

U.S. Department of Energy Idaho Operations Office • Idaho National Engineering Laboratory

Experiment Data Report For Semiscale MOD-2A Natural Circulation Test Series (Test S-NC-1)

10215 811130

PDR

Thomas M. O'Connell

November 1981

Prepared for the U.S. Nuclear Regulatory Commission Under DOE Contract No. DE-AC07-76ID01570 EGEG Idaho

NOTICE

This report was prepared as an account of work ponsched by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

Available from

GPO Sales Program Division of Technical Information and Document Control U.S. Nuclear Regulatory Commission Washington, D.C. 20555

and

National Technical Information Service Springfield, Virginia 22161

NUREG/CR-2379 EGG-2134 Distribution Category: R2

EXPERIMENT DATA REPORT FOR SEMISCALE MOD-2A NATURAL CIRCULATION TEST SERIES (TEST S-NC-1)

Thomas M. O'Connell

Published November 1981

EG&G Idaho, Inc. Idaho Falls, idaho 83415

Prepared for the U.S. Nuclear Regulatory Commission Washington, D.C. 20555 Under DOE Contract No. DE-AC07-76IDO1570 FIN No. A6038

ABSTRACT

This report presents test data recorded for Test S-NC-1 (ANC1 and BNC1) of the Semiscale Mod-2A Natural Circulation Test Series. This is one of several Semiscale tests that investigate the thermal-hydraulic phenomena resulting from operational transients involving loss of mechanical primary coolant circulation in a pressurized water reactor. These tests give experimental data used to develop and assess the analytical capability of computer models predicting the results of small-break loss-of-coolant accidents or operational transients involving the loss of primary pumping ability.

The primary objective of Test S-NC-1 was to experimentally characterize the thermal-hydraulic behavior of a system during single-phase (subcooled) steady-state natural circulation flow conditions. Of special interest were the effects on single-phase natural circulation flow promoted by changes in core power, primary pressure, and external heater power.

This report presents the uninterpreted data from Test S-NC-1 (ANC1 and BNC1) for future data analysis. The data, presented by graphs in engineering units, have been analyzed only to ¹⁵ e extent necessary to ensure that they are reasonable and consistent.

SUMMARY

Test S-NC-1 is one in the Semiscale Mod-2A Natural Circulation Test Series conducted by EG&G Idaho, Inc., for the United States Government. The NC Series investigates the thermalhydraulic phenomena resulting from operational transients involving the loss of mechanical primary coolant circulation in a pressurized water reactor, and provides experimental data that can be used to develop and assess the analytical capability of computer models designed to predict and analyze such transients. The objective of Test S-NC-1 was to experimentally characterize the thermal-hydraulic behavior of a system during single-phase (subcooled), steady-state, natural circulation flow conditions. Of special interest were the effects on single-phase, natural circulation flow promoted by changes in core power, primary pressure, and external heater power.

The Mod-2A system is equipped with a pressure vessel that contains an electrically heated core and other simulated reactor internals and an external downcomer assembly; an intact loop with steam generator, pump, and pressurizer; and a broken loop with steam generator. pump, and rupture assembly. For this test, the broken loop and vessel upper head were removed and replaced with end caps, leaving the intact loop, vessel with downcomer, and intact loop steam generator. The intact loop pump was removed to eliminate leakage, and replaced with a spool piece designed to have a hydraulic resistance scaled for a locked rotor condition.

Natural circulation of the primary fluid was established at a variety of primary system prersures and core power levels, using the core as a heat source and steam generator secondary as a heat sink: low pressure, 0.48 MPa; intermediate pressure, 3.5 MPa; high pressures, 9.1 MPa, 10.1 MPa, and 11.2 MPa; and core power between 30 and 100 kW, 1-1/2% to 5% decay power. The primary pressure was changed as noted above to ensure sufficient subcooling in the primary for single-phase conditions. Secondary pressure was maintained constant during each case.

Generally, Test S-NC-1 proceeded as specified. Conditions that did not conform to the specified test configuration were considered acceptable for analysis within the test objectives.

Test S-NC-1 data are available from the NRC/ RSR Data Bank at the Idaho National Engineering Laboratory. Address inquiries to EG&G Idaho, Inc., P.O. Box 1625, Idaho Fal1s, Idaho 83415.

CONTENTS

ABS	STRACT	ii
SUN	MMARY	iii
I.	INTRODUCTION	- 1
п.	SYSTEM, PROCEDURES, CONDITIONS, AND EVENTS FOR TEST S-NC-1	3
	System Configuration	3
	Test Preparation	11
	Warmup	11
	Test Sequence	12
	Tabula: Data for Test Conditions	12
III.	DATA PRESENTATION	17
IV.	REFERENCES	28
API	PENDIX A—DATA ACQUISITION SYSTEM CAPABILITIES AND UNCERTAINTY ANALYSIS	A-1
	NOTE: The appendix to this report is presented on microfiche sheet 003 attached to the inside of the back cover.	

FIGURES

1.	Semiscale Mod-2A system configuration for separate effect natural circulation—isometric	4
2.	Semiscale Mod-2A system configuration for separate effect natural circulation-schematic	5
3.	Semiscale Mod-2A intact loop pump bypass assembly-isometric	6
4.	Semiscate Mod-2A core vessel and downcomer-Test S-NC-1 cross section	7
5.	Semiscale Mod-2A heated core plan view	8
6.	Semiscale Mod-2A intact loop steam generator tubes-horizontal cross section	9
7,	Semiscale Mod-2A intact loop steam generator thermocouple locations	10
8.	Semiscale Mod-2A steam generator fluid thermocouple installation	11
	NOTE: Figures 9 through 416 are presented on microfiche attached to the inside of the back cover.	

Micro	ofiche sheet 001
9.	Fluid temperature in intact loop hot leg (TFI*1) from ANC1
10.	Fluid temperature in intact loop hot leg (TFI*3E) from ANC1
11.	Fluid temperature in intact loop hot leg (TFI*4) from ANC1
12.	Fluid temperature in intact loop steam generator inlet leg (TFI*5) from ANC1
13.	Fluid temperature in intact loop steam generator outlet leg (TFI*9) from ANC1
14.	Fluid temperature in intact loop pump suction leg (TFI*15) from ANC1
15.	Fluid temperature in intact loop pump bypass (TFI*PBB) from ANC1
16.	Fluid temperature in intact loop cold leg (TFI*21) from ANC1
17.	Fluid temperature in intact loop cold leg (TFI*22) from ANC1
18.	Fluid temperature in vessel downcomer (TFV*DC-18) from ANC1
19.	Fluid temperature in vessel downcomer (TFV*DC-84) from ANC1
20.	Fluid temperature in vessel downcomer (TFV*DC-270) from ANC1
21.	Fluid temperature in vessel downcomer (TFV*DC-293) from ANC1
22.	Fluid temperature in vessel downcomer (TFV*DC-436) from AMC1
23.	Fluid temperature in vessel (TFV*LP-552) from ANC1
24.	Fluid temperature in vessel (TFV*UPR-38) from ANC1
25.	Fluid temperature in vessel (TFV*UPM-13) from ANC1
26.	Fluid temperature in core, grid spacer 1 (TFV*D4+6) from ANC1
27.	Fluid temperature in core, grid spacer 4 (TFV*B3 + 126) from ANC1
28.	Fluid temperature in core, grid spacer 5 (TFV*B3 + 166) from ANC1
29.	Fluid temperature in core, grid spacer 6 (TFV*B3 + 206) from ANC1
30.	Fluid temperature in core, grid spacer 8 (TFV*A4 + 286) from ANC1
31.	Fluid temperature in core, grid spacer \$ (TFV*A4+326) from ANC1
32.	Fluid temperature in core, grid spacer 10 (TFV*A4 + 366) from ANC1
33.	Fluid temperature in steam generator, primary side (TFIP + LH30) from ANC1
34.	Fluid temperature in steam generator, primary side (TFIP + SH84) from ANC1
35.	Fluid temperature in steam generator, primary side (TFIP + LH152) from ANC1

Micro	ofiche sheet
30.	Fluid temperature in steam generator, primary side (TFIP + LH211) from ANC1
37.	Fluid temperature in steam generator, primary side (TFIP + LH452) from ANC1
38.	Fluid temperature in steam generator, primary side (TFIP + LH668) from ANC1
39	Fluid temperature in steam generator, primary side (TFIP + LH785) from ANC1
40.	Fluid temperature in steam generator, primary side (TFIP + SH815) from ANC1
41.	Fluid temperature in steam generator, primary side (TFIP + LH922) from ANC1
42.	Fluid temperature in steam generator, primary side (TFIP + SC668) from ANC1
43.	Fluid temperature in steam generator, primary side (TFIP + SC333) from ANC1
44.	Fluid temperature in steam generator, primary side (TFIP + LC333) from ANC1
45.	Fluid temperature in steam generator, primary side (TFIP + SC211) from ANC1
46.	Fluid temperature in steam generator, primary side (TFIP + LC211) from ANC1
47.	Fluid temperature in steam generator feed water supply (TFSC*IGFWU) from ANC1
48.	Fluid temperature in steam generator, steam discharge (TFSC*IGSTM) from ANC1
49.	Fluid temperature in steam generator downcomer, secondary side (TFIS*D+914) from ANC1
50	Fluid temperature in steam generator downcomer, secondary side (TFIS*D+457) from ANC1
51.	Fluid temperature in steam generator downcomer, secondary side (TFIS*D + 152) from ANC1
52.	Fluid temperature in steam generator, secondary side (TFIS + SH84) from ANC1
53.	Fluid temperature in steam generator, secondary side (TFIS + SC333) from ANC1
54.	Fiuid temperature in steam generator, secondary side (TFIS + SH452) from ANC1
55.	Fluid temperature in steam generator, secondary side (TFIS + LH30) from ANC1
56.	Fluid temperature in steam generator, secondary side (TFIS + LC30) from ANC1
57.	Fluid temperature in steam generator, secondary side (TFIS + LH84) from ANC1
58.	Fluid temperature in steam generator, secondary side (TFIS + LC84) from ANC1
59.	Fluid temperature in steam generator, secondary side (TFIS + LH152) from ANC1
60	Fluid temperature in steam generator, secondary side (TFIS + LH211) from ANC1

Micro	ofiche sheet
61.	Fluid temperature in steam generator, secondary side (TFIS + LS211) from ANC1
62.	Fluid temperature in steam generator, secondary side (TFIS+LC333) from ANC1
63.	Fluid temperature in steam generator, secondary side (TFIS + LH394) from ANC1
64.	Fluid temperature in steam generator, secondary side (TFIS + LH452) from ANC1
65.	Fluid temperature in steam generator, secondary side (TFIS + LC452) from ANC1
66.	Fluid temperature in steam generator, secondary side (TFIS + LH536) from ANC1
67.	Fluid temperature in steam generator, secondary side (TFIS + LH785) from ANC1
68.	Fluid temperature in steam generator, secondary side (TFIS + LH922) from ANC1
69.	Fluid temperature in pressurizer (TF*PRZ + 132) from ANC1
70.	Fluid temperature in pressurizer surge line (TF*PRZ-73) from ANC1
71.	Metal temperature of intact loop hot leg (TMI*1) from ANC1
72.	Metal temperature of intact loop hot leg (TMI*4) from ANC1
73.	Metal temperature of intact loop pump suction leg (TMI*15) from ANC1
74.	Metal temperature of intact loop punip bypass (TMI*PBB) from ANC1
75.	Metal temperature of vessel downcomer (TMV*DC-18) from ANC1
76.	Metal temperature of vessel downcomer (TMV*DC-223) from ANC1
77.	Metal temperature of vessel downcomer (TMV*DC-294) from ANC1
78.	Metal temperature of vessel downcomer (TMV*DC-435) from ANC1
79.	Metal temperature of vessel (TMV*LPR587) from ANC1
80.	Metal temperature of vessel (TMV*SC-352) from ANC1
81.	Metal temperature of vessel (TMV*SC-212) from ANC1
82.	Metal temperature, steam generator, on tube (TMIG + LH30) from ANC1
83.	Metal temperature, steam generator, on tube (TMIG + 1 H84) from ANC1
84.	Metal temperature, steam generator, on tube (TMIG - 2H211) from ANC1
85.	Metal temperature, steam generator. on tube (TMIG + LH668) from ANC1
86.	Metal temperature, steam generator, on tube (TMIG + LC30) from ANC1
87.	Metal temperature, steam generator, on tube (TMIG + LC211) from ANC1

Micro	ofiche sheet
88.	Metal temperature, steam generator, on tube (TMIG + LC452) from ANC1
89.	Metal temperature, searn generator, on tube (TMIG + SC452) from ANC1
90.	Metal temperature, steam generator, on filler piece (TMIG + FP2C) from ANC1
91.	Metal temperature, steam generator inlet leg, under external heater (TMEH*7) from ANC1
92.	Metal temperature, steam generator outlet leg, under external heater (TMEH*8) from ANC1
93.	Metal temperature, intact loop pump suction leg, under external heater (TMEH*16) from ANC1
94.	Metal temperature, intact loop cold leg, under external heater (TMEH*22) from ANC1
95.	Metal temperature, vessel downcomer, under external heater (TMEH*D-237)
96.	Metal temperature, vessel, under external heater (TMEH*V-360) from ANC1
97.	Metal temperature, vessel, under external heater (TMEH*V-196) from ANC1
98.	Metal temperature, vessel, under external heater (TMEH*V + 101) from ANC1
99.	Material temperature, intact loop hot leg, under insulation (TEH*3) from ANC1
100.	Material temperature, steam generator inlet leg, under insulation (TEH*7) from ANC1
101.	Material temperature, steam generator outlet leg, under insulation (TEH*8) from ANC1
102.	Material temperature, intact loop pump suction, under insulation (TEH*12) from ANC1
103.	Material temperature, intact loop pump bypass, under insulation (TEH*PBB) from ANC1
104.	Material temperature, intact loop cold leg, under insulation (TEH*22) from ANC1
105.	Material temperature, vessel downcomer, under insulation (TEH*D-237) from ANC1
106.	Material temperature, vessel, under insulation (TEH*V-196) from ANC1
107.	Material temperature, vessel, under insulation (TEH*V+101) from ANC1
108.	Core heater temperature, Rod B-2 (THV*B2+39) from ANC1
109.	Core heater temperature, Rod B-2 (THV*B2 + 196) from ANC1
110	Core heater temperature, Rod B-3 (THV*B3 + 354) from ANC1

