EVALUATION OF EMERGENCY RESPONSE FACILITIES FOR PRAIRIE ISLAND NUCLEAR GENERATING PLANT

October 1981

Prepared for the U.S. NRC under a related services agreement with the U.S. Department of Energy under Contract DE-AC06-76RL0 1830

> Pacific Northwest Laboratory Richland, Washington 99352

8112220047 811123 PDR ADOCK 05000282 F PDR

5. . .

.

TABLE OF CONTENTS

1.	SUMMARY AND RECOMMENDATIONS	l-1
2.	TECHNICAL SUPPORT CENTER	
	 Integration with Overall Planning Location	
3.	CONTROL ROOM	
	 3.1 Integration with Overall Planning 3.2 Staffing 3.3 Communications 3.4 ERF Phase 	·····3-2
4.	OPERATIONAL SUPPORT CENTER	
	 4.1 Integration with Overall System 4.2 Habitability 4.3 Communications 4.4 Staffing 4.5 Size 	
5.	EMERGENCY OPERATIONS FACILITY	
	 5.1 Integration with Overall Planning 5.2 Location, Structure and Habitability 5.3 Staffing 5.4 Size 5.5 Radiological Monitoring 5.6 Communications 5.7 Instrumentation, Data System Equipment and Power Supplies 5.8 Technical Data and Data System 5.9 Records Availability and Management 	

1	6.	DATA	ACQUISITION SYSTEM
		6.1 6.2 6.3 6.4 6.5	DAS Functional Description
1	7.	DATA	DISPLAY SYSTEMS
		7.1 7.2 7.3	Functional Display Devices
	8.	DATA	COMMUNICATIONS
		8.1 8.2 8.3 8.4 8.5	Description
9.	9.	SYST	M SUPPORT REQUIREMENTS
		9.1 9.2 9.3 9.4 9.5	Documentation

.

Prairie Island

1. SUMMARY AND RECOMMENDATIONS

The Prairie Island ERF conceptual design package lacked the necessary information to evaluate the adequacy of the emergency response facilities. The following areas had little or no information available for review:

The design package did not address the functions of the TSC.

Although the licensee provided a diagram of the room layout in the TSC, there was insufficient information on the computer display and communication facilities located at each work station.

Concerning TSC habitability, the licensee states the TSC meets the guidance of NUREG-0696, but no information was provided for evaluation.

More detailed information is required on radiation monitoring systems in the TSC and supplies of protective clothing, respiratory equipment and potassium iodide.

The licensee did not provide information to evaluate whether the TSC would be fully functional within 30 minutes of activation.

The subject of backup communication in the TSC was not addressed. More information is required concerning TSC communication.

Although most of the required records for the TSC are available in the office area adjacent to the TSC, there is no information on the procedures for updating the records to ensure they are current and complete.

The design package did not address the control room.

The functions of the OSC were not sufficiently addressed.

The design package contained insufficient detail concerning OSC habitability.

The licensee does not intend to provide a direct and dedicated primary communication link between the OSC and the control room and the OSC and the TSC. The design package states communication is by two extensions for the plant phone system.

Prairie Island

The size of the OSC was not addressed.

The licensee did not address the functions of the BOF.

The licensee provided insufficient information to evaluate the location, structure and habitability of the EOF.

The design package provided an extensive description of the functions of the EOF staff but no information on the time required for the EOF to become functional.

The only information provided on the size of the EOF was a diagram which outlined rooms and functions to be supported in the rooms. Further information is required on equipment to be utilized to support the functions, and space for storage of records.

The licensee states that radiological monitoring and alarming will be provided at the EDF but provides no details.

Insufficient information is provided on EOF communications and records availability and management.

Priaire Island is planning a phased approach to the data acquisition system to be used to support the ERF's. The first phase involves an upgrading of their interim data acquisition and display system. During Phase II they plan to install a computer based dose assessment system that will include on-line availability of meteorological data and radiation release data. In the final phase (Phase III) the plant process computer will be replaced and a plant multiplexing system and computer driven control room enhancement system will be installed. The licensee is a member of a group of utilities who are jointly funding the development of a generic safety parameter display software system (SAS) which will be implemented on the data acquisition and display computer to be installed in Phase III.

The interim technical data system comprises three systems: a process computer acquisition and display system which displays all data points accessed by the plant processors; the Transient Monitoring System (TMS) which consists of a data acquisition system and recorder that captures initial plant data and a subsystem that provides instantaneous real time plant information at the TSC; and an offsite dose calculation system for projecting offsite dose rates at various distances. The licensee did not provide enough detail information in the areas of data acquisition display, communications or system support to perform an evaluation of the interim system.

The licensee is completing detailed specifications for the

Prairie Island

computer systems to be installed in Phase II and Phase III. Therefore, an evaluation of the proposed systems is impossible at this time.

The utility proposes to implement a Safety Assessment System (SAS) which they claim "provides a centralized, flexible, computer-based data and display system to assist control room personnel in evaluating the safety status of the plant." SAS displays are also provided to the ERF's, and the claim is made that the SAS meets the requirements of NUREG-0696 with respect to the SPDS. Graphical displays, including a primary display of a minimum set of key plant parameters, are presented on a high-resolution multiple-color CRT. The format for this display employs bar graphs, digital indicators, and digital values. Several secondary displays may abe selected by means of function keys.

Data displayed by the SAS is validated by comparing redundant sensors and performing several types of reasonableness checks, apparently in software. Persons with plant operating experience, including control room operators, have been directly involved in the design of the SAS display formats.

The validation and verification program for SAS software includes static tests for each software module, as well as dynamic tests generated by recording nuclear plant simulator data on magnetic tape. Verification of future software modifications will be handled by freeing a selected set of static test cases during implementation.

The information provided indicates that the Safety Assessment System is a well-designed data acquisition and display system which is capable of meeting or exceeding the requirements of NUREG-0696 relating to acquisition and display of technical data with respect to the SPDS. However, the licensee proposes to implement the system on the data acquisition and display computer to be installed in Phase III. Because no details were provided on that computer it is impossible to evaluate its adequacy for this system. In addition, further details must be provided on the display formats and contents for the SAS.

2. TECHNICAL SUPPORT CENTER

2.1 Integration with Overall Planning

Subject not addressed.

- 1. The design of the Technical Support Center (TSC) addresses the following goals:
 - a. Provides plant management and technical support to plant operations personnel during emergency conditions;
 - Believes the reactor operators of peripheral duties and communications not directly related to reactor system manipulations;
 - c. Prevents congestion in the control room; and
 - d. Performs EOF functions for the Alert Emergency class and for the Site Area Emergency class and General Emergency class until the EOF is functional.
- 2. The TSC shall be the emergency operations work area for designated technical, engineering, and senior licensee plant management personnel; any other licensee-designated personnel required to provide the needed technical support; and a small staff of NRC personnel.
- 3. The TSC shall have facilities to support the plant management and technical personnel who will be assigned there during an emergency and will be the primary onsite communications center for the plant during the emergency. TSC personnel shall use the TSC data system to analyze the plant steady-state and dynamic behavior prior to and throughout the course of an accident. The results of this analysis will be used to provide guidance to the control room operating personnel in the management of abnormal conditions and in accident mitigation. TSC personnel will also use the environmental and

Page 2-1

radiological information available from the TSC data system to perform the necessary functions of the EOF when this facility is not operable.

4. Since the specific allocation of functions assigned to emergency facilities will differ from design to design, the proposal should clearly state which functions (Operations, Radiological Assessment, etc.) are assigned to the TSC.

2.2 Location

- 1. The TSC should:
 - a. Be in the same building as the TSC is located across the control room if possible; if not, turbine hall from the plant then where is it located? control room entrance.
 - b. Be within 2 minutes walking distance Implied. from the control room.

Is the TSC within the security Yes. perimeter?

Must someone pass through security checkpoints to move from the TSC to the control room?

What provisions have been made for Subject not addressed. passing through security checkpoints quickly and easily?

What stairways, corridors or equipment spaces must be traversed?

Is the route between the TSC and Subject not addressed. control room exposed to air-scattered or direct radiation from the containment?

What is the maximum exposure a person Subject not addressed. will receive while walking from the control room to the TSC during a design basis accident (less than or equal to 5 rem, including all other exposures, during the course of an accident)?

Subject not addressed.

Does the route between the control room and the TSC have a radiological monitor or are there provisions for exposure determining rates periodically?

c. Facilitate face to face interaction with control room personnel.

Are there additional means (e.g., closed circuit TV) between the TSC and the control room to facilitate visual as well as auditory communication?

What are the factors that impede face-to-face interaction?

d. Afford access to any control room information not available in TSC data system.

How can data not available in the TSC data system be provided to the TSC?

Subject not addressed.

Because of the short distance between TSC and the control room face-to-face communication is facilitated. However, the document does not explicitly discuss the degree to which face-to-face interaction is facilitated or impeded.

