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ABSTRACT .

'

Suppose there are various data sources, each corresponding to a count
(e.g., number of observed f ailures) having a Poisson ( A t ) distribu-j4
tion. Here t is known and A is unknown. HOMOG is a computer pro-g $

gram for investigating the " homogeneity hypothesis" that all the A 'sj
are equal. The program prints and plots both a point estimate and a confi-
dence interval for each 1 . It identifies any outlying data sources,

9

ar.d performs two statistical tests of the homogeneity hypothesis.
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SUMMARY

j
*

<

j Suppose there are various data sources, each corresponding to a count.
j For example, the data sources may be plants, and the count for a plant may

-

be the number of recorded failures of a type of pump in a certain time
period. It is assumed that for the ith data source, the count is a,

4~
Poisson (A t ) random variable, with t known and A unknown.jj g j

| HOMOG is a computer program for investigating the " homogeneity hypothesis"
!
i that all the A 's are equal.j

What the program does is explained by showing its output in an example
problem. First HOMOG prints and plots both a point estimate and a confi-

!
dence interval for each Ag, and for the overall average of the A 's.j
Then it. identifies any outlying A.'s, i.e., those that appear to be so

1.

f ar from the overall average that it is difficult to attribute the differ-
|

. ence merely to randomness in the data. Finally it performs twc kinds of
statistical tests nf the homogeneity hypothesis. The first is based on the
most extreme outlier, while the second is the Pearson chi-squared test
(without the usual requirement of a large sample size.)

There are two types of input to the program. One consists of data,
such as failure counts and exposure times. The other consists of parameter.

! values, which control the form of the plots, the accuracy of any approxima-
tions, etc. Both types are explained in detail in this report.,

i

i

Finally, this user's guide contains:two example jobs showing how to
| run HOMOG on the INEL CDC computer. Some details of the programming are
; mentioned.

.

Reference 1, giving the mathematical basis for HOMOG, is reprinted as
i

- an appendix. I
l

1

.
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USER'S GUIDE 10 HOMOG: A COMPUTER PROGRAM FOR INVESTIGATING

HOMOGENEITY OF POISSON DATA SOURCES

INTRODUCTION.

-

Overview

Suppose that there are different sources of failure counts. For

example, there might be five plants reporting failures of a certain kind of
pump. HOMOG is a computer program for studying whether the plants all have
the same failure rate, i.e., whether there is plant-to-plant homogeneity.
The program: (a) calculates and plots a point estimate and a confidence

interval for the failure rate of each plant, and for the overall average
failure rate: (b) identifies any outlying plants, i.e. plants whose esti-
mated failure rates are so different from the overall rate that it is
difficult to attribute the difference merely to randomness of the data;

.

(c) performs statistical tests of the hypothesis that all the plants have
_ the same failure rate.

,

Of course, the data sources do not have to be plants. They can be

systems, vendors, manufacturers, individual components, time periods, or
any other sources of data. And " failure" can be defined in any way desired,
e.g. as failure to start, or violation of a technical specification. The
mathematics of HOMOG uses only the numbers, not their interpretation. What
we, for convenience, call failures could really even be successes.

Statistical Assumption

There is one statistical assumption on which HOMOG rests: the failure
counts for the data sources are independent Poisson random variables,
Independent means that what happens at one data source does not influence,

.

1
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what happens at another source. Poisson means that, in a time interval of
-Alength t, the probability of exactly n failures is e (At)"/(n!),

for some parameter A, called the f ailure rate.a
j
,

-
\

.

.

_

i

a. The following conditions give rise to a Poisson random variable. In
1 any small time interval of length dt, the probability of two or more

.

failures is negligible, and the probability of a single failure is approxi-
.

mately A *dt. The failure rate, A, is required to be constant. It
i does not depend on which time period is considered, or on the number of -

| failures that may have occurred in any other time period. It can also be
shown that the failure count has a Poisson (At) distribution if and only
if the time from one failure to the next has an exponential distribution

| with mean 1/ A.

| 2
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PROGRAM OUTPUT

Example
> .

This section explains what HOMOG does, using the following example for
*

illustration. There are five plants, with the exposure times and failure
counts shown here.

iPlant Exposure Failures

!. Plant A 3000 hr 6
!
: Plant 8 1000 hr 2

) Plant C 7000 hr 1

Plant D 2000 hr 0
,

Plant E 2000 hr 3
-

1

!

The failures could be tnose of individual pumps. The exposure time
! for Plant A then could arise because that plant has three pumps, which each
| operated for 1000 hours. The same analysis would result if the failures

are of a system, which has run for the exposure time shown.
t

4

The output from a HOMOG analysis of this data is shown in Figures la,
lb, and 2..

