.1518 0.2361 0.2361 0.1705 0.0947 0.0421 0.0154 0.0047 0.0012

( 30 0.0424 0.1413 0.2277 0.2361 0.1771 0.1023 0.0474 0.0180 . 0.0058 0.0016

32 0.0343 0.1221 0.2103 0.2336 0.1882 0.1171 0.0585 0.0242 0.0084 0.0025
34 0.0278 0.1051 0.1926 0.2283 0.1966 0.1311 0.0704 0.0313 0.0117 0.0038
36 0.0225 0.0901 0.1752 0.2206 0.2023 0.1438 0.0826 0.0393 0.0158 0.0055
38 0.0182 0.0770 0.1584 0.2112 0.2053 0.1551 0.0948 0.0481 0.0207 0.0077
40 0.0148 0.0657 0.1423 0.2003 0.2059 0.1647 0.1068 0.0576 0.0264 0.0104

. , . . . ._m . ... -. _ . ..-
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Table T-8: Selected binomial probebilities (continued) *

|

b = number ofitems of interest in a binomial sample of size a with r = 0.25

n 0 1 2 3 4 5 6 7 8 9
~ ~

1 0.7500 0.2500
| 2 0.5625 0.3750 0.0625

3 0.4219 0.4219 0.1406 0.0156
| 4 0.3164 0.4219 0.2109 0.0469 0.0039
i 5 0.2373 0.3955 0.2637 0.0879 0.0146 0.0010

6 0.1780 0.3560 0.2966 0.1318 0.0330 0.0044 0.0002
7 0.1335 0.3115 0.3115 0.1730 0.0577 0.0115 0.0013 0.0001

| 8 0.1001 0.2670 0.3115 0.2076 0.0865 0.0231 0.0038 0.0004 0.0000
9 0.0751 0.2253 0.3003 0.2336 0.1168 0.0389 0.0087 0.0012 0.0001 0.0000

10 0.0563 0.1877 0.2816 0.2503 0.1460 0.0584 0.0162 0.0031 0.0004 0.0000
~ ~'~ ~~ ~ ~ ~ ~~

.

11 0.0422 0.1549 0.2581 0.2581 0.1721 0.0803 0.0268 0.0064 0.0011 0.0001 ,

12 0.0317 0.1267 0.2323 0.2581 0.1936 0.1032 0.0401 0.0115 0.0024 0.0004
13 0.0238 0.1029 0.2059 0.2517 0.2097 0.1258 0.0559 0.0186 0.0047 0.0009
14 0.0178 0.0832 0.1802 0.2402 0.2202 0.1468 0.0734 0.0280 0.0082 0.0018
15 0.0134 0.0668 0.1559 0.2252 0.2252 0.1651 0.0917 0.0393 0.0131 0.0034

16 0.0100 0.0535 0.1336 0.2079 0.2252 0.1802 0.1101 0.0524 0.0197 0.0058
17 0.0075 0.0426 0.1136 0.1893 0.2209 0.1914 0.1276 0.0668 0.0279 0.0093
18 0.00$6 0.0338 0.0958 0.1704 0.2130 0.1988 0.1436 0.0820 0.0376 0.0139 _ _ . . _ _ _ _ , _ _

19 0.0042 0.0268 0.0803 0.1517 0.2023 0.2023 0.1574 0.0974 0.0487 0.0198
20 0.0032 0.0211 0.0669 0.1339 0.1897 0.2023 0.1686 0.1124 0.0609 0.0271

~

| 21 0.0024 0.0166 0.0555 0.1172 0.1757 0.1992 0.1770 0.1265 0.0738 0.0355

i 22 0.0018 0.0131 0.0458 0.1017 0.1611 0.1933 0.1826 0.1391 0.0869 0.0451
; 23 0.0013 0.0103 0.0276 0.0878 0.1463 0.1853 0.1853 0.1500 0.1000 0.0555

24 0.00i0 0.0080 0.0308 0.0752 0.1316 0.1755 0.1853 0.1588 0.1125 0.0667
25 0.0008 0.0063 0.0251 0.0641 0.1175 0.1645 0.1828 0.1654 0.1241 0.0781

| 26 0.0006 0.0049 0.0204 0.0544 0.1042 0.1528 0.1782 0.1698 0.1344 0.0896 -

27 0.0004 0.0038 0.0165 0.0459 0.0917 0.1406 0.1719 0.1719 0.1432 0.1008
- - -- -

28 0.0003 0.0030 0.0133 0.0385 0.0803 0.1284 0.1641 0.1719 0.1504 0.1114 ~

29 0.0002 0.0023 0.0107 0.0322 0.0698 0.1164 0.1552 0.1699 0.1558 0.1212
30 0.0002 0.0018 0.0086 0.0269 0.0604 0.1047 0.1455 0.1662 0.1593 0.1298

32 0.0001 0.0011 0.0055 0.0185 0.0446 0.0832 0.1249 0.1546 0.1610 0.1431
34 0.0001 0.0006 0.0035 0.0125 0.0324 0.0647 0.1042 0.1390 0.1564 0.1506
36 0.0000 0.0004 0.0022 0.0084 0.0231 0.0493 0.0849 0.1213 0.1466 0.1520
38 0.0000 0.0002 0.0014 0.0056 0.0163 0.0369 0.0677 0.1032 0.1333 0.1481
40 0.0000 0.000) - 0.0009 0.0037 0.0113 0.0272 0.0530 0.0857 0.1179 0.1397

I
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Tabla T-8: Selected binomial probabilities (continued),

l.
,

6 = number of items of interest in a innomial sample of size a with w = 0.50 |

n 0 1 2 3 4 5 6 7 8 9
~ ~ ~ ' ''

1 0.5000 0.5000
2 0.2500 0.5000 0.2500

,

| 3 0.1250 0.3750 0.3750 0.1250
' 4 0.0625 0.2500 0.3750 0.2500 0.0625

5 0.0313 0.1563 0.3125 0.3125 0.1563 0.0313

6 0.0156 0.0938 0.2344 0.3125 0.2344 0.0938 0.0156
|

7 ' O.0078 0.0547 0.1641 0.2734 0.2734 0.1641 0.0547 0.0078
8 0.0039 0.0313 0.1094 ' O.2188 ___0.2734 0.2188 0.1094 0.0313 0.0039
9 0.0020 0.0176 0.0703 0.1641 0.2461 0.2461 0.1641 0.0703 0.0176 0.0020

10 0.0010 0.0098 0.0439 0.1172 0.2051 0.2461 0.2051 0.1172 .0.0439 0.9098
*1

11 0.0005 0.0054 0.0269 0.0806 0.1611 0.2256 0.2256 0.1611 0.08 % 0.0269
12 0.0002 0.0029 0.0161 0.0537 0.1208 0.1934 0.2256 0.1934 0.1208 0.0537
13 0.0001 0.0016 0.0095. 0.0349 0.0873 0.1571 0.2095 0.2095 0.1571 0.0873
14 0.0001 0.0009 0.0056 ' O.0222 0.0611. 0.1222 0.1833 0.2095 0.1833 0.1222
15 0.0000 0.0005 0.0032 0.0139 0.0'a7 0.0916 0.1527 0.1964' O.1964 0.1527

16 0.0000 0.0002 0.0018 . 0.0P".,a 0.0278 0.0667 0.1222 ' O.1746 0.1964 0.1746
17 0.0000 0.0001 0.001o o.0052 0.0182 0.0472 0.0944 0.1484 0.1855 0.1855
18 0.0000 0.0001 40006 0.0031 0.0117 0.0327 0.0708 0.1214 0.1669 0.1855 _ . . _.__ _ _ ,

- 19 0.0000 0.0000 0.0003 0.0018 0.0074 0.0222 0.0518 0.0961 0.1442. 0.1762 , , , ,

20 0.0000 0.0000 0.0002 0.0011 0.0046 0.0148 0.0370 0.0739 0.1201 0.1602

21 - 0.0000 0.0000 0.0001 0.0006 0.0029 0.0097 0.0259 0.0554 0.0970 0.1402
7

22 0.0000 0.0000 0.0001 0.0004 0.0017 0.0063 0.0178 0.0407 0.0762 0.1186
23 0.0000 0.0000 0.0000 0.0002 0.0011 0.0040 0.0120 0.0292 0.0584 0.0974
24 0.0000 0.0000 0.0000 0.0001 0.0006 0.0025 0.0080 0.0206 0.0438 0.0779
25 0.0000 0.0000 0.0000 0.0001 0.0004 0.0016 0.0053 0.0143 0.0322 0.0600

26 0.0000 0.0000 0.0000 0.0000 0.0002 0.0010 0.0034 0.0098 0.0233 0.0466
27 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0022 0.0066 0.0165 0.0349

' ~ ~ ~ ~'~ ~ ~

28 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0014 0.0044 0.0116 0.0257 ,

' 29 0.0000 0.0000 0.0000 0.0000 0.0000 ' O.0002. 0.0009 0.0029 0.0080 0.0187
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0019 0.00$$ 0.0133

32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0008 0.0024 0.0065
34 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0011 0.0031
36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0014
38 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0006
40 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000' O.0001 0.0002,

!
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Table T-9: . Selected Poisson probabilities

A Poisson variable, P, has a density function given by
- . . ;

i

Pr{P = p} = ; A > 0 ; p = 0, 1, 2, . . . .
pl.