Because of the short distance separating the rooms data from the control room is available.

2.3 Size

1. The TSC shall provide:

a. Working space, without crowding, for The TSC is approximately the personnel assigned to the TSC at the maximum level of occupancy (minimum size of working space provided shall be approximately 75 sq ft/person).

probably inadequate.

1206 sq. ft. This area is

How much space is assigned to each work station?

Is an operational sequence diagram provided that describes the interaction among operators, work stations and items of equipment?

Subject not addressed.

Is a locational diagram provided that shows where personnel work stations and items of equipment will be placed? Is the scale of the diagram provided?

Is each work station equipped for its function?

Are personnel grouped by function? Does each work station have sufficient space to carry out its assigned function?

Explain how the location of facilities and equipment is consistent with the patterns of interpersonal interaction and machine utilizations that will take place.

Who needs access to which machines?

What is the flow of information between persons and groups?

Are personnel performing related tasks located adjacent to one another?

Describe the organization of the work stations. Are they organized according to Figure 2.1?

Describe how the workspaces are designed to control traffic and noise (mechanical and conversational).

b. Space for TSC data system equipment needed to transmit data to other locations.

Where is the data displayed?

Show how layouts of displays are coordinated with working space layouts.

A diagram is provided, but the document does not provide a complete description of the computer and communication facilities at each work station. Insufficient information.

The work areas have been grouped by function.

Subject not addressed.

Figure 2 shows all display equipment located in one room. This is an inadequate de ign as each work station should have at least one data display.

How much space is available for Subject not addressed. working with maps, diagrams, drawings, etc?

Where are the maps, diagrams, Subject not addressed. drawings, etc. located?

Is there a description of the characteristics of the machines in the TSC that provides a basis for determining their compatibility with anthropometric guidelines (e.g. Van Cott & Kinkade, Human Engineering Guide to Equipment Design)?

Are the characteristics of the data display devices compatible with anthropometric guidelines?

c. Sufficient space to repair, maintain, and service equipment, displays, and instrumentation.

How much space is provided to allow access to backpanels for repair?

What spare modules are available?

- d. Space for unhindered access to communications equipment by all TSC personnel who need communications capabilities to perform their functions.
 - Is there a description of the layout Subject not addressed. of the telephones in the TSC?

How much space is provided for each telephone? (one sq. ft. minimum)

How can a ringing telephone be easily identified (i.e., do telephones light up when ringing)?

Subject not addressed.

e. Space for storage of and/or access to Subject not addressed. plant records and historical data.

How much work space is dedicated to Subject not addressed. this task?

f. A separate room, adequate for at There is a separate NRC least three persons, to be used for room. private NRC consultations.

Are three of the five NRC work stations afforded sufficient privacy for meetings and telephone conversations?

Does this room have a speaker telephone?

What size is this room? (200 sq. ft. mir mum)

2. The TSC working space shall be sized for a minimum of 25 persons, including 20 persons designated by the licensee and five NRC personnel.

How many people are assigned to the TSC by the emergency plan, including five NRC personnel?

Is the work space adequate for these Subject not addressed. people to perform their functions?

2.4 Structure

1. The TSC complex must be able to withstand Adequate response. reasonably expected adverse conditions.

Can the TSC be operable during a 100-year flood?

Can the TSC withstand a 100-year windstorm?

Is the TSC accessible during floods and storms?

Subject not addressed.

Subject not addressed.

Inadequate response. Approximately 160 sq. ft.

Subject not addressed.

2.5 Habitability

1. The TSC shall have the same radiological Inadequate response. The habitability as the control room.

Which accidents were analyzed to determine what radiation doses would be received in the TSC during the most severe accidents?

What are the whole body radiation doses during plume passage (less than or equal to 5 rem)?

2. The TSC ventilation system shall be functionally comparable to the control lation system including par-room system (i.e., high efficiency ticulate and charcoal fil-particulate air and charcoal filter). Automatic isolation is not required.

Briefly describe the HVAC system filtration system.

Is the decontamination capability (D.F.) of the TSC system different from the control room system? Briefly describe the difference.

Is the HVAC system controlled to isolate the intake?

At what airborne activity level does Subject not addressed. isolation occur?

How is the level determined?

Where are the sensors located?

licensee states that the TSC meets the guidance of NUREG-0696, but no information was provided for evaluation. Pg A-8.

Subject not addressed.

Subject not addressed.

A pressurization type venti-

Insufficient information.

Subject not addressed.

Subject not addressed.

Subject not addressed.

3. Radiation monitoring systems shall be either permanently installed or shall be dedicated portable-type instruments (e.g., dose rate and airborne radiation indicate radiation dose detectors). Detectors shall be able to detect radioiodine as low as 1E-7 activity concentration in-microcuries/cc. The licensee shall provide side the TSC. No further the TSC with installed radiation monitors information is provided or dedicated portable monitoring for evaluation. Pg A-8. equipment.

Are dedicated dose-rate instruments, survey meters, and airborne radioactivity monitoring instruments assigned to the TSC?

Which instruments will be used?

How many of each?

Where are they located?

How was the type, number and placement of monitoring instruments determined?

What are the ranges of these instruments?

Do the instrument ranges cover the values expected if the TSC's HVAC decontamination capability fails during a DBA?

Who is assigned to monitor the TSC habitability?

What are the qualifications of this Subject not addressed. person?

If there is no one assigned, are there fixed instruments equipped with audible and visual alarms?

rates and airborne radio-

Subject not addressed.

At what radiation levels will these Subject not addressed. instruments alarm?

Does the system provide a warning of the precautionary radiation levels in a timely manner to allow the TSC personnel to take protective actions?

Are unattended instruments in continuous Subject not addressed. operation?

How is icdine monitored?

Is the detectibility for airborne I-131 as Subject not addressed. low as 1E-7 microcuries/cc?

What is the reliability of the continuously-operating instruments, i.e., is there back-up power for the instruments? Do the instruments meet the manufacturers specifications for availability and accuracy? How often are the instruments calibrated?

4. Supplies of protective clothing, respiratory equipment and potassium iodide shall be readily available to all TSC personnel.

If this is not the case, how many individuals can be supplied?

Are reserves of this equipment available in the TSC or some other nearby location?

Where?

Are instructions for use of KI available?

How is the need for such supplies determined, i.e., when will personnel don respiratory equipment?

Is the protection factor for respritory equipment equivalent to a full face mask?

Subject not addressed.

Subject not addressed.

Subject not addressed.

Insufficient information. Supplies are mentioned, but no specific information is provided.

Subject not addressed.

Subject not addressed.

Subject not addressed.

Subject not addressed.

It is implied that the Superintendent, Radiation Protection makes such decisions. Pg B-2

2.6 Staffing (NUREG-0696 and PNL TSC/EOF Staffing Study)

- 1. The TSC shall:
 - a. Be fully functional within 30 minutes of activation.

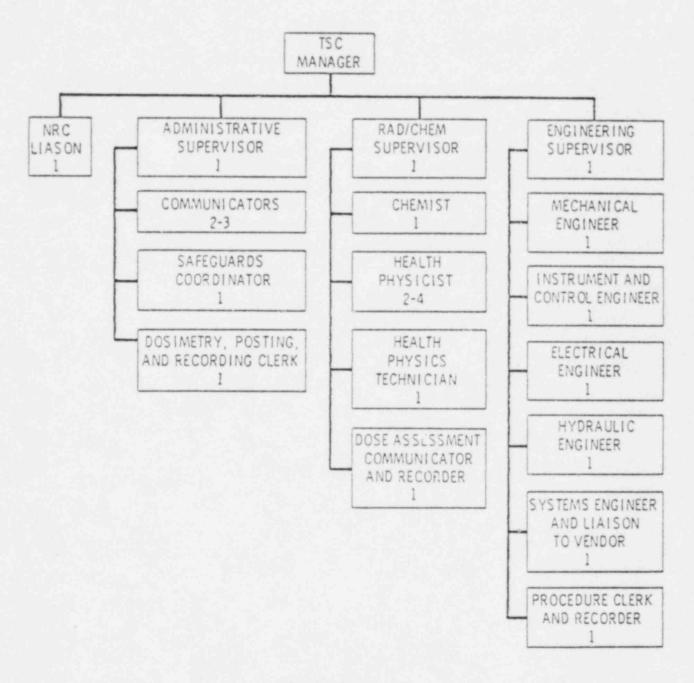
How long does it take TSC equipment vided. to become fully functional?

b. Consist of sufficient technical The licensee's document personnel needed to support the contains a description of control room including individuals the following support cen-who can handle situations involving ter staff: Emergency Direcoperations, maintenance, tor; TSC coordinator; Superadministration, security, Rad/chem, intendent, radiation protecand communications (Figure 2.1 is an tion; shift Technical Superexample only).

Has the licensee identified the tasks that may need to be performed and specified the characteristics (e.g. skills, experience and training) of the persons needed to accomplish these tasks?

