February 1982

"
- ”
/'\

%

USER'S GUIDE TO HOMOG: A COMPUTER
PROGRAM FOR INVESTIGATING HOMOGENEITY

OF POISSON DATA SOURCES

”

N

Fy L > /) o 4 / i .
’ /) / — ‘ # i ' 2. —-l"
‘/,’ v ’(7 A N 2hartt ¢ 4 ‘,-,-4 7 _ICM /,Zw

Corwin L. Atwood

U S. Department of Energy

Idaho Operations Office » Idaho National Engineering Laboratory

This is an informal report intended for use as a preliminary or working document

Prepared for the
U.S. Nuclear Regulatory Commission
Under DOE Contract No. DE-AC07-76ID01570 [‘

FIN No. A6283 oQ EG&G!daho

8203080007 820228
PDR RES :
8203080007 PDR



IS EGEG ... ..

FORM EGAG W
Fey 1180

INTERIM REPORT

Accession No
Report No _EGG-EA-5726

Contract Program or Project Title:
Common Cause Data Analysis

Subject of this Document:

User's Guide to HOMOG: A Computer Program for Investigating Homogeneity of
Poisson Data Sources

Type of Document:
Informal Report

Author(s):
Corwin L. Atwood

Date of Document:
February 1982

Responsible NRC/DOE Individual and NRC/DOE Office or Division:
Leslie E. Lancaster, Division of Risk Analysis

This document was prepared primarily for preliminary or internal use. It has not received
full review and approval. Since there may be substantive changes, this document should
not be considered final.

EGA&G ldaho. Inc
Idaho Falls, Idaho 83415

Prepared ior the
U.S. Nuclear Regulatory Commission
Washington, D.C.
Under DOE Contract No. gs&concuom 570
NRC FIN No. __A

INTERIM REPORT



ABSTRACT

Suppose there are various data sources, each corresponding to a count
(e.q., number of observed failures) having a Poisson(aiti) distribu-
tion. Here t, is known and A is unknown. HOMOG is a computer pro-
gram for investigating the "“homogeneity hypothesis" that all the xi's
are equal. The program prints and plots both a point estimate and a confi-
dence interval for each Aje It identifies any outlying data sources,
and performs two statistical tests of the homogeneity hypothesis.
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SUMMARY

Suppose there are various data sources, each corresponding to a count.
For example, the data sources may be plants, and the count for a plant may
be the number of recorded failures of a type of pump in a certain time
period. It is assumed that for the ith data source, the count is a
Poisson(xiti) random variable, with t; known and A, unkrown.
HUMOG is a computer program for investigating the “"homogeneity hypothesis"
that all the Ai‘s are equal.

what the program does is explained by showing its output in an example
problem. First HOMOG prints and plots both a point estimate and a confi-
dence interval for each A;» and for the overall average of the xi's.
Then it identifies any outlying xi's, i.e., those that appear to be so
far from the overall average that it is difficult to attribute the differ-
ence merely to randomness in the data. Finally it performs twc kinds of
statistical tests of the nomogeneity hypothesis. The first is based on the
most extreme outlier, while the second is the Pearson chi-squared test
(without the usual requirement of a large sampie size.)

There are two types of input to the program. One consists of data,
such as failure counts and exposure times. The other consists of parameter
values, which control the form of the plots, the accuracy of any approxima-
tions, etc. Both types are explained in detail in this report.

Finally, this user's guide contains two example Jobs showing how to
run HUMOG on the INEL CDC computer. Some details of the programming are

ment ioned.

Reference 1, giving the mathematical basis for HOMOG, is reprinted as
an appendix.
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USER'S GUIDE TOU HUMOG: A COMPUTER PROGRAM FOR INVESTIGATING
HOMOGENELITY OF POISSON DATA SOURCES

INTRODUCTION
Overview

Suppose that there are different sources of failure counts. For
example, there might be five plants reporting failures of a certain kind of
pump. HUMUG is a computer program for studying whether the plants all have
the same failure rate, i.e., whether there is plant-to-plant homogeneity.
The program: (a) calculates and plots a point estimate and a confidence
interval for the failure rate of each plant, and for the overall average
failure rate; (b) identifies any outlying plants, i.e. plants whose esti-
mated failure rates are so different from the overall rate that it is
difficult to attribute the difference merely to randomness of the data;

(c) performs statistical tests of the hypothesis that all the plants have
the same failure rate.