Micro	fiche sheet
111.	Core heater temperature, Rod B-4 (THV*B4 + 322) from ANC1
112.	Core heater temperature, Rod C-2 (THV*C2+321) from ANC1
113.	Core heater temperature, Rod C-3 (THV*C3+79) from ANC1
114.	Core heater temperature, Rod C-3 (THV*C3+231) from ANC1
115.	Core heater temperature, Rod C-4 (THV*C4+187) from ANC1
116.	Core heater temperature, Rod D-2 (THV*D2+254) from ANC1
117.	Core heater temperature, Rod D-4 (THV*D4+179) from ANC1
118.	Core heater temperature, Rod D-4 (THV*D4+352) from ANC1
119.	Core heater temperature, Rod A-2 (THV*A2+112) from ANC1
120.	Core heater temperature, Rod A-3 (THV*A3 + 208) from ANC1
121.	Core heater temperature, Rod A-3 (THV*A3+291) from ANC1
122.	Core heater temperature, Rod A-4 (THV*A4+355) from ANC1
123.	Core heater temperature, Rod B-1 (THV*B1+183) from ANC1
124.	Core heater temperature, Rod B-1 (THV*B1+253) from ANC1
125.	Core heater temperature, Rod B-5 (THV*B5+252) from ANC1
126.	Core heater temperature, Rod C-1 (THV*C1+292) from ANC1
127.	Core heater temperature, Rod C-5 (THV*C5+290) from ANC1
128.	Core heater temperature, Rod E-4 (THV*E4+230) from ANC1
129.	Pressure in intact loop, hot leg (PI*1) from ANC1
130.	Pressure in intact loop, steam generator inlet leg (PI*5) from ANC1
131.	Pressure in steam generator tube, primary side (PIG*LH970) from ANC1
132.	Pressure in intact loop, steam generator outlet leg (P1*9) from ANC1
133.	Pressure in intact loop, pump suction leg (PI*14) from ANC1
134.	Pressure in intact loop, pump bypass (PI*PBB) from ANC1
135.	Pressure in intact loop, cold leg (PI*22) from ANC1
136.	Pressure in vessel downcomer (PV*DC-435) from ANC1
137	Pressure in vessel lower plenum (PV*I P.442) from ANC1

ix

Micro	fiche sheet 00
138.	Pressure in vessel upper plenum (PV*UP-13) from ANC1
139.	Pressure in pressurizer steam dome (P*PRZ + 158) from ANC1
140.	Pressure in steam generator feedwater supply line (PSC*IGFDW) from ANC1
141.	Pressure in steam generator steam discharge line (PSC*4GSTM) from ANC1
142.	Differential pressure in intact loop hot leg (D-V13A*11) from ANC1
143.	Differential pressure in intact loop hot leg (DI*3C-G55E) from ANC1
144.	Differential pressure in steam generator tube (DIG-55E + 92) from ANC1
145.	Differential pressure in steam generator tube (DIG55E+462) from ANC1
146.	Differential pressure in steam generator tube (DIG55E + 905) from ANC1
147.	Differential pressure across steam generator plenum (DIG-55E55X) from ANC1
148.	Differential pressure in intact loop, steam generator outlet leg (D*IG-55X*9) from ANC1
149.	Differential pressure in intact loop pump suction (DPI*9*14) from ANC1
150.	Differential pressure in intact loop pump suction (DPI*14*PBA) from ANC1
151.	Differential pressure across intact loop pump suction (DPI*9*PBA) from ANC1
152.	Differential pressure in intact loop cold leg (DPI*PBB*22) from ANCI
153.	Differential pressure in intact loop cold leg (D*I22 + VD29) from ANC1
154.	Differential pressure across pressurizer surge line (DP*PRZ*I3C) from ANC1
155.	Liquid level, intact loop steam generator, primary side (LIP970-55E) from ANC1
156.	Liquid level, intact loop steam generator, primary side (LIP970-55X) from ANC1
157.	Liquid level in vessel downcomer (LVD + 29-170) from ANC1
158.	Liquid level in vessel downcomer (LVD170-578) from ANC1
159.	Liquid level in vessel downcomer (LVD + 29-578) from ANC1
160.	Liquid level in vessel (LV-578-501) from ANC1
161.	Liquid level in vessel (LV-501-105) from ANC1
162.	Liquid level in vessel (LV-105 + 140) from ANC1
163.	Liquid level in vessel (LV-578-13M) from ANC1

х

Micro	fiche sheet 001
164.	Liquid level in vessel (LV-13M + 140) from ANC1
165.	Liquid level in vessel (LV-578 + 140) from ANC1
166.	Differential pressure in intact loop steam generator feedwater line (DPSC*IGFDW) from ANC1
167.	Differential pressure in intact loop steam generator steam line (DPSC*IGSTM) from ANC1
168.	Liquid level, intact loop steam generator, secondary side (L11117S460) from ANC1
169.	Liquid level, intact loop steam generator, secondary side (LIS1117+90) from ANC1
170.	Volumetric flow rate in intact loop pump suction leg (QI*15) from ANC1
171.	Volumetric flow rate in intact loop pump bypass (QI*PB) from ANC1
172.	Volumetric flow rate in intact loop cold leg (QI*22) from ANC1
173.	Volumetric flow rate in vessel downcomer (QV*DC-423) from ANC1
174.	Density in intact loop hot leg (RI*1T) from ANC1
175.	Density in intact loop hot leg (RI*1B) from ANC1
176.	Density in intact loop hot leg (RI*1C) from ANC1
177.	Density in intact loop steam generator inlet leg (RI*5M) from ANC1
178.	Density in intact loop steam generator inlet leg (RI*5I) from ANC1
179.	Density in intact loop steam generator inlet leg (RI*5C) from ANC1
180.	Density in intact loop pump bypass (RI*PBT) from ANC1
181.	Density in intact loop pump bypass (RI*PBM) from ANC1
182.	Density in intact loop pump bypass (RI*PBC) from ANC1
183.	Density in intact loop cold leg (RI*22T) from ANC1
184.	Density in intact loop cold leg (RI*22B) from ANC1
185.	Density in intact loop cold leg (RI*22C) from ANC1
186.	Density in vessel downcomer (RV*DC-72) from ANC1
187.	Density in vessel downcomer (RV*DC-260) from ANC1
188.	Density in vessel downcomer (RV*DC-456) from ANC1
189	Density in vessel (RV*AR-6) from ANC1

Micro	ofiche sheet
190.	Density in vessel (RV*23 + 13) from ANC1
191.	Density in vessel (RV*23+113) from ANC1
192.	Density in vessel (RV*AB+173) from ANC1
193.	Density in vessel (RV*23 + 183) from ANC1
194.	Density in vessel (RV*23 + 253) from ANC1
195.	Density in vessel upper plenum (RV*UP-11) from ANC1
196.	Mass flow in intact loop pump bypass (QI*PB and RI*PBC) from ANC1
197.	Mass flow in intact loop cold leg (QI*22 and RI*22C) from ANCI
198.	Mass flow in vessel downcomer (QV*DC-423 and RV*DC-456) from ANC1
199.	Core heater high power bus current (IV*HIPWBUS) from ANC1
200.	Core heater high power bus voltage (EV*HIPWBUS) from ANC1
201.	Core heater low power bus current (IV*LOPWBUS) from ANC1
202.	Core heater low power bus voltage (EV*LOPWBUS) from ANC1
203.	Core heater power, high power bus, calculated (KWH*HIC) from ANC1
204.	Core heater power, low power bus, calculated (KWH*LOC) from ANC1
205.	Core heater power, total, calculated (KWH*TOTC) from ANC1
206.	Fluid temperature in intact loop hot leg (TFI*1) from BNC1
207.	Fluid temperature in intact loop hot leg (TFI*3E) from BNC1
208.	Fluid temperature in intact loop hot leg (TFI*4) from BNC1
209.	Fluid temperature in intact loop steam generator inlet leg (TFI*5) from BNC1
210.	Fluid temperature in intact loop steam generator outlet leg (TFI*9) from BNC1
211.	Fluid temperature in intact loop pump suction leg (TF1*15) from BNC1
212.	Fluid temperature in intact loop pump bypass (TFI*PBB) from BNC1
213.	Fluid temperature in intact loop cold leg (TF1*21) from BNC1
214.	Fluid temperature in intact loop cold leg (TFI*22) from BNC1
215.	Fluid temperature in vessel downcomer (TFV*DC-18) from BNC1
216.	Fluid temperature in vessel downcomer (TFV*DC-84) from BNC1

Micro	fiche sheet
217.	Fluid temperature in vessel downcomer (TFV*DC-270) from BNC1
218.	Fluid temperature in vessel downcomer (TFV*DC-293) from BNC1
219.	Fluid temperature in vessel downcomer (TFV*DC-436) from BNC1
220.	Fluid temperature in vessel (TFV*LP-552) from BNC1
221.	Fluid temperature in vessel (TFV*UPR-38) from BNC1
222.	Fluid temp erature in vessel (TFV*UPM-13) from BNC1
223.	Fluid temperature in core, grid spacer 1 (TFV*D4+6) from BNC1
224.	Fluid temperature in core, grid spacer 4 (TFV*B3 + 126) from BNC1
225.	Fluid temperature in core, grid spacer 5 (TFV*B3 + 166) from BNC1
226.	Flu ⁱ d temperature in core, grid spacer 6 (TFV*B3 + 206) from BNC1
227.	Fluid temperature in core, grid spacer 8 (TFV*A4 + 286) from BNC1
228.	Fluid temperature in core, grid spacer 9 (TFV*A4 + 326) from BNC1
229.	Fluid temperature in core, grid spacer 10 (TFV*A4+366) from BNC1
230.	Fluid temperature in steam generator, primary side (TFIP + LH30) from BNC1
231.	Fluid temperature in steam generator, primary side (TFIP + SH84) from BNC1
232.	Fluid temperature in steam generator, primary side (TFIP + LH152) from BNC1
233.	Fluid temperature in steam generator, primary side (TFIP + LH211) from BNC1
234.	Fluid temperature in steam generator, primary side (TFIP + LH452) from BNC1
235.	Fluid temperature in steam gen vrator, primary side (TFIP + LH668) from BNC1
236.	Fluid temperature in steam gene ator, primary side (TFIP + LH785) from BNC1
237.	Fluid temperature in steam gener vtor, primary side (TFIP + SH815) from BNC1
238.	Fluid temperature in steam generator, primary side (TFIP + LH922) from BNC1
239.	Fluid temperature in steam generator, primary side (TFIP + SC668) from BNC1
240.	Fluid temperature in steam generator, primary side (TFIP + SC333) from BNC1
241.	Fluid temperature in steam generator, primary side (TFIP+LC333) from BNC1
242.	Fluid temperature in steam generator, primary side (TFIP + SC211) from BNC1
243.	Fluid temperature in steam senerator, primary side (TFIP + LC211) from BNC1

Micro	aiche sheet 001
244.	Fluid temperature in steam generator feedwater supply (TFSC*IGFWU) from BNC1
245.	Fluid temperature in steam generator sceam discharge (TFSC*IGSTM) from BNC1
246.	Fluid temperature in steam generator downcomer, secondary side (TFIS*D+914) from BNC1
247.	Fluid temperature in eam generator downcomer, secondary side (TFIS*D+457) from BNC1
248.	Fluid temperature in steam generator downcomer, secondary side (TFIS*D+152) from BNC1
249.	Fluid temperature in steam generator, secondary side (TFIS + SH84) from ENC1
250.	Finid temperature in steam generator, secondary side (TFIS+SC333) from BNC1
251.	Fluid temperature in steam generator, secondary side (TFIS + SH452) from BNC1
252.	Fluid temperature in steam generator, secondary side (TFIS + LH30) from BNC1
253.	Fluid temperature in steam generator, secondary sixte (TFIS + LC30) from BNC1
254.	Fluid temperature in steam generator, secondary side (1535+LH84) from BNC1
255.	Fluid temperature in steam generator, secondary side (TFIS LC84) from BNC1
256.	Fluid temperature in steam generator, secondary side (TFIS + LH152) from BNC1
257.	Fluid temperature in steam generator, secondary side (TFIS + LC211) from BNC1
258.	Fluid temperature in steam generator, secondary side (TF1S + LC333) from BNC1
259.	Fluid temperature in steam generator, secondary side (TFIS + LH394) from BNC1
260.	Fluid temperature in steam generator, secondary side (TFIS + LH452) from BNC1
261.	Fluid temperature in steam generator, secondary side (TFIS + LC452) from BNC1
262.	Fluid temperature in steam generator, secondary side (TFIS + LH536) from BNC1
263.	Fluid temperature in steam generator, secondary side (TFIS + LH785) from BNC1
264.	Fluid temperature in steam generator, secondary side (TFIS + LH922) from BNC1
265.	Fluid temperature in pressurizer (TF*PRZ + 132) from BNC1
266.	Fluid temperature in pressurizer surge line (TF*PRZ-73) from BNC1
267.	Fluid temperature in pressunzer surge line hot leg inlet (TF*PRZ*I3D) from BNC1
268.	Metal temperature of intact loop hot leg (TMI*1) from BNC1

