

ARKANSAS POWER & LIGHT COMPANY POST OFFICE BOX 551 LITTLE ROCK ARKANSAS 72203 (561) 371-4000 March 3, 1983

ØCANØ2831Ø

Director of Nuclear Reactor Regulation ATTN: Mr. J. F. Stolz, Chief Operating Reactors Branch #4 Division of Licensing U. S. Nuclear Regulatory Commission Washington, DC 20555

Director of Nuclear Reactor Regulation ATTN: Mr. Robert A. Clark, Chief Operating Reactors Branch #3 Division of Licensing U. S. Nuclear Regulatory Commission Washington, DC 20555

> SUBJECT: Arkansas Nuclear One - Units 1 & 2 Docket Nos. 50-313 and 50-368 License Nos. DPR-51 and NPF-6 Additional Information Concerning Spent Fuel Storage Expansion

Gentlemen:

Your letter dated January 5, 1983 (ØCNAØ183Ø4) requested additional information concerning the proposed spent fuel storage expansion at Arkansas Nuclear One (ANO). This submittal is in response to that request.

This submittal contains proprietary information of Westinghouse Electric Corportion. In conformance with the requirements of 10CFR Section 2.790, as amended, of the Commission's regulations, enclosed are an application from Westinghouse for withholding from public disclosure and an affidavit. The affidavit sets forth the basis on which the information may be withhold from public disclosure by the Commission.

Regarding the proprietary information, enclosed are:

- Three (3) copies of Westinghouse Drawings 613ØE41C1, Rev. 1 (sheets 1 thru 3) and 613ØE44C1 Rev. 1 (sheets 1 thru 4)-Proprietary.
- Three (3) copies of Westinghouse Drawings 613ØE41C2, Rev. 1 (sheets 1 thru 3) and 613ØE44C2, Rev. 1 (sheets 1 thru 4)-Non-Proprietary.

MEMBER MIDDLE SOUTH UTILITIES SYSTEM

- One (1) copy of Application for Withholding (CAW-83-16)-Non-Proprietary.
- 4. One (1) original Affidavit (CAW-83-16)-Non-Proprietary.

Correspondence with respect to the affidavit or application for withholding should reference CAW-83-16 and should be addressed to R.A. Wiesemann, Manager, Regulatory & Legislative Affairs, Westinghouse Electric Corporation, P. O. Box 355, Pittsburgh, PA 15230.

Very truly yours.

John R. Marshall Manager, Licensing

JRM: DB: s1

Attachments

QUESTIONS RELATING TO THE STRUCTURAL AREA

Question 1:

Provide structural drawings of the racks including fabrication details.

Response:

Spent fuel rack assembly drawings 6130E41C1, Revision 1 (sheets 1 thru 3) and 6130E441C1, Revision 1 (sheets 1 thru 4) contain information considered proprietary to Westinghouse Electric Corporation, and as requested, should be withheld from public disclosure. Non-proprietary copies of these drawings are also enclosed.

Question 2:

Provide structural drawings of the pools including foundation and liner details.

Response:

The following drawings have been transmitted with this submittal:

C-203	C-209	C-214	C-232	C-249
C-204	C-210	C-216	C-233	C-2204
C-205	C-211	C-219	C-235	C-2205
C-206	C-212	C-231	C-236	C-2206

Question 3:

Provide results of an analysis for potential sliding and/or tiping of the racks. If rack-to-rack or rack-to-pool wall/floor impact is postulated, include the resultant loads in the rack analysis as well as the pool structure analysis, as applicable. Describe the analysis procedure.

Response:

The analysis procedure for these loads on the pool structure is as follows:

The fuel rack loads utilized in this analysis consist of a submerged deadweight loading, and a vertical and horizontal reaction loading due to the operating basis earthquake. These reaction loads are distributed to the pool floor node points based on the proximity of each pad to the surrounding nodes. The earthquake loads are distributed in the same proportion as the deadweight loads, with the total force equal to that specified by Westinghouse.

Rack Displacements, Sliding, and Pocking Stability

The support pad vertical and horizontal displacements are tabulated for both high and low friction coefficients. The support pad vertical displacements are used to calculate the overall rack module rocking for partial and full fuel loading conditions. This calculation shows that the minimum factor of safety against overturn is produced by a partial fuel loading of the rack module. The factor of safety is in excess of the 1.5 minimum requirements of the NRC Position Paper.

The horizontal displacements of support pads sliding and top of the rack structural deflection are used in conjunction with thermal displacements to show that the rack module does not collide with another rack or with a pool floor obstruction or the pool wall.

Displacement Results

Species States

The rack displacement, pad vertical lift-off, pad horizontal sliding, and rack top lateral displacement are obtained from the nonlinear analysis. The maximum support pad lift-off was obtained for the high coefficient of friction run ($\mu = 0.8$) while the maximum support pad sliding was obtained for the low coefficient of friction run ($\mu = 0.2$). The results are tabulated below:

			Unit 2	Unit 1
High Coefficient of Friction Results ($\mu = .8$)	1	1		
Support Pad Lift-Off	Δy	in	0.055	0.005
Rack Top Lateral Displacement	Δx	in	0.200	0.150
low Coefficient of Friction Results ($\mu = .2$)				
Support Pad Maximum Sliding	Δx	in	0.095	0.030
Rack Top Lateral Displacement	Δx	in	0.135	0.140

Rack Lift-Off Stability

The energy which produced lift-off of the nonlinear model is applied to the fuel rack module with various fuel loadings in order to obtain the loading configuration which produces the maximum lift-off or minimum factor of safety against overturn. The lift-off energy is equated to the potential energy of lifting the center of gravity of the combined fuel and fuel rack masses to obtain the maximum lift-off of the rack. The maximum allowable lift of the center of gravity is obtained by calculating the lift of the center of gravity from the static position to the point directly above the support pad center line, as shown in the figure below. The factor of safety against overturn is obtained by comparing the allowable lift to the actual lift.

For Arkansas Unit 2, the 8 x 10 rack module was analyzed since it has the minimum support pad spacing (8 cell direction) and the minimum resistance to overturn. The loading condition of two outside rows of fuel produces the minimum factor of safety against overturn of FS = 59.

For Arkansas Unit 1, the 10 x 11 rack module was analyzed in the 10 cell direction. The loading condition of three outside rows of fuel produces the minimum factor of safety against overturn of FS>100.

Rack Module Stability

Evaluation of Rack Lateral Displacements

The nonlinear time history analysis calculates the fuel rack sliding distance for the low coefficient of friction, and the top of the rack structural deflection for the high coefficient of friction. In this portion of the evaluation, the rack to rack, rack to floor obstructions, and rack to wall gaps will be examined to show that there is no impact due to the lateral motion.

To evaluate potential impact for the rack to rack, rack to wall, and rack to pool floor obstruction gaps, the gap will be modified to account for thermal growth of hot operating conditions, and compared with the rack's maximum seismic displacement to show that the gap is not closed and impact of a rack module does not occur.

Rack Thermal Displacement

Since the pool temperature during installation is below the hot operating condition, the gap must be reduced by the thermal expansion of the rack. The rack to rack thermal displacement is for maximum normal condition and also the accident condition of cooling system not operational.

				Arkansas Unit 2	Arkansas Unit 1
Rack	Thermal Growth Maximum Normal	δ _{T1}	in	0.070	0.090
Rack	Thermal Growth Accident Condition	δ _T ²	in	0.150	0.200
	Condition				

Combined Seismic & Thermal Displacement

The condition which produces the maximum fuel rack seismic response is all fuel racks filled with fuel. For this configuration the racks responses (sliding and structural deflection) will be in phase, thus the rack to rack gap is not affected. The major factor which produces the phase relationship for this condition is the hydrodynamic coupling effect of the submerged structure.

However, due to variation of friction or for other than racks full of fuel, there may be a condition where one rack slides and the adjacent rack does not slide. For this condition the rack to rack gap will be reduced by the amount of one rack sliding, two racks structurally deflecting, and the thermal movement of the racks for the installed temperature to the maximum normal temperature. Since the structural displacements of the racks are out of phase or unrelated, the combined seismic displacements will be obtained by the SRSS method.

In addition to this condition, the thermal accident condition must be addressed. Since it is highly unlikely that the thermal accident condition, which requires days of inoperative cooling train to obtain, and the SSE seismic event occur simultaneously, only the sliding distance of the SSE event, without the structural displacements, will be combined with the thermal accident displacement.

Combined	Disp	lacement	Results
----------	------	----------	---------

			Unit 2	Unit 1
Combined Thermal & Seismic Displacement	δ	in	0.40	0.35
Limiting Gaps; Rack to Rack	G ₁	in	1.5	1.5
Rack to Pool Wall	G2	in	5.0	19.0
Rack to Pool Floor Obstruction	G3	in	>2.0	>2.0
				1.1.1

Question 4:

Provide results of an analysis for impact loads from the heaviest object to be transported over the fuel pool. Evaluate the affects on both rack structure and the pool structure including the liner. Describe the analysis procedure.

*Response:

An analysis has been conducted for dropping a 2000 lb fuel assembly from the maximum height to which it will be raised, based on the Technical Specificaiton requirements that weights no greater than 2000 lbs will be transported over spent fuel. The criticality analysis of drop accidents is performed with dissolved boron in the pool water, since not taking credit for the boron would mean assuming two unlikely independent events. With this credit no credible deformations caused by a fuel drop accident would cause a criticality accident. For the straight or inclined drop on top of the rack, the rack deformations are limited to the top region of the rack. For the straight drop through a cell the fuel assembly impacts the base plate of the rack, causes a portion of it to separate from the bottom of the rack, and impacts the floor of the spent fuel pool. Stresses on the liner, however, are not high enough to cause it to be punctured.