In the discussion below, the data sources will be called cells when a
general situation is being considered. They will be called plants when the'

particular example is being discussed.

j Analysis of Individual Cells

*

Let A be the unknown failure rate corresponding to the ith cell.
9'

if n failures are observed in time t for this cell, then A$ cang j, ,

I be estimated by n /t . This is the maximum likelihood estimate, org $

-MLE. For each cell, HOMOG calculates this estimate of A , and also a
g

|

=

i 3

<

l
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P808LEM 1

Es4MPLt 8433LE9
PLANil A.S.O.Det -- 15000 H3095, 12 FAttuats
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PLLA IVt 09 t3 v t 0 b b- b - -=

[~SM11tU~~~~
, ELL tap 05UFC EAP0]0RE 3rPS-----

2 QUNI LEFT DIGHT 2-51DED L MLE LIMk1
.

g PLANT A 30CC.00 .23000 6 .9961 .0g94* .0194* .6 TGt2t-3
:lili! 1082:?8 :06:| f :33:f.. :4.!' :6:1).* :1111:!:8,g .200g0E-02 .39465g-323 :fd.il:81 :tiliit:814 PLANT D 2000.JO .13I53 0 .tT96 1.000 .2441 3. O. .149T9t-325 PL4NT E 20C0 3C .13333 3 .9354 .2084 .3660 .40863E-J3 .15 0 0 0E-02 .38TT9E-0270I4L 15CGO.JO 1.C3303 12 .461506-33 . e 300 0E -0 3 .12965E-32
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Figure la. Output from first example problem.
I

T ES TING OWER ALL HOMOGENkiff BA5ED CN OUTLIkR5 --
gigh h,1Hb A11 Alht0 51GN]flCANCE LEVEL 5e Ai sf MIC H THE HONOGENEIIT HYPOTHESIS u0ul0 BARELY BE REJECTED,

3 b.

EhE UMbGhNE hA kN .0$05 IC C EV E *

| uh!?2'38!!At ill' A t'!! ENYMNt"llvil'"l!!''"'OistP.f''''" l
1
1 THE ffdJ-510E01 IEST BA51D ON IHE POST SIGNIFICANT Durs.1ER

4EJECis HOMDGtNEIIT Al $1GNIF IL ANCE LEVEL .LE. .03830 **

Tr5 fl1G OVER ALL HOMOGENElif BASED ON PE AR $0N C HI-5 00 ARE D ST AT IS TIC --

N0k I I i 5 5|kk15fff .k!' 085ERIrko 01382 ***.

THIS CALLULAT10N 35 APPROXIMATE. THg EN AC T PR0b481LITY 5ATI5FIES.01244 * PROBASILI1Y ( CHI-50 51 A s t $ f!C .GE. 085ER VE O, I * .01388 ***
,

NS b!kEk 0S fI* St 11t F ' 41'E L td EL .L f I E VEL 5. AS FOLLows:
.1#$ 5IGNIFICANCE LLVEL .Lt .05

:::. Kli:ltff!"E' tuft:1!::818:::::. lit:lil!!MI !Mit ;t!: :38h
.

I

Figure 1b. Output (continued) from first example problem.
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EXAMPLE PROBLEM
PLANTS R,B,C,0,E -- 15000 HOURS, 12 FRiLURES

'

SIG. LEV. -

SOURCE NO. SOURCES
.

:
:
:

PLANT A 0.097 : : :

:
:
:

PLANT B 0.943 : : :

:

:
.

PLANT C 0.038 +--4 !
:
.

|
-

:
:

-

PLANT 0 1.000 ; ;

.

:
:

PLANT E 1.000 | - ..

, ;

Q j

':' ;

:
t.< ,.

:

:
:

' :
TOTAL 0.038 H--i'

.

1 f
:
:
*

.

0.0 2'. 0 1.0 6'. 0 8.0
'

,
RATES = 10''

*[ j Figure 2. Plot from first example problem.
t
{$
i\
!;

| ~

<,
,

.: 5
?

.
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confidence interval for A;. It prints the point estimates and confi-

dence intervals, and picts them so that they can be visually compared to
each other. The homogeneity hypothesis is the hypothesis that all the

'

19 s are equal to some common value A. If the homogeneity hypothesis -

is true, then A can be estimated by {n /{t , and a confidence
g j

interval for A can be found. If the homogeneity hypothesis is false, "

then [n /{tg estimates the average of the A;'s (a weightedg

average if the t 's are unequal). This average may or may not be of
9

interest to the user. The corresponding confidence interval is for the
average of the A 's, and does not necessarily indicate the value of anyj
particular >4 HONOG prints and plots this point estimate and confi-
dence interval, based on all the data combined, and lets the user do the
interpretation.

Figure la shows the estimates and 90% confidence intervals for the
failure rates of Plant A through Plant E, on the far right of the figure.

.

Figure 2 is a plot of these estimates and confidence intervals. Also shown
in both figures are an estimate and an interval labeled " Total", based on -

the total exposure time and total number of failures for all the plants.
The interval is short, because it is based on all the data. It corresponds
to the weighted average of the A 's, but not to any individual A

4 j
unless the homogeneity hypothesis is true.

In the plot of Figure 2, the dashed vertical line goes through the
estimated average rate," and is printed to help in visual comparisons of the
estimated plant rates with the estimated overall rate.

Note that Plants A and B have the same estimated failure rate, 2/1000.

But because the estimate for Plant A is based on more hours (3000 instead
of 1000), the confidence interval for Plant A is the shorter of the two.

.

Note also that the intervals are not symmetrical about the MLE's.

This is because the Poisson distribution is skewed. -

6
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Outlying Lells
,

If the homogeneity hypothesis is true, then we would expect the number
of observed failures for each cell to be approximately proportional to the,

exposure time. For example, Plant A has 3000 hours exposure time, and all
* the plants together-have 15000 hours. The relative exposure of Plant A is

3000/15000 = 0.2, so we would expect the number of failures at Plant A to
be not too f ar from 20% of the total, or 0.2 x 12 = 2:4.

An outlying cell (or outlier) is a cell whose observed failure count
is far from the expected number. An outlier causes us to question or
reject the homogeneity hypothesis. How strongly do we question or reject
it? This is discussed informally here. A mathematical treatment appears
in Atwood, which is reprinted as an appendix to this user's guide.

