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ARKANSAS POWER & LIGHT COMPANY

POST OFFICE BOX 551 LITTLE ROCK ARKANSAS 72203 (5G1) 371-4000

March 3, 1983

BLANPG28310

Director of Nuclear Reactor Regulation

ATTN: Mr. J. F. Stolz, Chief v
Operating Reactors Branch #4
Division of Licensing

U. 5. Nuclear Regulatory Commission

washington, DC 20555

Director of Nuclear Reactor Regulation

ATTN: Mr. Robert A. Clark, Chief
Operating Reactors Branch #3
Division of Licensing

U. S. Nuclear Regulatory Commission

Washington, DC 20555

SUBJECT: Arkansas Nuclear One - Units 1 & 2
Docket Nos. 50-313 and 50-368
License Nos. DPR-51 and NPF-6
Additional Information Concerning
Spent Fuel Storage Expansion

Gentlemen:

Your letter dated January 5, 1983 (BCNAP183P4) requested additional
information concerning the proposed spent fuel storage expansion at Arkansas
Nuclear One (ANO). This submittal is in response to that request.

This submittal contains proprietary information of Westinghouse Electric
Corportion. In conformance with the requirements of 10CFR Section 2.790, as
amended, cf the Commission's regulations, enclosed are an application from
Westinghouse for withholding from public disclosure and an affidavit. The
affidavit sets forth the basis on which the information may be withi."id from
public disclosure by the Commission.

Regarding the proprietary information, enclosed are:

1. Three (3) copies of Westinghouse Drawings 613@C41C1, Rev. 1 (sheets 1
thru 3) and 613P0E44C1 Rev. 1 (sheets 1 thru 4)-Proprietary.

Z. Three (3) copies of Westinghouse Drawings 613@E41C2, Rev. 1 (sheets 1
thru 3) and 613PE44C2, Rev. 1 (sheets 1 thru 4)-Non-Proprietary.
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Mr. Stolz/Mr. Clark -2- March 3, 1983

3. One (1) copy of Application for Withholding
(CAW-83-16)-Non-Proprietary.

4. One (1) original Affidavit (CAW-83-16)-Non=-Proprietary.

Correspondence with respect to the affidavit or application for withholding
should reference CAW-83-16 and should be addressed to R.A. Wiesemann,
Manager, Regulatory & Legislative Affairs, Westinghouse Electric
Corporation, P. 0. Box 355, Pittsburgh, PA 15230.

Very truly y;i:(;M

John R. Marshall
Manager, Licensing
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Attachments



QUESTIONS RELATING TO THE STRUCTURAL AREA

Question 1:

Provide stru:tural drawings of the racks including fabrication details.

Response:

Spent fuel rack assembly drawings 6130E41C1, Revision 1 (sheets 1 thru 3)
and 6130E441C1, Revision 1 (sheets 1 thru 4) contain information considered
proprietary to Westinghouse Electric Corporation, and as requested, should
be withheld from public disclosure. Non-proprietary copies of these
drawings are also enclosed.



Question 2:

Provide structural drawings of the pools including foundation and liner
details.

Response:

The following drawings have been transmitted with this submittal:
€-203 c-209 C-214 c-232 C-249
C-204 c-210 C-216 C-233 C-2204
C-205 Cc-211 Cc-219 C-235 C-2205

C-206 C-212 C-231 C-236 C-2206



Question 3:

Provide results of an analysis for potential sliding and/or tiping of the
racks. If rack-to-rack or rack-to-pool wall/floor impact is postulated,
include the resultant loads in the rack analysis as well as the pool
structure analysis, as applicable. Describe the analysis procedure.

Response:

The analysis procedure for these loads on the pool structure is as follows:

The fuel rack loads utilized in this analysis consist of a submerged
deadweight loading, and a vertical and horizontal reaction loading due to
the operating basis earthquake. These reaction loads are distributed to the
pool floor node points based on the proximity of each pad to the surrounding
nodes. The earthquake loads are distributed in the same proportion as the
deadweight loads, with the total force equal to that specified by
Westinghouse,

Rack Displacements, Sliding, and Rocking Stability

The support pad vertical and horizontal displacements are tabulated for both
high and low friction coefficients. The support pad vertical displacements
are used to calculate the overall rack module rocking for partial and full
fuel loading conditions. This calculation shows that the minimum factor of
safety against overturn is produced by a partial fuel loading of the rack
module. The ractor of safety is in excess of the 1.5 minimum requirements
of the NRC Position Paper.

The horizontal displacements of support pads sliding and top of the rack
structural deflection are used in conjunction with thermal displacements to
show that the rack module does not collide with another rack or with a pool
floor obstruction or the pool wall.






Rack Lift-Off Stability

The energy which produced lift-off of the nonlinear model is applied to the
fuel rack module with various fuel lggdings in order to obtain the loading
configuration which produces the maximum lift-off or minimum factor ot

safety against overturn. The lift-off energy is equated to the potential
energy of lifting the center of gravity of the combined fuel and fuel

rack masse: to obtain the maximum lift-off of the rack. The maximum allow-
able 1ift of the center of gravity is obtained by calculating the lift of the
center of gravity from the static position to the point directly above the
support pad center line, as shown in the figure below. The factor of safety

against overturn is obtained by comparing the allowable lift to the actual
life.

For Arkansas Unit 2, the 8 x 10 rack module was analyzed since it has the
minimum support pad spacing (8 cell direction) and the minimum resistance
to overturn. The loading condition of two outside rows of fuel produces the

minimum factor of safety against overturn of FS = 59.