In the analysis the potential energy of the dropped fuel assembly is equated to the strain energy of the energy absorbing structure to obtain the impact force. The energy absorbing structure for this drop is the lower portion of the fuel assembly and the deformed portion of the rack. No credit is taken for water drag on the fuel assembly or for pumping action in the cell.

*This analysis was performed using drop heights above the fuel racks of 2'-1" for Unit 1 and 0'-10" for Unit 2 as determined by AP&L supplied drawings 21943-1 and I-16615-E which defined the maximum heights of the fuel assemblies.

Question 5:

Provide key calculations and results of the seismic analysis. Include sketches of the mathematical model and discuss the method of modeling potential rack-to-rack and rack-to-pool interaction due to sliding and/or tipping, if any.

Response:

The Arkansas spent fuel storage racks are the free standing type. During the seismic event it is possible for the rack to slide or rock and lift a support pad off the floor. Since the support pad boundary conditions as well as the gaps between the fuel assembly and cell assembly are structurally nonlinear, the seismic analysis is a nonlinear time history analysis.

The seismic analysis is performed in two phases. The first is a response spectrum analysis on a linear detail rack model which produces the effective stiffness values for a single cell representation. The second phase is a time history analysis of the single cell model which has been modified to include the nonlinearities of the fuel to cell gaps and the support pad boundary conditions. The analysis is performed for a range of support pad friction coefficients ($\mu = .2 - .8$) to determine the maximum sliding with the low friction and the maximum rocking and lift off with the high friction. This analysis produces the rack response, which is used to calculate overall rack stability, and rack loads, which are used in the structural analysis to calculate stresses. The results of this analysis are given in the response to Question 3.

The verification of the sliding capability for the WECAN Element 77, Dynamic Friction Element, has been performed by comparing the WECAN results with the results of classical solutions for simplified applications. In addition, the WECAN results of a free standing fuel rack analysis were compared with hand calculation results for a verification of a previous fuel rack license submittal.

Linear Model

The linear model, shown in the following sketch, is a three-dimensional finite element representation of a rack assembly. The structural properties of the individual beams for the cells, grids, support pads, etc., are calculated from the effective sections. The mass is composed of the structural masses of rack, fuel assembly, and control rod assembly, the water inside the cells, and the hydrodynamic mass between the rack and pool wall. The structural mass and water inside the cells are distributed on the cells, and the hydrodynamic mass between the rack and pool is input with a mass matrix element. The model is constructed for half the rack and divided at the line of symmetry with appropriate boundary conditions. A geometry plot is included to show the construction of the model.

The structural properties of a single cell representation, which are used for the nonlinear model, are obtained from the results of the detail model. The results of the single cell model computer run, frequency and mode shape, are compared with that of the detail model to insure correct structural representation.

Arkansas Unit 1, Linear Model Geometry Plot, (11 x 12) Rack

Arkansas Unit 2, Linear Model Geometry Plot, (8 x 10) Rack

Nonlinear Model

The geometry plot, shown in the following sketch, is the single cell finite elements representation of the nonlinear mathematical model. The structural properties of the rack components are represented by six different finite elements. These elements and their identification number (ITYPE) are listed below:

ITYPE	Finite Element
1	STIF 4, Three-Dimensional Beam
2	STIF 77, Three-Dimensional Dynamic Friction Element
3	STIF 27, General Matrix, Stiffness, Input
4	STIF 27, General Matrix, Mass, Input
5	STIF 37, Three-Dimensional Dynamic Gap Element
6	STIF 34, Two-Dimensional Rotary Spring

The three-dimensional beam element (STIF 4) is a straight uniform cross section element with tension-compression, torsion, and bending capabilities. This element is used to model the fuel beam, cell beam, and rack base beam.

The three-dimensional dynamic friction element (STIF 77) is composed of a gap in series with a parallel combination of impact spring and impact damper with a frictional spring orthogonal to the gap. This element is designed to represent two surfaces which may slide relative to each other, and may separate or contact each other. The friction behavior is represented by a friction spring, and the impact behavior is represented by combination of an impact spring and a dashpot in parallel, coupled to a gap in series. The friction spring is along the direction of sliding which is normal to the direction of impact. The classical Coulomb friction is assumed between the sliding surfaces. The friction behavior is simulated by a stiffness method. The friction spring will transmit the shear forces across the surfaces as long as these forces are below the friction limit. Once sliding takes place, a pseudo force is applied to the sliding surface such that the resultant of the force in the friction spring and the pseudo force will represent the friction force. This element is used to model the sliding and or lift off of the support pads and the fuel base.

The general matrix, stiffness, element (STIF27) is an element whose geometry is undefined, but whose kinematric response is specified by stiffness coefficients. This element is used to represent the connection between the base of the cell and rack base cross beam with rigid vertical and lateral properties and the rotational stiffness of the cell base, and the connection between the top grid and rack base cross beam with the rotational stiffness of the top grid.

The general matrix, mass, element (STIF27) is an element whose geometry is undefined but whose kinematic response is specified by mass coefficients. This element is used to represent the hydrodynamic mass between the fuel and cell and also between the cell and pool wall.

The three-dimensional dynamic gap element (STIF37) is composed of a gap in series with a parallel combination of impact spring and impact damper. This element is used to model the gap between the fuel and cell.

The two-dimensional rotary spring element (STIF45) is an element which has only one degree of freedom, rotation about the Z axis, and is defined by a rotational stiffness. This element is used to model the rotational stiffness of the fuel assembly grid members.

Arkansas Unit 1, Nonlinear Model Geometry Plot

Arkansas Unit 2, Nonlinear Model Geometry Plot

The structural properties for the rack are specified as real constants in the model inputs. The real constants are listed in the input under the following numbers.

Component
Base Beam
Support Pad Sliding and Impact
Cell Beam at Top and Bottom Weld Zones
Cell Beam Between Top and Bottom Weld Zones
Fuel Base Slider and Vertical Impact
Fuel Beam
Fuel Grid to Rods Rotational Stiffness
Fuel Bottom Nozzle Impact
Fuel Grid Impact
Fuel Top Nozzle Impact

Note: Some of the stiffnesses properties are input through the STIF 27 elements.

STIF 27 (K) - Support Pad Horizontal and Cell-Bottom Grid Rotational Stiffnesses

STIF 27 (K) - Cell-Top Grid Rotational Stiffness

Question 6:

Provide a tabulation of allowable vs computed stresses for the racks.

Response:

The load combinations applicable to spent fuel racks are shown below.

ELASTIC ANALYSIS	ACCEPTANCE LIMITS
(1) D + L	Normal Limits of NF 3231.1a
(2) D + L + E	Normal Limits of NF 3231.1a
(3) D + L + T _o	Lesser of 2 S_y and S_u
(4) $D + L + T_{o} + E$	Lesser of 2 S_y and S_u
(5) $D + L + T_a + E$	Lesser of 2 S _y or S _u
(6) $D + L + T_a + E'$	Faulted Condition Limits of NF 3231.1c

The margin of safety tables on the following pages show case 2 (D + L + E) and case 4 (D + L + T + E). Case 2 envelopes case 1 (D + L) and case 4 envelopes case 3 (D + L + T). Thermal loads are caused by differential thermal expansion between the rack and pool floor (which loads are limited by friction between the rack and floor) and by differential thermal expansion between a loaded cell and an empty cell. Both of these loads are the same for T_a and T_o and thus case 5 (D + L + T_a + E) is the same as case 4. Thermal loads are self limiting in nature and the fuel rack material is ductile so they are not considered for faulted conditions, case 6 (D + L + T_a + E'). The SSE seismic loads are less than twice the OBE loads and since the SSE allowables are twice the OBE allowables the margins of safety for case 6 are greater than for case 2.

The margin of safties for the Unit 1 racks will be of similar magnitude as those shown in the attached tables and will meet all of the above acceptance limits.

MARGINS OF SAFETY

Arkansas Unit 2

Region 1 Rack

			D+L+E		1	D+L+E+To	
ITEM	TYPE OF STRESS	APPLIED STRESS	ALLOWABLE STRESS	MARGIN OF SAFETY	APPLIED STRESS	ALLOWABLE STRESS	MARGIN OF SAFETY
Cell Seam Weld Wrapper Weld	Axial Shear Shear	.564* 10095 6483	1.0* 24000 11000	.77* 1.38 .70	11160 10095 6483	55000 31740 31740	3.93 2.14 3.90
Cell to Grid Welds	Shear	16968	24000	.41	22466	31740	.41
Grids Top Grid Member Welds Belt Bottom Grid Member Welds Belt Support Pad and Support Plate See Region 2 Rack	Axial Shear Axial Axial Shear Axial	2296 5049 2469 7370 12939 10878	16500 24000 16500 24000 16500	6.19 3.75 5.68 1.24 .85 .52	2296 5049 2469 7370 12939 10878	55000 31740 55000 55000 31740 55000	23.0 5.29 21.3 6.46 1.45 4.06

* Load Combination per ASME III Appendix XVII 2215.1 eqn (22)

MARGINS OF SAFETY

Arkansas Unit 2

Region 2 Rack

			D+L+E			D+L+E+To	
ITEM	TYPE OF STRESS	APPLIED STRESS	ALLOWABLE STRESS	MARGIN OF SAFETY	APPLIED STRESS	ALLOWABLE STRESS	MARGIN OF SAFETY
Cell	Axial	.650*	1.0*	.54*	13121	55000	3.19
Seam Weld	Shear	14430	24000	.66	14430	31740	1.20
Wrapper Weld	Shear	8616	11000	.28	8616	31740	2.68
Cell to Cell Welds							
Near Top of Cell	Shear	9620	24000	1.49	16948	31740	.87
At Bottom of Cell	Shear	14066	24000	.71	20335	31740	.58
Support Pad							1. S
Minimum Section	Axial	4542	16500	2.63	4622	55000	10.9
	Shear	1494	11000	6.36	1367	31740	22.2
Bearing Surface	Bearing	6364	24750	2.89	4793	55000	10.5
Threads	Shear	4727	11000	1.33	3597	31740	7.8
Support Plate	Shear	1786	11000	5.16	1500	31740	20.2
Welds	Shear	11580	24000	1.07	10620	31740	1.99
	그는 영화 영화 문화						
	No. of the second second						

* Load combination per ASME III Appendix XVII 2215.1 eqn (22)

Question 6:

Provide a tabulation of allowable vs. computed stresses for the racks and pool.