1

- Its one parameter is A. ;

| Table T-9 gives values of the Poisson density function forp = 0,1,2, ... and A-- ;

|- = 0.1 to 10 in steps of 0.1 and A = 11 to 20 in steps of 1-for values which are -
~ * - - -- - --r -

1

l greater than zero when rounded to four decimal places.'
4

.

Example 1: The probability that P = 2 when A = 2.3 is found on page ST-37
-

at the intersection of the row labeled 2 and the column labeled A = 2.3. The
entry there is 0.2652.- Formally, this is Pr{P = 2; 2.3} = 0.2652.'

Example 2: 'Ite probability that P s I when A = 2.3 can be found by
summing two values from page ST-37. In terms of Chapter 18's notational
shorthand, Pr{P s l} = Pr{P = 0} + Pr{P = 1} .= 0.1003 + 0.2306

~~ ~~ ~^ ~~~~ - ~ ~~~ ~~~

* ~ ~

l- = 0.3309.

Example 3: The probability that P 2 2 when A = 2.3 can be found by recalling
the identity that Pr(P 2 p; A} = 1 - Pr{P. < p; X}. 'in terms of Chapter 17's -
notational shorthand, Pr{P 2 2} = 1 - Pr{P. < 2}
= 1 - [Pr{P = 0} + Pr{P = 1}] = 1 - [0.1003 + 0.2306)j

= 1 - 0.3309 = 0.6691.'

-, . - - .
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Table T-9: Selected Poisson probabilities *

A |

p 0.1 0.2 0.3 0.4 0.5 . 0.6 0.7 0.8 0,9 1.0
- - -

0 0.9048 0.8187 0.7408 0.6703 0.6065 0.5488 0.4966 0.4493 0.4066 0.3679
'

1 0.0905 0.1637 0.2222 0.2681 0.3033 0.3293 0 3476 0.3595 0.3659 0.3679
2 0.0045' O.0164 0.0333 0.0536 0.0758 0.0988 0.1217 0.1438 0.1647 0.1839
3 0.0002 0.0011 0.0033 0.0072 0.0126 0.0198 0.0284 0.0383 0.0494 0.0613
4 0.0000 0.0001 0.0003 0.0007 0.0016 0.0030 0.0050 0.0077 ' 0.0111 0.0153
5 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004 0.0007 0.0012 0.0020 0.0031
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0003 0.0005
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 O.0000 0.0000 0.0001

'

A

p 1.1 ' 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
'~ '~ ~ ~ ~~ ~~ ' ~ ~ ~

0 0.3329 0.3012 0.2725 0.2466 0.2231 0.2019 0.1827 0.1653 0.14 % 0.1353
.

| .I U.3662 03614 0.3543 0.3452 0.3347 0.3230 0.3106 0.2975 0.2842 0.2707
! ,2 0.2014 0.2169 0.2303 0.2417 0.2510 0.2584 0.2640 0.2678 0.2700 0.2707

6 2 0.0738 0.0867 0.0998 0.1128 0.1255 0.1378 0.14 % 0.1607 0.1710 0.1804
4 0.0203 0.0260 0.0324 0 0395 0.0471 0.0551 0.0636 0.0723 0.0812 0.0902
5 0.0045 0.0062 0.0084 0.0111 0.0141 0.0176 0.0216 . 0.0260 0.0309 0.0361
6 0.0008 0.0012 0.0018 0.0026 0.0035 0.0047 0.0061 0.0078 0.0098 0.0120
7 0.0001 0.0002 0.0003 0.0005 0.0008 0.00!! 0.0015 0.0020 0.0027. 0.0034
8 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.00+3 0.0005 0.0006 0.0009

|- 9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 ._ _ . _ ._. _

! A

p 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

0 0.1225 0.1108 0.1003 0.0907 0.0821 0.0743 0.0672 0.0608 0.0550 0.0498
1 0.2572 0.2438 0.2306 0.2177 0.2052 0.1931 0.1815 0.1703 0.15 % 0.1494
2 0.2700 0.2681 0.2652 0.2613 0.2565 0.2510 0.2450 0.2384 0.2314 0.2240
3 0.1890 0.1966 0.2033 0.2090 0.2138 0.2176 0.2205 0.2225 0.2237 0.2240
4 0.0992 0.1082 0.1169 0.1254 0.1336 0.1414 0.1488 0.1557 0.1622 0.1680
5 0.0417 0.0476 0.0538 0.0602 0.0668 0.0735 0.0804 0.0872 . 0.0940 0.1008
6 0.0146 0.0174 0.0206 0.0241 0.0278 0.0319 0.0362 0.0407 0.0455 0.0504
7 0.0044 0.00$$ 0.0068 0.0083 0.0099. 0.0118 0.0139 0.0163 0.0188 0.0216

~ ~ ~ ' ~

8 0.0011 0.0015 0.0019 0.0025 0.0031 0.0038 0.0047 0.0057 0.0068 0.0081 , i

9 0.0003 0.0004 0.0005 0.0007 0.0009 0.0011 0.0014 0.0018 0.0022 0.0027
10 0.0001 0.0001 0.0001 - 0.0002 0.0002 0.0003 0.0004 0.0005 0.0006 0.0008 >

11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002
12 ' O.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 |

1

I

* Prepared by the authors. ,
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Table T-9: Selected Poisson probabilities (continu0d}

A

p 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0
~ ~

0 0.0450 0.0408 0.0369 0.0334 0.0302 0 0273 0.0247 0.0224 0.0202 0.0183
1 0.1397 0.1304 0.1217 0.1135 0.1057 0.0984 0,0915 0.0850 0.0789 0.0733
3 0.2165 0.2087 0.2008 0.1929 0.1850 0.1771 0.1692 0.1615 0.1539 0.1465
3 0.2237 0.2226 0.2209 0.2186 0.2158 0.2125 0.2087 0.2046 0.2001 0.1954
4 0.1733 0.1781 0.1823 0.1858 0.1888 0.1912 0.1931 0.1944 0.1951 0.1954
5 0.1075 0.1140 0.1203 0.1264 0.1322 0.1377 0.1429 0.1477 0.1522 0.1563
6 0.0555 0.0608 0.0662 0.0716 0.0771 0.0826 0.0881 0.0936 0.0989 0.1N2
7 0.0246 0.0278 0.0312 0.0348 0.0385 0.0425 0.0466 0.0508 0.0551 0.0595
8 0.0095 0.0111 0.0129 0.0148 0.0169 0.0191 0.0215 0.0241 0.0269 0.0298
9 0.0033 0.0040 0.0047 0.0056 0.0066 0.0076' O.0089 0.0102 0.0116 0.0132

10 0.0010 0.0013 0.0016 0.0019 0.0023 0.0028 0.0033 0.0039 0.0045 0.0053
~~ ~ ' ' ' ' ' ' " ' ~

11 0.0003 0.0004 0.0005 0.0006 0.0007 0.0009 0.0011 0.0013 0.0016 0.0019 .

12 0 0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0003 0.0004 0.0005 0.0006
13 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

A

p 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

| 0 0.0166 0.0150 0.0136 0.0123 0.0111 0.0101 0.0001 0.0082 0.0074 0.0067
1 0.0679 0.0630 0.0583 0.0540 0.0500 0.0462 0.0427 0.0395 0.0365 0.0337'

| 2 0.1393 0.1323 0.1254 0.1188 0.1125 0.1063 0.1005 0.0948 0.0894 0.0842 _ _ . . . . _ . . . _

3 0.1904 0.1852 0.1798 0.1743 0.1687 0.1631 0.1574 0.1517 0.1460 0.1404'

4 0.1951 0.1944 0.1933 0.1917 0.1898 0.1875 0.1849 0.1820 0.1789 0.1755
_ _

5 0.1600 0.1633 0.1662 0.1687 0.1708 0.1725 0.1738 0.1747 0.1753 0.1755
6 0.1093 0.1143 0.1191 0.1237 0.1281 0.1323 0.1362 0.1398 0.1432 0.1462
7 0.0640 0.0686 0.0732 0.0778 0.0824 0.0869 0.0914 0.0959 0.1002 0.1044
8 0.0328 0.0360 0.393 0.0428 0.0463 0.0500 0.0537 0.0575 0.0614 0.0653
9 0.0150 0.0168 0.0188 0.0209 0.0232 0.0255 0.0281 0.0307 0.0334 0.0363

10 0.0061 0.0071 0.0081 0.0092 0.0104 0.0118 0.0132 0.0147 0.0164 0.0181
11 0.0023 0.0027 0.0032 0.0037 0.0043 0.0049 0.0056 0.0064 0.0073 0.0082
13 0.0008 0.0009 0.0011 0.0013 0.0016 0.0019 0.0022 0.0026 0.0030 0.0034
13 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.0011 0.0013

~ ~ * " -

14 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0003 0.0004 0.0005
15 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002

._ _

- . .|
|
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Table T-9: S0lected Poisson probabilities (continued)

p 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0
~ ~ ~

0 0.0061 0.0055 0.0050 0.0045 0.0041 0.0037 0.0033 0.0030 0.0027 0.0025
1 0.0311 0.0287 0.0265 0.0244 0.0225 0.0207 0.0191 0.0176 0.0162 0.0149
2 0.0793 0.0746 0.0701 0.0659 0.0618 0.0580 0.0544 0.0509 0.0477 0.0446

| 3 0.1348 0.1293 0.1239 0.1185 0.1133 0.1082 0.1033 0.0985 0.0938 0.0892
4 0.1719 0.1681 0.1641 0.1600 0.1558 0.1515 0.1472 0.1428 0.1383 0.1339
5 0.1753 0.1748 0.1740 0.1728 0.1714 0.1697 0.1678 0.1656 0.1632 0.1606
6 0.1490 0.1515 0.1537 0.1555 0.1571 0.1584 0.1594 0.1601 0.1605 0.1606
7 0.1086 0.1125 0.1163 0.1200 0.1234 0.1267 0.1298 0.1326 0.1353 0.1377
8 0.0692 0.0731 0.0771 0.0810 0.0849 0.0887 0.0925 0.0962 0.0998 0.1033
9 0.0392 0.0423 0.0454 0.0486 0.0519 0.0552 0.0586 0.0620 0.0654 0.0688