For Arkansas Unit 1, the 10 x 11 rack module was analyzed in the 10 cell
direction. The loading condition of three outside rows of fuel produces

the minimum factor of safety against overturn of F5>100.
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Evaluation of Rack Lateral Displacements

The nonlinear time history analysis calculates the fuel rack sliding distance
for the low coefficient of friction,.and the top of the rack structural deflec-
tion for the high coefficient of friction. In this portion of the evaluation,
the rack to rack, rack to floor obstructions, and rack to wall gaps will be

examined to show that there is no impact due to the lateral motion.

To evaluate potential impact for the rack to rack, rack to wall, and rack to
pool floor obstruction gaps, the gap will be modified to account for thermal
growth of hot operating conditions, and compared with the rack's maximum

seismic displacement to show that the gap is not closed and impact of a rack

module does not occur.

Rack Thermal Displacement

Since the pool temperature during installation is below the hot operating
condition, the gap must be reduced by the thermal expansion of the rack.
The rack to rack thermal displacement is for maximum normal condition and

also the accident condition of cooling system not operational.

Arkansas Arkansas
Unit 2 Unit 1
Rack Thermal Growth Maximum Normal 6T1 in 0.070 0.090
Condition . !
Rack Thermal Growth Accident R GT‘ in 0.150 U.200
Condition




Combined Seismic & Thermal Displacement

The condition which produces the maximum fuel rack seismic response is all
fuel racks filled with fuel. For this configuration the racks responses
(sliding and structural defleciica) will be in phase, thus the rack to
rack gap is not affected. The major factor which produces the phase
relationship for this condition is the hydrodynamic coupling effect of

the submerged structure.

However, due to variation of friction or for other than racks full of fuel,
there may be a condition where one rack slides and the adjacent rack does
not slide. For this condition the rack to rack gap will be reduced by the
amount of one rack sliding, two racks structurally deflecting, and the
thermal movement of the racks for the installed temperature to the maximum
normal temperature. Since the structural displacements of the racks are
out of phase or unrelated, the combined seismic displacements will be

obtained by the SRSS method.

In addition to this condition, the thermal accident condition must be
addressed. Since it is highly unlikely that the thermal accident condition,
which requires days of inoperative cooling train to obtain, and the SSE
seismic event occur simultaneously, only the sliding distance of the SSE
event, without the structural displacements, will be combined with the

thermal accident displacement.



Combined Displacement

Results

Combined Thermal & Seismic Displacement
Limiting Gaps;

Rack to Rack

Rack to Pool Wall

Rack to Pool Floor Obstruction

Unit Unit

2 l
5 in 0.40 0.35
G1 in ) 9% j P
G2 in 5.0 19.0
G in >2.0 >2.0




Question &:
Provide results of an analysis for impact loads from the heaviest object to
be transported over the fuel pool. Evaluate the affects on both rack

structure and the pool structure including the liner. Describe the analysis
procedure.

*Response:
An analysis has been conducted for dropping a 2000 1b fuel assembly from the

maximum height to which it will be raised, based on the Technical
Specificaiton requirements that weights no greater than 2000 lbs will be
transported over spent fuel. The criticality analysis of drop accidents is
perforned with dissolved boron in the pool water, since not taking credit
for the boron would mean assuming two unlikely independent events. With
this credit no credible deformations caused by a fuel drop accident would
cause a criticality accident. For the straight or inclined drop on top of
the rack, the rack deformations are limited to the top region of the rack.
For the straight drop through a cell tae fuel assembly impacts the base
plate of the rack, causes a portion of it to separate from the bottom of the
rack, and impacts the floor of the spent fuel pool. Stresses on the liner,

however, are not high enough to cause it to be punctured.

In the analysis the potential energy of the dropped fuel assembly is equated
to the strain energy of the energy absorbing structure to obtain the impact
force. The energy absorbing structure for this drop is the lower portion of
the fuel assembly and the deformed portion of the rack. No credit is taken

for water drag on the fuel assembly or for pumping action in the cell.

*This analysis was performed using drop heights above the fuel racks of 2'~1"
for Unit 1 and 0'-10" for Unit 2 as determined by AP&L supplied drawings
21943-1 and 1-16615-E which defired the maximum heights of the fuel

assemblies.



Question 5:

Provide key calculations and results of the seismic analysis. Include
sketches of the mathematical model and discuss the method of modeling
potential rack-to-rack and rack-to-pool interaction due to sliding and/or

tipping, if any.

Response:

The Arkansas spent fuel storage racks are the free standing type. During
the seismic event it is possible for the rack to slide or rock and lift a
support pad off the floor. Since the support pad boundary conditions as
well as the gaps between the fuel assembly and cell assembly are
structurally nonlinear, the seismic analysis is a nonlinear time history

analysis.

The seismic analysis is performed in two phases. The first is a response
spectrum analysis on a linear detail rack model which produces the effective
stiffness values for a single cell representation. The second phase is a
time history analysis of the single cell model which has been modified to
include the nonlinearities of the fuel to cell gaps and the support pad
boundary conditions. The analysis is performed for a range of cupport pad
friction coefficients (y = .2 - .8) to determine the maximum sliding with
the low friction and the maximum rocking and lift off with the high
friction. This analysis produces the rack response, which is used to
calculate overall rack stability, and rack loads, which are used in the
structural analysis to calculate stresses. The results of this analysis are

given in the response to Question 3.

The verification of the sliding capability for the WECAN Element 77, Dynamic
Friction Element, has been performed by comparing the WECAN results with the
results of classical solutions for simplified applications. In addition,
the WECAN results of a free scanding fuel rack analysis were compared with
hand calculation results for a verification of a previous fuel rack license

cubmittal.