Response:

Attached are the appropriate Tables and Figures showing computer models for the pool area only.

	Location	Section Axial Force	Section Resultant Moment(2,4)	Section Allowable Moment ⁽³⁾	Moment Code Ratio
Pool	Floor Slab: (AFPSTA1A2-09)				
	East - West Section at South End (Element 320)	-47.58	1005.	1321.	0.76
	North - South Section at Mid-span (Element 320)	-35.50	1093.	1869.	0.59
Pool	Foundation: (AFPSTA1A2-10)				
	South Wall, Horizontal Section at Top (Element 2865)	-17.31	315.7	811.8	0.39
	East Wall, Horizontal Section at Top (Element 2877)	-18.30	351.2	827.4	0.42
	West Wall, Horizontal Section at Top (Element 2857)	-16.68	391.8	801.7	0.49

Units: Kips/Inch, Kip-inches/Inch

Notes: 1) NUREG-0800 Load Combination (D + L + T_a + 1.25E')
2) Positive moment causes tension on outside surface of walls and lower surface
of floor slab.

3) Allowable moment is based on strength design method per ACI 349/80.

	Location	Section Axial Force	Section Resultant Moment(2,4)	Section Allowable Moment(3)	Moment Code Ratio
East	Pool Wall: (AFPSTA1A2-05)				
	Vertical Section at Bottom North Corner (Element 2823)	-35.58	1262.	2235.	0.57
	Horizontal Section at Bottom North Corner (Element 2329)	-38.51	1284.	2121.	0.61
	Vertical Section at Top Center Span (Average Elements 6324,5824,5324, 4824 - AFPSTA1A2-12)	14.58	219.8	1027.	0.21

Units: Kips/Inch, Kip-inches/Inch

Notes: 1) NUREG-0800 Load Combination (D + L + T_a + 1.25E') 2) Positive moment causes tension on outside surface of walls and lower surface of floor slab.

3) Allowable moment is based on strength design method per ACI 349/80.

Location	Section Axial Force	Section Resultant Moment(2,4)	Section Allowable Moment(3)	Moment Code Ratio
West Pool Wall: (AFPSTA1A2-08)				
Vertical Section at Bottom Mid-span (Element 2306)	-32.89	1298.	2219.	0.58
Horizontal Section near Bottom South End (Element 2808)	-34.82	1217.	2059.	0.59
Vertical Section at Top Mid-span (Average Elements 6304,5804,				
5304,4804 - AFPSTA1A2-12)	14.97	205.0	1015.	0.20

Units: Kips/Inch, Kip-inches/Inch

Notes: 1) NUREG-0800 Load Combination (D + L + T_a + 1.25E') 2) Positive moment causes tension on outside surface of walls and lower surface of floor slab.

3) Allowable moment is based on strength design method per ACI 349/80.

Location	Section Axial Force	Section Resultant Moment(2,4)	Section Allowable Moment ⁽³⁾	Moment Code Ratio
Fuel Transfer Canal Separation Wall: (AFPSTA1A2-07)				
Vertical Section Below Elevation of Bottom of Gate Opening (Element 3313)	-40.93	769.2	1147.	0.67
Horizontal Section at Bottom of Wall (Element 2818)	-31.80	540.0	872.5	0.62
Vertical Section at Top East End (Average Elements 4818,5318,5818,6318 - AFPSTALA2-12A)	-6.624	166.0	397.6	0.42
Horizontal Section at West End of Wall Above Elevation of Bottom of Gate Opening (Average Elements 4314 thru 4318 - AFPSTA1A2-12A)	-16.58	369.4	۶،37.0	0.63

Units: Kips/Inch, Kip-inches/Inch

- Notes: 1) NUREG-0800 Load Combination (D + L + T_a + 1.25E') 2) Positive moment causes tension on outside surface of walls and lower surface of floor slab.
 - 3) Allowable moment is based on strength design method per ACI 349/80.
 - 4) Ta moments are relieved, maintaining equilibrium and curvature of section.

	Location	Section Axial Force	Section Resultant Moment(2,4)	Section Allowable Moment(3)	Moment Code Ratio
ask AFP	Laydown Separation Wall: STA1A2-06)				
	Vertical Section Below Elevation of Bottom of Gate Opening (Element 3335)	-34.62	466.3	664.6	0.70
	Horizontal Section at Bottom Mid-span (Element 2335)	-34.35	396.7	572.4	0.69
	Vertical Section at East End of Wall Above Elevation Of Bottom ot Gate Opening (Element 3834)	-13.41	188.4	367.0	0.51

Units: Kips/Inch, Kip-inches/Inch

Notes: 1) NUREG-0800 Load Combination (D + L + T_a + 1.25E') 2) Positive moment causes tension on outside surface of walls and lower surface of floor slab.

3) Allowable moment is based on strength design method per ACI 349/80.

	Locat	Section Axial Force	Section Resultant Moment(2,4)	Section Allowable Moment(3)	Moment Code Ratio
001	North Wall:				
	Vertical Section at Middle West Edge (Element 3839)	-3.483	292.1	433.5	0.67
	Horizontal Section at Middle West Edge (%lement 3839)	-38.50	1002.	1384.	0.72
	Vertical Section at Top West End (Average Elements 6339,5839,5339,4839 - AFPSTA1A2-12)	0.496	170.2	307.3	0.55

Units: Kips/Inch, Kip-inches/Inch

Notes: 1) NUREG-0800 Load Combination (D + L + T_a + 1.25E') 2) Positive moment causes tension on outside surface of walls and lower surface of floor slab.

3) Allowable moment is based on strength design method per ACI 349/80.

in pain pain (***) and and the

			Location	Section Axial Force	Section Resultant Moment(2,4)	Section Allowable Moment(3)	Moment Code Ratio
	Pool	Floor	Slab: (AFPSTA2A2-11)				
		East - 1/3 si	- West Section at Dan (Element 330)	-49.67	893.5	1646.	0.54
		North at Mic	- South Section I-span (Element 320)	-29.67	810.5	1670.	0.49
б.	Pool	Founda	ation: (AFPSTA2A2-12)				
		North Section 1367)	Wall, Horizontal on at Top (Element	-13.40	-165.4	-904.5	0.18
		East Section 2878)	Wall, Horizontal on at Top (Element	-7.222	181.1	599.2	0.30
		West Secti 2857)	Wall, Horizontal on at Top (Element	-27.69	315.4	869.7	0.36
	Unit	s: Ki	ps/Inch, Kip-inches/Inc	:h			
Structural Oynamics Technology	Note	s: 1) 2) 3) 4)	NUREG-0800 Load Combi Positive moment cause of floor slab. Allowable moment is b T _a moments are reliev	nation (D + I es tension on based on strer ved, maintaini	, + T _a + 1.25E') outside surface ngth design meth ing equilibrium	of walls and l od per ACI 349/ and curvature o	ower surface 80. of section.

APL-02-013 November 24, 1982

-

Location	Section Axial Force	Section Resultant Moment(2,4)	Section Allowable Moment(3)	Moment Code Ratio
West Pool Wall: (AFPSTA2A2-10)				
Vertical Section at Bottom Mid-span (Element 2305)	-20.80	849.6	1771.	0.48
Horizontal Section near Bottom North End (Element 2808)	-32.17	922.6	1935.	0.48
Vertical Section at Top Mid-span (Average Elements 6304,5804 5304,4804 - AFPSTA2A2-14)	13.88	206.8	879.7	0.24

Units: Kips/Inch, Kip-inches/Inch Notes: 1) NUREG-0800 Load Combination (D + L + T_a + 1.25E') 2) Positive moment causes tension on outside surface of walls and lower surface of floor slab. 3) Allowable moment is based on strength design method per ACI 349/80. 4) T_a moments are relieved, maintaining equilibrium and curvature of section. APL-02-013 November 24, 198

N

The second secon

	Location	Section Axial Force	Section Resultant Moment(2,4)	Section Allowable Moment(3)	Moment Code Ratio
East	Pool Wall: (AFPSTA2A2-07)				
	Vertical Section at Bottom Mid-span (Element 2327)	-44.48	901.5	1750.	0.52
	Horizontal Section at Bottom South Corner (Element 2329)	-32.00	902.4	1711.	0.53
	Vertical Section at Top Center Span (Average Elements 6326,5826, 5326,4826 - AFPSTA2A2-14)	14.18	234.2	875.2	0.27

Units: Kips/Inch, Kip-inches/Inch Notes: 1) NUREG-0800 Load Combination (D + L + T_a + 1.25E') 2) Positive moment causes tension on outside surface of walls and lower surface of floor slab. 3) Allowable moment is based on strength design method per ACI 349/80. 4) T_a moments are relieved, maintaining equilibrium and curvature of section.