2. Allocation of tasks to personnel should be validated by an analysis of error likely situations, especially those situations that might exceed the human operator's capability in the areas of perception, memory, information integration and manipulation of controls.

What is the total number of personnel assigned to the TSC?


Are there adequate numbers of personnel assigned to the TSC to carry out its function?

Insufficient information. This cannot be determined from the information pro-

visor; Communicator.

TSC ORGANIZATION

1

FIGURE 2.1

Page 2-11

2.7 Communications

- 1. If existing licensee communications systems are to be used to meet TSC emergency requirements the licensee must demonstrate the system's ability to handle added TSC requirements under emergency conditions.
- 2. TSC telephone access to commercial common-carrier services must bypass any onsite or local offsite switching facilities that may be susceptable to loss of power during emergencies.
- 3. How many switchboard independent commercial telephone lines to the plant are available for use by the TSC during emergencies?
- 4. TSC voice communications must consist of a reliable primary and backup system and include:
 - a. Hotline telephone in the NRC consultation room on the ENS to the NRC Operations Center.

What is the backup system for Subject not addressed. communications to the NRC?

b. Dedicated telephone in NRC office space on the NRC Health Physics Network.

What is the backup system for communications to the NRC?

c. Dedicated telephones to the control room, OSC, and EOF.

these telephones provide Do non-interruptable service between the TSC, EOF or control room?

d. Dial telephones that provide access to onsite and offsite locations.

Subject not addressed.

Subject not addressed.

Subject not addressed.

Adequate response.

Adequate response.

Subject not addressed.

Intercom system provides communication between several plant areas including the TSC, Control Room, OSC and several work stations throughout the plant.

Adequate response.

e. Intercommunications systems between Subject not addressed. any separate work areas within the TSC.

Is there an intercom to connect the Subject not addressed. TSC manager and supervisors?

- f. Communications to licensee mobile Multi-channel radio phone. monitoring teams.
- g. Communications to State and local Multi-channel radio phone. operations centers.
- h. Radio communications with onsite and Adequate response. offsite organizations and response groups.
- 5. At least two additional dial telephone lines must be provided for use by NRC personnel.
- 6. Facsimile transmission capability between the TSC, EOF and NRC Operations Center must also be provided.
- 7. Provision must be made for 24-hour per day notification to and activation of the State/local emergency response network, with 24-hour per day manning of communication links that initiate emergency response actions (NUREG-0654).
- 8. A coordinated communication link for fixed and mobile medical support facilities shall be provided (NUREG-0654).
- 9. Are there descriptions of how the Subject not addressed. following communications needs are met?

TSC Manager with

Corporate HQ Control Room EDF OSC NRC State/local governments Vendors

Subject not addressed.

Subject not addressed.

Subject not addressed.

Administrative Supervisor with

Corporate HQ Backup communications Security force EOF

Rad/Chem Supervisor with

* *

1.0

Radio to HP technicians HP control point OSC Chemical laboratory EDF State/local governments HPN

Engineering Supervisor with

Corporate HQ Control Room OSC EOF Vendors NRC Radio to corrective action teams

2.8 Instrumentation, Data System Equipment, and Power S pplies

These methodologies are addressed in Sections 6, 7, 8 and 9.

2.9 Technical Data and Data System

These methodologies are addressed in sections 6, 7, 8 and 9.

2.10 Records Availability and Management

۱.	The	TSC	pers	sonne.	l sh	nall	have	ready	access	
	to	U	p-to-	-date		reco	ords,	oper	ational	
	spec	cific	catio	ons,	ar	bn	proce	edures	that	
	inc	lude	but	are :	nct	lim	ited t	:0:		

- a. Plant meteorological data,
- b. SPD systems,
- c. Plant technical specifications,
- d. Plant operating procedures,

e. Emergency operating procedures,

- f. Final Safety Analysis Report,
- g. Plant operating records,
- h. Plant operations reactor safety Adequate response. committee records and reports,
- i. Records needed to perform the Subject not addressed. functions of the EOF when it is not operational, and
- j. Up-to-date, as-built drawings, schematics, and diagrams showing conditions of plant structures and systems down to the component level, or hardcopy.
 Adequate response.
 These are in the form of aperture cards, microfiche or hardcopy. as well as in-plant locations of these systems.
- k. Checklists, guides, worksheets and other job performance aids.
- 2. The licensee shall have all of the above All of these records are records in the TSC in current form when the facility is fully activated.

What procedures have been established to update these records as necessary to ensure that they are current and complete?

Describe the method of storage and presentation of the TSC records which ensures their availability and ease of access under emergency conditions.

Adequate response.

located in office area adjacent to TSC.

Subject not addressed.

Subject not addressed.

Page 2-15

3.0 CONTROL ROOM

Not addressed in the design package.

- 3.1 Integration with Overall Planning
 - The design of the control room (CR) addresses the following goals during normal operation:
 - a. The control room is the onsite location from which the nuclear power plant is operated. It contains the instrumentation, controls, and displays for:

nuclear systems, reactor coolant systems, steam systems, electrical systems, safety systems, and accident monitoring systems.

- b. The control room is staffed during normal operations by a minimum of:
 - a shift supervisor who is a senior licensed reactor operator and whose duty station may be in the immediate vicinity outside of the control room itself;
 - a shift foreman who is a senior licensed reactor operator and whose duty station is in the control room;
 - control room operators, two
 licensed reactor operators,
 whose duty stations are in the
 control room;
 - auxiliary operators, two reactor operators, whose duty assignments are set by the shift supervisor.

- The design of the control room addresses the following goals during emergency condition operations:
 - a. At the start of an emergency situation, the control room staff performs the following functions:

monitor plant parameters, analyze abnormal conditions, take corrective actions, classify emergency, make initial notification to shift supervisor, shift foreman, and shift technical advisor, establish initial trends in plant parameters, establish necessary control room staff changes, establish communications with plant amergency response teams, establish communications with Emergency Response Facilities, and manage plant operations.

3.2 Staffing

- 1. The personnel organization in the control room is shown in Figure 3-1.
- The succession of authority if the senior person is incapacitated or unavailable must be addressed.
- The functional organization in the control room during an abnormal event is shown in Figure 3-2.

3.3 Communications

1. The following onsite and offsite communication links for continuous information exchange must be available.

> commercial telephone dedicated telephone radio plant intercom

Are these communication systems described?

- The shift supervisor, shift foreman, and technical advisor or their designates must be immediately notified of an abnormal condition. Indicate expected average and maximum notification times.
- 3. After the TSC is operational, the control room staff must verify that TSC communication links with emergency teams are established and functional.
- Verification must be made that information going to ERP's is correct.

3.4 ERF Phase

After the TSC is operational, does the Control Room staff relinquish the following functions:

managing plant operations, and

peripheral duties and communications not directly related to reactor system manipulations. CONTROL ROOM ORGANIZATION

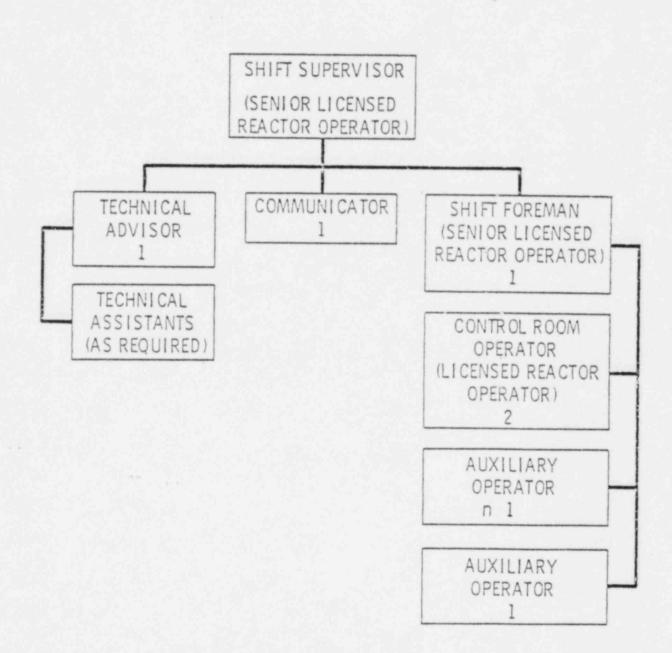


FIGURE 3.1

FUNCTIONAL UNTIL TSC OPERATIONAL

FIGURE 3.2

4. OPERATIONAL SUPPORT CENTER

- 4.1 Integration with Overall Planning
 - 1. The design of the Operational Support Subject not addressed. Center (OSC) addresses the following goals:
 - a. Provides a location where plant logistic support can be coordinated during an emergency, and
 - b. Restricts control room access to those support personnel specifically requested by the shift supervisor.
 - 2. An onsite operational support center is separate from the control room and the TSC and is where licensee operations support personnel will assemble in an emergency.