Microf	iche sheet
269.	Metal temperature of intact loop hot leg (TMI*4) from BNC1
270.	Metal temperature of intact loop pump suction leg (TMI*15) from BNC1
271.	Metal temperature of intact loop pump bypass (TMI*PBB) from BNC1
272.	Metal temperature of vessel downcomer (TMV*DC-18) from BNC1
273.	Metal temperature of vessel downcomer (TMV*DC-223) from BNC1
274.	Metal temperature of vessel downcomer (TMV*DC-294) from BNC1
275.	Metal temperature of vessel downcomer (TMV*DC-435) from BNC1
276.	Metal temperature of vessel (TMV*) PR587) from BNC1
277.	Metal temperature of vessel (TMV*SC-352) from BNC1
Nlicrof	iche sheet
278.	Metal temperature of vessel (TMV*SC-212) from BNC1
279.	Metal temperature, steam generator, on tube (TMIG + LH30) from BNC1
280.	Metal temperature, steam generator, on tube (TMIG + LH84) from BNC1
281.	Metal temperature, steam generator, on tube (TMIG + LH211) from BNC1
282.	Metal temperature, steam generator, on tube (T%(IG+LH668) from BNC1
283.	Metal temperature, steam generator, on tube (TMIG + LC30) from BNC1
284.	Metal temperature, steam generator, on tube (TMIG + LC211) from BNC1
285.	Metal temperature, steam generator, on tube (TMIG + LC452) from BNC1
286.	Metal temperature, steam generator, on tube (TMIG + SC452) from BNC1
287.	Metal temperature, steam generator, on filler piece (TMIG + FP2C) from BNC1
288.	Metal temperature, steam generator inlet leg, under external heater (TMEH*7) from BNC1
289.	Metal temperature, steam generator outlet leg, under external heater (TMEH*8) from BNC1
290.	Metal temperate .e, intact loop pump suction leg, under external heater (TMEH*16) from BNC1
291.	Metal temperature, intact loop cold leg, under external heater (TMEH*22) from BNC1
292.	Metal temperature, vessel downcomer, under external heater (TMEH*D-237) from BNC1

Microf	iche sheet
293.	Metal temperature, vessel, under external heater (TMEH*V-360) from BNC1
294.	Metal temperature, vessel, under external heater (TMEH*V-196) from BNC1
295.	Metal temperature, vessel, under external heater (TMEH*V+101) from BNC1
296.	Materiai temperature, intact loop hot leg, under insulation (TEH*3) from BNC1
297.	Material temperature, steam generator inlet leg, under insulation (TEH*7) from BNC1
298.	Material temperature, steam generator outlet leg, under insulation (TEH*8) from BNC1
299.	Material temperature, intact loop pump suction, under insulation (TEH*12) from BNC1
300.	Material temperature, intact loop pump bypass, under insulation (TEH*PBB) from BNC1
301.	Material temperature, intact loop cold leg, under insulation (TEH*22) from BNC1
302.	Material temperature, vessel downcomer, under insulation (iEH*D-237) from BNC1
303.	Material temperature, vessel, under insulation (TEH*V-360) from BNC1
304.	Material temperature, vessel, under insulation (TEH*V-196) from BNC1
305.	Material temperature, vessel, under insulation (TEH*V+101) from BNC1
306.	Core heater temperature, Rod B-2 (THV*B2+39) from BNC1
307.	Core heater temperature, Rod B-2 (THV*B2+1°5) from BNC1
308.	Core heater temperature, Rod B-3 (THV*B3 + 354) from BNC1
309.	Core heater temperature, Rod B-4 (THV*E4 + 322) from BNC1
310.	Core heater temperature, Rod C-2 (THV*C2+321) from BNC1
311.	Core heater temperature, Rod C-3 (THV*C3 + 79) from BNC1
312.	Core heater temperature, Rod C-3 (THV*C3+231) from BNC1
313.	Core heater temperature, Rod C-4 (THV*C4 + 187) from BNC1
314.	Core heater temperature, Rod D-2 (THV*D2+254) from BNC1
315.	Core heater temperature, Rod D-4 (THV*D4 + 179) from BNC1
316.	Core heater temperature, Rod D-4 (THV*D4+352) from BNC1
317.	Core heater temperature, Rod A-2 (THV*A2+112) from BNC1

Microf	iche sheet
318.	Core heater temperature, Rod A-3 (THV*A3 + 208) from BNC1
319.	Core heater temperature, Rod A-3 (THV*A3+291) from BNC1
320.	Core heater temperature, Rod A-4 (THV*A4 + 355) from BNC1
321.	Core heater temperature, Rod B-1 (THV*B1+183) from BNC1
322.	Core heater temperature, Rod B-1 (THV*B1+253) from BNC1
323.	Core heater temperature, Rod B-5 (THV*B5+252) from BNC1
324.	Core heater temperature, Rod C-1 (THV*C1+292) from BNC1
325.	Core heater temperature. Rod C-5 (THV*C5+290) from BNC1
326.	Core heater temperature, Rod E-4 (THV*E4 + 230) from BNC1
327.	Pressure in intact loop, hot leg (PI*1) from BNC1
328.	Pressure in intact loop, steam generator inlet leg (PI*5) from BNC1
329.	Pressure in steam generator tube, primary side (PIG*LH970) from BNC1
330.	Pressure in intact loop, steam generator outlet leg (PI*9) from BNC1
331.	Pressure in intact loop, pump suction leg (PI*14) from BNC1
332.	Pressure in intact loop, pump bypass (PI*PBB) from BNC1
333.	Pressure in intact loop, cold leg (PI*22) from BNC1
334.	Pressure in vessel downcomer (PV*DC-435) from BNC1
335.	Pressure in vessel lower plenum (PV*LP-442) from BNC1
336.	Pressure in vessel upper plenum (PV*UP-13) from BNC1
337.	Pressure in pressurizer steam dome (P*PRZ + 158) from BNC1
338.	Pressure in steam generator feedwater supply line (PSC*IGFDW) from BNC1
339.	Pressure in steam generator steam discharge line (PSC*IGSTM) from BNC1
340.	Differential pressure in intact loop hot leg (D-V13A*I1) from BNC1
341.	Differential pressure in intact loop hot leg (DPI*1*3C) from BNC1
342.	Differential pressure in intact loop hot leg (DI*3C-G55E) from BNC1
343.	Differential pressure in steam generator tube (DIG-55E + 92) from BNC1
344	Differential pressure in steam generator tube (DIG55E + 462) from BNC1

Micro	officite sheet
345.	Differential pressure in steam georator tube (DIG55E + 905) from BNC1
346.	Differential pressure in intact loop, steam generator outlet leg (D*IG-55X*9) from BNC1
347.	Differential pressure in intact loop pump suction (DPI*9*14) from BNC1
348.	Differential pressure in intact loop pump suction (DPI*14*PBA) from BNC1
349.	Differential pressure across intact loop pump suction (DP1*9*PBA) from BNC1
350.	Differential pressure in intact loop cold leg (DPI*PBB*22) from BNC1
351.	Differential pressure in intact loop cold leg (D*I22 + VD29) from BNC1
352.	Differential pressure across pressurizer surge line (DP*PRZ*I3C) from BNC1
353.	Liquid level, intact loop steam generator, primary side (LIP970-55E) from BNC1
354.	Liquid level, intact loop steam generator, primary side (LIP970-55X) from BNC1
355.	Liquid level in vessel downcomer (LVD + 29-170) from BNC1
356.	Liquid level in vessel downcomer (LVD170-578) from BNC1
357.	Liquid level in vessel downcomer (LVD + 29-578) from BNC1
358.	Liquid level in vessel (LV-578-501) from BNC1
359.	Liquid level in vessel (LV-501-105) from BNC1
360.	Liquid level in vessel (LV-105+140) from BNC1
361.	Liquid level in vessel (LV-578-13M) from BNC1
362.	Liquid level in vessel (LV-13M + 140) from Bi1
363.	Liquid level in vessel (LV-578 + 140) from BNC1
364.	Differential pressure in intact loop steam generator feedwater line (DPSC*IGFDW) from BNC1
365.	Differential pressure in intact loop steam generator steam line (DPSC*IGSTM) from BNC1
366.	Liquid level, intact loop steam generator, secondary side (L11117S460) from BNC1
367,	Liquid level, intact loop steam generator, secondary side (7.1S1117 + 90) from BNC1
368.	Volum etric flow rate in intact loop hot leg (QI*1) from BNC1
369.	Volumetric flow rate in intact loop steam generator inlet leg (QI*6) from BNC1

Microf	che sheet
370.	Volumetric flow rate in intact loop pump bypass (QI*PB) from BNC1
371.	Voumetric flow rate in intact loop cold leg (QI*22) from BNC1
372.	Volumetric flow rate in vessel downcomer (QV*DC-423) from BNC1
373.	Volumetric flow rate in vessel upper plenum (QV*UP + 1) from BNC1
374.	Density intact loop hot leg (RI*1B) from BNC1
375.	Density in intact loop steam generator inlet leg (RI*5M) from BNC1
376.	Density in intact loop steam generator inlet leg (R1*5I) from BNC1
377.	Density in intact loop steam generator inlet leg (R1*5C) from BNC1
378.	Density in intact loop pump bypass (RI*PBT) from BNC1
379.	Density in intact loop pump bypass (RI*PBM) from BNC1
380.	Density in intact loop pump bypass (RI*PBC) from BNC1
381.	Densit_ in intact loop cold leg (RI*22T) from BNC1
382.	Density in intact loop cold leg (RI*22B) from BNC1
383.	Density in intact loop cold leg (RI*22C) from BNC1
384.	Deasity in vessel downcomer (RV*DC-72) from BNC1
385.	Density in vessel downcomer (RV*DC-260) from BNC1
386.	Density in vessel downcomer (RV*DC-456) from BNC1
387.	Density in vessel (RV*AB-6) from BNC1
388.	Density in vessel (RV*23+13) from BNC1
389.	Density in vessel (RV*23+113) from BNC1
390.	Density in vessel (RV*AB+173) from BNC1
391.	Density in vessel (RV*23 + 183) from BNC1
392.	Density in vessel (RV*23+253) from BNC1
393.	Density in vessel upper plenum (RV*UP-11) from BNC1
394.	Mass flow in intact loop, steam generator inlet leg (QI*6, RI*5C) from BNC1
395.	Mass flow in intact loop pump bypass (QI*PB and RI*PBC) from BNC1
396.	Mass flow in intact loop cold leg (QI*22 and RI*22C) from BNC1

Micro	fiche sheet	002
397.	Mass flow in vessel downcomer (QV*DC-423 and RV*DC-456) from BNC1	-
398.	Core heater high power bus current (IV*HIPWBUS) from BNC1	
399.	Core heater high power bus voltage (EV*HIPWBUS) from BNC1	6
400.	Core heater low power bus current (IV*LOPWBUS) from BNC1	
401.	Core heater low power bus voltage (EV*LOPWBUS) from BNC1	
402.	Core heater power, high power bus, calculated (KWH*HIC) from BNC1	14
403.	Core heater power, low power bus, calculated (KWH*LOC) from BNC1	
404.	Core heater power, total, calculated (KWH*TOTC) from BNC1	
405.	External heater voltage, vessel (EH*BAND357) from BNC1	
406.	External heater current, vessel (IH*BAND357) from BNC1	
407.	External heater voltage, intact loop pump suction leg (EH*BAND358) from BNC1	
408.	External heater current, intact loop pump suction leg (IH*BAND358) from BNC1	
409.	External heater voltage, intact loop cold leg (EH*BAND360) from BNC1	
410.	External heater current, intact loop cold leg (IH*BAND360) from BNC1	
411.	External heater voltage, intact loop hot leg (EH*BAND361) from BNC?	
412.	External heater current, intact loop hot leg (IH*BAND361) from BNC1	
413.	External heater power (calculated), vessel (KW*EH*VESS) from BNC1	
414.	External heater power (calculated), intact loop pump suction leg (KW*EH*1LPS) from BNC1	
415.	External heater power (calculated), intact loop cold leg (KW*EH*CL) from BNC1	
416.	External heater power (calculated), in:act loop hot leg (KW*EH*HL) from BNC1	_

TABLES

1.	Sequence of major operations	13
2.	System parameters for steady-state test conditions	14
3.	Loop temperature distribution with and without external heaters (case 2 condition)	15
4.	Measured and calculated system parameters for steady-state test conditions	16
5	Data presentation for Semiscale Mod 2-A Test S-NC-1	18

EXPERIMENT DATA REPORT FOR SEMISCALE MOD-2A NATURAL CIRCULATION TEST SERIES (TEST S-NC-1)

I. INTRODUCTION

The Semiscale Mod-2A experiments represent the current phase of the Semiscale Program conducted by EG&G Idaho, Inc., for the United States Government. The program, sponsored by the Nuclear Regulatory Commission (NRC) through the Department c." Energy (DOE), is part of the overall NRC water reactor research program to investigate the response of a pressurized water reactor (PWR) system to hypothesized lossof-coolant accidents (LOCAs) and to operational transients involving the loss of mechanical primary coolant circulation. The underlying objectives of the Semiscale Program are to quantify the physical processes that control system behavior during operational transients or a LOCA, and to provide an experimental data hase for assessing reactor safety evaluation models. The Semiscale Mod-2A Program has the further objective of providing support to other experimental programs in the forms of instrumentation assessment, test series time optimization, selection of test parameters, and comparative evaluation of test results.

Test S-NC-1, consisting of two parts, ANC1 and BNC1, was conducted June 24, 1981, in the Semiscale Mod-2A system, as part of the Mod-2A Natural (culation Test Series (Test Series NC). This series investigates the thermal and hydraulic phenomena of natural circulation as a principal core heat rejection mechanism during small-break loss-of-coolant accidents (LOCAs) and operational transients involving the loss of mechanical primary coolant circulation in a PWR. The series also provides thermal-hydraulic data that can be used to assess and develop computer codes that predict PWR system behavior resulting from a loss of mechanical coolant circulation. Additional objectives for this test series include evaluation of low flow, natural circulation-type measurement techniques, identification of system thermalhydraulic and measurement response during transitions between different modes of natural circulation, examination of the effect of noncondensible gas on natural circulation, and comparison of data to natural circulation tests performed in other facilities. Results will also aid in assessing the capability of conventional PWR process instrumentation to detect natural circulation. Due to scaling compromises in the Mod-2A system, test results may not be directly applicable to PWRs, but rather, may help identify dominant parameters for quantifying PWR natural circulation characteristics and limitations.