Linear Model

The linear model, shown in the following sketch, is a three-dimensional
finite element representation of a rack assembly. The structural properties
of the individual beams for the cells, grids, support pads, etc., are
calculated from the effective soctions. The mass is composed of the
structural masses of rack, fuel assembly, and control rod assembly, the
water inside the cells, and tie hydredynamic mass between the rack and
pool wall. The structural mass and water inside the cells are distributed
on the cells, and the hydrodynamic mass between the rack and pool is input
with a mass matrix element. The model is constructed for half the rack
and divided at the line of symmetry with appropriate boundary conditions.
A geometry plot is included to show the construction of the model.

The structural properties of a single cell re;yresentation, which are used
for the nonlinear model, are obtained from the results of the detail model.
The results of the single cell model computer run, frequency and mode shape,
are conpared with that of the detail model to insure correct structural

representation.
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Nonlinear Model

The geometry plot, shown in the following sketch, is the single cell finite
elements representation of the nonligear mathematical model. The structural
properties of the rack components are represented by six different finite

elements. These elements and their identification number (ITYPE) are listed

below:

ITYPE Finite Element

STIF 4, Three-Dimensional Beam
STIF 77, Three-Dimensional Dynamic Friction Element
STIF 27, General Matrix, Stiffness, Input

1

2

3

4 STIF 27, General Matrix, Mass, Input

5 STIF 37, Three-Dimensional Dynamic Gap Element
6

STIF 34, Two-Dimensional Rotary Spring

The three-dimensional beam element (STIF 4) is a straight uniform cross
section element with tension-compression, torsion, and bending capabilities.

This element is used to model the fuel beam, cell beam, and rack base beam.

The three-dimensional dynamic friction element (STIF 77) is composed of a
gap in series with a parallel combination of impact spring and impact damper
with a frictional spring orthogonal to the gap. This element is designed fo
represent two surfaces which may §lide relative to each other, and may sepa-
rate or contact each other. The friction behavior is represented by a
friction spring, and the impact behavior is represented by combination of

an impact spring and a dashpot in parallel, coupled to a gap in series.

The friction spring is along the direction of sliding which is normal to

the direction of impact. The classical Coulomb friction is assumed between
the sliding surfaces. The friction behavior is simulated by a stiffness
method. The friction spring will transmit the shear forces across the sur-
faces as long as these forces are below the friction limit. Once sliding
takes place, a pseudo force is applied to the sliding surface such that

the resultant of the force in the friction spring and the pseudo force will
represent the friction force. This element is used to model the sliding

and or lift off of the support pads and the fuel base.



The general matrix, stiffness, element (STIF27) is an element whose geometry

is undefined, bu. whose kinematric response is specified by stiffness coeffi-
cients. This element is used t- represert the connection between the base

of the cell and rack base cross beam*with rigid vertical and lateral properties
and the rotational stiffness of the cell base, and the connection between the
top grid and rack base cross beam with the rotational stiffness of the top

grid.

The general matrix, mass, element (STIF27) is an element whose geometry is
undefined but whose kinematic response is specified by mass coefficients.
This element is used to represent the hydrodynamic mass between the fuel

and cell and also between the cell and pool wall.

The three-dimensional dynamic gap element (STIF37) is composed of a gap in
series with a parallel combination of impact spring and impact damper.

This element is used to model the gap between the fuel and cell.

The two-dimensional rotary spring element (STIF45) is an element which
has only one degree of freedom, rotation about the Z axis, and is defined
by a rotational stiffness. This element is used to model the rotational

stiffness of the fuel assembly grid members.
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The structural properties for the rack are specified as real constants in

the model inputs. The real constants are listed in the input under the

following numbers.

Component

=
=

Base Beam

Support Pad Sliding and Impact

Cell Beam at Top and Bottom Weld Zones

Cell Beam Between Top and Bottom Weld Zones
Fuel Base Slider and Vertical Impact

Fuel Beam

Fuel Grid to Rods Rotational Stiffness

Fuel Bottom Nozzle Impact

Fuel Grid Impact

= R AT L N

—
o

Fuel Top Nozzle Impact

Note: Some of the stiffnesses properties are input through the STIF 27

elements.
STIF 27 (K) - Support Pad Horizontal and Cell-Bottom Grid Rotational
Stiffnesses

STIF 27 (K) - Cell-Top Grid Rotational Stiffness



Question 6:

Provide a tabulation of allowable vs computed stresses for the racks.

Response:

The load combinations applicable to spent fuel racks are shown below.

ELASTIC AMNALYSIS ACCEPTANCE LIMITS
(1) D+ L Normal Limits of NF 3231.1a
(2) D+ L+ E Normal Limits eof NF 3231.1la
(3) D+L+T Lesser of 2 S and S
o y u
(4) D+L+T +E Lesser of 2 S and S
o y u
(5) D+L+T +E Lesser of 2 S or S
a y u
(6) D+ L+ Ta + E' Faulted Condition Limits of NF 3231.1c

The margin of safety tables on the following pages show case 2 (D + L + E)
and case 4 (D + L + T0 + E). Case 2 envelopes case 1 (D + L) and case 4
envelopes case 3 (D + L + To)' Thermal loads are caused by differential
thermal expansion between the rack and pool floor (which loads are limited
by friction between the rack and floor) and by differential thermal expan-
sion between a loaded cell and an empty cell. Both of these loads are the
same for T, and To and thus case 5 (D + L + Ta + E) is the same as case 4.
Thermal loads are self limiting in nature and the fuel rack material is
ductile so they are not considered for faulted conditions, case 6 (D + L +
Ta + E'). The SSE seismic loads are less than twice the OBE loads and
since the SSE allowables are twice the OBE allowables the margins of safety

for case 6 are greater than for case 2.