Where is it located?

Describe the isolation of the OSC from the TSC and control room.

Where are the backup OSC sites and are they accessible (e.g. onsite or nearsite) and habitable?

Will the back-up OSC be habitable if the Subject not addressed. primary OSC is not?

- 3. Provision shall be made for an alternate health physics control point. Where is it located?
- 4. The health physics control point shall be Subject not addressed. immediately accessible to the OSC. (i.e., will personnel traveling from the OSC to the H.P. control point receive less than 5 rem when combined with other exposures during the course of an accident?)

Adjacent to the main Control Room. Subject not addressed.

Not addressed.

5. Can personnel access storage facilities Subject not addressed. without receiving greater than 5 rem (when combined with other exposures) during the course of an accident?

4.2 Habitability

OSC?

1. No specific habitability requirements are established for the OSC.

Is the OSC as habitable as the control room? Discuss.

Is the shielding comparable to the control room? Discuss.

Is the ventilation comparable to the control room? Discuss.

2. If the CSC habitability is not comparable to that of the control room, procedures shall be available for evacuation of OSC personnel in the event of a large radioactive release.

If OSC has to be evacuated, what are the Subject not addressed. criteria for evacuation?

Have key people been selected to remain onsite (or nearsite) to continue OSC functions?

Are other personnel, evacuated offsite Subject not addressed. from the OSC, available to provide additional OSC functions if required?

The OSC is not as heavily shielded as the control room, but it is in a structure with significant concrete shielding. No further information is provided.

Subject not addressed.

Subject not addressed.

Subject not addressed.

3. How are radiation levels determined in the Subject not addressed.

Page 4-2

 Emergency supplies (protective clothing, respirators, survey meters, dosimeters and KI) shall be available in the OSC for all personnel assigned at the facility.

What alternate supply arrangements have Subject not addressed. been made?

Where are equipment and supplies stored?

How does OSC staff obtain their equipment? (i.e., is it signed out, just taken, etc.)

4.3 Communications

- There shall be a direct and dedicated primary communication link with the control room and TSC.
- Communications with the TSC and control room shall be available at the backup OSC.
- 3. A dial phone shall be available in the OSC for other onsite and offsite locations.
- Direct voice intercommunications and/or reliable direct radio communications may be used for supplementing telephone links.

Inadequate response. Communications is by two extensions of the plant phone system. Pg 3.

Subject not addressed.

Adequate response. Page 3.

4.4 Staffing 1. Personnel shall be assigned to the OSC Inadequate response. for: a. Damage Control Subject not addressed. b. Fire Brigade c. First Aid Subject not addressed. d. Radiation Control e. Decontamination f. Radiological and Environmental Surveys g. Maintenance/Repairs h. Other Operations Personnel 2. When the OSC is activated, it shall be The senior Operations per-supervised by licensee management sonnel not in the control personnel designated in the licensee's room or a person designated emergency plan to perform these functions. by the Emergency Director will be in charge. Pg B-8. Who will be in charge of the OSC? 3. Team leaders shall be assigned for each Adequate response. Pg. B-9. functional group. 4.5 Size 1. The OSC shall be large enough to Subject not addressed. accommodate assigned personnel and equipment to be stored in the OSC (e.g. 15 sq. ft. per person for evaluative purposes only). 2. Decontamination facilities should be Subject not addressed. readily available.

Where are they located?

5. EMERGENCY OPERATIONS FACILITY

5.1 Integration with Overall Emergency Subject not addressed. Planning

- The design of the Emergency Operations Facility (EOF) addresses the following goals:
 - a. Management of overall licensee emergency response;
 - b. Coordination of radiological and environmental assessment;
 - c. Determination of recommended public protective actions; and
 - d. Coordination of emergency response activities with Federal, State, and local agencies.
- The EOF shall be staffed by licensee, Federal, State, local and other emergency personnel designated by the emergency plan.
- 3. Facilities shall be provided in the EDF for the acquisition, display, and evaluation of all radiological, meteorological and plant system data pertinent to determining offsite protective measures.
- 4. The licensee shall use the EOF to coordinate its emergency response activities with those of the local, State, and Federal agencies, including the NRC. Licensee personnel in the EOF will assess potential offsite effects and make appropriate protective action recommendations for the public to State and local emergency response agencies. The EOF may be used as a location for information dissemination to the public via the news media by designated spokespersons in accordance with the licensee's emergency plan. The licensee

also may use the EOF as the post-accident recovery management center. Since the specific allocation of functions assigned to emergency facilities will differ from design to design, the proposal should clearly state which functions (Radiological Assessment, Security, Coordination with Offsite Agencies) are assigned to the EOF.

- 5.2 Location, Structure and Habitability
 - 1. The siting of the EOF should include the following criteria:
 - a. Whether the location facilitates carrying out the functions specified for the EOF (i.e., determination of public protective actions to be recommended by the licensee to offsite officials, and coordination of the licensee with Federal, State, and local organizations).

Describe the transportation network Subject not addressed. in the vicinity of the EOF adequate to assure rapid coverage of the EPZ by monitoring teams.

Is the EOF placed in a location that is readily accessible by road to Federal, State, local government officials as well as the licensee's corporate and site operations personnel?

Has the selection of the EOF location been coordinated with State/local officials?

The primary BOF is located approximately 1/2 mile from the containment structures.

Implied.

b. What radiation doses would be Subject not addressed. expected when the EOF is accessed during DBA or other specified accident (less than or equal to 5 rem)?

Is the EOF accessible during periods Subject not addressed. of radiation releases?

Is there an alternate EOF? Subject not addressed.

2. The BOF must be able to withstand reasonable expected adverse conditions. (e.g., 100 year floods and high winds)

How would the maximum 100-year water levels and winds affect the operation of the EOF?

3. The EOF shall have a protection factor Inadequate response. greater than or equal to five if located The permanent EOF is a within 10 miles of TSC; no protection shielded concrete struc-level is necessary if located beyond 10 ture. No further informa-miles of the TSC. Protection factor is tion is provided. Pg 3. defined in terms of the attenuation of 0.7 MeV gamma radiation.

4. The EOF ventilation system shall be functionally comparable to the control room system and TSC (i.e., high efficiency particulate air filter; no charcoal) if located within 10 miles of TSC. If located beyond 10 miles from the TSC, the EOF needs no ventilation protection.

To what level will the HEPA filters reduce Subject not addressed. particulate levels?

Is the HVAC system controlled to permit Subject not addressed. isolation of the intake?

At what level of airborne activity is Subject not addressed. isolation performed?

How is the level determined?

Where are the sensors located?

Where is this level monitored?

5. Protective clothing, respiratory equipment Subject not addressed. and potassium iodide shall be readily available to all EOF personnel.

If not, how many people would be supplied? Subject not addressed.

Are reserves of supplies available?

Where are they located?

How is the need for these supplies determined? (i.e., when will respiratory equipment be used?)

Is the protection factor for respiratory equipment equivalent to a full face mask?

Are instructions for KI use provided in Subject not addressed. the 20F?

The permanent EOF ventilation has an emergency mode of operation that will pressurize the building with a HEPA filtration system. Pg 3

Subject not addressed.

5.3 Staffing (NUREG-0696 and PNL TSC/EOF Staffing Study)

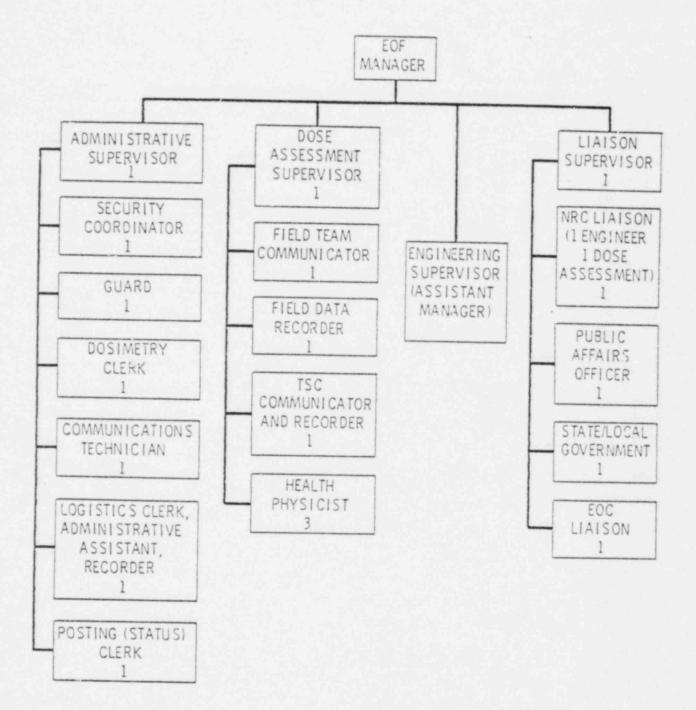
- 1. The EOF shall:
 - a. Be functional within one hour of activation;

What equipment takes more than 60 minutes to become operational?