Of course, the data sources do not have to be plants. They can be
cystems, vendors, manufacturers, individual components, time periods, or
any other sources of data. And "failure" can be defined in any way desired,
€.9. as failure to start, or violation of a technical specification. The
mathematics of HOMOG uses only the numbers, not their interpretation. What
we, for convenience, call failures could really even be successes.

statistical Assumption

There is one statistical assumption on which HOMOG rests: the failure
counts for the data sources are independent Poisson random variables.
lndegendent means that what happens at one data source does not influence



what happens at another source. Poisson means that, in a time interval of
length t, the probability of exactly n failures is e ' (xt)"/(n2),
for some parameter A, called the failure rate.?

a. The following conditions give rise to a Poisson random variable. In
any small time inierval of length at, the probability of two or more
failures is negligible, and the probability of a single failure is approxi-
mately asdt. The failure rate, A, is required to be constant. It

does not depend on which time period is considered, or on the number of
failures that may have occurred in any other time period. It can also be
shown that the failure count has a Poisson(at) distribution if and only

1t the time from one failure to the next has an exponential distribution
with mean 1/A.



PRUGRAM QUTPUT

Example

This section explains what HOMOG does, using the following example for
illustration. There are five plants, with the exposure times and failure

counts shown here.

Plant Exposure Failures
Plant A 3000 hr 6
Plant B 1000 hr 2
Pilant C 7000 hr 1
¥lant D 2000 hr 0
Plant E 2000 hr 3

The failures could be those of individual pumps. The exposure time
for Plant A then could arise because that plant has three pumps, which each
operated for 100U hours. The same analysis would result if the failures
are of a system, which has run for the exposure time shown.

The output from a HOMOG analysis of this data is shown in Figures 1la,
b, and 2.

In the discussion below, the data sources will be called cells when a
general situation is being considered. They will be called plants when the
particular example is being discussed.

Analysis of Individual Cells

Let A be the unknown failure rate corresponding to the ith cell.
Lf n, failures are observed in time ti for this cell, then A; can
be estimated by "i/ti' This is the maximum Tikelihood estimate, or
MLE. For each cell, HOMOG calculates this estimate of A and also a
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confidence interval for Aie It prints the point estimates and confi-

dence intervals, and plcts them so that they can be visually compared to

each other, The homogeneity hypothesis is the hypothesis that all the

x,'s are equal to some common value A. If the homogeneity hypothesis .
15 true, then A can be estimated by z"i/iti’ and a confidence

interval for A can be found. If the homogeneity hypothesis is false,

then Z"ilzti estimates the average of the A,'s (a weighted
average if the ti's are unequal). This average may or may not be of

interest to the user. The corresponding confidence interval is for the
average of the Ai's, and does not necessarily indicate the value of any
particular Dy HOMUG prints and plots this point estimate and confi-
dence interval, based on all the data combined, and lets the user do the
interpretation.

Figure la shows the estimates and 90% confidence intervals for the
failure rates of Plant A through Plant E, on the far right of the figure.
Figure 2 is a plot of these estimates and confidence intervals. Also shown
in both figures are an estimate and an interval labeled "Total", based on
the total exposure time and total number of failures for all the plants.
The interval is short, because it is based on all the data. It corresponds
to the weighted average of the xi‘s, but not to any individual ¥
unless the homogeneity hypothesis is true.

In the plot of Figure 2, the dashed vertical line aoes through the
estimated average rate, and is printed to help in visual comparisons of the
estimated plant rates with the estimated overall rate.

Note that Plants A and B have the same estimated failure rate, 2/1000.
But because the estimate for Plant A is based on more hours (3000 instead
of 1000), the confidence interval for Plant A is the shorter of the two.

Note also that the intervals are not symmetrical about the MLE's.
This is because the Poisson distribution is slewed.






Plant A, out of 12 in all. The two-sided significance level is defined

precisely in Reference 1. Koughly, it is the probability that, out of some
hypothetical 12 failures, the number at Plant A would be as unlikely, on
either the high side or the low side, as the 6 that actually occurred.

The two-sided ievel is always at least as large as the smaller of the
right level and the left level. Which significance level to use depends on
whether we are concerned about departures from homogeneity on the high side,
the low side, or both.

A small significance level means that the observed data are unlikely
under the homogeneity hypothesis, so there is evidence for rejecting the
homogeneity hypethesis. The strength of the evidence is measured by the
smallness of the significance level.

There might be some cell of special interest. For example, Plant 8
may be paying for the study, or there may be reasons, such as design or
past history, for suspecting that Plant B is unusual. In that case, a
significance level corresponding to Plant B would be of interest.