APL-02-013 November 24, 198

N

119

Section Axial Force	Section Resultant Moment(2,4)	Section Allowable Moment(3)	Moment Code Ratio
-40.95	518.4	768.3	0.68
-23.83	403.9	7 58 . 3	0.56
-11.63	267.8	447.7	0.60
-26.31	379.2	680.7	0.56
	Section Axial Force -40.95 -23.83 -11.63	Section Section Axial Resultant Force Moment(2,4) -40.95 518.4 -23.83 403.9 -11.63 267.8 -26.31 379.2	Section Axial Force Section Resultant Moment(2,4) Section Allowable Moment(3) -40.95 518.4 768.3 -23.83 403.9 758.3 -11.63 267.8 447.7 -26.31 379.2 680.7

Kips/Inch, Kip-inches/Inch Units:

Notes: 1)

- NUREG-0800 Load Combination (D + L + T_a + 1.25E') Positive moment causes tension on outside surface of walls and lower surface 2) of floor slab.
- Allowable moment is based on strength design method per ACI 349/80. 3)
- 4) Ta moments are relieved, maintaining equilibrium and curvature of section.
- APL-02-01 NW 44 198

N

- Dynamics Technology

Location	Section Axial Force	Section Resultant Moment(2,4)	Section Allowable Moment(3)	Moment Code Ratio
Cask Laydown Separation Wall: (AFPSTA2A2-08)				
Vertical Section Below Elevation of Bottom of Gate Opening (Element 3335)	-36.39	469.1	653.9	0.72
Horizontal Section at Bottom Mid-span (Element 2335)	-35.86	405.7	689.7	0.59
Vertical Section at East End of Wall Above Elevation Of Bottom of Gate Opening (Element 3834)	-13.99	205.3	392.2	6.52

Units:	Kips/Inch, Kip-inches/Inch
Notes:	 NUREG-0800 Load Combination (D + L + T_a + 1.25E') Positive moment causes tension on outside surface of walls and lower surface of floor slab.
Structural Dynamics Technology	 Allowable moment is based on strength design method per ACI 349/80. T_a moments are relieved, maintaining equilibrium and curvature of section.

APL-02-013 November 24, 1982

HILLIN

.1111

Location	Section Axial Force	Section Resultant Moment(2,4)	Allowable Moment(3)	Moment Code Ratio
Pool South Wall: (AFPSTA2A2-	13)			
Vertical Section at Bottom East Corner (Element 2338)	-15.77	745.8	1787.	0.42
Horizontal Section at Bottom East Corner (Element 2338)	-31.36	837.8	1703.	0.49
Vertical Section at Top West End (Average Eleme 6339,5839,5339,4839 - AFPSTA2A2-15)	nts 6.866	127.7	1543.	0.08

Units: Kips/Inch, Kip-inches/Inch

Notes: 1) NUREG-0800 Load Combination (D + L + T_a + 1.25E')
 2) Positive moment causes tension on outside surface of walls and lower surface of floor slab.
 3) Allowable moment is based on strength design method per ACI 349/80.
 4) T_a moments are relieved, maintaining equilibrium and curvature of section.

APL-02-013 November 24, 198

N
Question 7:

Are any modifications to the pool structure or liner contemplated?

Response:

No modifications are planned.

Question 8:

In the seismic analysis, describe the methods for estimating effects due to fluid motion on both the pool structure and racks.

Response:

For the pool structure the earthquake response of the pool water is defined based on the methodology outlined in TID-7024, Appendix F. The hydrodynamic loads are calculated as pressure profiles over the pool wetted surface and distributed to each node based on nodal tributary area. The resulting nodal forces were summed to determine the net resulting hydrodynamic forces in orthogonal directions, and these force resultants were verified using additional methodology in TID-7024, which defines the integrated pressure resultants.

The effect of water upon the dynamic response of submerged structures is significant. Two major items of concern are the virtual mass, which affects the structural frequency, and the fluid structural coupling of adjacent bodies, which affects the loads. In order to include both these effects, a hydrodynamic mass matrix element is used in the mathematical model.

The hydrodynamic mass matrix is composed of 4 terms. The M_{11} term is the virtual mass of the fluid on the racks and is calculated such that the kinetic energy of the virtual mass is the same as the kinetic energy of the moving fluid. The M_{12} and M_{21} terms represent interaction between the racks and the pool walls. The M_{22} term has a similar meaning to the M_{11} but applies to the spent fuel pool. Both horizontal flow (around the racks) and vertical flow (over the racks) are considered in the calculation. The proximity of the pool walls to the racks is also considered. The calculation is based on potential flow theory, reference "The Effects of Liquids on the Dynamic Motions of Immersed Solids," R. J. Fritz, Journal of Engineering for Industry, February 1972.

QUESTIONS RELATING TO THE NUCLEAR PHYSICS AREA

Question 1:

Provide the calculated value of K_{eff} for Region 1 as well as the maximum enrichment assumed and the values of all biases and 95/95 uncertainties.

Response:

The maximum enrichment assumed in the analysis is 4.10 w/o U-235. The K_{eff} for the Region 1 rack is determined in the following manner:

$$K_{eff} = K_{nominal} + B_{method} + B_{part} + [(ks_{nominal})^2 + (ks_{method})^2 + (ks_{mech})^2]^{\frac{1}{2}}$$

where:

K_{nominal} = nominal case KENO K_{eff}

B_{method} = method bias determined from benchmarch critical comparisons B_{part} = bias to account for poison particle self-shielding ks_{nominal} = 95/95 uncertainty in the nominal case KENO K_{eff} ks_{method} = 95/95 uncertainty in the method bias ks_{mech} = 95/95 uncertainty due to construction and material tolerances.

Substituting calculated values in the order listed above, the result is:

 $K_{eff} = 0.9169 + 0.0025 + [(.00388)^{2} + (.013)^{2} + (.0171)^{2}]^{\frac{1}{2}}$ = 0.9412 - For Unit 1 B & W 15 x 15 Fuel $K_{eff} = 0.9260 + 0.0025 + [(0.00388)^{2} + (.013)^{2} + (.00904)^{2}]^{\frac{1}{2}}$ = 0.9448 - For Unit 2 CE 16 x 16 Fuel

Question 2:

Provide the calculated values of K_{eff} for Region 2 for the checkerboard storage configuration with 4.1 w/o enrichment assemblies and for any other configuration used to determine the final K_{eff} as well as the values of all biases and 95/95 uncertainties.

Response:

The K $_{\rm eff}$ for Region 2 with the checkerboard configuration and 4.1 w/o U-235 is determined in the following manner:

$$K_{eff} = K_{nominal} + B_{method} + \left[(ks)^{2}_{nominal} + (ks)^{2}_{method} + (ks)^{2}_{mech} + (ks)^{2}_{asym} \right]^{1/2}$$

where:

Substituting calculated values in the order listed above, the result is:

$$K_{eff} = 0.9068 + 0.0 + \left[(.0059)^2 + (.013)^2 + (.0288)^2 + (.009)^2 \right]^{1/2}$$

= 0.9402 - For Unit 1 B & W 15 x 15 Fuel
$$K_{eff} = 0.8860 + 0.0 + \left[(.0064)^2 + (.013)^2 + (.0212)^2 + (.0173)^2 \right]^{1/2}$$

= 0.9169 - For Unit 2 CE 16 x 16 Fuel

The second configuration used to determine the final K_{eff} consists of spent fuel assemblies in every cell of the rack. The final K_{eff} for spent fuel in Region 2 is constructed according to the following formula:

$$K_{eff} = K_{nom} + B_{method} + \left[(ks_{weth})^2 + (ks_{nom})^2 + (ks_{mech})^2 + (ks_{mech})^2 + (ks_{asym})^2 + (ks_{pu})^2 + (ks_{bu})^2 \right]^{\frac{1}{2}}$$

where:

nom	the nominal case KENO eigenvalue	
Bmeth	the bias in the method	
^{ks} meth	the method uncertainty (95/95)	
rsnom	the uncertainty (95/95) on the nominal eigenvalue	
mech	the uncertainty (95/95) due to construction and material	L
	tolerance	
ksasym	the uncertainty (95/95) due to asymmetric assembly	
	positioning within the cell	
ks pu	the uncertainty on the plutonium reactivity	

Substituting calculated values in the equation of Attachment 1 for spent fuel in the rack results in:

$$K_{eff} = 0.8892 + 0.0 + [(.013)^{2} + (.00332)^{2} + (.01212)^{2} + (.01137)^{2} + (.009)^{2} + (.009)^{2}]^{\frac{1}{2}}$$

= 0.914 - For Unit 1 B & W 15 x 15 Fuel
$$K_{eff} = 0.9068 + 0.00 + [(.013)^{2} + (.00391)^{2} + (.01341)^{2} + (.00948)^{2} + (.009)^{2} + (.009)^{2}]^{\frac{1}{2}}$$

= 0.9316 - For Unit 2 CE 16 x 16 Fuel

As can be seen from comparing the K_{eff} formulas in the licensing submittal with those used in the response to questions 1 and 2, the term used to account for construction and material tolerances is included as an uncertainty term in lieu of a direct bias. The same is true for the term used for the potential placement of the assemblies asymmetrically in the can. Both of these phenomenon occur randomly and are not biased in any one direction.

Please amend the original submittal to reflect these changes in both Region 1 and Region 2 K_{eff} formulas and definition of terms. Attached are pages 29, 30, 36, 37 and 38 which have been corrected to reflect these changes.

between the four cans is reduced. The reactivity increase of this configuration is found and is included as an uncertainty term in calculating the K_{eff} of the rack.