The margin of safties for the Unit 1 racks will be of similar magnitude as

those shown in the attached tables and will meet 211 of the above acceptance

limits.



Arkansas Unit 2

Region 1 Rack

R R R TR

MARGINS OF SAFETY

D+L+E D+L+E+To
APPLIED ALLOWABLE MARGIN OF APPLIED ALLOWABLE MARGIN OF
ITEM TYPE OF STRESS STRESS STRESS SAFETY STRESS STRESS SAFETY
Cell Axial .564% 1.0% LTT* 11160 55000 3.93
Seam Weld Shear 10095 24000 1.38 10095 31740 2.14
Wrapper Weld Shear 6483 11000 .70 6483 31740 3.90
Cell to Grid Welds Shear 16968 24000 .41 22466 31740 .41 i
Grids
Top Grid Member Axial 2296 16500 6.19 2296 55000 23.0 i
We 1ds Shear 5049 24000 3.75 5049 31740 5.29 :
Belt Axial 2469 16500 5.68 2469 55000 23:3 i
Bottom Grid Member Axial 7370 16500 1.24 7370 55000 6 .46
Welds Shear 12939 24000 .85 12939 31740 1.45
Belt Axial 10878 16500 52 10878 55000 4.06

Support Pad and
Support Plate
See Region 2 Rack

* Load Combination per ASME II11 Appendix XVII 2215.1 eqn (22)

S ——
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MARGINS OF SAFETY

Arkansas Unit 2

Region 2 Rack

D+L+E D+L+E+To
APPLIED ALLOWABLE MARGIN OF APPLIED ALLOWABLE MARGIN OF

ITEM TYPE OF STRESS STRESS STRESS SAFETY STRESS STRESS SAFETY
Cell Axial .650% 1.0% .S54% 13121 55000 3.19

Seam Weld Shear 14430 24000 06 14430 31740 1.20

Wrapper Weld Shear 8616 11000 .28 8616 31740 2.68
Cell to Cell Welds

Near Top of Cell Shear 9620 24000 1.49 16948 31740 87

At Bottom of Cell Shear 14066 24000 73 20335 31740 .58
Support Pad

Minimum Section Axial 4542 16500 2.63 4622 55000 10.9

Shear 1494 11000 6.36 1367 31740 22.2

Bearing Surface Bearing 6364 24750 2.89 4793 55000 10.5

Threads Shear 4727 11000 1.33 3597 31740 7.8

Support Plate Shear 1786 11000 5.16 1500 31740 20.2

Welds Shear 11580 24000 1.07 10620 31740 1.99

* Load combination per ASME III Appendix XVII 2215.1 eqn (22)




Question 6:

Provide a tabulation of allowable vs. computed stresses for the racks and
pool.

Response:

Attached are the appropriate Tables and Figures showing computer models for
the pool area only.



TABLE 6-1
Arkansas Power and Light Company
Arkansas Nuclear One - Unit 1
Spent Fuel Storage Facility Evaluation
Tabulation of Controlling Section Resultant Moments (1)

Section Section Section
Location Axial Resultant Allowable
Force Moment(2.,4) Moment ( 3)

Pool Floor Slab: (AFPSTAlA2-09)

East - West Section at
South End (Element 320)

North - South Section
at Mid-span (Element 320)

Foundation: (AFPSTAlA2-10)

South Wall, Horizontal
Section at Top (Element
2865)

East Wall, Horizontal
Section at Top (Element
2877)

West Wall, Horizontal
Section at Top (Element
2857)

Units: Kips/Inch, Kip-inches/Inch

Notes: 1) WNUREG-0800 Load Combination (D + L + T3 + 1.25E')
2) Positive moment causes tension on outside surface of walls and lower surface
of floor slab.
3) Allowable moment is based on strength design method per ACI 349/80.
4) T, moments are relieved, maintaining equilibrium and curvature of section.




Table 6-1 (continued)
Arkansas Power and Light Company
Arkansas Nuclear One - Unit 1
Spent Fuel Storage Facility Evaluation
Tabulation of Controliing Section Resultant Moments (1)

Section Section Sect.on Moment
Location Axial Resultant Allowable Code
Force Moment(2,4) Moment ( 3) Ratio
East Pool Wall: (AFPSTAlA2-05)
Vertical Section at
Bottom North Corner
(Element 2823) -35.58 1262. 2235. 0.57
Horizontal Section at
Bottom North Correr
(Element 2329) -38.51 1284. 2121. 0.61
Vertical Section at Top
Center Span (Average
Elements 6324,5824,5324,
4824 - AFPSTALIA2-12) 14.58 219.8 1027. 0.21

Units: Kips/Inch, Kip-inches/Inch

Notes: 1) NUREG-0800 Load Combination (D + L + Ty + 1.25E")
2) Positive moment causes tension on outside surface of walls and lower surface
of floor slab.
3) Allowable moment is based on strength design method per ACI 349/80.
4) T, moments are relieved, maintaining equilibrium and curvature of section.