10 0.0200 0.0220 0.0241 0.0262 0.0285 0.0309 0.0334 0.0359 0.0386 0.0413
, , _ __ _ _ _ _ , , , _

11 0.0093 0.0104 0 0116 0.0129 0.0143 0.0157 0.0173 0.0190 0.0207 0.0225
-

'

12 0.0039 0.0045 0.0051 0.0058 0.0065 0.0073 0.0082 0.0092 0.0102 0.0113
13 0.00!$ 0.0018 0.0021 0.0024 0.0028 0.0032 0.0036 0.0041 0.0046 0.0052 '

14 0.0006 0.0007 0.0008 0.0009 0.0011 0.0013 0.0015 0.0017 0.0019 0.0022 3

15 0.0002 0.0002 0.0003 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 N
16 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0003 0.0003 \

,

l 17 0.0003 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 \
A

;

p 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 - - .- - - - - - L-- -
t

0 0.0022 0.0020 0.0018 0.0017 0 0015 0.0014 0.0012 0.0011 0.0010 0.0009 , _ ._

1 0.0137 0.0126 0.0116 0.0106 0.0098 0.0090 0.0082 0.0076 0.0070 0.0064
2 0.0417 0.0390 0.0364 0.0340 0.0318 0.02 % 0.0276 0.0258 0.0240 0.0223
3 0.0848 0.08 % 0.0765 0.0726 0.0688 0. % 52 0.0617 0.0584 0.0552 0.0521
4 0.1294 0.1249 0.1205 0.1162 0.1118 0.1076 0.1034 0.0992 0.0952 0.0912
5 0.1579 0.1549 0.1519 0.1487 0.1454 0.1420 0.1385 0.1349 0.1314' O.1277
6 0.1605 0.1601 0.1595 0.1586 0.1575 0.1562 0.1546 0.1529 0.1511 0.1490
7 0.1399 0.1418 0.1435 0.1450 0.1462 0.1472 0.1480 0.1486 0.1489 0.1490
8 0.1066 0.1099 0.1130 0.1160 0.1188 0.1215 0.1240 0.1263 0.1284 0.1304
9 0.0723 0.0757 0.0791 0.0825 0.0858 0.0891 0.0923 0.0954 0.0985 0.1014

10 0.0441 0.0469 0.0498 0.0528 0.0558 0.0588 0.0618 0.0649 0.0679 0.0710
~ ~ ' ~ ~ ~

11 0.0244 0.0265 0.0285 0.0307 0.0330 0.0353 0.0377 0.0401 0.0426 0.0452 _

12 0.0124 0.0137 0.0150 0.0164 0.0179 0.0194 0.0210 0.0227 0.0245 0.0263
13 0.0058 0.0065 0.0073 0.0081 0.0089 0.0099 0.0108 0.0119 0.0130 0.0142
14 0.0023 0.0029 0.0033 0.0037 0.0041 0.0046 0.0052 0.0058 0.0064 0.0071
15 0.0010 0.0012 0.0014 0.0016 0.0018 0.0020 0.0023 0.0026 0.0029 0.00'i3
16 0.0004 0.0005 0.0005 0.0006 0.0007 0.0008 0.0010 0.0011 0.0013 0.0014
17 0.0001 0.0002 0.0002 0.0002 0.0003 0.0003 0.0004 0.0004 0.0005 0 0006
18 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002
19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001

, . . _ . _ .. .
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Table T-9: Selected Poisson probabilities (continued)
J

1 i

A

p 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0
~

f
0- 0.0008 0.0007 0.0007 0.0006 0.0006 0.0005 0.0005 0.0004 0.00N 0.0003 j

1 0.0059 0.0054 0.0049 0.0045 0.0041 0.0038 0.0035 0.0032 0.0029 0.0027 ;

2 'O.0208 0.0194 0.0180 0.0167 0.0156 0.0145 0.0134 0.0125 0.0116 0.0107
3 0.0492 0.0464 .- 0.0438 0.0413 0.0389 0.0366 0.0345 0.0324 0.0305 0.0286 !

4 0.0874 0.0836 0.0799 0.0764 0.0729 0.06 % 0.0663 ~ 0.0632 0.0602 0.0573 ;

5 0.1241 0.1204 0.1167 0.1130 0.1094 0.1057 0.1021 0.0986 0.0951 0.0916 1

6 0.1468 0.1445 0.1420 0.1394 - 0.1367 0.1339 0.1311 0.1282 0.1252 0.1221 , 1

';
7 0.1489 0.1486 0.1481 0.1474 0.1465 0.1454 ' O.1442 0.1428 0.1413 0.13 % ,

8 0.1321 0.1337 0.1351 0.1363 0.1373 0.1381 ' O.1388 . 0.1392 0.1395 0.13 % j

9 0.1042 0.1070 0.1096 0.1121 . 0.1144 0.1167 0.1187 0.1207 0.1224 0.1241 , _ _ _ a. _ _ ._ ,'

'

10 0.0740 0.0770 0.0800 0.0829 0.0858 0.0887 0.0914 0.0941 0.0967 0.0993
-

11 0.0478 0.0504 0.0531 0.0558 0.0585 0.0613 0.0640 0.0667 0.0695 0.0722
12 0.0283 0.0303 0.0323 0.0344 ' O.0366 0.0388 0.0411 0.0434 .0.0457 0.0481

13 0.0154 0.0168 0.0181 0.01 % 0.0211 0.0227 0.0243 0.0260 0.0278 0.02 %
14 0.0078 0.0086 0.0095 0.0104 0.0113 0.0123 0.0134 , 0.0145 0.0157 0.0169

,

15 0.0037. 0.0041 0.0046 0.0051 0.0057 0.0062 0.0069 0.0075 0.0083 0.0090
16 0.0016 0.0019 0.0021 0.0024' O.0026 0.0030 0.0033 0.0037 0.0041 0.0045
17 0.0007 0.0008 0.0009 0.0010 0.0012 0.0013 . 0.0015 0.0017 0.0019 0.0021
18 0.0003 0.0003 0.0004 0.0004 0.0005 0.0006 0.0006 0.0007 0.0008 0.0009 ,

19 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0003 0.0003 0.0003 0.0004
20 0.0000 0.0000 0.0001 0.0001 0 0001 0.0001 0.0001 0.0001 0.0001 0.0002 - -.. - -- - -

21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 ,

,
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Table T-9: Selected Poisson probabilities (continued)

.

A

p . 8.1 8.2 8.3 - 8.4 8.5 8.6 8.7 8.8 8.9 9.0
- -

0 0.0003 0.0003 0.0002 0.0002 0.0002' O.0002 0.0002 0.0002 0.0001 0.0001
1 0.0025 0.0023 0.0021 0.0019 0.0017 0.0016 0.0014 0.0013 0.0012 0.0011

7

2 0.0100 0.0092 0.0086 0.0079 0.0074 0.0068 0.0063 0.0058 0.0054 0.0050
3 0.0269 0.0252 0.0237 0.0222 0.0208 0.0195 0.0183 0.0171 0.0160 0.0150
4 0.0544 0.0517 0.0491 0.0466 0.0443 0.0420 0.0398 0.0377 0.0357 0.0337
5 0.0882 0.0849 0.0816 0.0784 0.0752 0.0722 0.0692 0.0663 0. % 35 0.0607

6 0.1191 ~ 0.1160 0.1128 0.1097 0.1066 0.1034 0.1003 0.0972 0.0941 0.0911
,'7' O.1378 0.1358 0.1338 0.1317 0.1294 0.1271 0.1247 0.1222 - 0.1197 0.1171;

i 8 0.1395 0.1392 . 0.1388 0.1382 0.1375 0.1366 0.1356 0.1344 - 0.1332 0.1318
~ .1269-. 0.1280 0.1290 0.1299 0.1306 0.1311 0.1315 0.1317 0.13189 0.1256 0

10 0.1017 0.1040 0.1063 0.1084 0.1104 0.1123 0.1140 0.1157 0.1172 0.1186
'' ~ ~ ~ ~ ~ ~ ' -

11 0.0749 0.0776 0.0802 0.0828 0.0853 0.0878 0.0902 0.0925 . 0.0948 0.0970 .