Some mechanical tolerances are not included in the analysis because worst case assumptions are used in the nominal case analysis. An example of this is eccentric assembly position. Calculations were performed which show that the most reactive condition is the assembly centered in the can which is assumed in the nominal case. Another example is the reduced width of the poison plates. No bias is included here since the nominal KENO case models the reduced width explicitly.

The final result of the uncertainty analysis is that the criticality design criteria are met when the calculated effective multiplication factor, plus the total uncertainty (TU) and any biases, is less than 0.95.

These methods conform with ANSI N18.2-1973, "Nuclear Safety Criteria for the Design of Stationary Pressurized Water Reactor Plants," Section 5.7, Fuel Handling System; ANSI N210-1976, "Design Objectives for LWR Spent Fuel Storage Facilities at Nuclear Power Stations," Section 5.1.12; ANSI N16.9-1975, "Validation of Calculational Methods for Nuclear Criticality Safety;" NRC Standard Review Plan, Section 9.1.2, "Spent Fuel Storage;" and the NRC Guidance, "NRC Position for Review and Acceptance of Spent Fuel Storage and Handling Applications."

29

4.25 Rack Modification

For normal operation and using the method described in the above sections, the K_{eff} for the rack is determined in the following manner:

$$K_{eff} = K_{nominal} + B_{method} + B_{part} + \left[(k_{s_{nominal}})^2 + (k_{s_{method}})^2 + (k_{s_{mech}})^2 \right]^{\frac{1}{2}}$$

where:

K_{nominal} = nominal case KENO K_{eff}

B_{method} = method bias determined from benchmark critical comparisons

B_{part} = bias to account for poison particle self-shielding.

 k_{s} nominal = 95/95 uncertainty in the nominal case KENO K_{eff}.

 $ks_{method} = 95/95$ uncertainty in the method bias.

ksmech = 95/95 uncertainty due to construction and material
tolerances.

The presence of the approximately 1600 ppm boron in the pool water will decrease reactivity by approximately 30% ΔK . Thus, $K_{eff} \leq$ 0.95 can be easily met for postulated accidents, since any reactivity increase will be much less than the negative worth of the dissolved boron.

For fuel storage applications, water is usually present. However, accidental criticality when fuel assemblies are stored in the dry condition is also accounted for. For this case, possible sources of moderation, such as those that could arise during fire fighting operations, are included in the analysis.

This "optimum moderation" accident is not a problem in fuel storage racks because possible water densities are too low (1 0.01 gm/cm³) to yield K_{eff} values higher than for full density water and the rack design prevents the preferential reduction of water density between the cells of a rack (e.g., boiling between cells).

4.3.5 Manufacturing Biases

The construction tolerances for the spacer pocket racks allow for the nominal center-to-center spacing to be randomly reduced for individual cells. This change will result in an increase in K_{eff}

36

which will be treated as an uncertainty. The effect of the tolerances on pocket height and material thicknesses also result in an increase in K_{eff} which will be treated as an uncertainty.

Another center-to-center spacing reduction can be caused by the asymmetric assembly position within the storage cell. The inside dimensions of a nominal storage cell are such that if a fuel assembly is loaded into the corner of the cell, the assembly centerline will be displaced from the cell centerline. This means that adjacent asymmetric fuel assemblies would have their center-to-center distance reduced from the nominal. Analysis shows this reduction may increase reactivity. This will be treated as an uncertainty because the asymmetric positioning of assemblies within storage cells will be random.

The final K_{eff} for Region 2 is constructed according to the following formula:

 $K_{eff} = K_{nom} + B_{meth} + [(ks_{mech})^2 + (ks_{asym})^2 + (ks_{meth})^2 + (ks_{nom})^2 + (ks_{pu})^2 + (ks_{bu})^2]^{\frac{1}{2}}$

where:

K_{nom} is the eigenvalue from KENO for the nominal storage configuration,

B_{meth} is the bias in the method,

ksmeth is the method uncertainty (95/95),

 ks_{nom} is the uncertainty (95/95) on the nominal eigenvalue,

ks_{mech} is the uncertainty (95/95) due to construction and material tolerance.

 ks_{asym} is the uncertainty (95/95) due to asymmetric assembly positioning within the cell.

ks_{nu} is the uncertainty on the plutonium reactivity, and

 ks_{hu} is the uncertainty on reactivity as a function of irradiation.

While it may be argued that ks_{bu} and ks_{pu} are not independent and should not be combined statistically, it should be considered that the reactivity of fuel as a function of burnup depends implicitly on the production rate of plutonium. The two uncertainties are so closely related that accounting for them twice is a conservative form of double accounting.

38

QUESTIONS RELATED TO RADWASTE AREA

Question 1:

What is the average annual volume of solid radwastes shipped off-site from Units No. 1 and 2?

Response:

Arkansas Nuclear One's average annual volume of solid radwastes shipped off-site from 1978 to 1982 is 24,199 cubic feet. However, we believe that a realistic average annual volume of solid radwaste shipments for future years will range between 30,000 - 35,000 cubic ft.

Question 2:

What is the approximate volume of old fuel assembly racks to be disposed with and without volume reduction?

Response:

The estimated volume of old fuel assembly racks to be disposed of without any volume reduction is 18,700 cubic ft. It is estimated that this can be reduced to approximately 950 cubic feet (95% volume reduction) through dismantling and decontamination by electropolishing.

Question 3:

What is the average design burnup in MWD/MTU for Unit No. 2?

Response:

Currently Unit No. 2's average design Batch burnup is expected to be approximately 34,000 MWD/MTU. However, this value may be increased when fuel test programs have demonstrated that it is safe to do so.

ARKANSAS NUCLEA

SPENT FUEL STORAGE FACIL

ARKANSAS NUCLE

SPENT FUEL STORAGE FAC

MIDDLE

PLAN AT ELEV

APL-01-004 PLAN AT ELEVATION 404'-0" REVISION 1 JUNE 7, 1982 ENCLOSURE

KEY DIAGR

AR ONE-UNIT ONE ILITY FINITE ELEMENT MODEL

OUTSIDE MEMBRANES

AMS AND DIMENSIONS

SECTION D-D

Structural Dynamics Technology, Inc.

ARKANSAS NUCLE

SPENT FUEL STORAGE FACIL

NODE NUMBERS

1209	1208	1207	1206	1205	1204	1203	1202
1214	\$ 055	1059	1053	1052	0.051	1050	1235
1215	1061	5050	1059	tosa	1057	1056	1238
1216	1067	1066	1065	1064	1063	1062	1237
1217	1073	1072	1071	1070	1965	1008	1236
1218	1079	1478	1077	1076	1075	1079	1235
1223	1224	1225	1226	1227	1228	1229	1230

INSIDE SURFACE

1109	1108	1107	1106	1105	1104	1103	1102
1114	2055	2054	2053	2052	2051	2050	1139
1115	2061	2060	2059	2058	2057	2056	1138
1116	2067	2065	2065	2064	2063	2062	1137
1117	2073	2072	2071	2070	2069	2068	1136
1118	2079	2078	2077	2076	2075	2074	1135
1123	1124	1125	\$125	1127	1128	1129	1130

MIDDLE SURFACE

1009	1008	1007	1006	1005	1004	1003	1002
1014	3055	3054	3053	3052	3051	3050	1039
1015	3061	3060	3059	3058	9057	3056	1038
101F	3067	3066	3065	4004	3063	3062	1037
1017	3073	3072	3071	3070	3069	3068	1036
1018	3079	3078	3077	3076	3075	3074	1035
1023	1024	1025	1026	1027	4028	1029	1030

OUTSIDE SURFACE

CUBE EL

			_
206	205	204	
213	212	211	
220	219	218	-
227	226	225	
234	233	232	-
291	240	239	-
Construction second			

INSIDE

406	405	404	-
413	912	911	
420	419	419	-
427	425	425	-
434	433	432	-
991	440	439	

OUTSIC

APL-01-004 REVISION 1 JUNE 7, 1982 ENCLOSURE

FIGU

FLOOR ELEMENT A

R ONE-UNIT ONE

TY FINITE ELEMENT MODEL

SURFACE MEMBRANE ELEMENTS

106	105	104	103	102	101	100
113	112	111	110	109	108	107
120	119	118	117	116	115	114
127	126	125	124	123	122	121
1.34	133	132	131	130	129	128
141	140	139	138	137	136	135

INSIDE SURFACE

306	305	304	303	302	301	300
313	312	311	310	309	308	307
320	919	318	317	316	315	314
327	326	325	324	323	322	32.
334	333	332	331	330	329	328
341	340	339	338	337	336	335

MIDDLE SURFACE

	506	505	504	503	502	501	500
-	\$13	512	511	510	509	508	507
F	520	519	518	517	516	515	514
-	527	526	525	524	523	522	521
	534	533	532	531	530	529	528
1	541	540	\$39	538	537	536	535

5	13	512	511	510	509	508	50
5	20	519	518	517	516	515	51
5	27	526	525	524	523	522	52
5	34	533	532	531	530	529	52
5	941	540	\$39	538	537	536	53
					and the second second	the state of the s	

OUTSIDE SURFACE

Structural Dynamics Technology, Inc.