The primary objective of Test S-NC-1 was to investigate the effect of core power on singlephase natural circulation flow at a variety of system pressures, and with this data, to assess the code capability to calculate single-phase natural circulation and to predict system sensitivity to changes in core power and primary pressure. In particular, modeling of the steam generator and system hydraulic resistances and heat transfer models were key features for evaluation. Other objectives were to evaluate instrumentation capability to detect and quantify low, natural circulation type, flow rates and small differential temperatures and pressures, and to examine Semiscale system typicality (scaling) by comparing results in the Mod-2A system with those obtained in other systems.

Test S-NC-1 is a steady-state experiment designed to produce data that are independent of loop-to-loop instabilities that could occur during transients. It is also a separate effects test, which uses only a subsystem of the Mod-2A system so that important system parameters during natural circulation can be better examined. Hardware configuration and test parameters were scaled from, and representative of, typical PWR systems and operating conditions. This report presents the test data in an uninterpreted but readily usable form for use by the nuclear community in advance of detailed analysis and interpretation. Section II briefly describes the system configuration, procedures, and sequence of events for Test S-NC-1; Section III gives the data graphs, comments, and supporting information necessary for interpretation of the data. A description of the overall Semiscale Program and test series, and a

more detailed description of the Natural Circulation Test Series, are in References 1 and 2. Preliminary analysis and interpretation of S-NC-1 data are presented in Reference 3. Additional information describing the data acquisition system capabilities, posttest adjustments made to the data, and the methodology used to establish uncertainty limits for the data are given in Appendix A.

II. SYSTEM, PROCEDURES, CONDITIONS, AND EVENTS FOR TEST S-NC-1

The following system configuration, procedures, conditions, and events are specific to Test S-NC-1.

System Configuration

For Semiscale Natural Circulation Test S-NC-1, only part of the Mod-2A system was used, as shown in Figures 1 and 2. The test configuration consisted of the vessel with electrically heated core and external downcomer, intact loop tube-and-shell steam generator, and loop piping. The broken loop was removed and the vessel/downcomer penetrations for the broken loop hot and cold legs were capped. Normally, the Mod-2A system includes an intact loop pump; however, this was removed and replaced with a special instrumented spool piece, as shown in Figure 3. This spool piece was orificed to represent the scaled hydraulic resistance of a pressurized water reactor primary pump in the locked rotor (stopped) configuration. The vessel was modified from the normal Mod-2A configuration for these tests by removing the vessel upper head as shown in Figure 4. This was necessary to ensure a uniform heatup of the entire system and to avoid condensation on upper head structures. The vessel core consists of a 5 x 5 array of internally heated electric rods, 23 of which were powered. The rods are geometrically similar to nuclear rods with a heated length of 3.66 m and an outside diameter of 1.072 cm. All 23 heated rods were powered equally. Figure 5 shows a plan view of the vessel core.

The intact loop steam generator is a two-pass, tube-and-shell design. Primary fluid flows through vertical, inverted, U-shaped tubes, and secondary coolant passes through the shell side. The steam generator has 2 short, 2 medium, and 2 long tubes representative of the range of bend elevations in a PWR steam generator. A horizontal cross section of the intact loop steam generator tubes is shown in Figure 6. The "off center" arrangement of tubes was required to provide better volume scaling of the secondary. The same tube stock (2.22 cm OD x O.124 cm wall) and tube spacing (3.175-cm triangular pitch) used for PWR U-tubes were used in the steam generator. Since the heat transfer area was specified by the ratio of PWR-to-Semiscale core power, the number of tubes was thereby fixed by the specified tube diameter and lengths. Fillers were installed in the shell side to provide a more properly scaled secondary fluid volume.

Elevations of steam generator nozzles, plenums, and tubes are similar to those of a PWR; however, the steam dome is shorter than a PWR's steam dome. The steam drying equipment is of a simpler and less efficient design, but this is of little importance at the low steaming rates used in the NC test series.

Basically, the system was configured as a heat source (represented by the vessel core) and a heat sink (represented by the steam generator secondary) all connected by loop piping. External heaters were installed on the vessel and loop piping to offset environmental heat loss. The heaters are controlled by four independent, variable power supplies.

The Natural Circulation Test Series presents unique ranges of hydraulic conditions relative to the majority of previous Semiscale testing. Low flow rates are the main measurement challenge. For this purpose, turbine meters and drag screens throughout the system have been ranged as low as presently possible. The steam generator primary and secondary sides have been extensively instrumented with thermocouples. At several axial locations throughout the steam generators, pairs of primary and secondary fluid thermocouples, along with primary tube wall metal thermocouples have been attached to the primary tube walls, as shown in Figure 7. One long tube and one short tube is extensively instrumented; the middle tubes have no thermocouples installed. Tubes that are instrumented are identified on Figure 6.

Depiction of a typical fluid thermocouple installation is shown in Figure 8. The thermocouple leads are attached to the OD of the primary tubes. Penetrations of the primary tube wall by fluid thermocouples are sealed with a gold braze. The metal thermocouples are attached to the OD of the primary tube wall. A groove in the primary tube wall accepts a special thermocouple that has had the tip flattened for a distance of 0.017 cm. The thermocouple is secured in the groove with a braze. In addition to tube thermocouples, the steam dome has several fluid thermocouples, and

Figure 2 Semiscale Mod-2A system configuration for separate effect natural circulation-schematic.

CA.

ž

Ch.

Figure 4. Semiscale Mod-2A core vessel and downcomer-Test S-NC-1 cross section.

· or sta

7

Semiscale Mod-2A intact loop steam generator tubes-horizontal cross section.

Figure 8. Semiscale Mod-2A steam generator fluid thermocouple installation.

the downcomer has fluid thermocouples at several axial positions. Other steam generator instrumentation includes primary tube (primary side) differential pressure ports allowing measurements of collapsed liquid level in the tubes. The sense lines connecting the measurement location and the differential pressure cell penetrate the side of the steam generator shell at several elevations. Differential pressure ports are located on the long primary tube that has the thermocouples as well as a middle tube and a short tube. Differential pressure ports are located at the following elevations (in cm) above the tube sheet: 970 cm in the long tube, 905 cm in the middle tube, 92, 462, and 838 cm in the short tube. The differential pressure ports are all located on the upflow side of the primary tubes. Ports are also located in the inlet and outlet plena.

References 1 and 2 give further details of the Semiscale Mod-2A system and its configuration for Test S-NC-1.

Test Preparation

In preparation for the test, the system was filled with treated demineralized water and vented at strategic points to ensure a liquid-full condition. Treated demineralized water in the steam generator feedwater tank was heated to 497 K, and the required liquid level was established in the steam generator secondary side. Before warmup, the system was checked for leakage, and system instrumentation checked for operation.

Warmup

Warmup to initial test conditions was accomplished using core power as a heat source and the steam generator secondary as a heat sink. Natural circulation flow thermally conditioned the system to specified steady-state values.

Test Sequence

For the first data point, makeup pumps were used to pressurize the primary system; for the remaining points pressurizer heaters were used to establish system pressure. For all cases, the primary pressure was maintained such that a minimum (no less than 2 K) of subcooling existed within the primary coolant system. Steam generator secondary fluid was kept at saturation throughout the test, and the steam generator tubes remained covered with water (collapsed level). Once a specified condition was met, sufficient time was allowed to establish a steady-state flow and temperature distribution. Except during the first steady-state condition, data were taken continuously.

A total of seven steady-state conditions were established, two of which involved varied external heater operation. The first low-pressure condition (0.48 MPa system pressure, 30 kW core power) was established without the use of external heaters because heat loss was very low. Next, the system was brought to a quasi-steady-state condition (3 MPa system pressure, 1.4 MPa secondary pressure, and 30 kW core power) without external heaters in operation. Following this, the vessel/downcomer external heater power was turned on to a predetermined value based on results from the Heat Loss Characterization Series, and the system allowed to reach another quasi-steady-state condition. Next, the loop external heaters were turned on and after flow and temperature stablization the second steady-state data point was taken. While maintaining system primary fluid subcooling, by using core power, secondary feed and bleed, and the pressurizer, the third, fourth, and fifth steady-state data points were established (8.5 MPa, 10.1 MPa, and 11 MPa system pressure; 30 kW, 60 kW, and 100 kW core power), with external heater power being adjusted according to results from the Heat Loss Characterization Test Series to maintain a net adiabatic pressure boundary.

One major experimental variable was primary system pressure. Primary pressure was adjusted via pressurizer pressure to maintain adequate subcooling in the hot leg, so that single-phase natural circulation was assured. Cyclic pressurizer heater operation caused small oscillations of primary pressure during steady-state; however, the magnitude was so small that no significant effect was observed. Secondary pressure was kept at the specified value for each steady-state natural circulation case, by controlling the steam discharge rate. The liquid level in the steam generator secondary was kept above the top of the longest tube, so that steam generator tubes were entirely covered with secondary coolant throughout the test. Also throughout the test, secondary pressure was lower than primary pressure, and the steam generator acted as a heat sink. Table 1 lists the sequence of major operations on a plot time basis.

Core power was another important test variable. Core power was varied to three different values during the test, to observe the effect on single-phase natural circulation. The sharp increase in core power between 160 and 250 minutes corresponds to operational variations during the pressurization process.

Data from Test S-NC-1 is presented in the following sections. This test consisted of five steadystate natural circulation cases representing a variety of system pressures and core powers and two quasi-steady-state cases designed to obtain information on external heater effects. The first set of data, labeled ANC1, is the data taken during steady-state condition 1. The second set of data, labeled BNC1, is the data taken during the two quasi-steady-state conditions and during the final four steady-state conditions.

Tabular Data for Test Conditions

Tables 2 and 4 show conditions in the Semiscale Mod-2A system at each steady-state test condition. Table 3 compares loop temperature distributions with and without external heaters on.

Real Time	Operations	Time After Tape Started (min)
8:00	System heatup	
11:25	Case 1 condition (ANC1) data (taken for 10 minutes)	0 to 500 seconds
13:23	Data tape start (BNC1)	0
13:54	Vessel heater on	31
14:53	Hot leg, pump suction, cold leg heaters on	90
15:02	Feeding steam generator	99
15:31	Raising primary pressure	128
15:35	Case 2 condition data (taken for 10 minutes)	132
16:04	Increased all band heater power	161
17:55	Case 3 condition data (taken for 10 minutes)	272
18:26	Case 4 condition data (taken for 6 minutes)	303
18:51	Case 5 condition data (taken for 10 minutes)	328
19:01	End of data acquisition (BNCI)	338

Table 1. Sequence of major operations

	ANC1	BNC1			
Parameters	Case 1	Case 2	Case 3	Case 4	Case 5
Primary system pressure (MPa)	0.48	3.5	9.1	10.1	11.2
Steam generator secondary pressure (MPa)	0.16	1.35	5.8	5.8	5.8
Core power (%W)	32.7	31.4	31.9	60	99.2
Total external heater power (kW)	7	31.98	41.9	41.9	41.9
Minimum subcooling (K)	5	14	6	5	2
Hot leg temperature (K)	410 .	498	568	577	586
Core AT (K)	32	27	20	29	29
∆T across steam generator (K)	32	30	20	28	27
Mass flow rate (kg/s)	0.21	0.29	0.32	0.40	0.47

Table 2. System parameters for steady-state test conditions

	Temperature Distribution (±2 K)			
Location	External Heaters Off	External Heaters On		
Hot leg near vessel (Spool 1)	465	500		
Steam generator entrance (Spool 5)	463	500		
Steam generator outlet (Spool 9)	447	469		
Pump replacement spool (Spool PB)	442	472		
Cold leg near vessel (Spool 22)	442	470		
Downcomer near bottom (Elevation-435)	437	470		

Table 3. Locp temperature distribution with and without external heaters (case 2 condition)

a. Heater power is 19.62 kW vessel-downcomer, 3.77 kW hot leg, 6.69 pump suction, 1.9 kW cold leg.

	Cases (measured/calculated)				
Parameter	1	2	3	4	5
Primary system pressure (MPa)	0.48	3.5 3.0	9.1 8.5	10.1 11.0	11.2 11.0
Steam generator secondary pressure (MPa)	0.16	1.35	5.8	5.8	5.8
	0.12	1.6	6.0	6.0	6.0
Core Power (kW)	32.7	31.4	31.9	69.0	99.1
	30.0	30.0	30.0	00.0	100.0
Minimum subcooling	5	14	6	5	2
	13	17	11	18	6
Hot leg temperature (K)	410	498	568	577	586
	404	490	561	573	585
Core AT (K) ^a	33	27	22	30	40
	15	15	13	23	30
Core inlet flow rate (kg/s) ^a	0.21 0.45	0.29 0.44	0.32 0.45	0.40 0.49	0.47
Mid-plane heater surface temperature (K)	408	493	565	578	590
Steam generator liquid level (cm) ^b	998	998	998	998	998
	1015	723	975	839	817
Steam generator ∆T (K)	30	30	20	28	27
	15	15	13	23	30

Table 4. Measured and calculated system parameters for steady-state test conditions

a. See Reference 3 for explanation.

b. During the test, the steam generator líquid level was maintained above the top of the tubes. The minimum level was 998 cm.

III. DATA PRESENTATION

This report presents the data from Semiscale Mod-2A Test S NC-1 with brief comment. Processing analysis serves only to obtain appropriate engineering units and to ensure that data are reasonable and consistent. In all cases, analysis assumed a homogeneous fluid in converting transducer output to engineering units.

The performance of the system during Test S-NC-1 was monitored by 276 detectors. A digital data acquisition system recorded data for Test S-NC-1 part 1 (ANC1) at an effective sample rate of 1.82 points per second per channel and for Test S-NC-1 part 2 (BNC1) at 0.455 points, per second per channel.

The data are presented as graphs in engineering units, the scales selected not reflecting the obtainable resolution of the data. Reference 1 and Appendix A describe the data processing techniques further. Figures 1 through 8 give information for interpretation of the data graphs. Table 5 groups the measurements according to type, identifies the location and range of the detector and actual recording range of the data acquisition system, comments briefly on the data, and references the detector and comments to their corresponding figure. Figures 9 through 416 (data graphs) present all the data obtained. Appendix A explains the capabilities of the data acquisition system, explains posttest data adjustments, and presents an analysis of the uncertainty associated with data measurements in the Semiscale Mod-2A System.