How long does it take to fully staff the EOF?

What is the procedure to ensure notification of the minimum EOF staff?

- b. Include staff to engage in onsite and offsite radiological monitoring and a scription of the following senior management person to be in charge of all licensee activities in the EOF. An example of additional staffing needs for the BOF are given pervisor; technical support in Figure 5-1 (from the PNL TSC/EOF Staffing Study.)
- c. Has the licensee identified the tasks that may need to be performed and specified the characteristics (e.g. skills, experience and training) of the persons needed to accomplish these tasks?
- 2. Allocation of tasks to personnel should be validated by an analysis of error likely situations, especially those situations that might exceed the human operator's capability in the areas of perception, memory, information integration and manipulation of controls.


What is the total number of personnel assigned to the EDF? Are there adequate numbers of personnel assigned to the EOF to carry out its function?

Insufficient information. This cannot be determined from the licensee's document.

The document contains a de-EOF staff: emergency manager; EOF coordinator; Radiation protection support susupervisor; communications coordinator; logistics coordinator; records specialist; and public information specialist.

Subject not addressed.

EOF ORGANIZATION

FIGURE 5.2

5.4 Size

- 1. The EOF building or building complex shall be large enough to provide:
 - a. Working space for the personnel Adequate response. ass gned to the EOF as specified in the licensee's emergency plan, including State and local agency personnel, at the maximum level of occupancy without crowding (minimum size of total working space provided shall be approximately 75 sq ft/person);

How much space is assigned to each Subject not addressed, but sq. ft. work station?

Is an operational sequence diagram provided that describes the interaction among EOF staff, work stations and items of equipment?

Is a locational diagram provided that Diagram shows rooms and shows where personnel work stations functions to be supported and items of equipment will be in the rooms but no equipplaced? Is the scale of the diagram ment locations. provided?

Is each work station equipped for its Subject not addressed. function (i.e., manager, liaison, dose assessment, engineering, administration etc.)?

Are personnel grouped by function?

Does each work station have Insufficient information. sufficient space to carry out its assigned function?

Explain how the location of Subject not addressed. facilities and equipment is consistent with the patterns of interpersonal interaction and machine utilizations that will take place.

Who needs access to which machines? Subject not addressed.

in work areas is given in Figure 5.

Subject not addressed.

Yes.

What is the flow of information Subject not addressed. between persons and groups?

Are personnel performing related Insufficient information. tasks located adjacent to one another?

Describe the organizations of the Subject not addressed. work stations. Are they organized according to Figure 5.2?

Describe how the workspaces are designed to control traffic and noise (mechanical and conversational).

b. Space for EOF data system equipment needed to transmit data to other locations.

Where is the data displayed?

Are layouts of displays coordinated Subject not addressed. with working space layouts?

How much space is there for working with maps, diagrams, drawings, etc.

Where are the maps, diagrams, Subject not addressed. drawings, etc., located?

Is there a description of the characteristics of the machines in the EOF that provides a basis for determining their compatibility with anthropometric guidelines (e.g. Van Cott & Kinkade, Human Engineering Guide to Equipment Design)?

Are the characteristics of the data display devices compatible with anthropometric guidelines?

c. Sufficient space to perform repair, Subject not addressed. maintenance, and service of equipment, displays, and instrumentation;

Subject not addressed.

How much space is provided to allow Subject not addressed. access to back panels for repair?

What spare modules are available?

Is a working station assigned for repair and maintenance?

- d. Space for unhindered access to communications equipment by all EDF personnel who need communications capabilities to perform their functions.
 - Is there a description of the layout of the telephones in the EDF?

How much space is provided for Subject not addressed. each telephone (about 1 sq. ft.)?

How can a ringing telephone be Subject not addressed. easily identified (i.e., do phones light up when ringing)?

e. Space for ready access to functional Subject not addressed. displays of EOF data.

Is there space to display maps of the EPZ?

f. Space for storage of plant records and historical data. Records, data and drawings may be kept in TSC if they can be displayed in the EOF by an automated method of retrieval.

How much work space is dedicated to Subject not addressed. this task?

g. Separate office space to accommodate at least five NRC personnel during periods that the EOF is activated.

How much office space is allocated Adequate response. for NRC use (at least 250-375 sq. 400 sq. ft. ft.)?

Does this room have a speaker Subject not addressed. telephone?

Page 5-9

2. The EOF working space shall be large enough for at least 35 persons, including 25 persons designated by the licensee, 9 persons from NRC, and 1 person from FEMA. This minimum space shall be increased if the maximum staffing levels specified in the licensee's emergency plan, including representatives from State and local agencies, exceeds 25 persons.

How many people are assigned to the EOF by the Emergency Plan including the NRC personnel and one FEMA person?

Is the workspace adequate for these people to perform their functions?

Are workspaces designed to control noise and traffic and to avoid unintended dissemination of confidential information?

Are provisions made for liaison persons from offsite organizations (if desired by these organizations)?

5.5 Radiological Monitoring

1. The licensee shall provide the BOF with Radiological monitoring and installed radiation monitors or dedicated, portable monitoring equipment.

Are dedicated dose rate instruments, survey meters and airborne radioactivity monitoring instruments assigned to the EOF?

Which instruments will be used?

Where are instruments located?

How many of each?

How were types of, number of, and placement of monitors determined?

What range do these instruments have?

Figure 5 shows a total of approximately 7,300 sq. ft.

Inadequate response.

alarming will be provided. No other information is provided. Pg 3.

Subject not addressed.

Subject not addressed.

Subject not addressed.

Subject not addressed.

 These systems shall continuously indicate Subject not addressed. radiation dose rates, airborne radioactivity concentrations and the presence of radioiodine as low as 1E-7 microcuries/cc in the EOF.

Is someone assigned to monitor the BOF The Radiation Protection habitability when radiation releases are Support Supervisor. Pg B-6. taking place?

What are the qualifications of this Subject not addressed. person?

If not, are there fixed instruments which are equipped with audible and visual alarms?

At what radiation levels will these Subject not addressed. instruments alarm?

Are unattended instruments in continuous Subject not addressed. operation?

How is iodine monitored?

Is the detection limit for airborne I-131 Subject not addressed. as low as 1E-7 microcurries/cc?

What is the reliability of the Subject not addressed. continuously operating instruments? (i.e., is there back-up power for the instruments? Do the instruments meet the manufacturers specifications for availability and accuracy? How often are the instruments calibrated?)

Subject not addressed.

3. These monitoring systems shall include local alarms with trip levels set to provide early warning to EOF personnel of adverse conditions that may affect the habitability of the EOF.

What are the trip levels of these Subject not addressed. instruments?

Does the instrument system provide a Subject not addressed. warning of precautionary radiation levels in a timely manner to allow the EOF personnel to take protective actions?

4. Does the EOF have a counting room?

What instruments are available in the counting room?

Where are backup counting rooms located?

Is the counting room or receiving room readily accessible to offsite EOF personnel and monitoring teams?

Is the monitoring equipment stored at the Subject not addressed. EOF? If not, where is it stored?

Supplies of protective clothing, respiratory equipment and KI shall be readily available for all personnel who may need access to the plant or may enter the airborn plume.

Are instructions for the use of KI Subject not addressed. available?

Are reserves of equipment available in the EOF or some nearby location?

Where?

.

How is the need for such supplies determined? i.e., when will personnel don respiratory equipment?

Is the protection factor for respiratory equipment equivalent to a full face mask?

Subject not addressed.

The Radiation Protection Support supervisor determines when supplies are to be used. Pg. B-6.

5.6 Communications

 EOF telephone access to commercial telephone common carrier services must bypass any local telephone switching facilities that may be susceptible to loss of power in emergencies.

How many switchboard independent commercial telephone lines are available in the EOF?

- EOF voice communications must consist of a reliable primary and backup system and include:
 - a. Hotline telephone located in the NRC office space (and also in the licensee space if desired by the licensee) on the emergency notification system (ENS) to the NRC Operations Center;

What is the backup system for communications to the NRC?

b. Dedicated telephone located in the NRC office space (and also in the licensee space if desired by the licensee) on the NRC Health physics network (HPN);

What is the backup system for communication to the NRC?

c. Dedicated telephones for management communications with direct access to the TSC and the control room;

Do these telephones provide non-interruptable service between EOF and TSC or control room?

 d. Dial telephones that provide access to onsite and offsite locations; Insufficient information.

The document states extensive communications equipment will be installed in the EOF to provide primary and backup means of communicating with outside agenccies, Headquarters Emergency Center, TSC and control room. The document also states that dedicated communications are available in the HQEC.

e. Intercommunications systems between work areas of the EDF, if needed for the EDF functional performance and if the EDF is comprised of separate functional areas;

Is there an intercom to connect the EOF manager and supervisors?

f. Radio communications to licensee mobile monitoring teams;

Are there provisions to use commercial telephones as a backup?

g. Communications to State and local operations centers;

What are the primary and backup communications?