ł

E LAYER

EMENTS

202

209

216

223

230

201

208

222

229

236

200

207

214 221

228

235

103

14

31 38

LAYER

103	402	401	400
10	409	408	407
17	416	415	414
124	423	422	421
31	430	429	428
38	437	936	435

ND NODE NUMBERS

B

ARKANSAS NUCLE

SPENT FUEL STORAGE FACI

CUBE E

827	829	623	6229	6228	6227	6226	6225	6224	6223	641	9013
815	817	25932	5729	5728	\$727	5726	5725	\$724	5723	8165 6	8913
803	805	5230	5229	5228	5227	5226	5225	5224	\$223	2225 2225	6613
791	793	4730 4933	4729	4728	4727	4726	4725	ų724	4723	4919	8713
779	781	4230 052h	4229	4228	4227	4226	4225	4224	4223	4419	8613
767	769	3130	3729	3728	3727	3726	3725	37.24	3723	3913	8513
755	757	5£ħ£ 052£	3229	3228	3227	3226	3225	3224	3223	3419	8413
743	745	2730	2729	2728	2727	2726	2725	2724	2723	2919	8313
731	733	55.42	2229	2228	2227	2226	2225	2224	2223	2419	8213
719	721	193	1729	1728	1727	1726	1725	1724	1723	191	8113
		CEAR 0 CZ D	1229	1228	1.227	1226	1225	1224	1223	3419	8013

INSIDE LAYER

SURFACE MEMB

6329	6328	6327	-
5829	5828	5827	100
5329	5328	5327	10
4629	4828	4827	
4329	4328	4327	-
3829	3828	3627	-
3329	3328	3327	
2829	2828	2827	-
2329	2328	2327	
			- 11

6129	6128	6127	6126	6125	6124	6123
5629	5628	5627	5626	5625	5624	5623
5129	5128	5127	5126	5125	5124	5123
4629	4628	4627	4626	4625	4624	4623
4129	4128	4127	4126	4125	4124	9123
3629	3628	3627	3526	3625	3629	3623
3129	3128	3127	3126	3125	3124	3123
2629	2628	2627	2626	2625	2624	2623
2129	2128	2127	2126	2125	2124	2123

INSIDE SURFACE

APL-01-004 **REVISION 1** JUNE 7, 1982 ENCLOSURE

FIGL

MIDD

EAST WALL EL

AR ONE-UNIT ONE ITY FINITE ELEMENT MODEL

LEMENTS

828	836	543	6429	6428	6427	6426	6425	6424	6423	642	9065
816	818	25832	5929	5928	5927	5926	5925	5924	5923	2265 2	8.965
804	806	5430 5432	5429	5428	5427	5426	\$425	5424	5423	5420	0865
792	794	4930	4929	4928	4927	4926	4925	4924	4923	4922	8765
780	782	1430	4429	4928	4427	4425	4425	4424	4423	4422	8665
768	770	3930	3929	3928	3927	3926	3925	3924	3923	265	8565
756	758	26 b £	3429	3428	3427	3426	3425	3424	3423	3422	8465
744	746	2830	2929	2928	2927	2926	2925	2924	2923	2922	8365
732	734	2432	2429	2928	2427	2426	2425	2424	2423	2422	8265
720	722	19 EE	1929	1928	1927	1926	1925	1924	1923	192	8165
		EAR BAB	1429	1428	1427	1426	1425	1424	1423	242	8065

OUTSIDE LAYER

RANE ELEMENTS

326	6325	6324	6323
826	5825	5824	5823
326	5325	\$324	5323
826	4825	4824	4823
328	4325	4324	4323
826	3825	3824	3823
326	3325	3324	3353
826	2825	2824	2823
326	2325	2324	2323

ł	6529	6528	6527	6526	6525	6524	6523
l	6029	6028	6027	5026	6025	6024	6023
	5529	5528	5527	5526	5525	5524	523
	5029	5028	5027	5026	5025	5024	5023
1	4529	4528	4527	4526	4525	4524	4523
I	4029	4028	4027	4026	4025	4024	4023
	3529	3528	3527	3526	3525	3524	3523
Ì	3029	3028	3027	3026	3025	3024	30.23
1	2529	2528	2527	2526	2525	2524	2523
- A.							

OUTSIDE SURFACE

ESURFACE

EMENT NUMBERS

ARKANSAS NUCLE

SPENT FUEL STORAGE FACI

JUNE 7, 1982 ENCLOSURE

AR ONE-UNIT ONE ITY FINITE ELEMENT MODEL

2692 1692 3622 3623 2592 1592 3527. 2542 1542 b474 2492 2492 3472 3473 3481 3481 39.24 2342 1342 3327. 3272 3273 2242 1242 323131313031 323231323032 2192 1192 1223022 b024

SURFACE

RE 5

ODE NUMBERS

Structural Dynamics Technology, Inc.

OUTSIDE SURFACE

ARKANSAS NUCLE SPENT FUEL STORAGE FACIL

CUBE E

6209	6208	6207	6206	6205	6204	6203	6202	820
5709	5708	\$707	5706	\$705	5704	\$703	\$702	570
5209	5208	5207	5206	5205	5204	5203	5292	520
4709	¥708	4707	4706	4705	4704	4703	4702	470
4209	4208	4207	4206	9205	4204	4203	4202	420
3709	3708	3707	3706	3705	3704	3703	3702	370
3509	3208	3207	3206	3205	3204	3203	3202	320
2709	2708	2707	2706	2705	2704	2703	2702	270
2209	8055	2207	2206	2205	2204	2203	2202	220
1709	1708	1707	1706	1705	1204	1703	1702	170
1209	1208	1207	1206	1205	1204	1203	1202	120
						and the second se		

INSIDE LAYER

	_	

6308	6307	6306
5808	5807	5808
\$308	5307	5306
4808	4807	9084
4308	4307	4336
3808	3807	3696

SURFACE MEMB

6108	6107	6106	€105	6104	6103	6102
5608	3607	\$606	5605	5604	5603	5602
5108	5107	\$106	5105	5104	5103	5102
9039	4607	4606	4605	4604	4603	4602
4108	4107	4106	4105	4104	4103	4102
3608	36.0.7	3606	3605	3604	3603	3602
3108	3107	3106	31.05	3104	3103	3102
2608	2607	2605	2605	2604	2603	2602
2108	2107	2106	2105	2104	2103	2102

INSIDE SURFACE

APL-01-004 **REVISION 1**

JUNE 7, 1982

ENCLOSURE

308	2307	2306
		MIC
	F	IGI

3308 3307 3306

FIGU

WEST WALL ELE

AR ONE-UNIT ONE ITY FINITE ELEMENT MODEL

LEMENTS

64108409	6308	6407	6406	6405	6409	6403	6402	64006400
59105909	5908	59.27	5906	5905	5904	5903	5902	59005900
54125409	5408	5407	5406	5405	5404	5403	5402	54315400
49104909	1908	4507	4900	4905	4904	8903	4902	49014900
44104409	1108	4407	4406	4405	4404	4403	4402	44034400
39103909	3904	3907	3906	3905	3904	3903	3902	39003900
34103409	3408	3407	3406	3405	3404	3403	3402	34013400
29102908	2908	2907	2906	2905	2904	2903	2902	29012900
24302405	2408	2407	2406	29.05	2404	2403	2402	24002400
19101909	3061	1907	190€	1905	1904	1903	1902	19011900
14101409	1408	1407	1406	1405	1404	1403	1402	14011400

OUTSIDE LAYER

RANE ELEMENTS

6305	6304	6303	6302
5805	5804	5803	5802
5305	5304	5303	5302
4805	4804	4803	N802
4305	4304	4303	4302
3805	380%	3803	3802
3305	7704	3303	3302
2605	2604	2603	2902
2305	2304	2303	2302

ĺ	6508	6507	6506	6505	6504	6503	6502
t	6008	6007	6006	6005	6004	6003	6002
	5508	5507	5506	5505	5504	5503	5502
	5008	5007	5006	5005	5004	5003	5002
t	4508	4507	4506	4505	4504	4503	4502
	4008	4007	4006	4005	4004	4003	4002
	3506	3507	3508	3505	3504	3503	3502
ł	3008	3007	3006	3005	3004	3003	3002
	2508	2507	2506	2505	2504	2503	2502

Structural Dynamics Technology, Inc.

OUTSIDE SURFACE

RE 6

DLE SURFACE

MENT NUMBERS

ARKANSAS NUCLE SPENT FUEL STORAGE FACIL

1659	iesa	1657	1656	1655	1654	1653	1652
1609	9508	1607	1606	1605	1604	1603	1603
1559	1558	1557	2556	1555	1554	1553	1552
1509	1508	3507	1506	1505	1504	1503	
1459	1458	2457	1456	1955	1454	1453	1452
1409	1408	1407	0.406	1405	-	1403	1402
1359	1358	1357	1356	3 355	3354	1353	1352
1 309	3396	1 307	1306	305	1304	1 303	1 302
1259	1258	1257	1256	1255	1254	1253	1252
1209	1208	207	\$ 205	1205	1204	1203	1202
1109	1108	1107	1106	1105	1104	1103	1102
1009	1008	1007	1006	hoos	boos .	1003	1002

INSIDE SURFACE

MIDDLE

APL-01-004 REVISION 1 JUNE 7, 1982 ENCLOSURE

FIGU

WEST WALL N

AR ONE-UNIT ONE

2655	2654	2653	26522651
2605	2604	2603	260,2601
2555	2554	2553	255,2951
2505	2504	2503	250,2501
2455	2454	2453	24532451
2405	2404	2403	2402401
2355	2354	2353	23522351
2305	2304	2303	230,2301
2255	2254	2253	2252251
2205	2204	2203	22022201
2105	2104	2103	2102101
2005	2004	2003	1002001

 366
 3656
 3657
 3658
 3655
 3654
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3653
 3553
 3550
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503
 3503

URFACE

OUTSIDE SURFACE

RE 7

ODE NUMBERS

Structural Dynamics Technology, Inc.