The data plots (Figures 9 through 416) and the appendix are on microfiche attached to the inside back cover of this report.

Table 5. Data presentation for S-NC-1

		Date Acqui	sition Range®		
Heasurement	Location and Comwents	Detector	System	Figure	Measurement Comments
LUID TEMPERATURE	Chromel-Alumel thermocouples, unless specified otherwise.				
Intect Loon		0 to 1533 K	0 to 820 K		
77141	Bot leg, Spool 1, 50 cm from vessel center-			9;206	
TFI*38	Not leg, Spool 3, port E, 270 cm from vessel center.			10;207	
TFINA	Not leg, Spool 4, 300 cm from vessel center.			11;208	
TF1*5	Hot leg, Spool 1, 363 cm from vessel center.			12;209	
141+0	Cold leg, Spool 9, 1017 cm from down- comer center.			13;210	
TE1*15	Cold leg. Spool 15, 642 cm from down- comer center.			14(21)	
TFI*PBB	Cold leg, Spool PB, 210 cm from down- comer center.			15;212	
TF[*]]	Cold leg, Spool 21, 138 cm from down- comer center.			16;213	
TF1*22	Cold leg, Spool 22, 48 cm from down- comer center.			17:214	
Downcome t		0 to 1533 K	0 to 820 K		
TFV*DC-18	Downcomer extension, 18 cm below cold leg center.			18;214	
TFV*DC-84	Downcomer extension, 84 cm below cold- leg center.			19;216	
TF9*DC-270	Downcomer extension, 270 cm below cold leg center.			20;217	
78V*0C-293	Downcomer extension, 293 cm below cold leg center.			21;218	
TFV*DC-436	Downcomer instrument spool, 436 cm below cold leg center.			22;219	
Vessel		0 to 1533 K	0 to 820 R		
Vessel Lower Plenus					
799*LP-552	552 cm below cold leg centerline.			73;220	
Vessel Upper Plenum		0 to 1533 #	0 to 820 K		
TFV*CPR-38	38 cm below cold leg centerline at 240°.			24;021	
TEV#UPH-13	13 cm below cold leg centerline at 180°.			23;222	
Core Crid Scaters		0 to 1533 K	0 to 1580 K		
Grid Spacer 1	490 cm below cold leg centerline, 6 cm above bottom of heated length.				
TEV*D5+6	In space defined by Columns D and E. Rows 4 and 5.			261223	
Grid Spacer 4	370 cm below cold leg centerline, 126 cm above bottom of heated length.				
TFV*83+126	In space defined by Columns 8 and C, Rows 3 and 4.			27:224	
Grid Spacer 5	130 cm below cold leg centerline, 166 cm above bottom of heated length.				
TFV*B3+156	in space defined by Columns 5 and C. Nows 3 and 4.			28;225	
Crid Spacer 6	290 cm below cold leg centerline, 206 cm above bottom of heated length.				
TFV*83+206	In space defined by Columns 8 and C, Rows 3 and 4.			29;226	

*

		Deta Acquisition Range ^a						
Measurement	Location and Comments®	Detector	System	Figure	Measurement Componests			
Grid Spacer 8	210 cm below cold leg centerline, 286 cm above bottom of heated length.							
TFV*A4+286	In space defined by Columns A and B, Rows 4 and 5.			30:227				
Orid Spacer 9	170 cm below cold leg centerline, 326 cm above bottom of heated length.							
7FV*A4+326	In space defined by Columna A and B, Rows 4 and 5.			31:228				
Orid Spacer 10	130 cm below cold leg centerline, 365 cm above bottos of heated length.							
TFV*A4+365	In space defined by Columns A and B, Rows 4 and 5.			32,229				
Steam Generator		0 to 1533 K	0 to 820 K					
Intact Loop, Primary Side	Betwees Spools 7 and 8.							
TFIP+LH30	In long tube, hot side, 30 cm above top of "ube sheet,			33;230				
7#TP+5884	In short tube, hot side, 84 cm above top of tube sheet.			34:231				
TFIP+UH152	In long tube, hot side, 152 cm above top of tube sheet.			35;232				
1919+68211	In long tube, hot side, 211 on above top of tube sheet.			36;233				
TFTP+LH452	In long tube, hot side, 452 cm above top of tube sheet.			37;234				
TFTF+LH668	In long tube, hot side, 568 cm above top of tube sheet.			38;235				
171P+LH785	In long tube, hot side, 785 cm above top of tube aheet.			391236				
7/12+5HR15	In short tube, hot side, #15 cm above top of tube sheet.			40;237				
T#10+L8922	In long tube, hot side, 922 cm above top of tube abset.			41;238				
TFIP+SC668	In short tube, cold side, 668 cm above top of tube sheet.			42;239				
TFIF+SC333	In short tube, cold side, 133 cm above top of tube claet.			63;240				
TFIP+LC133	In long tube, cold side, 333 cm above top of tube sheet.			44;241				
TFIP+SC211	In short tube, cold side, 211 cm showe top of tube sheet.			45;242				
TFIP+LC211	In long tube, cold side, 211 cm above top of cube sheet.			46;243				
Intact Loop, Secondary Bide		0 to 1533 K	0 to 820 K					
TFSC*10FWU	In feedwater line to steam generator feed ring.			47;244				
TESC*IGSTN	In steam line from steam generator steam dome.			48;245				
7FIS*D+914	In downcomer, 914 cm above top of tube sheet.			49;246				
TFIS*D+457	In downcomer, 457 cm above op of tube sheet.			50;247				
TFIS*D+152	In downcomer, 152 cm ϵ^4 ove top of tube sheet.			51;248				
TFIS+SH84	On short tube, hot side, 84 cm above top of tube sheet.			52;249				
TFIS+SC333	On short tube, cold side, 333 cm above top of tube sheet.			53;250				
TFI5*58452	On short tube, hot side, 452 cm above top of tube sheet.			54;251				

Measurement	Location and Comments [®]	Detector	System	Figure	Measurement Comments
Intact Loop, Secondary Side (continued)					
TF1S+LH30	On long tube, hot side, 10 cm suove top of tube sheet.			551252	
TFIS+LC30	On long tube, cold mide, 30 cm above top of tube sheet.			56:253	
TFIS+LH84	On long tube, hot side, 84 cm above top of tube sheet.			571254	
TFIS+1C84	On long tube, cold side, B4 cm above top of tube sheet.			58;255	
TF18+18152	On long tube, hat side, 152 cm above top of tube sheet.			59;256	
TRIS+LH211	On long tube, but mide, 211 cm shows top of tube wheet.			60	ANC1 only.
THIS+LOLPI	On long tube, cold side, 211 cm above top of tube sheet.			1-1257	
TF15+10373	On long tube, cold side, 333 cm above top of tube sheet.			62:258	
TF15+LH394	On long tube, hot side, 394 cm above top of tube sheet.			63,259	
TFIS+LH452	On long tube, not side, 652 cm above top of tube sheet.			64,260	
TRIS+LC452	On long tube, cold mide, 452 cm mbove top of tube wheet.			65;261	
TFIS+LH536	On long tube, hot side, 536 cm shove top of tube sheet.			66;262	
TFIS+LH785	On long tube, hot side, 785 cm above top of tube sheet,			67;263	
TFIS+LH922	On long tube, not wide, 922 cm above top of tube wheet.			68;264	
Pressurizer		0 to 153× K	0 to 820 K		
TF*PR2+132	In top of pressuriser, 132 cm above exit to surge line.			69;265	
TF*PR2-73	In surge line, 71 cm below entrance to pressurizer.			70:266	
TF*P82*13D	In surge line, at entrance to interr loop, Spool 3 port 5, 214 cm from vessel center.			267	8901 only.
METAL TEMPERATURE	Chromel-Alumel thermocouples unless specified otherwise.				
Intact Loop		0 to 1533 K	0 to 820 K		
THI*1.	Hot leg, Spool 1, 1.6 mm from pipe toside diameter (ID), 68 cm from vessel center.			71;268	
THI*4	Hot leg, Spool 4, 1.6 mm from pipe ID, 300 cm from vessel center.			72;269	
TM1*15	Cold leg, Spool 15, 1.6 mm from pipe TD, 668 cm from dowocomer center.			73;270	
781*288	Cold leg. Spool P8, 1.6 mm from pipe 1D, 243 cm from downcomer center.			74;271	
Downe one r		0 to 1535 K	0 to 820 k		
THV*DC+18	Downromer extension, 18 cm below cold leg center.			75:272	
TMV*DC-223	Downcomer extension, 223 cm below cold- leg center.			76;223	
THV*DC-250	Downcomer extension, 294 cm below cold leg center.			77,274	
THV*DC-035	Downcomer instrument spool, 415 cm			78;275	

Measurement	Location and Comments"	Detector	System	Figure ⁸	Measurement Comments
Vessel		0 to 1533 K	0 to 825 K		
THV#Q2R587	Lower plenum, 587 cm below cold leg centerline at 740°.			19;278	
CHY+50-752	Core housing, 352 cm below cold leg centerline.			80;277	
THV*SC-212	Core housing, 212 on below cold leg centerline.			81;278	
Steam Generator Intent Loop		0 to 1533 K	0 to 820 K		
TM16+LH30	On long tube, hot leg OD, 30 cm above top of tube sheet.			82:279	
THIG+LH84	On long tube, hot leg 05, 84 cm above top of tube sheet.			83;280	
THIG+LH211	On long tube, hot leg 00, 211 cm shows top of tube sheet.			84;281	
TMIC+L9452	On long tube, hot leg 00, 452 cm above top of tube sheet.				Detector failed.
THIGHLBEES	On long tube, but leg 00, 668 cm above top of tube sheet.			85:282	
TH10+LC30	On long tube, cold leg 00, 30 cm above top of tube sheet.			86;283	
T#16+LC711	On long tube, cold leg 00, 211 cm above top of tube sheet.			87;284	
THEG+LC437	Ov long tube, cold leg 00, 452 on above rop of tube sheet.			88,285	
THIC+SC452	On short tube, told leg 00, 452 cm above tup of tube sheet.			89;286	
TMIC+FP2C	On filler piece number 20.			90;287	
Recercal Heaters	Thermocouples on pipe outside surface, under an external band beater.	0 PH 1533 8	0 so 820 x		
Intact Loop					
TMEN*7	Hot leg, Spoof 7, 497 om fo a vessel center:			91:288	
THERE	Cold leg. Spool 8, 1082 im from down comer center.			971289	
TNEN*15	Cold Leg. Spont 16, 542 cm from down- comer center:			93;290	
THER*22	Cold leg, Spon ¹ J2, 42 on from down- comer center.			94[19]	
Vezzel		0 to 1533 K .	0 to 820 K		
THE#*D-237	On Sowncomer,? on below cold leg center.			95:292	
TMEH*7-360	Core housing, 1., on below cold leg conterline.			95;293	
TMER*V-190	Crie housing, 198 ce be'uw cold leg centerline:			97,294	
THER#V+LOI	Upper pinnum, 101 — above cold leg centerline.			98;295	
MATERIAL TEMPERATURE	Chromel-Alumei thermocouples unless otherwise specified.				
External Reaters	Thermocouples on external band hester outside surface, under insulation.	0 to 1533 K	0 to 820 K		
Intact Loop					
789.*3	Hot leg, Spool 3, 174 cm from vessel center.			99,296	
TEH#1	Not leg, Spool 7, 447 cm from vessel center,			100;297	
TEH*S	Cold leg, Spool 6, 1087 cm from down- comer center.			101:298	

	Data Acquisition Hange [®]						
Measurement	Location and Comments ³	Detector	System	Figure	Measurement Comments		
Intact Loop (continued)							
78H*12	Cold leg, Spool 12, 900 cm from down- comer center.			1021299			
тен+рав.	Cold leg, Spool PB, 243 cm from down- comer center.			103;300			
TEH*22	Cold leg, Spool 22, 42 cm from down- comer center.			104:301			
Vessel		0 to 1533 K	0 to 820 K				
SEM*0-237	On downcomer, 237 cm below cold leg center.			105;302			
TE8*V-360	Core housing, 360 cm below cold leg centerline.			303	89Cl only.		
TEN*V-196	Core housing, 196 cm below cold leg centerline.			106:304			
TEH*V+101	Upper plenum, 101 cm above cold leg centerline.			107;305			
CORE REATER CLAUDING . TEMPERATURE							
High Power Bus Heaters		0 to 1533 K	0 to 1580 K				
787*82+39 787*82+196	Heater at Column 8, Row 2. Thermo- couples at 39 cm (90%), and 196 cm (50%) above bottom of heated length.			108;306 109;307			
THV*B3+354	Heater at Column B, Row 3. Thermo- couple at $354 \text{ cm} (180^\circ)$ above bottom of heated length.			110,308			
THV*84+322	Nester at Column 8, Row 4. Thermo- couple at 322 cm (0°) above bottom of heated length.			111;309			
THV*C2+321	Heater at Column C, Row 2. Thermo- couple at 321 cm (180°) above bottom of heated length.			112;310			
7HV*C3+79 7HV*C3+231	Heater at Column C, Row 3. Thermore couple at 79 cm (75°) , and 231 cm (54°) above bottom of heated length.			113,311 114,312			
THV*C4+187	Heater at Column C, Row 4. Thermo- couple at 187 cm (182*) above bottom of heated length.			115;313			
THV+02+254	Heater at Column D, Row 2. Thermo- couple at 254 cm (351*) above nottom of heated length.			116;314			
THV*D4+179 THV*D4+352	Heater at Column D, Row 4. Thermo- couples at 179 cm (26°), and 352 cm (370°) showe bottom of heated length.			117;315 118;316			
Low Lower Bus Heaters		0 to 1533 K	0 to 1560 K				
THV*AZ+112	Heater at Column A, Row 2. Thermo-couple at 112 cm (298°) above bottom of heater length.			119:317			
78V*A3+208 78V*A3+291	Heater at Column A, Row 3. Thermo- couples at 208 cm (1214), and 291 cm (270*) above bottom f heated length.			120:318 121:319			
THV*A4+355	Heater at Column A, Row 6 Thermo- couple at 355 cm (270*) above bottom of heated length.			122;320			
THV*81+183 THV*81+253	Heater at Column B, Row 1. Thermo- couples at 183 cm (131*), and 153 cm (1*) above bottom of heated length.			123;321 124;322			
THV*85+252	B. ater at Column B, Row 5. Thermo- couple at 252 cm (22^{\ast}) above bottom of heated length.			125;323			
7HV*C1+292	Heater at Column C, Row 1. Thermo- couple at 292 cm (0°) above bottom of heated length.			126;324			
7HV*C5+290	Heater at Column C, Row 5. Thermo- couple at 290 cm (180^{+}) above bottom of heated length.			127;325			