The distance between the observed count and the expected count, and
.

the corresponding strength with which we reject the homogeneity hypothesis,
. are measured by a significance level. A significance level is the proba-

bility of getting data as extreme as what we observed. The more unlikely
the data, the smaller the signifcance level, and the more strongly we
reject the hypothesis. In the present context, extreme data means cell
counts that are far irom the expected counts. We may be interested only in
cell counts that are too high, or only in those that are too low, or in
both. This leads to three possible significance levels. The definitions
are given here in terms of our example. They are given formally in
Reference 1.

In our example, Plant A has relative exposure 0.2, and 6 of the 12

failures. The right significance level for Plant A is the probability that
out of some hypothetical 12 failures, 6 or more would occur at Plant A.
This probability is calculated assuming that the homogeneity hypothesis is-,

true, i.e., that on the average, 20% of all failures would occur at
Plant A. It is printed in Figure la as 0.0194. Similarly, the left-

significance level for Plant A is the probability of 6 or fewer failures at

7
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Plant A, out of 12 in all. The two-sided significance level is defined
precisely in Reference 1. Roughly, it is the probability that, out of some.
hypothetical 12 failures, the number at Plant A would be as unlikely, on
either the high side or the low side, as the 6 that actually occurred. -

The two-sided level is always at least as large as the smaller of the .

right' level and the left' level. Which significance level to use depends on
whether we are concerned about departures from homogeneity on the high side,
the low side, or both.

A small significance level means that the observed data are unlikely
under the homogeneity hypothesis, so there is evidence for rejecting the
homogeneity hypothesis. The strength of-the evidence is measured by the
smallness of the significance level.

There might be some cell of special interest. For example, Plant B
may be paying for the study, or there may be reasons, such as design or

_

past history, for suspecting that Plant B is unusual. In that case, a -
4

significance level corresponding to Plant B would be of interest.

More commonly, however, all the cells are of equal interest, and an
overall test of homogeneity is desired. In that case, we cannot simply
look over tha list of significance levels for the cells and use the smallest

'

one to test homogeneity. This is because, if there are many cells, then
even if all the'A 's are equal, there will be enough random scatter inj
the data so that some of the many cells will have small significance icvels.

i lt is not easy to calculate the exact significance level for the entire date
set. However, a simple upper bound is the smallest significance level for
a cell multiplied by the number of cells. For a proof, see Reference 1.
Unless there are very few cells, this upper bound is usually quite close to
the exact overall significance level.

.

In Figure la, if a significance level multiplied by the number of '

plants is small, then that significance level is marked by one or more
stars. The number of stars is explained in Figure la. For each plant,

f

; 8
.

, , . _ , , _ . _,,7 % -. , . w -7 _ - __y
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~

Figure 2 also shows the two-sided significance level multiplied by the
number of plants. If this number happens to be greater than 1, it is

; printed as 1.000. , Notice that small significance levels correspond to
confidence intervals that are not close to the estir,'ated average A.,

-Figure Ib gives the upper bounds on the significance levels for the-

,

i data set as,a whole. For example, the smallest two-sided significance level
for any cell is 0.0077. The corresponding significance level for the data
set as a whole is 5 x 0.0077 = 0.03830. (The discrepancy in the arithmetic
is due to round-off error.) This is small enough to get two stars. The

; . number of stars assigned is explained at the bottom of Figure lb. Interpret

this number by thinking, "There is only a chance of 0.038 of getting an1

: outlier as extreme as what we have. Therefore our data give fairly strong
s

evidence for rejecting th? h'omogeneity hypothesis."
i

Figure 2 shows this upper bound on the overall two-sided significance
~

level next to the interval labeled " Total".'

.

The Pearson Chi-Squared Test

; A second test of homogeneity may be performed, based on the Pearson
chi-squared statistic, defined as

)

{(0 -E )2/E .$ $ j

Here O is the observed number of failures for the ith cell, and E isg
$

the expected number. If the observed counts differ greatly from the
! expected counts, the chi-squared statistic will be large. The significance
! level for this test is the probability that, in some hypothetical data set
j with the same total number of failures as actually occurred, the chi-squared

~

statistic would be greater than or equal to the value that was calculated |

from the actual data. Just as for the other tests, a small significance :

i
\

=

: level means that the data give evidence for rejecting the homogeneity i

! hypothesis.
!

,

; 9

i
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.

HOMOG calculates this significance level, either exactly or approxi- l

mately. If an approximation is given, the upper and lower bounds for the
significance level are also given. The algorithm for calculating the sig- j

nificance level was developed especially for HOMOG, and is described in -

Reference.l. This algorithm does not require a large sample size.
, .

|,

Figure Ib shows the significance level of-the chi-squared test to be'

; approximately 0.01382, small enough to be marked by three stars. the exact
significance level is between 0.01244 and 0.01388. These bounds are based

! on a generalization of the Chebyshev inequality, and so are valid but usu-
'

ally very conservative. In this example they are close enough to each
i other so that greater precision is pointless. HOMOG never puts stars by

the lower limit, but it does mark the upper limit with stars if the limit
is small enough, as it is in this example. The number of stars assigned'is

~

explained in Figure Ib.
:

.