Table 6-1 (continued}
Arkansas Power and Light Company
Arkansas Nuclear One - Unit 1
Spent Fuel Storage Facility Evaluation

Tabulation of Controlling Section Resultant Moments (1)

Section Section
Location Axial Resultant
Force Moment (2.4
West Pool Wall: (AFPSTAlA2-08)
Vertical Section at
Bottom Mid-span
(Element 2306) -32.89 1298.
Horizontal Section near
Bottom South End
(Element 2808) -34.82 1217.
Vertical Section at Top
Mid-span (Average
Elements 6304,5804,
5304,4804 - AFPSTAlA2-12) 14.97 205.0

Units: Kips/Inch, Kip-inches/Inch

of floor slab.

3) Allowable moment is based on strength design method per ACI 349/80.

Notes: 1) NUREG-0800 Load Combination (D + L + T3 + 1.25E")
2) Positive moment causes tension on outside surface of walls and

Section
Allowable

Moment ( 3)

2219.

2059.

1015.

Moment
Code
Ratio

0.20

lower surface

4) T, moments are relieved, maintaining equilibrium and curvature of section.




Fuel
Wall:

Units:

Notes: 1) NUREG-0807 Load Combination (D + L + T
2) Positive moment causes tension on outs

Arkansas Power and Light Company
Arkansas Nuclear One - Unit 1
Spent Fuel Storage Facility Evaluation

Table 6-1 (continued)

rabulation of Controlling Section Resultant Moments (1)

Location

Transfer Canal Separation
(AFPSTA1A2-07)

vertical Section Below
Elevation of Bottom of
Gate Opening (Element 3313)

Horizontal Section at
Bottom of Wall (Element 2818)

Vertical Section at Top
East End (Average Elements
4818,5318,5818,631¢8 -
AFPSTAlA2-12A)

Horizontal Section at West
End of Wall Above Elevation
of Bottom of Gate Opening
(Average Elements 4314 thru
4318 - AFPSTAlA2-12A)

of floor slab.

3) Allowable moment is based on strength design method per ACI 349/80.

Kips/Inch, Kip-inches/Inch

Section
Axial
Force

-1€.58

Section
Resultant
Moment (2.4

769.2

540.0

166.0

369.4

+ 1.25E')
gde surface of walls and lower surface

Section
Allowable

Moment ( 3)

1147.

872.5

397.6

£37.0

Moment
Code
Ratio

0.67

0.62

0.63

4) T, moments are relieved, maintaining equilibrium and curvature of section.



Table 6-1 (continued)
Arkansas Power and Light Company
Arkansas Nuclear One - Unit 1
Spent Fuel Storage Facility Evaluation
Tabulation of Controlling Section Resultant Moments (1)

Section Section Section Moment
Location Axial Resultant Allowable Code
Force Moment (2,4) Moment (3) Ratio
Cask Laydown Separation Wall:
(AFPSTAlA2-06)
Vertical Section Below
Elevation of Bottom of
Gate Opening (Element 3335) -34.62 466.3 664.6 0.70
Horizontal Section at
Bottom Mid-span (Element
2335) -34.35 396.7 572.4 0.69
Vertical Section at East
End of Wall Above Elevation
Of Bottom ot Gate Opening
(Element 3834) -13.41 188.4 367.0 0.51

Units: Kips/Inch, Kip-inches/Inch

Notes: 1) NUREG-0800 Load Combination (D + L +# T3 + 1.25E")
2) Positive moment causes tension on outside surface of walls and lower surface
of floor slab.
3) Allowable moment is based on strength design method per ACI 349/80.
4) T, moments are relieved, maintaining equilibrium and curvature of section.



Table 6-1 (continued)
Arkansas Power and Light Company
Arkansas Nuclear One - Unit 1
Spent Fuel Storage Facility Evaluation
Tabulation of Controlling Section Resultant Moments (1)

Section Section Section Moment
Locat: Axial Resultant Allowable Code
Force Moment (2.4) Moment (3) Ratio
Pool North Wall: : s“1A2-11)
Vertical Section at
Middle West Edge
(Element 3839) -3.483 292.1 433.5 0.67
Horizontal Section at
Middle West Edge
vertical Section at Top
West End (Average Elements
6339,5839,5339,4839 -
AFPSTAlA2-12) 0.496 170.2 307.3 0.55

Units: Kips/Inch, Kip-inches/Inch

Notes: 1)
2)

3)
4)

NUREG-0800 Load Combination (D + L + T, + 1.25E"')

Positive moment causes tension on outside surface of walls and lower surface
of floor slab.

Allowable moment is based on strength design method per ACI 349/80.

T, moments are relieved, maintaining equilibrium and curvature of section.
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TABLE 6-1

Arkansas Power and Light Company
Arkansas Nuclear One - Unit 2
Spent Fuel Storage Facility Evaluation

Tabulation of Controlling Section Resultant Moments (1)

Section
Location Axial
Force
Floor Slab: (AFPSTA2A2-11)
East - West Section at
1/3 span (Element 330) -49.67
North - South Section
at Mid-span (Element 320) -29.67
Foundation: (AFPSTA2A2-12)
North Wall, Horizontal
Section at Top (Element
1367) -15.40
East Wall, Horizontal
Section at Top (Element
2878) -7.222
West Wall, Horizontal
Section at Top (Element
2857) -27.69

Units: Kips/Inch, Kip-inches/Inch

Notes: 1) NUREG-0800 Load Combination (D + L + T4 + 1.25E")

Section
Resultant
Momaent (2.4

893.5

610.5

181.1

315.4

Section
Allowable
Moment (3

1646.

1670.

-904.5

599.2

869.7

R

Moment
Code
Ratio

0.18

0.30

0.36

2) Positive moment causes tension on outside surface of walls and lower surface

of floor slab.