More commonly, however, all the cells are of equal interest, and an
overall test of homoaeneity is desired. In that case, we cannot simply
100k over the list of significance levels for the cells and use the smallest
one to test homogeneity. This is bccause, if there are many cells, then
even if all the xi's are equal, there will be enough random scatter in
the data so that some of the many cells will have smalj significance lcvels.
It is not easy to calculate the exact significance level for the entire dat.
set. However, a simple upper bound is the smallest significance level for
3 cell multiplied by the number of cells. For a proof, see Reference 1.
Unless there are very few cells, this upper bound is usually quite close to
the exact overall significance level.

In Figure la, if a significance level multiplied by the number of
plants is small, then that significance level is marked by one or more
stars. The number of stars is explained in Figure la. For each plant,



Figure 2 also shows the two-sided significance level multiplied by the
number of plants. If this number happens to be greater than 1, it is
printed as 1.000. Notice that small significance levels correspond to
confidence intervals that are not close to the estinated average A.

Figure 1b gives the upper bounds on the significance levels for the
data set as a whole. For example, the smallest two-sided significance leve!
tor any cell is 0.0077. The corresponding significance level for the data
set as a whole is 5 x G.0077 = 0.03830. (The discrepancy in the arithmetic
1S due to round-otf error.) This is small enough to get two stars. The
number of stars assigned is explained at the bottom of Figure 1b. Interpret
this number by thinking, “There is only a chance of 0.038 of getting an
outlier as extreme as what we have. Therefore our data give fairly strong
evidence for rejecting thE homogeneity hypothesis."

Figure 2 shows this upper bound on the overall two-sided significance
level next to the interval labeled "Total".

The Pearson Chi-Squared Test

A second test of homogeneity may be performed, based on the Pearson
chi-squared statistic, defined as

B
10,-F ) /K.

Here Ui is the observed number of failures for the ith cell, and Ei s

the expected number. If the observed counts differ greatly from the
expected counts, the chi-squared statistic will be large. The significance
level for this test is the probability that, in some hypothetical data set
with the same total number of failures as actually occurred, the chi-squared
statistic would be greater than or equal to the value that was calculated
from the actual data. Just as for the other tests, a :mall significance
level means that the data give evidence for rejecting the homogeneity
hypothesis.



HOMOG calculates this significance level, either exactly or approxi-
mately. If an approximation is given, the upper and lower bounds for the
significance level are also given. The algorithm for calculazting the sig-
nificance level was developed especially for HOMOG, and is described in
Reference 1. This algorithm does not ~equire 2 large sample size.

Figure 1b shows the significance level of the chi-squared test to be
approvimately 0.01382, small enough to be marked by three stars. the exact
significance level is between 0.01244 and 0.01388. These bounds are based
on a generalization of the Chebyshev inequality, and so are valid but usu-
ally very conservative. In this example they are close enough to each
other so that greater precision is pointless. HOMOG never puts stars by
the lower Timit, but it does mark the upper limit with stars if the 1mit
is small enough, as it is in this example. The number of stars assigned is
explaired in Figure 1b.

In this example, the two-sided outlier test and the chi-squared test
agree only to some extent. The outlier test says that, under the homoge-
neity hypothesis, the probability of observing data as extreme as ours is
rather small, about four out of a hundred. The chi-squared test says that
the probability is three times smaller, only about one in a hundred. The
disagreement is because the tests use different definitions of extreme data.
The outlier test rejects homogeneity if a single cell count differs greatly
from the expected count. The chi-sarared test rejects homogeneity if a
weighted sum of the squared differences is large.
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PROGRAM INPUT

There are two types of input. One consists of the data, such as
failure counts and exposure times. The other consists of values of para-
meters, which control the form of the plots, the accuracy of any approxima-
tions, etc. The data must always be entered: the parameters, on the other
hand, all have default values, so need not be Changed by the user. The two
types of input are described here.

The Data

The data are entered on card images. Ail the numbers are in free for-
mat, i.e. numbers in any columns, separated by blanks and/or commas. Uo
not use sequence numbers on the cards: they will be read as data!

Card 1. Title, & to 80 characters. The full title will appear cn
the print-out. However only about 40 characters will fit on the plot, with
the exact number depending on the character widths. The rest are truncated.

Card 2. Subtitle, up to 80 characters. Only about 50 characters will
fit on the plot.

Card 3. Three numbers, referred to as NCELLS, NEWNAMS, and DIVISOR.
NCELLS is the number of cells in this problem, a positive integer. NEWNAMS
1s an integer, either zero or non-zero. If NEWNAMS is non-zero, then HOUMOG
expects to read names for the cells. I[f NEWNAMS is zero, then HOMOG uses
default names, defined as follows. If HOMOG Just finished another problem
as part of this job, and if NCELLS was the same in that problem as in the
present problem, then the default names are whatever names were used in the
preceding problem. Otherwise, the default names are blank.