In this example, the two-sided outlier test and the chi-squared test
agree only to some extent. The outlier test says that, under the homoge- -

neity hypothesis, the probability of observing data as extreme as ours is
rather small, about four out of a hundred. The chi-squared test says that,

the probability is three times smaller, only about one in a hundred. The

| disagreement is because the tests use different definitions of extreme data.
The outlier test rejects homogeneity if a single cell count differs greatly
from the expected count. The chi-sanared test rejects homogeneity if a
weighted sum of the squared differences is large.

;

J

.,--

9

| -
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PROGRAM INPUT

4

There are two types of input. One consists of the data, such as
failure counts and exposure times. The other consists of values of para-,

meters, which control the form of the plots, the accuracy of any approxima-
tions, etc. The data must always be entered; the parameters, on the other

-

hand, all have default values, so need not be changed by the user. The two
types of. input are described here.

The Data

The data are entered on card images. All the numbers are in free for-
mat, i.e. numbers in any columns, separated by blanks and/or commas. Do

not use sequence numbers on the cards; they will be read as data'

Card 1. Title,.9A to 80 characters. The full title will appear on.

_the print-out. However only about 40 characters will fit on the plot, with
, the exact number depending on the character widths. The rest are truncated.

Card 2. Subtitle, up to 80 characters. Only about 50 characters will
4

fit on the plot.

Card 3. Three numbers, referred to as NCELLS, NEWNAMS, and DIVISOR.
'

NCELLS is the number of cells in this problem, a positive integer. NEWNAMS
i is an integer, either zero or non-zero. If NEWNAMS is non-zero,-then HOMOG

expects to read names for the cells. If NEWNAMS is zero, then HOMOG uses
' default names, defined as follows. If HOMOG just finished another problem

as part of this job, and if NCELLS was the same in that problem as in the
present problem, then the default names are whatever names were used in the
preceding problem. Otherwise, the default names are blank.

.

The third number on this card, OlVISOR, is a units normalizer. It is

useful if the exposure times are to be entered in one set of units but then-

I

transformed to another set of units. Every exposure is divided by DIVISOR
before any other calculations are done. For example, if the exposures are

t

11
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entered as hours, and DIVISOR =1000, all the exposures will be divided by
1000, and the rates will have units " events per thousand hours." Even if
DIVISOR equals 1, it must be entered. It may be entered as an integer or
as a floating point number. ~

Card 4. Exposure times. There must be NCELLS numbers. If there is
.

roce, they may all go on one card. Otherwise, the caro may be continued
for as many cards as necessary. The numbers may be entered as integers or
as floating point numbers.

Card 5. Failure counts. There must be NCELLS integers, on one or
more cards.

Card 6...lf NEWNAMS was entered as non-zero, the names for the cells

must be given here. Each name may have up to ten characters, with only one
name to a card, entered in the first ten columns. Therefore, if the names
are being entered, there must be NCELLS cards here.

.

.

This concludes the data input for a problem. If desired, the sequence
may be repeated, as many times as there are problems to do. HOMOG stops
when there is no more input to read.

Sometimes unusual spacing is desirable on a plot, with blank lines
separating groups of cells, and perhaps headings for the groups. A blank
line can be created by entering a negative number for both the exposure
time and the corresponding failure count. The "name" corresponding to
this cell can be blank, or it can be a heading of up to ten characters.,

Figure 3 was produced in this way. NCELLS was entered as 8. The exposure
time and f ailure count were entered as -1 for cells 1, 4 and 8. The names
for those three cells were entered as OLD PLANTS, NEW PLANTS, and blank.

The plant names were entered with two leading blanks, so that they would be -

indented on the plot. Although NCELLS was entered as 8, the program recog-
nizes that there are only 5 true cells for its calculations of significance ~

levels.

;

12
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EXAMPLE PROBLEM

PLANTS GROUPED BY RGE
.

PLANI
.

OLD PLRNTS

PLRNI A | : ;

PLRNT C +-4

^

NEW PLANTS

-
.

PLANT 8 : |

PLANT D |

PLRNT E : :

%

' ''

I.0 1.0 6.0 8.0O.0

PATES = 10''
.

Figure 3. Plot from second example problem.

13
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Parameters

The parameter values are. entered as part of the control language
statement that calls for execution of HOMOG. For example, -

HOMOG, NC = 20, GR = 0 '

would define the values of the parameters NC and GR for this HOM0G job.
Any parameters that are not defined by the user take their default values.
There are four groups of parameters: (a) basic parameters for the computa-
tions, (b) parameters affecting the plots, (c) parameters affecting the
calculation cf the chi-squared test, and (d) parameters for job control.
The parameters are defined below in this order.

Basic Parameters for the Computations

.

Parameter Default Meaning

NC 200 NC is an upper bound on the number of cells. It is
~

used as a dimension for arrays in the FORTRAN
program.

CONF 90 CONF is the coefficent of the confidence intervals-
for the failure rates. If CONF = 90, 90% intervals
are found, with 5% probability in each tail.

Parameters Affectina the Plots

Parameter Default Meaning

GR 1 If GR=0, no graphics plots are produced. If GR=1
or 2, plots are produced, showing the cell names
and confidence intervals for the failure rates. If

GR=1, for each cell the plot prints the cell's
; two-sided significance level multiplied by the num-

ber of cells. If GR=2, the plot is produced, but'
i tests of homogeneity are regarded as unimportant.

.

' - Therefore, no significance levels appear on the
| plot, and the chi-squared test is not performed. ~

.

T. 1 The int;rval labeled " Total" is shown on'the plot.,

i' if TfC. It is omitted if T=0.