12- 0.0505 0.0530 0.0555 . 0.0579 0.0604 0.0629 0.0654 0.0679 . 0.0703 0.0728 ~

13 - 0.0315 0.0334 0.0354 -0.0374 0.0395 0.0416 'O.0438 0.0459 0.0481 0.0504
14 0.01R2 0.01 % 0.0210 0.0225 0.0240 0.0256 0.0272 0.0289 0.03 % 0.0324 ,

15 0.0098 0.0107 0.0116 0,0126 0.0136 0.0147 0.0158 ~ 0.0169 0.0182 0.0194
16 0.0050 0.0055 0.0060 0.0066 0.0072 0.0079 0.0086 . 0.0093 0.0101 0.0109
17 0.0024 0.0026 0.0029 . 0.0033 0.0036 0.0040 0.0044 - 0.0048 0.0053 0.0058
18 0.0011 0.0012 0.0014 0.0015 0.0017 0.0019 0.0021 0.0024 0.0026 0.0029
19 0.0005 0.0005 0.0006 ' O.0007 0.0008 0.0009 0.0010 0.0011 0.0012 0.0014
20 0.0002 0.0002 0.0002 0.0003 0.0003 0.0004 0.0004 0.0005 0.0005 0.0006 , ,,, _ , . __ _

21 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.00rI2 0.0002 0.0003 -

22 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
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Table T-9 Selected Poisson probabilities (continued)

|

I A

|
p 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0

~ ~

0 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000'

'

1 0.0010 0.0009 0.0009 0.0008 0.0007 0.0007 0.0006 0.0005 0.0005 0.0005 \2 0.0046 0.0043 0.0040 0.0037 0.0034 0.0031 0.0029 0.0027 0.0025 0.0023
3 0.0140 0.0131 0.0123 0.0115 0.0107 0.0100 0.0093 0.0087 0.0081 0.0076 N
4 0.0319 0.0302 0.0285 0.0269 0.0254 0.0240 0.0226 0.0213 0.0201 0.0189
5 0.0581 0.0555 0.0530 0.0506 0.0483 0.0460 0.0439 0.0418 0.0398 0.0378

| 6 0.0881 0.0851 0.0822 0.0793 0.0764 0.0736 0.0709 0.0682 0.0656 0.0631
| 7 0.1145 0.1118 0.1091 0.1064 0.1037 0.1010 0.0982 0.0955 0.0928 0.0901

8 0.1302 0.1285 0.1269 0.1251 0.1232 0.1212 0.1191 0.1170 0.1148 0.1126
9 0.1317 0.1315 0.1311 0.1306 0.1300 0.1293 0.1284 0.1274 0.1263 0.1251

10 0.1198 0.1210 0.1219 0.1228 0.1235 0.1241 0.1245 0.1249 0.1250 0.1251
' '- ~ ~ ~ ~ ~~~

11 0.0991 0.1012 0.1031 0.1049 0.1067 0.1083 0.1098 0.1112 0.1125 0.1137 |

12 0.0752 0.0776 ' O.0799 0.0822 0.0844 0.0866 0.0888 0.0908 0.0928 0.0948
13 0.0526 0.0549 0.0572 0.0594 0.0617 0.0640 0.0662 0.0685 0.0707 0.0729 i

14 0.0342 0.0361 0.0380 0.0399 0.M19 0.0439 0.0459 0.0479. 0.0500 0.0521 |

15 0.0208 0.0221 0.0235 0.0250 0.0265 0.0281 0.0297 0.0313 0.0330 0.0347 |

16 0.0118 0.0127 0.0137 0.0147 0.0157 0.0168 0.0180' O.0192 0.0204 0.0217 I
17 0.0063 0.0069 0.0075 0.0081 0.0088 0.0095 0.0103 0.0111 0.0119 0.0128 |
18 0.0032 0.0035 0.0039 0.0042 0.0046 0.0051 0.0055 0.0060 0.0065 0.0071
19 0.0015 0.0017 0.0019 0.0021 0.0023 0.0026 0.0028 0.0031 0.0034 0.0037
20 0.0007 0.0008 0.0009 0.0010. 0.0011 0.0012 0.0014 0.0015 0.0017 0.0019 . . . ._. . , _ . _ _ . . .

21 0.0003 0.0003 0,0004 0.0004 0.0005 0.0006 0.0006 0.0007 0.0008 0.0009
22 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 - 0.0003 0.0003 0.0004 0.0004

-

23 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002
24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001
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Table T-9 Selected Poisson probabilities (continued)

A

p 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0
~ ~

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0000 0.0000 0.0000 0.0000
1 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0010 0.0004 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0037 0.0018 0.0008 0.0004 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000
4 0.0102 0.0053 0.0027 0.0013 0.0006 0.0003 0.0001 0.0001 0.0000 0.0000
5 0.0224 0.0127 0.0070 0.0037 0.0019 0.0010 0.0005 0.0002 0.0001 0.0001
6 0.0411 0.0255 0.0152 0.0087 0.0048 0.0026 0.0014 0.0007 0.0004 0.0002
7 0.0646 0.0437 0.0281 0.0174 0.0104 0.0060 0.0034 0.0019 0.0010 0.00PJ
8 0.0888 0.0655 0.0457 0.0304 0.0194 0.0120 0.0072 0.0042 0.0024 Of '13
9 0.1085 0.0874 0.0661 0.0473 0.0324 0.0213 0.0135 0.0083 0.0050 0.0;29

10 0.1194 0.1048 0.0859 0.0663 0.0486 0.0341 0.0230 0.0150 0.0095 0.0058
_ ,_ , .,_ ,,_ ,__ __ _

11 0.1194 0.1144 0.1015 0.0844 0.0663 0.04 % 0.0355 0.0245 0.0164 0.0106 -

12 0.1094 0.1144 0.1099 0.0984 0.0829 0.0661 0.0504 0.0368 0.0259 0.0176
13 0.0926 0.1056 0.1099 0.1060 0.0956 0.0814 0.0658 0.0509 0.0378 0.0271 .

14 0.0728 0.0905 0.1021 0.1060 0.1024 0.0930 0.0800 0.0655 0.0514 0.0387
15 0.0534 0.0724 0.0885 0.0989 0.1024 0.0992 0.0906 0.0786 0.0650 0.0516
16 0.0367 0.0543 0.0719 0.0866 0.0960 0.0992 0.0963 0.0884 0.0772 0.0646
17 0.0237 0.0383 0.0550 0.0713 0.0847 0.0934 0.0963 0.0936 0.0863 0.0760

*

18 0.0145 0.0255 0.0397 0.0554 0.0706 0.0830 0.0909 0.0936 0.0911 0.0844
19 0.0084 0.0161 0.0272 0.0409 0.0557 0.0699 0.0814 0.0887 0.0911 0.0888
20 0.0046 0.0097 0.0177 0.0286 0.0418 0.0559 0.0692 0.0798 0.0866 0.0888 - - - -- .- - .- - -- -

21 0.0024 0.0055 0.0109 0.0191 0.0299 0.0426 0.0560 0.0684 0.0783 0.0846 _ _ ,,

22 0.0012 0.0030 0.0065 0.0121 0.0204 0.0310 0.0433 0.0560 0.0676 0.0769
23 0.0006 0.0016 0.0037 0.0074 0.0133 0.0216 0.0320 0.0438 0.0559 0.M69,

24 0.0003 0.0008 0.0020 0.0043 0.0083 0.0144 0.0226 0.0328 0.0442 0.0557
25 0.0001 0.0004 0.0010 0.0024 0.0050 0.0092 0.0154 0.0237 0.0336 0.0446
26 0.0000 0.0002 0.0005 0.0013 0.0029 0.0057 0.0101 0.0164 0.0246 0.0343
27 0.0000 0.0001 0.0002 0.0007 0.0016 0.0034 0.0063 0.0109 0.0173 0.0254
28 0.0000 0.0000 0.0001 0.0003 0.0009 0.0019 0.0038 0.0070 0.0117 0.0181
29 0.0000 0.0000 0.0001 0.0002 0.0004 0.0011 0.0023 0.0044 0.0077 0.0125
30 0.0000 0.0000 0.0000 0.0001 0.0002 0.0006 0.0013 0.0026 0.0049 0.0083

'' ~ ~ ~ ~ ' ~ ~ ~

31 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0007 0.0015 0.0030 0.0054
32 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0004 0.0009 0.0018 0.0034
33 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0005 0.0010 0.0020
34 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0006 0.0012
35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0007
36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004
37 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002
38 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
39 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

.
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|

'

| Table T-10: Confidence limits for the Poisson
| parameter A.
:

I Confidence limits for the Poisson parameter Kare derived using the expressions
-

given in Chapter 18. . The details here show the use of Table T-10.

(1) Record P events in a total time interval of length t.
I

| (2) Select a confidence level.

(3) For the observed number of events in the first column of Table T-10, find
the lower and upper values corresponding to the level of significance.

._ . _ _ _ . . . _ _ _ .

(4) Given that X = te, the results of step (3) lead to a 100(1 - a)% confidence

!
' interval on 6. Writing 0 = X/t, et = h /t and Ou " Au '-l ~

t
|

!
t .

| Example 1: A two-sided intervali

|(1) p = 7 events recorded in t = 12 minutes.
'(2) 95% confidence level. _ _ _ , _ _ __

(3) From Table T-10, A = 2.81 and Ay = 14.42.
~t

(4) For t = 12, et = h /t = 2.81/12 = 0.234 andt

| Ou " Au/t = 14.42/12 = 1.202.

| Example 2: An upper one-sided interval-
l

i (1) p = 7 events recorded in t = 12 minutes.
| (2) 95% confidence level.

(3) From Table T-10, Au = 13.15. .._ .,

(4) For t = 12, o " Au/t = 13.15/12 = 1.0%.u
!

Example 3: A lower one-sided interval:

(1) p = 7 events recorded in t = 12 minutes.
(2) 99.9% confidence level.
(3) From Table T-10, A = 1.52.t

. (4) For t = 12, et = A /t = 1.52/12 = 0.127.t
. . _ . . _ . _ . _ .