Are they diverse, redundant and dedicated?

h. Communications to facilities outside the EOF used to provide supplemental support for EOF evaluations.

Are there primary and backup communications to corporate HQ?

- 3. The EOF communication system shall also include designated telephones (in addition to the ENS and HPN telephones) for use by NRC personnel. The licensee shall provide at least two dial telephone lines for such NRC use when the EOF is activated. The licensee shall also furnish the onsite access facilities and cables to the NRC for the ENS and HPN telephones.
- 4. Facsimile transmission capability between the EOF, the TSC, and the NRC Operations Center shall be provided.

Is facsimile transmission capability installed and tested for compatibil⁴ with NRC and offsite authorities?

5. Are there descriptions of how the following communications needs are met?

EOF manager with

.....

Corporate HQ TSC Control Room NRC State Government Local Government EOF Supervisors

Administrative supervisor with

Corporate HQ TSC Security communication center Outside telephone lines EOF manager Telefax Photocopying

Dose assessment supervisor with

HPN telephone TSC EOF manager Outside line Radio to monitoring teams

Engineering supervisor with

Control Room TSC Corporate Outside lines Vendors

Liaison supervisor with

Corporate HQ NRC State Government Local Government TV Monitor (news stations)

5.7 Instrumentation, Data System Equipment, and Power Supplies

These methodologies are addressed in Sections 6, 7, 8, and 9.

5.8 Technical Data and Data System

These methodologies are addressed in Sections 6, 7, 8, and 9.

5.9 Records Availability and Management Insufficient information.

- 1. EOF personnel shall have ready access to up-to-date records, operational specifications, and procedures that include but are not limited to:
 EOF will be contained in the administrative section of the Training Department. These records while not in
 - a. Plant meteorological data.

Does the EOF have access to primary use of available protective and backup meteorological data? measures and clothing."

Are dose assessment procedures designed to use either data set?

b. Up-to-date records related to licensee, State, and local emergency response plans.

Does the BOF have up-to-date copies of State, local and Federal emergency response plans and procedures?

- c. Safety Parameter Display System.
- d. Offsite population distribution data.
- e. Plant technical specifications.

Are specifications, records, drawings, and reports the current ones (what are the most current dates)?

f. Evacuation plans.

Insufficient information. Document states that "Records for the use of the EOF will be contained in the administrative section of the Training Department. These records while not in the habitability envelope of the EOF, will be accessible at all times through use of available protective measures and clothing." (Page 4)

- g. Plant operating procedures.
- h. Environs radiological monitoring records.
- i. Emergency operating procedures.
- Licensee employee radiation exposure histories.
- k. Final Safety Analysis Report.
- Up-to-date, as-built drawings, schematics, and diagrams showing:

Conditions of plant structures and systems down to the component level, and

In-plant locations of these systems.

- m. Checklists, guides, worksheets and other job performance aids.
- 2. These records shall either be stored and maintained in the EOF (such as hard copy or microfiche) or shall be readily available via transmittal to the EOF from another records storage location. The method of storage and presentation of the EOF records shall ensure ease of access under emergency conditions. The records available to the EOF shall be completely updated as necessary to ensure currency and completeness.

How are records stored and maintained in the EOF?

Are records readily available for transmission to the BOF from another storage location?

Are records stored so as to be readily and easily accessible?

How are records updated?

How are the records accessed?

Page 5-17

6. Data Acquisition System

All of the information in this section refers to the interim technical data system.

The interim technical data

6.1 DAS Functional Description

The function of a data acquisition system (DAS) in the context of this methodology document is to provide a basic source of data for all emergency response facilities. A functional block diagram, showing the facilities to be used for data acquisition and their functional interconnection to ERF's and other plant facilities should be provided. Figures 2 and 3 of NUREG-0696 are examples of such diagrams.

6.2 DAS Facilities

It is anticipated that a dedicated data acquisition system, consisting of a single facility or a functionally integrated, physically distributed facility will be proposed for most sites. However, NUREG-0696 does not require that utilities provide specific, dedicated DAS facilities, only that they perform specific data acquisition functions. Some sites may propose to perform DAS functions by sharing other facilities such as the plant process control computer. In either case, any facilities used for the acquisition of any and all data relating to safety parameters and ERF's should address the following areas.

1. DAS Layout

Describe the layout of the DAS. A drawing Not specified. or photograph of the system(s), showing equipment room layout and operator console(s) may be sufficient.

system comprises three systems: process computer acquisition and display system which displays all data points accessed by the plant processors; the Transient Monitoring System (IMS) which consists of a data acquisition and recorder that captures initial plant data and a subsystem that provides instantaneous real time plant information at the TSC; and an offsite dose calculation system for projecting offsite dose rates at various distances.

2. DAS Environment

a. Where is the DAS located?

specified. b. What fire protection facilities are Not specified. provided? c. Is the room temperature controlled? Not specified. What is the heat output of the Not specified. equipment? What is the heat removal capacity of Not specified. the air conditioning system? d. What humidity controls are provided? Not specified. e. Concerning electrical power: This response refers to electrical power in the TSC. What power sources are available? Adequate response.

What are the DAS power requirements?

Is the source uninterruptable?

What is the backup source?

- 3. DAS Physical Security and Access
 - a. Describe the security procedures which determine who may access DAS equipment.
 - b. Identify the authorized personnel.

Can the user stop the system via a normal display device?

Can the user stop the system without entering the DAS resource restricted area or enclosure?

The interim system consists of TSC whose location is not

Pg A-6. Not specified.

Yes. Pg A-6.

Insufficient detail. Pg A-6. How long will system operate from battery? Not specified.

6.3 DAS Equipment Specifications

Not specified.

In order to evaluate the capability of a proposed DAS to acquire and distribute data in a manner consistant with the functional criteria in NUREG-0696, the DAS equipment configuration must be understood in detail. The following questions are to be applied to any subsystem of a dedicated, distributed DAS, as well as to any system which shares DAS functions with other plant functions.

1. Dedicated DAS

.

What facilities are provided for the acquisition of data to be provided for ERF's?

a. Specify the computer hardware configuration:

What vendor?

What model number?

What is the processor's computation speed?____instructions/sec.

What is the system's configuration?

Number of processors:_____

Prairie Island 1/2

COMMENT

For each processor or subsystem, indicate the following:

1.

Working storage: _____bytes.

What type? (core, MOS, etc.)

Error detection and/or correction capability?

On-line disk storage:

Number of controllers:_____

Number of drives:_____

Total capacity: ____bytes.

Maximum access time: _____sec.

Minimum transfer rate:____bytes/sec.

Tape storage:

Drive type: (7 or 9 track)

Number of drives:_____

Maximum density:____bytes/inch.

Speed: ____inches/sec.

Data Acquisition Hardware:

Number of analog channels:_____

Sampling rate per channel:_____samples/sec.

Resolution per channel:____bits.

Number of digital channels:_____

Bits per digital channel:____

Data communications hardware:

Number of ports:_____

Type of ports: (RS-232, V35, etc.)

Average data rate per port:____bits/sec.

- b. What software operating system is used?
- c. Will this operating system software be specially modified for use with the DAS? If so, describe the proposed modifications and their justification.
- d. Identify any other software components of the DAS and their source.

2. Additional Requirem -13 for Non-dedicated DAS

a. If the plant process control computer, or any other computer facility not fully dedicated to acquisition of data for ERF's, is to be employed, the following information must be understood in addition to that specified in 6.3.1.

> What facilities, hardware and software, are included in the configuration to insure that emergency response facility data acquisition functions and other functions do not interfere with and degrade each other?

> > Does the configuration include dual processors with separate functions?

Do programs and data for the separate functions reside in physically separate working storage and on-line storage facilities?

Does the operating system software provide for the implementation and isolation of separate functional tasks?

> What user-callable system services are provided to facilitate non-cooperating, concurrent processes?

> How does the operating system deal with conflicting requests for system resources?

> What is the system's deadlock avoidance mechanism?

6.4 Sensor Data to be Acquired

- 1. Plant variables of Type A, B, C, D, and E, Pg. A-2 through A-4 list as specified in Regulatory Guide 1.97 Revision 2 Table 1(BWR's) or 2(FWR's), are required; identify any exclusions, deviations, or additions and describe the justification for each.
- 2. Meteorological data described in Regulatory Guide 1.23 Revision 1 is data is input to the Off-required; identify any exclusions, site Dose Calculation sys-deviations, or additions and describe the tem but it is not specifie justification for each.
- 3. For each automatically monitored sensor:

At what location is the data from the sensor physically obtained for the DAS?

's isolation provided? If so, describe.

Describe the cabling between the sensor and the DAS.

If the sensor signal is not connected directly to a DAS input, describe any and all intermediate circuits and/or equipment.