The third number on this card, OIVISOR, is a units normalizer. It is
useful if the exposure times are to be entered in one set of units but then
transformed to another set of units. Every exposure is divided by DIVISOR
before any other calculations are done. For example, if the exposures are

11



entered as hours, and DIVISOR=1000, all the exposures wili be divided by
1000, and the rates will have units “events per thousand hours." Even if
UIVISUK equals 1, it must be entered. It may be entered as an integer or
as a floating point number.

Card 4. Exposure times. There must be NCELLS numbers. If there is
rocm, they may all go on one card. Otherwise, the cara may be continued
for as many cards as necessary. The numbers may be entered as integers or
as floating point numbers.

Card 5. Failure counts. There must be NCELLS integers, on one or
more cards.

Card 6...1f NEWNAMS was entered as non-zero, the names for the cells
must be given here. Each name may have up to ten characters, with only one
name to a card, entered in the first ten columnc. Therefore, if the names
are being entered, there must be NCELLS cards here,

This concludes the data input for a problem. If desired, the sequence
may be repeated, as many times as there are problems to do. HOMOG stops
when there is no more input to read.

Somet imes unusual spacing is desirable on a plot, with blank lines
separating groups of cells, and perhaps headings for the groups. A blank
line can be created by entering a negative number for both the exposure
time and the corresponding failure count. The "name" corresponding *o
this cell can be blank, or it can be a heading of up to ten characters.
Figure 3 was produced in this way. NCELLS was entered as 8. The exposure
time and failure count were entered as -1 for cells 1, 4 and 8. The names
for those three cells were entared as OLD PLANTS, NEW PLANTS, and blank.
The plant names were entered with two leading blanks, so that they would be
indented on the plot. Although NCELLS was entered as 8, the program recog-
nizes that there are only 5 true cells for its caiculations of significance
levels.

12
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Parameters

Ihe parameter values are entered as part of the control language
statement that calls tor execution of HUMUG. For example,

HUMOG, NC = 20, GR = O

woula define the values of the parameters NL and GR for this HOMOG job.
Any parameters that are not defined by the user take their default values.
Inere are four groups of parameters: (a) basic parameters for the computa-
tions, (b) parameters affecting the plots, (c) parameters affecting the
calculation of the chi-squared test, and (d) parameters for job control.
The narameters are defined below in this order.

tasic Parameters for the Computations

Parameter vefault Meaning

NC 200 NC is an upper bound on the number of cells. It is
used as a dimension for arrays in the FORTRAN
program.

CONF 90 CONF is the coefficent of the confidence intervals

for the failure rates. If CONF = 90, 90% intervals
are found, with 5% probability in each tail.

Parameters Affecting the Plots

Parameter vefault Meaning

GK 1 If GR=0, no graphics plots are produced. If GR=]
or 2, plots are produced, showing the cell names
and confidence intervals for the failure rates. If
GR=1, for each cell the plot prints the cell's
two-sided significance level multiplied by the num-
ber of cells. If GR=2, the plot is produced, but
tests of homogeneity are regarded as unimportant.
Therefore, no significance levels appear on the
plot, and the chi-squared test is not performed.

I ] Tne int 'rval labeled "Total" is shown on the plot
if 1#C. It is omitted if T=0.

14



Parameter Default

Meaning

VL |

STR |

CL $SUURCES
CLS $SUURCESS
NL 25

A dashed vertical line through the overall ecti-
mated failure rate is shown if VL#C., It is omitted
if VL=0.

If STR=0, the plot is scaled so that all the confi-
dence intervals fit completely in the border. A
cell with an extremely short exposure time wil}
have a very long interval, even if it has no
observed failures. Such a noninformative cell can
dominate the scaling, making the other intervals
hard to compare because they appear so short. If
STR#0, cells with no observed failures are ignored
in the scaling. This stretches the conf idence
intervals, and usually makes the important parts of
the plot easier to see.

CL is the cell label, the heading for the cell
names on the plot. It may h.ve up to ten charac-
ters, including blanks, and must be delimited by
dollar signs,

CLS is the plural of whatever is used for CL. It
appears in the plot in the heading for the signifi-
cance level multiplied by NCELLS, e.g. in Figure 2.
It may have up to seven Characters, including
blanks, but should have no leading blanks. It must
be delimited by dollar signs. The spacing is best
if 1t has exactly seven characters.

NL is the maximum number of lines printed per page.
If there are more than NL lines, the plot is printed
on more than one page, with approximately the same
number of lines per page. Note, if T#0, the total
number of lines to be printed is NCELLS+2. If 1=0,
the total number of lines is NCELLS.

