

Enclosure:

"ACRS Full Committee Presentation: NuScale Topical Report, Loss-of-Coolant Accident Evaluation Model," PM-0320-69138, Revision 0

NuScale Nonproprietary

ACRS Full Committee Presentation

NuScale Topical Report

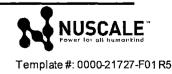
Loss-of-Coolant Accident Evaluation Model

March 5, 2020

PM-0320-69138 Revision: 0 Copyright 2020 by NuScale Power, LLC.

Template #: 0000-21727-F01 R5

Presenters


Matthew Presson Licensing Project Manager Dr. Pravin Sawant

Supervisor Code Validation and Methods

Dr. Selim Kuran

Thermal Hydraulic Analyst

Ben Bristol Supervisor System Thermal Hydraulics

2 PM-0320-69138 Revision: 0

Agenda

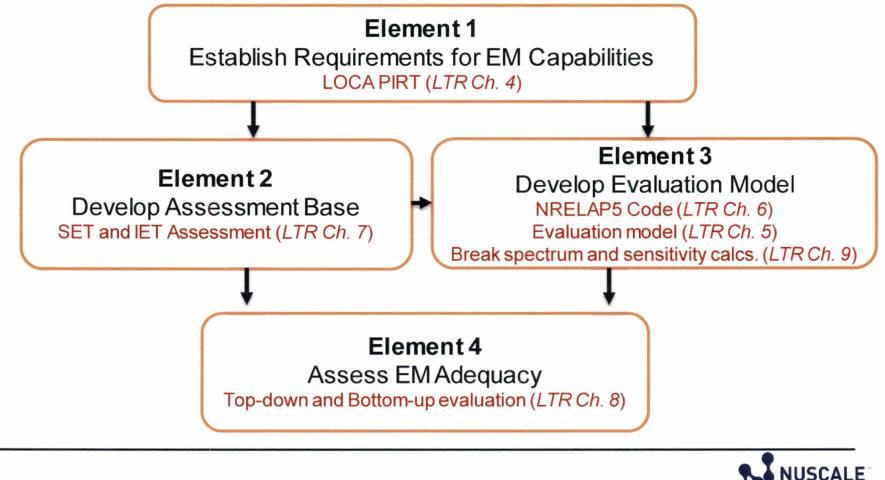
- Methodology Overview
 - Background
 - Regulatory Requirements
 - Methodology Roadmap
- NPM Safety Systems Overview
- Element 1: PIRT
- Element 2: Assessment Base
- Element 3: NRELAP5 Evaluation Model
- Element 4: Applicability Evaluation
- Extension of LOCA EM to IORV
- Conclusions

Background

- Unique NPM Design Features
 - Integrated design eliminates piping and limits potential breaks
 - Coolant captured completely in containment, cooled and returned to RPV using a large pool as ultimate heat sink
- Simple LOCA Progression with Well-Known Phenomena
 - Choked/un-choked flow through break and ECCS valves
 - Core decay heat and RCS stored energy release
 - CNV heat transfer to pool (condensation, conduction, convection)
- EM Development Approach
 - Follows Regulatory Guide 1.203 EMDAP (Table 2-1)
 - Compliance with 10 CFR 50.46 and Appendix K requirements (Table 2-2)

PM-0320-69138 Revision: 0

Regulatory Requirements

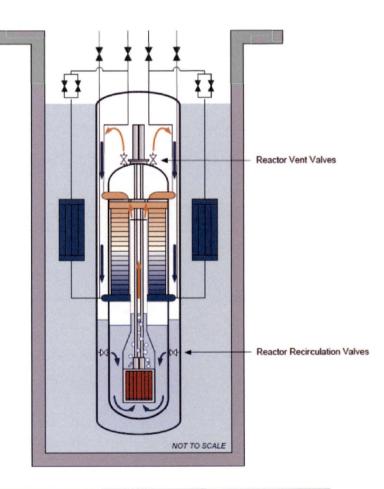

- 10 CFR 50.46 Acceptance Criteria
 - Max. clad temperature < 2200 °F
 - Cladding oxidation > 0.17 times thickness
 - Hydrogen generation < 0.01 times total hydrogen from oxidation of all cladding
 - Core remains amenable to cooling
 - Long-term cooling maintained
- Maximum PCT at steady state, no clad heat up
- Conservative LOCA EM Acceptance Criteria (FOMs)
 - Core remains covered: <u>collapsed level</u> > TAF
 - -MCHFR > CHFR Limit (1.29)
 - <u>Containment pressure and temperature</u> below design limit

Template #: 0000-21727-F01R5

Methodology Roadmap

- 10 CFR 50.46 Appendix K Compliance (Section 2.2.3 of LTR)
- RG 1.203 EMDAP (Section 2.1 of LTR)

6 PM-0320-69138 Revision: 0


Copyright 2020 by NuScale Power, LLC.