:

L -14
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Parameter Default Meaning

VL 1 A dashed vertical line through the overall esti-
mated failure rate is shown if VLf0. It is omitted
if VL=0.

'

STR 1 If STR=0, the plot is scaled so that all the confi-
dence intervals fit completely in the border. A*

cell with an extremely short exposure time will
have a very long interval, even if it has no
observed failures. Such a noninformative cell can
dominate the scaling, making the other intervals
hard to compare because they appear so short. If
STRf0, cells with no observed failures are ignored
in the scaling. This stretches the confidence
intervals, and usually makes the important parts of
the plot easier to see.

CL $ SOURCE $ CL is the cell label, the heading for the cell
names on the plot. It may have up to ten charac-
ters, including blanks, and must be delimited by
dollar signs.

CLS
' $ SOURCES $ CLS is the plural of whatever is used for CL. It

appears in the plot in the heading for the signifi-
.

cance level multiplied by NCELLS, e.g. in Figure 2.
It may have up to seven characters, including
blanks, but should have no leading blanks. It must
be delimited by dollar signs. The spacing is best
if it has exactly seven characters.

NL 25 NL is the maximum number of lines printed per page.
if there are more than NL lines, the plot is printed
on more than one page, with approximately the same
number of lines per page. Note, if Tf0, the total
number of lines to be printed is NCELLS+2. If T=0,
the total number of lines is NCELLS.

Parameters Affecting Calculation of the Chi-Squared Test

Parameter Default Meaning

BIGA 20 The name BIGA is derived from the commonly used
.

notation of a for a significance level. HOMOG
stops working on the distribution of the chi-squared
statistic if it becomes clear that the exact signi-
ficance level is greater than BIGA per cent.

15
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Parameter Default Meaning'

,

LIM 5000 LIM is the upper limit on the number of possible'

ways to be considered that the total failure count
can be distributed among the cells. If LIM ways
have been considered, then HOMOG stops trying to .

find the significance level of the_ chi-squared
test, and reports upper and lower Dounds based on

*

the work done so far.

NP 5 The distribution of the chi-squared statistic is
found by decomposing it into pieces. A gamma dis-
tribution is used to approximate those pieces for
which the expected count for each cell in question
is at least NP. See Step 7 of the algorithm in
Reference 1 for a fuller explanation.

DEL 25 If HOMOG does not find the exact significance
level, then it prints an approximation, and upper4

and lower bounds on the exact value. DEL is used
to set a target for how far apart the upper and
lower bounds should be. Usually the final upper
and lower bounds are between (1-DEL /100) and
(1+0EL/100) times the calculated approximation. A
small value of DEL will result in tight bounds, at ~

-

the cost of possible lengthy calculation.
.

Parameters for Job Control

Parameter Default Meaning
i

SEE 1 SEE controls how much of the FORTRAN program is;

printed. If SEE=0, no program listing is printed.'

If SEE=1, a listing is printed for the main pro-
gram, but not for any of the subprograms. This may
be useful, because the main program contains exten-4

'sive comments describing the input, only slightly
more concisely than what is in this user's guide..
If SEE=2, a listing of the entire program is printed
(one main program and 19 subprograms, with about

; 1900 lines). Setting SEE=2 also causes the load
map to be printed.

,

I INPUT I is the local name of the file containing the data
! input. -

.

T

i
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Parameter Default Meaning

ID 000 When plots are generated, a DISSPLA postprocessor
sends them to film. It may also be desirable to
catalog the PLFILE, so that it can be inspected on
a graphics terminal before the film arrives. If ID

-

is set to a valid user ID, the PLFILE will be cata-

loged as HOM0GPL, with that ID, and a retention.

period of 2 days.

PL 5000~ PL is the line limit for the printer.

DB 0 To use CYBER Interactive Debug, run HOM0G on a
terminal with DBf0.

MAP 0 The three-page load map is printed if MAPPO or
SEE=2. It is not printed if MAP =0 and SEE<2.i

,

!

.

;

.
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!
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CONSTRUCTING A HOMOG JOB

Accessing HOMOG at INEL

.

On the INEL CDC computer, the following job will run HOMOG.
.

Job card
Account card
ATTACH,HOMOG,lD=CLA.

HOMOG<, parameter definitions if desired >.

* EOR

Data input

i

' If cards are.used instead of a terminal, replace * EOR by 7/8/9 punched

in column 1.

.

Examples

.

Figure 4 shows the job that produced Figures la, lb, 2. All the

defaults were used, except SEE was set to 0 so that no program listing

would be printed.

Figure 5 shows the job that produced Figure 3. Setting T=0 caused the

confidence interval labeled " Total" not to be printed. Setting VL=0 caused
the dashed vertical line not to be printed. Setting CL=$ PLANT $ caused
the cell names to be headed by the word " Plant" instead of " Source." The
two leading blanks caused the heading to be indented. Setting GR=2 caused

the significance levels not to be printed on the plot (so CLS, defined as
$ PLANTS $, was irrelevant). Several exposure times and failure counts were

| set negative, resulting in blank lines where confidence intervals would
normally be. The cell. names were entered as they appear on the plot,

'

including indentations for the plant names and a blank for the last name.I

The final * EOR is unnecessary, but is shown here to emphasize that there is ,

a blank line after PLANT E.

18

__ . .__ .- - .-__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _____



!
~

.

.