At what rate is the sensor sampled: _____samples/sec.

At what resolution is the sensor data read: ____bits.

4. For any data which is entered by a manual Not specified. process describe:

The method of entering the data.

The time required to enter the data.

Procedures which have been established for entering the data.

Verification processes used to insure the data has been entered correctly and in a timely manner.

Page 6-7

data to be available through TMS and SRMC for the interim system.

For the interim system met site Dose Calculation system but it is not specified how it is obtained.

Not specified.

6.5 Data to be Provided for Dose Assessment

NUREG-0696 requires that, in addition to For the interim system dose radiological and meteorological data rates can be calculated from a class A transport and diffusion lizes radioactivity release (dispersion) model, described in NUREG-0654, Revision 1, Appendix 2, be displayed in the EOF. If these transport and diffusion estimates are to be sent to displayed in the EOF. If these transport and diffusion estimates are to be sent to displayed in the EOF. If these transport and diffusion estimates are to be sent to displayed in the EOF. If these transport and diffusion estimates are to be sent to displayed in the EOF. If these transport and diffusion estimates are to be sent to displayed in the EOF. If these transport transport displayed in the EOF. If these transport transport displayed in the EOF. If these transport tra the EOF via the DAS, identify:

The source of these data;

The manner in which these data enter the DAS;

The volume of data generated by the model; and

The rate at which these data are input to the DAS.

TSC (Page A-5).

7. Data Display Systems

The responses for this section apply to the interim system.

Insufficient information.

7.1 Functional Display Devices

Data is acquired and processed by the DAS for presentation in the TSC, the EOF, and on the SPDS displays in the control room. A functional description of the display devices used in each of these facilities is required to determine their ability to meet the requirements of NUREG-0696.

1. Displays Required

There must be a minimum of the following display units present in each FRF location.

a. Control Room Displays

The primary SPDS display must be in the Adequate response. control room.

Pg C-1.

b. TSC Displays

There must be a dedicated mimic SPDS Not specified. display unit in the TSC.

Since trend information must be Adequate response. displayed, there must be at least one graphical display unit in the TSC. If trend information is not displayed on a graphical display unit, an alternate method of display must be provided and justified.

There must be at least one dedicated Adequate response. terminal available to call up and display data specifically related to TSC functions (i.e., plant system variables other than those included in the SPDS).

Pg A-1 Sec I-B.

Pg A-1 Sec. I-A.

There must be at least one terminal dedicated for display of in-plant and offsite radiological variables and meteorological information, for exclusive use in performing EDF functions in the TSC.

There must be at least one hardcopy device available for printing information displayed on the CRT's.

There must be at least one hard copy device capable of displaying graphics information. It is not necessary for the graphics printer to have the resolution or color equivalent of the graphics screen.

If static pictorial records such as area maps, building drawings, component drawings or system diagrams are kept on a computer for call up, a second dedicated raphics display device must be provided for this purpose.

c. EOF Displays

There must be a dedicated mimic SPDS display unit in the EOF.

There must be a dedicated display device for the monitoring function to monitor radiological, meteorological and plant variable data.

If the radiological evaluation function in the EOF is performed with the aid of a computer, there must be a dedicated terminal for this function.

There must be a dedicated display device for obtaining information needed by offsite officials.

Since trending information must be displayed, a graphical display unit is required. This unit could also be used to display graphical data related to offsite dose predictions (i.e., plume dispersion, maps). Adequate response. Pg A-5 Sec I-C

Adequate response. Pg A-1 Sec I-B

Adequate response. Pg A-1 Sec I-B

No computer-call-up pictorial records specified.

The subject of EOF displays was not addressed for the interim system.

If static pictorial records, such as area maps, building drawings, component drawings or system diagrams are kept on a computer for call-up, a second dedicated graphics display device must be provided for this purpose.

If a terminal is used for news media briefings, it must be an additional separate terminal.

There must be at least one hardcopy device available which is capable of printing the displays on the CRT's.

There must be at least one hard copy device capable of displaying graphics information. It is not necessary for the graphics printer to have the resolution or color equivalent of the graphics screen.

2. Display Device Functional Descriptions

For each parameter specified in 6.4 and 6.5 describe:

- a. The information to be displayed at the Insufficient information. TSC and the EOF.
- b. The format in which it will be Insufficient information. displayed.
- c. The method required to initiate the Not specified. display of the parameter. (i.e., operator request, continuous display, etc.)
- d. Describe the method for display of trending information.
- e. Describe the method for recall and display of historical data.

Insufficient information.

Adequate response. Pg A-1 Sec I-B. Uses the RECALL system.

3. Display Device Hardware Description Not specified.

What equipment is provided to display data in the ERF's?

CRT Terminals:

Vendor name / Model Number?

I/O data rates?

As a minimum CRT screen capacity should be 80 characters by 24 lines. If the screens do not meet this requirement, specify their capacity and the justification for using the smaller capacity.

Define any special function keystroke input to be used.

What is the physical screen size?

Is there control over the character brightness?

If the terminal is intelligent, describe any special features that would be used, and how.

Hardcopy printers:

Vendor name / Model number?

Print rate (lines/minute)?

What is the number of characters per line?

What is the character set available?

Does the printer have graphics capabilities that will be used? If so, what are they and how will they be used?

Is the noise level generated by the printer when it is operating acceptable for the environment in which it is located?

Graphics equipment:

Is the display hardware raster or vector driver?

If the device is vector driven, what is the addressibility (number of spatial resolution points on the display screen)? 512 X 256 is the minimum acceptable.

What is the line width of vectors drawn? 0.05 inches is the maximum acceptable.

What is the speed at which vectors are drawn on the screen (full screen vectors or inches per second)? 50 full screen vectors per second is the minimum acceptable.

If the display is a raster device, what is the pixel size and resolution (number of pixels on the screen)?

If the raster device is monochrome, how many levels of gray are available? How many are actually used?

If the device is color, how many different colors may be displayed simultaneously? How many are actually used?

What is the data transfer rate to the device? (specify pixels/second, vectors/second, or bits per second).

Does the data transfer rate support the device's display capability?

Page 7-5

What is the refresh display rate of the display device? 30 Hertz is the minimum acceptable refresh rate.

Does the device have hardware vector generation capability?

Does the device have hardware character generation capability?

 Availability of functional display data to Not specified. the ERF display systems

- a. What is the maximum response time to queries for information required during an emergency situation? The minimum acceptable response time is three seconds for at least 90% of the queries for information.
- b. If a response takes longer than 2-3 seconds, is the operator informed that the requested operation is in progress?
- c. If the displayed data is inconsistent or faulty, how is this deficiency indicated?

5. Functional Display Format

- a. What is the primary format used for data display? (Actual examples are preferred).
- b. Is the display of sufficient quality and simplicity that it may be seen and understood from the distances required by staff location? Factors to consider:

Is the most important information grouped in the upper-right-hand quadrant of the display?

How are related items of information grouped together on the screen?

How are sub-areas of the display separated?

Not specified for interim system.

Does every display page have a header, and are the headers consistent?

If color is used to highlight and differentiate portions of display formats, how many different colors are used and for what purpose is each used?

What other display dimensions (reverse video, size, blinking characters, etc.) are used in the display formats and for what purpose is each used?

6. Operator Interface to System

- a. Can the operator call up optional displays with simple word or keystroke commands? Some examples of commands should be provided.
- b. What is the maximum time required to enter a request for information? (30 seconds should be the maximum time).
- c. What are the levels of expertise needed to operate the system?

7. Functional Display Position

- a. What is the number of displays in each facility (TSC and E ??
- b. What is the position of each display device in the room?
- c. What is the maximum number of people who must view the display in an emergency situation?
- d. What are the distances and angles at which Not the display must be viewed?
- e. Are there any room illumination controls Not which must be utilized for proper viewing of the display devices?

Not specified for interim system.

TSC: 1 CRT & printer; 1 graphic CRT with hard copy output; 1 line printer; 2 3-point recorders

Not specified.

Not specified.

Not specified.

Not specified.

7.2 SPDS

1. Availability of safety parameter data for Insufficient information. the SPDS displays

What are the safety parameters available to the SPDS?

Are there any times when any such parameters are unavailable?

2. Recognizability of the SPDS display

What features of the SPDS display distinguish it from the other displays and devices in the ERF and control rooms?

- 3. SPDS Location
 - a. Describe the location of the SPDS displays Pg C-2, Sec 2.0 in the ERF's and control room.
 - b. How does the location of the SPDS insure that it can be easily accessed by the staff members requiring the safety information displayed?
 - c. Is the SPDS physically compatible with the Not specified. existing facilities?
 - d. Does the SPDS present a hazard or obstacle Not specified. to normal operation of the ERF?
- 4. SPDS Staffing

The SPDS should require no staff in Insufficient detail Pg C-2, addition to that necessary for the Sec 2.0. States no addioperation of the ERF. How does the design tional operations personnel of the SPDS insure that this is the case? required, but doesn't de-

7.3 Other Display Devices

If display devices other than those Not specified. required by NUREG-0696 (EOF, TSC, and SPDS) are connected to the DAS, describe these devices and indicate their degree of impact on DAS performance.