		Data Acquisi	tion Range"		
Reasurement	Location and Comments	Detector	System	Figure	Measurement Comments
Low Power Bus Heaters (continued)					
THV*E4+230	Heater at Column E. Row Thermo- couple at 230 cm (355") above bottom of heated length.			128;326	
PRESSURE					
Intact Loop					
P[*]	Not leg, Spool 1, 60 cm from vessel center.	0 to 17.24 MPa	0 to 21.95 MPa	1291327	
P1*5	Hot leg, (steam generator inist leg), Spool 5, 363 cm from vessel center.		0 to 21.03 MPa	130;328	
910*LH970	Steam generator primary side, in long tube, hot side, 979 cm shove top of tube sheet.		0 to 20.72 MPa	131;329	
51×3	Cold leg (steam generator outlet leg), Spool 4, 1017 cm from downcomer center.		0 to 22,65 MPa	132;330	
P1*14	Cold leg (pump suction leg), Spool 14, 700 cm from downcomer center.		0 to 20.26 MF#	133;331	
P1*P85	Cold leg (pump bypass leg), Sponl PB, 210 cm from downcomer center.		0 to 21.76 MPa	134;332	
F1+22	Cold leg, Spool 22, 60 cm from down- comer center.		0 to 21.54 MPa	135;333	
Vessel					
PY*DC-435	To downcomer instrument spool, 435 cm below cold leg center.	0 to 17.24 MPa	0 to 20,04 MPa	136;334	
PV*1.P-442	In lower plenum, 442 cm helow cold leg centerline.		0 to 20.66 MP#	137:335	
bA*(b-1)	In upper planum, 13 cm below cold leg centerline.		0 to 21.64 MP#	138;336	
Pressuzier					
p*PR2+158	In pressurirer steam dome, 156 cm above exit to surge line.	0 to 17.74 MPa	0 to 20.81 MPa	139:337	
STEAM GENERATOR					
Intect lang	Secondary mide.				
PSC*IGPDW	In feedwater supply line to intect generator.	0 co 17.74 MP#	0 to 21.06 MP*	140;338	
PSC*IGSTH	In steam discharge line from intact generator.	0 to 6.897 MPa	0 to 8.548 MPa	141:339	
DIFFERENTIAL PRESSURE	Elevation difference between transducer tape is zero unless specified otherwise.				
Intect Loop					
D-VI34*I1	From vessel upper plenum at 13 cm (0°) below cold leg center to hot leg, Sponl 1, 60 cm from vessel center. Upper plenum tap is 33 cm below Sponl 1 tap.	t4,97 kPa	26.82 k?a	142;340	
DF1*1*30	From hot leg, Spool 1, 60 cm from vessel center to hot leg. Spool 3, port C, 204 cm from vessel center.	84.97 kPa	±7.005 kP#	341	BNC1 only.
D1*3C-6538	From hot leg, Spool 3, port \uparrow , 204 cm from vessel center to steam generator entrance plenum, 35 cm below the top of the tube sheet and 488 cm from vessel center. Spool 7 tap is 185 cm below steam generator tap.	424.87 KPa	233.20 kP#	143;342	
010-516+92	From steam generator entrance plenum, 50 cm below top of tube skeet to short tube, upflow leg at 92 om showe top of tube sheet. Batrance slenum tap is 147 cm below tube tap.	+24.87 xPa	*23.78 kPa	144,343	
D10358+462	From steam generator entrance plenum, 55 cm below top of tube sheet to short tube, upflow leg at 462 cm above top of tube speet, Scorgence plenum tap is	174.5) kPa	±101.1 kPa	145;344	

		Data Acquisition Range [®]			
Heasurement	Location and Compents	Detector	System	Figure	Measurement Comments
Intact Loop (continued)					
D1G558+838	From steam generato, entrance plenum, 35 om below rop of tube sheet to short tube, upflow side of apex at 838 om above top of tube sheet. Entrance plenum tap is 893 om above tube tap.	ti24.35 kPa	e162.7 kFs		Detector failed.
D1055E+905	From steam generator entrance plenom, 35 cm below top of tube sheet to middle tube, upflow side of apex at 905 cm above top of tube sheet. Entrance plenom tap is 960 cm below tube tap.	2124.35 XPx	±167.4 kPa	146;345	
DIG-SSESSX	From ateam generator entrance plenum to steam generator exit plenum, across steam generator primary side. Both taps are 55 cm below top of tube sheet.	174-61 kPa	2101.3 kP#	147	ASC1 only.
D10*16-358+9	From stamm generator exit plenum, 55 cm nelow top of tube sheat to cold leg, Spool 9, 1017 cm from downcomer center. Exit plenum tap is 108 cm shows Spool 9 tap.	54.97 kPa	16.80 kPa	148;346	
071 *9* 14	From cold leg, Spool 9, 1013 cm from commonmer center to cold leg, Spool 14, 700 cm from downcomer center. Spool 9 tap is 260 cm above Spool 14 tap.	±24.87 kPa	234.68 kPa	149;347	
Db1+19×b8V	Prom cold leg, Spool 14, 700 cm from downcommer center to cold leg Spool PB, port A, 402 cm from downcowse center. Spool 14 tap is 283 cm below Spool PB tap.	124.87 kPa	833.73 kBa	150;348	
DPI*9*PBA	Prom cold leg, Spool 9, 1017 cm from downcommer center to cold leg, Spool 98, port 8, 402 cm from downcomer center. Spool 9 tap is 97 cm above Spool 98 Lép.	t12.43 kPs	nil.18 kPa	151:349	
DPI*PBA*8	From cold leg, Spool PR, port A, 402 om from duvecomer center to cold leg, Spool PB, port B, 210 om from downcomer center. Across pump replacement ortfice.	1689.50 kPa	2691.5 kPa		deigctor føilmd.
091*935*72	From cold leg, Spool PB, port 5, 210 cm from downcomer canter to cold leg, Spool 22, 60 cm from downcomer center.	\$24.87 kPa	233,44 898	132:350	
D#152+VD19	From cold teg, Spool 32, 60 on from downcomet inster to downcomer inlet annulus, 20 on above cold leg center- line. Spool 22 teg is 29 om below inlet annulus teg.	±24.87 %Pa	233.43 194	153,351	
Pressurizer					
12982138+25	Liquid level in pressurizer, from 138 cm above exit to surge line, to 25 cm above exit to surge line. Elevation difference between taps is 133 cm.	112.43 kPa	118.15 xPa		Detector failed.
DP*PRZ*13C	From pressurizer bottom, 25 cm above exit to surge line, to hot leg, Spool 3, port C. Across surge line. Rievarion difference between taps is 136 cm.	53447.5 KP8	*3442.0 KP#	1541352	
Steam Generator	Primary mide liquid level.				
LTP970-558	From long tube, upflow side of apex, at 870 on above top of tube sheet, to entrance plenum, 55 on below top uf tube sheet. Elevation difference between taps is 1021 cm.	±124.35 kPe	t164.3 k7z	155;353	
L1P970-35X	From long tube, upflow side of spes, at 970 cm showe top of tube sheet to exit pleuum, 55 cm below fop of tube sheet. Elevation difference between taps is 1025 cm.	+198.96 k2a	\$274.8 kPx	156,354	

	the state of the state of the	Data Acquis	ition Range		
Neasurement	Location and Comments ⁸	Detector	System	Figure	Hessurement Comments
Vessel	Liquid level.				
190+29-170	Downcomer inlet annulus, 29 cm above cold leg centerline to downcomer extension, 170 cm below cold leg conterline. Elevation difference between taps is 199 cm.	\$24 .8 7 kPa	±33,22 kPa	1571355	
L9L170-578	Downcomer extension, 170 cm below cold leg centerline to vessel lower head. 578 cm below cold leg centerline. Elevation difference between taps is 308 cm.	†74.61 kPs	8107.6 kPs	1581356	
£V0+29-578	Downcomer inlet annulus, 29 cm above cold leg centurline to vassel lower head, 578 cm below cold leg centerline. Elevation difference between taps is 607 cm.	1)24.35 kPa	±172.3 kPa	1591357	
19-578-501	Veskal inun: head, 578 cm balow cold leg centerlise to lower core region, 501 cm below cold leg renterlise. Rievation difference between taps is 27 cm.	£12.43 kPa	216.97 kPa	160,358	
£¥+501-105	Vessel lower core region, 501 cm below cold leg centerline to heater rod ground hub, 105 cm below cold leg centraline. Elevation difference between taps is 396 cm.	±198.96 kPa	1266.0 kPa	1611359	
[V-105+140	Vessel heater rod ground hub, 105 cm below cold leg centerline to upper plenum end cap, 140 cm above cold leg centerline. Elevation difference between taps is 245 cm.	174.61 KP#	11^2.3 kPa	162;360	
57-378-138	Vessel lover head 578 cm below cold leg centerline to inver section of upper plenum, 13 cm below cold leg centerline. Elevation difference betweem caps is 585 cm.	±124,35 kPa	5176.1 kPa	163;353	
Γν-[38+]ψ _N	Vessel Lower sertion of upper plenum, 13 cp below cold leg centerline (at 180°) to upper plenum end cap, 140 cr showe cold leg centerline. Elevation difference between taps is 153 cm.	±24,87 kPa	233.28 kPs	164;367	
1,4-578+140	Vessel lower head, 578 cm below cold ieg centerline to opper plenum end cap, 140 cm above cold leg centerline. Elevation difference between taps in 718 cm.	4124-35 kPa	1168.0 kPa	165;363	
Steam Cenerator	Secondary eide.				
DFSC*10FA	Across orifice in intact loop steam generato, feedwater supply line.	+198.96 LPa	±270.2 kPa	166;364	
DFSC*LOSTH	across orifice in intert loop steam generator steam exhaust line.	#124.35 %P#	±148.7 kPa	167;365	
1111178460	Intast loop secondary side liquid level from 1117 on above top of tube sheet to 460 on above top of tube sheet. Eleva- tion difference between taps is 657 cm.	±126.35 kPa	1174.2 kPa	168:366	
LISU117+90	Inter, loop secondary side liquid level from 1117 om above top of tube sheet to 90 om above top of tube sheet. Fleva- tion difference between taps is 1027 cm.	*124-35 kP#	±170.3 kPm	169;367	
VOLUMETRIC FLOW BATE	furbine flowmener, bidirectional.				
Intect Loop					
01*1	Bot leg, Spool 1, 38 cm from vessel center.	t1.9 t/s to t19 t/s	19.0 t/s	368	BMC1 only. ^c
01*6	Bot leg (steam generator inlet leg), Spool 5, 408 cm from vessel center.	10.16 1/s to 11.6 1/s	14.0 X/A	369	BMC1 only, ^c
01*15	Cold leg (pump suction leg), Spool 15. 629 cm from downcomer center.	11,9 %/s to 119.0 %/s	±9.0 \$/\$	170	ANCI only. ^C
Q1*25	Cold leg (pump bypass instrument spool), Spool PS downatream from orifice,	10.15 k/s to 16.3 k/s	14.0 K/A	171;370	
01*22	Cold leg, Spool 22, 38 cm from down-	±1.26 %/* to ±12.6 %/*	29.0 K/s	1221351	

		Data Acquit	sition Range		
Measurement	Location and Comments	Detector	System	Figure	Measurement Commenta ^b
Vessel					
QV+DC-423	Downcomer instrument spool, 423 cm below cold leg center.	20.13 K/s to 91.58 K/s	\$4.0 K/s	1731372	
Ő∆≉Nb+f	Core exit, 1 cm above cold leg centerline.	12.8 %/s to 128.0 %/s	±10.0 t/s	373	BBC1 on y.5
DENSITY					
Intact Loop		1.6 to 1600 kg/m ³	0 to 1400 kg/m ³		
81*17 RI*18 RI*10	Hat leg, Spool 1, 77 cm from vessel center, T (tangential) ranges 270° to 360°, B (body) ranges 30° to 330°. C is a mathematical composite of T and B.			174 1751374 176	ANC1 only.
RI*5M RI*5I KI*3C	Not leg (steam generator inlet leg), Spool 5 (wertical), 367 cm from vessel center. M (middle) ranges 0° to 180°, I(inside) ranges 40° to 120°. C is a mathematical composite of M and L.			177:375 178:376 179:377	
81+287 R1+28M R1+280	Cold leg (pump hypers leg), Spool PB, 200 cm from downcomes center. T (top) ranges 40° ro .20°. M (aiddle) ranges 7° to 180°. C is a mathematical composite of T and B.			180:378 181:379 182:380	
81*227 91*228 81*220	Cold leg, Spool 22, 73 cm from down-comer center, T (tangential) ranges 270° to 360° . S (body) ranges 30° to 310° . C is a mathematical composite of T and B.			183;381 184;383 185;383	
Vennel		1.6 to 1500 kg/m ³	0 to 1600 kg/m ³		
R0*0C=72	Downcomer, 72 cm below cold leg center- line. 8 (body) ranges 30° to 330°.			186;354	
RV*DC-280	Downcomer, 260 cm below cold leg centerline. B (body) ranges 30° to 330°.			187;385	
8V*DC-456	Downcomer, 456 cm below cold leg centerline. B (body) ranges 30° to 130°.			188;386	
81443-6	Six on below bottom of core heated length, between heater rod Columns & and 3.			189;387	
RV*23+13	13 cm above bottom of cove heated length, between heater rod Rows 2 and 3.			190;388	
RV#23-113	113 cm above bottom of core heated length, between heater rod Rows 2 and 3.			191;189	
RV*A8+173	173 cm above bottom of core heated length, between heater rod Columns A and B.			192,390	
87+23+183	183 cm above bottom of core heated length, between heater rod Rows 2 and 3.			193;391	
89*23*253	757 cm above bottom of core heated length, between heater rod Rows 2 and 3.			1941392	
RV*A8+332	332 cm above bottom of core heated length, be ween heater rod Columns & and B.				Detector failed.
R¥*23+342	342~cm above bottom of core heated length between heater rod Rows 2 and 3.				Detector failed.
RV*UF-11	Vessel at base of core flow instrument housing, 11 cm below cold leg centerline.			195;393	
MASS FLOW RATE	Hase flow rate obtained by combining density (gamma attenuation technique) with volumetric flow rate (turbine	Range for mass mined from rang detectors used	flow is deter- es of individual in calculation.		