Parameters Affecting Calculation of the Chi-Squared Test

Parameter Uefault

Meaning

B 1GA 20

The name BIGA is derived from the commonly used
notation of a for a significance level. HOMOG

stops working on the distribution of the chi-squared
statistic if it becomes clear that the exact signi-
ficance level is greater than BIGA per cent.

15



Parameter Default Meaning

LIM 5000 LIM is the upper limit on the number of possible
ways to be considered that the total failure count
can be distributed among the cells. If LIM ways
have been considered, then HOMUG stops trying to
find the significance level of the chi-squared
test, and reports upper and lower pbounds basecd on
the work done so far.

v 5 The distribution of the chi-squared statistic is
found by decomposing it into pieces. A gamma dis-
tribution is used to approximate those pieces for
which the expected count for each cell in question
15 at least NP. See Step 7 of the algorithm in
Reference 1 tor a fuller explanation.

DEL 25 If HOMOG does not find the exact significance
level, then it prints an approximation, and upper
and lower bounds on the exact vaiue. DEL is used
to set a target for how far apart the upper and
lower bounds should be. Usually the final upper
and lower bounds are between (1-DEL/100) and
(1+DEL/100) times the calculated approximation. A
small value of DEL will result in tight bounds, at
the cost of possible lengthy calculation.

Parameters for Job Control

Parameter Default Meaning

SEE 1 SEL controls how much of the FURTRAN program is
printed. [f SEE=0, no program listing is printed.
[f SEE=1, a listing is printed for the main pro-
gram, but not for any of the subprograms. This may
be useful, because the main program contains exten-
sive comments describing the input, only slightly
more concisely than what is in thi< user's guide,
If SEE=2, a listing of the entire program is printed
(one main program and 19 subprograms, with about
1900 lines). Setting SEE=2 also causes the load
map to be printed.

I INPUT I is the local name of the file containing the data
input.

16



Parameter Default

Meaning

1D 000
PL 5000
DB 0
MAP 0

When plots are generated, a DISSPLA postprocessor
sends them to film. It may also be desirable to
catalog the PLFILE, so that it can be inspected on
a graphics terminal before the film arrives. If 1D
is set to a valid user 1D, the PLFILE will be cata-
loged as HOMOGPL, with that ID, and a retention
period of 2 days.

PL is the iine 1imil for the printer.

To use CYBER Interactive Debug, run HOMOG on a
terminal with DB#0.

The three-page load map is printed if MAP#0 or
SEE=2. It is not printed if MAP=0 and SEE<2.

17



CONSTRUCTING A HOMOG JuUB

Accessing HOMOG at INEL

On the INEL CDC computer, the following job will run HOMOG.

Job card

Account card

ATTACH,HOMOG, 10=CLA.

HOMUG<,parameter definitions if desired>.
*EOR

Data input

If cards are.used instead of a terminal, replace *EOR by 7/8/9 punched

in column 1.

Examples

Figure 4 shows the job that produced Figures la, 1b, 2. A1l the
defaults were used, except SEE was set to 0 so that no program listing
would he printed.

Figure 5 shows the job that produced Figure 3. Setting T=0 caused the
confidence interval labeled "Total" not to be printed. Setting VL=0 caused
the dashed vertical line not to be printed. Setting CL=$ PLANTS$ caused
the cell names to be headed by the word “Plant® instead of “"Source." The
two leading blanks caused the heading to be indented. Setting GR=Z caused
the significance levels not to be printed on the plot (so CLS, defined as
$PLANTSS, was irrelevant). Several exposure times and failure counts were
set negative, resulting in blank lines where confidence intervals would
normally be. The cell names were entered as they appear on the plot,
including indentations for the plant names and a blank for the last name.
The final *EOR is unnecessary, but is shown hcre to emphasize that there is
a blank line after PLANT E.
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TESTS OF A SIMPLE MULTINOMIAL HYPOTHESIS
WHEN THE SAMPLE 1S NOT LARGE

Corwin L. Atwood, EGRG Idaho, Inc,

INTRODUCT ION

This note develops tests, valid when n is not
large, of H,, the hypothesis that (N1, ~ouy Ng)
has a multinomial(n, py, ..., pi) distribution,

An example from reliability studies is when
Ny s the number of failures of a certain kind
observed at plant i in time tj. Assume that
N; has a Puisson(xili) distribution. Then,
conditional on IN; = n, the Ni's have a pulti-
nomial distrabution. To test whether A is the
same for all i, we can test Hy, the hypothes)c
that (Ny, ..., Ng) is multinomial(n, B3 osiy
Pi) with pj = t,/5t;. If the equipment is reli-
able, then n wiil ngt be large, so tests of Hq
cannot use simple asymptotic approximations.