3) Allowable moment is based on strength design method per ACI 349/80.

4) T, moments are relieved, maintaining equilibrium and curvature of section.
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Table 6-1 (continued)
Arkansas Power and Light Company
Arkansas Nuclear One - Unit 2
Spent Fuel Storage Facility Evaluation
Tabulation of Controlling Section Resultant Moments (1)

Section Section Section Moment
Location Axial Resultant Allowable Code
Force Moment (2,4) Moment ( 3) Ratio
West Pool Wall: (AFPSTA2A2-10)
Vertical Section at
Bottom Mid-span
(Element 2305) -20.80 849.6 1771. 0.48
Horizontal Section near
Bottom North End
(Element 2808) -32.17 922.6 1935. 0.48
vertical Section at Top
Mid-span (Average
Elements 6304,5804
5304,4804 - AFPSTA2A2-14) 13.88 206.8 _ 879.7 0.24
Units: Kips/Inch, Kip-inches/Inch
. . .
\ "\ Notes: 1) NUREG-0800 Load Combination (D + L + Ty + 1.25E')
‘:E: 2) Positive moment causes tension on outside surface of walls and lower surface
—1> of floor slab.
F ¥ 3) Allowable moment is based on strength design method per ACI 349/80.
ggg 4) T, moments are relieved, maintaining equilibrium and curvature of section.
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Table 6-1 (continued)
Arkarsas Power and Light Company
Arkansas Nuclear One - Unit 2
Spent Fuel Storage Facility Evaluation
Tabulation of Contrclling Section Resultant Moments (1)

Section Section Section Moment
Location Axial Resultant Allowable Code
Force Moment (2.4) Moment ( 3) Ratio
East Pool Wall: (AFPSTA2A2-07)
Vertical Section at
Bottom Mid-span
(Element 2327) ~-44.48 901.5 1750. 0.52
Horizontal Section at
Bottom South Corner
(Element 2329) -32.00 902.4 1711%. 0.53
Vertical Section at Top
Center Span (Average
Elements 6326, 5826,
5326,4826 - AFPSTA2A2-14) 14.18 234.2 875.2 0.27

Units:

P

Notes:
A

i

S\
8
:
o

Kips/Inch, Kip-inches/Inch

1)
2)

3)
4)

NUREG-0800 Load Combination (D + L + T + 1.25E')

Positive moment causes tension on outside surface of walls and lower surface
of floor slab. -

Allowable moment is based on strength design metnod per ACI 349/80.

T, moments are relieved, maintaining equilibrium and curvature of section.
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Table 6-1 (continued)
Arkansas Power and Light Company
Arkansas Nuclear One - Unit 2
Spent Fuel Storage Facility Evaluation
rabulation of Controlling Section Resultant Moments (1)

Section Section Section Moment
Location Axial Resultant Allowable Code
Force Moment(2.4) Moment ( 3) Ratio
Cask Laydown Separation Wall:
(AFPSTA2A2-08)
Vertical Section Below
Elevation of Bottom of
Gate Opening (Element 3335) -36.39 469.1 653.9 0.72
Horizontal Section at
Bottom Mid-span (Element
2335) -35.86 405.7 689.7 N.59
Vvertical Section at East
End of Wall Above Elevation
Of Bottom of Gate Opening '
(Element 3834) -13.99 205.3 392.2 G.52

Units:

Notes:

Kips/Inch, Kip-inches/Inch

1)
2)

3)
4)

NUREG-0800 Load Combination (D + L + T + 1.25E")

positive moment causes tension on outside surface of walls and lower surface
of floor slab.

Allowable moment is based on strength design method per ACI 349/80.
T, moments are relieved, maintaining equilibrium and curvature of section.

‘bz IBQWBAON
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Table 6-1 (continued)
Arkansas Power and Light Company
Arkansas Nuclear One - Unit 2
gpent Fuel Storage Facility Evaluation
Tabulation of Controlling Section Resultant Moments (1)

Section Section Section Moment
Location Axial Resultant Al lowable Code
Force Moment(2v4) Moment ( 3) Ratio
pool South Wall: (AFPSTA2A2-13)
Vertical Section at
Bottom East Corner
(Element 2338) -15.77 745.8 1787. 0.42
Horizontal Section at
Bottom East Corner
(Element 2338) -31.36 837.8 1703, 0.49
Vertical Section at Top
West End (Average Elements
6339,5839,5339,4839 -
AFPSTA2A2-15) 6.866 227 <7 1543. 0.08

Units: Kips/Inch, Kip-inches/Inch

\Jﬁk Notes: 1) NUREG-0800 Load Combination (D + L + T4 + 1.25E')
‘:Eﬁ 2) Ppositive moment causes tension on outside surface of walls and lower surface
-TP of floor slab. ' :
3) Allowable moment is based on strength design method per ACI 349/80.
§§E 4) T, moments are relieved, maintaining equilibrium and curvature of section.
g
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Question 7:

Are any modifications to the pool structure or liner contemplated?

Response:

No modifications are planned.
Question 8:

In the seismic analysis, describe the methods for estimating effects due to
fluid motion on both the pool structure and racks.

Response:

For the pool structure the earthquake response of the pool water is defined
based on the methodology outlined in TID-7024, Appendix F. The hydrodynamic
loads are calculated as pressure profiles over the pool wetted surface and
distributed to each node based on nodal tributary area. The resulting nodal
forces were summed to determine the net resulting hydrodynamic forces in
orthogonal directions, and these force resultants were verified using
additional methodology in TID-7024, which defines the integrated pressure
resultants.