._ .- - , - . . . , . . . . . . . .
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|

Table T-10: Confidence limits for the Poisson parameter A

1.e 0.998 0.99 0.95 0.90 i

e/2 0.001 0.005 0.025 0.05 - -

P A | Av Ar. | A Ar. | A A. | Avt v v r

0 0 6.9075 0 5.2983 0 3.6889 0 2.9957

1 0.0011 9.2331 0.0051 7.4301 0.0251 5.5721 0.0511 4.7441 i
'

2 0.0454 11.2287 0.1035 9.2738 0.2422 7.2247 0.3554 6.2958

3 0.191 13.062 0.338 10.997 0.619 8.767 0.818 7.754 |

4 0.429 14.794 0.672 12.594 1.090 10.242 1.366 9.154

5 0.739 16.45 1.08 14.15 1.62 11.67 1.97 10.51 |
6 1.11 18.06 1.54 15.66 2.20 13.06 2.61 11.84 !

'

7 1.52 19.63 2.04 17.13 2.81 14.42 3.29 13.15

8 1.97 21.16 2.57 18.58 3,45 15.76 3.98 14.43
~~ ~ ~ ~ ~ ~~

|
9 2.45 22.66 3.13 20.00 4.12 17.08 4.70 15.71 -.

10 2.% 24.13 3.72 21.40 4.80 18.39 5.43 16.%
11 3.49 25.59 4.32 22.78 5.49 19.68 6.I7 18.21 N
12 4.04 27.03 4.94 24.14 6.20 20.% 6.92 19.44

13 4.61 28.45 5.58 25.50 6.92 22.23 7.69 20.67 \

14 5.20 29.85 6.23 26.84 7.65 23.49 8.46 21.89 \
15 5.79 31.24 6.89 28.16 8.40 24.74 9.25 23.10 \16 6.41 32,62 7.57 29.48 9.15 25.98 10.N 24.30

17 7.03 33.99 8.25 30.79 9.90 27.22 10.83 25.50

18 7,66 35.35 8.94 32.09 10.67 28.45 11.63 26.69

19 8.31 36.70 9.64 33.38 11.44 29.67 12.44 27.88
*

20 8.% 38.04 10.35 34.67 12.22 30.89 13.25 29.06
21 9.62 39.37 11.07 35.95 13.00 32.10 14.07 30.24

22 10.29 40.70 11.79 37.22- 13.79 33.31 14.89 31.41

23 10.% 42.02 12.52 38.48 14.58 34.51 15.72 32.59
24 11.65 43.33 13.25 39.74 15.38 35.71 16.55 33.75

25 12.34 44.64 14.00 41.00 16.18 36.90 17.38 34.92 ,

26 13.03 45.94 14.74 42.25 16.98 38.10 18.22 36.08 |

27 13.73 47.23 15.49 43.50 17.79 39.28 19.06 37.23 - . - - -

28 14.44 48.52 16.25 44.74 18.61 40.47 19.90 38.39

29 15.15 49.80 17.00 45.98 19.42 41.65 20.75 39.54 |

30 15.87 51.08 17.77 47.21 20.24 42.83 21.59 40.69 |
35 19.52 57.42 21.64 53.32 24.38 48.68 25.87 46.40

40 23.26 63.66 25.59 59.36 28.58 54.47 30.20 52.07
45 27.08 69.83 29.60 65.34 32.82 60.21 34.56 57.69

50 30.% 75.94 33.66 71.27 37.11 65.92 38.% 63.29

* Prepared by the authors.
. . _ . .
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|-

Table T-11a: Two-sided. tolerance limit factors for ' N

a normal distributioni

Statistical tolerance limits are values derived from sample data in such a manner .
~ ^ ~ ' - ~ ~ ' '

| as to encompass a specified fraction of a population's values with a prescribed

|
level of confidence. Table ll-a provides the factors needed to produce two-sided
intervals fmm samples of size n of normally distributed variables. Factors are .L

given for three fractions-r = 0.90,0.95, and 0.99-and for three levels of '

confidence-y = 0.90,0.95, and 0.99. - For other combinations of n, w, and y,
refer to Odch and owen (1980, pp. 85-113).

| Because statistical tolerance intervals are functions of the sample's mean and
'~ ~ ' ~ - ~ -- - ~~

j standard deviation, the intervals themselves are random variables: they change ,

! their calculated endpoints and their resulting lengths with each new sample.' But,
-

'

by the nature of their construction,'100y% of them will contain 100r% of the

| population from which their samples are drawn.

l.
Example: Consider a sample of size n = . 7 that yields'i = 37.28 and -
s = 3.45. ; To create an interval that contains 99% of the population with 90%

l,

confidence, turn to Table T-lla. - From the three columns headed by y = 0.90, .
find the column headed by.w '= 0.99. At the intersection of that column with the .

- .

row labelled 7 note the value k = 4.508. The interval's endpoints are found by ., , , . _ _.

I,. calculating i i ks' = 37.28 i 4.508(3.45) = 37.28 t' 15.55. Thus, with 90%

f
confidence, the interval (21.73,52.83) contains 99% of the population.

.

4

+ . . .. .- . - - -
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Table T-11a: Two-sided tolerance limit factors for a normal
distribution'

,

y = 0.90 y = 0.95 y = 0.99 -

a r = 0.90 v = 0.95 e = 0.99 r = 0.90 r = 0.95 e = 0.99 r = 0.90 v = 0.95 e = 0.99

2 . 15.512 18.221 23.423 31.092 36.519 46.941 155.563 182.720 234.877
3 5.788 6.823 8<819 8.306 9.789 12.647 18.782 22.131 28.586
4 4.157 4.913 6.372 5.368 6.341 8.221 9.416 11.118 14.405

'5 3.499 4.142 5.387 4.291 5.077 6.598 6.655 7.870 10.220

6 3.141 3.723 4.850 3.733 4.422 5.758 5.383 6.376 8.292

7 2.913 3.456 4.508 3.390 4.020 5.241 4.658 5.520 7.191

8 2.754 3.270 4.271 3.156 3.746 4.889 4.189 4.968- 6.479

9 2.637 3.132 4.094 2.986 3.546 4.633 3.860 4.581 '5.980

j 10 2.546 3.026 3.958 2.856 3.393 4.437 3.617 4.294 5.610
~ ' ' ~ ~ ~ ~ ~ ~~

12 2.414 2.871 3.759 2.670 3.175 4.156 3.279 3.8% 5.096
'

| 14 2.322 2.762 3.620 -2.542 3.024 3.%2 3.054 3.631 4.753 -

| 16 2.254 2.682 3.517 2.449 2.913 3.819 2.89 3.441 4.507

18 2.201 2.620 3.436 2.376 '2.828 3.709 2.771 :3.297 4.321

20 2.158 2.570 3.372 2.319 - 2.760 3.621 2.675 - 3.184 '4.175'

22 2.123 2.528 3.318 2.272 2.705 3.549 2.598 3.092 4.056

24 2.094 2.494 3.274 . 2.232 2.658 3.489 2.534 3.017 3.958

26 2.069 2.464 3.235 2.199 2.619 3.437 2.480 2.953 3.875

28 2.048 2.439 3.202 2.170 . 2.585 3.393 2.434 2.898 3.804 _ .
.. - ;. _. _

30 2.029 2.417 3.173 2.145 2.555 3.355 - 2.394 2.851 3.742
'

<

| 35 1.991 2.37I 3.114 2.094 2.495 3.276 2.314 2.756 3.618
'

43 1.%1 2.336 3.069 2.055 2.448 3.216 2.253 2.684 3.524

45 1.938 2.308 3.032 2.024 2.412 3.168 2.205 2.627 3.450

| 50 1.918 2.285 3.003 1.999 2.382 3.129 2.166 2.580 3.390

| 60 1.888 2.250 2.956 1.960 2.335 3.068 2.106 2.509 - 3.297
|' 70 1.866 2.224 2.922 1.931 2.300 3.023 2.062 2.457 3.228

80 1.849 2.203 2.895 1.908 2.274 2.988 2.028 2.416 3.175

90 1.835 2.186 2.873 1.890 2.252 2.959 2.001 2.384 3.133
~ ~ ' " ~ * ~ ~ ~ ~ ~

100 1.823 2.172 2.855 1.875 2.234 2.936 1.978 2.357 3.098

150 1.786 2.128 2.7% 1.826 2.176 2.859 1.906 2.271 2,985

200 1.764 2.102 2.763 1.798 2.143 2.816 1.866 2.223 2.921 '\
\250 1.750 2.085 2.741 1.780 2.121 2.788 1.839 2.191 2.880

300 1.740 2.073 2.725 1.767 2.106 2.767 1.820 2.169 2.850 \
350 1.732 2.064 2.713 1.757 2.094 2.752 1.806 2.152 . 2.828 %
400 1.726 2.057 2.703 1.749 2.084 2.739 1.794 2.138 2.810 y
500 1.717 2.046 2.689 1.737 2.070 2.721 1.777 2.117 2.783 x

'

1,000 1.695 2.019 2.654 1.709 2.036 2.676 1.736 2.068 . 2.718
= 1.645 .1.960 2.576 1.645 1.960 2.576 1.645 1.960 ' 2.576

.. . .--.

* Adapted frorn Odeh, R. E., and D. B. Owen,1980. Tablesfor Normal Tolerance Limits. Sampling
.- . .. . .

Plans, and Screening, Marcel Dekker, Inc., New York NY, Tab?e 3, pp. 85-113, courtesy of Marcel
Dekker, Inc.
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ST-48. Applying Statistics
,

! - Table T-11 b: One-sided' tolerance limit factors for a
normal distribution.