ARKANSAS NUCLEA SPENT FUEL STORAGE FACIL

NODE NUMBERS

OUTSIDE SURFACE

MIDDLE SURFACE

APL-01-004 REVISION 1 JUNE 7, 1982 ENCLOSURE

FIGU

POOL WALL ADJOINING THE CASK LAYD

OWN AREA ELEMENT AND NODE NUMBERS

RE 8

		-			ne.	60	e
114	Ş1	01	5.3	Q.	19.6	n,	e
-	_	-	_	-	_		-

	6139	6138	6137	6136		613
	5639	5638	5637	5636		5634
	5139	S138	5137	5136		5139
	4639	4638	4637	4636		4634
	4139	4136	4137	4136		4134
	3639	3638	3637	3636		3634
	3139	3138	3137	3136	313	53134
	2639	2638	2637	2636	263	52634
-	2139	2138	2137	2136	213	52134
						in the second

6339	6338	6337	6338		633
5839	5838	5837	5836		583
5339	5338	5337	5336		533
4839	4838	4837	4836		483
4339	4338	4337	4336		4334
3839	3838	3837	3836		3839
3339	3338	3337	3338	333	53334
2839	2838	2837	2836	283	52839
2339	2338	2337	2336	233	52339
And the second s		and the second se			

MIDDLE SURFACE

1	AT	÷.,
N	M	~
9	11	

Structural Dynamics Technology, Inc.

OUTSIDE SURFACE

6539	6538	653	6536		6536
6039	6038	603	6036		6036
5539	5538	553	5536		5539
5039	5038	503	5036	đ	5039
4539	4538	453	4536		4536
¥039	4038	4030	4036		4034
3539	3538	3537	3536	353	53534
3039	1038	3037	3036	303	63034
2539	2536	2537	2536	253	52539

SURFACE MEMBRANE ELEMENTS

INS	10	Ē	i.	A	Y	E	R
-	-	-	-	-	-	-	-

OUTSIDE LAYER

DELAYER	

6239	6238	6237	6236		6234
5739	5738	\$730	5736		5734
5239	\$238	5237	5236		5239
4739	4738	4735	4736		4734
4239	4238	4237	4238		4234
3739	3738	3737	3736		3734
3239	3238	3237	3236	323	53239
2739	2738	2737	2736	273	52734
2239	2238	2237	2236	223	52234
1739	1738	1737	1736	173	51734
1239	1238	1237	1236	123	51234

1	6440	6439	6438	6437	6436		6434
-	5940	5939	5938	5937	5936		5934
-	5440	5439	5438	5437	5436		5434
-	4940	4939	4938	4937	4938		4934
1	4440	4439	4438	4437	4436		4434
	3940	3939	3938	3937	3936		3939
-	3440	3439	3438	3437	3438	343	53434
1	2940	2939	2938	2937	2936	293	52934
-	2440	2439	2438	2437	2436	243	52434
h	1940	1939	1938	1937	1936	193	51934
1	1440	1439	1438	1437	1436	143	51434

6239	6238	6237	6236		623
\$739	5738	\$730	5736		573
5239	\$238	5237	5236		523
4739	4738	4735	4736		473
4239	4238	4237	4236		423
3739	3738	3737	3736	T	373
3239	3238	3237	3236	323	5323
2739	2738	2737	2736	273	5273
2239	2238	2237	2236	223	5223
1739	1738	1737	1736	173	5173

AR ONE-UNIT ONE ITY FINITE ELEMENT MODEL

CUBE ELEMENTS

ARKANSAS NUCLE SPENT FUEL STORAGE FACIL

NODE NUMBERS

1673	16681667	16661665	1664	
1623	16101617	16181615	1614	
1573	15681567	15661565	1564	
1523	15181517	15160515	1514	
1473	14681467	14661465	1484	
1923	19181917	14161415	1414	
1373	13680367	13661365	1364	13
1323	13181312	13161315	1314	130
1273	12680 267	12661265	1264	125
1223	12181217	12161215	1214	120
1123	11181117	11161115	1114	110
1023	10101017	ha184015	1914	hoo

INSIDE SURFACE

OUTSIDE SURFACE

	- FRANKARA	1004	C0012000
261926182617	26162615	2614	26132610
256925682567	25662565	2564	25632360
251925182517	25162515	2514	<u>2513</u> 2510
246924682467	24662465	2464	24532460
241924182417	24162415	2414	24132410
236923682367	23462365	2364	23632360
231923182317	23162315	2314	23132310
226922687267	22562265	2264	22632260
221922182217	22162215	2214	22132210
211921182117	21162115	P114	21132110
201920182017	20152015	2014	20132010

MIDDLE SURFACE

APL-01-004 REVISION 1 JUNE 7, 1982 ENCLOSURE

FIGU

FUEL TRANSFER CANAL INSIDE W

ALL ELEMENT AND NODE NUMBERS

RE 9

INSIDE SURFACE

31183117 3116 3115 3114 3113

26182617 2616 2615 2614 2613

2113

21182117 2/16 2115 2114

S1186117 5116 5115 6114

56183617 5616 5615 5614

51105117 5110 5115 5114

46:84617 4618 4518 4614

41184119 4118 4115 4114 36183617 3616 3615 3614

And in case of the local division of the loc

3313

2813

2313

124	58	85	81	7 5	816	581	10	581
	53		31	7 5	316	531	10	531
	481	84	81	7 4	816	481		461
	431	84	31	14	316	431	10	431
	381	83	81	3	816	381	in .	381)
	331	83	31	3	316	331	101	3311
	281	82	81	2	816	281	5	2814
	231	82	312	2	316	231	-	2311
		÷						

	1	'n				
601	850	17	6016	6015	6014	
551	855	17	5518	5515	5514	
501	850	117	5016	5015	5014	
451	845	17	4516	4515	4514	
401	840	117	4016	4015	4014	. 1
351	835	17	3516	3515	3514	3513
301	830	117	3016	3015	3014	3013
251	825	17	2518	2515	2514	2513
		_				

OUTSIDE SURFACE

Structural **Dynamics**

Technology, Inc.

ASTRASTO ASTA ASTA

SURFACE MEMBRANE ELEMENTS

63106317 6316 6315 6314

INSIDE LA	AYER			

14	
1.9	
14	3213
14	2713
19	2213
14	1713
14	1213

6412		6414	6415	6416	64186417
5912		5914	5915	5916	59185917
5412		5414	5415	5418	54185417
4912		4914	4915	4916	49184917
4412		4414	4415	4416	44184417
3912		3914	3915	3916	39183917
3412	3413	3414	3415	3416	34183417
2912	2913	2914	2915	2916	29122917
2412	2413	2414	2415	2416	24182417
1912	1913	1914	1915	1916	19181917
1412	1413	1914	1415	1416	4181417

62186217 6219 6215 6214 57185710 5716 5715 5714 52185217 5218 5215 5214 47184717 4718 4715 4714 42184217 4218 4215 42 37183717 3718 3715 37 32103217 3216 3215 32 27102717 2718 2715 27 22102217 2216 2215 22 17101717 1718 1715 13 12101217 1216 1215 12

591	8591	7 5916	5915	5914		5912
541	8541	7 5416	5415	5414		5412
491	8491	7 4916	4915	4914		4912
441	8441	7 4416	44:5	4414		44.12
391	8391	7 3916	3915	3914		3912
39.1	8341	7 3418	3415	3414	3413	3412
291	2291	7 2916	2915	2914	2913	2912
241	8 241	7 2416	2415	2414	2413	2412
191	8191	7 1916	1915	1914	1913	1912
191	8141	7 1416	1415	1919	1413	1412

OUTSIDE LAYER

CUBE ELEMENTS

AR ONE-UNIT ONE TY FINITE ELEMENT MODEL

APL-01-004 **REVISION 1** JUNE 7, 1982 ENCLOSURE

100.00	 	1000	
122.2	 		1.2

2962	2961	586D585B	2958	2957	2956	2955	2954	2953	2952 2951	2950
246.2	2461	24602459	2458	2457	2456	2455	2454	2453	2452 2451	2450
1962	1961	19601958	1958	1957	1956	1955	1954	1953	1952 1951	1950
1462	1461	14601459	1458	1457	1456	1455	1454	1453	1452 1451	1450

οu	T	SI	DI	E.	М	£	M	88	A	NES
-	-	-	-	-	-	-	-	-	-	-

3061	30603059	3058	3057	3056	3055	3054	3053	3052	/305	3050
2561	25602559	2558	2557	2556	2555	2354	2553	2553	2551	2550
2061	20602059	2058	2057	2056	2055	2054	2053	205.2	2051	2050
1561	15601559	1558	1557	1556	1555	1554	1553	1552	1551	1550

INSIDE ME	MBRANES	

286)	28602859	2858	2857	2856	2855	2854	2853	2852	285	285
2361	23602359	2358	2357	2356	2355	2354	2353	2352	2351	235
1861	18601859	1858	1857	1855	1855	1854	1853	1852	1851	185
1361	13601350	1358	1357	1356	1355	1354	1353	1352	1351	135

WEST FOUNDATION WALL

307	3070	3069	9068	
1,52	2570	2569	2568	
2071	2070	2069	2058	
1571	1570	1569	1568	1 4 4 4

1.62	2970	2969	2968
1/12	2470	2469	2468
1321	1970	1969	1968
1471	1470	1469	1468

CUBE

FIGUE

FOUNDATION WALLS

				ITEIN	
				013101	
r.	I	N	12	2	
1.00	- TOT	2970	2969	2968	

INSIDE

FUEL TRANFER CANA

ARKANSAS NUCLE. SPENT FUEL STORAGE FACIL

AR ONE-UNIT ONE

L FOUNDATION WALL

MEMBRANES

-				
	3066	\$905	3064	
	2566	2565	2564	
	2060	2065	2064	
	1566	1585	1564	

EMBRANES

RE 10

ELEMENT NUMBERS

EAST FOUNDATION WALL

					2875	
2881	2880	2879	2878	2877/	71	2874
2381	2380	2379	2378	2377 237	6 2 3 7 5	2374
1661	1880	1879	1878	1877 187	6:075	1874
1381	1380	1379	1378	1377 137	6 1 3 7 5	1374

INSIDE MEMBRANES

			3076						
3081	3060	3079	3076	3077	3074 307				
2581	2580	2579	2578	2577 2576 2575	2574 257				
2081	2080	2079	2078	2077 2076 2075	2074 207				
1581	1580	1579	1578	1577 1576 1575	1574 157				

OUTSIDE MEMBRANES

CUBE ELEMENTS

Structural Dynamics Technology, Inc.