Template #: 0000-21727-F01 R5

NPM Safety Systems

• ECCS

- Opens a boiling/condensing circulation flow path to transfer decay and residual heat to reactor pool
- Reactor Recirculation Valves (RRV): 2 valves
- Reactor Vent Valves (RVV): 3 valves
- Actuation Signals: High CNV level, 24-hour loss of AC power
- Fail safe: ECCS trip valves open on loss of DC power
- Inadvertent Actuation Block (IAB)
 - Prevents inadvertent opening of ECCS valves at high RCS pressure
 - Actuation based on differential pressure between RPV and CNV
- Module Protection System (MPS)
 - Reactor scram
 - Steam Generator (SG) and Containment (CNV) Isolation
 - Passive safety system activation (ECCS and DHRS)
- Decay Heat Removal System (DHRS)
 - Passive, boiling-condensation system
 - Removes heat from RCS through SG via two trains
 - Each trains capable of removing 100% decay heat
 - Not credited in LOCA EM

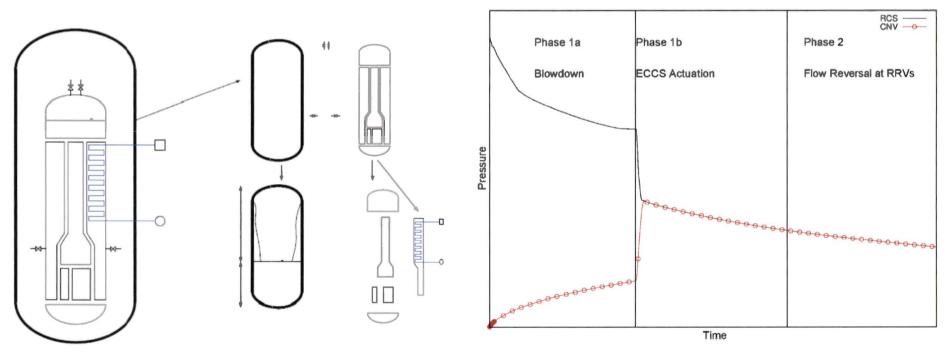
Element 1 PIRT

8 PM-0320-69138

Copyright 2020 by NuScale Power, LLC.

Revision: 0

PIRT Process


- Assessment of relative importance of phenomena
 - Unique phases
 - Key components
- PIRT panel included recognized experts and NuScale subject matter experts
 - State-of-knowledge, design description, LOCA description, NRELAP5 calculations
- Figures-of-Merit
 - CHF, Collapsed level above top of the active fuel, CNV P & T
- Rankings
 - Importance: High, Low, Medium, Inactive
 - Knowledge: Well known (small uncertainty), Known (moderate uncertainty, partially known (large uncertainty), very limited

9 PM-0320-69138 Revision: 0

Spatial and Temporal Decomposition

- Phenomena identified for Systems, Structure, Components (SSCs) and ٠ **LOCA** phases
 - Phase 1a: Blowdown
 - Phase 1b: ECCS activation (opening)

System/Subsystem/Module decomposition

Distinct phases of a typical NPM LOCA

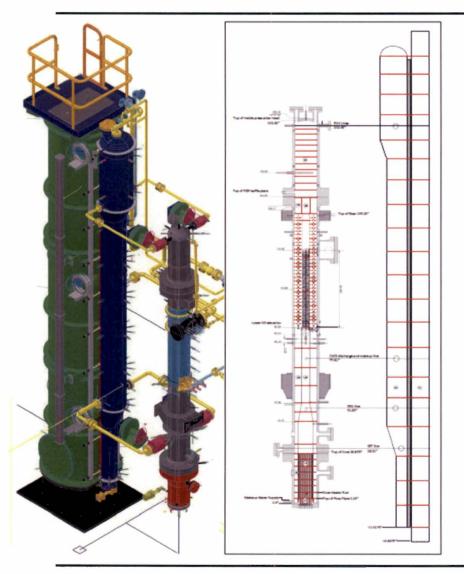
10 PM-0320-69138 Revision: 0

Element 2 Assessment Base

11 PM-0320-69138 Revision: 0

NRELAP5 Code

- RELAP5-3D© v4.1.3 used as a baseline code
 - Two-fluid model (thermal and mechanical non-equilibrium) for hydrodynamics with
 - Non-condensable gases with gas phase
 - Semi-implicit scheme for time integration
 - Heat conduction across 1D geometries (slab, cylinder, sphere)
 - Neutron Kinetics with thermal hydraulic feedback
 - Special Process Models
 - Comprehensive control/trip system modeling
- Code configuration control and development consistent with NuScale's NQA-1 2008 / 2009a QA program
- Modifications for NRELAP5:
 - NuScale specific components (e.g., helical coil SG)
 - Regulatory requirements (i.e., Appendix K)
 - Error correction