Two kinds of tests are considered: tests
based on outlying cells, and the Pearson chi-
SQuared test. The main result is a method for
closely approximating *he significance level of
the Pearson chi-squared test when n is not large.

TESTS BASED ON OUTLYING CFers

Consider only the ith cell,
a binomial(n, pj) distribution. One-sided tests
based on N; are easy. Define the attained left
signiticance level and right significance level
of <21l i as

Under My, N; has

- T}

PNy <0, | H,] and P[N, > 0, | Hyle

A suitably defined two-sided sianificance levei
requires more care because of the discreteness
of the distribution. The two-sided level should
be the size of a two-sided test of such

that the probabilities of the two tail regions
are approximately equal. Accordingly, consider
the case wnen the right significance level,

PING 2 ng | Hgly 45 less than 1/2. Let h be the
largest inteqger satisfying

PiN; <h | H ] < PN, >

2ny | HO]'
Def ine the attained two-sided significance level
of spurce i as

{ 1
PINi <h | no] + P[Ni 2 | HOJ.
The def inition is similar if the left signifi-
cance level is less than 1/2. [f neither the
left nor the right significance level it less

than 1/2, cthen define the *wo-sided level to be
¥

If no cell is a priori of special interest,

“then an overall test of Hg Ccan be performed

based on iLhe attained significance levels of all
the cells. Either the left, righi, or two-sided
levels can be used. Let a; denote the attained
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significance level for cell i. For some num-
ber ¢, reject Hy if any aj is less than or equa)
to c. The significance level of this overall
test is

a= P[ai < c for at least one i].
Observe that

P["ii‘]f_f- il
If the data were continuous, the probability
would equal c exactly,

An upper bound on a is given by the Bonfer-
roni inequelity and (1):

e <JPla; <c)<ke.

S50, for any desired nominal value ag, a conser-
vative test uses ¢ = ag/k. The overall signifi-
cance level attained ty the data is Lounded above
by min [1, minj(ka;)].

A lower bound on a is given by

o > max; Pla; <cl.

This lower boun” is sharp, and may be as small as
zero. If ¢ is an attainable significance level,
then the lower bound eguals c¢. For large sample
sizes and one-sided tests, Fuchs and Kenett
(1980) obtain a much larger lower bound., They
make essential use of the ract that inequality
(1) becomes equality as n » s,

THE PEARSON CHI-SQUARED TEST

Th
by Xs

Pearson chi-squared statistic, denoted here
s 15 defined as

S R RU NSRS

when it is negessary to indicate the parameters
explicitly, X< will ne written as X¢(k, n,

Pls soey Ugle As n » = it is well known that
the distribution of X2 is asymptotically

x“(k = 1), When n is not large, the approxi-
mation is inadequate. The distribution may have
large jumps, or it may be nearly continuous in
places but have the wrong shape, or both. To
hand'e discreteness, direct calculation of the
possibilities is necessary. To handle the wrong
shape, approximations other than x?(k - 1) can
be tried,

Simple Approximations

Approximations can be based on the moments of

X¢. The first four moments were pubiished gy
Haldane (1537). The mean and variaice of X
are

k -1

and
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2(k = 1) + n-! [-kz -2k + 2+ {pi"].

The skewness and kurtosis are more complicated.
One approximation of the distribution is a gamma
distributign with the mean and variance matching
those of X°. 1nocher approximation is that
Pearson distribution with the first four moments
matching those of X<,

These approximations are shown in an example
in Figure 1. The exact distribution is based on
five observations, and on ten cells with proba-
bilities 171023, 2/1023, 471023, ..., %12/1023.
The upper portion of the cumulative distribution
fynction (c.d.f,) is shown. In this range, the

distribution woeful iy overestimates the
c.d.f., and so underestimates the significance
level. The other two approximations do somewhat
better, but none of them s.tisfactorily matches
the bumpiness of the exact distribution. lsing
four moments is not noticeably better than using
only two,

By the way, the variability of the p;'s in
this example is not unrealistic., The ratio of
the smallest p; to the largest is 0.00Z2. In
reliability studies recen'ly performed at EG&G
loaho, this ratioc was often less than 0,01, and
somet imes less than 0.001.

Decomposition

To account for the possible bumpiness in the
distribution of X4, decompose the distribution
into various cases, conditional on the values of
the fir<t several Nj. In particular, for
0 < h <k, suppose that Ny, ..., Ny are fixed,
and that

k K ,
Epar M o™ D0 =c.