ARKANSAS NUCLEA SPENT FUEL STORAGE FACIL

FUEL TRANSFER CANA

APL-01-004 REVISION 1 JUNE 7, 1982 ENCLOSURE

FIGUE

FOUNDATION WAL

R ONE-UNIT ONE

NODE NUMBERS

EAST FOUNDATION WALL

Structural Dynamics Technology, Inc.

RE 11

LS NODE NUMBERS

ARKANSAS NUCLE

NODE NUMBERS

APL-01-004 REVISION 1 JUNE 7, 1982 ENCLOSURE

FIGUE

CASK LAYDOWN AREA FLOOR

R ONE-UNIT ONE TY FINITE ELEMENT MODEL

7004 700	7002	7001	7000
70097006	7007	7006	7005
70147013	7012	7011	7010
70197018	7017	7016	7015
70247023	7022	7021	7020
70297028	7027	7026	7025

CUBE ELEMENTS

			-	-		
B.,	А	×	æ	H.		
			-			
-					-	

7034 7033	7032	7031	7030
70397038	7037	7036	7035
70447043	7042	7041	7040
70497048	7047	7046	7045
70547050	7052	7051	7050
70597058	7057	7056	7055

LAYER 2

7062	7061	7060
7067	7066	7065
7072	7071	7070
7077	7076	7075
7082	7081	7080
7087	7086	7085

LAYER 3

-

Structural Dynamics Technology, Inc.

E 12

ELEMENT AND NODE NUMBERS

ARKANSAS NUCLEA SPENT FUEL STORAGE FACIL

CASK LAYDOWN AREA OUTSIDE WALL

822	823	824	825	826
810	811	812	813	814
798	799	800	801	802
786	787	788	789	790
774	775	776	777	778
762	763	764	765	766
750	751	752	753	754
738	739	740	741	742
726	727	728	729	730
714	715	716	717	718

CUBE ELEMENTS

APL-01-004 REVISION 1 JUNE 7, 1982 ENCLOSURE

FIGU

CASK LAYDOWN AREA WALLS
R ONE-UNIT ONE

WEST WALL

INSIDE SURFACE NODE NUMBERS

Structural Dynamics Technology, Inc.

RE 13

ELEMENT AND NODE NUMBERS

ARKANSAS NUCLE. SPENT FUEL STORAGE FACIL

NODE NUMBERS

3269 3268 3267	3266 3265	3264	
0219 0218 0217	32163215	3214	3213321232
3119 3118 3117	31163115	3114	3113311231
3019 8018 8017	30163015	8014	3012 30
FLOO	R CROSS SECT	ION NODI	ES

FIGU

FUEL TRANSFER CANAL O ELEMENT AND

APL-01-004 REVISION 1 JUNE 7, 1982 ENCLOSURE

AR ONE-UNIT ONE

CUBE ELEMENTS

906 906 906 905 805 8	
8964 8962 8961 8960 8958 8958 8951 8956 85 8864 8863 8862 8860 8859 8858 8851 8856 8856 8856 8858 8851 8856 8856 8856 8856 8851 8855 8855 8855 8856 8856 8856 8856 8856 8857 8856 8856 8856 8856 8856 8857 8856 <t< td=""><td>55</td></t<>	55
eesseesseesseesseesseesseesseesseessee	55
8768 8768 8762 8761 8760 8759 8758 8751 8756 87	55
	55
16698669866286618660865986588657865588	55
806¥856\$956≵8561 8500 8559 8558 855° 8556 85	55
8464846884628461 8460 8458 8458 8457 8456 84	55
8364836883628351 8360 8359 8358 8357 8356 8	55
8268826882628261 8260 8259 8258 8257 8256 83	55
8164816881628161 8160 8159 8158 8157 8156 8)	55
8064 206 3806 2 806 1 8060 8059 8058 805 8056 80	55

8212821	8210	8209	8206		
8112811	6110	8109	6108	8107	8106810
8012 801	8010	8008	8008	8007	8006 8008

FLOOR CROSS SECTION ELEMENTS

FUEL TRANSFER CONAL OUTSIDE WALL

Structural - Dynamics Technology, Inc.

RE 14

UTSIDE WALL AND FLOOR NODE NUMBERS

ARKANSAS NUCLE SPENT FUEL STORAGE FACIL

NODE NUMBERS

36:	381	3661 3660 3659
311		361136103609
261	281	<u>35613560</u> 3559
211	231	<u>35113510</u> 3509
161	181	346134603459
	131	341134103409
61	B 1	036103600359
h	31	231123102309
1961.	2961	<u>82618260</u> 259
1911	2911	321132103209
1811	2811	311131103109
1211	2711	801180108009

OUTSIDE SURFACE

MIDDLE SURFACE

APL-01-004 REVISION 1 JUNE 7, 1982 ENCLOSURE FIGUE

FUEL TRANSFE

WEST WALL ELEMENT

AR ONE-UNIT ONE

CUBE ELEMENTS

9054		900	9000
8954		890	8900
8854		880	8800
8754		870	8700
8654		860	8600
8554		850	8500
8454		840	1 8400
8354		830	1 8300
8254		820	18200
8154	8102	810	1 8 1 0 0
8054	9002	800	0008

INSIDE LAYER

9053	9052	905	9050
8953	8952	895	8950
8853	8852	885	8850
8753	8752	875	8750
8653	8652	865	8650
8553	8552	855	8550
8453	8452	845	8450
8353	8352	835	8350
8253	8252	825	18250
8153	8152	815	8150
8053	8052	805	8050

OUTSIDE LAYER

SU

Structural Dynamics Technology, Inc.

E 15

R CANAL AREA

AND NODE NUMBERS

R ONE-UNIT TWO

PLAN AT ELEVATION 404'-0"

NOTES:

DRAWINGS OF ANO - UNIT 1 FROM SDT LETTER APL-01-004 ENCLOSURE SHALL BE USED FOR ANO - UNIT 2 FINITE ELEMENT MODEL, EXCEPT AS NOTED:

- 1. ALL UNIT 1 PLOTS REPRESENT THE MIRROR IMAGE OF THE ACTUAL PLOTS FOR ANO - UNIT 2 FINITE ELEMENT MODEL.
- 2. FOR DIMENSIONS, ELEVATIONS AND ORIENTATION OF UNIT 2 MODEL, SEE FIGURE 1.
- 3. EAST FOUNDATION WALL SHOWN IN FIGURE 2 WILL RE-PLACE THE PLOTS OF THIS WALL SHOWN IN FIGURES 10 AND 11 CF THE UNIT 1 DRAWINGS.
- 4. OPENING IN FUEL TRANSFER CANAL FOUNDATION WALL FOR UNIT 2 WAS REPRESENTED BY ADJUSTING ELEVA-TIONS OF NODES AS SHOWN IN FIGURE 1, SECTION B-B. AND REMOVING CUBE ELEMENTS 1464 THROUGH 1466, 1964 THROUGH 1966, AND THEIR CORRESPONDING SUR-FACE MEMBRANE ELEMENTS FROM THE UNIT 1 MODEL (SEE FIGURE 10 OF UNIT 1 DRAWINGS).
- 5. CONCRETE FILL IN FUEL TRANSFER CANAL HAS BEEN REMOVED.

PLAN AT ELEVATION 335'-0"

RE 1

AND DIMENSIONS

Structural Dynamics Technology, Inc.

ARKANSAS NUCLE

SPENT FUEL STORAGE FACI

NODE NUMBERS

INSIDE SURFACE

CUBE E

	2973	2974	29762986 2977 2	24
Ţ	2473	2474	2479 24762477 2	12
	1973	1974	1975 19761977 1	
	1473	1474	1475 14761477 1	-

OUTSIDE SURFACE

APL-02-002 REVISION 1 JUNE 7, 1982 ENCLOSURE

FIGU

EAST FOUNDATION WALL E

AR ONE-UNIT TWO

2874	28752886 2877	2878	2879	2880	2881	2882	2883
2374	2375 23762377	2378	2379	2380	2381	2382	2383
1874	1875 18761877	1878	1879	1880	1881	1882	1883
1374	1375 13761377	1378	1379	1380	1381	1382	1383

SURFACE MEMBRANE ELEMENTS

INSIDE SURFACE

LEMENTS

78	2979	2980	2981	2982	2983
78	2479	2980	2481	2482	2483
78	1979	1980	1961	1982	1983
78	1479	1480	1481	1482	1483

3073	3074	20723926 3022	3078	3079	3080	3081	3082	3083
2573	2574	2579 25762577	2578	2579	2580	2581	2582	2583
2073	2074	2075 20762077	2078	2079	2080	20.81	2082	2083
1573	1574	1575 15761577	1578	1579	1580	1581	1582	1583

OUTSIDE SURFACE

Structural Dynamics Technology, Inc.

RE 2

LEMENT AND NODE NUMBERS