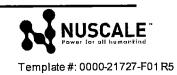


IET and SET Data

- Extensive database with adequate coverage of all highranked phenomena
- Integral effects tests (IET)
 - Six (6) NIST-1 tests
- Separate effects tests (SET)
 - Two (2) NIST-1 SETs
 - Four (4) other NuScale SETs
 - Nine (9) Legacy SETs

NIST-1 Facility

- Primary source of NuScale-Specific IET and SET data
- **Design Features** •
 - Integral Reactor Vessel with electrically heated rod bundle core, helical coil steam generator, and pressurizer
 - Containment with HTP and Cooling Pool
 - DHRS, ECCS, CVCS lines represented
 - ~700 instruments
- **Scaling Basis** •
 - Power/Volume Scaling
 - Reduced height and reduced volume scale
 - Full Pressure and Temperature
 - Same Time Scale (isochronicity)

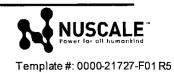


Copyright 2020 by NuScale Power, LLC.

14 PM-0320-69138 Revision: 0

Element 3 **NRELAP5 NPM LOCA**

15 PM-0320-69138 Revision: 0


NPM LOCA Model Overview

- Analysis and Justifications
 - NRELAP5 model nodalization and input options
 - Time-step control
 - Initial and boundary condition biases
 - Treatment of setpoints and trips
- LOCA break spectrum
 - Break location and sizes
 - Single failures
 - Power availability
- Methodology sensitivity calculations
 - Required by Appendix K
 - Phenomena-specific
 - To establish conservative biases

Element 4 **Applicability Evaluation**

17 PM-0320-69138 Revision: 0

Applicability Evaluation

- Evaluated models and correlations (bottom-up)
 - Identified dominant models/correlations for 'H' phenomena (Table 8-1 of LTR)
 - Identified key model/correlation parameters and phenomenological domain where models/correlations are used (Tables 8-2 and 8-4)
 - Reviewed models/correlations (Table 8-18 of LTR)
 - Pedigree, Applicability range, Fidelity to SET data, Scalability
- Evaluated integral performance of EM (top-down)
 - Reviewed code governing equations and numerics
 - Evaluated integral performance of code using IET data (Table 8-19 of LTR)
 - Evaluated IET data applicability and NRELAP5 scalability
 - Scaling and distortion analysis
 - Differences and distortions between NPM and NIST can be accounted using NRELAP5


Conclusions

- Number of conservatisms built into the NuScale LOCA EM
 - 10 CFR 50 Appendix K
 - Other methodology conservatisms
- Cycle independent bounding LOCA analysis
- Supported by extensive experiment database, well qualified code, and several sensitivity calculations
- Applicability evaluation consistent with RG 1.203
- CHF not challenged
- Collapsed level in RPV remains above TAF
- No clad or fuel heat-up
- CNV P&T remain below design limits

Appendix B to LOCA LTR Extension to IORV Event

20 PM-0320-69138 Revision: 0

IORV Background

- LOCA EM Extended to IORV
 - Liquid space (RRV) and steam space (RVV, RSV) discharge
 - Similar transient phenomena and progression
- EM Development Approach
 - Compliance with DSRS for NuScale SMR Design 15.6.6
 - Follows RG 1.203 EMDAP
 - Element 1 (PIRT), Element 2 (Assessment), and Element 4 (Applicability) remains same as LOCA EM
 - Initial LOCA PIRT addressed IORV
 - Element 3 (NRELAP5 Model) unique due to event classification

Differences from LOCA EM

- Minor methodology differences given AOO classification
- Key Acceptance Criteria
 - MCHFR \geq Limit (\geq 1.13 high flow range, \geq 1.37 low flow range)
- Conservatisms same as LOCA with exceptions:
 - Fuel properties still biased to maximize stored energy, but additional 15% bias removed
 - Limiting axial power shapes and radial peaking based on subchannel analysis
 - Moody choked flow model for 2-phase flow choking applied to initiating valve
 - Initial conditions biased to minimize MCHFR

22 PM-0320-69138 Revision: 0

Conclusions

- IORV is an extension of LOCA EM given similar transient phenomena and progression
 - PIRT, Assessment, and Applicability same as LOCA
- Minor methodology differences for AOO classification
 - Focused on conservative CHFR evaluation
- MCHFR occurs early in transient, then rapidly rises given increasing flow to power ratio
- Collapsed level in RPV remains above TAF