A -

Statistical tolerance limits are values derived from sample data in such a manner 7
*

as to encompass a specified fraction of a population's values and to do so with a
prescribed level of confidence. Table 11-b provides the factors needed to
produce one-sided lower or upper bounds from samples of size n of normally

' distributed variables. Factors are given for three fractions-r = 0.90,0.95, and '
O.99-and for three levels of confidence-y = 0.90,0.95, and 0.99. . For other
combinations of n, r, and y, refer to Odeh and Owen (1980, pp.17-69).- ,

,

l Because statistical tolerance intervals are functions of the sample's mean and
"-- - - " -4 -

standard deviation, the intervals themselves are random variables: they change
--

their calculated endpoints with each new sample. But, because of the nature of . .,

their construction,100 % of them will contain 100r% of the population from N'7
which their samples are drawn.

.

|| Example 1:' Consider a sample of size n = 10 that yields 2 = 143.2 End - \
s = 13.9.- To create a one-sided upper interval that contains 90% of the %

- headed by y = 0.95, find the column headed by w = 0.90. At the intersection . . \( _ _

population with 95% confidence, turn to Table T-11b From the three columns
.

of that column with the row labelled.10, note the value k = 2.355. The , , . , ,,

interval's upper endpoint is found by' calculating I + ks .= 143.2 + 2.355(13.9)
= 143.2 + 32.7 = 175.9. Thus, with 95% confidence, the interval (-=,175.9)'

contains 90% of the population. -

1
!

Example 2:. Consider a sample of size n = 10 that yields I = 143.2 and
!l' s = 13.9. To create a one-sided lower interval that contains 90% of the
fpopulation with 95% confidence, turn to Table T 11b. From the three columns -

-!
headed by y = 0.95, find the column headed by w = 0.90.- At the intersection
of that column with the row labelled 10, note the value k = 2.355. .nc

1

interval's upper endpoint is found by calculating i - ks = 143.2'- 2.355(13.9)-
= 143.2 - 32.7 = 110.5. Bus, with 95% confidence, the interval (110.5,'-=)
contains 90% of the population.

!

......,.-L.- . _
-

~I'-- .--% , . .. . .

!
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|
Table T-11b: One-sided tolerance limit factors for a normal I

distribution *

y = 0.90 y = 0.95 y = 0.99 - -

a w = 0.90 = 0.95 r = 0.99 r = 0.90 r = 0.95 e = 0.99 r = 0.90 w = 0.95 e = 0.99
.

1

2 10.253 13.090 18.500 20.581 26.260 37.094 103.029 131.426 185.617 |

3 4.258 5.311 7.340 6.155 7.656 10.553 13.995 17.370 23.8 %
4 3.188 3.957 5.438 4.162 5.144 7.042 7.380 9.083 12.387 |

5 2.742 3.400 4.666 3.407 4.203 5.741 5.362 6.578 8.939 |
*

6 2.494 3.092 4.243 3.006 3.708 5.062 4.411 5.406 7.335

7 2.333 2.804 3.972 2.755 3.399 4.642 3.859 4.728 6.4 12 |

8 2.219 2.754 3.783 2.582 3.187 4.354 3.497 4.285 5.812

9 2.133 2.650 3.641 2.454 3.031 4.143 3.240 3.972 5.389

10 2.066 2.568 3.532 2.355 2.911 3.981 3.048 3.738 5.074
~ ~ ~ ~ ~ ~ ~

12 1.966 2.448 3.371 2.210 2.736 3.747 2.777 3.410 4.633

14 1.895 2.363 3.257 2.109 2.614 3.585 2.5% 3.189 4.337 |
,

16 1.842 2.299 3.172 2.033 2.524 3.464 2.4$9 3.028 4.123

18 1.800 2.249 3.105 1.974 2.453 3.370 2.357 2.905 3.960

20 1.765 2.208 3.052 1.926 2.3% 3.295 2.276 2.808 3.832

22 1.737 2.174 3.007 1.886 2.349 3.233 2.209 2.729 3.727 |
24 1.712 2.145 2.%9 1.853 2.309 3.181 2.154 2.662 3.640 |

t

| 26 1.691 2.120 2.937 1.824 2.275 3.136 2.106 2.606 3.566 I

28 1.673 2.099 2.909 1.799 2.246 3.098 2.065 2.558 3.502 _ ______|
I

30 1.657 2.080 2.884 1.777 2.220 3.064 2.030 2.515 3.447

35 1.624 2.041 2.833 1.732 2.167 2.995 1.957 2.430 3.334
'

I

40 1.598 2.010 2.793 1.697 2.125 2.941 1.902 2.364 3.249
45 1.577 1.986 2.761 1.669 2.092 2.898 1.857 2.312 3.180
50 1.559 1.%5 2.735 1.646 2.065 2.862 1.821 2.269 3.125 |

60 1.532 1.933 2.694 1.609 2.022 2.807 1.764 2.202 3.038

70 1.511 1.909 2.662 1.581 1.990 2.765 1.722 2.153 2.974

| 80 1.495 1.890 2.638 1.559 1.964 2.733 1.688 2.114 2.924

90 1.481 1.874 2.618 1.542 1.944 2.706 1.661 2.082 2.883
,

100 1.470 1.861 2.601 1.527 1.927 2.684 1.639 2.056 2.850 --- -- '

150 1.433 1.818 2.546 1.478 1.870 2.611 1.566 1.971 2.740
200 1.411 1.793 2.514 1.450 1.837 2.570 1.524 1.923 2.679 |

250 1.397 1.777 2.493 1.431 1.815 2.542 1.4% 1.891 2.638

300 1.386 1.765 2.477 1.417 1.800 2.522 1.475 1.868 2.608

350 1.378 1.755 2.466 1.406 1.787 2.506 1.461 1.850 2.585 1

400 1.372 1.748 2.456 1.398 1.778 2.494 1.448 1.836 2.567 i

500 1.362 1.736 2.442 1.385 1.763 2.475 1.430 1.814 2.540
1,000 1.338 1.709 2.407 1.354 1.727 2.430 1.385 1.762 2.475

es 1.282 1.645 2.326 1.282 1.645 2.326 1.282 1.645 2.326
.. . .. -

\

* Adapted from Odeh. R. E., and D. B, Owen,1980, Tablesfor Normal Tolcrunct limits, Sampling
~ ~ ' ' ~ ~ - ~ ~ - - ~ ~ ~ ~

l

l

| Plans, and Screening, Marcel Dekker, Inc., New York, NY. Table 1, pp.17 69, courtesy of Marcel j
Dekker, Inc.
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,

Table T-12: Two thousand random digits

The 2,000 digits arranged in 40 rows and 50 columns in Table T-12 are called

| random because they were generated by a computer algorithm that has itself _ _

satisfied a sufficient variety of criteria that it is called a random number
'

generator, in particular, Table T 12 was constructed by using the RND function ,

in Microsoft's Quick Basic, version 4.5, with a random starting point. |

.

| The basic idea behind a table of random digits is that knowledge of the value and
1

| the row-and-column position of any one of the digits provides no information
l about any other single digit in the table (or its position). Thus, the single digits

|
can be combined to form 2 , 3 , ..., and k-digit random numbers.

|
- -- - -- -. - - |

To use Table T-12 requires a process for locating a startmg position in terms of
the row-column coordinates and then for moving around the table until the

*
desired set of random numbers is acquired. Numerous processes are possible,
including using the table as a target and throwing a dart at it or blindly stabbing
at the page with one's forefinger. The accompanying example illustrates these
requirements with a U.S. currency note. |

|

Example: Use Table T-12 to select a random sample of size n = 5 from a set of |

N = 52 distinguishable items.
- -----1

(1) Assign a number to each the 52 distinguishable items, so that each is
uniquely tagged with 01,02 , ..., or 52.

(2) Find the serial number on a U.S. currency note. Say it is L92332902P.
(3) Record the serial number's digits in reverse order: 20923329.
(4) Use the first 2 digits to determine the starting row. Here, it is 20.
(5) Use the next two digits to determine the starting column. Here, it is 92. But

Table T !2 contains only 50 columns. Divide 92 by 50 and use the
_,_ ,,, _ _

remainder, 42, to designate the starting colunm. The digit in the 20th row
and 42nd column is 9.

(6) Assign the digits 1,2,3, and 4 to Left, Right, Up, and Down, respectively.
Divide the 5th digit in the reversed set by 4, and use the remainder to
determine movement left, right, up, or down. That digit is 3, so the
remainder is 3. Movement is Up.3

(7) Beginning with the 9 found in (5), record the digits in pairs: 99, 96, 35, 46,
20. If any of these numbers is larger than 52, divide it by 52 and replace it
by tne remainder; this yields: 47,43,35,46,20.