If m=0orh=+1:k, then the value of X7 is
decermined, [f, on the other hand, m > 0 and
o+l <k, then a Tittle algebra shows that

¥ ) ? Ny - no,)zlnpi + (m - nC)?/nc
¢ (mnc) T X ‘(n‘ * api/C)zl(moi/c). (2)
h+

The first two terms are constant, conditional on
Niy +..s Ny, whiie the summation in the third
term is

X(k « by m, Pe1/C,y ou. , PR/C).

For short, denote this <ummation by Y2, Condi-

tioral on Ny, ..., Ny, the conditional distribu-
tion of X? either can be approximated as in the

preceding sect}on. say by approximating the dis-
tribution of Y€ as a gamma distribution with the
first two matching moments, or it can be decom-

posed further, say by conditioning on Ny+i.

To combine these approximations, let £; symbol-
ically represent an event of the form Ny = ny,

eovs Wy = Ape Let the values of n), ..., Ny
vary, and perhaps let h also vary. to produce
mutually exclusive events 4 with £ P(E;) = 1.
Then

PO <a) = Fe0x% <3 | E) PLE).

So the approximations of the conditional distri-
butions together yield an approximation of the
unconditional distribution,

In several examples, a satisfactory approxima-
tion has been ohtained by conditioning on those
cells with the smallest values of pj. (Condi-
tioning instead on the cells with the largest
pj seems to give a much less satisfactory approx-
imation.) For the example of Figure 1, a close
approximation is given in Figure 2. 1In this
example, there are 2002 possible arrangements of
S counts in 10 cells, producing 986 distinct
possihle values of x?. The approximation of Fig-
ure 2 is based on 46 exactly calculated cases
(for example, the case with Ny = ... = Ng = 0, Ng
= 2, Njg = 3)and 41 approximate cases (for
example, the case with Ny = ... = Ng = O,

N7 = 2, Ng throuech Nyg random). The approxi-
mation can be made better or worse by computing
more or fewer cases exactly.

Lawal (1980) uses the asymptotic approximation
of the decomposition (2), when boti n + e and
npi approaches some small value (independent
of i) for i < h. For a = 0.05 and 0.01, he pre-
sents tables of critical values for selected
values of k, h, and the common value
np] = ... = npp. For those whose need- do not
justify a computer program using the method of
this note, Lawal's paper may be of interest. It
does not apply to the example of Figure 1, since
too many of the cell expectations are “small"”
(all but one are less than 2,0). We could try
to apply it anyway, treating the first seven
expectations as small, acting as if their geo-
metric mean were their common value, and extra-
polating from Lawal's tables. Then, the tables
would say that the 95% point is approximately
25.3, rot too far from the exact value of 27.76,
and that the 99% point is approximately 47, far
from the exact value of 103.69. [ think that
manageable tanles cannot completely cover the
great possible variety of multinomial situations.
For some problems, an on-the-spot calculation
will be necessary.

Implementing the Decomposition

Suppose © ~ ' that data have been observed and
that we are _o find or approximate the attained

significance level (i.e., P(x2 Z.xoz)’ where X
is the observed value of XZ2). The algorithm
below considers various grounds for deciding how
far to decompose the distribution. The algorithm
forms the basis for a computer program now in use
at EGRG [daho. Numbers in square brackets in the
description below are the default values now used
in the program. Ffollowing the algorithm are com-
ments on some of the steps.
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: Algorithm

1

i | Initialize. GOrder the cells so that

| Py S ene £ P Set h = 0, !‘0= I, ANSLO =
I ANS = ANSUP = 0. (Below, if h = 0, any

} sum with index running from 1 to h will

! be considered zero.)
|

1

|

’

I

2. 1s the value of X° determined? If h <

k- 1and & ? N, < n, go to Step 4,

3; The value of x7 is determined. If l2 >
X,0, set ANSLO = ANSLO + Pys ANS =
ANS + P+ ANSUP = ANSUP + Po. Go to

y Step 11.

4, The value of x2 is not determined. Let
m=n-x ? ui. ) AT ? Pis and let

x2 = a + (m/nc) ¥, where Yz is defined
below (2).

tet b = (nc/m)(xo2 - a), and observe that
X" 2 X, if and onlz i v’ >2b. From
now on, work with Y° and b instead of X’
and XOZ.

5. 1s the probability trivial? Let m; be the
integer closest to mp /¢, for i =h + 1,
coen ko and Tet YMIN = £ X (m, - mp /c)7/

(mp/c). Let YMAX = mlc - py \)/py -

Then YMIN 5_V? < YMAX. If YMAX < b, qo

to Step 11. If YMIN > b, set ANSLO =

ANSLD + Po, ANS = ANS + Po‘ ANSUP =

ANSUP + Po. and go to Step 11,

6. Is the probability easy to calculate? If
k>F +2,g0toStep7. Ifk=h+2,
then v = (N, - mpk/c)z/(pk pk_‘/cz).
where N~ binomial(m, ok/c). So calcu-
late P(Y2 > b) exactly, using the bino-
mial distribution. Increase ANSLO, ANS,
and ANSUP by P *P(Y* > b), and qo to
Step 11.