Acronyms

	والتصديدي ويستعين والمستعد والمتعاد والمتعاد مستعديه والمتعاقد		
1-D	one-dimensional	HP	high pressure
3D	three-dimensional	HS	heat sink
AC	alternating current	HTP	heat transfer plate
ANS	American Nuclear Society	H2TS	hierarchical two-tiered scaling
CCFL	counter current flow limitation	IAB	inadvertent actuation block
CHF	critical heat flux	IET	integrated effects test
CNV	containment vessel	INL	Idaho National Laboratory
CVCS	chemical and volume control system	KATHY	Karlstein thermal-hydraulic test facility
DC	direct current	kW	kilowatt
DCA	Design Certification Application	LOCA	loss-of-coolant accident
DHRS	decay heat removal system	LTR	Licensing Topical Report
ECCS	emergency core cooling system	Max	maximum
EM	evaluation model	MCHFR	minimum critical heat flux ratio
EMDAP	evaluation model development and	Min	minimum
	assessment process	Mlb/ft ² .hr	pounds mass per square foot per hour
FW	feedwater	MPS	module protection system
FSAR	Final Safety Analysis Report	MSIV	main steam isolation valve
FOM	figure of merit	NIST-1	NuScale Integral System Test Facility
HL	hot leg	NPM	NuScale Power Module

.

Template #: 0000-21727-F01 R5

NUSCALE "

Acronyms

P&T pressure and temperature PCT peak cladding temperature PIRT phenomena identification and ranking table pounds per square inch psi psia pounds per square inch absolute PZR pressurizer QA **Quality Assurance** RCS reactor coolant system RG **Regulatory Guide** RRV reactor recirculation valve **RPV** reactor pressure vessel RW reactor vent valve SG steam generator SET separate effects test SIET Società Informazioni Esperienze Termoidrauliche StDev standard deviation TAF top of active fuel

Portland Office

6650 SW Redwood Lane, Suite 210 Portland, OR 97224 971.371.1592

Corvallis Office

1100 NE Circle Blvd., Suite 200 Corvallis, OR 97330 541.360.0500

Rockville Office

11333 Woodglen Ave., Suite 205 Rockville, MD 20852 301.770.0472

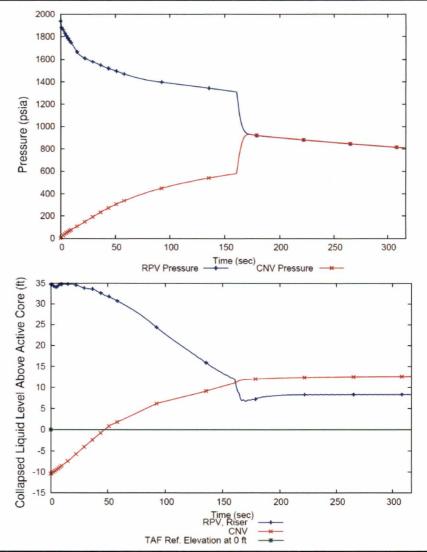
Richland Office

1933 Jadwin Ave., Suite 130 Richland, WA 99354 541.360.0500

Charlotte Office

2815 Coliseum Centre Drive, Suite 230 Charlotte, NC 28217 980.349.4804

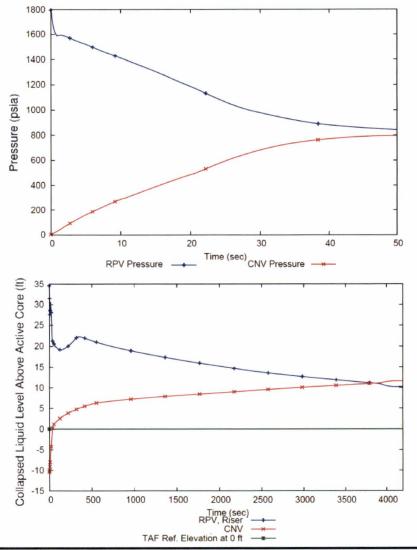
<u>http://www.nuscalepower.com</u>
Twitter: @NuScale_Power


Backup IORV Slides

27 PM-0320-69138 Revision: 0

RRV Opening Results

Sequence of Events	Time (s)
RRV opens	0
Minimum CHFR occurs	0.5
Containment pressure reaches analytical limit	0.7
Control rods begin to fall	2.7
Peak steam generator pressure is reached	64
Remaining ECCS valves open	161
Minimum collapsed liquid level above the core	170
Peak containment pressure is reached	171
Natural circulation from containment to RPV is established	197



Copyright 2020 by NuScale Power, LLC.

Template #: 0000-21727-F01 R5

RVV Opening Results

Sequence of Events	Time (s)
RVV opens	0
Containment pressure reaches analytical limit	0.3
Minimum CHFR occurs	0.3
Control rods begin to fall	2.3
Peak steam generator pressure is reached	25
Peak containment pressure is reached	52
Remaining ECCS valves open	3925
Natural circulation from containment to RPV is established	4072
Minimum collapsed liquid level above the core	4192

NUSCALE

Copyright 2020 by NuScale Power, LLC.

Template #: 0000-21727-F01R5