C L AHO, T 3 7, P 1, S T A NY .
ACCOUNT,3830,XXxxxXXXX,TM4.
A TT AC H, MOMOGr ID =CL A.
HOMOG,SEE=0.
* EOR
EXAMPLE PROBLEM
PLANTS A,B,C,0st -- 15000 h00RS, 12 FAILURES
5 1 1
3000 1000 70C0 2000 2000
6 2 1 0 3
PLANT A
PLANT B
PLANT C
PLANT 0
PLANT E

Figure 4. Job to run first example problem.

.

CLAHO,T37,P1,STAhY.
ACCOUNT,3830,xxXXxxXXX,TM4.
ATT AC H, HOMOG,ID=CL A.-

HOMOG,SEE=0,CL=$ PLANTS,CLS=5 PLANTS $,T=0,VL=0,GR=2.
* EOR
EXAMPLE PROBLEM
PLANTS GROUPED 8Y AGE
8 1 1
-1 3300 7300 -1 1000 2000 2000 -1
-1 6 1 -1 2 0 3 -1
OLD P L ANTS

PLANT A
PLANT C

NE4 PLANTS
PLANT B
PLANT 0
PLANT E

* EOR

1
i Figure 5. Job to run second example problem.

|
'

r
|

r

L

!
!
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DETAILS OF PROGRAMMING

HOMOG consists of a procedure written in CDC CYBER control language

under the NOS/BE system, and a program written in CDC FORTRAN 4 Extended. .

3It uses the library IMSL for some of the computations, and DISSPLA
~

for the plots.

On December i7, 1981, the two jobs shown in Figures 4 and 5 were

executed on the INEL CDC 176. Each job took about 2.5 CP seconds, and
about 43 system seconds, for a cost of $0.66 each.

.

D

D

D
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APPENDIX

TESTS OF A SIMPLE MULTINOMIAL HYPOTHESIS WHEN THE SAMPLE IS NOT LARGE

As in American Statistical Association 1981 Proceedings
of the Statistical Computing Section

.
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TESTS OF A SIMPLE MULTINOMIAL HYP0 THESIS significance level for cell i. For some num-
WHEN THE SAMPLE IS NOT LARGE ber c, reject Ho if any aj is 1Ess than or equal

to c. The significance level of this overell
Corwin L. Atwood, EG&G [daho, Inc. test is

.

INTRODUCTION i i "

This note develops tests, valid when n is not Observe that.

large, of H , the hypothesis that (N), .... N )o k
has a multinomial(n, p1, ., pg) distributfon. p[,,<cj <c , (1)1 -

An e nmple from reliebility studies is when
Ng is the number of f ailures of a certain kind if the data were continuous, the probability
observed at plant i in time tg. Assume that would equal c exactly.
Ng has a Poisson (Agtj) distribution. Then,
condit ional on INg = n, the N; *s have a r. ult i- An upper bound on a is given by the Bonfer-
nomial distribution. To test whether Aj is the roni inequality and (1):
same for all 1, we can test Ho, the hypothesis
that (N), .... N ) is multinomial(n, pj, ..., a 1 { P,aj ic] ik c.k t
pk) with pg = tj/Itj. If the equipment is reli-
able, then n will not be large, so tests of Ho 50, for any desired nominal value a , a conser-cdnnot use simple asymptotic approximations * o

Vative test uses C = s /k. The overall signifi-o
. cance level attained by the data is bounded aboveTwo kinds of tests are considered: tests

based on outlying cells, and the Pearson chi- by min [1, ming (kaj)].
squared test. The main result is a method for
closely approximating *he significance level of A lower bound on a is given by
the Pearson chi-squared test when n is not large. g P[aj s c].a > max

'

TESTS BASED ON OUTLYING CfLLS
This lower bounM is sharp, and may be as small as

Consider only the ith cell. Under H Nj has zero. If C is an attainable significance level,9a binomial (n, pt) distribution. One-sided tests then the lower bound equals c. For large sample
*

based on Ng are easy. Define the attained left sizes and one-sided tests, Fuchs and Kenett
s ignif icance level and right significance level (1980) obtain a much larger lower bound. They
of cell i as make essential use of the fact that inequality

(1) becomes equality as n + .
P[Ng ~< ng | H ] and P[Ng ~> nj j H ].0

THE PEARSON CHI-SQUARED TEST
A suitably defined two-sided significance level

Threquires more care because of the discreteness byXgPearsonchi-squaredstatistic,denotedhere' is defined asor the distribution. The two-sided level should
be the size of a two-sided test of H sucho 2

= { k (Ng - np )2/npthat the probabilities of the two tail regions X
-

j g g,are approximately equal. Accordingly, consider
the case wnen the right sianificance level, When it is ne essary to indicate th parameters
P[Ng > ni | Hn), is less than 1/2. Let h he the explic itiv, X will ne written as X (k, n,
largest inte'jer satisfying P1, ..., bk). As n + , it is well known that

the distribution of X2 is asymptotically
P[N. < h | H ] ~< P[N . 2

3- 0 3 ~>n | H ]. x (k - 1). When n is not large, the approxi-g 0
mation is inadequate. The distribution may have

Define the attained two-sided significance level ps, may e nea@ condnuous in
- of source i as places but have the wrong shape, or both. To

handle discreteness, direct calculation of the'

j H ]. possibilities is necessary. To handle the wrongP[Ngih | H ] + P[Ng >_ nj 2shape, approximations other than x (k - 1) cano o

be tried.
The def;nition is similar if the left signiff-

*

cance level is less than 1/2. If neither the Simple Approximations
left nor the right significance level is less
than 1/2, then define the two-sided level to be Approximations can be based on the moments of