NearconnerLoadion and Connects ⁴ NatureLayreVignetVignetNatureInterHart of Connects ⁴ State of Connects ⁴ State of Connects ⁴ State of Connects ⁴ 1978. 1979.Gold lag, famil 22.State of Connects ⁴ State of Connects ⁴ State of Connects ⁴ 1979. 1979.Gold lag, famil 22.State of Connects ⁴ State of Connects ⁴ State of Connects ⁴ 1970. 1970.Gold lag, famil 22.State of Connects ⁴ State of Connects ⁴ State of Connects ⁴ 1970. 1970.Gone outpetsState of Connects ⁴ State of Connects ⁴ State of Connects ⁴ 1970. 1970.Gone outpetsState of Connects ⁴ State of Connects ⁴ State of Connects ⁴ 1970. 1970.Gone outpetsState of Connects ⁴ State of Connects ⁴ State of Connects ⁴ 1970. 1970.Gone outpetsState of Connects ⁴ State of Connects ⁴ State of Connects ⁴ 1970. 1970.Gone outpetsState of Connects ⁴ State of Connects ⁴ State of Connects ⁴ 1970. 1970.Gone outpetsState of Connects ⁴ State of Connects ⁴ State of Connects ⁴ 1970. 1970.Gone outpetsState of Connects ⁴ State of Connects ⁴ State of Connects ⁴ 1970. 1970.Gone outpetsState of Connects ⁴ State of Connects ⁴ State of Connects ⁴ 1970. 1970.Gone outpetsState of Connects ⁴ State of Connects ⁴ State of Connects ⁴ 1970. 1970.Gone outpetsState of Connects ⁴ State of Connects ⁴ <th></th> <th></th> <th>Data Acquis</th> <th>ition Range[#]</th> <th></th> <th></th>			Data Acquis	ition Range [#]		
Note of a face generator is itset lag), soil 78.Set of a face generator is itset lag), soil 78.Set of a face generator is itset lag), soil 78.Set of a face generator is itset lag), soil 78.Set of a face generator is itset lag), soil 78.Set of a face generator is itset lag), soil 78.Set of a face generator is itset lag), soil 78.Set of a face generator is itset lag), soil 78.Set of a face generator is itset lag), soil 78.Set of a face generator is itset lag), soil 78.OPEN CODE CODE CODE CODE CODE CODE CODE CODE	Heasurement	Location and Comments®	Detector	System	Figure*	Measurement Comments
Q164, 9195CBat: leg (seem sequence initer leg), spont 74.See 18.19.5Bat: leg (seem sequence initer leg), spont 74.See 18.19.5Bat: leg (seem sequence leg), spont 74.See 18.19.5See 18.19.5<	Intact Loop					
CHYP, K1920Cial Lag (space lag), Space 176.Hei, SpaceCHYP, K1920Call Lag, Space 120.StateCHYP, K1920Call Lag, Space 120.StateCHYP, K1920Call Lag, Space 120.StateCHYP, K1920Call Lag, Space 120.StateCHYP, K1920Care correct.State 10,000 ÅState 10,000 ÅCHYP, K1920Care correct.State 000 VState 10,000 ÅCHYP, K1920Care correct.State 000 VState 10,000 ÅCHYP, K1920Care correct.State 000 VState 000 VCHARLENSINGCare correct.State 10,000 ÅState 10,000 ÅCHARLENSINGCare correct.State 000 VState 000 VCHARLENSINGCare correct.State 000 VState 000 VCHARLENSINGCare correct.State 000 VState 000 VCHARLENSINGPaper for high paper fore.State 000 VState 000 VCHARLENSINGState for high paper fore.State 000 VState 000 VCHARLENSINGState valuege.State 000 VState 000 VCHARLENSINGCare correct.State 000 VState 000 VCHARLENSINGState valuege.State 000 VState 000 VCHARLENSINGState valuege.State 000 VState 000 VCHARLENSINGState 000 VState 000 VState	QI*6, RI*3C	Hot leg (steam generator inist leg), Spont 5/6.			394	BMC) only. ^c
Q1822, 81920Old ise, 9ponl 20.97.000 itDist97.000 it97.000 itQ1800-030Denome: instrument spool.97.000 itQ	QI*PB, RI*PBC	Cold leg (pump bypass leg), Spool PB.			196;395	
Seriest Bartice-2019Recent latitument steels.Seriest Seriest Seriest 	Q1*22, R1*220	Cold leg, Speel 22.			197;356	
Beener instrument workJein JahrSet instrument workSet instrument work	Vestori					
Source corrects: Source corrects: Source corrects: Source corrects: Source correct: Source correct: Source correct: Source correct: Source correct: Source co	0V*0C-423, RV*0C-456	Downcomer instrument spool.			195;397	
Name with the second of the se	CORE CHARACTERISTICS					
treat treat treat treat6 to 10,000 Å6 to 10,000 Å199,990treat 	High Power Bux					
Summit productOne wolf age.One Wolf VOne Volf VOte Volf VOte Volf VLive Preser AseCive contreent.O to 10,000 AO to 9330 A2011400DireLoradi ToDire wolf age.O to 400 VO to 402 V2021401Calculated PreserHower for high power bos.Dire Volf V201400Summit CollPreser for high power bos.Dire Volf V201400Summit CollSummit CollDire Volf V0 to 250 V405MCI enly.Summit Supply JSDSumeer coll age.Dire 200 V0 to 250 V407MCI enly.Summit Supply JSDEaster coll age.Dire 200 V0 to 250 V407MCI enly.Summit Supply JSDSuffer Coll age.Dire 200 V0 to 250 V408MEI enly.	17*8199805	Core curtent.	0 to 10,000 A	0 to 10,030 A	199;398	
Low Power Not UteCOMBUS Cire current. 0 to 10,000 A 0 to 8350 A 201,400 Table Combustion Core current. 0 to 400 Y 0	EA#WIMARN2	Core voltage.	0 to 400 V	0 to 402 V	200:399	
Invertion Cive correct. O to 10,000 A O to 400 Y O to 200 Y O to 400 Y O to 200 Y O	Low Power Bus					
DetrophysicsDate voltage:O to 400 Y0 40 40 Y2021401Calculated PowerKelfenicFower for high power hos.S011402KelfenicPower for high and low powerS011403S011403KelfenicPower for high and low powerS011403S011403KelfenicPower for high and low powerS011403S011403KelfenicS011 power for high and low powerS011403S011403KelfenicS011403S011404S011403KelfenicS011403S011404S011403KelfenicS011403S011404S011403KelfenicS011403S011403S011403KelfenicS011403S011403S011403KelfenicS011403S011403S011403KelfenicS011403S011403S011403KelfenicS011403S011403S011403KelfenicS011403S011403S011403KelfenicS011403S011403S011403KelfenicS011403S011403S011403KelfenicS011403S011403S011403KelfenicS011403S011403S011403KelfenicS011403S011403S011403KelfenicS011403S011403S011403KelfenicS011403S011403S011403KelfenicS011403S011403S011403KelfenicS011403S011403S011403KelfenicS011403S011403S011403KelfenicS011403	IV*LOPWBUS	Core current.	0 to 10,000 A	0 to 9330 A	201;400	
Calcinated Reset Sciences Sciences RAMERIC Prover for high power hus. Sciences RAMERIC Prover for low power hus. Sciences RAMERIC Total power for high and low power Sciences RAMERICS Total power for high and low power Sciences RAMERICS Total power for high and low power Sciences RAMERICS Total power for high and low power Sciences RAMERICS Former Supply 337 Rester voltage. Sciences RAMERISS Mater voltage. Sciences Sciences RAMERISS Rester voltage. Sciences Sciences RAMERISS Rester voltage. Sciences Sciences RAMERISS Calculated power. 413 Sciences RAMERISS Sciences Sciences Sciences RAMERISS Sciences Sciences Sciences RAMERISS Sciences Sciences Sciences RAMERISS Sciences Sciences Sciences RAMERISSS Sciencos, sciences	ET*LOPWRUS	Core voltage.	0 to 400 V	0 to 402 V	202;401	
RE(#10) Power for high power bas. 2031402 RAMPIOC Power for low power bas. 2044603 RAMPIOC Tatal power for high and low power 2031404 RAMPIOC Tatal power for high and low power 2031404 RAMPIOC Tatal power for high and low power 2031404 RAMPIOC Tatal power for high and low power 2031404 RAMPIOC Tatal power for high and low power 2031404 RAMPIOC Tatal power for high and low power 2031404 RAMPIOC Tatal power for high and low power 2031404 RAMPIOC Rester voltage. 0 to 200 V 0 to 250 V 405 8051 anity. Rester Supply 155 Tatat loop, power social (\$90014 13 Kreque bas) Tatat loop, power social (\$90014 13 Kreque bas) Rester voltage. 0 to 200 V 0 to 250 V 407 8051 anity. Rester Supply 150 Tatat loop, cold leg (\$90015 78, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21	Calculated Power					
EXMPLO: Power for low power hos. 204,403 XMM HEATSE CHARACTERISTICS 205,1044 XMM HEATSE CHARACTERISTICS 205,1044 XMM HEATSE CHARACTERISTICS Core exceel and downcomer. EMMANDERS Rester correct. 0 to 200 V 0 to 250 V 405 BPCI only. IMMANDERS Rester correct. 0 to 200 V 0 to 250 V 406 BPCI only. Numer. EMMANDERS Calculated power. 413 BPCI only. Numer. EMMANDERS Rester correct. 0 to 200 V 0 to 250 V 407 BPCI only. Mower. Distance of the second of the secon	EMH+HIC	Fower for high power bus.			2031402	
Number Cont Deal power for high and live power 203:504 Num HEATER CRANAULERISTICS Num HEATER CRANAULERISTICS Core reseal and downcomer. Num HEATER CRANAULERISTICS Core reseal and downcomer. Num HEATER CRANAULERISTICS Core reseal and downcomer. Num HEATER CRANAULERISTICS Rester voitage. 0 to 200 V 0 to 250 V 405 BSC1 only. IMPRAND357 Rester voitage. 0 to 300 A 0 to 40° A 406 BSC1 only. Num HEATER CRANAULERISTICS Calculated power. 413 BSC1 only. Num HEATER CRANAULERISTICS Calculated power. 413 BSC1 only. Num HEATER CRANAULERISTICS Calculated power. 0 to 200 V 0 to 200 V 407 BSC1 only. Num HEATER CRANAULERISTICS Calculated power. 0 to 500 A 0 to 400 A 406 BSC1 only. Num HEATER CRANAULERISTICS Calculated power. 0 to 500 V 0 to 500 V 406 BSC1 only. Num HEATER CRANAULERISTICS Calculated power. 0 to 100 A 0 to 200 V 408 BSC1 only. Num HEATER CRANAULERISTICS Calculated power. 0 to 100 A 0 to 200 A 406 BSC1 only. Num HEALERISTICS Calculated power. 0 to 100 A 0 to 200 A <t< td=""><td>KWH*LOC</td><td>Power for low power bus.</td><td></td><td></td><td>204;403</td><td></td></t<>	KWH*LOC	Power for low power bus.			204;403	
DAND: REATER CHARACTERISTICS Cover Stupp [y 357] Cover sensel and downcomer. EXMMANDER 0 to 200 V 0 to 250 V 405 BRC1 only. IMMEAND357 Meater voltage. 0 to 200 V 0 to 40° A 406 BRC1 only. IMMEAND357 Meater current. 0 to 200 V 0 to 40° A 406 BRC1 only. EXMEAND458 Calculated power. 413 BRC1 only. Fower Supp [y 358 Feater voltage. 0 to 200 V 0 to 250 V 407 BRC1 only. EXMEAND358 Feater voltage. 0 to 200 V 0 to 250 V 407 BRC1 only. KWEN91150 Calculated power. 414 BRC1 only. 414 BRC1 only. KWEN91150 Calculated power. 416 BRC1 only. 414 BRC1 only. KWEN91150 Calculated power. 0 to 200 V 0 to 250 V 406 BRC1 only. KWEN9150 Reater voltage. 0 to 200 V 0 to 250 V 407 BRC1 only. KWEN9160 Meater current. 0 to 100 A 0 to 200 A 408 </td <td>кин*тотс</td> <td>Total power for high and low power bus,</td> <td></td> <td></td> <td>205:404</td> <td></td>	кин*тотс	Total power for high and low power bus,			205:404	
Prover. Supply 357 Core vessel and downcomer. EM#SAND357 Meater voltage. 0 to 200 V 0 to 250 V 405 BNC1 only. IM#SAND357 Meater voltage. 0 to 300 A 0 to 400 A 406 BNC1 only. IM#SAND357 Meater voltage. 0 to 300 A 0 to 400 A 406 BNC1 only. KN#KMEYESS Galculated power. 413 BNC1 only. BNC1 only. Power Supply 338 Intact loop, pump evotion (Spools 13: through 16). Intact loop, pump evotion (Spools 13: through 16). BNC1 only. EM#SAND358 Meater voltage. 0 to 200 V 0 to 400 A 408 BNC1 only. MWKAND358 Meater voltage. 0 to 200 V 0 to 200 V 407 BNC1 only. MWKAND360 Beater current. 0 to 200 V 0 to 200 V 408 BNC1 only. EM#SAND360 Beater current. 0 to 100 A 0 to 200 V 609 BNC1 only. EM#SAND360 Beater current. 0 to 200 V 0 to 200 V 600 BRC1 only. Power Kopply 361 Inteact loop, het leg (Spools 1 thro	NAND REATER CRARACTERISTICS					