7. At this point, P(V? > b) is not easy to
| find exactly. Steps 7 through 9 con-
| sider reasons for deciding whether to

10.

1.

12.

13.

approximate the distribution of Y2 or
to decomposa it further.

If m is large [mph’]/c > 5], then tre ;
gamma approximation is adequate; set
FLAG = ,TRUE. and go to Step 9. Other-
wise, set FLAG = ,FALSE.

If P is large [>1/4], o to Step 12,
to be safe,

Get upper and lower bounds pLO :.P(Y2 >
b) iPUP' based on generalized Chebyshev
inequalities. Let PG be the gamma approx-
imation of (¥’ > b). If FLAG = .TRUE.,
a¢ to Step 10. Otherwise, if ANSLO +
PO'PLO is small [< 0.75*%{ANS + PO'PG)] or
ANSUP + Po.PuP is large [> 1.25%(ANS +

PO'PG)]. go to Step 12.

Use the gamma approximation, Set ANSLO =

ANSLO + po'PLO‘ ANS = ANS + PO'P

ANSUP = ANSUP + PO'P

G’ .
up*

Start a new case at the current level of
decomposition, Set Ny, = N, * . If ¢ ?
N, <n, let "6 be the joint probability of
Nis eens Ny» and go to Step 2. Other-

wise, go to Step 13.

Start the next level of decomposition.
Set h = h + 1, “h = 0. Let Po be the
Joint probability of "1""' Nh. Go
to Step 2.

Back up one level of decomposition. Set
h=h-1. If h >0, go to Step 11. If
h =0, then aNsLO < P(x° > X %) < ANsup,
and ANS approximates P(l2 z_xoz). Print
ANSLO, AnS, and ANSUP, and stop. .

Coment s

Step 7. To save time and avoid microscopic
decomposition, we could also set FLAG = ,TRUE.
if Py is small [say, Py < 0.01].
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Step 9. Royden (1953} gives generalizations
of the Chebyshev inequality for positive random
variables with an arbitrary number of known
moments. Simple 1nequalit3es result from using
the megn and variance of Y¢ and_the facts

. that Y€ - YMIN > 0 and YMAX - ¥2 > 0. Use
of the first four moments seems to improve the
program's execution slightly, Better ineguali-
. ties on the distribution of Y4 would erhance

H. B. Lawal, “Tables of Percentage Points
of Pearson's Goodness-of-Fit Statistic
for Use with Small Expectations,” Applied
Stat., 29, 1980, pp. 292-298.

H. L. Royden, "Bounds on a Distribution
Function When its First n Moments are
Given," An-, Math, Stat., 24, 1953,

pp. 361-3 4.

P ——

the algorithm,

In Step 9, if the condition of FLAG were never
used to cause branching to Step 10, then the
inequalities on ANSLO and ANSUP would guarantee
that, at the end of computation, ANSLO and ANSUP
would be close to the calculated value ANS.
“sing the condition of FLAG speeds up the com-
gutation, at the possibie cost of an ultimate
large difference between ANSLO and ANSUP,

I think that it is advantageous to use FLAG
when either m 1s large or P, is small, Even
if the resulting spread from ANSLO to ANSUP is
large, the values usually tell the user all he
needs to know, for a very low computation cost,
1f, after locking at the output, the user does
want a better approximation, he can tighten the
parameters in the program and rerun the problem.
(The program should, of course, be written so
that the relevant parameters are accessible to
the user.)

Step 10. If the gamma approximation is good
(e.q., if m is very larqe), then Chehyshev-type
mequalities are very conservative., It would
then be more realistic to increase ANSLO, ANS,
and ANSUP all by the same quantity, Py*Pg.

The cost of this realism is loss of the mathe-
matical certainty that ANSLO and ANSUP bracket
the true significance level,

Steps 11-13. 1If some of the cells have equal
probabilities, then the enumeraticn of cases can
be made more efficient, as follows. Group the
cells into blocks, with a block cinsisting of
all those cells having a particular probabil-
ity. Rearranging the counts within a block does
not change the value of xe, Therefore, all
such rearrangements can be treated at once by
using, say, the arrangement with N; nonincreas-
ing within each block, and multiplying Py by
the appropriate factor, The details complicate
the algorithm, and are left to the reader.
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