21.- X. The first four moments were published by
Haldane (1937). The mean and variaice of X2

If no cell is a priori of special interest, are
' then an overall test of H can be performedo
based on the attained significance levels of all k-I
the cells. Either the left, right, or two-sided
levels can be used. Let og denote the attained and

25

t

m -



2(k - 1) + n~l [-k2 -2k+2+[p[I]. ..., hh = nh. Let the values of ny, ..., nh
vary, and perhaps let h also vary, to produce

The skewness and kurtosis are more complicated. mutually exclusive events 'j with I P(Ej) = 1.
ThenOne approximation of the distribution is a gama

distributignwiththemeanandvariancematching
-

those of X . Another approximation is that P(X2 < a) = [ P(X2 < a | E ) P(E ).~ ~ j jPearson distribution with the first four moments
2matching those of X , e

_

These approximations are shown in an example butions together yield an approximation of the
in Figure 1. The exact distribution is based on unconditional distribution,

five observations, and on ten cells with proba-
bilities 1/1023, 2/1023, 4/1023, ... 512/1023. In several examples, a satisfactory approxima.
The upper portion of the cumulative distribution tion has been obtained by conditioning on those

fgnction(c.d.f.)isshown. In this range, the cells with the smallest values of pj. (Condi-
x distribution woefulsy overestimates the tioning instead on the cells with the largest
c.d.f., and so underestimates the significance pi seems to give a much less satisfactory approx-
level. The other two approximations do somewhat imation.) For the example of Figure 1, a close
better, but none of them smtisfactorily matches approximation is given in Figure 2. In this

the bumpiness of the exact distribution. Using example, there are 2002 possible arrangements of
four moments is not noticeably better than using 5 counts in 10 cells producing 986 distinct

only two. possible values of Xp The approximation of Fig..

ure 2 is based on 46 exactly calculated cases
By the way, the variability of the pj's in (for example, the case with N1 = ... = Ng = 0, Ng

this example is not unrealistic. The ratio of = 2, N10 = 3)and 41 approximate cases (for
the smallest pi to the largest is 0.002. In ex mple, the case with N) = ... = N6=0,
reliability studies recenfly performed at EG&G N7 = 2, Ng through N10 randomJ. The approxi-

.

Idaho, this ratio was often less than 0.01, and mation can be made better or worse by computing
sometimes less than 0.001, more or fewer cases exactly.

,

Decomposition Lawal (1980) uses the asymptotic approximation
of the decomposition (2), when botn n + = and

distributien of Xghe possible bumpiness in theTo account for Upi approaches some small v31ue (independent =

, decompose the distribution of i) for i < h. For a = 0.05 and 0.01, he pre-
into various cases, conditional on the values of sents tables of critical values for selected
the first several Ng. In particular, for values of k, h, and the common value
0 < h < k, suppose that N , . ... Nh are fixed, np] .. = nph. For those whose needs do not=

1
and that justify a computer program using the method of

this note, Lawal's paper may be of interest. It

k k does not apply to the example of Figure 1, since
I +1 i * ** E +1 Pi too many of the cell expectations are "small"*c.h h

(all but one are less than 2.0). We could try
If m = 0 or h + 1: k, then the value of X2 is to apply it anyway, treating the first seven
determined. If, oE the other hand, m > 0 and expectations as small, acting as if their geo-

,h + 1 < k, then a little algebra shows that metric mean were their common value, and extra-
polating f rom Lawal's tables. Then, the tables
would say that the 95% point is approximatelf2 hX * 1 1 (Ng - np )2 (m - nc)2/nc 25.3, r.ot too f ar f rom the exact value of 27.76,/np +j g

and that the 99% point is approximately 47, f ar
from the exact value of 103.69. I think that

+ (m/nc) [ k (Ng - mp /c)2 (mp /c). (2) manageable taDies cannot completely cover the/g g
h+1 great possible variety of multinomial situations.

For some problems, an on-the-spot calculation
The first two terms are constant, conditional on will be necessary.
Nj, ..., A , while the summation in the thirdh
term is Implementing the Decomposition

x2(k - h, m, p3.j/c, .. , pg/c). Suppose -' that data have been observed and
that we are .o find or approximate the attained

2For short, denote this summation by Y . Condi- 2 2), where X 2
*

... N , the conditional distribu. significance level (i.e., P(X tXtional on Nj, h g g
tion of X2 2either can be approximated as in the is the observed value of X ). The algorithm
precedingsect{on,saybyapproximatingthedis- below considers various grounds for deciding how -

tribution of Y as a gamma distribution with the far to decompose the distribution. The algorithm
first two matching moments, or it can be decom- forms the basis for a computer program now in use
posed further, say by conditloning on N +1 at EGAG Idaho. Numbers in square brackets in theh

description below are the default values now used
To combine these approximations, let Ei symbol- in the program. Following the algorithm are com-

ically represent an event of the form N1 = n], ments on some of the steps.

26
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Algorithm approximate the distribution of Y or

t det m se it further.1. Initialize. Order the cells so that
Pj<..<p. Set h = 0, P = 1 ANSLO =g g

ANS = ANSUP = 0. (Below, if n = 0, any if m is large [mp +1/c > 5], then theh ,

sum with index running from 1 to h will gamma approximation is adequate; set

be considered zero.) FLAG = .TRUE. and go to Step 9. Other-
,

wise, set FLAG = . FALSE.