EMP BAND 357 Meater voltage. 0 to 200 V 0 to 250 V 405 BMC1 only. IMP BAND 357 Heater current. 0 to 300 A 0 to 40° A 406 BMC1 only. KW#KD#VESS Galculated power. 413 BMC1 only. Fower Supply 358 Intact loop, pup section (5polis 13 through 16). 0 to 200 V 0 to 250 V 407 BMC1 only. IMP BAND 358 Heater current. 0 to 200 V 0 to 230 V 407 BMC1 only. IMP BAND 358 Heater current. 0 to 500 A 0 to 40° A 408 BMC1 only. IMP BAND 358 Heater current. 0 to 500 A 0 to 400 A 408 BMC1 only. IMP BAND 358 Heater current. 0 to 500 A 0 to 400 A 408 BMC1 only. IMP BAND 360 Heater voltage. 0 to 200 V 0 to 230 V 409 BMC1 only. IMP BAND 360 Heater voltage. 0 to 100 A 0 to 200 A 409 BMC1 only. IMP BAND 360 Heater voltage. 0 to 100 A 0 to 200 A 410 BMC1 only. <t< td=""><td>Power Supply 357</td><td>Core vessel and downcomer.</td><td></td><td></td><td></td><td></td></t<>	Power Supply 357	Core vessel and downcomer.				
H#BAND 357 Heater current. 0 to 300 Å 0 to 400 Å 406 BMC1 only. KWR0KWYESS Galculated power. 413 BMC1 only. Power Supply 358 Intact loop, pump-suction (Spools 13 through 16). Void 200 V 0 to 200 V 407 BMC1 only. EM#BAND 358 Meater current. 0 to 500 Å 0 to 400 Å 406 BMC1 only. KVVENHILS Calculated power. 414 BMC1 only. BMC1 only. Fower Supply 360 Gater current. 0 to 500 Å 0 to 200 V 406 BMC1 only. EM#BAND 360 Reater current. 0 to 500 Å 0 to 200 V 408 BMC1 only. EM#BAND 360 Reater current. 0 to 100 Å 0 to 200 V 409 BMC1 only. Immediate power. 413 BMC1 only. MCMONIA MCMONIA MCMONIA Immediate power. 0 to 100 Å 0 to 200 Å 409 BMC1 only. Immediate power. 10 to 200 V 0 to 250 V 413 BMC1 only. Immediate power. 10 to 200 V 0 to 250 V	EH*BAND357	Heater voltage.	0 to 200 V	0 to 250 V	6/05	BMC1 only.
KWENSE Calculated power. 413 BMC1 enly. Power Supply 338 Intact loop, pump-section (Spoils 13 through 16). Intact loop, pump-section (Spoils 13 through 16). SMC1 enly. EM#BAND358 Peater voltage. 0 to 200 V 0 to 230 V 407 BMC1 enly. IN#BAND358 Meater current. 0 to 500 A 0 to 400 A 408 BMC1 enly. KC'ER*ILEG Calculated power. 414 BMC1 enly. BMC1 enly. Power Supply 340 Intact loop, cold leg (Spoils 78, 21, and 22). SMC1 enly. BMC1 enly. EM#BAND360 Meater voltage. 0 to 200 V 0 to 200 V 409 BMC1 enly. IM#BAND360 Meater current. 0 to 100 A 0 to 200 V 409 BMC1 enly. IM#BAND360 Rester current. 0 to 100 A 0 to 200 V 410 BMC1 enly. Power Supply 361 Intact loop, hot leg (Spoils 1 through 127. 1415 BMC1 enly. EM#BAND361 Meater voltage. 0 to 200 V 0 to 250 V 411 BMC1 enly. IM#SAMD361 Meater voltage. 0 to 200 V 0 to 250 V 411 BMC1 enly. IM#SAMD361 Meater voltage. 0 to 200 V 0 to 250 V 411 BMC1 enly. IM#SAMD361 Meater current.	TH*BAND 357	Heater corrent.	A 000 a3 0	0 to 40° A	406	BHC1 only.
Power Supply 358Intact loop, pump euclion (Spools 13 through 16).EN+BAND358Peater voltage.0 to 200 V0 to 230 V407BNC1 only.IN+BAND358Meater current.0 to 500 A0 to 400 A408BNC1 only.KN VEN+1150Calculated power.416BNC1 only.En+BAND360Meater voltage.0 to 200 V0 to 250 V409BNC1 only.En+BAND360Meater voltage.0 to 200 V0 to 250 V409BNC1 only.IN+BAND360Meater voltage.0 to 100 A0 to 200 A410BNC1 only.En+BAND360Meater voltage.0 to 100 A0 to 200 A410BNC1 only.Power Supply 351 (N=MECL)Intact loop, hot leg (Spools 1 through 12).0 to 250 V409BNC1 only.Power Supply 351 (N=MECL)Meater voltage.0 to 200 V0 to 250 V411BNC1 only.Power Supply 351 (N=MECL)Meater voltage.0 to 200 V0 to 250 V411BNC1 only.En+BAND361 (N=MEC voltage.0 to 200 V0 to 250 V411BNC1 only.En+BAND361 (N=MEC voltage.0 to 150 A0 to 250 V411BNC1 only.KW=EN+NL (N=MENL)Calculated power.146BNC1 only.	KU*ER*VESS	Galculated power.			413	BMC1 only.
EN*SAND358Feater voltage.0 to 200 V0 to 230 V407SNC1 only.IN*SAND358Heater current.0 to 500 A0 to 400 A408SNC1 only.KC*ER*TLESCalculated power.414SNC1 only.Power Supply 360Intact loop, cold leg (Spools PS, 21, and 22).510 to 200 V0 to 230 V609SNC1 only.EN*SAND360Heater voltage.0 to 200 V0 to 230 V609SNC1 only.IN*SAND360Heater current.0 to 100 A0 to 200 A610SNC1 only.IN*SAND360Heater current.0 to 100 A0 to 200 A610SNC1 only.EN*SAND361Intact loop, hot leg (Spools 1 through 12).3HC1 only.3HC1 only.3HC1 only.EN*SAND361Heater voltage.0 to 200 V0 to 250 V411SNC1 only.IN*SAND361Heater voltage.0 to 150 A0 to 200 A412SNC1 only.IN*SAND361Galculated power.0 to 150 A0 to 200 A412SNC1 only.IN*SAND361Galculated power.0 to 150 A0 to 200 A412SNC1 only.IN*SAND361Galculated power.416SNC1 only.SNC1 only.IN*SAND361Galculated power.416SNC1 only.IN*SAND361Galculated power.416SNC1 only.IN*SAND361Galculated power.416SNC1 only.	Power Supply 358	Intact loop, pump suction (Spools 13 through 16).				
INPERAND358Heater current.0 to 500 A0 to 400 A408SRC1 only.KK 'ER *1153Calculated power.414SRC1 only.Power Supply 360fotact loop, cold leg (Spools P8, 21, and 22).414SRC1 only.Ed *BAND360Meater voltage.0 to 200 V0 to 250 V409SRC*Monly.IM *BAND360Meater current.0 to 100 A0 to 200 A410SRC1 only.IM *BAND360Meater current.0 to 100 A0 to 200 A410SRC1 only.KW *EM*CLCalculated power.415SRC1 only.3HC1 only.Power Supply 351 12).Intact loop, hot leg (Spools 1 through 12).0 to 250 V411SRC1 only.EM *BAND361Meater voltage.0 to 200 V0 to 250 V411SRC1 only.IM *BAND361Meater current.0 to 150 A0 to 200 A412SRC1 only.IM *BAND361Galculated power.0 to 150 A0 to 200 A412SRC1 only.KW *EM*LCalculated power.0 to 150 A0 to 200 A412SRC1 only.	ER*BAND358	Beater voltage.	0 to 200 V	0 to 250 V	407	BNC1 only.
KK 'ER*1150 Calculated power. 416 RNC1 only. Power Supply 360 Intact loop, cold leg (Spools PS, 21, and 22). Intact loop, cold leg (Spools PS, 21, and 22). Intact loop, cold leg (Spools PS, 21, and 22). EN*RAND360 Meater voltage. 0 to 200 V 0 to 250 V 409 RNC2Monly. 1N*86/RD360 Meater current. 0 to 100 A 0 to 200 A 610 RNC1 only. KW*EN*CL Calculated power. 413 SHC1 only. Power Supply 361 12), Intact loop, hot leg (Spools 1 through 12), 0 to 250 V 0 to 250 V 431 SNC1 only. ER*RAND361 Meater voltage. 0 to 150 A 0 to 250 V 431 SNC1 only. IN*SAMD361 Meater current. 0 to 150 A 0 to 250 V 431 SNC1 only. IN*SAMD361 Rester current. 0 to 150 A 0 to 200 A 412 MRC1 only. KW*EN*L Calculated power. 416 SNC1 only. 500 I only.	TH*BAND358	Heater current.	0 to 500 A	0 to 400 A	408	BMC1 only.
Power Supply 360 and 22). Intact loop, nold leg (Spools P8, 21, and 22). Ed#BARD360 Meater voltage. 0 to 200 V 0 to 200 A 409 BMC Monly. 1H#BAND360 Meater current. 0 to 100 A 0 to 200 A 410 BMC Monly. KW#EH*CL Calculated power. 413 BMC1 only. Power Supply 361 Intact loop, hot leg (Spools 1 through 12). O to 200 V 0 to 250 V 411 BMC1 only. ER#BAND361 Meater voltage. 0 to 200 V 0 to 250 V 411 BMC1 only. IN*SAND361 Meater current. 0 to 150 A 0 to 200 A 412 BMC1 only. KW#EH#NL Calculated power. 416 SMC1 only. 5MC1 only.	KWTER*1155	calculated power.			414	BRC1 only.
Ex##RAND360 Meater voltage. 0 to 200 V 0 to 200 V 409 RRCMonly. 1H#84/ND360 Meater current. 0 to 100 A 0 to 200 A 610 BRC1 only. KW#EH#CL Calculated power. 413 BHC1 only. Power Supply 361 12). Intact loop, hot leg (Spools 1 through 12). 0 to 200 V 0 to 250 V 431 BRC1 only. ER#BAND361 Meater voltage. 0 to 200 V 0 to 250 V 431 BRC1 only. LH#SAMD361 Meater current. 0 to 150 A 0 to 200 A 412 BHC1 only. KW#EH#L Calculated power. 416 BMC1 only. BMC1 only.	Power Supply 360	Intact loop, cold leg (Spools 78, 21, and 22).				
18#8AND360 Reater current. 0 to 100 A 0 to 200 A 410 RRC1 only. KW#EH#CL Calculated power. 413 SHC1 only. Power Supply 361 Intact loop, hot leg (Spoole 1 through 12). O to 200 V 0 to 250 V 411 SNC1 only. ER#BAND361 Heater voltage. 0 to 250 V 0 to 250 V 411 SNC1 only. LH#SAND361 Reater current. 0 to 150 A 0 to 200 A 412 SNC1 only. KW#EH#L Calculated power. 416 SNC1 only.	ES*BARD350	Heater voltage.	0 to 200 V	0 to 250 V	409	BNC Moonly.
KW*EN*CL Calculated power. 415 SMC1 enly. Power Supply 361 12/. Intact loop, het leg (Spools 1 through 12/. Intact loop, het leg (Spools 1 through 12/. SMC1 enly. EH*BAND361 Hester voltage. 0 to 250 V 0 to 250 V 411 SMC1 enly. LN*SAMD361 Hester current. 0 to 150 A 0 to 200 A 412 SMC1 enly. KW*EH*NL Calculated power. 416 SMC1 enly.	1###AND 360	Hester current.	0 to 100 A	0 to 200 A	410	BRC1 only.
Power Supply 361 12). Intact loop, hot leg (Spools 1 through 12). ER*BAND361 Heater voltage. 0 to 200 V 0 to 250 V 411 BNC1 only. LN*BAND361 Heater current. 0 to 150 A 0 to 200 A 412 BMC1 only. KW*EH*NL Calculated power. 416 BNC1 only.	KW*EH*CL	falculated power.			415	SHC1 only.
EH+BAND361 Heater voltage 0 to 200 V 0 to 750 V 411 BSC1 only- LN+BAND361 Heater current. 0 to 150 A 0 to 200 A 412 BHC1 only- KW+EH+HL Calculated power. 416 BNC1 only-	Power Supply 361	Intact loop, hot leg (Spoole 1 through 12).				
LN+SAND361 Hester current. O to 150 A D to 200 A 412 BHCl only. KW+EH+HL Calculated power. 416 BNCl only.	ER*BAND361	Heater voltage.	0 to 200 V	0 to 250 V	411	BMC1 only.
Numerate Calculated power. 416 #BC1 only.	LH*BAND361	Rester corrent.	0 to 150 A	0 to 200 A	412	BHC1 only.
	XW#ER#HI	Calculated power.			416	BHC1 only.

a. Statements at the beginning of a measurement category regarding location and comments, range, and figure apply to all subsequent measurements within the given category unless specified otherwise.

b. Detectors that were subjected to overrange conditions during portions of the test were capable of withstanding these conditions without change in operating or measuring characteristics when the physical conditions were again within the detector range.

c. Tvenaducer not calibrated below the stated detector range. Use data for trend identification only.

IV. REFERENCES

- 1. L. J. Ball et al., Semiscale Program Description, TREE-NUREG-1210, May 1978.
- G. G. Loomis and K. Soda, Experimental Operating Specification—Semiscale Mod-2A Natural Circulation Test Series (Series NC), EGG-SEMI-5427, April 1981.
- 3. G. G. Loomis, K. Soda et al., Quick Look Report For Semiscale Mod-2A Test S-NC-1, EGG-SEMI-5492, July 1981.

120555064215 2 ANR2 US NR C ADM DOCUMENT CONTROL DESK POR 016 WASHINGTON DC 20555

EG&G Idaho, Inc. P.O. Box 1625 Idaho Falls, Idaho 83415