Pg C-2 Sec 3.0

Primary display parameters are listed and manner of displaying them is specified but the question of when a parameter is unavailable is not answered.

- Pg C-2, Sec 2.0
- Pg C-2, Sec 2.0

scribe design features which insure that.

8. Data Communications

8.1 Description

 Provision must be made for adequate and reliable transfer of data among the components of the Data Acquisition System, and between the Data Acquisition System and the:

> Technical Support Center Emergency Operations Facility Safety Parameter Display System displays Nuclear Data Link communications equipment

Meteorological Data Facility

- Provision must also be made for access to meteorological data in the DAS by the NRC Operations Center, and certain state and local agencies, if this service is not provided by facilities other than the ERF.
- Block diagrams should be provided to show these data paths and the methods of transmission employed.

8.2 General

- 1. Is the link capacity sufficient for the maximum required rate of transmission?
- Can all of the data channels meet the 0.01 unavailability requirement as defined in NUREG 0696, Section 1.5, under all conditions above cold shutdown?
- 3. Is all powered data communications equipment on an uninterruptible power supply?
- 4. How are the data channels protected from unauthorized modification?

5. Are all data channels, plus equipment spares, tested as part of the periodic testing program?

8.3 Added Questions for Data Links Using EIA Standard Interfaces

- 1. Do the voltage levels and impedances conform to the standard?
- 2. Does the data rate adhere to the standard for the distance spanned?
- 3. Are cables and connectors appropriate to the standard?
- 8.4 Added Questions for Voice-Frequency Links
 - Is error detection and correction provided, if not otherwise supplied by the protocal?
 - 2. What provision is made for testing the voice-frequency segments?
 - 3. Is the data rate within the specification for the modems for the distance spanned?
 - 4. Are spare modems stored on site?
 - 5. Are there redundant data links, physically separate and without common failure mode, in all locations where there is a reasonable probability of service failure?
- 8.5 Applicable Standards

Typical standards that may be specified for serial data and control signal transmission are:

> EIA Standard RS-232-C. "Interface between data terminal equipment and data communication equipment employing serial binary data interchange." August 1969.

FED-STD 1020. "Electrical characteristics of balanced voltage digital interface circuits." September 1975.

FED-STD 1030. "Electrical characteristics of unbalanced voltage digital interface circuits." September 1975.

EIA Standard RS-422-A. "Electrical characteristics of balanced voltage digital interface circuits." December 1978.

EIA Standard RS-423-A. "Electrical characteristics of unbalanced voltage digital interface circuits." September 1978

EIA Standard RS-449. "General purpose 37-position and 9-position interface for data terminal equipment and data circuit-terminating equipment employing serial binary data interchange." November 1977.

9. System Support Requirements

9.1 Documentation

Not specified.

- 1. Describe the location where documentation is stored and the personnel who require access to this documentation. The minimum documentation to be included must be a user or operators manual, functional system documentation, hardware documentation and software documentation.
- 2. User Documentation
 - a. Is there an operator's manual or its equivalent for each display device or facility that is adequate to explain the use of the display as well as instructions for resolving problems?
 - b. Does the documentation must include as a minimum:

Table of Contents that is well indexed for easy reference?

Description of how to use the manual?

System startup procedure?

System failure procedure?

Reference to support services (both hardware and software)?

Operating instructions for each piece of equipment?

Operating instructions for each request the user may initiate and response to be received?

References to other subsystems and documents?

c. Is the user documentation self supporting such that no other documentation is necessary to operate the system?

- d. Does the user documentation contain guidance on the limitation of instrument readings and their reliability following serious accidents?
- 3. Functional System Documentation
 - a. What documentation describes in detail the DAS, the communications systems and the display systems from a functional perspective, as well as the means of implementation?
 - b. Does this documentation have reference to all documentation for subsystems which interface to the DAS, communications equipment, and display systems?
- 4. Hardware Documentation
 - a. What hardware documentation provides information for the engineers or technicians other than the system designer to maintain the system?
 - b. Does this hardware documentation include:

Theory of Operation? Mechanical Prints? Electrical Prints?

- 5. Software Documentation
 - a. What documentation is available to maintain and evaluate the software?
 - b. What procedures are to be followed to insure that the code contains sufficient comments for efficient maintenance and verification of the software?

- 6. Documentation Update Procedure
 - a. What procedure which has been established for maintaining the manuals and other necessary documentation to assure that any changes in the DAS, communications system or display systems are reflected in this documentation.
 - b. Who will be responsible for the updates?

9.2 Training

Training for operators and maintenance personnel must be provided.

- 1. User Training
 - a. How will operators of display systems For proposed SPDS system be trained? insufficient detail C-4.
 - b. Who will perform this training? Not specified.
 - c. What review of the training procedure Not specified. will be followed to respond to changes in the systems?

2. Maintenance Training

- a. How will the maintenance personnel Not specified. responsible for the DAS, communications equipment and display devices be trained?
- b. How will the training of personnel be Not specified. verified?

9.3 Quality Assurance

- 1. Software Verification/Validation
 - a. What verification or validation plan has been developed for the software for the DAS and display systems?
 Adequate overview for proposed SPDS system but not for interim system (Pg C-3, C-4)

b. Does the test plan outline procedures for testing the following error types?

Logic Errors

Documentation Errors (especially in the User documentation)

Overload Errors

Timing Errors

Throughput and Capacity Errors

Fallback and Recovery Errors

- c. Does the test plan specify the overall test and integration philosophy, strategies, and methodologies to be employed?
- d. Who will perform the independent quality assurance function?
- e. Is there an adequate method to verify that there is a correlation between output data from the DAS and readings observed by the operators in the control room? Describe this method.

A string test from the individual sensor through the necessary processors and cables to the data output device shall be a part of this method.

2. Hardware Verification/Validation

a. What is the verification or validation plan for the hardware necessary for the DAS, communications

b. Who will perform the independent quality assurance function on this hardware?

equipment and display systems?

Adequate response for proposed SPDS system but not for interim system (Pg C-3, C-4)

For proposed SPDS system Pg C-3 "...independent set of qualified utility personnel not involved in the original definition."

Not specified.

Not specified.

Not specified.

3. System Log

Not specified.

a. Will a system log be maintained?

b. Minimum information in this log should be:

All system modifications

All system failures including time, reason and resolution

All planned outages

Not specified.

9.4 Reliability

19. 1950

NUREG-0696 specifies that data systems, instrumentation, and facilities of ERF's shall operate with an unavailibity factor of 0.01, be down no more than 16 hours per calander quarter, and be restorable within 30 minutes whenever the reactor is above cold shutdown status. Furthermore, any equipment affecting SPDS shall operate with an unavailability factor of 0.2 during cold shutdown. In order to determine if DAS equipment, display devices, and communications equipment meet this criterion, the following information must be reviewed:

a. For each of the following subsystems:

DAS equipment,

Functional display devices,

SPDS display devices, and

Communications equipment,

review the following:

What is the claimed mean time between failures?

What is the claimed mean time to repair?

What is the vendor's recommended preventive maintenance schedule?

What backup systems or components are provided?

How much time is required to bring a backup system on-line?

b. How are these claims justified? (Valid examples include historical records of other users of similar equipment, vendor-provided records of long-term test runs, and records of acceptance tests run on the proposed equipment.)

Page 9-6

9.5 Maintenance

In order to insure that the data systems, instrumentation, and facilities of ERF's meet the unavailability requirement the following minimum hardware and software maintenance requirements should be reviewed.

1. Hardware Maintenance

- a. What is the hardware maintenance plan?
- b. How does the plan work to assure minimum unavailability?
- c. Concerning maintenance personnel:

What personnel are identified for the DAS, communications equipment and display systems?

Where are these personnel located?

How are the personnel qualified for the hardware they will be working with?

d. Concerning spare parts:

Where are spare parts located for minimum practical replacement time?

Where are critical items located on-site?

If spare parts are to be supplied by outside sources, what is the maximum availability delay that can be assured?

Is the quality of the spare parts equivalent to the original equipment?

e. Is maintenance support equipment available on demand?

- f. What is the schedule and procedure for calibration and verification of test equipment?
- 2. Software Maintenance

.

- a. What is the software maintenance and re-verification plan?
- b. Who will maintain the software for the DAS and display systems?
- c. What is the procedure for providing adequate qualified backup software maintenance personnel?
- d. What is the DAS update procedure?

Does this procedure insure that:

Changes to the software are authorized?

Any changes to the software are adequately tested and validated before they are implemented?

A description and date of the change have been recorded in a manner which can be easily reviewed?