(8) Thus, a random sample of size n = 5 of the 52 items is provided by taking
~ ~ ~ ~ ~~ ~

the 20th,35th,43rd,46th, and 49th of them.
~~~ ~~ ~ ~~

Certain details in Steps (2H6) can be replaced by any alternative that produces a random row and al

random column as a starting place and a random direction. Indeed. the algonthm here ignores
diagonal movements which could have been included in the set of directions.

|
1

- - I . _ _ __ . __ _ _ _ _ _ _ _ _ , _

, o
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Table T-12:' Two thousand random digits'

15 6 10 11 15 16 20 21 25 26-30 31 35 36 40 41-45 46-50

1 56580 93353 14830 88611 77491 ' 94159 55682 61651 76278 ' 90039
~ ~

2 82694 44512 56868 96549 97676 81145 51299 78324 87458 19158
3 24300 89591 51838 78203 68168 64742 93755 56080 61768 16029
4 69791 64849 47370 41245- 593k6 91731 78722 07645 56793 21081
5 93678 10246 68835 27682 60318 07379 19157 12037 67776 07248

6 07473 88205 27403 13619 74578 16637 14566 40858 58759 24621
7 93255 94101 44641 53302 91743 92258 18179 07676 39974 51887
8 28910 26516 25706 48056 50645 .72581 84289 31997 18444 10330
9 70419 62779 69059 74384 06975 92192 23660 33342 31465 83723

10 95145 92735 91272 57287 53395 79920 93979 99456 85530 79258 , __ . _ _ _ ,

11 27054 06908 12502 66882 86941 37710 17092 53887 80494 09245
-

12 60999 30405 16956 04938 51713 78369 91595 37502 22165 91337
13 50513 14966 28936 ' 51542 27276 40725 81142 10178 36861 32862
14 14918 14251 63794 60699 44952 74709 24733 50845 64032 26115
15 83143 72762 92850 34146 69102 21201 18647 69705 05843 24621

16 44762 01384 61844 28710 93492 04594 99063 72617 - 63939 59104
,

17 90525 13775 15676- 30909 4 % 32 93762 20406 59516- 06116 45980 )
'

18 65288 57500 42177 82255 52023 99471 15693 20134 8 % 39 % 221
19 62309 36394 77163 92427 65271 89899 93288 15417 89998 13986 - - - - - - . - _-. ~

20 90434 39040 29549 48332 12172 32711 98444 67332 49853 76770 , _ _

21 71192 17298 21629 28567 45628 99871 76063 03132 69163 92841
22 39191 99240 40029 32771 39050 95144 07049 36518 08289 92136
23 94055 84500 26272 27985 91858 60511 91802 13735 95525 04157
24 10718 72291- 26193 79285 29209 87 % 2 13485 53738 08642 -22828
25 83134 62665 17823 13358 55677 84591 81232 50910 83995 93294

26 93392 93 % 5 88188 82628 68956 39247 89597 40521 .17850 20716
27 33193 11074 13299 70680 95082 67903 50078 55113 00057 '29045

~~** ~ ~ * *

28 65846 08032 65737 45903 25773 17815 58805 48617 93974 06308
29 41773 34637 59350 31782 57933 15605 13648 93406 89275 97494
30 43908 04150 37788 53587 05483 53569 % 579 52470 42818 62589

31 72367 74503 61417 67453 83903 43326 52742 77183 66826 28232
32 93703 43522 26709 43846 47587 45688 67433 15227 37428 37437
33 23622 70833 97297 07793 97656 24860 74883 77142 31451 12219
34 06461 72197 26511 74964 54490 67611 54022 16892 80799 65864
35 50175 29889 18630 20552 60114 20652 22881 79254 88917 85399

36 10942 67178 93214 09890 $1054 29666 10428 96478 88082 41255 '

' ' ' ~~ ~ ' " ' ' ~ ~

| 37 91159 14499 26915 90942 69215 23544 57355 11040 83574 10788
| 38 88368 26257 43 % 9 58835 92663 54980 50501 32510 '94197 51546

- - ~~- - - - -

39 09587 55021 86738 $1441 25297 44086 80012 07801 11944 44102
40 46036 67486 53662 41233 76645 30871 17030 86671 49669 01711

* Prepared by the authors.
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Index' )-
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a 3-19, 4-31, 7-9, 8-8, 9-6,10-3, A/Q 21-6 .
,

-

11-12, 12-26, 13-3, 14-2, 16-12, acceptance sampling 17-8, 19-1,
17-18, 18 10, 20-9 20-1, 21-2 -

p ~3-20, 8-8, 9-7,13-5,14-3 accuracy 6-1, 7-23
e 6-5 accurate 6-6, 8-5

p 5 7, 7-4, 8-3, 9-4,12-15,14-6, action limits 20-4
..

|17-19 - adjusted sum of squares '5-23
'

20-2 ' alarm limits 20-5
Fra$et18, 17-4, 18-9, 20-11, 21-8 alpha; see a ,x

|' r,p,j 21-4 alternative hypothesis 9-1,10-3,
~~ ~ ~

s' ,, 20-11 11 3, 12-17, 14-26\~

p 74-48 among groups sum of squares 12-8

|
. a 310, 7-4, 8-5, 9-6,10-2,12-12, analysis 1-11, 2 14, 3-2, 4-1

~

? 14-17, 17-19, 20-2 analysis of variance 12-1, 13 2,

; . r 6-5,12-35 14-28 ,

| x 4-11 Anderson-Darling statistic 7-8 '

x2 4-12,10-4 ANOVA 12-1,14-30 --. -- - -. ., ;

' 25th percentile 2-13, 5-13 ANOVA table 12-18, 14 30
^

2x2 contingency tables 41 assurance-to-quality criterion 21-5
~ i

.

15th percentile 2-13, 5-13 attributes 1-14, 16-1, 17-28, 19-1,'

95/95 acceptance criterion 20-1 20-11, 21-3

.. . .. - .

_ _ _ ,_ _ .

i

For the most part, page references to indexed entries point to the first occurences in any chapters in!- 3

which there is a substantive discussion of the entries.
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| b
l-2 Applying Statistics

B 13-5,14 -6,18-4 confidence interval for a binomial
balanced design 12-11 parameter 17-19
bar chart 2-2 confidence interval for a mean 8-1
Bartlett's test for homogeneity of confidence interval for a Poisson

_ _

variances 10-7 parameter 18-9
Behrens. Fisher problem 11-21 confidence interval for a
bell-shape 7-5 variance 8-1
beta; see # c;nnfidence level 8-6 l

bias 6-1, 9-4 onfidence limits 8-7, 14-52,
binary 16-2, 17-2, 19-3 17-20, 18-12

binomial approximation 17-27 contingency tables 4-1
*

binomial coefficient 16-1 continuous variable 1-10
binomial density function 17-6 control charts 20-1 . . . ._ _ _ _ ,_

binomial distribution 16-4, 17-1, control charts for dispersion 20-8
~

18-1, 21-8 control charts for proportions 20-13
'

binomial experiments 17-1, 18-11 control charts for means 20-1
box plot 2-1, 5-12 control limits 20-2

correction term 5-23
categorical date analysis 4-39 correction term 12-11
categorical scale 1-12 correlation 14-1
cell 4-8 correlation coefficient 14-42
cell frequencies 4-10 countable 1-10, 1-11,3-8, 15-3, - _ - _. u
central tendency 5-3 jg.y
Central Limit Theorem 7-1, 11-18 critical point 4-12, 7-12, 9-1
characteristic 16-2, 21-4

critical region 9-1, 11-12, 16-11
chi 4-12

critical value 4-12, 9-1, 10-4,
chi-squared 4-1, 8-19, 7-8, 10-1,

11-12, 12-25, 1 4 29, 16-1218-10, 20-9+

class interval 2-10, 7-2 CT 12-37; see also correction term

class marker 2-10 cumulative probability 7-24,

classical definition of 15-10, 16-11
_ _ _ , .

probability 15-7 curve-fitting 13-2
^coded variables 5-25 ,

coefficient of contingency 4-10 data 1-17 '

* '
coefficient c. determination 14-47 data layout 12-3 N
coefficient of variation 5-2 data reduction 5-3 's
coin tossing 3-15, 7-13, 17-5 database 1-9
complementary event 15-8 dataset 1-9
conditional probability 4-6,15-1 datum 1-7
confidence coefficient 8-6 degrees of belief 3-14, 15-4 -- - - * .

- . .
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bI

Ind:x l-3

degrees of freedom 4-15, 4-22, factorial function 16-5
5-21, 8-13, 9-27, 10-4, 11-7, factorial operator 16-5
12-12, 12-19, 12-21, 12-22, field 1-9
12-23, 12-24, 12-25, 12-26, file 1-9 .. -

12-27, 14-27, 14-28, 14-?9, finite 1-16, 3-8, 5-6, 7-17, 8-6,
14-32, 14-33, 14-37, 14-48, 16-2, 21-6
14-49, 18-10, 20-9 finite population 5-6,16-4

density function 5-7, 7-1, 17-6, Fisher's Z-transformation 14-49
18-5 Fisher exact probability test 4-29

dependent variable 13-2, 14-2 F, 10-7,12-16
*

descriptive statistics 5-1 four requirements for a binomial |

determination of sample size 8-20 experiment 17-2 1

df; see degrees of freedom I_ _ _ _ . - . .

dichotomous 16-2, 17-4 geometric mean 5-6
'

discrete variable 1 11, 15-3 goodness-of-fit 7-8
distribution function 7-1, 7-4, 16-1, Grand Total 4-4

18-1
,

Duncan's multiple-range test 12-29 R 16-3,17-27 ;

lin 9-4 j
e 7-5 H 9-5 '

g

E 6-5,12-27,13-9,14-3, harmonic mean 5-6, 12-30g