The effect of water upon the dynamic response of submerged structures is
significant. Two major items of concern are the virtual mass, which affects
the structural frequency, and the fluid structura! coupling of adjacent
bodies, which affects the loads. In order to include both these effects, a
hydrodynamic mass matrix element i. used in the mathematical model.

The hydrodynamic mass matrix is composed of 4 terms. The M;; term is the
virtual mass of the fluid on the racks and is calculated such that the
kinetic energy of the virtual mass is the same as the kinetic energy of the
meving fluid. The M;, and My, terms represent interaction between the racks
and the pool walls. The Mg, term has a similar meaning tc the My but
applies to the spent fuel pool. Both horizontal flow (around the racks) and
vertical flow (over the racks) are considered in the calculation. The
proximity of the pool walls to the racks is also considered. The
calculation is based on potential flow theory, reference "The Effects of
Liquids on the Dynamic Motions of Immersed Solids,” R. J. Fritz, Journal of
Engineering for Industry, February 1972.



QUESTIONS RELATING TO THE NUCLEAR PHYSICS AREA

Question 1:

Provide the calculated value of Kef for Region 1 as well as the maximum

f

enrichment assumed and the values of all biases and 95/95 uncertainties.

Response:
The maximum enrichment assumed in the analysis is 4.10 w/o U-235. The Keff
for the Region 1 rack is determined in the following manner:

K B

eff - Knominal .

method . Bpart
2 2 2] %
£ [Eksnominal) " (ksmethod) X (ksmechi:]

= nominal case KENO K
eff

= method bias determined from benchmarch critical comparisons

K -
nominal

Bmethod

Bpart bias to account for poison particle self-shielding

ks : = 95/95 uncertainty in the nominal case KENO K
nominal eff

k = 95/95 uncertainty in the method bias

Smethod

k = 95/95 uncertainty due to construction and material

*mech
tolerances.
Substituting calculated values in the order listed above, the result is:
Keff = 0.9169 + 0.0025 + [(.00388)% + (.013)% + (.0171)2]5
0.9412 - For Unit 1 B & W 15 x 15 Fuel
0.9260 + 0.0025 + [(0.00388)% + (.013)2 + (.00904)2]*

0.9448 - For Unit 2 CE 16 x 16 Fuel




Question 2:

Provide the calculated values of Keff for Region 2 for the checkerboard
storage configuration with 4.1 w/o enrichment assemblies and for any other
configuration used to determine the final Keff as well as the values of

all biases and 95/95 uncertainties.

Response:
e Kore

is determined in the following manner:

for Region 2 with the checkerboard configuration and 4.1 w/o U-235

2 2
Keff . Knominal & Bmethod"l- [(ks) nominal + (ks) method

2 2 172
+ (ks) Sk + (ks) asyé]

where:

Knominal = nominal case KENO Keff

B = method bias determined from benchmark critical comparisons
method

ksnominal = 95/95 uncertainty in the nominal case KENO keff

ks = §5/95 uncertainty in the method bias
me thod

ksmech = 95/95 uncertainty to account for tolerances in thickness

ksasym = 95/95 uncertainty to account for asymmetric assembly position

Substituting calculated values in the order listed above, the result is:

:
K .. = 0.9068 + 0.0 + [(.oosnsv)2 + 0112 + (L0288)% + (.009)“]”2

eff

= 0.9402 - For Unit 1 B & W 15 x 15 Fuel

W

- T
Kp = 0-8860 + 0.0 + [(.0064)2 + o1t + on? 4 (.0173)2]’”

0.9169 - For Unit 2 CE 16 x 16 Fuel



The second configuration used to determine the final Ke consists of spent

ff

fuel assemblies in every cell of the rack. The final Ke for spent fuel in

ff

Region 2 is constructed according to the following formula:

=
I

= 2 2 2
eff Knon i Bmethod o [Eksweth) + (ksnon) i (ksmech)

tlhs, 0P+ (ks )2 + (ksbu)i‘*

where:

K = the nominal case KENO eigenvalue

nom

B = the bias in the method

meth

ksmeth = the method uncertainty (95/95)

ksnom = the uncertainty (95/95) on the nominal eigenvalue

kslnech = the uncertainty (95/95) due to construction and material
tolerance

ksasym = the uncertainty (95/95) due to asymmetric assembly
positioning within the cell

kspu = the uncertainty on the plutonium reactivity

ksbu = the uncertainty on the reactivity as a function of

irradiation.
Substituting calculated values in the equation of Attachment 1 for spent

fuel in the rack results in:

K¢ = 0.8892 + 0.0 + [(.013)2 + (.00332)% + (.01212)2 + (.01137)2
+ (.009)% + (.009)2]%
= 0.914 - For Unit 1 B & W 15 x 15 Fuel
K gp = 0.9068 + 0.00 + [(.013)2 + (.00391)% + (.01341)2 +

(.00948)2 + (.009)2 + (.009)2]%

0.9316 - For Unit 2 CE 16 x 16 Fuel



As can be seen from comparing the Keff formulas in the licensing submittal
with those used in the response to questions 1 and 2, the term used to
account for construction and material tolerances is included as an
uncertainty term in lieu of a direct bias. The same is true for the term
used for the potential placement of the assemblies asymmetrically in the
can. Both of these phenomenon occur randomly and are not biased in any one

direction.

Please amend the original submittal to reflect these changes in both
Region 1 and Region 2 Keff formulas and definition of terms. Attached are
pages 29, 30, 36, 37 and 38 which have been corrected to reflect these

changes.



between the four cans is reduced. The reactivity increase of this

configuration is found and is included as an uncertainty term in

calculating the Keff of the rack.