22. Is the value of X determined? If h < 8. If P is large [>l/4], 50 to Step 12,g

k - 1 and I Ng < n, go to Step 4 to be safe.

3. The value of X is determined. If X 1 9. Get upper and lower bounds PLO i P(Y >
2X , set ANSLO = ANSLO + P , ANS = b) < PUP, based on generalized Chebyshevg g

ANS + P ANSUP = ANSUP + P . Go to inequalities. Let P be the gamma approx-g g g
Step 11. imation of P(Y 1 ). If FLAG = .TRUE.,b

go to Step 10. Otherwise, if ANSLO +
24 The value of X is not determined. Let P *P is small [< 0.75*(ANS + P *P M org 0 g g

m=n-IyN,c=1-I p , and let ANSUP + P *P is large D 1.25*(A E +g g g UP
X = a + (m/nc) Y , where Y is defined P *P )], go to Step 12.g g
below (2).

.

2 10. Use the gamma approximation. Set ANSLO =Let b = (nc/m)(X - a), and observe thatg
2>X 2 2 ANSLO + P *PLO, ANS = ANS + P *P ,if and only if Y >b. From g g gX g

2 ANSUP = ANSUP + P *Pnow on, work with Y and b instead of X UP'
and X 2g

11. Start a new case at the current level of
decomposition. Set Nh"Nh* II IS. Is the probability trivial? Let m be the *

g

Ng i n, let .g be the joint probability ofinteger closest to mp /c, for i = h + 1,g

..., k, and let YMIN = I (mg - mp /c)I N , .... N , and go to Step 2. Other-j h/g

(mp /c). Let YMAll = m(c - p j)/p .
wise, no to Step 13.

g

Then YMIN < Y < YMAX. If YMAX < b, go
12. Start the next level of decomposition.to Step 11. If YMIN > h, set ANSLO =

ANSLO + P ANS = ANS + P , ANSUP = Set h = h + 1, N = 0. Let P be theh gg o
ANSUP + P , and go to Step 11. joint probability of N ,.... N . Goj hg

to Step 2.

6. Is the probability easy to calculate? If

13. Back up one level of decomposition. Setk > t + 2. go to Step 7. If k = h + 2,

then Y2 = (N h=h-1. If h > 0, go to S ep 11. If
k ' *P /C) IIPk Pbl /C }'k

where Nk * binomial (m, p /c). So calcu- h = 0, then ANSLO i P(X2>Xg ) i ANSUP,
k 2 2

late P(Y2 > b) exactly, using the bino- and ANS approximates P(X 3 y9 ). Print

mial distribution. Increase ANSLO, ANS, ANSLO, AhS, and ANSUP, and stop. .

and ANSUP by P,*P(Y2 > b), and go to
Step 11. ,

Coment s
7. At this point, P(Y2 > b) is not easy to

Step 7. To save time and avoid microscopicfind exactly. Steps 7 through 9 con- decomposition, we could also set FLAG = .TRUE.
Sider reasans for deciding whether to if P is small [say, Po 1 0.01].g

28
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Step 9. Royden (1953) gives generalizations 3. H. B. Lawal, " Tables of Percentage Points
of the Chebyshev inequality for positive random of Pearson's Goodness-of-Fit Statistic
variables with an arbitrary number cf known for Use with Small Expectations," Applied
moments. Simple inequalities result from using Stat., 29, 1980, pp. 292-298.

2themegnandvarianceofY and the facts
that Y - YMIN > 0 and YMAX - Y2 > 0. Use 4. H. L. Royden, " Bounds on a Distribution.

of the first four moments seems to improve the Function When its First n Moments are
program's execution slightly.2 Better inequali- Given," An , Math. Stat., 24, 1953,
ties on the distribution of Y would erhance pp. 361-7 6.,

the algorithm.

In Step 9, if the condition of FL AG were never

used to cause branchinq to Step 10, then the
inequalitles on ANSLO and ANSUP would guarantee
that, at the end of computation, ANSLO and ANSUP
would be close to the calculated value ANS.
Using the condition of TLAG speeds up the com-
putation, at the possible cost of an ultimate
large difference between ANSLO and ANSUP.

I think that it is advantageous to use FLAG

when either m is large or Po is small. Even
if the resulting spread from ANSLO to ANSUP is
large, tha values usually tell the user all he
needs to know, for a very low computation cost.
If, after looking at the output, the user does
want a better approximation, he can tighten the
parameters in the program and rerun the problem.
(The program should, of course, be written so
that the relevant parameters are accessible to

*

the user.)

Step 10. If the gama approximation is good
(e.g., if m is very larqc), t hen rhebyshev-type*

inequalities are very conservative. It would
then be more realistic to increase ANSLO, ANS,
and ANSUP all by the same quantity, Po*Pg.
The cost of this realism is loss of the mathe-
matical certainty that ANSLO and ANSUP bracket
the true significance level.

Steps 11-13. If some of the cells have equal
probabilities, then the enumeration of cases can
be made more efficient, as follows. Group the
cells into blocks, with a block consisting of
all those cells having a partisular probabil-
ity. Rearranging the counts within a block does

2not change the value of X . Therefore, all
such rearrangements can be treated at once by
using, say, the arrangement with Nj nonincreas-
ing within each block, and multiplying Po by
the appropriate factor. The details complicate
the algorithm, and are lef t to the reader.
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