Empirical Rule 5 27, 7-22 heteroscedasticity 10-8 - - - -----

epsilon 6-5 hinges 2-17
equally likely 3-16, 7-7, 15-6, histogram 2-9
error 3-17, 6-1, 7-2, 8-9, 9-6, homoscedasticity 10-7

11-10, 12-9, 13-2, 14-3, 16-12, Huf('s criteria 1-6
17-19, 18-5, 21-4 hypergeometric distribution 16-1,

estimate 3-3, 5-32, 7-23, 8-1, 11-6, 17-27, 21-8 y
'14-1, 16-15, 17-1, 18-2, 21-2 hypergeometric experiments 16-1,

estimation 7-23, 8-1, 9-32, 12-36, 17-2 N
13-10, 14-6, 14-7, 14-24, 14-35, hypothesis 1-19, 4-37, 7-8, 9-2,

~ ~ ''~

17-17 10-2, 11-1, 12-8, 14-2, 15-2,
estimatot '1, 8-1, 14-6, 17-14 16-3, 17-17, 18-10, 20-12, 21-3
event 3-4, 16-2, 17-20, 18-2, hypothesis-testing 7-8, 9-2, 10-2,

21-12 11-22, 14-8, 16-10, 20-12, 21-7 %

expected frequency 4-9
experiment 3-6, 15-1, 17-2, 18-1, inaccurate 6-6

21-8 incomplete experiment 12-13
independent 1-12, 4-6, 11-4, 12-8,

F distribution 10-6, 14-29, 17-22 13-2, 14-2, 15-2, 17-5, 21-8 ~ ^ ~

F statistic 10-10, 12-38 independent events 15-1, 15-14,
*

Ftest 14-32 15-19, 21-9, 21-20

._ ! - .. _ _ _ _ _ _ .- ,
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1-4 ^ Applying Statis lcso

:
>

independent variable 13-2, 14-2 minimum variance unbiased 8-4
inference 3-12, 4-2, 8-2, 9-4, 9-34, missing observations 12-13

-

*

12-13, 18-10 mode 5-4
. information '17 model 12-2,13-2,14-2

- '-

|' .. interaction' '12-35 Monte Carlo Method 7-23 e

*

intercept 1-16, 13-2, 14-2 msg 12-19 ,

1' interval estimator 8-6 MSw 1219
14-28 {

MSpa, 14-28|
interval scale 1 13,'5-13, 8-20,

'

MS ,!. 15-3 pa

l intuition 1-2, 9-27, 12-13, 14-44, multi-modal 5-4 -
'

| 21-13 multinomial distribution .16-3.
investigation 17 multiple-range tests 12-27: .

multiple linear regression 13-8 ,'
3 14-50 multiple sampling 21-20 -

- joint probability 4-5,15-8 multivariate 15-3 ,

'

s "

mutually exclusive 3-15,15-2 n
\ |' knowledge 17

I
noise 5-12,12-7 's

LCL 20-3 nominal scale 1-12, 2-2 -N,

least absolute values 14-17 non-critical region 9-6 - ;
,

'

l least squares 14-13 - non-linear models 13-9 1

| level of significance . 3-17, 9-6 non normal distribution 7-16 .. .. _
. _. ,. i _ L_, !

Lilliefors test for normality '7-8 . normal approximation to the ._ _l

.. linear transformation ' 5-25 . binomial 17-17
linear regression 13 2, 14-2 normal density function 7-5
tot 15-9,19-5, 20-11, 21-2 - : normal distribution function 7-5 -

-

- lower control limit. 20-3 null hypothesis 9-4

marginal probability '4-5,15-8 observation 1-7 ;

maximum 2-13 ogive 7-5
'

,

McNemar's test statistic 4-29 one-way ANOVA 12-15 -- - - - -

mean 5-4 one-way classification 12-9- .

measurement 1-7
.

ordered pairs 3-9, 13 2, 14-2.. j

measurement system 6-4 - ordinal scale 112 i
.

measures of central value 5-3 05DAR 1-18,4-37 :

measures of variability 5-12 outcome 3-7,15-1, 16-2, 172
median 2-13,5-4 outlying observations 12-14

metric scale 1-13
metrology 6-4 P 18-3

.

. midrange 5-5 paired differences 11-12
'

- - - - - - -- -

| minimum 2-13. paired observations 11-10
- - - - - - -

7

minimum variance 8-4 parameter 1-15, 4-22

'
,

i

.

|

.
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'

Ind:x l-S

percentile 2-13, 5-12 relative standard deviation 5-27
pessimist's credo 3-14 residuals 14-21
pie chart 2-2 Residual Sum of squares 14-27
point estimator 8-4 rho 14-44 _ _

Poisson distribution 18-1 mn theory 20-5
Toolnng 11-7, 12-27 rxc contingency tables 4-22
population 1-15,3-2
power curve 9-21 sample 1-15, 3-1
power of a test 9-7 sample linear correlation coefficient

*

Pr{O} 3-4 14-42

precise 6-6 sample mean 5-8
precision 6-6 sample size 4-28, 8-20
predicted value 8-9, 14-21 sample space 3-7,15-3 ,_ _ , _ _ _ _ , _ _ ,

prediction intervals 8-8, 14-41 sampling by attributes 19-4, 21-3
prediction with simple linear sampling by variables 19-4, 21-3 .

regression 14-38 sampling plan 16-4, 21-3
probability 3-4, 5 9, 15-1, 16-2, sampling with replacement 16-4,

17-1, 18-1 17-7
probability of a Type 11 error 9-7, sampling without replacement 16-3 )

21-4 scales of measurement 1-12
probability of a Type I errot 9-7 scatter diagram 14-4
process control 19-1, 21-3 Shewhart charts 20-4 -- ,- - --.--- _. I

pseudo standard deviation 12-30 shipper-receiver differences 9-30 _ _

-

signal 12-7
qualitative 1-7, 4-8, 6-4 significance 3-12
quality assurance 19-1, 20-1, 21-9 slope 13-2,14-2 i

quality control 19-1, 20-1, 21-19 some sample-size considerations

quantiles 5-14 4-28 i

quantitative 1-7, 5-3, 6-4 sources of variation 12-19, 14-22 |

SSa 12-8
~ ^ ~ ^ ~

random variables 11-5 SS 12-8,14-47 -~-

y

random digits 7-20 SSw 12-9
random sample 1-16 standard deviation 5-12, 5-19

random variable 3-8 standard deviation of a difference
range 5-12 11-5

range of a difference 11-5 standard error 7-18
rank 7-10,12-31 standardized normal distribution 7-1
ratio scale 1-13 standardized statistic 9-15, 11-5,

record 1-9 14-37, 16-13

regressian 13-1, 14-1 standardized variable 7-19, 8-10 ---- - - -

regression analysis table 14-27 statistic 1-15
~ -- - - -

Regression Sum of squares 14-27 statistic (a summanzer of data) 1-2

I
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l-6 Applying Statistics<

,

statistical decision-making 3-1 . truth table 9-8.
statistical estimation 8-1 two-sided alternative 9-29, 11-3,

|. - - . - . _ . . _ _ _ _ . statistical graphics 2-1 12-36, 16-11:

statistical hypothesis 9-1 two-sided confidence~ ~~ ~ ^ ''' ~ ~~
3

statistical inference 3-12 intervals 14-51 ' ,

statistical intervals 8-8 two-way classification 12-9 -
.

statistical intuition.1-2 Type I error 3-18, 9-6
| I

statistical significance 3-12 Type II error 3-18, 9-7
statistics (the discipline) 1-1
statistics 1-15 UCL ' 20-3

straight line 13-4, 14-3 unbiased 5-21,6-6

Student's T 8-13 unbiased estimators' 8-1
~ ~ ~ ' ~~ '' ' '

sum of squared deviations 5-23, uncertainty 6-1

12-12 ' univariate 12-8, 15-3

sum of squares 5-23, 11-8, 12-8, upper controllimit 20-3
14-14

<

'

value 1-7
. T statistic 9-28, 11-11, 12-38, variable 1-7

14-31 variance 5-12

, - test statistic 9-1 variance ratio 146

- - .-
testing a single variance 10-1 .

testing data for normality 7-8, W test 7-9 ;

12-16 warning limits 20-5 j

tolerance intervals 8-6 weighted mean 5-8 j

tolerance limits for a normal Welch's approximation 11-21 |

distribution 8-25 whiskers 2-17 i

total deviation 14-23 Winsorized mean 5-5
' total sum of squares 12-8, 14-27 within-groups sum of squares 11-8,

'

;

I^ trend 14-26 12-9
- - _ . - . . - ._ . - trimmed mean 5-5

truth 6-5 Z statistic 9-16
0 i
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Notational conventions (continued from front flyleaf 1
-

1

2

Observed
.

Quantue..
4,

or
y -- -. .- - . , . _ _ . . _ . _ . _.

Osqs1 calculated ).- -- - - - - - . - I)istribution Variable symbol .
value !

: .o
'

4

F
" Parameters: .F f,(dfg, d/2) / |
-

.
dfi, df = 1, 2, .. !Domain:df2, df2 = 1, 2, ...

;
~ Mean: O s F s' +oo

;

4/2 (d/2 - 2), d/2 > 2/
- . - - . . . . Variance:

f2(d/2 (dfl +d/2-2)-

,
3

- d[1(d/2~2 (d[2"*4) :1
*

d/2 > 4 .
';

' Q. Chapters 10. 12. 14;
|. Tabic T 4 ]

!.
t

. .
Hypergeometric'

,-_-.__._ _ _ _
Parameters: 'H not A ;

used- 1
I N, N = 1, 2, ... (ihe

-|number of elements in the Domain:

|
Population) H = 0,1, 2, |

i

M, M = 0,1, 2, ,,,,y
!

! ..., s N (the number of . |

| elements of interest in the
Population)'

|
n, n = 1, 2, ..., 5 N
(the sample size)

._ -_ ._ -_ . . _ g,,, yyjg
;-

~ Variance:
:

InM)(N - M)(N - n} i.

i y y y-t

y. Chapter 16'
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