Some mechanical tolerances are not included in the analysis
because worst case assumptions are used in the nominal case
analysis. An example of this is eccentric assembly position.
Calculations were performed which show that the most reactive
condition is “he assembly centered in the can which is assumed in
the nominal case. Another example is the reduced width of the
poison plates. No bias is included here since the nominal KENO

case models the reduced width explicitly.

The final result of the uncertainty analysis is that the
criticality design criteria are met when the calculated effective
multiplication factor, plus the total uncertainty (TU) and any

biases, is less than 0.95.

These methods conform with ANSI N18.2-1973, "Nuclear Safety
Criteria for the Design of Stationary Pressurized Water Reactor
Plants," Section 5.7, Fuel Handling System; ANSI N210-1976,
"Design Objectives for LWR Spent Fuel Storage Facilities at
Nuclear Power Stations," Section 5.1.12; ANSI N16.9-1975,
"Validation of Calculational Methods for Nuclear Criticality
Safety;" NRC Standard Review Plan, Section 9.1.2, "Spent Fuel
Storage;" and the NRC Guidance, "NRC Position for Review and

Acceptance of Spent Fuel Storage and Handling Applications."

29



4.25 Rack Modification

For normal operation and using the method described in the above

sections, the Keff for the rack is determined in the following manney:

K = K

eff nominal +B

method Bpart

2 2 2
. [Eksnominal) e (ksmethod) * (ksmech)

%

K = nominal case KENO Ke

nominal ff

= method bias determined from benchmark critical comparisons

Bpart = bias to account for poison particle self-shielding.

= 95/95 uncertainty in the nominal case KENO Ke

kS nominal ff

k = 95/95 uncertainty in the method bias.

Smethod

k = 95/95 uncertainty due to construction and material

Smech
tolerances.




4.3.5

The presence of the approximately 1600 ppm boron in the pool water
will decrease reactivity by approximately 30% AK. Thus, Keff -
0.95 can be easily met for postulated accidents, since any
reactivity increase will be much less than the negative worth of

the dissolved boron.

For fuel storage applications, water is usually present. However,
accidental criticality when fuel assemblies are stored in the dry
condition is also accounted for. For this case, possible sources
of moderation, such as those that could arise during fire fighting

o,erations, are included in the analysis.

This "optimum moderation" accident is not a problem in fuel
storage racks because possible water densities are too low
(* 0.01 gm/cm3®) to yield Keff values higher than for full density
water and the rack design prevents the preferential reduction of
water density between the cells of a rack (e.g., boiling between

cells).

Manufacturing Biases

The construction tolerances for the spacer pocket racks allow for
the nominal center-to-center spacing to be randomly reduced for

individual cells. This change will result in an increase in Keff

36



which will be treated as an uncertainty. The effect of the
tolerances on pocket height and material thicknesses also result

in an increase in Keff which will be treated as an uncertainty.

Another center-to-center spacing reduction can be caused by the
asymmetric assembly position within the storage cell. The inside
dimensions of a nominal storage cell are such that if a fuel
assembly is loaded intc the corner of the cell, the assembly
centerline will be displaced from the cell centerline. This means
that adjacent asymmetric fuel assemblies would have their
center-to-center distance reduced from the nominal. Analysis
shows this reduction may increase reactivity. This will be
treated as an uncertainty because the asymmetric positioning of

assemblies within storage cells will be random.

The final Keff for Region 2 is constructed according to the

following formula:

K =K

eff nom * Bmeth + [(ks

2
h)2 * (ksasym)2 ¥ (ksmeth)z * (ksnom) *

%
(ksp )2 + (ksy )]

mec

where:

Knom is the eigenvalue from KENO for the nominal storage

configuration,




is the bias in the method,

metlh

ks is the method uncertainty (95/95),

meth

ksnom is the uncertainty (95/95) on the nominal eigenvalue,

ks is the uncertainty (95/95) due to ccnstruction and material

mech
tolerance.

ksasym is the uncertainty (95/25) due to asymmetric assembly positioniig

within the cell.
kspu is the uncertainty on the plutonium reactivity, and

ks, 1is the uncertainty on reactivity as a function of irradiation.

bu
While it may be argued that ksbu and kspu are not independent and should not
be combined statistically, it should be considered that the reactivity of
fuel as a function of burnup depends implicitly on the production rate of
plutonium. The two uncertainties are so closely related that accounting for

them twice is a conservative form of double accounting.
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QUESTIONS RELATED TO RADWASTE AREA

Question 1:

What is the average annual volume of solid radwastes shipped off-site from

Units No. 1 and 2?

Response:

Arkansas Nuclear One's average annual volume of solid radwastes shipped
off-site from 1978 to 1982 is 24,199 cubic feet. However, we believe that a
realistic average annual volume of solid radwaste shipments for future years

will range between 30,000 - 35,000 cubic ft.

Question 2:

What is the approximate volume of old fuel assembly racks to be disposed

with and without volume reduction?

Response:

The estimated volume of old tuel assembly racks to be disposed of without
any volume reduction is 18,700 cubic ft. It is estimated that this can be
reduced Lo approximately 950 cubic feet (95% volume reduction) through

dismantling and decontamination by electropolishing.

Question 3:
What is the average design burnup in MWD/MTU for Unit No. 2?

Response:

Currently Unit No. 2's average design Batch burnup is expected to be

approximately 34,000 MWD/MTU. However, this value may be increased when

fuel test programs have demonstrated that it is safe to do so.
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